

6.0 Discussion

The site exhibited very little sign of general contamination. The site appears to have been cut and benched as part of previous earthworks during construction of the resort in the early to mid 1980's. A portion of the site is now covered by the resort buildings and facilities.

It is believed that that a small portion of the site previously contained a small scale banana plantation. Although low concentrations of residual OCPs and Arsenic (As) were detected within this area, analysis confirmed all chemical analytes complied with the site acceptance criteria *NEPM 1999 Table 5a Column A – Residential with Minimal Access to Soils* and the *NSW EPA Guidelines for Assessing Banana Plantation Sites.*

Although all samples analysed for Arsenic (As) were below the *NEPM 1999 Table 5a Column A – Residential with Minimal Access to Soils* and the *NSW EPA Guidelines for Assessing Banana Plantation Sites* site acceptance criteria, a total of six (6) samples exceeded the Phytotoxicity Criteria of 20mg/kg.

Phytotoxicity (i.e. toxicity to plants) is used as the indicative environmental effect to be dealt with in the context of land redevelopment. The use of a single criteria for all ecosystems has significant limitations as biological responses to the chronic or acute effects of toxicity vary significantly between species. Bioavailability depends on soil conditions, geography, climate and species behaviour, which govern exposure pathways and need to be factored into any assessment. The provisional phytotoxicity-based investigation levels are criteria that are intended for use as a screen guide only. Phytotoxicity criteria are not usually associated with industrial/commercial or open space developments.

In the event of any future earthworks it is envisaged project design will further limit any bioavailability to the local ecology. All materials generated from this area either being disposed of or beneficially reused on site should be managed appropriately.

Asbestos containing fibro fragments have been found within the fill layer located in the elevated plateau area to the east of the restaurant. The fill covers an area of approximately 150m² to a maximum depth of 0.3m. Soil samples collected from the fill

and immediate surrounds did not indicate the presence of either fibrous or bonded asbestos containing materials.

7.0 Conclusions

Soil analysis from the Site provided no evidence to infer the presence of contamination on the site with chemical analyte concentrations within soils indicative of natural background levels and are within the site acceptance criteria *NEPM 1999 Table 5a Column A – Residential with Access to Soils NEPM 1999 Table 5a Column A – Residential with Minimal Access to Soils* and the *NSW EPA Guidelines for Assessing Banana Plantation Sites.* Potential phytotoxicity effects should be considered in the design of earthworks, structural placement and landscaping of the proposed development.

Asbestos cement sheet fragments of a bonded nature were found within localised fill materials. Asbestos based materials were also identified within the structures presently located on the site. The fill materials and structural asbestos materials prior to demolition or future development should be handled in accordance with the report titled 'Hazardous Materials Survey and Register, Former Pelican Beach Resort 740-742 Pacific Highway, Sapphire Beach NSW 2450', prepare by DLA dated June 2009.

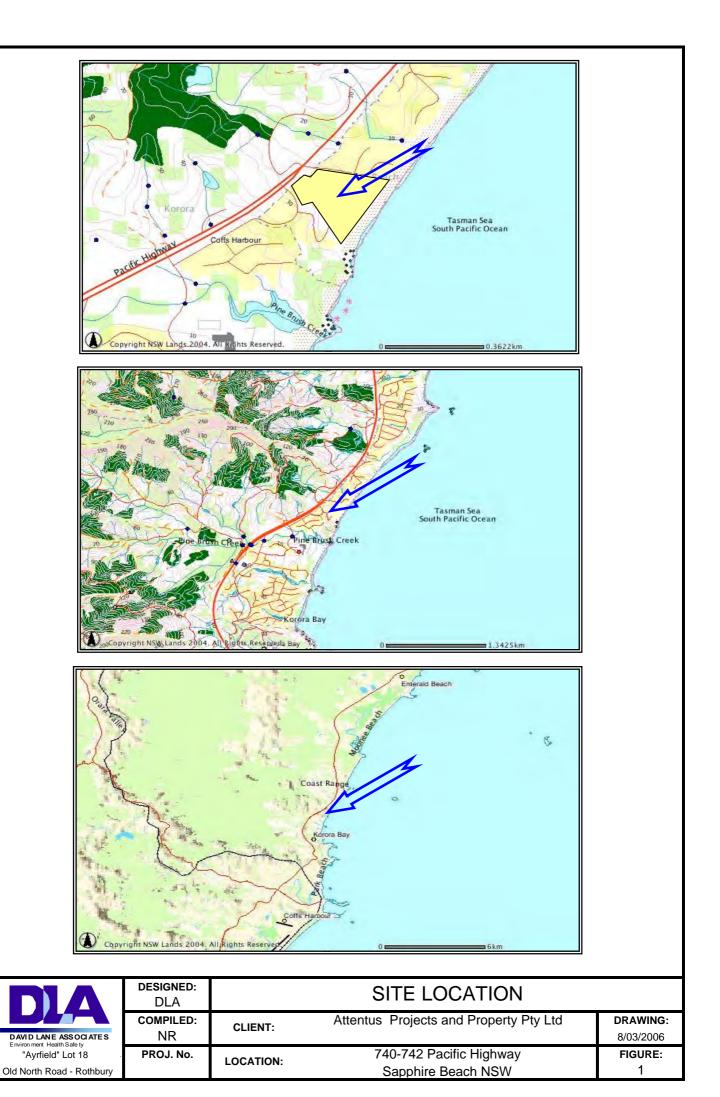
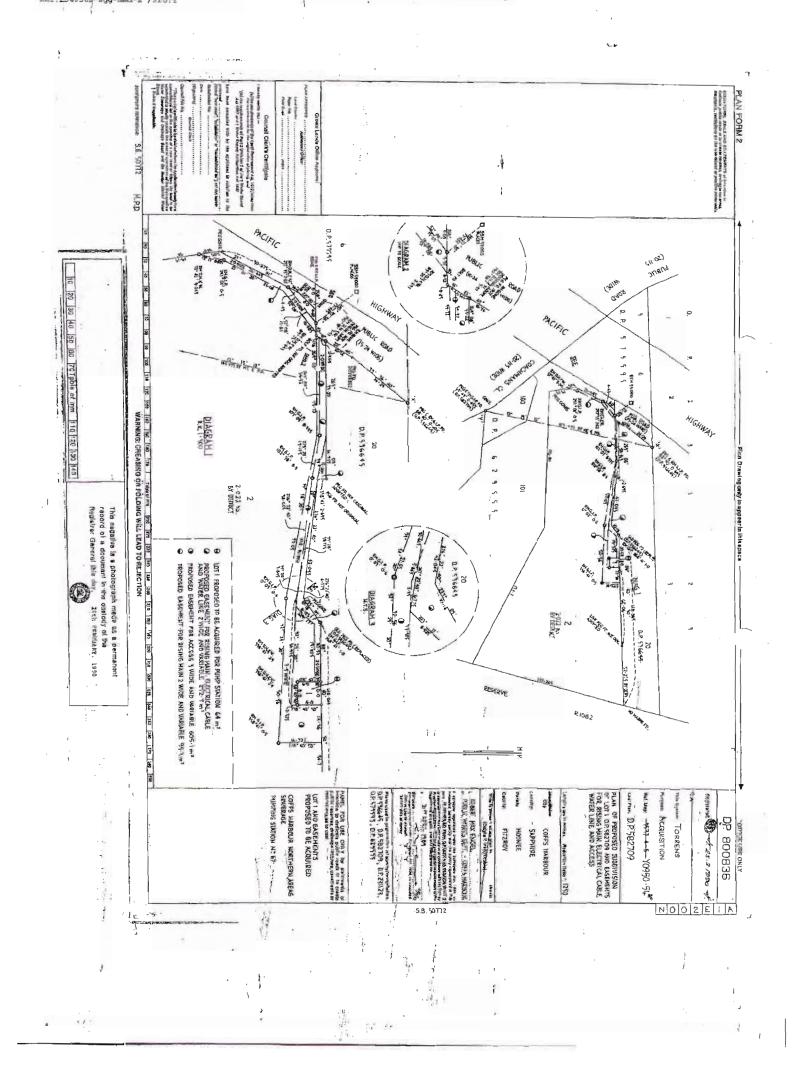
Any waste materials generated on Site by excavation or demolition should be characterised and disposed of in accordance with the NSW DECC 2008 Waste Guidelines.

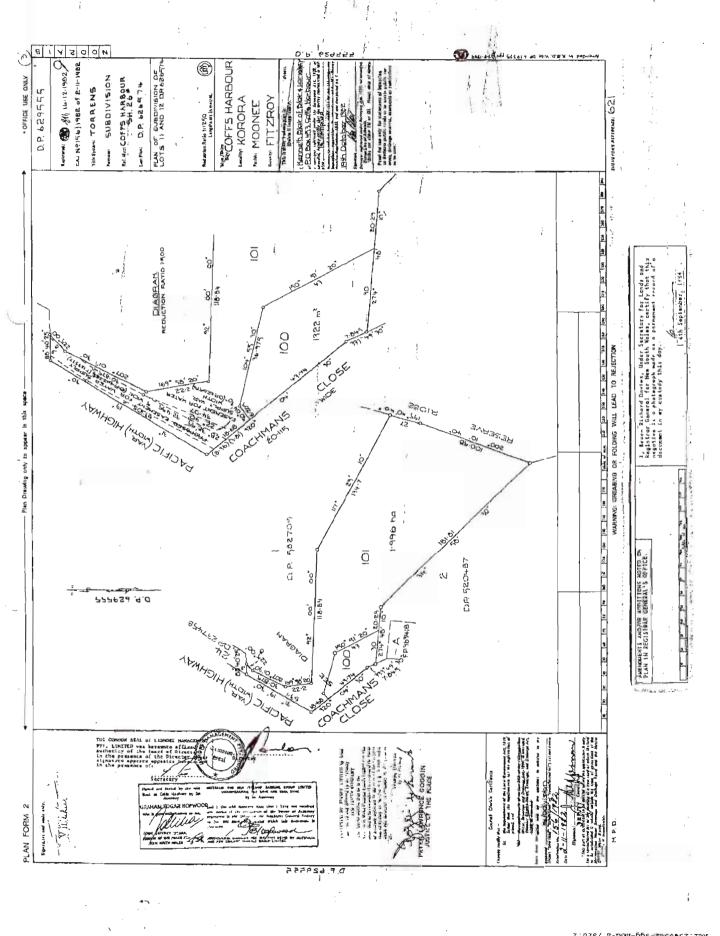
Based on this Site Assessment the Site is deemed suitable for the most sensitive intended land use, compliant with the requirements as outlined in *Table 5a Column A – Residential with Access to Soils, NEPM 1999,* and the *NSW EPA Guidelines for Assessing Banana Plantation Sites.* A Remedial Action Plan is therefore not required to address contamination concerns.

If the current land use of the site, i.e. Residential with Minimal Access to Soils, is to be changed in the future the Site Assessment should be reviewed to ensure compliance with suitable soil investigation levels for the appropriate end land use or zoning.

Figure 1

Site Location


Figure 2

Site Survey

Req:R249266 /Doc:DP 0800836 P /Rev:06-Nov-1992 /Sts:OR.OK /Prt:21-Feb-2005 10:56 /Pgs:ALL /Seq:1 of 1 Ref:2540562-sgg-med-z /Sro:T

14 14 15

a seecon actood theses, your of the second transferring to the second trans /Prt:21-feb-2005 10:59 /Pgs:ALL /Sog:1 of 1. NO NO: 838/ 2661-082-90: NON/

ыñ,

nor

Figure 3

Site Layout with Sampling Locations

LEGEND

- Phase 1 Sample Location
- Phase 2 Sample Location

	Pelica
	Client: Atte
Environmental	Newcastle Offic Phone (02) Fax (02)

Pelican Beach Resort - S	ite Layout w	ith Sampl	e Locations
Client:	Figure No:		Date:
Attentus Projects	3		26.5.09
Newcastle Office Sydney Office	Scale	Sheet	Revision
Phone (02) 4949 3800 Phone (02) 9476 1765 Fax (02) 4949 3811 Fax (02) 9476 1557		1 of 1	1

Figure 4

Concept Plan

CONCEPT PLAN

SK 01

Figure 5

Asbestos Materials

LEGEND

• Asbestos Sample Location

Pelican Beach Resort - A	sbestos Loo	cations	
Attentus Projects	Figure No: 5		Date: 26.5.09
Newcastle Office Sydney Office Phone (02) 4949 3800 Phone (02) 9476 1765 Fax (02) 4949 3811 Fax (02) 9476 1557	Scale	_{Sheet} 1 of 1	Revision 1

Figure 6

Arsenic Exceedences

LEGEND

• Arsenic Phytotoxicity Exceedence

	Pelican Beach Resort - F	hytotoxicity	Aresnic E	xceedances
	Attentus Projects	Figure No: 6		Date: 1.6.09
al	Newcastle Office Sydney Office Phone (02) 4949 3800 Phone (02) 9476 1765 Fax (02) 4949 3811 Fax (02) 9476 1557	Scale	sheet 1 Of 1	Revision 1

Appendix A1

Sample Log

	5	an Deach	Resort Phase 2																		
Sample	Sample	Sample	Sample Description	Note/Comment		Petroleum		P	AH	Pesti	cides	РСВ				Heavy	Metals				
Location	No.	Depth			BTEX	VTPH	TPH	B(a)P	PAH	OCP	OPP		As	Cd	Cr	Cu	Ni	Pb	Zn	Hg	Report
C1	1	0.15	Brown Loam		-	-	-	ND	ND	ND	-	-	6	<0.1	8	13	3	18	37	0.11	E042990
C1 C2	2	0.3	Orange Clays Dark Brown Clay Loam with Minor		- ND	- ND	- ND	ND ND	ND ND	ND ND	- ND	- ND	5	<0.1 <0.1	10	11 11	3	17 16	12 25	<0.05	E042990 E042990
C2	1A	0.15	Dark Brown Clay Loam with Minor	Intra Laboratory Dup	ND	ND	ND	ND	ND	ND	ND	ND	3	<0.1	6	9	3	17	23	0.09	E042990
C2	2	0.3	Dark Loamy Sands				-	ND	ND	1.43	-	-	35	0.2	7	15	5	29	41	0.14	E042990
C2	3	0.75	Orange Clays	Asphalt/Charcoal	-	-	-	-	-	0.09	-	-	6	<0.1	13	8	3	27	17	0.07	E042990
C3	1	0.3	Dark Brown Loam Clay		ND	ND	ND	ND	ND	ND	ND	ND	5	<0.1	9	23	3	18	22	0.05	E042990
C3 C4	1A 1	0.3	Dark Brown Loam Clay Dark Brown Clay Loam	Inta Dup	ND -	ND -	ND -	ND ND	ND ND	ND ND	ND -	ND -	9 15	<0.1 <0.1	8	18 7	4 3	15 13	42 20	0.06	E042990 E042990
C4 C4	2	0.15	Orange Clays	Undeerlying Sandy		-	-	ND	ND	ND	-	-	3	<0.1	6	13	3	16	19	<0.07	E042990 E042990
C5	1	0.15	Dark Orange Brown Clays	ee.e)g ee)	-	-	-	ND	ND	ND	-	-	21	0.3	8	13	4	36	31	0.13	E042990
C9	1	0.15	Grey Gavelly Fill Sands	Asbestos Fragment Present, Asbestos Sample Also Collected	-	-	-	ND	ND	ND	-	-	15	0.1	3	5	2	20	39	0.1	E042990
00	0	0.0	Oregina Claur	Surrounding Location				ND	ND	ND		-		.0.4	<u>^</u>	44	2	4.4	00	0.05	E040000
C9 C10	2	0.2	Orange Clays Dark Brown Clay Loam		-	-	-	ND	ND	ND ND	-	-	4	<0.1 <0.1	6 5	11 6	2	14 13	83 23	<0.05	E042990 E042990
C10	1	0.15	Dark Brown Loam Clay		ND	ND	ND	ND	ND	ND	ND	ND	17	0.1	6	8	2	24	39	0.07	E042990
C11	1A	0.15	Dark Brown Loam Clay	Intra Laboratory Dup	ND	ND	ND	ND	ND	ND	ND	ND	18	0.1	6	6	2	26	39	0.08	E042990
C11	1B	0.15	Dark Brown Loam Clay	Inter Laboratory Dup	ND	ND	ND	ND	ND	ND	ND	ND	20	<0.5	8	7	3	22	46	<0.1	29217
C11	2	0.2	Orange Clays		-	-	-	-	-	ND	-	-	40	0.2	9	7	3	31	22	0.09	E042990
C12 C12	1	0.15	Brown Sandy Loam Orange Clays		-	-	-	ND	ND	ND ND	-	-	5	0.5 <0.1	11 9	7	5 5	16 19	28 21	0.07	E042990 E042990
C12 C13	∠ 1	0.6	Orange Clays	Beneath Pavers		-	-	-	-	ND ND	-	-	4 5	<0.1	9 14	20	5	26	21	0.16	E042990 E042990
C17	1	0.15	Dark Clay Loam/Red Clays	Asbestos Sample Also	-	-	-	-	-	0.06	-	-	40	0.8	9	20	2	43	71	0.1	E042990
C18	1	0.15	Orange Ćlays	Asbestos Sample Also	-	-	-	-	-	ND	-	-	3	<0.1	9	15	3	22	31	<0.05	E042990
C19	1	0.15	Orange Clays		-	-	-	ND	ND	ND	-	-	3	<0.1	9	14	4	14	26	0.05	E042990
C20 C21	1	0.25	Orange Clays	Askastas Camala Alas		-	-	-	-	ND	-	-	5	<0.1	12	13	4	14	28	0.06	E042990
C21 C22	1	0.15	Orange Clays Grey Gavelly Fill Sands	Asbestos Sample Also Asbestos Sample Also	-	-	-	- ND	- ND	ND ND	-	-	8	<0.1 <0.1	11 9	19 32	3 16	40 36	40 70	0.07	E042990 E042990
C22	2	0.13	Yellow Fill Sandy Gravel	Trees Burried to the N	-	-	-	-	-	ND	-	-	4	<0.1	7	16	6	23	35	0.05	E042990
C25	1	0.3	Orange Clays		-	-	-	ND	ND	ND	-	-	6	<0.1	10	13	3	16	22	0.05	E042990
C26	1	0.15	Yellow/Grey Beach Sands and			-	-	-	-	-	-	-	7	<0.1	9	7	3	10	17	0.07	E042990
C27	1	0.15	Orange Clays and Dark Loam		-	-	-	ND	ND	ND	-	-	8	<0.1	4	3	2	3	9	< 0.05	E042990
C27 C28	2	0.3	Yellow/Grey Sands			-	-	-	-	ND	-	-	8	<0.1	4	3	1	4	8	< 0.05	E042990
C20 C31	1	0.15	Loamy Sands Dominated by Yellow Sands		-	-	-	-		-	-		8	<0.1 <0.1	9 5	73 6	4 <1	8 <2	36 6	0.07	E042990 E042990
C32	1	0.15	Loamy Sands		-	-	-	-	-	-	-	-	3	<0.1	2	2	<1	4	12	0.06	E042990
C33	1	0.15	Loamy Sands		-	-	-	-	-	-	-	-	4	<0.1	2	<2	<1	3	7	< 0.05	E042990
C34	1	0.15	Loamy Sands		-	-	-	-	-	-	-	-	3	<0.1	2	<2	<1	3	7	< 0.05	E042990
C35 C37	1	0.15	Loamy Sands			-	-	-	-	-	-	-	4	<0.1 <0.1	3	2	1	3	10 12	0.06	E042990 E042990
C37	1	0.15	Loamy Sands Loamy Sands			-	-	-	-	-	-	-	4	<0.1	3	3 <2	1	4	8	0.06	E042990 E042990
C39	1	0.15	Red/Orange Clays and Loamy Sands			-	-	-	-	-	-	-	12	<0.1	10	24	3	15	42	0.09	E042990
C40	1	0.15	Loamy Sands		-	-	-	-	-	-	-	-	5	<0.1	6	14	4	13	29	0.08	E042990
C42	1	0.15	Loamy Sands		-	-	-	-	-	-	-	-	4	<0.1	3	4	1	6	12	0.07	E042990
C43	1	0-0.3	Loamy Sands		-	-	-	-	-	-	-	-	4	<0.1	3	3	2	4	12	< 0.05	E042990
C45 C46	1	0.15	Loamy Sands Orange Clys			-	-	-	-	-	-	-	6 5	<0.1 <0.1	7	9 15	2	9 25	21 20	0.08	E042990 E042990
C40 C47	1	0.15	Loamy Sands		ND	ND	ND	ND	ND	ND	ND	ND	4	<0.1	4	4	2	7	28	0.13	E042990
C48	1	0.15	Loamy Sands/Clay		ND	ND	ND	ND	ND	ND	ND	ND	6	<0.1	3	3	1	6	8	0.05	E042990
C48	1A	0.15	Loamy Sands/Clay	Intra Laboratory Dup	ND	ND	ND	ND	ND	ND	ND	ND	8	<0.1	4	7	2	10	12	0.06	E042990
C48 C49	1B 1	0.15	Loamy Sands/Clay Loamy Sands/Clay	Inter Laboratory Dup	ND -	ND -	ND -	ND	ND	ND -	ND -	ND -	11 43	<0.5 0.1	6 22	9 16	3 11	13 17	17 45	<0.1 0.21	29217 E042990
C49 C50	1	0.15	Loamy Sands/Clay			-	-	- ND	- ND	- ND	-	-	43 19	<0.1	6	10	2	17	45 23	0.21	E042990 E042990
C50	2	0.3	Loamy Sands		-	-	-	-	-	-	-	-	7	<0.1	4	9	1	9	10	< 0.05	E042990
C52	1	0.15	Brown/Gey Sands		-	-	-	ND	ND	ND	-	-	4	<0.1	3	5	2	4	10	<0.05	E042990
C53	1	0.15	Brown/Gey Sands		-	-	-	ND	ND	ND	-	-	3	<0.1	4	9	2	8	8	0.05	E042990
C55	1	0.15	Brown/White Sands	Intro Laboratory Duo	ND	ND	ND	ND	ND	ND	ND	ND	3	<0.1	3	3	2	4	9	<0.05	E042990
C55 C55	1A 1B		Brown/White Sands Brown/White Sands	Intra Laboratory Dup Inter Laboratory Dup	ND ND	ND ND	ND ND	ND -	ND -	ND ND	ND ND	ND ND	4 <4	<0.1 <0.5	3	4	2	4	10 10	<0.05	E042990 29217
C56	1		Brown/White Sands		-	-	-	-	-	-	-	-	4	<0.5	3	2	<1	2	5	<0.05	E042990
C57	1	0.15	Orange Clays		-	-	-	-	-	ND	-	-	8	<0.1	14	26	6	25	47	0.11	E042990
C58	1	0.15	Orange/Grey Motled Clays		ND	ND	ND	ND	ND	-	ND	ND	4	<0.1	13	26	5	68	28	0.14	E042990
C58	1A 1	0.15	Orange/Grey Motled Clays	Intra Laboratory Dup	ND	ND	ND	ND	ND	ND ND	ND	ND	4	<0.1	13	14	4	27	23	0.23	E042990
C59 C60	1	0.15	Yellow Clays Loam Dominated by Root Mass		-	-	-	-	-	ND ND	-	-	2	<0.1 <0.1	4 5	6 17	2 4	11 18	14 28	0.07	E042990 E042990
BH1	-	0.13	Loan Dominator by Noot Mass				-	- ND	ND	ND	ND	ND	20	0.3	15	3.7	170	57	54	<0.05	43518
BH1	-	0.5			-	-	-	ND	ND	-	-	-	9	0.3	17	3.3	44	24	34	< 0.05	43518
BH2	-	0.3			-	-	-	ND	ND	ND	ND	ND	5	<0.1	2.5	0.6	4.6	1	1.1	<0.05	43518
BH2	-	0.3A		Intra Laboratory Dup	ND	ND	ND	ND	ND	ND	ND	ND	5	<0.1	2.4	0.6	4	1	1	< 0.05	43518
BH2 BH3	-	1 0.3			ND -	ND -	ND -	ND ND	ND ND	-	-	-	7	<0.1	2.3 11	0.7 6.8	2.8 56	<1 14	0.8 29	<0.05 <0.05	43518 43518
BH3 BH3	-	0.3			- ND	- ND	- ND	ND ND	ND ND	- ND	- ND	<0.1	9	0.2	11 6	6.8 6.6	39	14 9.2	29 15	<0.05	43518
BH4	-	0.5			ND	ND	ND	ND	ND	-	-	-	9	0.2	14	11	120	19	69	<0.05	43518
							-									3.7	79	41	42		43518
HS-1 BH3-W	- BH3	-	Water Sample		- ND	- ND	- ND	ND ND	ND ND	- ND	- ND	- ND	24 2	0.3 ND	20 ND	3.7	19	41	42 53	<0.05 ND	43518

Appendix A2

95% UCL Calculations

						ll		<u> </u>			
File: C:\Documer	its and Set	tings\DLA\L	esktop\Book	2.wst							
			Summary S	Statistics fo	r Raw Full	Data Sets					
Variable	NumObs	Minimum	Maximum	Mean	Median	Variance	SD	MAD/0.675	Skewness	Kurtosis	CV
Arsenic	24	2	43	7.708	4	78.3	8.849	2.965	3.155	11.27	1.148
Cadmium	56	0.05	0.25	0.0616	0.05	0.0020	0.0457	0	3.953	14.39	0.742
Chromium	24	3	22	6.625	4.5	22.94	4.79	2.224	1.817	3.429	0.723
Copper	27	1	26	8.741	7	50.66	7.118	5.93	1.153	0.703	0.814
Nickel	28	0.5	11	2.482	2	4.657	2.158	1.483	2.521	8.498	0.869
Lead	25	1	68	14.56	9	215.3	14.67	7.413	2.316	6.702	1.008
Zinc	24	5	47	20.25	15.5	170	13.04	10.38	0.976	-0.183	0.644
Mercury	64	0.025	0.23	0.0704	0.065	0.0017	0.0423	0.0297	1.585	3.576	0.602

.

		General	UCL Statistics	for Full Da	ita Sets	1	·		- t	
	User Selected Op	otions								
11de 101 of	From	File W:\Curre	ent Projects\DL*	1800_Atten	tus Projects	s_Sapphire I	Beach Resc	ort\METALS WC	RKBOOK	.wst
	Full Precis	sion OFF	d.th.t							
C	Confidence Coeffic	ient 95%	1.11. 1.1.11.1							
Number of	Bootstrap Operati	ions 2000								
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11. 11.17.17.17.17.17.17.17.17.17.17.17.17.1							
Arsenic			******							
		1 ************************************								
	,	********************	1881	General	Statistics					
PROPERTY AND ADDRESS AND ADDRESS ADDRES		Number of \	Valid Samples	24	Ĭ		Nur	nber of Unique S	Samples	11
		Number of N	lissing Values	40						
					1				i	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	R	aw Statistics				L	og-transfor	med Statistics		
			Minimum	2				Minimum of L	.og Data	0.693
			Maximum	43				Maximum of L	.og Data	3.761
			Mean	7.708				Mean of	log Data	1.702
			Median	4				SD of	log Data	0.753
·			SD	8.849						
		Coefficie	nt of Variation	1.148						
			Skewness	3.155						
		labbaala 1/			1					
			F	lelevant U	CL Statistic	S				
	Norma	al Distribution T	est			Lo	ognormal Di	stribution Test		
		Shapiro Wilk	Test Statistic	0.592			Sł	apiro Wilk Test	Statistic	0.903
		Shapiro Wilk	Critical Value	0.916			Sh	apiro Wilk Critic	al Value	0.916
	Data not Norma	al at 5% Signific	cance Level			Data not L	ognormal a	t 5% Significant	ce Level	
1999 I II I I I I I I I I I I I I I I I										
	Assuming	g Normal Distril	bution			Assı	iming Logn	ormal Distributio	оп	
	Assuming	-	bution tudent's-t UCL	10.8		Assı	Iming Logn		on 6 H-UCL	10.32
		-	tudent's-t UCL	10.8		Assı			6 H-UCL	10.32 12.38
		95% St (Adjusted for S	tudent's-t UCL	10.8 11.92		Assı	95% C	95%	6 H-UCL UE) UCL	
		95% St (Adjusted for S 95% Adjus	tudent's-t UCL Skewness)			Assı	95% C 97.5% C	95% Chebyshev (MVU	% H-UCL UE) UCL UE) UCL	12.38
		95% St (Adjusted for S 95% Adjus	tudent's-t UCL Skewness) sted-CLT UCL	11.92		Assı	95% C 97.5% C	95% Chebyshev (MVL Chebyshev (MVL	% H-UCL UE) UCL UE) UCL	12.38 14.64
	95% UCLs	95% St (Adjusted for S 95% Adjus	tudent's-t UCL Skewness) sted-CLT UCL Aodified-t UCL	11.92		Assı	95% C 97.5% C 99% C	95% Chebyshev (MVL Chebyshev (MVL	% H-UCL UE) UCL UE) UCL	12.38 14.64
	95% UCLs	95% St (Adjusted for S 95% Adjus 95% M a Distribution T	tudent's-t UCL Skewness) sted-CLT UCL Aodified-t UCL	11.92	Di		95% C 97.5% C 99% C Data Di	95% Chebyshev (MVL Chebyshev (MVL Chebyshev (MVL	6 H-UCL UE) UCL UE) UCL UE) UCL	12.38 14.64 19.06
	95% UCLs	95% St (Adjusted for S 95% Adjus 95% M a Distribution T	tudent's-t UCL Skewness) sted-CLT UCL Aodified-t UCL	11.92 11	Di		95% C 97.5% C 99% C Data Di	95% Chebyshev (MVL Chebyshev (MVL Chebyshev (MVL stribution	6 H-UCL UE) UCL UE) UCL UE) UCL	12.38 14.64 19.06
	95% UCLs	95% St (Adjusted for S 95% Adjus 95% M a Distribution T	tudent's-t UCL Skewness) sted-CLT UCL Modified-t UCL Fest ias corrected)	11.92 11 1.441	D		95% C 97.5% C 99% C Data Di	95% Chebyshev (MVL Chebyshev (MVL Chebyshev (MVL stribution	6 H-UCL UE) UCL UE) UCL UE) UCL	12.38 14.64 19.06
	95% UCLs Gamm	95% St (Adjusted for S 95% Adjus 95% M a Distribution T	tudent's-t UCL Skewness) sted-CLT UCL Modified-t UCL Fest bias corrected) Theta Star nu star	11.92 11 1.441 5.35	D	ata do not fo	95% C 97.5% C 99% C Data Di blow a Disc	95% Chebyshev (MVL Chebyshev (MVL Chebyshev (MVL stribution	6 H-UCL UE) UCL UE) UCL UE) UCL	12.38 14.64 19.06
	95% UCLs Gamm Approx	95% St (Adjusted for S 95% Adjus 95% M a Distribution T k star (b	tudent's-t UCL Skewness) sted-CLT UCL Modified-t UCL Fest sias corrected) Theta Star nu star are Value (.05)	11.92 11 1.441 5.35 69.16		ata do not fo	95% C 97.5% C 99% C Data Di blow a Disc	95% Chebyshev (MVU Chebyshev (MVU Chebyshev (MVU Stribution Stribution Sernable Distribution	6 H-UCL UE) UCL UE) UCL UE) UCL	12.38 14.64 19.06
	95% UCLs Gamm Approx	95% St (Adjusted for S 95% Adjus 95% M a Distribution T k star (b climate Chi Squa	tudent's-t UCL Skewness) sted-CLT UCL Modified-t UCL Fest sias corrected) Theta Star nu star are Value (.05)	11.92 11 1.441 5.35 69.16 51.02		ata do not fo	95% C 97.5% C 99% C Data Di blow a Disc	95% Chebyshev (MVU Chebyshev (MVU Chebyshev (MVU Stribution Stribution Sernable Distribution	6 H-UCL UE) UCL UE) UCL UE) UCL ution (0.0	12.38 14.64 19.06 5)
	95% UCLs Gamm Approx	95% St (Adjusted for S 95% Adjus 95% M a Distribution T k star (b climate Chi Squa	tudent's-t UCL Skewness) sted-CLT UCL Modified-t UCL Fest bias corrected) Theta Star nu star are Value (.05) of Significance	11.92 11 1.441 5.35 69.16 51.02 0.0392		ata do not fo	95% C 97.5% C 99% C Data Di Silow a Disc	95% Chebyshev (MVU Chebyshev (MVU Chebyshev (MVU Stribution Stribu	6 H-UCL UE) UCL UE) UCL UE) UCL ution (0.02 CLT UCL nife UCL	12.38 14.64 19.06 5) 10.68
	95% UCLs Gamm Approx	95% St (Adjusted for S 95% Adjus 95% M a Distribution T k star (b climate Chi Squa	tudent's-t UCL Skewness) sted-CLT UCL Modified-t UCL fest bias corrected) Theta Star nu star are Value (.05) of Significance Square Value	11.92 11 1.441 5.35 69.16 51.02 0.0392		ata do not fo	95% C 97.5% C 99% C Data Di Silow a Disc	95% Chebyshev (MVU Chebyshev (MVU Stribution Sernable Distribution Sernable Distribution Stric Statistics 95% (95% Jackki	6 H-UCL UE) UCL UE) UCL UE) UCL UE) UCL UE) UCL CLT UCL nife UCL	12.38 14.64 19.06 5) 10.68 10.8
	95% UCLs Gamm Approx A Ar Ar Ar	95% St (Adjusted for S 95% Adjus 95% M a Distribution T k star (b dimate Chi Squa Adjusted Level of Adjusted Level of Adjusted Chi nderson-Darling son-Darling 5%	tudent's-t UCL Skewness) sted-CLT UCL Aodified-t UCL Fest bias corrected) Theta Star nu star are Value (.05) of Significance Square Value g Test Statistic Critical Value	11.92 11 1.441 5.35 69.16 51.02 0.0392 49.92		ata do not fo	95% C 97.5% C 99% C Data Di ollow a Disc Nonparame 95% S	95% Chebyshev (MVU Chebyshev (MVU Chebyshev (MVU Chebyshev (MVU Stribution etric Statistics 95% Jackki Standard Bootst	6 H-UCL UE) UCL UE) UCL UE) UCL UE) UCL CLT UCL nife UCL trap UCL ap-t UCL	12.38 14.64 19.06 5) 10.68 10.8 10.62
	95% UCLs Gamm Approx A Anders Kolma	95% St (Adjusted for S 95% Adjus 95% M a Distribution T k star (b dimate Chi Squa Adjusted Level o Adjusted Level o Adjusted Chi nderson-Darling 5% ogorov-Smirnov	tudent's-t UCL Skewness) sted-CLT UCL Addified-t UCL Fest bias corrected) Theta Star nu star re Value (.05) of Significance Square Value 9 Test Statistic Critical Value 7 Test Statistic	11.92 11 1.441 5.35 69.16 51.02 0.0392 49.92 1.587		ata do not fo	95% C 97.5% C 99% C Data Di ollow a Disc Nonparame 95% S	95% Chebyshev (MVU Chebyshev (MVU Chebyshev (MVU Stribution ernable Distribu ernable Distribu	6 H-UCL UE) UCL UE) UCL UE) UCL UE) UCL CLT UCL nife UCL trap UCL trap UCL	12.38 14.64 19.06 5) 10.68 10.8 10.62 14.62
	95% UCLs Gamm Approx A Ar Ar Ar Anders Kolma Kolmagor	95% St (Adjusted for S 95% Adjus 95% Adjus 95% M a Distribution T k star (b diusted Chi Squa Adjusted Level of Adjusted Level of Adjusted Chi nderson-Darling son-Darling 5% ogorov-Smirnov	tudent's-t UCL Skewness) sted-CLT UCL Aodified-t UCL Fest bias corrected) Theta Star nu star are Value (.05) of Significance Square Value g Test Statistic Critical Value Critical Value	11.92 11 1.441 5.35 69.16 51.02 0.0392 49.92 1.587 0.76 0.224 0.181		ata do not fo	95% C 97.5% C 99% C Data Di Data Di Dilow a Disc Nonparame 95% S 95% P 95% P	95% Chebyshev (MVU Chebyshev (MVU Chebyshev (MVU Stribution ernable Distribution ernable Distribution ernable Distribution 95% C 95% Jackki Standard Bootst 95% Bootstra 5% Hall's Bootst ercentile Bootst	6 H-UCL UE) UCL UE) UCL UE) UCL UE) UCL CLT UCL nife UCL trap UCL trap UCL trap UCL trap UCL	12.38 14.64 19.06 5) 10.68 10.8 10.62 14.62 20.85 10.88 12
Dat	95% UCLs Gamm Approx A Anders Kolma	95% St (Adjusted for S 95% Adjus 95% Adjus 95% M a Distribution T k star (b diusted Chi Squa Adjusted Level of Adjusted Level of Adjusted Chi nderson-Darling son-Darling 5% ogorov-Smirnov	tudent's-t UCL Skewness) sted-CLT UCL Aodified-t UCL Fest bias corrected) Theta Star nu star are Value (.05) of Significance Square Value g Test Statistic Critical Value Critical Value	11.92 11 1.441 5.35 69.16 51.02 0.0392 49.92 1.587 0.76 0.224 0.181		ata do not fo	95% C 97.5% C 99% C Data Di ollow a Disc Nonparame 95% S 95% P 9 95% Che	95% Chebyshev (MVU Chebyshev (MVU Chebyshev (MVU Chebyshev (MVU Stribution etric Statistics 95% Jackki Standard Bootst 95% Bootstra 5% Hall's Bootst ercentile Bootst 5% BCA Bootst ebyshev(Mean,	6 H-UCL UE) UCL UE) UCL UE) UCL UE) UCL UE) UCL UE) UCL trap UCL trap UCL trap UCL trap UCL Sd) UCL	12.38 14.64 19.06 5) 10.68 10.8 10.62 14.62 20.85 10.88 12 15.58
Dat	95% UCLs Gamm Approx A Ar Ar Ardens Kolma Kolmogor a not Gamma Dis	95% St (Adjusted for S 95% Adjus 95% Adjus 95% M a Distribution T k star (b dimate Chi Squa Adjusted Level of Adjusted Level of Adjusted Chi nderson-Darling son-Darling 5% ogorov-Smirnov ov-Smirnov 5%	tudent's-t UCL Skewness) sted-CLT UCL Aodified-t UCL Fest bias corrected) Theta Star nu star are Value (.05) of Significance Square Value g Test Statistic Critical Value Significance Le	11.92 11 1.441 5.35 69.16 51.02 0.0392 49.92 1.587 0.76 0.224 0.181		ata do not fo	95% C 97.5% C 99% C Data Di ollow a Disc Nonparame 95% S 95% P 95% Che 97.5% Che	95% Chebyshev (MVU Chebyshev (MVU Chebyshev (MVU Stribution ernable Distribu ernable Distribu ernable Distribu ernable Distribu stric Statistics 95% Jackki Standard Bootst 95% Bootsta 5% Hall's Bootst ercentile Bootst 5% BCA Bootst ebyshev(Mean, ebyshev(Mean,	6 H-UCL UE) UCL UE) UCL UE) UCL UE) UCL CLT UCL nife UCL trap UCL trap UCL trap UCL trap UCL Sd) UCL Sd) UCL	12.38 14.64 19.06 5) 10.68 10.8 10.62 14.62 20.85 10.88 12 15.58 18.99
Dat	95% UCLs Gamm Approx A Ar Ar Ar Ander Kolmogor a not Gamma Dis Assuming	95% St (Adjusted for S 95% Adjus 95% Adjus 95% M a Distribution T k star (b dimate Chi Squa Adjusted Level of Adjusted Level of Adjusted Chi nderson-Darling son-Darling 5% ogorov-Smirnov 5% tributed at 5% S	tudent's-t UCL Skewness) sted-CLT UCL Aodified-t UCL Fest bias corrected) Theta Star nu star are Value (.05) of Significance Square Value Test Statistic Critical Value Significance Les bution	11.92 11 1.441 5.35 69.16 51.02 0.0392 49.92 1.587 0.76 0.224 0.181		ata do not fo	95% C 97.5% C 99% C Data Di ollow a Disc Nonparame 95% S 95% P 95% Che 97.5% Che	95% Chebyshev (MVU Chebyshev (MVU Chebyshev (MVU Chebyshev (MVU Stribution etric Statistics 95% Jackki Standard Bootst 95% Bootstra 5% Hall's Bootst ercentile Bootst 5% BCA Bootst ebyshev(Mean,	6 H-UCL UE) UCL UE) UCL UE) UCL UE) UCL CLT UCL nife UCL trap UCL trap UCL trap UCL trap UCL Sd) UCL Sd) UCL	12.38 14.64 19.06 5) 10.68 10.8 10.62 14.62 20.85 10.88 12 15.58
Dat	95% UCLs Gamm Approx A Ar Ar Ar Ander Kolmogor a not Gamma Dis Assuming	95% St (Adjusted for S 95% Adjus 95% Adjus 95% M a Distribution T k star (b dimate Chi Squa Adjusted Level of Adjusted Level of Adjusted Level of Adjusted Chi nderson-Darling son-Darling 5% ogorov-Smirnov ov-Smirnov 5% tributed at 5% S	tudent's-t UCL Skewness) sted-CLT UCL Addified-t UCL Fest bias corrected) Theta Star nu star are Value (.05) of Significance Square Value of Test Statistic Critical Value Significance Les bution e Gamma UCL	11.92 11 1.441 5.35 69.16 51.02 0.0392 49.92 1.587 0.76 0.224 0.181 evel 10.45		ata do not fo	95% C 97.5% C 99% C Data Di ollow a Disc Nonparame 95% S 95% P 95% Che 97.5% Che	95% Chebyshev (MVU Chebyshev (MVU Chebyshev (MVU Stribution ernable Distribu ernable Distribu ernable Distribu ernable Distribu stric Statistics 95% Jackki Standard Bootst 95% Bootsta 5% Hall's Bootst ercentile Bootst 5% BCA Bootst ebyshev(Mean, ebyshev(Mean,	6 H-UCL UE) UCL UE) UCL UE) UCL UE) UCL CLT UCL nife UCL trap UCL trap UCL trap UCL trap UCL Sd) UCL Sd) UCL	12.38 14.64 19.06 5) 10.68 10.8 10.62 14.62 20.85 10.88 12 15.58 18.99
Dat	95% UCLs Gamm Approx A Ar Ar Ar Ander Kolmogor a not Gamma Dis Assuming	95% St (Adjusted for S 95% Adjus 95% Adjus 95% M a Distribution T k star (b dimate Chi Squa Adjusted Level of Adjusted Level of Adjusted Chi nderson-Darling son-Darling 5% ogorov-Smirnov 5% tributed at 5% S	tudent's-t UCL Skewness) sted-CLT UCL Addified-t UCL Fest bias corrected) Theta Star nu star are Value (.05) of Significance Square Value of Test Statistic Critical Value Significance Les bution e Gamma UCL	11.92 11 1.441 5.35 69.16 51.02 0.0392 49.92 1.587 0.76 0.224 0.181 evel		ata do not fo	95% C 97.5% C 99% C Data Di ollow a Disc Nonparame 95% S 95% P 95% Che 97.5% Che	95% Chebyshev (MVU Chebyshev (MVU Chebyshev (MVU Stribution ernable Distribu ernable Distribu ernable Distribu ernable Distribu stric Statistics 95% Jackki Standard Bootst 95% Bootsta 5% Hall's Bootst ercentile Bootst 5% BCA Bootst ebyshev(Mean, ebyshev(Mean,	6 H-UCL UE) UCL UE) UCL UE) UCL UE) UCL CLT UCL nife UCL trap UCL trap UCL trap UCL trap UCL Sd) UCL Sd) UCL	12.38 14.64 19.06 5) 10.68 10.8 10.62 14.62 20.85 10.88 12 15.58 18.99
Dat	95% UCLs Gamm Approx A Ar Ar Ar Ander Kolmogor a not Gamma Dis Assuming	95% St (Adjusted for S 95% Adjus 95% Adjus 95% M a Distribution T k star (b dimate Chi Squa Adjusted Level of Adjusted Level of Adjusted Level of Adjusted Chi nderson-Darling son-Darling 5% ogorov-Smirnov ov-Smirnov 5% tributed at 5% S	tudent's-t UCL Skewness) sted-CLT UCL Addified-t UCL Fest bias corrected) Theta Star nu star are Value (.05) of Significance Square Value of Test Statistic Critical Value Significance Les bution e Gamma UCL	11.92 11 1.441 5.35 69.16 51.02 0.0392 49.92 1.587 0.76 0.224 0.181 evel 10.45		ata do not fo	95% C 97.5% C 99% C Data Di ollow a Disc Nonparame 95% S 95% P 95% Che 97.5% Che	95% Chebyshev (MVU Chebyshev (MVU Chebyshev (MVU Stribution ernable Distribu ernable Distribu ernable Distribu ernable Distribu stric Statistics 95% Jackki Standard Bootst 95% Bootsta 5% Hall's Bootst ercentile Bootst 5% BCA Bootst ebyshev(Mean, ebyshev(Mean,	6 H-UCL UE) UCL UE) UCL UE) UCL UE) UCL CLT UCL nife UCL trap UCL trap UCL trap UCL trap UCL Sd) UCL Sd) UCL	12.38 14.64 19.06 5) 10.68 10.8 10.62 14.62 20.85 10.88 12 15.58 18.99
Dat	95% UCLs Gamm Approx A Arden Kolmogor a not Gamma Dis Assuming 95	95% St (Adjusted for S 95% Adjus 95% Adjus 95% M a Distribution T k star (b dimate Chi Squa Adjusted Level of Adjusted Level of Adjusted Level of Adjusted Chi nderson-Darling son-Darling 5% ogorov-Smirnov ov-Smirnov 5% tributed at 5% S	tudent's-t UCL Skewness) sted-CLT UCL Addified-t UCL Fest bias corrected) Theta Star nu star are Value (.05) of Significance Square Value Test Statistic Critical Value Test Statistic Critical Value Significance Les bution a Gamma UCL I Gamma UCL	11.92 11 1.441 5.35 69.16 51.02 0.0392 49.92 1.587 0.76 0.224 0.181 evel 10.45		ata do not fo	95% C 97.5% C 99% C Data Di Sllow a Disc Nonparame 95% S 95% P 95% Che 97.5% Che 99% Che	95% Chebyshev (MVU Chebyshev (MVU Chebyshev (MVU Stribution ernable Distribu ernable Distribu ernable Distribu ernable Distribu stric Statistics 95% Jackki Standard Bootst 95% Bootsta 5% Hall's Bootst ercentile Bootst 5% BCA Bootst ebyshev(Mean, ebyshev(Mean,	6 H-UCL UE) UCL UE) UCL UE) UCL CLT UCL nife UCL trap UCL trap UCL trap UCL Sd) UCL Sd) UCL	12.38 14.64 19.06 5) 10.68 10.8 10.62 14.62 20.85 10.88 12 15.58 18.99

		tala bahan sah bah Mitsan I. bah Alt sahidan sant san san sanangan menangkan sanang		
Cadmium				
	0			
Number of Valid Samples	General Stati	Stics	Newtoordult	
Number of Valid Samples	56 8		Number of Unique Samples	3
Number of Missing Values	8		NUT 1987 J. WIN NUMBER OF LEASE	
Raw Statistics		Lo	g-transformed Statistics	
Minimum	0.05		Minimum of Log Data	-2.996
Maximum	0.25		Maximum of Log Data	-1.386
Mean	0.0616		Mean of log Data	-2.89
Median	0.05		SD of log Data	0.37
SD	0.0457		NI NARTI NI	
Coefficient of Variation	0.742		9 1988 98 10 18 49 10 18 AUGU AUGU AUGU AUGU AUGU AUGU AUGU AUG	
Skewness	3.953		9/1///00 10 00 00 01 00 00 00 10 10 10 10 10 1	
	ระหรางการของรางราย และ รายสามาณ <mark>สั</mark> น และ รางรอ			
	Relevant UCL St			
Normal Distribution Test		Log	normal Distribution Test	_
Lilliefors Test Statistic	0.529		Lilliefors Test Statistic	0.53
Lilliefors Critical Value	0.118	Deta 11	Lilliefors Critical Value	0.1
Data not Normal at 5% Significance Level			gnormal at 5% Significance Level	
Assuming Normal Distribution		Assur	ning Lognormal Distribution	
95% Student's-t UCL	0.0718		95% H-UCL	0.06
95% UCLs (Adjusted for Skewness)			95% Chebyshev (MVUE) UCL	0.07
95% Adjusted-CLT UCL	0.0751		97.5% Chebyshev (MVUE) UCL	0.07
95% Modified-t UCL	0.0724		99% Chebyshev (MVUE) UCL	0.08
	1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4		I. N. M. A. M.	
Gamma Distribution Test			Data Distribution	
k star (bias corrected)	4.459	Data do not fol	ow a Discernable Distribution (0.05	5)
Theta Star	0.0138		<i>198</i> 4/14/14/14/14/14/14/14/14/14/14/14/14/14	
nu star	499.5			
Approximate Chi Square Value (.05)	448.6	N	onparametric Statistics	
Adjusted Level of Significance	0.0457		95% CLT UCL	0.07
Adjusted Chi Square Value	447.4		95% Jackknife UCL	0.07
			95% Standard Bootstrap UCL	0.07
Anderson-Darling Test Statistic	19.22		95% Bootstrap-t UCL	0.07
-	1			
Anderson-Darling 5% Critical Value	0.753		95% Hall's Bootstrap UCL	
Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	0.539		95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	0.07
Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value	0.539 0.119		95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	0.07
Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	0.539 0.119		95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	0.00 70.0 70.0 80.0
Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Le	0.539 0.119		95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	0.07 0.07 0.08 0.08
Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Le Assuming Gamma Distribution	0.539 0.119 evel		95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	0.07 0.07 0.07
Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Le Assuming Gamma Distribution 95% Approximate Gamma UCL	0.539 0.119 evel 0.0686		95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	0.07 0.07 0.08
Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Le Assuming Gamma Distribution	0.539 0.119 evel		95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	0.07 0.07 0.08
Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Le Assuming Gamma Distribution 95% Approximate Gamma UCL 95% Adjusted Gamma UCL	0.539 0.119 evel 0.0686		95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	0.07 0.07 0.08 0.09
Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Le Assuming Gamma Distribution 95% Approximate Gamma UCL	0.539 0.119 evel 0.0686		95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	0.0 ⁰ 0.0 ⁰ 0.0 ¹ 0.1 ¹
Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Le Assuming Gamma Distribution 95% Approximate Gamma UCL 95% Adjusted Gamma UCL	0.539 0.119 evel 0.0686		95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL Use 95% Student's-t UCL	0.0 ⁰ 0.0 ⁰ 0.0 ¹ 0.1 ¹
Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Le Assuming Gamma Distribution 95% Approximate Gamma UCL 95% Adjusted Gamma UCL Potential UCL to Use	0.539 0.119 evel 0.0686 0.0688		95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL Use 95% Student's-t UCL	0.0 [°] 0.0 [°] 0.0 [°] 0.1 [°]
Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Le Assuming Gamma Distribution 95% Approximate Gamma UCL 95% Adjusted Gamma UCL Potential UCL to Use	0.539 0.119 evel 0.0686		95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL Use 95% Student's-t UCL	0.0 [°] 0.0 [°] 0.08

Raw Statistics		Log-transformed Statistics	
Minimum	3	Minimum of Log Data	1.099
Maximum	22	Maximum of Log Data	3.091
Mean	6.625	Mean of log Data	1.699
Median	4.5	SD of log Data	0.597
SD	4.79		
Coefficient of Variation	0.723		
Skewness	1.817		
F Normal Distribution Test	Relevant UCL	Statistics Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.763	Shapiro Wilk Test Statistic	0.878
Shapiro Wilk Critical Value	0.703	-	
-	0.910	Shapiro Wilk Critical Value	0.916
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	8.301	95% H-UCL	8.452
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	10.12
95% Adjusted-CLT UCL	8.621	97.5% Chebyshev (MVUE) UCL	11.7
95% Modified-t UCL	8.361	99% Chebyshev (MVUE) UCL	14.79
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	2.45	Data do not follow a Discernable Distribution (0.05	j)
Theta Star	2.705		
nu star	117.6		
Approximate Chi Square Value (.05)	93.54	Nonparametric Statistics	
Adjusted Level of Significance	0.0392	95% CLT UCL	8.233
Adjusted Chi Square Value	92.03	95% Jackknife UCL	8.301
	32.00	95% Standard Bootstrap UCL	8.22
Anderson-Darling Test Statistic	1.301	95% Bootstrap-t UCL	9.008
Anderson-Darling 5% Critical Value	0.752	-	9.008
Kolmogorov-Smirnov Test Statistic	0.752	95% Hall's Bootstrap UCL	
-		95% Percentile Bootstrap UCL	8.375
Kolmogorov-Smirnov 5% Critical Value	0.179	95% BCA Bootstrap UCL	8.583
Data not Gamma Distributed at 5% Significance Le	evel	95% Chebyshev(Mean, Sd) UCL	10.89
		97.5% Chebyshev(Mean, Sd) UCL	12.73
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	16.35
95% Approximate Gamma UCL	8.327		
95% Adjusted Gamma UCL	8.464		
Potential UCL to Use		Use 95% Chebyshev (Mean, Sd) UCL	10.89
Copper			
Number of Valid Samples	General Sta 27	tistics Number of Unique Samples	15
Number of Missing Values	37		
Raw Statistics		Log-transformed Statistics	
Naw Statistics	1	-	^
		Minimum of Log Data	0
Maximum	26	Maximum of Log Data	3.258
Mean	8.741	Mean of log Data	1.805
Median	7	SD of log Data	0.941
SD	7.118		

Coefficient of Variation	0.814		·····
Skewness	1.153		
B	olovant 110	L Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.87	Shapiro Wilk Test Statistic	0.947
Shapiro Wilk Critical Value	0.923	Shapiro Wilk Critical Value	0.923
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	Kin
95% Student's-t UCL	11.08	95% H-UCL	14.75
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	17.49
95% Adjusted-CLT UCL	11.32	97.5% Chebyshev (MVUE) UCL	21.06
95% Modified-t UCL	11.13	99% Chebyshev (MVUE) UCL	28.06
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	1.379	Data appear Gamma Distributed at 5% Significance L	evel
Theta Star	6.341	Bata appear Gamma Distributed at 5% Significance L	.6761
nu star	74.44		
Approximate Chi Square Value (.05)	55.57	Nonparametric Statistics	
Adjusted Level of Significance	0.0401	95% CLT UCL	10.99
Adjusted Chi Square Value	54.53	95% Jackknife UCL	11.08
		95% Standard Bootstrap UCL	10.93
Anderson-Darling Test Statistic	0.256	95% Bootstrap-t UCL	11.32
Anderson-Darling 5% Critical Value	0.763	95% Hall's Bootstrap UCL	11.13
Kolmogorov-Smirnov Test Statistic	0.0852	95% Percentile Bootstrap UCL	11.15
Kolmogorov-Smirnov 5% Critical Value	0.171	95% BCA Bootstrap UCL	11.44
Data appear Gamma Distributed at 5% Significance L	1	95% Chebyshev(Mean, Sd) UCL	14.71
		97.5% Chebyshev(Mean, Sd) UCL	17.3
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	22.37
95% Approximate Gamma UCL	11.71		
95% Adjusted Gamma UCL	11.93		
Potential UCL to Use		Use 95% Approximate Gamma UCL	11.71
lickel			
	General S		~
Number of Valid Samples Number of Missing Values	28 36	Number of Unique Samples	8
	1		
Raw Statistics		Log-transformed Statistics	
Raw Statistics Minimum	0.5	Log-transformed Statistics Minimum of Log Data	-0.693
100.000 La	0.5 11	-	
Minimum		Minimum of Log Data	2.39
Minimum Maximum	11	Minimum of Log Data Maximum of Log Data	2.39 0.61
Minimum Maximum Mean Median SD	11 2.482	Minimum of Log Data Maximum of Log Data Mean of log Data	2.39 0.61
Minimum Maximum Mean Median	11 2.482 2	Minimum of Log Data Maximum of Log Data Mean of log Data	2.39 0.61
Minimum Maximum Mean Median SD	11 2.482 2 2.158	Minimum of Log Data Maximum of Log Data Mean of log Data	2.39 0.61
Minimum Maximum Mean Median SD Coefficient of Variation Skewness	11 2.482 2 2.158 0.869 2.521	Minimum of Log Data Maximum of Log Data Mean of log Data	2.39 0.61
Minimum Maximum Mean Median SD Coefficient of Variation Skewness	11 2.482 2 2.158 0.869 2.521	Minimum of Log Data Maximum of Log Data Mean of log Data SD of log Data	2.39 0.61
Minimum Maximum Mean Median SD Coefficient of Variation Skewness	11 2.482 2 2.158 0.869 2.521	Minimum of Log Data Maximum of Log Data Mean of log Data SD of log Data	-0.693 2.39 0.61 0.80

Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	3.177	95% H-UCL	3.598
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	4.337
95% Adjusted-CLT UCL	3.361	97.5% Chebyshev (MVUE) UCL	5.128
95% Modified-t UCL	3.209	99% Chebyshev (MVUE) UCL	6.682
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	1.657	Data Distribution Data do not follow a Discernable Distribution (0.05)	
Theta Star	1.498		
nu star	92.81		
Approximate Chi Square Value (.05)	71.6	Nonparametric Statistics	
Adjusted Level of Significance	0.0404	95% CLT UCL	3.153
Adjusted Chi Square Value	70.45	95% Jackknife UCL	3.177
	70.10	95% Standard Bootstrap UCL	3.133
Anderson-Darling Test Statistic	0.98	95% Bootstrap-t UCL	3.539
Anderson-Darling 5% Critical Value	0.76	95% Hall's Bootstrap UCL	6.27
Kolmogorov-Smirnov Test Statistic	0.203	95% Percentile Bootstrap UCL	3.161
Kolmogorov-Smirnov 5% Critical Value	0.168	95% BCA Bootstrap UCL	3.321
Data not Gamma Distributed at 5% Significance Le		95% Chebyshev(Mean, Sd) UCL	4.26
		97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	4.20
Assuming Gamma Distribution		· · ·	
_	3.218	99% Chebyshev(Mean, Sd) UCL	6.54
95% Approximate Gamma UCL			
95% Adjusted Gamma UCL	3.27		***
Potential UCL to Use		Use 95% Chebyshev (Mean, Sd) UCL	4.26
Lead			
Number of Valid Samples	General 25	Statistics Number of Unique Samples	17
Number of Missing Values	39	Number of Onique Samples	17
Raw Statistics		Log-transformed Statistics	
Minimum	1	Minimum of Log Data	0
Maximum	68	Maximum of Log Data	4.22
Mean	14.56	Mean of log Data	2.266
Median	9	SD of log Data	0.96
SD	14.67		
Coefficient of Variation	1.008		
Skewness	2.316		
F	elevant U	CL Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.76	Shapiro Wilk Test Statistic	0.984
Shapiro Wilk Critical Value	0.918	Shapiro Wilk Critical Value	0.918
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	19.58	95% H-UCL	24.75
	10.00		24.75
· - ·	20.04		28.97
			47.02
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	20.84 19.81	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	35

Gamma Distribution Test		Data Distribution	
k star (bias corrected)	1.219	Data appear Gamma Distributed at 5% Significance L	evel
Theta Star	11.95		
nu star	60.94		
Approximate Chi Square Value (.05)	43.99	Nonparametric Statistics	
Adjusted Level of Significance	0.0395	95% CLT UCL	19.39
Adjusted Chi Square Value	43.01	95% Jackknife UCL	19.58
Anderson-Darling Test Statistic	0.34	95% Standard Bootstrap UCL	19.41
Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value	0.34	95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	41.25
Kolmogorov-Smirnov Test Statistic	0.705	95% Percentile Bootstrap UCL	19.72
Kolmogorov-Smirnov 5% Critical Value	0.107	95% BCA Bootstrap UCL	20.8
Data appear Gamma Distributed at 5% Significance		95% Chebyshev(Mean, Sd) UCL	27.35
	Level	97.5% Chebyshev(Mean, Sd) UCL	32.88
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	43.76
95% Approximate Gamma UCL	20.17		40.70
95% Adjusted Gamma UCL	20.63		
	20.00		
Potential UCL to Use		Use 95% Approximate Gamma UCL	20.17
Zinc			
	General S	Statistics	
Number of Valid Samples	24	Number of Unique Samples	15
Number of Missing Values	40		
Raw Statistics		Log-transformed Statistics	
Minimum	5	Minimum of Log Data	1.609
Maximum	47	Maximum of Log Data	3.85
Mean	20.25	Mean of log Data	2.816
Median	15.5	SD of log Data	0.635
SD	13.04		
Coefficient of Variation	0.644		
Skewness	0.976		
)_]		
H Normal Distribution Test	verevant UC	L Statistics Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.856	Shapiro Wilk Test Statistic	0.946
	0.000		
· ·		Shaniro Wilk Critical Value	
Shapiro Wilk Critical Value Data not Normal at 5% Significance Level	0.916	Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level	0.916
Shapiro Wilk Critical Value Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	0.916
Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution	0.916	Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution	0.916
Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL		Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL	0.916
Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness)	0.916	Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL	0.916 26.98 32.38
Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL	0.916	Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL	0.916
Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	0.916 24.81 25.19	Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	0.916 26.98 32.38 37.63
Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test	0.916 24.81 25.19 24.9	Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	0.916 26.98 32.38 37.63 47.95
Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected)	0.916 24.81 25.19 24.9 2.441	Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	0.916 26.98 32.38 37.63 47.95
Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star	0.916 24.81 25.19 24.9 2.441 8.296	Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	0.916 26.98 32.38 37.63 47.95
Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected)	0.916 24.81 25.19 24.9 2.441	Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	0.916 26.98 32.38 37.63 47.95

Adjusted Chi Square Value	91.67	95% Jackknife UCL	24.81
	• · · · ·	95% Standard Bootstrap UCL	24.48
Anderson-Darling Test Statistic	0.679	95% Bootstrap-t UCL	25.73
Anderson-Darling 5% Critical Value	0.752	95% Hall's Bootstrap UCL	25.13
Kolmogorov-Smirnov Test Statistic	0.181	95% Percentile Bootstrap UCL	24.54
Kolmogorov-Smirnov 5% Critical Value	0.179	95% BCA Bootstrap UCL	24.92
Data follow Appr. Gamma Distribution at 5% Significan	ce Level	95% Chebyshev(Mean, Sd) UCL	31.85
	******	97.5% Chebyshev(Mean, Sd) UCL	36.87
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	46.73
95% Approximate Gamma UCL	25.46		
95% Adjusted Gamma UCL	25.88		
Potential UCL to Use	1987 - I II CAMANA, JAMES IN II MARAA I I	Use 95% Approximate Gamma UCL	25.46
Mercury			
	General	Statistics	
Number of Valid Samples	64	Number of Unique Samples	13
Raw Statistics		Log-transformed Statistics	
Minimum	0.025	Minimum of Log Data	-3.689
Maximum	0.23	Maximum of Log Data	-1.47
Mean	0.0704	Mean of log Data	-2.818
Median	0.065	SD of log Data	0.586
SD	0.0423		
Coefficient of Variation	0.602		
Skewness	1.585 Relevant U	L Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Lilliefors Test Statistic	0.16	Lilliefors Test Statistic	0.166
Lilliefors Critical Value	0.111	Lilliefors Critical Value	0.111
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.0792	95% H-UCL	0.081
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	0.094
95% Adjusted-CLT UCL	0.0802	97.5% Chebyshev (MVUE) UCL	0.105
95% Modified-t UCL	0.0794	99% Chebyshev (MVUE) UCL	0.126
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	3.057	Data do not follow a Discernable Distribution (0.0	5)
Theta Star	0.023		
nu star	391.2		
Approximate Chi Square Value (.05)	346.4	Nonparametric Statistics	
Adjusted Level of Significance	0.0463	95% CLT UCL	0.079
Adjusted Chi Square Value	345.4	95% Jackknife UCL	0.079
		95% Standard Bootstrap UCL	0.078
Anderson-Darling Test Statistic	1.467	95% Bootstrap-t UCL	0.080
Anderson-Darling 5% Critical Value	0.757	95% Hall's Bootstrap UCL	0.08
Kolmogorov-Smirnov Test Statistic	0.151	95% Percentile Bootstrap UCL	0.079
Kolmogorov-Smirnov 5% Critical Value	0.112	95% BCA Bootstrap UCL	0.079
Data not Gamma Distributed at 5% Significance Lo	evel	95% Chebyshev(Mean, Sd) UCL	0.093
		97.5% Chebyshev(Mean, Sd) UCL	0.103

Assuming Gamma Distribution		99%	Chebyshev(N	/lean, Sd) UCL	0.123
95% Approximate Gamma UCL	0.0795	 			
95% Adjusted Gamma UCL	0.0797				
Potential UCL to Use		 Use 95% (Chebyshev (N	Mean, Sd) UCL	0.0935
				i.	

•

Appendix A3

NATA Certified Analytical Results

Accredited for compliance with ISO/IEC 17025. The Accretine to compute with aborner measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the APLAC mutual recognition arrangement for the Austanaianatoria standards, IATA is a signal of the he APLAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

AOIS AUSTRALIAN QUARANTINE AND INSPECTION SERVICE

SYDNEY License No. N0356

Quarantine Approved Premises criteria 5.1 for quarantine Quarantine Approved Premises criteria 5.1 for quarantine containment level 1 (QCI) facilities. Class five criteria cover premises utilised for research, analysis and testing of biological material, soil, animal, plant and human products.

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

FINAL CERTIFICATE OF ANALYSIS - ENVIRONMENTAL DIVISION

E042993 Laboratory Report No: David Lane Associates **Client Name:** Coffs Harbour **Client Reference: Contact Name:** Jay Coburn ns **Chain of Custody No:** WATER Sample Matrix:

Cover Page 1 of 3 plus Sample Results

Date Received: 29/05/2009 Date Reported: 01/06/2009

This Final Certificate of Analysis consists of sample results, DQI's, method descriptions, laboratory definitions, and internationally recognised NATA accreditation and endorsement. The DQO compliance relates specifically to QA/QC results as performed as part of the sample analysis, and may provide an indication of sample result quality. Transfer of report ownership from Labmark to the client shall only occur once full & final payment has been settled and verified. All report copies may be retracted where full payment has not occured within the agreed settlement period.

QUALITY CONTROL

QUALITY ASSURANCE CRITERIA

						GLOBAL A	CCEPTANCE	CRITERIA (GAC)
·	matrix spike lcs, crm, met surrogate spi laboratory du	thod: ke:	 in first 5-20, then 1 e per analytical batch addition per target org. in first 5-10, then 1 e 	anic met	hod		spike, lcs, crm surrogate:	general analytes 70% - 130% recovery phenol analytes 50% - 130% recovery organophosphorous pesticide analytes 60% - 130% recovery phenoxy acid herbicides, organotin 50% - 130% recovery
	laboratory tr	iplicate	e: re-extracted & reported RPD values exceed acc		1	Precision:	anion/cation ba	l: +/- 10% (0-3 meq/l), +/- 5% (>3 meq/l) not detected >95% of the reported EQL
Holding Times:	soils, waters:		Refer to LabMark Pres table VOC's 14 days water /		& THT		duplicate lab RPD (metals):	0-30% (>10xEQL), 0-75% (5-10xEQL) 0-100% (<5xEQL)
			VAC's 7 days water or VAC's 14 days soil SVOC's 7 days water,	2			duplicate lab RPD:	0-50% (>10xEQL), 0-75% (5-10xEQL) 0-100% (<5xEQL)
			Pesticides 7 days water Metals 6 months gener Mercury 28 days	, 14 day	's soil		Control Specific Ac	CEPTANCE CRITERIA (ASAC)
Confirmation:	target organi	c analy	vsis: GC/MS, or confirmato	ry colun	n	Accuracy:	spike, lcs, crm surrogate:	analyte specific recovery data <3xsd of historical mean
Sensitivity:	EQL:		Typically 2-5 x Method (MDL)	l Detect	ion Limit	Uncertaint	y: spike, lcs:	measurement calculated from historical analyte specific control charts
RESULT ANNO	TATION							enato
Data Quality Obje	ective	s:	matrix spike recovery	p:	pending		bcs: ba	tch specific lcs
Data Quality Indic	cator	d:	laboratory duplicate	lcs:		ry control samp		tch specific mb
Estimated Quantit	ation Limit	t:	laboratory triplicate	crm:	certified	reference mate	rial	

not applicable

r:

RPD relative % difference

David Burns Quality Control (Report signatory) david.burns@labmark.com.au

mb:

method blank

Geoff Weir Authorising Chemist (NATA signatory) geoff.weir@labmark.com.au

BALK.

Simon Mills Authorising Chemist (NATA signatory) simon.mills@labmark.com.au

This document is issued in accordance with NATA's accreditation requirements.

Copyright 2000

LabMark Environmental Laboratories ABN 30 008 127 802 * SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077 * Telephone: (02) 9476 6533 * Fax: (02) 9476 8219 * MELBOURNE: 1868 Dandenong Road, Clayton VIC 3168 * Telephone: (03) 9538 2277 * Fax: (03) 9538 2278

Form QS0144, Rev. 1 : Date Issued 06/02/08

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Environmental Laboratory Industry

Foundatio

Group

Laboratory Report: E042993

Cover Page 2 of 3

NEPC GUIDELINE COMPLIANCE - DQO

1. GENERAL A. Results relate specifically to samples as received. Sample results are

- A. Results relate specifically to samples as received. Sample results are not corrected for matrix spike, lcs, or surrogate recovery data.
- B. EQL's are matrix dependant and may be increased due to sample dilution or matrix interference.
- C. Laboratory QA/QC samples are specific to this project.
- D. Inter-laboratory proficiency results are available upon request. NATA accreditation details available at www.nata.asn.au.
- E. VOC spikes & surrogates added to samples during extraction, SVOC spikes & surrogates added prior to extraction.
- F. Recovery data outside GAC limits shall be investigated and compared to ASAC (historical mean +/- 3sd). If recovery data <20%, then the relevant results for that compound are considered not reliable.
- G. Recovery data (ms, surrogate, crm, lcs) outside ASAC limits shall initiate an investigative action. Anomolous QC data is examined in conjunction with other QC samples and a final decision whether to accept or reject results is provided by the professional judgement of the senior analyst. The USEPA-CLP National Functional Guidelines are referred to for specific recommendations.
- H. Extraction (preparation) date refers to the date that sample preparation was initiated. Note that certain methods not requiring sample preparation (eg. VOCs in water, etc) may report a common extraction and analysis date.
- I. LabMark shall maintain an official copy of this Certificate of Analysis for all tracable reference purposes.

2. CHAIN OF CUSTODY (COC) & SAMPLE RECEIPT NOTICE (SRN) REQUIREMENTS

- A. SRN issued to client upon sample receipt & login verification.
- B. Preservation & sampling date details specified on COC and SRN, unless noted.
- C. Sample Integrity & Validated Time of Sample Receipt (VTSR) Holding Times verified (preservation may extend holding time, refer to preservation chart).

3. NATA ACCREDITED METHODS

- A. NATA accreditation held for each in-house method and sample matrix type reported, unless noted below (Refer to subcontracted test reports for NATA accreditation status).
- B. NATA accredited in-house laboratory methods are referenced from NEPC, ASTM, modified USEPA / APHA documents. Corporate Accreditation No. 13542.
- C. Subcontracted analyses: Refer to Sample Receipt Notice and additional DQO comments.

This document is issued in accordance with NATA's accreditation requirements.

Copyright 2000

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Laboratory Report: E042993

Cover Page 3 of 3

4. QA/QC FREQUENCY COMPLIANCE TABLE SPECIFIC TO THIS REPORT

Matr	ix:	WATER						
Pag	ge:	Method:	Totals:	#d	%d-ratio	#t	#s	%s-ratio
1	-	BTEX by P&T	2	0	0%	0	0	0%
1		Volatile TPH by P&T (vTPH)	2	0	0%	0	0	0%

GLOSSARY:

#d number of discrete duplicate extractions/analyses performed.

- %d-ratio NEPC guideline for laboratory duplicates is 1 in 10 samples (min 10%).
- #t number of triplicate extractions/analyses performed.
- #s number of spiked samples analysed.

%s-ratio USEPA guideline for laboratory matrix spikes is 1 in 20 samples (min 5%).

5. ADDITIONAL COMMENTS SPECIFIC TO THIS REPORT

A. All tests were conducted by LabMark Environmental Sydney, NATA accreditation No. 13542, unless indicated below.

B. Lab Ident 210670 reported recovery of 63% for vTPH analysis.

Laboratory QA/QC data shall relate specifically to this report, and may provide an indication of site specific sample result quality. LabMark <u>DOES</u> <u>NOT</u> report <u>NON-RELEVANT BATCH QA/QC</u> data. Acceptance of this self assessment certificate does not preclude any requirement for a QA/QC review by a accredited contaminated site EPA auditor, when and wherever necessary. Laboratory QA/QC self assessment references available upon request.

This document is issued in accordance with NATA's accreditation requirements.

Copyright 2000

 LabMark Environmental Laboratories
 ABN 30 008 127 802

 * SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077
 * MELBOURNE: 1868 Dandenong Road, Clayton VIC 3168

 * Telephone: (02) 9476 6533
 * Fax: (02) 9476 8219
 * Telephone: (03) 9538 2277
 * Fax: (03) 9538 2278

Ø LabMark	Labora	atory Repor	t No: E	042993		Page	e: 1 of 1		Final	
	Client	Name:	Γ	David Lane A	ssociates	plus	cover page		Cer	tificate
ENVIRONMENTAL LABORATORIES	Contac	et Name:	J	ay Coburn		Date	e: 01/06/09		of Ana	alysis
	Client	Reference:	C	Coffs Harbou	r DL1800	This r	eport supercedes	reports issued or	n: N/A	
Laboratory Identification		210670	210671	lcs	mb					
Sample Identification		TS	TB	QC	QC					
Depth (m)										
Sampling Date recorded on COC		20/5/09	20/5/09							
Laboratory Extraction (Preparation) Date		1/6/09	1/6/09	1/6/09	1/6/09					
Laboratory Analysis Date	-	1/6/09	1/6/09	1/6/09	1/6/09					
Method : E029.1/E016.1										
BTEX by P&T	EQL									
Benzene	1	70%	<1	93%	<1					
Toluene	1	70%	<1	93%	<1					
Ethylbenzene	1	70%	<1	90%	<1					
meta- & para-Xylene	2	70%	<2	95%	<2					
ortho-Xylene	1	71%	<1	96%	<1					
Total Xylene										
4-BFB (Surr @ 50ug/l)		93%	86%	95%	92%					
Method : E029.1/E016.1 Volatile TPH by P&T (vTPH) C6-C9	EQL 50	63%	<50	109%	<50					

Results expressed in ug/l unless otherwise specified

Comments: - Results for Trip Spike sample are expressed in % recovery.

E029.1/E016.1: Direct injection into P&T/GC/FID/MSD. E029.1/E016.1: Direct injection into P&T/GC/MSD.

Quality, Service, Support

Sample

Receipt

Notice (SRN) for E042993

	Client D	etails	Laboratory	Reference Information
Client Name: Client Phone:	David Lane A 02 4938 3800			ve this information ready contacting Labmark.
Client Fax: Contact Name: Contact Email:	02 4938 3811 Jay Coburn dlassociates@	€bigpond.com	Laboratory Report: Quotation Number:	E042993 - Not provided, standard prices apply
Client Address:	"Ayrfield" Lot North Rothbu	18 Old North Road ry NSW 2335	Laboratory Address:	Unit 1, 8 Leighton Pl. Asquith NSW 2077
Project Name:	Coffs Harbour	r	Phone:	61 2 9476 6533
Project Number:	DL1800		Fax:	61 2 9476 8219
CoC Serial Number	:- Not provided	1 -	Sample Receipt Conta	ot: Dog Schoolt
Purchase Order:	- Not provided	1 -	Email:	
Surcharge:	100% for 1 wo	orking day TAT (pro-rata for	Reporting Contact:	Ros.Schacht@labmark.com.au
	completed res	sults by 6:30pm on due date)	Email:	Leanne Boag leanne.boag@labmark.com.au
Sample Matrix:	WATER			leanne.boag@labmark.com.au
Date Sampled (ear	liest date):	20/05/2009	NATA Accreditation:	13542
Date Samples Reco	eived:	29/05/2009	TGA GMP License:	185-336 (Sydney)
Date Sample Recei	ipt Notice issu	ed: 29/05/2009	APVMA License:	6105 (Sydney)
Date Preliminary R	eport Due:	01/06/2009	AQIS Approval:	NO356 (Sydney)
Client TAT Reques	t Date:	01/06/2009	AQIS Entry Permit:	200521534 (Sydney)
Reporting Require	ments: Elect	tronic Data Download required:N	lo li	nvoice Number: 09EA4207
Sample Condition:	Sam Sam Sam Secu	c received with samples. Report ples received in good order . ples received with cooling media ples received chilled. urity seals not required. Direct La ple container & chemical preserv	: Crushed ice . bmark's custody taken .	ed on COC.
Comments:				
Holding Times:	Date	received allows for sufficient tim	ne to meet Technical Holdii	ng Times.
Preservation: Important Notes:	Cher	nical preservation of samples sa	tisfactory for requested an	alytes.

if requested. Transfer of report ownership from LabMark to the client shall occur once full and final payment has been settled and verified. All report copies may be retracted where full payment does not occur within the agreed settlement period.

after laboratory receipt, unless otherwise requested in writing by the client. Samples requested to be held in non-refrigerated storage shall incur \$5.00/ sample/ 3 months. Additional refrigerated storage shall incur \$30/ sample/ 3 months. Combination prices apply only

Analysis comments:

Subcontracted Analyses:

Thank you for choosing Labmark to analyse your project samples. Additional information on www.labmark.com.au

Quality, Service, Support

The table below represents LabMark's understanding and interpretation of the customer supplied sample COC request (refer to SRN comments section on first page for external subcontracting method details). Please confirm that your COC request has been entered correctly. Due to THT and TAT requirements, testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing.

GRID REV	IEW TABLE						Re	quest	ted A	nalys	sis				
No. Date Depth C	lient Sample ID	BTEX by P&T	PREP Not Reported	Volatile TPH by P&T (vTPH)											
	ſS	٠	٠	٠											
210671 20/05 T	В	٠	٠	٠											
Т	'otals:	2	2	2											

'PREP Not Reported' refers to an internal laboratory instruction - client confirmation of this parameter is not required.

Report Date : 29/05/2009 Report Time: 3:36:30PM

Sample Receipt

Thank you for choosing Labmark to analyse your project samples. Additional information on www.labmark.com.au

PAGE <u>t</u>	OF_1			Cor	nbi	inat	ion	Pric	ces					CUS Comł			est	is c	ircl	led	on	со	C.									Form	1 QS()073,	Rev.1	10: Dai	ie Issued	d 11/10
LABM	- and the second s		NATA 1354				1990 A. C.		lier							Safety		autio	n: lab		ry sa	mple	bott					esei	vati	on a	cid /	NDALOKUMIN(N)	*********	BATRICO, CARDINA	NED WALKSTO	99899858945650	Bebeltájzinagou (te	Weater and a second
Dispatch s Unit1/ 8 Leig			D): 612-947 (D): 612-940					1					DL																			Ti	el:					
Asquith NSV		Tel (ME	L): 613-96 EL): 613-96	86-834	44			Pro	oject l	Mana	iger:	Ĵ	N 18	<u>100</u> 1_C	~ <	S	5			Sa	ampl	er:		PL	A					****		F:	х:	allinianse fan te	2012-04-04-02-02-02	6.003.00.0996.007903	wiwenwersamethorease	construction and and a second
116 Moray S		(DB): 04	109449684, (i acht@labmar	PW): 0)4393	9020	9	Pro	oject I	Name) :	مر ب	<u>Sæ</u>	<u>r</u> c	oB	OF	w			-								,	Da	nte F	Redr	Jire	d:	24	Hr.	$\hat{\Gamma}$		*****
	urne VIC 3205	paul.wo	odward@labi	mark.c	om.a			Pro	ject 7	Гуре				ation)						Pr	ojeci	No:										e No			- Setenano	Pedore concerns a		100000000000000000000000000000000000000
Global	Specificat	ions I	requir	e (de	efault	is No	l requir	ed if N	lot tick	(ed);					T								******	1940) Hara Jawa Ma		Ana	alys	is F	leq.	uesi	t	Ak	editorialitation					honorananananan ya
															YE	S (tick) (¢			ille Test 125g	s	ļ		& Nor			S	Lei	ach				utrient *] (Other
1. Urgent TAT r	equired? (please ci	rcle: 1 da	ay 2 days	3 day	ys		days)									- Gg	A 2x43	†					125g (m	ax. 4 te	T	500 12	2	i0g					4 tests) cal group				FCLP te here)
2. Do you requi 3. Do you requi	lire sediment prese	ent in water	rs to be inclu	ded in) orga	anic/ i	norgal	nic ext	tractio	ns?							1 .	d mi	2x43m	2	x43ml	500) mi		m kn		nd m		-	1	1	1	· [ai group		TY	<u> </u> '	Jerej
4. Do you requ	uire additional QA/ uire additional EQA	or batch s	specific LCS	npie d / MB r	result	es su ts eve	bmitte	ed are	< 10 : les? (sampi Fee A	es? (F	ee A	pplies)		unia materiale a suc	16	Δ (O)								0							soluble/total		Contain State	Na, K		
5. Do you req	uire DIFFERENT	standard i	EQL's from	those	e sta	ted ir	the c	urrer	it Lab	Mark	price	cata	logue	?	+		-\$	D/orth						0		GC/M			_				thle	¥	CN	Mg, F		
 Do you wish Electronic da 	chromatograms to t ta transfer (circle: f	be supplied	? (Additional	fee ap	plies)).																		GC/FID	CFP0	GS	18		ther				solt	d p		la S		
Contraction of the second s	Note1:	Additional v	vater sample	must t	spec be su	ny. bmitte	ed for la	ah du	plicate	& snil	ke ana	liveis					\$	181						F	CEC	icid	1 tot	her)	st- c	TN		a		late	Total	Ģ		
	Note2:	Contact la	b if consolida	ting m	ultiple	e anal	yses ir	nto a si	ingle s	ample	conta	iner.					8 14	-T9 (L a		erb	tolvec	1.0	îv te	lora,	0	¥	ē	bec	ģ	lotal		
				<u> </u>	Matri	ix		Cont	ainer	Туре	(Nat.	= unpr	eserved,	G=glass, i	>=plastic)	role) <1>	C6-6		22		C/FID	SV	hati		Ч	에 alla	V tes	peci	N.	3, 1	d'ol	0,2	5	CS N	sol		
Lab. Number	Sample ID	Sample Depth -	Sampling Date	soil water		paint, filters other	Soil (G) Nat. Orange	0.5-1L (G) Nat Orange	43mi VOA (G) Net. Orange	HCI	0.1-1L (P) H2SO4 Purple	0.1-1L (G) H2SO4 Putple	(P) Nat.	0.1-0.2L (P HNQ3 Red Filtered YES/ NO	NaOH,	Other	Combo (circle)	N	THM PLECMS	MTBE PT-GOMS	OC PT-GC/MS	PAH's GC/MS	Phenols GCIMS	Aromatic/ Allphatic TPH	VOC GCIMS	Phenoxy Acid Herbicides GCMS	ALIUSIVES	CLP (specif	HE TOLP	(circle) NHS, TKN, Nora, TN	cie) NO _X , NC	(circle) TP, Ortho.P, TKP	(oircle) CI', F', SO4 ² (circle)	(arole) Total Alk, Speciated Alk	orole) Free UN, W Fotal Phenolics	Cations (orde) sol/total - Ca,		na to be de la mais de la mais de la mais de la desta de la mais d
	B		20.5.00	×	$\uparrow \uparrow$								<u> </u>	(1886 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995		×	U V	X	2 -		22			43	0	<u>a</u> u	<u>(</u>	Ē		5 0	(cit	<u>[ci</u>	(cir			10		-
	TB		20.5.00	X									$\left \right $			×		X	+		+		┝╌┝		\mathbb{H}		+		+									-
						-		1				g						<u> </u>			+		$\left \right $		++	+-	$\left \right $	_	_	$\left - \right $		+				+	Settindad Strains and setting	8 0.0.40 Million
					\square												****	$\left - \right $	+		╈		\square	_	\vdash	_									Here and the second		anaan toro maada	
																			+		┼╌┠	+	+		\vdash		$\left \right $		+	$\left \right $							work and the second	
	an an an ann an an an an an an an an an	-				+													+		+	+	+										+		-	<u> </u>		
<																			+++																	<u> </u>		
**************************************						+													+			+																
**** 2 10/00/00/00/00/00/00/00/00/00/00/00/00/0						+													+		┝─┝	+	-	$ \downarrow \downarrow$		+		_										1
****						+													\downarrow													Conception in the local diversion of	-					and an inclusion of the second
otals						\downarrow																															*******	mina Comprovation
Aetals (circle): A	s, Cd, Cr, Cu, Ni, /, Mn, Fe, Co, Se,	Pb, Zn, H		^{,3+} , Fe	2*, F	e ³⁺ , (Comn	nents	i (Highl	y conta	minate	d sam	ples):								L;	ib Re	port	No.					Sec	urity	/ Sea		plied	d			YES/	/NO
elinquished I	DV (print): <u>54</u>	01, 01, M	0, My, Ba, 1	1, 61, - \		iana	1:5	21		SCHOOL		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	******						<u>o</u> (2 ¹⁰		6	0	<u>Y2</u>	49	5		-					rial (
elinquished t			BURN	J				Here C							11.0)ate:			6.0											D)ate:				Time	-	
an inparonicida	~ J. (hund)-				0	igneo	1,				******						ate:				R	eceiv	/ed	By:							D	ate:			-	Time		- 9-10-00

、 **?**

÷.,

© Labmark Pty. Limited 2003

Accredited for compliance with ISO/IEC 17025. The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the APLAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. AQIS AUSTRALIAN QUARANTINE AND INSPECTION SERVICE

SYDNEY License No. N0356.

Quarantine Approved Premises criteria 5.1 for quarantine containment level 1 (QCI) facilities. Class five criteria cover premises utilised for research, analysis and testing of biological material, soil, animal, plant and human products.

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

FINAL CERTIFICATE OF ANALYSIS - ENVIRONMENTAL DIVISION

Laboratory Report No:E042911Client Name:David LarClient Reference:Coffs - PhContact Name:Jay CoburChain of Custody No:naSample Matrix:SOIL

E042911 David Lane Associates Coffs - Phase 2 Jay Coburn na SOIL Cover Page 1 of 4 plus Sample Results

Date Received: 25/05/2009 Date Reported: 28/05/2009

This Final Certificate of Analysis consists of sample results, DQI's, method descriptions, laboratory definitions, and internationally recognised NATA accreditation and endorsement. The DQO compliance relates specifically to QA/QC results as performed as part of the sample analysis, and may provide an indication of sample result quality. Transfer of report ownership from Labmark to the client shall only occur once full & final payment has been settled and verified. All report copies may be retracted where full payment has not occured within the agreed settlement period.

QUALITY CONTROL

QUALITY ASSURANCE CRITERIA

			GLOBAL A	CCEPTANCE (CRITERIA (GAC)
Accuracy: Precision:	matrix spike: lcs, crm, method: surrogate spike: laboratory duplicate:	 1 in first 5-20, then 1 every 20 samples 1 per analytical batch addition per target organic method 1 in first 5-10, then 1 every 10 samples 	Accuracy:	spike, lcs, crm surrogate:	general analytes 70% - 130% recovery phenol analytes 50% - 130% recovery organophosphorous pesticide analytes 60% - 130% recovery phenoxy acid herbicides, organotin 50% - 130% recovery
	laboratory triplicate:	re-extracted & reported when duplicate RPD values exceed acceptance criteria	.		: +/- 10% (0-3 meq/l), +/- 5% (>3 meq/l)
Holding Times:	soils, waters:	Refer to LabMark Preservation & THT table VOC's 14 days water / soil	Precision:	method blank: duplicate lab RPD (metals):	not detected >95% of the reported EQL 0-30% (>10xEQL), 0-75% (5-10xEQL) 0-100% (<5xEQL)
		VAC's 7 days water or 14 days acidified VAC's 14 days soil SVOC's 7 days water, 14 days soil		duplicate lab RPD:	0-50% (>10xEQL), 0-75% (5-10xEQL) 0-100% (<5xEQL)
		Pesticides 7 days water, 14 days soil Metals 6 months general elements Mercury 28 days	20/12/1	Control Specific Ac	CEPTANCE CRITERIA (ASAC)
Confirmation:	target organic analysis	: GC/MS, or confirmatory column	Accuracy:	spike, lcs, crm surrogate:	analyte specific recovery data <3xsd of historical mean
Sensitivity:	EQL:	Typically 2-5 x Method Detection Limit (MDL)	Uncertaint	y: spike, lcs:	measurement calculated from historical analyte specific control
RESULT ANN	OTATION				charts
Data Quality Ob Data Quality Inc	5	trix spike recovery p: pending oratory duplicate lcs: laborator	y control samp		tch specific lcs tch specific mb

Estimated Quantitation Limit t:

not applicable

laboratory triplicate

r:

RPD relative % difference

David Burns Quality Control (Report signatory) david.burns@labmark.com.au

crm:

mb:

certified reference material

method blank

Geoff Weir Authorising Chemist (NATA signatory) geoff.weir@labmark.com.au

BALK.

Simon Mills Authorising Chemist (NATA signatory) simon.mills@labmark.com.au

This document is issued in accordance with NATA's accreditation requirements.

Copyright 2000

 LabMark Environmental Laboratories
 ABN 30 008 127 802

 * SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077
 * MELBOURNE: 1868 Dandenong Road, Clayton VIC 3168

 * Telephone: (02) 9476 6533
 * Fax: (02) 9476 8219
 * Telephone: (03) 9538 2277
 * Fax: (03) 9538 2278

Form QS0144, Rev. 1 : Date Issued 06/02/08

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Laboratory Report: E042911

Cover Page 2 of 4

NEPC GUIDELINE COMPLIANCE - DQO

1. GENERAL Results relate specifically to samples as received. Sample results are not corrected for matrix spike, lcs, or Α. surrogate recovery data. B. EQL's are matrix dependant and may be increased due to sample dilution or matrix interference. C. Laboratory QA/QC samples are specific to this project. D. Inter-laboratory proficiency results are available upon request. NATA accreditation details available at www.nata.asn.au. E. VOC spikes & surrogates added to samples during extraction, SVOC spikes & surrogates added prior to extraction. F. Recovery data outside GAC limits shall be investigated and compared to ASAC (historical mean +/- 3sd). If recovery data <20%, then the relevant results for that compound are considered not reliable. G. Recovery data (ms, surrogate, crm, lcs) outside ASAC limits shall initiate an investigative action. Anomolous QC data is examined in conjunction with other QC samples and a final decision whether to accept or reject results is provided by the professional judgement of the senior analyst. The USEPA-CLP National Functional Guidelines are referred to for specific recommendations. H. Extraction (preparation) date refers to the date that sample preparation was initiated. Note that certain methods not requiring sample preparation (eg. VOCs in water, etc) may report a common extraction and analysis date. I. LabMark shall maintain an official copy of this Certificate of Analysis for all tracable reference purposes.

2. CHAIN OF CUSTODY (COC) & SAMPLE RECEIPT NOTICE (SRN) REQUIREMENTS

- A. SRN issued to client upon sample receipt & login verification.
- B. Preservation & sampling date details specified on COC and SRN, unless noted.
- C. Sample Integrity & Validated Time of Sample Receipt (VTSR) Holding Times verified (preservation may extend holding time, refer to preservation chart).

3. NATA ACCREDITED METHODS

- A. NATA accreditation held for each in-house method and sample matrix type reported, unless noted below (Refer to subcontracted test reports for NATA accreditation status).
- B. NATA accredited in-house laboratory methods are referenced from NEPC, ASTM, modified USEPA / APHA documents. Corporate Accreditation No. 13542.
- C. Subcontracted analyses: Refer to Sample Receipt Notice and additional DQO comments.

This document is issued in accordance with NATA's accreditation requirements.

Copyright 2000

 LabMark Environmental Laboratories
 ABN 30 008 127 802

 * SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077
 * MELBOURNE: 1868 Dandenong Road, Clayton VIC 3168

 * Telephone: (02) 9476 6533
 * Fax: (02) 9476 8219
 * Telephone: (03) 9538 2277

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Laboratory Report: E042911

Cover Page 3 of 4

4. QA/QC FREQUENCY COMPLIANCE TABLE SPECIFIC TO THIS REPORT

Matrix:	SOIL						
Page:	Method:	Totals:	#d	%d-ratio	#t	#s	%s-ratio
1	BTEX by P&T	13	2	15%	0	1	8%
1	Volatile TPH by P&T (vTPH)	13	2	15%	0	1	8%
3	Petroleum Hydrocarbons (TPH)	13	2	15%	0	1	8%
5	Polyaromatic Hydrocarbons (PAH)	28	3	11%	0	2	7%
9	Organochlorine Pesticides (OC)	44	5	11%	0	3	7%
15	Organophosphorus Pesticides (OP)	14	2	14%	0	1	7%
18	Polychlorinated Biphenyls (PCB)	14	2	14%	0	1	7%
21	Acid extractable metals (M7)	61	7	11%	1	4	7%
30	Acid extractable metals - mercury	61	7	11%	0	4	7%
35	Moisture	63					

GLOSSARY:

#d number of discrete duplicate extractions/analyses performed.

%d-ratio NEPC guideline for laboratory duplicates is 1 in 10 samples (min 10%).

#t number of triplicate extractions/analyses performed.

#s number of spiked samples analysed.

%s-ratio USEPA guideline for laboratory matrix spikes is 1 in 20 samples (min 5%).

This document is issued in accordance with NATA's accreditation requirements.

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Laboratory Report: E042911

Cover Page 4 of 4

5. ADDITIONAL COMMENTS SPECIFIC TO THIS REPORT

A. All tests were conducted by LabMark Environmental Sydney, NATA accreditation No. 13542, unless indicated below.

B. Metals; Lab #209953d reported RPD of 54% and 99% for copper and lead respectively, triplicate result issued.

C. Metals; Spike recoveries for azinc in sample 209921s at 62%, corresponding lcs recoveries at 102%.

Laboratory QA/QC data shall relate specifically to this report, and may provide an indication of site specific sample result quality. LabMark <u>DOES</u> <u>NOT</u> report <u>NON-RELEVANT BATCH QA/QC</u> data. Acceptance of this self assessment certificate does not preclude any requirement for a QA/QC review by a accredited contaminated site EPA auditor, when and wherever necessary. Laboratory QA/QC self assessment references available upon request.

This document is issued in accordance with NATA's accreditation requirements.

Copyright 2000

 LabMark Environmental Laboratories
 ABN 30 008 127 802

 * SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077
 * MELBOURNE: 1868 Dandenong Road, Clayton VIC 3168

 * Telephone: (02) 9476 6533
 * Fax: (02) 9476 8219
 * Telephone: (03) 9538 2277
 * Fax: (03) 9538 2278

Form QS0144, Rev. 1 : Date Issued 06/02/08

Ø LabMark	Labora	atory Repor	t No: E	042911			Page	e: 1 of 38		Final	
	Client	Name:	D	avid Lane A	ssociates		plus	cover page		Cert	tificate
ENVIRONMENTAL LABORATORIES	Contac	et Name:	Ja	ay Coburn			Date	e: 28/05/09		of Ana	alysis
	Client	Reference:	C	offs - Phase	2 DL1800		This re	eport supercedes	reports issued o	n: N/A	
Laboratory Identification		209879	209880	209883	209884	209899	209900	209940	209941	209942	209949
Sample Identification		C-2-1	C-2-1A	C-3-1	C-3-1A	C-11-1	C-11-1A	C-47-1	C-48-1	C-48-1A	C-55-1
Depth (m)											
Sampling Date recorded on COC		19/5/09	19/5/09	19/5/09	19/5/09	19/5/09	19/5/09	20/5/09	20/5/09	20/5/09	20/5/09
Laboratory Extraction (Preparation) Date		26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09
Laboratory Analysis Date	_	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09
Method : E002.2	EOI										
BTEX by P&T Benzene	EQL 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Toluene	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5
meta- and para-Xylene	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
ortho-Xylene	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Total Xylene											
CDFB (Surr @ 10mg/kg)		87%	94%	92%	88%	91%	88%	88%	94%	91%	95%
Method : E003.2 Volatile TPH by P&T (vTPH) C6 - C9 Fraction	EQL 10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Results expressed in mg/kg dry weight unless otherwise specified

Comments:

E003.2: 8-10g soil extracted with 20ml methanol. Analysis by P&T/GC/FID. E002.2: 8-10g soil extracted with 20ml methanol. Analysis by P&T/GC/PID/MSD.

Ø LabMark	Labora	atory Repor	t No: E	042911			Page	e: 2 of 38		Final	
	Client	Name:	D	avid Lane A	ssociates		plus	cover page		Cert	tificate
ENVIRONMENTAL LABORATORIES	Contac	et Name:	Ja	ay Coburn			Date	e: 28/05/09		of Ana	alysis
	Client	Reference:	C	offs - Phase	2 DL1800		This re	eport supercedes	reports issued or	n: N/A	
Laboratory Identification		209950	209953	209954	209899d	209899r	209953d	209953r	209900s	lcs	mb
Sample Identification		C-55-1A	C-58-1	C-58-1A	QC	QC	QC	QC	QC	QC	QC
Depth (m)											
Sampling Date recorded on COC		20/5/09	20/5/09	20/5/09							
Laboratory Extraction (Preparation) Date		26/5/09	26/5/09	26/5/09	26/5/09		26/5/09		26/5/09	26/5/09	26/5/09
Laboratory Analysis Date	_	26/5/09	26/5/09	26/5/09	26/5/09		26/5/09		26/5/09	26/5/09	26/5/09
Method : E002.2 BTEX by P&T	EQL										
Benzene	EQL 0.2	< 0.2	< 0.2	< 0.2	< 0.2		< 0.2		88%	92%	< 0.2
Toluene	0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5		92%	94%	< 0.5
Ethylbenzene	0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5		86%	88%	< 0.5
meta- and para-Xylene	1	<1	<1	<1	<1		<1		90%	92%	<1
ortho-Xylene	0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5		89%	93%	< 0.5
Total Xylene											
CDFB (Surr @ 10mg/kg)		95%	93%	89%	94%	3%	92%	1%	95%	104%	103%
Method : E003.2 Volatile TPH by P&T (vTPH) C6 - C9 Fraction	EQL 10	<10	<10	<10	<10		<10		92%	94%	<10

Results expressed in mg/kg dry weight unless otherwise specified

Comments:

E003.2: 8-10g soil extracted with 20ml methanol. Analysis by P&T/GC/FID. E002.2: 8-10g soil extracted with 20ml methanol. Analysis by P&T/GC/PID/MSD.

() LabMark	Laboratory Report No:			042911		Page: 3 of 38			Final			
	Client Name:			David Lane Associates			plus cover page			Certificate		
ENVIRONMENTAL LABORATORIES	Contact Name:			Jay Coburn			Date: 28/05/09				of Analysis	
	Client Reference:			Coffs - Phase 2 DL1800		This report supercedes reports issued on: N/A						
Laboratory Identification		209879	209880	209883	209884	209899	209900	209940	209941	209942	209949	
Sample Identification		C-2-1	C-2-1A	C-3-1	C-3-1A	C-11-1	C-11-1A	C-47-1	C-48-1	C-48-1A	C-55-1	
Depth (m)												
Sampling Date recorded on COC		19/5/09	19/5/09	19/5/09	19/5/09	19/5/09	19/5/09	20/5/09	20/5/09	20/5/09	20/5/09	
Laboratory Extraction (Preparation) Date		26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	
Laboratory Analysis Date		26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	26/5/09	
Method : E006.2 Petroleum Hydrocarbons (TPH) C10 - C14 Fraction C15 - C28 Fraction C29 - C36 Fraction Sum of TPH C10 - C36	EQL 50 100 100	<50 <100 <100 	<50 <100 <100 	<50 <100 <100 	<50 <100 <100 	<50 <100 <100 	<50 <100 <100 	<50 <100 <100 	<50 <100 <100 	<50 <100 <100 	<50 <100 <100 	

Results expressed in mg/kg dry weight unless otherwise specified

Comments:

E006.2: 8-10g soil extracted with 20ml DCM/Acetone/Hexane (10:45:45). Analysis by GC/FID.