

PHASE 2 ENVIRONMENTAL SITE ASSESSMENT MANILLA MPS / HEALTH ONE COURT ST, MANILLA NSW

Prepared for:

Department of Commerce 54-56 Peel Street TAMWORTH NSW 2340

Report Date: 15 July 2009

Project Ref: ENVIWARA00401AA-R01

Written/Submitted by:

Reviewed/Approved by:

Emma Coleman
Environmental Scientist

Dr Michael Dunbavan

Principal Environmental Engineer

M. Dembavan.

15 July 2009

Department of Commerce 54-56 Peel Street TAMWORTH NSW 2340

Attention: Steve Hansen

Dear Steve

RE: PHASE 2 ENVIRONMENTAL SITE ASSESSMENT
MANILLA MPS / HEALTH ONE
COURT STREET, MANILLA NSW

Coffey Environments Pty Ltd is pleased to present the findings of our Phase 2 Environmental Site Assessment for the above project.

This report should be read in conjunction with the attached information sheet 'Important Information about your Coffey Environmental Report'.

We trust that our report meets with your requirements. If you have any questions regarding this matter please contact the undersigned.

For and on behalf of Coffey Environments Pty Ltd

Emma Coleman

Environmental Scientist

RECORD OF DISTRIBUTION

No. of copies	Report File Name	Report Date Status		Prepared for:	Initials
1 (pdf)	ENVIWARA00401AA-R01	Final	15 July 2009	Department of Commerce	SH
1	ENVIWARA00401AA-R01	Final	15 July 2009	Coffey Environments Pty Ltd	EC

CONTENTS

LIST	OF ATTACHMENTS	VI
ABBI	REVIATIONS	VII
EXEC	CUTIVE SUMMARY	IX
1	INTRODUCTION	1
1.1	Background	1
1.2	Objectives and Scope of Work	1
2	PREVIOUS INVESTIGATIONS	2
2.1	Network Geotechnics, Geotechnical Investigation - September 2007	2
2.2	HLA-Envirosciences, Hazardous Material Survey – September 2007	2
2.3	Department of Commerce, Stage 1 Preliminary Environmental Site Investigation - December 2008	3
3	SITE CONDITION AND SURROUNDING ENVIRONMENT	5
3.1	Site Identification	5
3.2	Current Site Condition	5
3.3	Current Surrounding Land Use	5
3.4	Local Geology and Hydrogeology	5
4	POTENTIAL AREAS OF ENVIRONMENTAL CONCERN	7
5	REGULATORY BACKGROUND AND APPLICABLE GUIDELINES	8
6	FIELD AND LABORATORY INVESTIGATIONS	10
6.1	General	10
6.2	Soil Investigations	10
6.3	Field Quality Assurance / Quality Control	11

CONTENTS

6.4	Laboratory Analysis	12
7	RESULTS	13
7.1	Subsurface Conditions	13
7.1.1	PID Results	14
7.1.2	Laboratory Results	14
7.1.3	Quality Assurance and Quality Control (QAQC) Results and Data Usability	14
7.2	Comparison of Soil Results with Human Health Based Soil Investigation Levels (HILs)	15
8	DISCUSSION	16
9	CONCLUSIONS AND RECOMMENDATIONS	17
10	LIMITATIONS	19
11	REFERENCES	20

LIST OF ATTACHMENTS

Tables

Table LR1: Laboratory Results - Boreholes

Table LR2: Laboratory Results - Surface Samples;

Table LR3: Laboratory Results – Test Pits

Table LR4: Laboratory Results – Quality Control Samples

Figures

Figure 1: Site Locality

Figure 2: Site Features Plan

Figure 3: Approximate Sample Location Plan

Figure 4: Identified Contamination & Approx Extent of Fill

Appendices

Appendix A: Logs

Appendix B: Laboratory Reports

Appendix C: Data Validation Report

ABBREVIATIONS

AEC	Areas of Environmental Concern
AHD	Australian Height Datum
C6-C36	Hydrocarbon chainlength fraction
bgs	below ground surface
втех	Benzene, Toluene, Ethylbenzene and Xylenes
СМР	Construction Management Plan
сос	Chain of Custody
DECC	Department of Environment and Climate Change
DOC	Department of Commerce
ESA	Environmental Site Assessment
ESI	Environmental Site Investigation
ID	Identification
LOR	Limit of Reporting
mg/kg	milligrams per kilogram
mg/L	milligrams per litre
NATA	National Association of Testing Authorities
NEHF	National Environmental Health Forum
NEPM	National Environment Protection Measure
NSW	New South Wales
NSW EPA	Environment Protection Authority of New South Wales
ОСР	Organochlorine Pesticide
OPP	Organophosphorous Pesticide
PACM	Potential asbestos containing material

PAH	Polycyclic Aromatic Hydrocarbon
РСВ	Polychlorinated Biphenyl
PID	Photoionisation Detector
ppm	parts per million
ppmv	parts per million by volume
PQL	Practical Quantitation Limit
QA	Quality Assurance
QC	Quality Control
RAP	Remediation Action Plan
RPD	Relative Percent Difference
SB	Soil Bore
SMP	Site Management Plan
SOP	Standard Operating Procedures
SPT	Split tube sampler
ТРН	Total Petroleum Hydrocarbon
UST	Underground Storage Tank
voc	Volatile Organic Compound

EXECUTIVE SUMMARY

Coffey Environments Pty Ltd (Coffey) was commissioned by Department of Commerce (DOC) to carry out a Phase 2 Environmental Site Assessment (ESA) at the Manilla Hospital located at Court Street, Manilla, New South Wales (NSW).

Development of the site will consist of the demolition and removal of the existing hospital buildings and construction of a new Combined MPS / Health One centre.

The objective of the Phase 2 ESA is to assess the contamination status of the site, assess potential risk posed by contaminants to health and the environment, and provide adequate information for preparation of a remedial action plan (RAP). The work will be carried out in accordance with the relevant sections of NSW Department of Environment and Climate Change (DECC) Guidelines for Consultants Reporting on Contaminated Sites (1997) and NSW DECC Sampling Design Guidelines (1995).

Three previous investigations in regards to contamination have been carried out at the site. These include a Geotechnical Investigation by Network Geotechnics Pty Ltd, a Hazardous Material Survey by HLA EnviroSciences Pty Ltd, and a Stage 1 Preliminary Environmental Site Investigation by DOC.

The Stage 1 Preliminary Environmental Site Investigation carried out by DOC identified the following five Areas of Environmental Concern (AEC) on the site.

- Fill materials, both materials imported to the site and use of contaminated materials from on site;
- · Ash from the incinerator and boiler which has been used as fill;
- Pest control under and around buildings and in garden areas;
- Building materials, including lead paints, galvanised steel and asbestos containing material;
- A diesel underground storage tank (UST) and associated pipe work.

Soil samples were collected from each AEC. The results of the laboratory testing undertaken during the Phase 2 ESA indicated that generally soil contamination consists of total petroleum hydrocarbons (TPH) in surface soils, and asbestos in fill materials. Polycyclic aromatic hydrocarbons (PAH) were also detected at concentrations below the nominated investigation levels in samples collected from the fill material encountered during the Phase 2 ESA. It is considered that the TPH contamination identified is likely to be from leaks and spills of oil and fuels used / stored at the site. The asbestos is likely to be derived from former demolished buildings and has been mixed in with fill material on the site.

The fill material identified on site during this Phase 2 ESA varied in depth from 0.3m to greater than 3.0m below ground surface. Fill materials were generally encountered at the rear (northern) side of the site and the thickness of fill material encountered, appeared to increase in the areas to the northeast.

Waste materials, including asbestos containing materials, were observed in the fill materials in the batter slope. Ash from the boiler and/or incinerator were also observed in fill materials intersected in soil bores, generally at locations within the batter slope, which were completed as part of this Phase 2 ESA.

Given the variability of the fill materials encountered during this Phase 2 ESA, it is possible that contamination may be present in fill materials that were not sampled and analysed during the assessment.

In addition to the above, due to the nature of contamination typically caused by release of petroleum products from USTs and associated infrastructure, it is likely that additional petroleum hydrocarbon contamination is located in the soil immediately adjacent and underneath the UST, which could not be sampled during this Phase 2 ESA due to potential damage that could be caused to the UST and associated infrastructure.

Based on the results obtained during this Phase 2 ESA, the nature of contamination associated with USTs and associated infrastructure, and the variability of the fill materials encountered, Coffey recommends that a combination of remediation works and management procedures be implemented at the site during site redevelopment.

Remediation works would initially involve:

- The decommissioning and removal of the UST and associated infrastructure, and the removal of
 petroleum hydrocarbon contaminated soil adjacent to the workshop. Subsequent remediation of
 contaminated soil may involve either treatment (on or off site) or offsite disposal. A suitably qualified
 person should be present during the removal of the UST and associated infrastructure for the
 purpose of identifying and sampling potentially impacted soil that may be encountered during these
 works; and,
- Capping of fill materials on the steep northern batter slope to prevent exposure to people
 undertaking routine activities on the site. Capping would likely be with dense vegetation and a fence
 around the site, or using a geofabric where vegetation was not sustainable. Capping of the fill
 materials will require a site management plan to be prepared and maintained by a responsible
 person on site. Information about the contamination, its location and the implementation of a site
 management plan should also be provided to Tamworth Regional Council.

Coffey recommends the following for DOC consideration.

- Maintain and update the hazardous material register for the site. This would include adding the fill
 material identified along the face of the batter. Asbestos was found at 1.0m depth at TP3 location in
 the steep batter slope fill;
- Appropriate management of hazardous materials during demolition of the buildings;
- Preparation of a RAP, which will outline the remediation goals, methods of remediation and validation requirements. This would include information on removal of the USTs, removal and/or remediation of contaminated soils, and other information;
- Implementation of the RAP to remediate the site for the proposed development so that the site is suitable for its intended use:
- Preparation and implementation of a site management plan (SMP) to manage and maintain the cap
 on the steep batter slope and associated fill material that may be present immediately south of the
 hospital ring road; and,
- Preparation and implementation of a construction management plan (CMP) to provide guidance on the appropriate management of contaminated fill materials on the site during construction of the MPS / Health One centre.

The attached "Important Information about your Coffey Environmental Report" should be read with this report.

1 INTRODUCTION

1.1 Background

This report presents the findings of the Phase 2 Environmental Site Assessment (ESA) undertaken by Coffey Environments Pty Ltd at the Manilla Hospital located at Court Street, Manilla, New South Wales (NSW) (Figure 1).

The work was commissioned by Department of Commerce (DOC), in response to a proposal submitted by Coffey Environments on 22 April 2009 (ref: ENVIWARA00401AA-P02).

Three previous investigations in regards to contamination have been carried out at the site. These include a Geotechnical Investigation by Network Geotechnics Pty Ltd, a Hazardous Material Survey by HLA EnviroSciences Pty Ltd, and a Stage 1 Preliminary Environmental Site Investigation by DOC. Further information on these investigations is presented in Section 2 below.

It is understood that the development will consist of the demolition and removal of the existing hospital buildings and construction of a new Combined MPS / Health One centre. A Phase 2 ESA was required to aid in the design of the proposed development and to provide information for preparation of a remedial action plan (RAP) (if required).

1.2 Objectives and Scope of Work

The objective of the Phase 2 ESA is to assess the contamination status of the site, assess potential risk posed by contaminants to health and the environment and provide adequate information for preparation of a RAP (if required). The work will be carried out in accordance with the relevant sections of NSW Department of Environment and Climate Change (DECC) Guidelines for Consultants Reporting on Contaminated Sites (1997) and NSW DECC Sampling Design Guidelines (1995).

The objectives of the Phase 2 ESA were addressed through the following scope of works.

- Review of Network Geotechnics Pty Ltd, HLA-Envirosciences Pty Ltd, and DOC reports;
- · Field work, including:
 - a site visit to check locations of the nominated areas of environmental concern (AEC) and to confirm sampling locations;
 - guiding the excavation of four test pits and drilling of eight boreholes, and associated collection of soil samples; and
 - collection of surface soil samples using hand tools from 14 locations.
- Laboratory analysis of selected soil samples for potential contaminants of concern;
- Data assessment and reporting.

2 PREVIOUS INVESTIGATIONS

2.1 Network Geotechnics, Geotechnical Investigation - September 2007

Network Geotechnics Pty Ltd (Network) conducted a Geotechnical Investigation at the Manilla District Hospital, Manilla NSW. The results of this investigation were reported in reference HGS1031, dated September 2007.

Network was commissioned by Hunter Geotechnics to review field and laboratory data collected by Hunter Geotechnics and to make recommendations for footing design and related geotechnical advice for the proposed redevelopment of the hospital.

The investigation by Hunter Geotechnics (in August 2007) consisted of the excavation of nine test pits to depths ranging from 1.5m to 3.0m. Laboratory testing of the samples collected included:

- Shrink swell index tests on three higher clay content samples to assess soil reactivity;
- Analysis of six samples for a suite including metals, phenols, organochlorine pesticides (OCP), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAH); and
- · Analysis of a piece of fibrous plaster for asbestos.

The test pit logs provided by Hunter Geotechnics indicated that the profile at the site was fill to depths up to 2.5m below ground surface (bgs), underlain by alluvial clayey gravel and mudstone. The fill was noted as containing building waste and ash.

The piece of fibrous material encountered during the investigation works was confirmed as being asbestos and concentrations of other chemicals of potential concern were below the National Environmental Protection Measure (NEPM) guidelines that were adopted for the purpose of the Network Geotechnics investigation. It is noted that the investigation criteria adopted (land use) from NEPM guidelines was not referenced in the report, however the concentrations reported were below the most stringent criteria of the NEPM guidelines.

Network Geotechnics concluded that because asbestos contaminated material and uncontrolled fill was identified, a detailed contamination assessment including a sample density of 25 samples per hectare was recommended.

2.2 HLA-Envirosciences, Hazardous Material Survey – September 2007

HLA Envirosciences Pty Limited (HLA) conducted a Hazardous Material Survey (HMS) and asbestos risk assessment for the Manilla Hospital site, Manilla NSW. The results of this investigation were reported in reference N2218201_HAZMAT_RPT, dated 4 September 2007.

The stated purpose of the HMS was 'to identify the location, extent and condition of accessible asbestos based and other hazardous construction material present through the Hospital site'. Other hazardous materials addressed in the report were synthetic mineral fibres (SMF), lead based paint and PCB materials.

The report detailed the presence of hazardous material based on visual inspection and non destructive methods of accessible areas, in addition to laboratory testing of suspected hazardous materials.

Nineteen samples of suspected asbestos containing material was laboratory tested and eleven were reported as containing asbestos (chrysotile, amosite and / or crocidolite) in a number of building materials and areas within the site.

Seven samples of paint fragments were collected and tested for lead content from various areas of the site, with one testing positive for containing lead.

None of the fluorescent light fittings inspected were assessed as potentially containing PCB capacitors.

An appendix of the HLA report provided a Hazardous Material register, detailing the survey findings including hazardous material identified or presumed, its location, the risk, and action level. For the specific information of the materials identified, the relevant areas/buildings, the assessed risk and the recommended actions, refer to the HLA HMS report.

2.3 Department of Commerce, Stage 1 Preliminary Environmental Site Investigation - December 2008

The Geotechnical and Environmental Unit of the DOC conducted the Stage 1 Preliminary Environmental Site Investigation (ESI) for the proposed redevelopment within the existing Manilla Hospital complex at Manilla, NSW. The results of the investigation were reported in reference 08-GO37B, dated December 2008.

The objective of the Phase 1 ESI was to identify past and present potentially contaminating activities, potential contaminants types, discuss site conditions, provide a preliminary assessment of site contamination and assess the need for further investigation.

The ESI consisted of a desktop study of the site history, site conditions and surrounding environment and geology and hydrogeology; a review of previous investigations conducted at the site (summarised in Sections 2.1 and 2.2 above) and identification of potential AECs and contaminants of concern.

The results of the Stage 1 ESI indicated that the site had been used as a hospital since about 1908 and prior to that was vacant Crown Land. Current and former infrastructure on the site included the following:

- Hospital buildings dating from early 1900's to mid 1900's;
- · Coal bin and boiler:
- Former morque;
- · Current mortuary;
- Underground fuel storage tank;
- A former workshop was located to the west of the current workshop;
- A former incinerator.

The following potential sources of contamination and areas of environmental concern were identified:

- Imported fill materials, potentially containing a range of contaminants;
- · Spreading of ash from the coal boilers;
- Underground fuel storage tank;
- · Pest control around buildings;
- · Galvanised iron sheds, carports, garages;
- · Lead based paints on buildings;
- Asbestos containing debris in the surface soils and fill. Asbestos fragments were also observed in the subfloor of parts of the main hospital building and on the surface of the steep batter slope in the vicinity of the mortuary/coal bin.

The DOC recommended that a Phase 2 Detailed ESI be undertaken at the site.

3 SITE CONDITION AND SURROUNDING ENVIRONMENT

3.1 Site Identification

The site is located at the eastern end of Court Street, Manilla, NSW (Figure 1). The site consists of Lot 14 on registered plan DP 814059, and the north-western corner of Lot 13 on registered plan DP 814059. The site covers an area of approximately one hectare. The area of the site is shown on Figure 2.

3.2 Current Site Condition

The main features observed during the site visit and during field investigations are shown on Figure 2 and detailed below.

The site consists of a generally level area on the southern half, with a steep batter slope on the northern half. The batter slope is vegetated with bushes and trees. The level area of the site contains the hospital infrastructure.

The main hospital building is located in approximately the middle of the site, and a nurse's quarters building is located to the west of the main hospital building. These building are constructed of brick with an iron roof.

A mortuary is located immediately to the north of the main hospital building, and a workshop is located to the northeast of the main hospital building.

A coal bin, and underground storage tank (UST) is located to the north-northeast of the main hospital building.

A ring road, paved with bitumen, circles around the hospital infrastructure. A garden bed is located to the south of the main hospital building. The remainder of the hospital site, which is not covered with buildings, the ring road, or the garden bed, is generally grassed. There are areas of concrete paving around some of the buildings.

Two outlet pipes, presumed to be used for stormwater, are located on the western side of the steep batter slope. These are presumed to be the outlet for stormwater drains within the hospital grounds.

The upper part of the batter slope is partially constructed of fill material.

3.3 Current Surrounding Land Use

The land around the property is predominantly low density residential.

Residential properties are located to the north and west of the site. The east of the site is bounded by Kanangra Road, open space and residential properties. The site is bounded to the south by other parts of the existing Manilla Hospital, a water treatment plant, and residential properties.

3.4 Local Geology and Hydrogeology

The Manilla - Narrabri 1:250,000 geological map indicates that the site locality is underlain by the Lowana Formation, which consists of green-black siltstone and mudstone with thin white tuffaceous beds.

The nearest water course is the Namoi River which generally runs in an east-west direction located approximately 330m to the north of the site. The depth to groundwater below the site is not known.

A search of groundwater bores registered with Department of Water and Energy was carried out by DOC as part of the Stage 1 ESI. The search identified four registered bores within 500m of the site. Information on these bores is provided below.

TABLE 1: REGISTERED BORE SEARCH RESULTS

BORE ID	DEPTH OF BORE (M)	STANDING WATER LEVEL (M BGS)	APPROXIMATE DISTANCE AND DIRECTION FROM SITE (KM)	AUTHORISED USE
GW060682	76	NR	0.1 west	Domestic
GW902357	79.2	NR	0.3 northwest-west	Domestic Stock
GW585536	61	NR	0.15 south	NR
GW021704	10.7	7	0.5 northeast	Domestic Stock

Note: NR = not recorded

4 POTENTIAL AREAS OF ENVIRONMENTAL CONCERN

Based on the Stage 1 ESI carried out by DOC, the identified potential AECs within the site are shown in Table 2.

TABLE 2: AREAS OF ENVIRONMENTAL CONCERN

POTENTIAL AECS	DESCRIPTION	COPCS**	LIKELIHOO D OF CONTAMIN ATION*	REMARKS
Fill materials	Contaminated fill may have been imported to the site. Contaminated materials on site may have been used for fill.	Metals, TPH, BTEX, PAH, OCP, PCB, Phenols, Asbestos	Low to Moderate	There was evidence of fill materials being present at the site during the Geotechnical Investigation undertaken by Network Geotechnics Pty Ltd. Asbestos was also identified in the fill material in one location.
Ash from the coal boiler and incinerator	Ash from the coal boiler and incinerator may have been spread across the site and used for fill material	Metals, PAH, dioxins / furans	Low to moderate	There was evidence of ash being present at the site during the Geotechnical Investigation undertaken by Network Geotechnics Pty Ltd.
Pest control	Pesticides may have been applied beneath current or former building slabs and floorboards and onto garden areas.	OCP, Metals	Low	Contamination, if present, is likely to be found within localised areas, limited to near surface soils.
Building materials	Leaching or weathering of contaminants potentially contained in building materials (i.e. lead from lead based paint, zinc from galvanised corrugated iron and asbestos from fibro sheeting) on current or former buildings.	Metals Asbestos	Moderate to High	If present, likely to be limited to near surface soil.s The hazardous material survey carried out by HLA EnviroSciences Pty Ltd identified asbestos and lead paint.
UST and associate pipe work	Leaks and/or spills from the diesel UST.	TPH, BTEX, PAH, Lead	High	Leaks and/or spills from USTs and associated pipe work are very common.

Notes:

^{*} It is important to note that this is not an assessment of the financial risk associated with the AEC in the event contamination is detected, but a qualitative assessment of the probability of contamination being detected at the potential AEC based on the site history study.

^{**}COPC - Chemicals of Potential Concern, Metals - Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel and Zinc, BTEX - Benzene, Toluene, Ethylbenzene and Xylene, TPH - Total Petroleum Hydrocarbons PAH - Polycyclic Aromatic Hydrocarbons

OCP - Organochlorine Pesticides, PCB - Polychlorinated Biphenyl

5 REGULATORY BACKGROUND AND APPLICABLE GUIDELINES

The investigation criteria for soil were established based on the following references:

- NSW DEC (2006) Guidelines for the NSW Auditor Scheme (Second Edition);
- NSW EPA (1994) Guidelines for Assessing Service Station Sites;
- NEPC (1999) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM); and
- NSW EPA (1985) Environmental Hazardous Waste Act, Chemical Control Order in Relation to Dioxin-Contaminated Waste.

Other references were used to supplement the above, where appropriate.

The NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme and the NEPM present health based investigation levels for different land-uses (e.g. industrial / commercial, residential, recreational etc.) as well as provisional phytotoxicity based investigation levels.

The site is proposed to be developed as a hospital which is considered to be consistent with a commercial land use. Consequently the human health based soil investigation levels (HILs) for commercial and industrial land-use, provided in Column 4 of Appendix II in the NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (Second Edition) have been adopted as soil investigation levels for the purpose of this assessment. Phytotoxicity does not need to be considered for commercial / industrial land-use.

NSW EPA (2006) Guidelines do not provide threshold levels for volatile petroleum hydrocarbon compounds. NSW EPA (1994) Guidelines for Assessing Service Station Sites provide an indication of acceptable cleanup levels for petroleum hydrocarbons compounds at service station sites to be reused for sensitive land-uses. The EPA has advised that these guidelines should also be used for less sensitive land-uses. For semi-volatile petroleum hydrocarbons ($C_{16} - C_{35}$ and $>C_{35}$) investigation levels are provided in the NSW EPA (2006) Guidelines, however, these are based on the NEPM health-based criteria, which require the laboratory analysis to unequivocally differentiate between aromatic and aliphatic compounds. If this cannot be done, then the $C_{10} - C_{40}$ criteria in the service station guidelines should be applied. For this investigation, we have adopted the service station guidelines for all petroleum hydrocarbon fractions.

There are currently no national or DECC endorsed guidelines relating to human health of environmental investigation of material containing asbestos on sites. NSW DEC (2006) advice that until such guidelines become available, auditors must exercise their professional judgement when assessing if a site is suitable for a specific use in the light of evidence that asbestos may be a contaminant of concern. Where appropriate, NSW DEC (2006) states that NSW Health will provide advice to auditors on a case-by-case basis. The NSW DECC previously provided interim advice that "no asbestos in the soil at the surface is permitted". Enhealth (2005) 'Guidelines for Asbestos in the Non-Occupational Environment', provides some guidance on assessing and managing asbestos in soil although does not provide a threshold concentration or investigation level for asbestos. Coffey Environments has adopted an asbestos investigation level of "non-detect" for this site.

The NSW EPA (1985) *Environmentally Hazardous Chemicals Act, Chemical Control Order in Relation to Dioxin-Contaminated Waste*, states a Dioxin-contaminated waste materials means those waste materials that, when tested using a method approved by the Commission [then the State Pollution Control Commission, which has been superseded by the EPA which is part of the DECC], are found to contain more than 1 part in 100 million by weight (i.e. 10⁻⁸ w/w or 10 ng/kg) of 2,3,7,8-tetrachlorodibenzo-p-dioxin. This has been adopted as the investigation level for this report.

The adopted soil investigation levels are included in Tables LR1 to LR3.

6 FIELD AND LABORATORY INVESTIGATIONS

6.1 General

The field investigation programme was designed based on information provided in the Stage 1 ESI undertaken by DOC, and a site walkover carried out at prior to fieldwork commencing on 4 May 2009. Selected sampling locations were targeted to assess specific potential AECs, such as adjacent to structures, adjacent to the UST, and in the former incinerator and workshop locations. Other sampling locations targeted site wide potential contamination issues such as the presence of fill material. No sampling was undertaken beneath buildings and no groundwater investigations were undertaken during the P2 ESA.

6.2 Soil Investigations

The field investigations were undertaken between 4 and 6 May 2008 by a Coffey Environments scientist. A total of 26 sampling locations were selected for onsite investigations. Eight boreholes (identified as SB1 to SB8 were drilled at the site with the aid of a drill rig, four test pits (identified as TP1 to TP4) were excavated with the aid of a mini-excavator, and 14 surface samples (identified as SS1 to SS14) were collected using hand tools.

The number of sampling locations selected for the field investigation complied with NSW EPA (1995) "Sampling Design Guidelines", which recommends a minimum of 21 sampling locations for a site with an area of one hectare, plus additional sample locations to target specific AECs.

The boreholes were drilled to depths ranging between 1.0m and 3.0m bgs. Boreholes were terminated at each location due to refusal on rock. Samples were collected at regular intervals, or where there was evidence of potential contamination. Samples were collected using a split-tube sampler, or off the auger in shallow soils.

The test pits were excavated to depths ranging between 2.0m and 3.0m bgs. Test pits TP1 and TP2 were terminated at 2.0m depth due to reaching the limit required (at least 1.0m into natural soils), and test pits TP3 and TP4 were terminated at 3.0m due to the limitations of the mini-excavator. Samples were collected at regular intervals, or where there was evidence of potential contamination. Samples were collected directly from the excavator bucket.

The surface samples were collected at a depth of 0.0-0.1m bgs. Samples were collected by digging a small hole with hand tools, and collecting a sample from the hole.

A clean pair of disposable gloves was used when handling each new sample. Each sample was divided into three sub-samples. One of the sub-samples was placed into a laboratory-supplied, acid-rinsed 250 ml glass jar and placed in an ice-chilled cooler box. The second sub-sample was placed in a plastic zip-lock bag for asbestos screening. The third sub-sample was bagged for field headspace screening.

Where ash was present a separate sample was collected and placed into a laboratory supplied glass jar.

A photo ionisation detector (PID) was used to screen the headspace gases of the bagged soil samples. The PID provides a semi-quantitative indication of the presence of ionisable volatile organic compounds in the soil. The PID had a 10.6eV lamp calibrated with isobutylene gas at 100ppm_v prior to commencement of the fieldwork.

The sample locations are shown on Figure 3 and the borehole, test pit and surface sample logs are presented in Appendix A.

6.3 Field Quality Assurance / Quality Control

Sampling activities were generally based on procedures and protocols outlined in Coffey Environments standard operating procedures.

A spilt tube sampler (SPT) was used to collect samples from the boreholes, and hand tools were used to collect the surface samples. Samples from the test pits were collected directly from the excavator bucket. Sampling equipment was decontaminated between sample locations using a phosphate free detergent. A wash blank sample was collected for each day of sampling to assess the efficacy of field decontamination procedures. Two trip blank samples were transported with the samples and analysed as part of the sampling programme to assess potential volatile loss as a result of sample handling and transportation procedures. A clean pair of disposable gloves was used to handle each sample.

The samples were placed into a laboratory-supplied, acid-rinsed 250mL glass jars and placed in an ice-chilled cooler box for transport to the laboratory.

Ten intra-laboratory (duplicate) soil samples and five inter-laboratory (triplicate) soil samples were collected. Of these, three duplicate samples and one triplicate sample were subjected to laboratory analysis. For duplicate sampling, the soil sample was divided evenly between the glass jars using gloved hands. The soil was not homogenised prior to duplicate sampling to minimise the potential loss of volatiles from the soil sample. The duplicates and triplicate were used to check whether the sampling and laboratory procedures adequately reproduced results.

The field quality control samples are summarised below.

TABLE 3: SUMMARY OF QUALITY CONTROL SAMPLES

DUPLICATE SAMPLE	SAMPLE TYPE	DATE	INTRA/INTER- LAB	ANALYSIS
QC1	Duplicate of SB1 0.0-0.1m	5 May 2009	Intra-lab	TPH, BTEX, PAH, Metals, OCP, PCB
QC1A	Triplicate of SB1 0.0-0.1m	5 May 2009	Inter-lab	TPH, BTEX, PAH, Metals, OCP, PCB
QC6	Duplicate of SS1	6 May 2009	Intra-lab	TPH, BTEX, PAH, Metals, OCP
QC8	Duplicate of TP1 0.0-0.1	6 May 2009	Intra-lab	PAH, Metals, OCP, PCB
TB #1	Trip Blank	-	Intra-lab	BTEX
WTS #1	Trip Blank	-	Intra-lab	BTEX
QCA	Wash Blank	5 May 2009	Intra-lab	TPH, BTEX, PAH, Metals, OCP, PCB
QCB	Wash Blank	6 May 2009	Intra-lab	TPH, BTEX, PAH, Metals, OCP, PCB

6.4 Laboratory Analysis

Analytical Laboratories used by Coffey Environments for this investigation included:

- Primary Laboratory SGS, Sydney;
- Triplicate Laboratory MGT Environmental, Melbourne.

The above laboratories are NATA registered for the analysis undertaken. Soil samples from the field investigations were dispatched to the laboratories on 7 May 2009 under chain of custody conditions.

In total, 27 soil samples were selected for a range of laboratory analysis, summarised in Table 4, below.

TABLE 4: SUMMARY OF LABORATORY ANALYSIS

CONTAMINANT OF CONCERN	NUMBER OF SAMPLES ANALYSED
PAH	23
TPH	22
BTEX	22
Metals	27
OCPs	10
PCBs	4
Asbestos	9
Phenois	2
VHCs	2
Dioxins / furans*	1

Note: * - Dioxin/furan testing comprises analysis for a suite of polychlorinated dibenzo-*p*-dioxins and furans. The analytical results for the individual compounds are then multiplied by their relevant toxic equivalent factor according to J.A. van Zorge et al (Chemosphere 19 (1989), 1881-1895) to produce a I-TEQ concentration. The purpose of this calculation is to allow comparison of a number of detected dioxins and furans to the guideline value which relates to a single compound, 2,3,7,8-tetrachlorodibenzo-p-dioxin.

The remaining samples were held by the laboratory for future analysis, if required.

The analysis suite was generally based on the potential chemicals of concern identified during the site history review, summarised in Section 4. The soil samples were selected for analysis on the basis of field observation, as well as providing lateral and vertical distribution of sampling across the investigation area and specific AEC. Generally, one sample was selected from each sample location and two samples from 50% of the sampling locations for laboratory analysis.

7 RESULTS

7.1 Subsurface Conditions

Based on the boreholes and test pit observations the geology within the investigation area is consistent with the regional geology indicated by the Manilla - Narrabri 1:250,000 geological map.

Ash, likely to be from the incinerator, was noted in borehole SB7 and test pits TP3 and TP4. Waste materials, including brick and cement fragments, glass, plastic, timber, and ceramic pipe were noted in test pits TP1 and TP2. Potential asbestos containing material (PACM) was observed in TP3. No odours were noted during the sampling of soils.

Groundwater inflows were not encountered in any of the boreholes or test pits completed as part of this investigation.

The subsurface conditions encountered at the site have been summarised in Table 5 and the borehole and test pit logs are presented in Appendix A.

TABLE 5: SUMMARY OF SUB SURFACE CONDITIONS

GENERAL DESCRIPTION	LOCATION	TOP OF MATERIAL (M)	BASE OF MATERIAL (M)
Topsoil: Gravelly Sand, fine to medium grained, brown, fine gravel	SB1 & SB2	0.0	0.3
Bitumen	SB3, SB4, SB5, & SB6	0.0	0.1
Fill (general soil): Gravelly Sand, fine to medium grained, brown, fine gravel. Gravelly Clay (SB8 only), medium plasticity, orange/dark brown, fine gravel.	SB3, SB4, SB5, SB6, SB7 & SB8	0.0 to 0.1	0.3 to 2.5
Fill (containing waste materials): gravelly sand, fine to medium grained, brown/grey, fine to coarse gravel. Contains brick fragments, cement fragments, plastic, glass, ceramic pipe, metals, timber and PACM.	TP1, TP2, TP3 & TP4.	0.0 to 2.0	0.4 to 3.0
Fill (containing ash): gravelly sand, fine to medium grained, grey, fine to coarse gravel, 50% ash.	TP3 & TP4	0.0	0.1 to 2.0
Residual Soil: Gravelly Clay, Sandy Clay, medium to high plasticity, brown/orange, fine to medium grained gravel.	SB1, SB2, SB3, SB4, SB8, TP1 & TP2	0.3 to 0.9	0.8 to 1.6
Extremely Weathered Claystone: Gravelly Clay, medium to high plasticity, pale grey, pale to dark brown, orange, fine to medium grained gravel.	SB1, SB2, SB3, SB4, SB5, SB6, SB8, TP1 & TP2	0.8 to 2.5	1.0 to 3.0

7.1.1 PID Results

A total of 65 soil samples were subjected to PID headspace screening. The PID readings were detected between 1.5 to 15.8 ppm_v, indicating that volatile ionisable organic compounds were unlikely to be present at significant concentrations in the samples screened. The PID results are presented with the borehole, test pit and surface sample logs in Appendix A.

7.1.2 Laboratory Results

The laboratory analytical reports are presented in Appendix C. The soil results are presented in Table LR1 to LR4.

7.1.3 Quality Assurance and Quality Control (QAQC) Results and Data Usability

An assessment of quality assurance and quality control has been made in a data validation report presented in Appendix C. An assessment was made of data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations.

The samples collected included collection of ten field duplicates and five triplicates. Of these, three duplicates and one triplicate were analysed. The results of the field duplicate and triplicate analysis showed the relative percent differences (RPDs) were generally within the 50% control limit, with the exception of the following.

- An RPD of 50% for lead between duplicate pair SB1 0.0-0.1 / QC1A;
- An RPD of 51% for zinc between duplicate pair SS1 / QC6;
- An RPD of 79% for TPH 15-28 between duplicate pair SS1 / QC6;
- An RD of 67% for benzo(g,h,i)perylene between duplicate pair TP1 0.0-0.1/ QC8.

Two wash blank samples were collected in the field, one for each day of sampling. The wash blanks were analysed for TPH, BTEX, PAH, metals, OCPs, and PCBs. The laboratory results showed concentrations of analytes below the detection limit in the wash blank, with the exception of zinc. It is considered that the zinc was probably present in the water used for the wash blank. Taking into account the concentrations of zinc in the samples, it is considered that its detection in the wash blank does not affect the usability of the data.

The results of the quality control testing are shown on Table LR4 attached

A data validation assessment was carried out, and is presented in Appendix C. The assessment revealed the following.

- Data Completeness the data is adequately complete;
- Data Comparability the data is adequately comparable;
- Data Representativeness the data is adequately representative;
- Data Precision the data is adequately precise;
- Data Accuracy the data is adequately accurate.

7.2 Comparison of Soil Results with Human Health Based Soil Investigation Levels (HILs)

The results from the investigations have been compared to the relevant soil investigation levels, as discussed in Section 5 of this report, and are shown in Tables LR1 to LR3 and summarised below.

- TPH C₁₀ C₃₆) was detected in sample SB8 0.0-0.1 (2,375 mg/kg) at a concentration above the soil investigation level of 1,000 mg/kg. TPH C₁₀ C₃₆ was also detected in samples SS1 (410mg/kg), SS6 (328mg/kg), SS10 (86mg/kg) and SS12 (370mg/kg) but at a concentrations below the soil investigation levels. TPH C₁₀ C₃₆ was not detected above the laboratory reporting limits in the other samples analysed;
- Benzo(a)pyrene was detected in samples SS6 (4.4mg/kg), SB5 0.9-1.0 (0.11mg/kg), SB6 1.9-2.0 (0.05mg/kg), SB7 0.0-0.1 (0.1mg/kg), TP1 0.0-0.1 (0.08mg/kg), and TP2 0.4-0.5 (0.06mg/kg), but at concentrations below the soil investigation level of 5mg/kg. Benzo(a)pyrene was not detected in the other samples analysed;
- Total PAHs were detected in samples SS6 (<47.68mg/kg), SB5 0.9-1.0 (0.27mg/kg), SB7 0.0-0.1 (0.25mg/kg), TP1 0.0-0.1 (<1.79mg/kg), and TP2 0.4-0.5 (<1.8mg/kg), but at concentrations below the soil investigation levels. PAHs were not detected above the laboratory reporting limits in the other samples analysed;
- Heavy metals were detected in samples that were analysed, but at concentrations below the soil investigation levels;
- Asbestos was detected in a sample of fibro collected from TP3 at 1.0m depth. The other soil samples analysed did not detect asbestos;
- TPH C₆-C₉, BTEX, OCPs, PCBs, VHCs and phenols were not detected in the samples analysed;
- The ash sample from TP3 0.4-0.5m was assessed to contain 0.067 to 2.3 ng/kg I-TEQ of 2,3,7,8-tetrachlorodibenzo-p-dioxin, which is below the investigation level adopted.

8 DISCUSSION

The Phase 1 ESI carried out by DOC identified five AEC on the site, these being the:

- fill materials, both imported materials and contaminated materials from on site;
- ash from the incinerator and boiler which has been used as fill;
- pest control under and around buildings and in garden areas;
- building materials, including lead paints, galvanised steel and asbestos containing material; and
- UST and associated pipe work.

During this Phase 2 ESA, soil samples were collected from each AEC. The results of the laboratory testing undertaken during the Phase 2 ESA indicated that generally soil contamination consists of TPH in surface soils, and asbestos in fill materials. PAH compounds were also detected at concentrations below the nominated investigation levels in samples collected of the fill material encountered during the Phase 2 ESA. It is considered that the TPH contamination identified is likely to be from leaks and spills of oil and fuels. The asbestos is likely to be derived from former demolished buildings and has been mixed into fill on the site. The PAH compounds detected in the fill materials are likely to be attributed to ash or oils within the fill material.

The fill material identified on site during this Phase 2 ESA varied in depth from 0.3m to greater than 3.0m below ground surface. Test pits TP3 and TP4 on the eastern side of the steep batter slope reached the limit of excavation in fill materials at 3.0m depth. Fill materials are generally located at the rear (northern) side of the site, and the thickness of fill material encountered, appeared to increase in areas to the northeast.

Waste materials, including asbestos containing materials, were observed in the fill materials in TP1, TP2, TP3 and TP4. Ash from the boiler and/or incinerator was observed in borehole SB7 at 0.9-1.0m, and in test pits TP3 at 0.0-0.1m, and TP4 at 0.0-2.0m.

Analysis of samples collected adjacent to the UST did not show contamination above the soil investigation levels. This indicates that soil contamination from the UST is unlikely to be widespread. Due to the nature of contamination caused by USTs and associated infrastructure, it is likely that contamination is located in the soils immediately adjacent to and underneath the UST, which could not be sampled during this Phase 2 ESA due to potential damage that could have been caused to the UST and associated infrastructure.

Sampling and analysis of groundwater was not undertaken as part of this assessment. Groundwater is likely to be of the vicinity of 10m or greater below the ground surface. Taking into account that contamination was not detected at depth during the Phase 2 ESA, there is no evidence to suggest that groundwater contamination is present beneath the site at this point in time. However, the potential for groundwater contamination should be reassessed following the removal of the UST, should significant contamination be encountered underneath the UST, and/or if contamination is identified at the site at depth.

9 CONCLUSIONS AND RECOMMENDATIONS

The Phase 2 ESA identified contamination at concentrations above nominated investigation levels in the form of asbestos and TPH at two sampling locations. The TPH was encountered in surface soils adjacent to the workshop and the asbestos was encountered in fill materials on the steep batter slope. Detections of PAH compounds were indentified in fill materials at concentrations below the investigation levels.

Given the variability of the fill materials encountered during this Phase 2 ESA, it is possible that contamination may be present in fill materials in areas that were not sampled and analysed during the assessment.

Due to the nature of contamination caused by USTs and associated infrastructure, it is possible that hydrocarbon contamination may be present within soils located immediately adjacent to and beneath the UST.

Based on the results obtained during this Phase 2 ESA, the nature of contamination associated with USTs and associated infrastructure, and the variability of the fill materials encountered, Coffey recommends that a combination of remediation works and management procedures be implemented at the site during site development.

Remediation works would initially involve:

- The decommissioning and removal of the UST and associated infrastructure, and the removal of TPH contaminated soil adjacent to the workshop. Remediation of hydrocarbon impacted soil may involve either treatment (on or off site) or offsite disposal. A suitably qualified person should be present during the removal of the UST and associated infrastructure for the purpose of identifying and sampling potentially impacted soil that may be encountered during these works; and,
- Capping of fill materials on the steep northern batter slope to prevent exposure to people
 undertaking routine activities on the site. Capping would likely be with dense vegetation and a fence
 around the site, or using a geofabric where vegetation was not sustainable. Capping of the fill
 materials will require a site management plan to be prepared and maintained by a responsible
 person on site. Information about the contamination, its location and the implementation of a site
 management plan should also be provided to Tamworth Regional Council.

Coffey recommends the following for DOC consideration.

- Maintain and update the hazardous material register for the site. This would include adding the fill
 material identified along the face of the batter. Asbestos was found at 1.0m depth at TP3 location in
 the steep batter slope fill;
- Appropriate management of hazardous materials during demolition of the buildings;
- Preparation of a RAP, which will outline the remediation goals, methods of remediation and validation requirements. This would include information on removal of the USTs, removal and/or remediation of contaminated soils, and other information;
- Instigation of the RAP to remediate the site for the proposed development so that the site does not
 pose a risk to human health or the environment;

- Preparation and implementation of a site management plan (SMP) to manage and maintain the cap
 on the steep batter slope and associated fill material that may be present immediately south of the
 hospital ring road; and;
- Preparation and implementation of a construction management plan (CMP) to provide guidance on the appropriate management of contamination in fill materials on the site during construction of the MPS / Health One centre.

The attached "Important Information about your Coffey Environmental Report" should be read with this report.

10 LIMITATIONS

The findings within this report are the result of discreet/specific sampling methodologies used in accordance with normal practices and standards. To the best of our knowledge they represent a reasonable interpretation of the general conditions of the site. Under no circumstances, however, can it be considered that these findings represent the actual state of the site at all points.

It is the nature of contaminated site investigations that the degree of variability in site conditions cannot be known completely and no sampling and analysis program can eliminate all uncertainty concerning the condition of the site. Professional judgement must be exercised in the collection and interpretation of the data.

In conducting this review and preparing the report, current guidelines for assessment and management of contaminated land were followed. This work has been conducted in good faith in accordance with Coffey's understanding of the client's brief and general accepted practice for environmental consulting.

This report was prepared for Department of Commerce with the objective of assessing the presence of contamination on the site for the development of the MPS / Health One centre. No warranty, expressed or implied, is made as to the information and professional advice included in this report. The report is not intended for other parties or other uses. Anyone using this document does so at their own risk and should satisfy themselves concerning the applicability of its application and where necessary should seek expert advice in relation to the particular situation.

This report does not cover hazardous building materials issues. Information within the report including borehole logs should not be used for geotechnical investigation purposes.

11 REFERENCES

Department of Commerce (2008) Stage 1 Preliminary Environmental Site Investigation, reference 08-GO37B

Department of Mineral Resources (1992) Manilla – Narrabri Metallogenic Series Sheet, SH56-9 SH55-12, First Edition, 1:250,000 scale

HLA Envirosciences Pty Ltd (2007) Hazardous Material Survey – Manila Hospital Site, Manilla NSW, reference N2218201_HAZMAT_RPT

Network Geotechnics Pty Ltd (2007) Proposed Extensions to Manilla Hospital – Report on Geotechnical Assessment, referenceHGS1031

NSW EPA (1995) Sampling Design Guidelines. ISBN 0-7310-3756-1.

NSW EPA (1997) Guidelines for Consultants Reporting on Contaminated Sites. ISBN 0731038924.

NSW EPA (1994) Guidelines for Assessing Service Station Sites. ISBN 0-7310-3712-X.

NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (2nd ed). ISBN 1 74137 859 1

Important information about your Coffey Environmental Report

Uncertainties as to what lies below the ground on potentially contaminated sites can lead to remediation costs blow outs, reduction in the value of the land and to delays in the redevelopment of land. These uncertainties are an inherent part of dealing with land contamination. The following notes have been prepared by Coffey to help you interpret and understand the limitations of your report.

Your report has been written for a specific purpose

Your report has been developed on the basis of a specific purpose as understood by Coffey and applies only to the site or area investigated. For example, the purpose of your report may be:

- To assess the environmental effects of an on-going operation.
- To provide due diligence on behalf of a property vendor.
- To provide due diligence on behalf of a property purchaser.
- To provide information related to redevelopment of the site due to a proposed change in use, for example, industrial use to a residential use.
- To assess the existing baseline environmental, and sometimes geological and hydrological conditions or constraints of a site prior to an activity which may alter the sites environmental, geological or hydrological condition.

For each purpose, a specific approach to the assessment of potential soil and groundwater contamination is required. In most cases, a key objective is to identify, and if possible, quantify risks that both recognised and unrecognised contamination pose to the proposed activity. Such risks may be both financial (for example, clean up costs or limitations to the site use) and physical (for example, potential health risks to users of the site or the general public).

Scope of Investigations

The work was conducted, and the report has been prepared, in response to specific instructions from the client to whom this report is addressed, within practical time and budgetary constraints, and in reliance on certain data and information made available to Coffey. The analyses, evaluations, opinions and conclusions presented in this report are based on those instructions, requirements, data or information, and they could change if such instructions etc. are in fact inaccurate or incomplete.

Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man and may change with time. For example, groundwater levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of the subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult Coffey to be advised how time may have impacted on the project and/or on the property.

Interpretation of factual data

Environmental site assessments identify actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from indirect field measurements and sometimes other reports on the site are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how well qualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, parties involved with land acquisition, management and/or redevelopment should retain the services of Coffey through the development and use of the site to identify variances, conduct additional tests if required, and recommend solutions to unexpected conditions or other problems encountered on site.

Important information about your Coffey Environmental Report

Your report will only give preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced and therefore your report recommendations can only be regarded as preliminary. Only Coffey, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered with redevelopment or on-going use of the site. If another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Coffey cannot be held responsible for such misinterpretation.

Your report is prepared for specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Coffey before passing your report on to another party who may not be familiar with the background and the purpose of the report. In particular, a due diligence report for a property vendor may not be suitable for satisfying the needs of a purchaser. Your report should not be applied for any purpose other than that originally specified at the time the report was issued.

Interpretation by other professionals

Costly problems can occur when other professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain Coffey to work with other professionals who are affected by the report. Have Coffey explain the report implications to professionals affected by them and then review plans and specifications produced to see how they have incorporated the report findings.

Data should not be separated from the report

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, laboratory data, drawings, etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel), field testing and laboratory evaluation of field samples. This information should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

Contact Coffey for additional assistance

Coffey is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to land development and land use. It is common that not all approaches will be necessarily dealt with in your environmental site assessment report due to concepts proposed at that time. As a project progresses through planning and design toward construction and/or maintenance, speak with Coffey to develop alternative approaches to problems that may be of genuine benefit both in time and cost.

Responsibility

Environmental reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than other design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from Coffey to other parties but are included to identify where Coffey's responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Coffey closely and do not hesitate to ask any questions you may have.

Tables

Table LR1 Laboratory Results-Boreholes ENVIWARA00401AA

				E:	IOD4	lono	I C D C		1AA	lon.	ODO	ODO	IOD7	IOD 7	IOD0	lono.
				Field ID Sample Depth (m)	SB1 0 - 0.1	SB2 0 - 0.1	SB3 0.4-0.5	SB4 0.1-0.2	SB5 0.9-1	SB5 2.9-3	SB6 0.4-0.5	SB6 1.9-2	SB7 0 - 0.1	SB7 0.9-1	SB8 0 - 0.1	SB8 0.4-0.5
		In a	Inci	Sample Date	05/05/09	05/05/09	05/05/09	05/05/09	05/05/09	05/05/09	05/05/09	05/05/09	05/05/09	05/05/09	05/05/09	05/05/09
Analytes		Units	PQL	NSW Commercial F												
BTEX	Benzene	mg/kg	0.5		<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-
	Ethylbenzene Toluene	mg/kg mg/kg	0.5 0.5		<0.5 <0.5	-	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-
	Xylene (m & p)	mg/kg	1		<1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1	-
	Xylene (o) Xylene Total	mg/kg mg/kg	0.5 1.5		<0.5 <1.5	-	<0.5 <1.5	<0.5 <1.5	<0.5 <1.5	<0.5 <1.5	<0.5 <1.5	<0.5 <1.5	<0.5 <1.5	<0.5 <1.5	<0.5 <1.5	-
Metals	Arsenic	mg/kg	3	500	6	6	3	8	6	7	4	<3	4	4	3	4
	Cadmium Chromium (III+VI)	mg/kg mg/kg	0.3	100	0.4 20	0.5 23	0.5 10	0.3 15	0.4 16	0.6 20	0.4 14	<0.3	0.4 21	0.4	0.3 14	0.4
	Copper	mg/kg	0.5	5000	20	22	33	19	26	56	64	8.6	20	20	18	24
	Lead Nickel	mg/kg mg/kg	1 0.5	1500 3000	20 19	12 18	28 8.4	9 13	280 14	9.3	59 11	4 6.4	17 16	24 17	4 16	7 21
	Zinc	mg/kg	0.5	35000	58	46	73	35	150	65	120	16	120	44	32	34
OCP	Mercury 4,4-DDE	mg/kg mg/kg	0.05 0.1	75	<0.05 <0.1	<0.05	<0.1	<0.05	0.29	<0.05	0.53	<0.05	<0.05	<0.05	<0.05 <0.1	<0.05
	a-BHC	mg/kg	0.1		<0.1	-	<0.1	-	-	-	-	-	-	-	<0.1	-
	Aldrin b-BHC	mg/kg mg/kg	0.1 0.1		<0.1 <0.1	-	<0.1	-	-	-	-	-	-	-	<0.1 <0.1	-
	cis-Chlordane	mg/kg	0.1		<0.1	-	<0.1	-	-	-	-	-	-	-	<0.1	-
	d-BHC DDD	mg/kg mg/kg	0.1 0.1		<0.1	-	<0.1	-	-	-	-	-	-	-	<0.1	-
	DDT	mg/kg	0.1		<0.1	-	<0.1	-	-	-	-	-	-	-	<0.1	-
	Dieldrin Endosulfan I	mg/kg mg/kg	0.1 0.1		<0.1	-	<0.1	-	-	-	-	-	-	-	<0.1 <0.1	-
	Endosulfan II	mg/kg	0.1		<0.1	-	<0.1	-	-	-	-	-	-	-	<0.1	-
	Endosulfan sulphate	mg/kg	0.1		<0.1	-	<0.1	-	-	-	-	-	-	-	<0.1	-
	Endrin Endrin aldehyde	mg/kg mg/kg	0.1		<0.1	-	<0.1	-	-	-	-	-	-	-	<0.1	-
	Endrin ketone	mg/kg	0.1 0.1		<0.1	-	<0.1	-	-	-	-	-	-	-	<0.1	-
	g-BHC (Lindane) Heptachlor	mg/kg mg/kg	0.1	50	<0.1	-	<0.1	-	-	-	-	-	-	-	<0.1	-
	Heptachlor epoxide	mg/kg	0.1		<0.1	-	<0.1	-	-	-	-	-	-	-	<0.1	-
	Hexachlorobenzene Methoxychlor	mg/kg mg/kg	0.1	1	<0.1	-	<0.1	-	-	-	-	-	-	-	<0.1	-
	o,p'-DDD	mg/kg	0.1		<0.1	-	<0.1	-	-	-	-	-	-	-	<0.1	-
	o,p'-DDE o,p'DDT	mg/kg mg/kg	0.1	 	<0.1	-	<0.1	-	-	-	-	-	-	-	<0.1	-
	trans-chlordane	mg/kg	0.1		<0.1	-	<0.1	-	-	-	-	-	-	-	<0.1	-
	trans-Nonachlor Aldrin + Dieldrin	mg/kg mg/kg	0.1	50	<0.1	-	<0.1	-	-	-	-	-	-	-	<0.1	-
DALL	DDT+DDE+DDD	mg/kg	0.4	1000	<0.3	-	<0.3	- 0.1	-	-	-	-	- 0.1	-	<0.3	-
PAHs	1-Methylnaphthalene 2-methylnaphthalene	mg/kg mg/kg	0.1	 	<0.1	-	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	-
	Acenaphthene	mg/kg	0.1		<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
	· · ·	mg/kg mg/kg	0.1		<0.1 <0.1	-	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	-
	Benz(a)anthracene	mg/kg	0.1		<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.12	<0.1	<0.1	-
	Benzo(a) pyrene Benzo(b)&(k)fluoranthene	mg/kg mg/kg	0.05 0.2	5	<0.05 <0.2	-	<0.05 <0.2	<0.05 <0.2	0.11 < 0.2	<0.05 <0.2	<0.05 <0.2	0.05 <0.2	0.1	<0.05 <0.2	<0.05 <0.2	-
	Benzo(g,h,i)perylene	mg/kg	0.1		<0.1	-	<0.1	<0.1	0.14	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
	Chrysene Dibenz(a,h)anthracene	mg/kg mg/kg	0.1		<0.1 <0.1	-	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0.1	0.12 <0.1	<0.1	<0.1 <0.1	-
	Fluoranthene	mg/kg	0.1		<0.1	-	<0.1	0.12	0.11	<0.1	<0.1	<0.1	0.25	<0.1	<0.1	-
	Fluorene Indeno(1,2,3-c,d)pyrene	mg/kg mg/kg	0.1 0.1		<0.1 <0.1	-	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	-
	Naphthalene	mg/kg	0.1		<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
	PAHs (Sum of total) Phenanthrene	mg/kg mg/kg	1.75 0.1	100	<1.75 <0.1	-	<1.75 <0.1	<1.77 <0.1	<1.93 <0.1	<1.75 <0.1	<1.75 0.1	<1.75 <0.1	<2.21 0.17	<1.75 <0.1	<1.75 <0.1	-
	Pyrene	mg/kg	0.1		<0.1	-	<0.1	<0.1	0.17	<0.1	<0.1	<0.1	0.25	<0.1	<0.1	-
PCBs	Pyrene Arochlor 1221	mg/kg mg/kg	0.1 0.1		<0.1 <0.1	-					<0.1				<0.1 <0.1	-
PCBs	Pyrene	mg/kg	0.1		<0.1	- - -					<0.1				<0.1	
PCBs	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1		<0.1 <0.1 <0.1 <0.1 <0.1	- - - -					<0.1 - - -				<0.1 <0.1 <0.1 <0.1 <0.1	
PCBs	Pyrene Arochor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1		<0.1 <0.1 <0.1 <0.1	- - - - -					<0.1 - - - - -				<0.1 <0.1 <0.1 <0.1	- - - - -
PCBs	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1						<0.1 - - - - -				<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
PCBs	Pyrene Arochor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1						<0.1				<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - - - - -
	Pyrene Arochor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	50	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - - - - - -			0.17 - - - - - - - -		<0.1		0.25 - - - - - - - - -		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1262 Aroclor 1268	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	50	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - - - - - - - -					<0.1				<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C10 - C14 Fraction	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - - - - - - - - -	<0.1 	<0.1	0.17	<0.1 	- - - - - - - - - - - - - - - - - - -	<0.1	0.25	<0.1 	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1	- - - - - - - - - - - - - - -	<0.1	0.25 - - - - - - - - - - - - -	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C10 - C14 Fraction TPH C15 - C28 Fraction TPH C29 - C36 Fraction TPH+C10 - C36 (Sum of total)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1 	<0.1	0.17	<0.1		<0.1	0.25	<0.1 	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C15 - C28 Fraction TPH C29 - C36 Fraction	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C10 - C14 Fraction TPH C29 - C36 Fraction TPH C29 - C36 Fraction TPH C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,2,2-tetrachloroethane	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C15 - C28 Fraction TPH C29 - C36 Fraction TPH C29 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,1-trichloroethane	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C10 - C14 Fraction TPH C15 - C28 Fraction TPH C29 - C36 Fraction TPH+C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,1-trichloroethane 1,1,2-trichloroethane 1,1,2-trichloroethane 1,1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C10 - C14 Fraction TPH C10 - C26 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,2-trichloroethane 1,1,2-tichloroethane 1,1-dichloroethane 1,1-dichloroethene 1,1-dichloroethene 1,1-dichloropropene 1,2,3-trichlorobenzene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C10 - C14 Fraction TPH C29 - C36 Fraction TPH C20 - C36 Fraction TPH-C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,2-tichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethene 1,1-dichloroethene 1,1-dichloropropene 1,2,3-trichlorobenzene 1,2,3-trichloropropane	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH	Pyrene Arochlor 1221 Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C10 - C14 Fraction TPH C15 - C28 Fraction TPH C29 - C36 Fraction TPH C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,2-trichloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-trichloroethane 1,2-trichloroethane 1,2-trichloroethane 1,2-trichloroethane 1,2-dirichloroethane 1,2-3-trichloropropene 1,2,3-trichloropropane 1,2,4-trichlorobenzene 1,2-dibromo-3-chloropropane	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C10 - C14 Fraction TPH C10 - C36 Fraction TPH C29 - C36 Fraction TPH C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,2-trichloroethane 1,1,2-trichloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-3-trichloroethane 1,2-3-trichloropropane 1,2,3-trichlorobenzene 1,2,3-trichlorobenzene 1,2,3-trichlorobenzene 1,2,3-trichlorobenzene 1,2-dibromo-3-chloropropane 1,2-dibromo-3-chloropropane 1,2-dibromo-3-chloropropane 1,2-dibromo-3-chloropropane	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH	Pyrene Arochlor 1221 Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C10 - C14 Fraction TPH C15 - C28 Fraction TPH C29 - C36 Fraction TPH C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,2-trichloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-trichloroethane 1,2-trichloroethane 1,2-trichloroethane 1,2-trichloroethane 1,2-dirichloroethane 1,2-3-trichloropropene 1,2,3-trichloropropane 1,2,4-trichlorobenzene 1,2-dibromo-3-chloropropane	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C10 - C14 Fraction TPH C15 - C28 Fraction TPH C29 - C36 Fraction TPH-C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,2-tichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2,3-trichloropropene 1,2,3-trichloropropene 1,2,4-trichlorobenzene 1,2-dibromo-3-chloropropane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C10 - C14 Fraction TPH C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,1-trichloroethane 1,1,2-trichloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-trichloroethane 1,2-trichloroethane 1,2-trichloroethane 1,2-dirbloroethane	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH	Pyrene Arochlor 1221 Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C10 - C14 Fraction TPH C10 - C36 Fraction TPH C10 - C36 Fraction TPH C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,1-trichloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-dirichloroethane 1,2-dirichloroethane 1,2-dirichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,2-dichlorobenzene 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichlorobenzene 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH	Pyrene Arochlor 1221 Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C10 - C14 Fraction TPH C15 - C28 Fraction TPH C29 - C36 Fraction TPH+C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichlorobenzene 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C10 - C14 Fraction TPH C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,1-trichloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,2-dichloropropane 1,2,3-trichlorobenzene 1,2,3-trichlorobenzene 1,2-dibromoethane 1,2-dichlorobenzene 2,-dichlorobenzene 2,-dichlorobenzene 2,-dichlorobenzene 2,-dichlorobenzene 2,-dichlorobenzene 2,-dichlorobenzene 2-chlorotoluene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C10 - C14 Fraction TPH C15 - C28 Fraction TPH C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,1-trichloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-3-trichlorobenzene 1,2,3-trichlorobenzene 1,2,3-trichlorobenzene 1,2-dibromo-3-chloropropane 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 2,2-dichloropropane	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH VCHs	Pyrene Arochlor 1221 Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C10 - C14 Fraction TPH C15 - C28 Fraction TPH C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,1-trichloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-dirichloroethane 1,2-dirichloroethane 1,2-dichlorobenzene 1,2-dichloropropane 1,3-dichlorobenzene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH VCHs	Pyrene Arochlor 1221 Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C10 - C14 Fraction TPH C15 - C28 Fraction TPH C29 - C36 Fraction TPH-C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,3-dichloroethane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,2-dichloroethane 1,2-dichloropropane	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH VCHs	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C10 - C14 Fraction TPH C15 - C28 Fraction TPH C29 - C36 Fraction TPH-C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-dichloropropene 1,2,3-trichloropropene 1,2,3-trichlorobenzene 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 2-chlorotoluene Bromochloromethane Bromomethane Bromomethane	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH VCHs	Pyrene Arochlor 1221 Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C10 - C14 Fraction TPH C15 - C28 Fraction TPH C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,1-trichloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-dichloropropane 1,2,3-trichlorobenzene 1,2,3-trichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichloropropane 1,3-dichlorobenzene 1,2-dichloropropane 1,3-dichloropropane	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH VCHs	Pyrene Arochlor 1221 Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C10 - C14 Fraction TPH C15 - C28 Fraction TPH C29 - C36 Fraction TPH+C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-dirichloroethane 1,2-dirichloroethane 1,2-dichloropropane 1,2-dibromo-3-chloropropane 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichloropropane 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichloropropane 1,3-dichlorobenzene 1,2-dichloropropane 1,3-dichlorobenzene 2,2-dichloropropane 1,3-dichlorobenzene 1,3-dichlorobenzene 2,-dichlorobenzene 3-dichlorobenzene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH VCHs	Pyrene Arochlor 1221 Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C10 - C14 Fraction TPH C10 - C36 Fraction TPH C29 - C36 Fraction TPH-C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,3-dichloroethane 1,2-dichloropropane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,3-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 2,2-dichloropropane 1-dichlorotoluene Bromobenzene Bromochloromethane Bromoform Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chlorodibromomethane	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH VCHs	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C10 - C14 Fraction TPH C15 - C28 Fraction TPH C29 - C36 Fraction TPH-C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-dichloropropane 1,2-dirichloroethane 1,2-dirichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 2-chlorotoluene Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromomethane Carbon tetrachloride Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane Chlorodomethane Chlorodibromomethane Chlorodomethane Chlorodomethane Chlorodomethane Chlorodomethane Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH VCHs	Pyrene Arochlor 1221 Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C10 - C14 Fraction TPH C10 - C36 Fraction TPH C10 - C36 Fraction TPH C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,1-trichloroethane 1,1,2-trichloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-3-trichloroethane 1,2-3-trichlorobenzene 1,2-3-trichlorobenzene 1,2-3-trichlorobenzene 1,2-dichlorobenzene 1,2-dichloropropane 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 2-chlorotoluene Bromochloromethane Bromochloromethane Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chlorotoliuene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH VCHs	Pyrene Arochlor 1221 Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C10 - C14 Fraction TPH C10 - C36 (Sum of total) TPH C10 - C36 (Sum of total) TPH-C10 - C36 (Sum of total) TPH-C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,1-trichloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-dirichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichloropropane 1,3-dichloropropane 1,3-dichlorobenzene 1,3-dichlorobenzene 2,2-dichloropropane 1,3-dichlorobenzene 2,2-dichloropropane 1,4-dichlorobenzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromoform Bromoform Bromoform Bromoferene Chlorodibromomethane Chloroform Chloromethane Chlorobenzene Chlorodibromomethane Dichloromethane Dichloromethane Dichlorodifluoromethane	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH VCHs	Pyrene Arochlor 1221 Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C10 - C14 Fraction TPH C10 - C36 (Sum of total) TPH-C10 - C36 (Sum of total) TPH-C10 - C36 (Sum of total) T,1,1,2-tetrachloroethane 1,1,1-trichloroethane 1,1,2-trichloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,3-dichlorobenzene 1,2-dichloropropane 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 2,2-dichloropropane 1-d-chlorotoluene Bromochloromethane Bromochloromethane Bromochloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroothane	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH VCHs	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C10 - C14 Fraction TPH C15 - C28 Fraction TPH C29 - C36 Fraction TPH-C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2,3-trichloropropene 1,2,3-trichloropropene 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 2-chlorotoluene Bromochloromethane Carbon tetrachloride Chlorodibromomethane Chlorodibromomethane Bromochloromethane Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane Dibromomethane Chlorodibromomethane Dibromomethane Dibromomethane Dibromomethane Dibromomethane Dibromomethane TCE Tetrachloroethene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH VCHs	Pyrene Arochlor 1221 Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C10 - C14 Fraction TPH C15 - C28 Fraction TPH C29 - C36 Fraction TPH-C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,2-tichloroethane 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichlorobenzene 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 2-chlorotoluene Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chlorodibromomethane Carbon tetrachloride Chlorobenzene Chlorodibromomethane Carbon tetrachloropropane Dichlorodifluoromethane Cis-1,2-dichloropropane Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoromethane TCE Tetrachloroethene trans-1,2-dichloroethene trans-1,2-dichloroethene trans-1,2-dichloroethene trans-1,2-dichloroethene trans-1,2-dichloroethene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH VCHs	Pyrene Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C10 - C14 Fraction TPH C15 - C28 Fraction TPH C29 - C36 Fraction TPH-C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 2,2-dichloropropane 1-dichlorobenzene Eromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodene Bromobenzene Chlorobenzene Chlorodibromomethane Bromodichloromethane Chlorobenzene Dibromomethane Dichlorodifluoromethane Bromodichloromethane Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoromethane TCE Tetrachlorobene Trichlorofluoromethane	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Phenols TRH VCHs	Pyrene Arochlor 1221 Arochlor 1221 Aroclor 1016 Aroclor 1232 Aroclor 1248 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 PCBs (Sum of total) Phenolics Total TPH C6 - C9 Fraction TPH C10 - C14 Fraction TPH C15 - C28 Fraction TPH C10 - C36 (Sum of total) 1,1,1,2-tetrachloroethane 1,1,1-trichloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 2,-dichloropropane 2,-dichloropropane 4-chlorotoluene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chlorodibromomethane Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chlorodibromomethane Carbon tetrachloride Chloropenane Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane Dichlorodifluoromethane Dichlorodifluoromethane Hexachlorobethene trans-1,2-dichloropropene trans-1,3-dichloropropene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	65	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	0.17	<0.1		<0.1	0.25	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	

Soil Investigation Levels from:

NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (2nd ed) - Appendix II, Commercial/Industrial Landuse

Bold Calculations exceed adopted NSW DEC (2006) investigation criteria

Table LR2 Laboratory Results- Surface Samples ENVIWARA00401AA

						Inn -			I				Tan	laa
				Field ID	SS-1 6/05/09	SS-3 6/05/09	SS-5 6/05/09	SS-6 6/05/09	SS-7 6/05/09	SS-9 6/05/09	SS-10 6/05/09	SS-11 6/05/09	SS-12 6/05/09	SS-14 6/05/09
Analyte	ie.	Units	PQL	Sample Date NSW	6/05/09	6/05/09	6/05/09	6/05/09	6/05/09	6/05/09	6/05/09	6/05/09	6/05/09	0/05/09
Allalyte	:5	Units	FQL	Commercial F										
BTEX	Benzene	mg/kg	0.5		<0.5	-	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	-	< 0.5	<0.5
	Ethylbenzene	mg/kg	0.5		<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5
	Toluene	mg/kg	0.5		< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	-	< 0.5	<0.5
	Xylene (m & p)	mg/kg	1		<1	-	<1	<1	<1	<1	<1	-	<1	<1
	Xylene (o)	mg/kg	0.5		< 0.5	-	<0.5	< 0.5	< 0.5	<0.5	<0.5	-	< 0.5	<0.5
	Xylene Total	mg/kg	1.5		<1.5	-	<1.5	<1.5	<1.5	<1.5	<1.5	-	<1.5	<1.5
Metals	Arsenic	mg/kg	3	500	6	4	5	5	<3	7	5	4	4	5
	Cadmium	mg/kg	0.3	100	0.5	0.5	0.4	0.5	<0.3	0.5	0.3	<0.3	<0.3	<0.3
	Chromium (III+VI)	mg/kg	0.3		20	21	18	18	7.2	22	19	17	16	14
	Copper	mg/kg	0.5	5000	24	25	18	22	7.4	20	18	16	15	14
	Lead	mg/kg	1	1500	22	7	9	32	21	30	15	7	14	8
	Nickel	mg/kg	0.5	3000	13	24	18	18	3.7	14	19	17	15	14
	Zinc	mg/kg	0.5	35000	370 <0.05	57	140	92	280 <0.05	82	66	40	52 0.05	41 < 0.05
OCP	Mercury 4,4-DDE	mg/kg	0.05 0.1	75	<0.05	<0.05	<0.05	0.09	<0.05	0.09 <0.1	0.05	0.06 <0.1	0.05	<0.05
UCP	a-BHC	mg/kg mg/kg	0.1		<0.1	-	<0.1	-	-	<0.1	-	<0.1	-	<0.1
	Aldrin	mg/kg	0.1		<0.1	-	<0.1	1	-	<0.1		<0.1	-	<0.1
	b-BHC	mg/kg	0.1		<0.1	-	<0.1	-	-	<0.1	-	<0.1	-	<0.1
	cis-Chlordane	mg/kg	0.1		<0.1	1-	<0.1	 	-	<0.1	-	<0.1	-	<0.1
	d-BHC	mg/kg	0.1		<0.1	-	<0.1	-	-	<0.1	-	<0.1	-	<0.1
	DDD	mg/kg	0.1		<0.1	-	<0.1	-	-	<0.1	-	<0.1	-	<0.1
	DDT	mg/kg	0.1		<0.1	-	<0.1	-	-	<0.1	-	<0.1	-	<0.1
	Dieldrin	mg/kg	0.1	1	<0.1	-	<0.1	-	-	<0.1	-	<0.1	-	<0.1
	Endosulfan I	mg/kg	0.1	<u></u>	<0.1	-	<0.1	<u> </u>	-	<0.1	-	<0.1	-	<0.1
	Endosulfan II	mg/kg	0.1		<0.1	-	<0.1	-	-	<0.1	-	<0.1	-	<0.1
	Endosulfan sulphate	mg/kg	0.1		<0.1	-	<0.1	-	-	<0.1	-	<0.1	-	<0.1
	Endrin	mg/kg	0.1		<0.1	-	<0.1	-	-	<0.1	-	<0.1	-	<0.1
	Endrin aldehyde	mg/kg	0.1		<0.1	-	<0.1	-	-	<0.1	-	<0.1	-	<0.1
	Endrin ketone	mg/kg	0.1		<0.1	-	<0.1	-	-	<0.1	-	<0.1	-	<0.1
	g-BHC (Lindane)	mg/kg	0.1		<0.1	-	<0.1	-	-	<0.1	-	<0.1	-	<0.1
	Heptachlor	mg/kg	0.1	50	<0.1	-	<0.1	-	-	<0.1	-	<0.1	-	<0.1
	Heptachlor epoxide	mg/kg	0.1		<0.1	-	<0.1	-	-	<0.1	-	<0.1	-	<0.1
	Hexachlorobenzene Methovichlor	mg/kg	0.1		<0.1	-	<0.1	-	-	<0.1	-	<0.1	-	<0.1
	Methoxychlor o,p'-DDD	mg/kg	0.1 0.1		<0.1	-	<0.1	-	-	<0.1	-	<0.1	-	<0.1
	o,p'-DDE	mg/kg mg/kg	0.1		<0.1	-	<0.1	1	-	<0.1		<0.1	-	<0.1
	o,p'DDT	mg/kg	0.1		<0.1	-	<0.1	ļ <u>.</u>	- -	<0.1	-	<0.1	-	<0.1
	trans-chlordane	mg/kg	0.1		<0.1	-	<0.1	-	-	<0.1	-	<0.1	-	<0.1
	trans-Nonachlor	mg/kg	0.1		<0.1	-	<0.1	-	-	<0.1	-	<0.1	-	<0.1
	Aldrin + Dieldrin	mg/kg		50	<0.2	-	<0.2	-	-	<0.2	-	<0.2	-	<0.2
	DDT+DDE+DDD	mg/kg		1000	< 0.3	-	< 0.3	-	-	< 0.3	-	< 0.3	-	< 0.3
PAHs	1-Methylnaphthalene	mg/kg	0.1		<0.1	-	<0.1	0.25	<0.1	<0.1	<0.1	-	<0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1		<0.1	-	<0.1	0.34	<0.1	<0.1	<0.1	-	<0.1	<0.1
	Acenaphthene	mg/kg	0.1		<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1
	Acenaphthylene	mg/kg	0.1		<0.1	-	<0.1	0.27	<0.1	<0.1	<0.1	-	<0.1	<0.1
	Anthracene	mg/kg	0.1		<0.1	-	<0.1	1.1	<0.1	<0.1	<0.1	-	<0.1	<0.1
	Benz(a)anthracene	mg/kg	0.1		<0.1	-	<0.1	5.4	<0.1	<0.1	<0.1	-	<0.1	<0.1
	Benzo(a) pyrene	mg/kg	0.05	5	<0.05	-	<0.05	4.4	<0.05	<0.05	<0.05	-	<0.05	<0.05
<u> </u>	Benzo(b)&(k)fluoranthene	mg/kg	0.2		<0.2	-	<0.2	11	<0.2	<0.2	<0.2	-	<0.2	<0.2
	Benzo(g,h,i)perylene	mg/kg	0.1		<0.1	-	<0.1	2.6	<0.1	<0.1	<0.1	-	<0.1	<0.1
—	Chrysene Dibenz(a,h)anthracene	mg/kg	0.1 0.1		<0.1	1	<0.1	4.4 0.66	<0.1	<0.1	<0.1	1	<0.1	<0.1
	Fluoranthene	mg/kg mg/kg	0.1	1	<0.1	t-	<0.1	6.3	<0.1	<0.1	<0.1	1-	<0.1	<0.1
	Fluorene	mg/kg	0.1		<0.1	-	<0.1	0.21	<0.1	<0.1	<0.1	-	<0.1	<0.1
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.1		<0.1	-	<0.1	2.9	<0.1	<0.1	<0.1	-	<0.1	<0.1
	Naphthalene	mg/kg	0.1		<0.1	-	<0.1	0.24	<0.1	<0.1	<0.1	-	<0.1	<0.1
	PAHs (Sum of total)	mg/kg	1.75	100	<1.75	-	<1.75	<47.68	<1.75	<1.75	<1.75	-	<1.75	<1.75
	Phenanthrene	mg/kg	0.1		<0.1	-	<0.1	2.2	<0.1	<0.1	<0.1	-	<0.1	<0.1
	Pyrene	mg/kg	0.1		<0.1	-	<0.1	5.2	<0.1	<0.1	<0.1	-	<0.1	<0.1
PCBs	Arochlor 1221	mg/kg	0.1		-	-	<0.1	-		-	-	-		-
	Aroclor 1016	mg/kg	0.1		-	-	<0.1	-	-	-	-	-	-	-
	Aroclor 1232	mg/kg	0.1		-	-	<0.1	-	-	-	-	-	-	-
	Aroclor 1242	mg/kg	0.1		-	-	<0.1	-	-	-	-	-	-	-
	Aroclor 1248	mg/kg	0.1		-	-	<0.1	-	-	-	-	-	-	-
	Aroclor 1254	mg/kg	0.1		-	-	<0.1	-	-	-	-	-	-	-
	Aroclor 1260	mg/kg	0.1		-	-	<0.1	-	-	-	-	-	-	-
	Aroclor 1262	mg/kg	0.1		-	-	<0.1	-	-	-	-	-	-	-
	Aroclor 1268	mg/kg	0.1		-	-	<0.1	-	-	-	-	-	-	-
	PCBs (Sum of total)	mg/kg	0.9 20	50 65	- <20	-	<0.9 <20	-20	-20	-20	-20	-	- <20	-
	TPH C6 - C9 Fraction TPH C10 - C14 Fraction	mg/kg	20	03	<20 150	1	<20	<20 28	<20 <20	<20 <20	<20 <20	1	<20 26	<20
\vdash	TPH C10 - C14 Fraction TPH C15 - C28 Fraction	mg/kg mg/kg	50	 	130	1	<20 <50	180	<20 <50	<20 <50	<20 <50	1	260	<20 <50
\vdash	TPH C15 - C28 Fraction TPH C29 - C36 Fraction	mg/kg mg/kg	50	}	130	1-	<50 <50	120	<50 <50	<50 <50	51	-	84	<50 <50
\vdash	TPH+C10 - C36 (Sum of total)	mg/kg		1000	410	-	<120	328	<120	<120	86	-	370	<120
$oldsymbol{oldsymbol{\sqcup}}$	estigation Levels from:	g g	<u> </u>	1.000		<u> </u>	1.20	J_0					5.0	

Soil Investigation Levels from:

NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (2nd ed) - Appendix II, Commercial/Industrial Landuse

Bold Calculations exceed adopted NSW DEC (2006) investigation criteria

Table LR3 Laboratory Results-Test Pits ENVIWARA00401AA

					ENVIWARA00401AA					
				Field ID	TP1	TP2	TP3	TP4	TP4	TP3
				Sample Depth(m)	0.0-0.1	0.4-0.5	0.0-0.1	0.0-0.1	0.9-1.0	0.4-0.5
				Sample Date	5/05/2009	5/05/2009	5/05/2009	5/05/2009	5/05/2009	5/05/2009
Analytes		Units	PQL	NSW Commercial						
BTEX	Benzene	mg/kg	0.5	F	-	<0.5	<0.5	< 0.5	<0.5	T-
BILX	Ethylbenzene	mg/kg	0.5		-	<0.5	<0.5	<0.5	<0.5	-
	Toluene	mg/kg	0.5		-	<0.5	<0.5	<0.5	<0.5	-
	Xylene (m & p)	mg/kg	1		-	<1	<1	<1	<1	1-
	Xylene (o)	mg/kg	0.5		-	<0.5	<0.5	<0.5	<0.5	1-
	Xylene Total	mg/kg	1.5		-	<1.5	<1.5	<1.5	<1.5	1-
Metals	Arsenic	mg/kg	3	500	13	4	<3	<3	6	-
	Cadmium	mg/kg	0.3	100	0.4	0.4	< 0.3	0.3	0.5	-
	Chromium (III+VI)	mg/kg	0.3		11	11	2.5	15	26	-
	Copper	mg/kg	0.5	5000	31	20	7.9	19	21	-
	Lead	mg/kg	1	1500	18	7	5	7	32	-
	Nickel	mg/kg	0.5	3000	12	7.9	3.3	9.1	18	-
	Zinc	mg/kg	0.5	35000	52	43	19	22	95	-
	Mercury	mg/kg	0.05	75	<0.05	<0.05	< 0.05	< 0.05	0.09	-
OCP	4,4-DDE	mg/kg	0.1		<0.1	<0.1	-	-	-	-
	a-BHC	mg/kg	0.1		<0.1	<0.1	-	-	-	-
	Aldrin	mg/kg	0.1		<0.1	<0.1	-	-	-	<u> -</u>
	b-BHC	mg/kg	0.1		<0.1	<0.1	-	-	-	↓
	cis-Chlordane	mg/kg	0.1	1	<0.1	<0.1	1-	-	1-	+
	d-BHC DDD	mg/kg	0.1	1	<0.1	<0.1	1-	-	-	-
	DDT	mg/kg	0.1 0.1	 	<0.1 <0.1	<0.1	+	1	+	-
	Dieldrin	mg/kg	0.1	+	<0.1	<0.1	+	<u> </u>	+	
	Endosulfan I	mg/kg mg/kg	0.1	 	<0.1	<0.1	+	1	+:	[
	Endosulfan II	mg/kg	0.1	 	<0.1	<0.1	1-	+-	1-	1
	Endosulfan sulphate	mg/kg	0.1		<0.1	<0.1	-	-	-	+
	Endrin	mg/kg	0.1		<0.1	<0.1	_	-	-	1-
	Endrin aldehyde	mg/kg	0.1		<0.1	<0.1	_	-	-	1-
	Endrin ketone	mg/kg	0.1		<0.1	<0.1	-	-	-	1-
	g-BHC (Lindane)	mg/kg	0.1		<0.1	<0.1	-	-	-	1-
	Heptachlor	mg/kg	0.1	50	<0.1	<0.1	-	-	-	1-
	Heptachlor epoxide	mg/kg	0.1		<0.1	<0.1	-	-	-	1-
	Hexachlorobenzene	mg/kg	0.1		<0.1	<0.1	-	-	-	1-
	Methoxychlor	mg/kg	0.1		<0.1	<0.1	-	-	-	-
	o,p'-DDD	mg/kg	0.1		<0.1	<0.1	-	-	-	-
	o,p'-DDE	mg/kg	0.1		<0.1	<0.1	-	-	-	-
	o,p'DDT	mg/kg	0.1		<0.1	<0.1	-	-	-	-
	trans-chlordane	mg/kg	0.1		<0.1	<0.1	-	-	-	-
	trans-Nonachlor	mg/kg	0.1		<0.1	<0.1	-	-	-	-
	Aldrin + Dieldrin	mg/kg		50	<0.2	<0.2	-	-	-	-
	DDT+DDE+DDD	mg/kg		1000	<0.3	<0.3	-	-	-	<u> -</u>
PAHS	1-Methylnaphthalene	mg/kg	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	-
	2-methylnaphthalene	mg/kg	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	 -
	Acenaphthene	mg/kg	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<u> </u>
	Acenaphthylene	mg/kg	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	 -
	Anthracene Repar(a) anthracena	mg/kg	0.1 0.1		<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	ļ-
	Benz(a)anthracene	mg/kg	0.05	5	0.08	0.06	<0.05	<0.05	<0.05	+
	Benzo(a) pyrene Benzo(b)&(k)fluoranthene	mg/kg mg/kg	0.05	5	<0.2	<0.2	<0.05	<0.05	<0.05	1
	Benzo(g,h,i)perylene	mg/kg	0.2	 	0.11	0.14	<0.2	<0.2	<0.2	1
	Chrysene	mg/kg	0.1	†	<0.11	<0.14	<0.1	<0.1	<0.1	 -
	Dibenz(a,h)anthracene	mg/kg	0.1	†	<0.1	<0.1	<0.1	<0.1	<0.1	
	Fluoranthene	mg/kg	0.1	1	<0.1	<0.1	<0.1	<0.1	<0.1	-
	Fluorene	mg/kg	0.1	1	<0.1	<0.1	<0.1	<0.1	<0.1	-
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	†	<0.1	<0.1	<0.1	<0.1	<0.1	-
	Naphthalene	mg/kg	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	1-
	PAHs (Sum of total)	mg/kg	1.75	100	<1.79	<1.8	<1.75	<1.75	<1.75	-
	Phenanthrene	mg/kg	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	-
	Pyrene	mg/kg	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	-
PCBs	Arochlor 1221	mg/kg	0.1		<0.1	-	-	-	-	-
	Aroclor 1016	mg/kg	0.1		<0.1	-	-	-	-	-
	Aroclor 1232	mg/kg	0.1		<0.1	-	-	-	-	-
	Aroclor 1242	mg/kg	0.1		<0.1	-	-	-	-	-
	Aroclor 1248	mg/kg	0.1	ļ	<0.1	-	-	-	-	-
	Aroclor 1254	mg/kg	0.1	ļ	<0.1	-	-	-	-	-
	Aroclor 1260	mg/kg	0.1		<0.1	-	ļ-	-	-	-
	Aroclor 1262	mg/kg	0.1		<0.1	-	1-	-	-	-
	Aroclor 1268	mg/kg	0.1	<u> </u>	<0.1	-	-	-	-	-
TDU	PCBs (Sum of total)	mg/kg	0.9	50	<0.9	-	-	-	-	-
TRH	TPH C6 - C9 Fraction	mg/kg	20	65	1-	<20	<20	<20	<20	 -
	TPH C10 - C14 Fraction	mg/kg	20	1	<u> </u>	<20	<20	<20	<20	<u> </u>
	TPH C15 - C28 Fraction	mg/kg	50	1	ļ-	<50	<50	<50	<50	-
	TPH C29 - C36 (Sum of total)	mg/kg	50	1000	 	<50	<50	<50	<50	1-
	TPH+C10 - C36 (Sum of total)	mg/kg	2.22	1000	ļ-	<120	<120	<120	<120	-
Dioxin	I-TEQ	ng/kg	2.22	10	<u> </u>	Ι-	Ι-	1-	Г	2.3

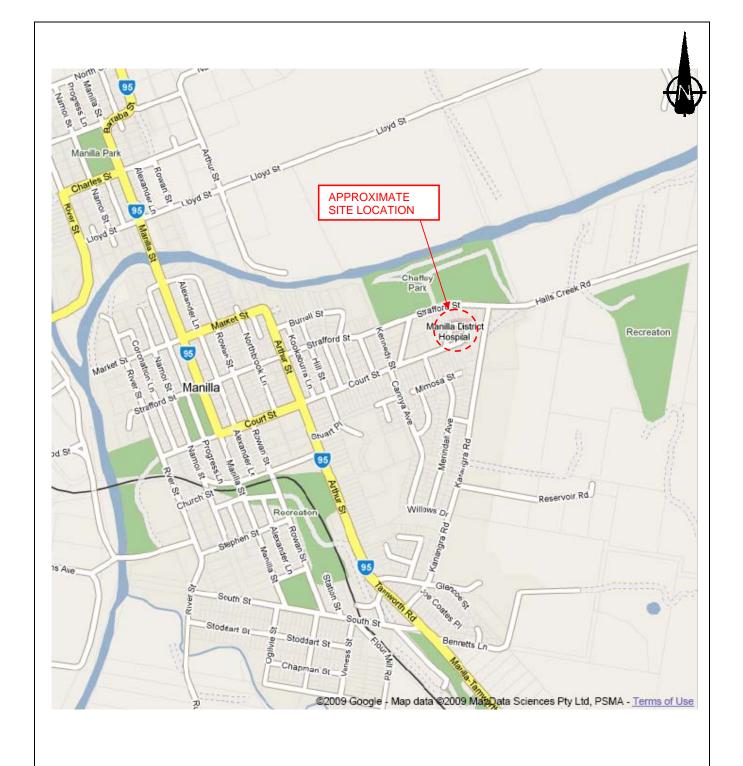
Soil Investigation Levels from:

NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (2nd ed) - Appendix II, Commercial/Industrial Landuse

Bold Calculations exceed adopted NSW DEC (2006) investigation criteria

Table LR4 Laboratory Results- Quality Control ENVIWARA00401AA

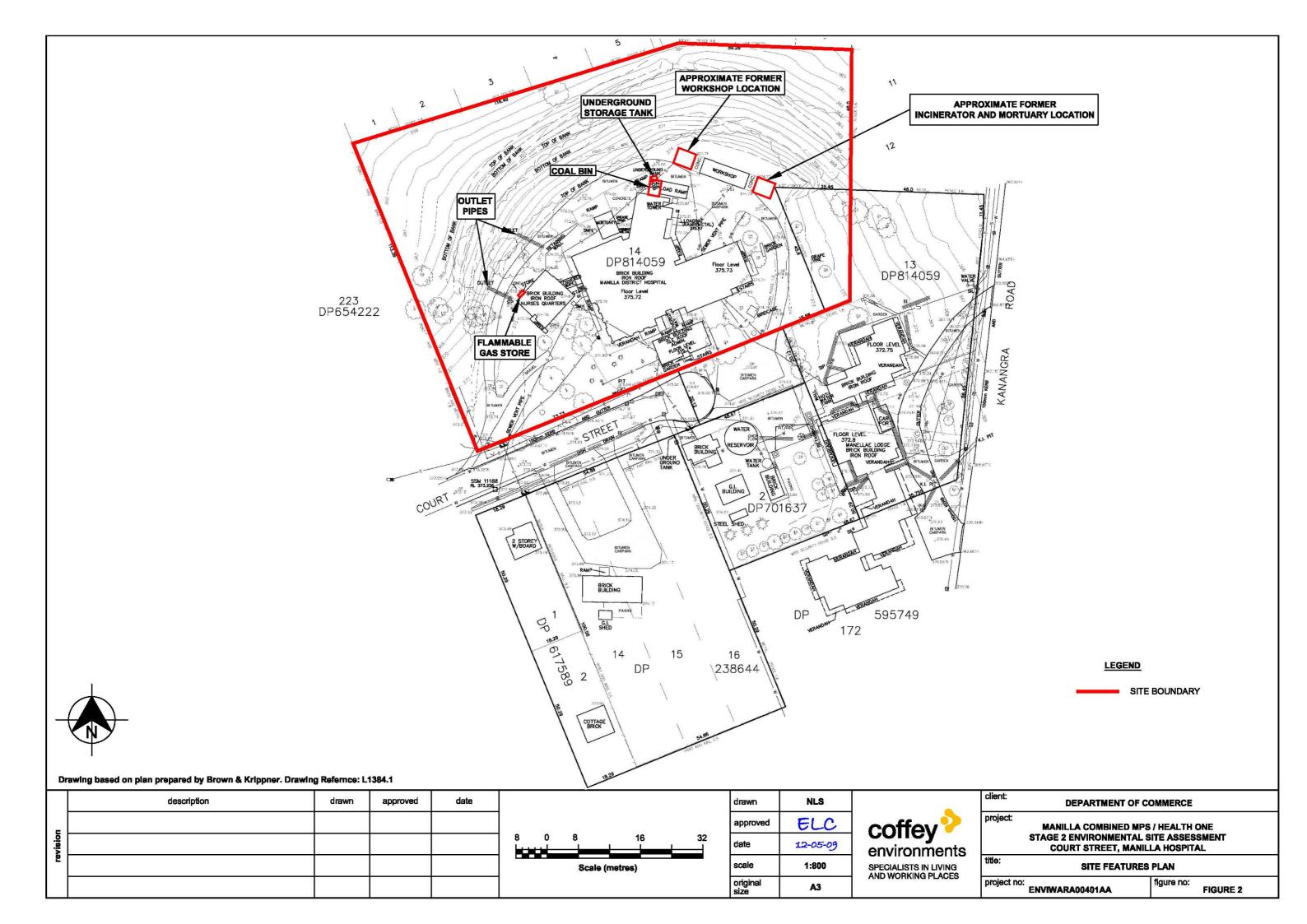
					·									
			SDG Field ID	SE69125	SE69125	BBD	Interlab_D	DDD	SE69125	SE69125	DDD	SE69125	SE69125	BBD
			Field ID	SB1	QC1 Duplicate	RPD	QC1A Triplicate	RPD	SS-1	QC6 Duplicate	RPD	TP1	QC8 Duplicate	RPD
			Sample		Duplicate		Triplicate			Duplicate			Duplicate	
			Date .	05/05/09	05/05/09		05/05/09		06/05/09	06/05/09		06/05/09	06/05/09	
Analyte	s	Units	PQL											
BTEX	Benzene	mg/kg	0.5	<0.5	<0.5	0	<0.05	0	<0.5	<0.5	0	-	-	-
	Ethylbenzene	mg/kg	0.5	<0.5	<0.5	0	<0.05	0	<0.5	<0.5	0	-	-	-
-	Toluene	mg/kg	0.5	<0.5 <1.0	<0.5 <1.0	0	<0.05	0	<0.5 <1.0	<0.5 <1.0	0	-	-	-
	Xylene (m & p) Xylene (o)	mg/kg	0.5	<0.5	<0.5	0	-	-	<0.5	<0.5	0	-	-	-
	Xylene Total	mg/kg mg/kg	1.5 / 0.5	<1.5	<1.5	0	<0.05	0	<1.5	<1.5	0			H
Metals	Arsenic	mg/kg	3/2	6.0	5.0	18	6.9	14	6.0	6.0	0	13.0	11.0	17
Motaro	Cadmium	mg/kg	0.3 / 0.5	0.4	0.3	29	<0.5	0	0.5	0.6	18	0.4	0.4	0
	Chromium (III+VI)	mg/kg	0.3 / 0.5	20.0	18.0	11	24.0	18	20.0	23.0	14	11.0	12.0	9
	Copper	mg/kg	0.5 / 5	20.0	18.0	11	20.0	0	24.0	23.0	4	31.0	25.0	21
	Lead	mg/kg	1/5	20.0	15.0	29	12.0	50	22.0	19.0	15	18.0	20.0	11
	Nickel	mg/kg	0.5 / 5	19.0	17.0	11	21.0	10	13.0	13.0	0	12.0	12.0	0
	Zinc	mg/kg	0.5 / 5	58.0	51.0	13	56.0	4	370.0	220.0	51	52.0	46.0	12
	Mercury	mg/kg	0.05 / 0.1	<0.05	<0.05	0	<0.1	0	<0.05	0.05	0	<0.05	<0.05	0
OCP	4,4-DDE	mg/kg	0.1 / 0.05	<0.1	<0.1	0	<0.05	0	<0.1	<0.1	0	<0.1	<0.1	0
	a-BHC	mg/kg	0.1 / 0.05	<0.1	<0.1	0	<0.05	0	<0.1	<0.1	0	<0.1	<0.1	0
-	Aldrin b-BHC	mg/kg mg/kg	0.1 / 0.05 0.1 / 0.05	<0.1 <0.1	<0.1 <0.1	0	<0.05 <0.05	0	<0.1	<0.1	0	<0.1	<0.1	0
-	cis-Chlordane	mg/kg	0.170.05	<0.1	<0.1	0		-	<0.1	<0.1	0	<0.1	<0.1	0
-	d-BHC	mg/kg	0.1 / 0.05	<0.1	<0.1	0	<0.05	0	<0.1	<0.1	0	<0.1	<0.1	0
	DDD	mg/kg	0.1 / 0.05	<0.1	<0.1	0	<0.05	0	<0.1	<0.1	0	<0.1	<0.1	0
	DDT	mg/kg	0.1 / 0.05	<0.1	<0.1	0	<0.05	0	<0.1	<0.1	0	<0.1	<0.1	0
	Dieldrin	mg/kg	0.1 / 0.05	<0.1	<0.1	0	<0.05	0	<0.1	<0.1	0	<0.1	<0.1	0
	Endosulfan I	mg/kg	0.1 / 0.05	<0.1	<0.1	0	<0.05	0	<0.1	<0.1	0	<0.1	<0.1	0
	Endosulfan II	mg/kg	0.1 / 0.05	<0.1	<0.1	0	<0.05	0	<0.1	<0.1	0	<0.1	<0.1	0
	Endosulfan sulphate	mg/kg	0.1 / 0.05	<0.1	<0.1	0	<0.05	0	<0.1	<0.1	0	<0.1	<0.1	0
	Endrin	mg/kg	0.1 / 0.05	<0.1	<0.1	0	<0.05	0	<0.1	<0.1	0	<0.1	<0.1	0
	Endrin aldehyde	mg/kg	0.1 / 0.05	<0.1	<0.1	0	<0.05	0	<0.1	<0.1	0	<0.1	<0.1	0
	Endrin ketone	mg/kg	0.1 / 0.05	<0.1	<0.1	0	<0.05	0	<0.1	<0.1	0	<0.1	<0.1	0
	g-BHC (Lindane)	mg/kg	0.1 / 0.05	<0.1 <0.1	<0.1 <0.1	0	<0.05 <0.05	0	<0.1 <0.1	<0.1 <0.1	0	<0.1 <0.1	<0.1 <0.1	0
	Heptachlor Heptachlor epoxide	mg/kg mg/kg	0.1 / 0.05 0.1 / 0.05	<0.1	<0.1	0	<0.05	0	<0.1	<0.1	0	<0.1	<0.1	0
	Hexachlorobenzene	mg/kg	0.1 / 0.05	<0.1	<0.1	0	<0.05	0	<0.1	<0.1	0	<0.1	<0.1	0
	Methoxychlor	mg/kg	0.1 / 0.05	<0.1	<0.1	0	<0.05	0	<0.1	<0.1	0	<0.1	<0.1	0
	o,p'-DDD	mg/kg	0.1	<0.1	<0.1	0	-	-	<0.1	<0.1	0	<0.1	<0.1	0
	o,p'-DDE	mg/kg	0.1	<0.1	<0.1	0	-	-	<0.1	<0.1	0	<0.1	<0.1	0
	o,p'DDT	mg/kg	0.1	<0.1	<0.1	0	-	-	<0.1	<0.1	0	<0.1	<0.1	0
	trans-chlordane	mg/kg	0.1	<0.1	<0.1	0	-	-	<0.1	<0.1	0	<0.1	<0.1	0
	trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	0	-	-	<0.1	<0.1	0	<0.1	<0.1	0
PAHs	1-Methylnaphthalene	mg/kg	0.1	<0.1	<0.1	0	-	-	<0.1	<0.1	0	<0.1	<0.1	0
	2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	0	-	-	<0.1	<0.1	0	<0.1	<0.1	0
	Acenaphthene	mg/kg	0.1	<0.1	<0.1	0	<0.1	0	<0.1	<0.1	0	<0.1	<0.1	0
	Acenaphthylene	mg/kg	0.1	<0.1	<0.1	0	<0.1	0	<0.1	<0.1	0	<0.1	<0.1	0
-	Anthracene	mg/kg	0.1	<0.1 <0.1	<0.1 <0.1	0	<0.1	0	<0.1	<0.1	0	<0.1	<0.1 0.15	0 40
1	Benz(a)anthracene Benzo(a) pyrene	mg/kg mg/kg	0.1	<0.1	<0.1	0	<0.1	0	<0.1	<0.1	0	<0.1 0.08	0.15	32
-	Benzo(b)&(k)fluoranthene	mg/kg	0.05 / 0.1	<0.03	<0.03	0		-	<0.03	<0.03	0	<0.2	0.33	49
	Benzo(g,h,i)perylene	mg/kg	0.1	<0.1	<0.1	0	<0.1	0	<0.1	<0.1	0	0.11	0.22	67
	Chrysene	mg/kg	0.1	<0.1	<0.1	0	<0.1	0	<0.1	<0.1	0	<0.1	0.13	26
	Dibenz(a,h)anthracene	mg/kg	0.1	<0.1	<0.1	0	<0.1	0	<0.1	<0.1	0	<0.1	<0.1	0
	Fluoranthene	mg/kg	0.1	<0.1	<0.1	0	<0.1	0	<0.1	<0.1	0	<0.1	0.14	33
	Fluorene	mg/kg	0.1	<0.1	<0.1	0	<0.1	0	<0.1	<0.1	0	<0.1	<0.1	0
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	<0.1	<0.1	0	<0.1	0	<0.1	<0.1	0	<0.1	0.16	46
	Naphthalene	mg/kg	0.1	<0.1	<0.1	0	<0.1	0	<0.1	<0.1	0	<0.1	<0.1	0
	PAHs (Sum of total)	mg/kg	1.75 / 0.1	<1.75	<1.75	0	<0.1	0	<1.75	<1.75	0	<1.79	<2.29	0
-	Phenanthrene	mg/kg	0.1	<0.1	<0.1	0	<0.1	0	<0.1	<0.1	0	<0.1	<0.1	0
PCBs	Pyrene Arochlor 1221	mg/kg	0.1	<0.1 <0.1	<0.1 <0.1	0	<0.1	0	<0.1	<0.1	0	<0.1 <0.1	0.15 <0.1	40 0
FUDS	Arochior 1221 Aroclor 1016	mg/kg mg/kg	0.1	<0.1	<0.1	0	<0.1	0	-	-	-	<0.1	<0.1	0
\vdash	Aroclor 1232	mg/kg	0.1	<0.1	<0.1	0	<0.1	0	-	-	-	<0.1	<0.1	0
	Aroclor 1242	mg/kg	0.1	<0.1	<0.1	0	<0.1	0	-	-	-	<0.1	<0.1	0
	Aroclor 1248	mg/kg	0.1	<0.1	<0.1	0	<0.1	0	-	-	-	<0.1	<0.1	0
	Aroclor 1254	mg/kg	0.1	<0.1	<0.1	0	<0.1	0	-	-	-	<0.1	<0.1	0
	Aroclor 1260	mg/kg	0.1	<0.1	<0.1	0	<0.1	0	-	-	-	<0.1	<0.1	0
	Aroclor 1262	mg/kg	0.1	<0.1	<0.1	0	-	-	-	-	-	<0.1	<0.1	0
	Aroclor 1268	mg/kg	0.1	<0.1	<0.1	0	-	-	-	-	-	<0.1	<0.1	0
	PCBs (Sum of total)	mg/kg	0.9 / 1	<0.9	<0.9	0	<1.0	0	-	-	-	<0.9	<0.9	0
TRH	TPH C6 - C9 Fraction	mg/kg	20	<20.0	<20.0	0	<20.0	0	<20.0	<20.0	0	-	-	-
	TPH C10 - C14 Fraction	mg/kg	20 / 50	<20.0	<20.0	0	<50.0	0	150.0	180.0	18	-	-	-
	TPH C15 - C28 Fraction	mg/kg	50 / 100	<50.0	<50.0	0	<100.0	0	130.0	300.0	79	-	-	-
	TPH C29 - C36 Fraction	mg/kg	50 / 100	<50.0	<50.0	0	<100.0	0	130.0	200.0	42	-	-	

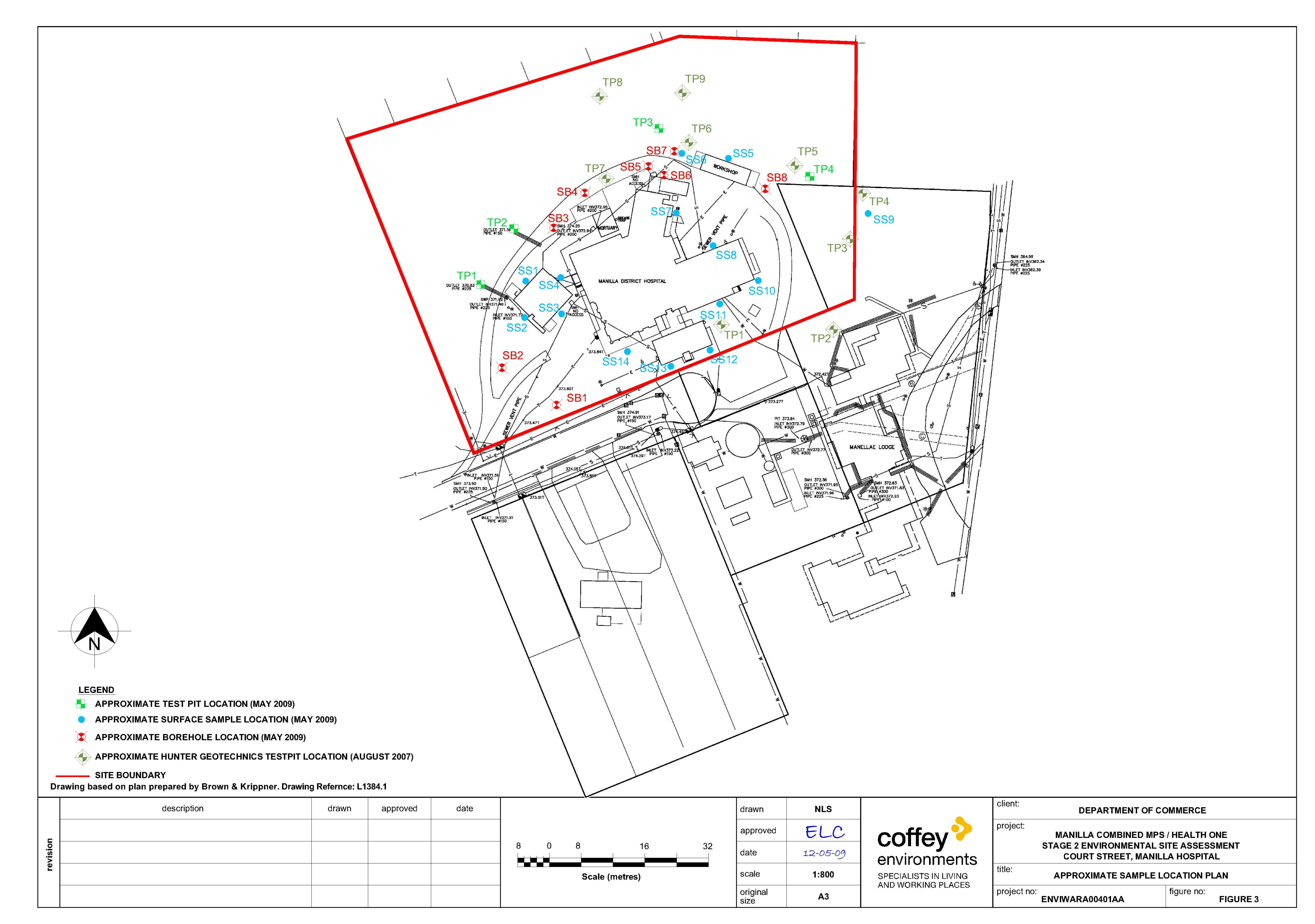

^{*}RPDs have only been considered where a concentration is greater than 5 times the EQL.

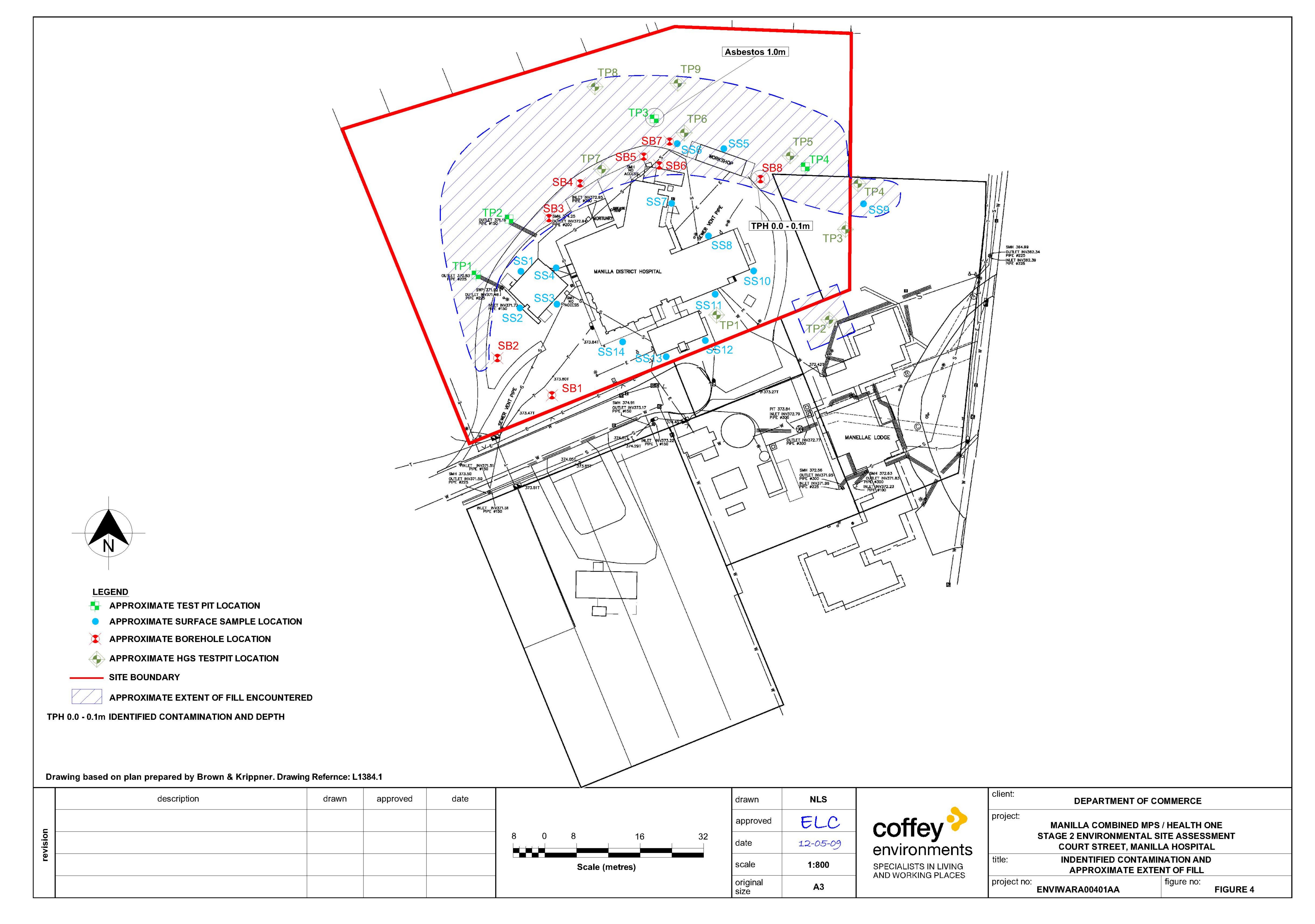
^{**}High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 30 (5-10 x EQL); 50 (10-30 x EQL); 50 (> 30 x EQL))
***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

				L			· 1
			SDG Field ID	TB #1	WTS #1	SE69125 QCA	SE69125 QCB
			rieid iD	Trip Blank	Trip Blank	rinsate	rinsate
			Sample		·		
			Date			05/05/09	05/05/09
Analytes BTEX	In	Units	PQL 0.5	40 F	<0.5	<0.5	40 F
BIEX	Benzene Ethylbenze	mg/kg mg/kg	0.5	<0.5 <0.5	<0.5	<0.5	<0.5 <0.5
	Toluene	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
	Xylene (m 8	mg/kg	1	<1	<1	<1	<1
	Xylene (o)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
	Xylene Tota		1.5 / 0.5	<1.5	<1.5	<1.5	<1.5
Metals	Arsenic	mg/kg	3/2	-	-	<0.001	<0.001
	Cadmium Chromium	mg/kg mg/kg	0.3 / 0.5	-	-	<0.001	<0.0001 <0.001
	Copper	mg/kg	0.5 / 5	-	-	<0.001	<0.001
	Lead	mg/kg	1/5	-	-	<0.001	<0.001
	Nickel	mg/kg	0.5 / 5	-	-	<0.001	<0.001
	Zinc	mg/kg	0.5 / 5	-	-	0.073	0.12
OCP	Mercury 4,4-DDE	mg/kg mg/kg	0.05 / 0.1 0.1 / 0.05		-	<0.0005	<0.0005 <0.2
OCF	a-BHC	mg/kg	0.1 / 0.05	-		<0.2	<0.2
	Aldrin	mg/kg	0.1 / 0.05	-	-	<0.2	<0.2
	b-BHC	mg/kg	0.1 / 0.05	-	-	<0.2	<0.2
	cis-Chlorda		0.1	-	-	<0.2	<0.2
	d-BHC	mg/kg	0.1 / 0.05	-	-	<0.2	<0.2
	DDD	mg/kg mg/kg	0.1 / 0.05 0.1 / 0.05	-	-	<0.2 <0.2	<0.2 <0.2
	Dieldrin	mg/kg	0.1 / 0.05	-	-	<0.2	<0.2
	Endosulfan		0.1 / 0.05	-	-	<0.2	<0.2
	Endosulfan	mg/kg	0.1 / 0.05	-	-	<0.2	<0.2
	Endosulfan		0.1 / 0.05	-	-	<0.2	<0.2
	Endrin	mg/kg	0.1 / 0.05	-	-	<0.2	<0.2
	Endrin alde Endrin keto		0.1 / 0.05 0.1 / 0.05	-	-	<0.2 <0.2	<0.2 <0.2
	g-BHC (Line		0.1 / 0.05	_	_	<0.2	<0.2
	Heptachlor		0.1 / 0.05	-	-	<0.2	<0.2
	Heptachlor	mg/kg	0.1 / 0.05	-	-	<0.2	<0.2
	Hexachloro		0.1 / 0.05	-	-	<0.2	<0.2
	Methoxych		0.1 / 0.05	-	-	<0.2	<0.2
	o,p'-DDD o,p'-DDE	mg/kg mg/kg	0.1	-	-	<0.0002	<0.0002 <0.0002
	o,p'DDT	mg/kg	0.1	-	-	<0.0002	<0.0002
	trans-chlor		0.1	-	-	<0.2	<0.2
	trans-Nona	mg/kg	0.1	-	-	<0.0002	<0.0002
PAHs	1-Methylna	Ď,	0.1	-	-	<0.5	<0.5
	2-methylna		0.1	-	-	<0.5	<0.5
	Acenaphth Acenaphth		0.1	-	-	<0.5 <0.5	<0.5 <0.5
	Anthracene		0.1	-	-	<0.5	<0.5
	Benz(a)antl		0.1	-	-	<0.5	<0.5
	Benzo(a) py	mg/kg	0.05 / 0.1	-	-	<0.5	<0.5
	Benzo(b)&(0.2	-	-	<1	<1
	Benzo(g,h,i Chrysene		0.1	-	-	<0.5 <0.5	<0.5 <0.5
	Dibenz(a,h)	mg/kg mg/kg	0.1	-	-	<0.5	<0.5
	Fluoranthe		0.1	-	-	<0.5	<0.5
	Fluorene		0.1	-	-	<0.5	<0.5
	Indeno(1,2		0.1	-	-	<0.5	<0.5
	Naphthaler		0.1	-	-	<0.5	<0.5
	PAHs (Sum		1.75 / 0.1 0.1	-	-	<9	<9 <0.5
	Phenanthre Pyrene	mg/kg mg/kg	0.1	-	-	<0.5 <0.5	<0.5
PCBs	Arochlor 12		0.1	-	-	<10	<10
	Aroclor 101		0.1	-	-	<10	<10
	Aroclor 123		0.1	-	-	<10	<10
	Aroclor 124		0.1	-	-	<10	<10
	Aroclor 124		0.1	-	-	<10	<10
	Aroclor 126 Aroclor 126		0.1	-	-	<10 <10	<10 <10
	Aroclor 126		0.1	-	-	<10	<10
	Aroclor 126		0.1	-	-	<0.01	<0.01
	PCBs (Sum	mg/kg	0.9 / 1	-	-	<90	<90
TRH	TPH C6 - C9		20	<40	-	<40	<40
	TPH C10 - C		20 / 50	-	-	<100	<100
	TPH C15 - C		50 / 100 50 / 100	-	-	<200 <200	<200 <200
	1111 023 - (···b/ \b	50 / 100			~200	~200

^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory


Figures




drawn	ELC
approved	
date	16-6-2009
scale	NTS
original size	A4

client:	DEPARTMEN	T OF COMMERCE		
project:	STAGE 2 ENVIRONME	ED MPS / HEALTH ONE ENTAL SITE ASSESSMENT MANILLA HOSPITAL		
title: SITE LOCALITY PLAN				
project no	ENVIWARA00401AA	figure no: FIGURE 1		

Appendix A Logs

Soil Description Explanation Sheet (1 of 2)

DEFINITION:

In engineering terms soil includes every type of uncemented or partially cemented inorganic or organic material found in the ground. In practice, if the material can be remoulded or disintegrated by hand in its field condition or in water it is described as a soil. Other materials are described using rock description terms.

CLASSIFICATION SYMBOL & SOIL NAME

Soils are described in accordance with the Unified Soil Classification (UCS) as shown in the table on Sheet 2.

PARTICLE SIZE DESCRIPTIVE TERMS

NAME	SUBDIVISION	SIZE	
Boulders		>200 mm	
Cobbles		63 mm to 200 mm	
Gravel	coarse	20 mm to 63 mm	
	medium	6 mm to 20 mm	
	fine	2.36 mm to 6 mm	
Sand	coarse	600 μm to 2.36 mm	
	medium	200 μm to 600 μm	
	fine	75 μm to 200 μm	

MOISTURE CONDITION

Dry Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented granular soils run freely through hands.

Moist Soil feels cool and darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.

Wet As for moist but with free water forming on hands when handled.

CONSISTENCY OF COHESIVE SOILS

TERM	UNDRAINED STRENGTH S _U (kPa)	FIELD GUIDE
Very Soft	<12	A finger can be pushed well into the soil with little effort.
Soft	12 - 25	A finger can be pushed into the soil to about 25mm depth.
Firm	25 - 50	The soil can be indented about 5mm with the thumb, but not penetrated.
Stiff	50 - 100	The surface of the soil can be indented with the thumb, but not penetrated.
Very Stiff	100 - 200	The surface of the soil can be marked, but not indented with thumb pressure.
Hard	>200	The surface of the soil can be marked only with the thumbnail.
Friable	_	Crumbles or powders when scraped by thumbnail.

DENSITY OF GRANULAR SOILS

TERM	DENSITY INDEX (%)
Very loose	Less than 15
Loose	15 - 35
Medium Dense	35 - 65
Dense	65 - 85
Very Dense	Greater than 85

MINOR COMPONENTS

TERM	ASSESSMENT GUIDE	PROPORTION OF MINOR COMPONENT IN:
Trace of	Presence just detectable by feel or eye, but soil properties little or no different to general properties of primary component.	Coarse grained soils: <5% Fine grained soils: <15%
With some	Presence easily detected by feel or eye, soil properties little different to general properties of primary component.	Coarse grained soils: 5 - 12% Fine grained soils: 15 - 30%

SOIL STRUCTURE

	ZONING	CEMENTING			
Layers	Continuous across exposure or sample.	Weakly cemented	Easily broken up by hand in air or water.		
Lenses	Discontinuous layers of lenticular shape.	Moderately cemented	Effort is required to break up the soil by hand in air or water.		
Pockets	Irregular inclusions of different material.				

GEOLOGICAL ORIGIN WEATHERED IN PLACE SOILS

Extremely weathered material Structure and fabric of parent rock visible.

Residual soil Structure and fabric of parent rock not visible.

TRANSPORTED SOILS

Aeolian soil Deposited by wind.

Alluvial soil Deposited by streams and rivers.

Colluvial soil Deposited on slopes (transported downslope

by gravity).

Fill Man made deposit. Fill may be significantly

more variable between tested locations than naturally occurring soils.

Lacustrine soil Deposited by lakes.

Marine soil Deposited in ocean basins, bays, beaches

and estuaries.

Soil Description Explanation Sheet (2 of 2)

SOIL CLASSIFICATION INCLUDING IDENTIFICATION AND DESCRIPTION

FIELD IDENTIFICATION PROCEDURES (Excluding particles larger than 60 mm and basing fractions on estimated mass)						usc	PRIMARY NAME															
ø		arse 2.0 mm	CLEAN GRAVELS (Little or no fines)		range in grain size ar		GW	GRAVEL														
3 mm is		ELS Ilf of co r than 2	GRAN (Lif	Predominantly one size or a range of sizes with more intermediate sizes missing.			GP	GRAVEL														
SOILS s than 60	i eye)	GRAVELS More than half of coarse fraction is larger than 2.0 mm	GRAVELS WITH FINES (Appreciable amount of fines)	Non-plastic fines (for identification procedures see ML below)			GM	SILTY GRAVEL														
AAIINED rials less 0.075 m	ne nakec	More fraction	GRA/ WITH (Appre ame of fi		c fines (for identificat L below)	ion procedures	GC	CLAYEY GRAVEL														
COARSE GRAIINED SOILS More than 50% of materials less than 63 mm is larger than 0.075 mm	ible to th	arse 2.0 mm	CLEAN SANDS (Little or no fines)		range in grain sizes a		SW	SAND														
CO/ an 50%	ticle visi	IDS If of coa	SAN (Lit	Predominantly one size or a range of sizes with some intermediate sizes missing.			SP	SAND														
More tha	0.075 mm particle is about the smallest particle visible to the naked eye)	SANDS More than half of coarse fraction is smaller than 2.0 mm	SANDS WITH FINES (Appreciable amount of fines)	Non-plastic fines (for identification procedures see ML below).			SM	SILTY SAND														
	the smal		SA WITH (Appr am of fi	Plastic fines (for identification procedures see CL below).			SC	CLAYEY SAND														
	out		IDENTIFICAT	ION PF	ROCEDURES ON FRA	ACTIONS <0.2 mm.																
שר ת	s ak	(0	DRY STREN	GTH	DILATANCY	TOUGHNESS																
ILS less th	rticle i	CLAYS limit an 50	None to Low	,	Quick to slow	None	ML	SILT														
FINE GRAINED SOILS in 50% of material less is smaller than 0.075 r	nm pa	TS & (liquid lss tha	TS & (liquid ss tha	TS & (liquid ss tha	TS & (liquid lss tha	TS & (Liquid	SILTS & CLAYS Liquid limit less than 50	TS & (liquid lss tha	TS & (liquid ss tha	TS & (liquid sss tha	TS & (iquid sss tha	TS & (liquid sss tha	LTS & Liquid	LTS & Liquid ess tha	LTS & Liquid ess tha	SILTS & CLAY: Liquid limit less than 50	Medium to H	ligh	None	Medium	CL	CLAY
SRAIN of m	.075 r	SIIS 1	Low to medi	um	Slow to very slow	Low	OL	ORGANIC SILT														
n 50% is sm	(A 0	LAYS mit an 50	Low to medi	um	Slow to very slow	Low to medium	MH	SILT														
FINE GRAINED SOILS More than 50% of material less than 63 mm is smaller than 0.075 mm		SILTS & CLAYS Liquid limit greater than 50	High	None		High	CH	CLAY														
Mo	Medium to Hić		ligh	None Low to medium		ОН	ORGANIC CLAY															
HIGHLY SOILS	HIGHLY ORGANIC Readily identified by colour, odour, spongy feel and SOILS Pt PEAT PEAT							PEAT														
• Low p	lastic	city – Liqu	id Limit W _L les	s than	35%. • Medium plasti	city – W _L between 35%	% and 50%.	•														

COMMON DEFECTS IN SOIL

TERM	DEFINITION	DIAGRAM	TERM					
PARTING	A surface or crack across which the soil has little or no tensile strength. Parallel or sub parallel to layering (eg bedding). May be open or closed.		SOFTEN ZONE					
JOINT	A surface or crack across which the soil has little or no tensile strength but which is not parallel or sub parallel to layering. May be open or closed. The term 'fissure' may be used for irregular joints <0.2 m in length.		TUBE					
SHEARED ZONE	Zone in clayey soil with roughly parallel near planar, curved or undulating boundaries containing closely spaced, smooth or slickensided, curved intersecting joints which divide the mass into lenticular or wedge shaped blocks.		TUBE CAST					
SHEARED SURFACE	A near planar curved or undulating, smooth, polished or slickensided surface in clayey soil. The polished or slickensided surface indicates that movement (in many cases very little) has occurred along the defect.		INFILLEI SEAM					

TERM	DEFINITION	DIAGRAM
SOFTENED ZONE	A zone in clayey soil, usually adjacent to a defect in which the soil has a higher moisture content than elsewhere.	
TUBE	Tubular cavity. May occur singly or as one of a large number of separate or inter-connected tubes. Walls often coated with clay or strengthened by denser packing of grains. May contain organic matter	
TUBE CAST	Roughly cylindrical elongated body of soil different from the soil mass in which it occurs. In some cases the soil which makes up the tube cast is cemented.	
INFILLED SEAM	Sheet or wall like body of soil substance or mass with roughly planar to irregular near parallel boundaries which cuts through a soil mass. Formed by infilling of open joints.	

Rock Description Explanation Sheet (1 of 2)

The descriptive terms used by Coffey are given below. They are broadly consistent with Australian Standard AS1726-1993.

DEFINITIONS: Rock substance, defect and mass are defined as follows:

Rock Substance In engineering terms roch substance is any naturally occurring aggregate of minerals and organic material which cannot be

disintegrated or remoulded by hand in air or water. Other material is described using soil descriptive terms. Effectively

homogenous material, may be isotropic or anisotropic.

Defect Discontinuity or break in the continuity of a substance or substances.

Any body of material which is not effectively homogeneous. It can consist of two or more substances without defects, or one or Mass

more substances with one or more defects.

SUBSTANCE DESCRIPTIVE TERMS:

ROCK NAME Simple rock names are used rather than precise

geological classification.

PARTICLE SIZE Grain size terms for sandstone are:

Coarse grained Mainly 0.6mm to 2mm Mainly 0.2mm to 0.6mm Medium grained

Mainly 0.06mm (just visible) to 0.2mm Fine grained

FABRIC Terms for layering of penetrative fabric (eg. bedding,

cleavage etc.) are:

Massive No layering or penetrative fabric.

Indistinct Lavering or fabric just visible. Little effect on properties.

Layering or fabric is easily visible. Rock breaks more Distinct

easily parallel to layering of fabric.

CLASSIFICATION OF WEATHERING PRODUCTS

Term Abbreviation Definition

xw

HW

Soil derived from the weathering of rock; the Residual Soil mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly

transported.

Extremely Weathered Material

Material is weathered to such an extent that it has soil properties, ie, it either disintegrates or can be remoulded in water. Original rock fabric

still visible.

Highly Weathered Rock

Rock strength is changed by weathering. The whole of the rock substance is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Some minerals are decomposed

to clay minerals. Porosity may be increased by

leaching or may be decreased due to the deposition of minerals in pores

Moderately MW Weathered Rock

The whole of the rock substance is discoloured, usually by iron staining or bleaching, to the extent that the colour of the fresh rock is no

longer recognisable.

Slightly SW Weathered Rock

Rock substance affected by weathering to the extent that partial staining or partial discolouration of the rock substance (usually by limonite) has taken place. The colour and texture of the fresh rock is recognisable:

strength properties are essentially those of the fresh rock substance.

Fresh Rock FR Rock substance unaffected by weathering.

Notes on Weathering:

- 1. AS1726 suggests the term "Distinctly Weathered" (DW) to cover the range of substance weathering conditions between XW and SW. For projects where it is not practical to delineate between HW and MW or it is judged that there is no advantage in making such a distinction. DW may be used with the definition given in AS1726.
- 2. Where physical and chemical changes were caused by hot gasses and liquids associated with igneous rocks, the term "altered" may be substituted for "weathering" to give the abbreviations XA, HA, MA, SA and DA.

ROCK SUBSTANCE STRENGTH TERMS

Abbrev- Point Load Term iation

Index, I_S50 (MPa)

Field Guide

Very Low VL Less than 0.1 Material crumbles under firm

blows with sharp end of pick; can be peeled with a knife: pieces up to 30mm thick can be broken by finger pressure.

0.1 to 0.3 Low

> indentations 1mm to 3mm show with firm bows of a pick point; has a dull sound under hammer. Pieces of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.

Easily scored with a knife:

0.3 to 1.0 Medium

Readily scored with a knife; a piece of core 150mm long by . 50mm diameter can be broken by hand with difficulty.

Hiah 1 to 3 A piece of core 150mm long by 50mm can not be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.

Very High VH 3 to 10

Hand specimen breaks after more than one blow of a pick: rock rings under

hammer.

Extremely EH High

More than 10 Specimen requires many blows with geological pick to break; rock rings under hammer

Notes on Rock Substance Strength:

- 1. In anisotropic rocks the field guide to strength applies to the strength perpendicular to the anisotropy. High strength anisotropic rocks may break readily parallel to the planar anisotropy.
- The term "extremely low" is not used as a rock substance strength term. While the term is used in AS1726-1993, the field guide therein makes it clear that materials in that strength range are soils in engineering terms.
- 3. The unconfined compressive strength for isotropic rocks (and anisotropic rocks which fall across the planar anisotropy) is typically 10 to 25 times the point load index (Is50). The ratio may vary for different rock types. Lower strength rocks often have lower ratios than higher strength rocks.

Rock Description Explanation Sheet (2 of 2)

COMMON ROCK MA Term	DEFECTS IN SSES Definition	Diagram	Map Symbol	Graphic Log (Note 1)	DEFECT SHAPE Planar	TERMS The defect does not vary in orientation
Parting	A surface or crack across which the rock has little or no tensile strength.		20	rest.	Curved	The defect has a gradual change in orientation
	Parallel or sub parallel to layering (eg bedding) or a planar anisotropy		Bedo		Undulating	The defect has a wavy surface
	in the rock substance (eg, cleavage). May be open or closed.		Cleav	age (Note 2)	Stepped	The defect has one or more well defined steps
Joint	A surface or crack across which the rock has little or no tensile strength.	\	00		Irregular	The defect has many sharp changes of orientation
	but which is not parallel or sub parallel to layering or planar anisotropy in the rock substance. May be open or closed.		60	(Note 2)		sment of defect shape is partly by the scale of the observation.
				(ROUGHNESS Slickensided	TERMS Grooved or striated surface, usually polished
Sheared Zone (Note 3)	Zone of rock substance with roughly parallel near planar, curved or				Polished	Shiny smooth surface
(1111111)	undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of the defects are usually curved and		35	11	Smooth	Smooth to touch. Few or no surface irregularities
	intersect to divide the mass into lenticular or wedge shaped blocks.	7177		[2]	Rough	Many small surface irregularities (amplitude generally less than 1mm). Feels like fine to coarse sand paper.
Sheared Surface (Note 3)	A near planar, curved or undulating surface which is usually smooth, polished or slickensided.		40	3	Very Rough	Many large surface irregularities (amplitude generally more than 1mm). Feels like, or coarser than very coarse sand paper.
Crushed Seam	Seam with roughly parallel almost planar boundaries, composed of				COATING TER	MS No visible coating
(Note 3)	disoriented, usually angular fragments of the host rock substance which may be more		50	, john die stern	Stained	No visible coating but surfaces are discoloured
	weathered than the host rock. The seam has soil properties.			121	Veneer	A visible coating of soil or mineral, too thin to measure; may be patchy
Infilled Seam	Seam of soil substance usually with distinct roughly parallel boundaries formed by the migration of soil into an open cavity or joint, infilled seams less than 1mm thick may be described as veneer or coating on joint surface.			65	Coating	A visible coating up to 1mm thick. Thicker soil material is usually described using appropriate defect terms (eg, infilled seam). Thicker rock strength material is usually described as a vein.
Extremely	Seam of soil substance, often with		32		BLOCK SHAPE Blocky	E TERMS Approximately equidimensional
Weathered Seam	gradational boundaries. Formad by weathering of the rock substance in place.		TIME	IL KIN	Tabular	Thickness much less than length or width
		Seam		[2]	Columnar	Height much greate than cross section
Notes on D	ofecte:					

Notes on Defects:

- 1. Usually borehole logs show the true dip of defects and face sketches and sections the apparent dip.
- 2. Partings and joints are not usually shown on the graphic log unless considered significant.
- $3. \ \,$ Sheared zones, sheared surfaces and crushed seams are faults in geological terms.

Borehole No.

SB 1

Sheet

1 of 1 ENVIWARA00401AA

DEPARTMENT OF COMMERCE

Office Job No.: Date started: Date completed:

5.5.2009

Principal: Project:

PHASE 2 ENVIRONMENTAL SITE ASSESSMENT

Logged by:

DCH

5.5.2009

Proje									INTAL SITE ASSESSMENT		Logge) i
				on: MAN	IILL	A HO)SPI	TAL			Checke		AU
drill me	ode	el an	l mou	nting: 4	4WD (Orill Rig			Easting: slope:	-90°		R.L	Surface: Not Measured
hole d					125 m	m			Northing bearing):		dat	um:
drilli		Int	orma	tion			mate		ıbstance			ç	
method	N penetration	3	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle characteri colour, secondary and minor compone	ents. E		100 pocket 200 penetro- 300 meter	structure and additional observations
ADV				ε			<u> </u>		TOPSOIL: Gravelly SAND, fine to medium g brown, gravel fine grained.	rained, C)		TOPSOIL, some rootlets.
A			served	E		0. <u>5</u>		СН	Gravelly CLAY: medium to high plasticity, brorange, gravel fine to medium grained.	own / M<\	Νp		RESIDUAL No odours observed.
			None Observed	E		1.0		СН	Gravelly CLAY: high plasticity, pale grey, grate to medium grianed.	avel fine			EXTREMELY WEATHERED CLAYSTONE Drilling very hard 1.2m.
				E	-	1.5			Terminated at refusal on bedrock.				
metho	id.				SU	2.0 2.5 3.0 3.5			notes, samples, tests	classification		ndd	consistency/density index
AS AD RR W CT HA DT B V T T e.g.	D auger drilling* C casing penetrati // washbore 1 2 3 4 // T cable tool A hand auger T diatube blank bit V bit TC bit bit shown by suffix C casing penetrati 1 2 3 4 // T 2 3 4			ter 10/1/9 on dat	n no resista ranging to refusal 8 water i e shown	evel	U _{so} undisturbed sample 50mm diameter U _{so} undisturbed sample 63mm diameter D disturbed sample N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample R refusal	soil descripti based on unit system moisture D dry M moist W wet Wp plastic W_t liquid ii	fied classifica	ation	VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense		

DEPARTMENT OF COMMERCE

Principal: Project:

PHASE 2 ENVIRONMENTAL SITE ASSESSMENT

Date started:

Sheet

Borehole No.

Office Job No.:

ENVIWARA00401AA

Date completed:

5.5.2009 5.5.2009

Logged by:

DCH

SB 2 1 of 1

Borehole Location: MANILLA HOSPITAL

Checked by:

AN

drill model and		IWD Drill Rig	Easting:	slope: -90°	D.I.	Surface: Not Measured
	-	_	•	bearing:		
hole diameter: drilling info		25 mm material s	Northing substance	beating.	datu	III.
method 7 8 9 9 1 1 Support	notes	debth debth RT metres on symbol or who were sufficient or who we will be a symbol or who will be a		particle characteristics,	consistency/ density index 100 pocket 200 penetro- 400 meter	structure and additional observations
ADV	None Observed	0.5 CH	TOPSOIL: Gravelly SAND, brown, gravel fine to mediu Sandy CLAY: medium to hi orange, sand fine to mediui Gravelly CLAY: pale to dar plasticity, gravel fine to mediui	m grained. igh plasticity, brown / M <wg brown,="" grained.="" high<="" k="" m="" medium="" td="" to=""><td></td><td>TOPSOIL Some rooflets. RESIDUAL No odours observed. </td></wg>		TOPSOIL Some rooflets. RESIDUAL No odours observed.
AD a RR ri W w CT c HA h	auger screwing* auger drilling* oller/fricone vashbore able tool aand auger fliatube	2.0 2.0 2.5 3.0 3.5 3.5 4.0 support M mud N nil C casing penetration 1 2 3 4 no resistance ranging to water	notes, samples, tests U ₅₀ undisturbed sample N standard penetratic N* SPT - sample recoo	e 50mm diameter a 63mm diameter on test (SPT) vered classification system classed on unified system moisture	ı	consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable

DEPARTMENT OF COMMERCE

Principal: Project:

PHASE 2 ENVIRONMENTAL SITE ASSESSMENT

5.5.2009

ENVIWARA00401AA

SB 3 1 of 1

5.5.2009

DCH Logged by:

Borehole No.

Office Job No.:

Date completed:

Date started:

Sheet

Bor	Borehole Location: MANILLA HOSPITAL										Checked by:				
						Drill Rig			Easting: slope:	-90°					Surface: Not Measured
hole	dian	neter:			125 m	ım			Northing bearing:					dat	lum:
dri			rma	tion	,		mate	erial sı	ıbstance						
method	no penetration	5	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle characterist colour, secondary and minor componen	tics, its.	moisture condition	consistency/ density index	100 pocket	300 penetro-	
ADV				E		_			BITUMEN:		-				BITUMEN ROAD
<i>t</i>		dates de constitución de const	None Observed	E		0. <u>5</u>		СН	FILL: Gravelly SAND, fine to medium grained brown, gravel fine grained. Gravelly CLAY: medium to high plasticity, bro gravel fine to medium grained.		D M <wp< td=""><td></td><td>and commercial and other designation of the state of the</td><td></td><td>RESIDUAL No odours observed.</td></wp<>		and commercial and other designation of the state of the		RESIDUAL No odours observed.
	The second secon			٤		1.0		СН	Gravelly CLAY: high plasticity, pale brown / or gravel fine to medium grained. Terminated due to refusal on bedrock.	range,			- Annual Control of the Control of t		EXTREMELY WEATHERED CLAYSTONE
meti AS ADR W CT A DT B V T ** bits** e.g.		а г ч		ore ool	M C pe	3000 I		nil	notes, samples, tests U ₅₀ undisturbed sample 50mm diameter U ₅₃ undisturbed sample 63mm diameter D disturbed sample N standard penetration test (SPT) N* SPT - sample recovered NC SPT with solid cone	soil des based o system moistur D d	ry				consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard
DT B V T	shown	c t \ T o by su	iatube lank b ' bit C bit		▼	10/1/9	8 water e showr nflow		V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample R refusal	M n W w Wp p	dry moist wet plastic limit liquid limit				Fb friable VL very loose L loose MD medium dense D dense VO very dense

DEPARTMENT OF COMMERCE

Principal:

Project:

PHASE 2 ENVIRONMENTAL SITE ASSESSMENT

Sheet

Borehole No.

1 of 1

Office Job No.:

Date completed:

Logged by:

ENVIWARA00401AA

5.5.2009 Date started:

> 5.5.2009 **DCH**

SB 4

	ehole mode				n: MAN		A HO		TAL	Easting: slope:	-90°		Checke	ed by	_	Ad
				loui	_		-			•	-90					Surface: Not Measured
	diam Iling			mat		25 m	m	mate	orial e	Northing bearing:					dai	lum:
method	2 penetration	1		water	notes samples, tests, etc	RL	depth metres	aphic log	classification symbol	material soil type: plasticity or particle characteristic colour, secondary and minor components	CS, S.	moisture condition	consistency/ density index	100 pocket	300 m penetro-	
ADV							_			BITUMEN:				Ш	П	BITUMEN ROAD
				-	E		-		СН	FILL: Gravelly SAND, fine to medium grained, brown, gravel fine to medium grained. Gravelly CLAY: medium to high plasticity, dark						FILL RESIDUAL No odours observed
				e Observed	E		0. <u>5</u>			brown / orange, gravel fine to medium grained.						
	er folke			None			- - - 1. <u>5</u>		СН	Gravelly CLAY: high plasticity, pale to dark bro gravel fine to medium grained.	 wn,					EXTREMELY WEATHERED CLAYSTONE
					E		2.0									Very hard drilling at 1.6m.
							2. <u>5</u> 3. <u>0</u> 3. <u>5</u>			Terminated due to refusal on bedrock. Borehole SB 4 terminated at 2m						
meth AS AD RR W CTT HA OT 5 bit si	od	bys	aug rolle was cab han diat blar V bi TC I	er dri er/trico hborde too d auq ube ube ik bit t oit	e ol	M C per 1 2 wat	ter 10/1/9	n no resista ranging to refusal B water l e shown	evel	notes, samples, tests U _{so} undisturbed sample 50mm diameter U _{sa} undisturbed sample 63mm diameter D disturbed sample N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample R refusal	W we Wp pla	cription o unified of contractions	classifica			consistency/density Index VS very soft S soft F firm St stiff VSI very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

DEPARTMENT OF COMMERCE

Principal: Project:

PHASE 2 ENVIRONMENTAL SITE ASSESSMENT

Borehole No. SB 5

Office Job No.:

1 of 1 Sheet

ENVIWARA00401AA

5.5.2009 Date started:

5.5.2009 Date completed:

DCH Logged by:

Parabala La			COITAI		Checked by:			
	ocation: MAN		SPITAL	Facility along	-90°	Checke		NHT Not Managed
drill model and	_	WD Drill Rig		Easting: slope:	-90			. Surface: Not Measured
hole diameter: drilling info		125 mm	material su	Northing bearing:			datu	ım:
method 2 2 penetration support	notes	depth RL metres	graphic log classification symbol	material soil type: plasticity or particle characteristic colour, secondary and minor components	moisture	consistency/ density index	100 x pocket 200 x penetro- 300 w meter	structure and additional observations
ADV			~ ~ ~	BITUMEN:				BITUMEN ROAD
AD	E E E	1. <u>0</u>	CH	FILL: Gravelly SAND, fine to medium grained, proceeding to dark brown / dark grey, gravel fine grained. Gravels becoming coarser at 1.1m. Gravelly CLAY: medium to high plasticity, orang dark brown, gravel fine to medium grained. Gravelly CLAY: high plasticity, pale to dark brown gravel fine to medium grained.	ge7 M <v< td=""><td>/p</td><td></td><td>EXTREMELY WEATHERED CLAYSTONE</td></v<>	/p		EXTREMELY WEATHERED CLAYSTONE
AD a RR rr W w CT c HA h DT d B b V V t T T *bit shown by su	auger screwing* auger drilling* oldier/Incone vashbore able tool and auger liatube lank bit / bit /C bit dfffix ADT	water	o resistance inging to ifusal water level shown	notes, samples, tests U ₅₀ undisturbed sample 50mm diameter U ₆₃ undisturbed sample 63mm diameter D disturbed sample N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample	classification soil description based on unific system moisture D dry M moist W wet Wp plastic I W _t liquid lin	n ed classifica		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

ENVIWARA00401AA Office Job No.: DEPARTMENT OF COMMERCE 5.5.2009 Date started:

Borehole No.

Logged by:

Sheet

SB 6 1 of 1

DCH

Date completed: 5.5.2009 Principal:

PHASE 2 ENVIRONMENTAL SITE ASSESSMENT Project: Λ Λ Λ

DEPARTMENT OF COMMERCE

Office Job No.: Date started:

ENVIWARA00401AA

Principal:

Date completed:

Borehole No.

Sheet

5.5.2009

Project:

PHASE 2 ENVIRONMENTAL SITE ASSESSMENT

Logged by:

5.5.2009 DCH

AN

SB 7

1 of 1

Borehole Location: MANILLA HOSPITAL

Checked by:

	drill model and mounting: 4WD Drill Rig									Easting: slope	e: -90°		JIICON			. Surface: Not Measured
	anoc e dia				-	125 m	_			Northing bear					datı	
				mat		. 20 111		mate	rial sı	bstance					uall	uiii.
method	1 2	perion	support	water	notes samples, tests, etc	RL	depth metres	\vdash	classification symbol	material soil type: plasticity or particle charact colour, secondary and minor compo	eristics, nents.	moisture condition	consistency/ density index	100 pocket 200 penetro-	а	structure and additional observations
ADV	ĦĨ		\dashv		Ε			\bowtie		FILL: Gravelly SAND, fine to medium grain brown, gravel fine grained.	ned, pale	D		\prod	Т	FILL No odours observed.
£	TO COST TO THE PRODUCTION OF T		TOO PROPERTY WINDS AND A STATE OF THE STATE	ırved	E		0.5			Gravels becoming coarser at 0.5m.						- - - -
				None Observed	E		1.0	\bowtie		Some fine grained grey ash observed at 0	.9m.					-
				None			'-	\bowtie		Croupleine increasing and house in	oor wilde					
				_			-	\bowtie		Gravel size increasing and becoming coadepth.	ser with					-
	$\ \ $							\bowtie								-
							1. <u>5</u>	\bowtie								_
			-	***************************************				\bowtie								-
			***************************************					\bowtie								-
				}	E		2.0	\bowtie								-
										Terminated due to refusal in fill. Borehole SB 7 terminated at 2m						-
																-
							2.5							-		-
							2.5									
																-
																-
							3. <u>0</u>									
	$\ \ $															-
								A A A A A A A A A A A A A A A A A A A								-
							3. <u>5</u>									
	-		-	-												-
				Himmakakimaa			-									-
																-
meti AS AD	hod				rewing*	М	4.0 pport mud casing	N	nil	notes, samples, tests U _{so} undisturbed sample 50mm diameter U _{ss} undisturbed sample 63mm diameter	soil des	cation syr scription on unified				consistency/density index VS very soft S soft
RR			wa	er/tric shbor	е	_1.3	netration 2 3 4	1 io resistar	ice	D disturbed sample N standard penetration test (SPT)	system					F firm St stiff
CT HA			har	ole too nd au				io resistar anging to efusal	n.e	N* SPT - sample recovered Nc SPT with solid cone		iry				VSt very stiff H hard
DT B			bla	tube nk bit		wa	10/1/98	3 water le	evel	V vane shear (kPa) P pressuremeter	W w	noist vet Jastia limit				Fb friable VL very loose
bit s	V V bit ✓ on date shown				nflow		Bs bulk sample E environmental sample R refusal		lastic limit quid limit				L loose MD medium dense D dense			
ē e.g.			AD	ī		—	water o	utflow								VD very dense

DEPARTMENT OF COMMERCE

Principal: Project:

PHASE 2 ENVIRONMENTAL SITE ASSESSMENT

Date started:

Office Job No.:

Borehole No.

Sheet

ENVIWARA00401AA 5.5.2009

Date completed:

5.5.2009

Logged by:

DCH

SB8 1 of 1

Borehole	Locati	on: MA N	IILLA .	HOS	SPITA	\L				(Checke	ed by:	Ath
drill model a	and mou	ınting: 4	IlinG GW4	Rig			Easting:	slope:	-90°			R.L.	Surface: Not Measured
hole diamet	note diameter: 125 mm				Northing bearing:					datum:			
drilling i	nforma	ition			material substance								
method penetration	support water	notes samples, tests, etc	1 1	pth	graphic log	symbol	soil type: plasticity or	particle characteristics		moisture condition	consistency/ density index	00 pocket 00 penetro- 00 meter	structure and additional observations

drilling information material substance																
method	I	s penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.			consistency/ density index	200 F pocket		
ADV				served	E		0.5			FILL: Gravelly SAND, fine to medium grained, pale to dark brown, gravel fine grained. FILL: Gravelly CLAY, medium plasticity, orange / dark brown, gravel fine grained.					· · · · · · · · · · · · · · · · · · ·	FILL -
			and the second of the second o	None Observed	E		1. <u>0</u>		СН	Gravelly CLAY: medium to high plasticity, orange / dark brown, gravel fine to medium grained. Gravelly CLAY: high plasticity, pale to dark brown, gravel fine to medium grained.	. — M<	Wp			The state of the s	RESIDUAL
					E		2.0 2.5 3.0 3.5			Terminated due to refusal on bedrock. Borehole SB 8 terminated at 2m					And the second s	
AS AD RR W CT HA DT B V T bill	method AS auger screwing* AD auger drilling* RR roller/tricone W washbore CT cable tool HA hand auger DT diatube B blank bit V V bit support M mud N nil C casing penetration 1 2 3 4 pe		ince) level	U ₅₀ undisturbed sample 50mm diameter soil U ₆₃ undisturbed sample 63mm diameter bas D disturbed sample syst N standard penetration test (SPT)	esificatio descript ed on un tem sture dry moist wet plastic liquid	tion ified cl				consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense						

Sheet

TP 1

1 of 1

Office Job No.:

Excavation No.

ENVIWARA00401AA

DEPARTMENT OF COMMERCE

Date started:

6.5.2009

6.5.2009

Principal: Project:

PHASE 2 ENVIRONMENTAL SITE ASSESSMENT

Logged by:

Date completed:

DCH

Test pit location:

MANILLA HOSPITAL

Checked by:

Not Measured

equ	ipmen	t type	and	model:	ot Exc	avator			Pit Orientation:	Easting:	m			1	R.L.	Surface:	Not Measured	
	avatior				3m lor	ng 1n	n wide			Northing:	m			(datu	ım:		
ex		ion	info	rmation			mat		ubstance									
method	5 penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle o colour, secondary and minor	components.		moisture condition	consistency/ density index	100 pocket 200 penetro- 300 penetro-	а	additio	ructure and nal observation	s
		Z	None Observed	E		0.5 1.0 1.5		СН	FILL: Gravelly SAND, fine to mediu/ grey, gravel fine to coarse grained gravels, brick fragments, cement fr. glass. Gravelly CLAY: medium to high pla brown, gravel fine to medium grain Gravelly CLAY: high plasticity, pale orange, gravel fine to medium grain	d. Fill contains agments, plastications, orange ed.	ic, 7 —	M <wp< td=""><td></td><td></td><td></td><td></td><td>do odours observ WEATHERED</td><td>/ed</td></wp<>					do odours observ WEATHERED	/ed
						3. <u>5</u> 3. <u>5</u>			Test pit TP 1 terminated at 2m									- - - - - -

Sketch

met	hod	support	notes, samples, tests	classification symbols and	consister	ncy/density index
N	natural exposure	S shoring N nil	U _{so} undisturbed sample 50mm diameter	soil description	VS	very soft
l x	existing excavation		U ₆₃ undisturbed sample 63mm diameter	based on unified classification	S	soft
! BH	backhoe bucket	penetration	D disturbed sample	system	F	firm
В	bulldozer blade	1234	V vane shear (kPa)		St	stiff
R	ripper	no resistance ranging to	Bs bulk sample	moisture	VSt	very stiff
Ε	excavator	refusal	E environmental sample	D dry	Н	hard
3		water	R refusal	M moist	Fb	friable
!l		water level		W wet	VL.	very loose
il .		on date shown		Wp plastic limit	Ł	loose
!				W _i liquid limit	MD	medium dense
<u>:</u>		water inflow		1 '	D	dense
5		→ water outflow			VD	very dense

Sheet

TP 2 1 of 1

Office Job No.:

Excavation No.

ENVIWARA00401AA

DEPARTMENT OF COMMERCE

Date started:

Date completed:

6.5.2009 6.5.2009

Principal: Project:

PHASE 2 ENVIRONMENTAL SITE ASSESSMENT

Logged by:

DCH

Test pit location:

MANILLA HOSPITAL

Checked by:

equipment type and model: 5t Excavator			cavator			Pit Orientation:	Easting:	m				R.L	. Surface: Not Measured			
excavation dimensions: 3m long 1			ng 1n	n wide			Northing:	m				dat	um:			
ex	cava	tion	info	rmation			mate	erial s	ubstance							,
method	no penetration	3 auppoort	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle o colour, secondary and minor	components.		moisture condition	consistency/ density index	k	300 to meter	structure and additional observations
Ε		Z	None Observed	E		0.5		СН	FILL: Gravelly SAND, fine to medit brown / orange, gravel fine to coars contains gravels, brick fragments, pieces of ceramic pipe. Gravelly CLAY: medium to high pl brown, gravel fine to medium grain	se grained. Fill plastic, glass and asticity, orange / ed.	d , †	D M <wp< td=""><td></td><td>***************************************</td><td>***************************************</td><td>RESIDUAL No odours observed.</td></wp<>		***************************************	***************************************	RESIDUAL No odours observed.
			None O	E		1. <u>0</u> - 1. <u>5</u> - 2.0		СН	Gravelly CLAY: high plasticity, pale gravel fine to medium grained.	e to dark brown,				HAPTAPIANAN MARKANAN PROPERTY PROPERTY PROPERTY AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL		EXTREMELY WEATHERED CLAYSTONE
						2.5 3.0 3.5 4.0			Test pit TP 2 terminated at 2m							

Sketch

method	
N	natural exposure
Χ	existing excavation
BH	backhoe bucket
8	bulidozer blade
R	ripper
E	excavator

support		_					
S shorin	ng N		nil				
penetra							
123							
ist,	🕇 no resista		ce				
	ranging to)					
0000000000000	refusal .						
water							
w wate	er level						

water inflow

notes, samples, tests					
U _{so}	undisturbed sample 50mm diameter				
U ₆₃	undisturbed sample 63mm diameter				
D	disturbed sample				
V	vane shear (kPa)				
Bs	bulk sample				
E	environmental sample				
R	refusal				

classification symbols and soil description based on unified classification system					
moisture					
D	dry				
M	moist				
W	wet				
Wp	plastic limit				
WL	liquid fimit				

consistency/density index					
VS	very soft				
S	soft				
F	firm				
St	stiff				
VSt	very stiff				
н	hard				
Fb	friable				
VL	very loose				
L	loose				
MD	medium dense				

dense very dense

Sheet

TP 3

1 of 1

Office Job No.:

Excavation No.

ENVIWARA00401AA

Date started:

6.5.2009

Principal:

DEPARTMENT OF COMMERCE

Date completed:

6.5.2009

Project:

PHASE 2 ENVIRONMENTAL SITE ASSESSMENT

Logged by:

DCH

Test pit location:

MANILLA HOSPITAL

Checked by:

MA

equipment type and model: 5t Excavator	Pit Orientation: Easting: m		R.L. Surface: Not Measured
excavation dimensions: 3m long 1n	n wide Northing: m		datum:
excavation information	material substance		
method the method to the metho	bol pit bold soil type: plasticity or particle characteristics, colour, secondary and minor components.	condi	structure and additional observations
E 0.5 E 1.0 Penvasa 0 1.5 1.5 2.5 2.5 3.0	FILL: Gravelly SAND, fine to medium grained, dark brown / orange, gravel fine to coarse grained. Fill contains gravels, brick fragments and plastic.	D	FILL No odours observed.
3.5	Test pit TP 3 terminated at 3m		

Sketch

method	
N	natural exposure
X	existing excavation
BH	backhoe bucket
В	buildozer blade
R	ripper
E	excavator

suppor	t						
S short	ing	N	nil				
penetra							
123	4						
14,	no res		ice				
	rangin						
	refusa	I					
water							
wa wa	ter level						

water inflow water outflow

otes, samples, tests					
J ₅₀	undisturbed sample 50mm diameter				
J ₆₃	undisturbed sample 63mm diameter				
)	disturbed sample				
/	vane shear (kPa)				
3s	bulk sample				
	environmental sample				
,	refusal				

soil	classification symbols and soil description						
	based on unified classification system						
	sture						
D	dry						
M	moist						
w	wet						

plastic limit

liquid limit

consistent	consistency/density index				
VS	very soft				
S	soft				
F	firm				
St	stiff				
VSt	very stiff				
Н	hard				
Fb	friable				
VL	very loose				
Ļ	loose				
MD	medium dense				

very dense

Sheet 1 of 1

Excavation No.

Logged by:

Office Job No.: ENVIWARA00401AA

DCH

6.5.2009

TP 4

Client: DEPARTMENT OF COMMERCE Date started:

PHASE 2 ENVIRONMENTAL SITE ASSESSMENT

Principal: Date completed: **6.5.2009**

Test pit location: MANILLA HOSPITAL Checked by:

Checked by:	AN	
	~ .	33-134

equ	ipment	type	and	model:	5t Exc	avator			Pit Orientation:	Easting:	m			R.L	. Surface:	Not Measured	
ехс	avation	dim	ensi	ons:	3m lo	ng 1n	n wide			Northing:	m			dat	um:		ŀ
ex	cavati	on	info	rmation			mat	erial s	ubstance								┒
method	12 penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particl colour, secondary and min	or components.		moisture condition	consistency/ density index	100 x pocket 200 x ponetro- 300 m meter	addit	structure and lonal observations	
111		N		E		0.5			FILL: Gravelly SAND, fine to me dynavel fine to coarse grained. As ldepth. FILL: Gravelly SAND, fine to coar dark brown / orange, gravel fine contains gravels, brick fragments plastic, glass, metal and timber p	h material to 0.1m arse grained, pale to coarse grained s, cement fragmer	n / to I. Fill	D			FILL FILL No od	ours observed.	
			served	E		1.0											
			None Observed			1. <u>5</u>											
				E		2. <u>0</u>											_
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					2.5							:				
				E		3.0			Test pit TP 4 terminated at 3m								
						3. <u>5</u>			rest pic i r 4 terminated at Sill								
						4.0											1

Sketch

Project:

							_		
method		support	notes, s	samples, tests	clas	sification symbols and		consistency/	density index
N	natural exposure	S shoring N nil	U _{so}	undisturbed sample 50mm diameter	soil	description	,	vs	very soft
X	existing excavation		U ₆₃	undisturbed sample 63mm diameter	base	ed on unified classification	1 :	S	soft
BH	backhoe bucket	penetration	D	disturbed sample	syste	em	1	F	firm
В	bulldozer blade	1234	٧	vane shear (kPa)			4 :	St	stiff
R	ripper	no resistance ranging to	Bs	bulk sample	moi	sture	1 '	VSt	very stiff
Ε	excavator	ranging to refusal	Ε	environmental sample	D	dry		H	hard
3		water	R	refusal	М	moist		Fb	friable
!		w water level	ļ.		W	wet	1 '	VL.	very loose
		on date shown	l		Wρ	plastic limit	1 . (Ł	loose
!			1		W _L	liquid limit		MD	medium dense
		water inflow						D	dense
<u>:</u>		— water outflow					1	VO	very dense

Surface Sample Information

Client: Department of Commerce

Project: Phase 2 ESA

Location: Manilla Hospital

Date: 6.05.09

By: Damien Hendrickx

Sample I.D	Sample Description	PID Value
SS1	Topsoil: Gravelly CLAY, medium to high plasticity, dark brown-orange, with fine to medium grained gravel	4.8
SS2	Topsoil : Gravelly SAND, fine to medium grained, brown-orange, with fine to medium grained gravel	3.2
SS3	Topsoil: Gravelly SAND, fine to medium grained sand, brown-orange with fine to medium grained gravel	3.9
SS4	Topsoil : Gravelly SAND, fine to medium grained, pale to dark brown, with fine to medium grained gravel.	5.0
SS5	Fill: Gravelly SAND, fine to medium grained, browngrey, with fine to coarse grained gravel.	3.2
SS6	Fill : Gravelly SAND, dark brown-black, with fine to coarse grained gravel.	7.6
SS7	Fill: Gravelly SAND, fine to medium grained, brown- orange, with fine to coarse grained gravel.	2.6
SS8	Fill: Gravelly SAND, fine to medium grained, brown, with fine to medium grained gravel.	3.5
SS9	Topsoil : Gravelly SAND, fine to medium grained, dark brown, with fine to medium gravel.	3.0
SS10	Topsoil : Gravelly SAND, fine to medium grained, dark brown, with fine to coarse grained gravel.	3.6
SS11	Topsoil : SAND, fine to medium grained, brown, with some fine to medium grained gravel.	4.2
SS12	Topsoil : SAND, fine to medium grained, brown, with some fine to coarse grained gravel.	5.0
SS13	Topsoil : SAND, fine to medium grained, dark brown, with some fine to medium gravel.	4.7
SS14	Fill : Gravelly SAND, fine to medium grained, brown, with fine to coarse gravel, some rootlets and wood materials.	3.8

job no:

ENVIWARA00401AA

sheet 1 of 3

Photolonisation Detector (PID) Results

client:	Department of Com	merce	office:	Warabrook
principal:			date:	5 May 2009
project:	Phase 2 ESA		by:	DCH
location:	Manilla Hospital, Ma	nilla NSW	checked by:	
PID serial number:	MINIRAE 2000 (SN: 110-002708)	lamp voltage:	10.6eV
PID Calibration Record				
Date / Time of Calibration:	05.05.09	Calibration gas: 100 ppm ISOB	UTYLENE	
☑ Zero Calibration (0.0ppm)	Actual <u>0.0</u> ppm	☑ Span Calibration (100ppm)	Actual Reading _	100 ppm
Calibrated by: DCH				

SAMPLE ID	DEPTH	DURATION (mins)	BACKGROUND READING (ppm)	MAXIMUM READING (ppm)	LAST READING (ppm)	NOTES
SB1	0.0-0.1	1 min	0.0	4.6	-	
SB1	0.4-0.5	1 min	0.0	3.3	-	
SB1	0.9-1.0	1 min	0.0	2.1	-	
SB1	1.4-1.5	1 min	0.0	1.5	-	
SB2	0.0-0.1	1 min	0.0	6.7	-	
SB2	0.4-0.5	1 min	0.0	5.2	-	
SB2	0.9-1.0	1 min	0.0	3.8	-	
SB2	1.3-1.74	1 min	0.0	2.2	-	
SB3	0.1-0.2	1 min	0.0	4.5	-	
SB3	0.4-0.5	1 min	0.0	3.6	-	
SB3	0.9-1.0	1 min	0.0	2.9	-	
SB4	0.1-0.2	1 min	0.0	3.8	-	
SB4	0.4-0.5	1 min	0.0	2.9	-	
SB4	0.9-1.0	1 min	0.0	2.2	-	
SB4	1.9-2.0	1 min	0.0	1.6	-	
SB5	0.1-0.2	1 min	0.0	15.8	-	
SB5	0.4-0.5	1 min	0.0	13.2	-	
SB5	0.9-1.0	1 min	0.0	11.6	-	

Calibrated by: _DCH___

job no:

ENVIWARA00401AA

sheet 2 of 3

Photolonisation Detector (PID) Results

client:	Department of Co	mmerce	office:	Warabrook
principal:			date:	5 May 2009
project:	Phase 2 ESA		by:	DCH
location:	Manilla Hospital, I	Manilla NSW	checked by:	
PID serial number:	MINIRAE 2000	(SN: 110-002708)	lamp voltage:	10.6eV
PID Calibration Record				
Date / Time of Calibration: 5.05.2	2009	Calibration gas: 100 ppm ISOBUTYL	ENE	
☑ Zero Calibration (0.0ppm) Actu	al <u>0.0</u> ppm	☑ Span Calibration (100ppm) Ad	ctual Reading	ppm

SAMPLE ID	DEPTH	DURATION (mins)	BACKGROUND READING (ppm)	MAXIMUM READING (ppm)	LAST READING (ppm)	NOTES
SB5	1.9-2.0	1 min	0.0	8.5	-	
SB5	2.9-3.0	1 min	0.0	5.1	-	
SB6	0.1-0.2	1 min	0.0	11.5	-	
SB6	0.4-0.5	1 min	0.0	9.8	-	
SB6	0.9-1.0	1 min	0.0	7.5	-	
SB6	1.9-2.0	1 min	0.0	4.8	-	
SB6	2.9-3.0	1 min	0.0	3.7	-	
SB7	0.0-0.1	1 min	0.0	5.5	-	
SB7	0.4-0.5	1 min	0.0	4.6	-	
SB7	0.9-1.0	1 min	0.0	3.8	-	
SB7	1.9-2.0	1 min	0.0	1.9	-	
SB8	0.0-0.1	1 min	0.0	4.8	-	
SB8	0.4-0.5	1 min	0.0	3.2	-	
SB8	0.9-1.0	1 min	0.0	2.6	-	
SB8	1.9-2.0	1 min	0.0	2.0	-	
TP1	0.0-0.1	1 min	0.0	5.5	-	
TP1	0.4-0.5	1 min	0.0	4.3	-	
TP1	0.9-1.0	1 min	0.0	2.8	-	

job no:

ENVIWARA00401AA

sheet 3 of 3

Photolonisation Detector (PID) Results

client:	Department of Com	merce	office:	Warabrook
principal:			date:	5 May 2009
project:	Phase 2 ESA		by:	DCH
location:	Manilla Hospital, Ma	nilla NSW	checked by:	
PID serial number:	MINIRAE 2000 (S	SN: 110-002708)	lamp voltage:	10.6eV
PID Calibration Record				
Date / Time of Calibration: _ 06.0	05.09	Calibration gas: 100 ppm ISOB	UTYLENE	
☑ Zero Calibration (0.0ppm) Act	tual <u>0.0</u> ppm	☑ Span Calibration (100ppm)	Actual Reading _	ppm
Calibrated by:DCH				

SAMPLE ID	DEPTH	DURATION (mins)	BACKGROUND READING (ppm)	MAXIMUM READING (ppm)	LAST READING (ppm)	NOTES
TP1	1.9-2.0	1 min	0.0	1.9	-	
TP2	0.0-0.1	1 min	0.0	4.6	-	
TP2	0.4-0.5	1 min	0.0	4.0	-	
TP2	0.9-1.0	1 min	0.0	3.2	-	
TP2	1.9-2.0	1 min	0.0	1.8	-	
TP3	0.0-0.1	1 min	0.0	5.8	-	
TP3	0.4-0.5	1 min	0.0	5.2	-	
TP3	0.9-1.0	1 min	0.0	4.6	-	
TP3	1.9-2.0	1 min	0.0	2.9	-	
TP3	2.9-3.0	1 min	0.0	1.7	-	
TP4	0.0-0.1	1 min	0.0	4.6	-	
TP4	0.4-0.5	1 min	0.0	3.2	-	
TP4	0.9-1.0	1 min	0.0	2.8	-	
TP4	1.9-2.0	1 min	0.0	1.9	-	
TP4	2.9-3.0	1 min	0.0	1.6	-	

Unit 5 Walter St PO Box 3003 Singleton NSW 2330

EXCAVATION LOG

	Project No: HGS 1031
	Hole No: TP1
	Sheet: 1 of 1
Client: NSW Department of Commerce	Started: 13.08.07
Project: Site Investigation for proposed New Hospital Extensions	Finished: 13.08.07
Location: Manilla Hospital	Logged: RT
Test Location: Refer to Site Plan	Checked: V Da Silva
Equipment type: Bob Cat Mini Excavator	RL surface:

			<u> </u>	T		Material description			Comments
method	water	Samples, tests etc	depth (m)	graphic log	USCS symbol	Soil type, particle characteristics or fines plasticity, colour, secondary and minor components	Moisture condition	Consistency / relative	
			0.35	Savas	Cl.	TOPSOIL: Gravelly Sandy Silty CLAY, low To medium plasticity, fine grained sand, fine Gravel, dark brown.	M <wp< td=""><td>П</td><td>ALLUVIAL</td></wp<>	П	ALLUVIAL
			0,33		GC	Clayey GRAVEL :medium to coarse gravel, Orange brown,low to medium plasticity Fines.	D	D	ALLUVIAL
ATOR	NO GROUNDWATER OBSERVED		1.0						
EXCAVATOR	NO GROUNDWA			000					
	Z-1		2.0	000					
				000					
						Test Pit TP 1 Terminated at 2.5m			

REFER TO IMPORTANT INFORMATION SHEETS FOR DESCRIPTIONS OF SOIL AND ROCK

Issue No:

R-T32-01 Document ID:

Unit 5 Walter St PO Box 3003 Singleton NSW 2330

EXCAVATION LOG

EACAVARION DOG	
	Project No: HGS 1031
	Hole No: TP2
	Sheet: 1 of 1
Client: NSW Department of Commerce	Started: 13.08.07
Project: Site Investigation for proposed new Hospital Extensions	Finished: 13.08.07
Location: Manilla Hospital	Logged: RT
Test Location: Refer to Site Plan	Checked: V Da Silva
Equipment type: Bob Cat Mini Excavator	RL surface:

l						L		
	ests	- C	නිද	iboi	Material description	ρĘ	ري / دې /	Comments
method	Samples, tests	depth (m)	graphic log	USCS symbol	Soil type, particle characteristics or fines plasticity, colour, secondary and minor components	Moisture condition	Consistency relative	notes, structure and additional observations
		0.35		CL	FILL: Gravelly CLAY, medium plasticity, Red brown, medium to coarse gravel.	M≤Wp	Н	Building rubble, iron pipe, fence wire, concrete
	Sample 0.7 to 0.9m	0.8		GC	FILL: Clayey Sandy GRAVEL, medium to coarse gravel, brown -red brown, low to medium plasticity clay fines.	Đ	i,	Appeared Loosely Compacted Building Rubble
EXCAVATOR NO GROINDWATER OBSERVED	Sample 1.0 to 1.3m	1.0		GC/CL	Clayey GRAVEL/Gravelly CLAY: low to Medium plasticity, medium to coarse gravel, Pale Orange & yellow.	M≃Wp	H/D	ALLUVIAI.
OMP ON		2.0						
			3 6		Test Pit TP 2 Terminated at 3.0m			

REFER TO IMPORTANT INFORMATION SHEETS FOR DESCRIPTIONS OF SOIL AND ROCK

Document ID: Issue No:

R-T32-02

Unit 5 Walter St PO Box 3003 Singleton NSW 2330

EXCAVATION LOG

EACH VALIDIC BOO	
	Project No: HGS 1031
	Hole No: TP 3
	Sheet: 1 of 1
Client: NSW Department of Commerce	Started: 13.08.07
Project: Site Investigation for proposed New Hospital Extensions	Finished: 13.08.07
Location: Manilla Hospital	Logged: RT
Test Location: Refer to Site Plan	Checked: V Da Silva
Equipment type: Bob Cat Mini Excavator	RL surface:

,			·	·····					
nod	ter	s, tests	(m)	graphic log	iy mbol	Material description	Moisture condition	nsistency / relative	Comments
method	water	Samples, tests etc	depth (m)	graphi	USCS symbol	Soil type, particle characteristics or fines plasticity, colour, secondary and minor components	Mois	රි	Notes, structure and additional observations
		Sample 0.2 to 0.4m	0.4	W	CL	FILL: Gravelly Silty CLAY, low to medium plasticity, dark brown, fine to medium gravel.	M <wp< td=""><td>1-1</td><td>TOPSOIL</td></wp<>	1-1	TOPSOIL
		Sample 0.4 to 0.7m	0.8		. CL	GRAVELLY CLAY, medium plasticity, Red brown,, medium to coarse gravel Fines.	M=Wp	И	ALLUVIAL
EXCAVATOR	NO GROUNDWATER OBSERVED	Sample 0.8 to 1.5m	2.0		ca./gc	Sandy Gravelly CLAY/Clayey GRAVEL Medium plasticity, orange & pale brow Coarse sand, medium to coarse gravel.	M=Wp	Н	ALLUVIAL
				000		Test Pit TP 3 Terminated at 2.8m			

REFER TO IMPORTANT INFORMATION SHEETS FOR DESCRIPTIONS OF SOIL AND ROCK

Document ID:

R-T32-03

ACN 088 399 124 ABN 80 088 399 124

Unit 5 Walter St PO Box 3003 Singleton NSW 2330

EXCAVATION LOG

	Project No: HGS 1031
	Hole No: TP 4
	Sheet: 1 of 1
Client: NSW Department of Commerce	Started: 13.08.07
Project: Site Investigation for proposed New Hospital Extensions	Finished: 13.08.07
Location: Manilla Hospital	Logged: RT
Test Location: Refer to Site Plan	Checked: V Da Silva
Equipment type: Bob Cat Mini Excavator	RL surface:

		Ŋ			=	Material description		_	Comments	
pottau	water	Samples, tests etc	depth (m)	graphic log	USCS symbol	Soil type, particle characteristics or fines plasticity, colour, secondary and minor components	Moisture condition	Consistency relative	Notes, structure and additional observations	
					CL	FILL: Gravelly CLAY, low to medium plasticity, dark brown, and red, fine to fine to medium gravel.	M <wp< td=""><td>H</td><td>TOPSOIL</td></wp<>	H	TOPSOIL	
			0.3		CL	FILL: Gravelly CLAY, medium plasticity, dark brown,, medium to coarse gravel Fines.	М=₩р		Containing Cobbles & bricks, appeared loosely compacted	
	SERVED		1.0		CL/GC	Sandy Gravelly CLAY/Clayey GRAVEL Medium plasticity, orange & pale brow Coarse sand, medium to coarse gravel.	M≤Wp	Н	ALLUVIAL	
EXCAVATOR	NO GROUNDWATER OBSERVED	1.1.			and the second of the second o		SILTSTONE; pale brown & dark brown			Highly Weathered
			2.0	ore a liquid to a second to report to the second to report to the second to report to the second to						
						Test Pit TP 4 Terminated at 2.6m				

REFER TO IMPORTANT INFORMATION SHEETS FOR DESCRIPTIONS OF SOIL AND ROCK

Document ID:

R-T32-04

Unit 5 Walter St PO Box 3003 Singleton NSW 2330

EXCAVATION LOG

	Project No: HGS 1031
	Hole No: TP 5
	Sheet: 1 of 1
Client: NSW Department of Commerce	Started: 13.08.07
Project: Site Investigation for proposed New Hospital Extensions	Finished: 13.08.07
Location: Manilla Hospital	Logged: RT
Test Location: Refer to Site Plan	Checked: V Da Silva
Equipment type: Bob Cat Mini Excavator	RL surface:
	Datum:

	Γ		1	T		Material description			Comments
method	water	Samples, tests etc	depth (m)	graphic log	USCS symbol	Soil type, particle characteristics or fines plasticity, colour, secondary and minor components	Moisture condition	Consistency / relative	Notes, structure and additional observations
EXCAVATOR	NO GROUNDWATER OBSERVED	Sample 0.8 to 0.9m Sample 0.9 to 2.2m	2.0		CI.	Components FILL: Gravelly CLAY, medium plasticity, Red brown and dark brown, medium to coarse gravel. FILL: GRAVEL, Cobbles to coarse gravel, Red brown, dark brown SILTSTONE; pale brown & dark brown	D D) II	Appeared well Compacted Appeared Loosely Compacted. Containing building Rubble, bricks, concrete Tin, wood, pipes Sides of test pit unstable collapsing
			3.0			Test Pit TP 5 Terminated at 3,0m			

REFER TO IMPORTANT INFORMATION SHEETS FOR DESCRIPTIONS OF SOIL AND ROCK

Document ID:

R-T32-05

Unit 5 Walter St PO Box 3003 Singleton NSW 2330

EXCAVATION LOG

	Project No: HGS 1031
	Hole No: TP 6
	Sheet: 1 of 1
Client: NSW Department of Commerce	Started: 13.08,07
Project: Site Investigation for proposed New Hospital Extensions	Finished: 13.08.07
Location: Manilla Hospital	Logged: RT
Test Location: Refer to Site Plan	Checked: V Da Silva
Equipment type: Bob Cat Mini Excavator	RL surface:
	Datum:

L									
		ള			75	Material description		_	Comments
ğ	ŧ.,	Samples, tests etc	depth (m)	graphic log	USCS symbol		Moisture condition	Consistency relative	
method	water	sles, etc	멅	Shic	કે જ	Soil type, particle characteristics or fines	oist	nsistenc relative	
E	,	am,	del	graj	SC	plasticity, colour, secondary and minor	Z 8	o n	Notes, structure and
	•	ιχ				components		-	additional observations
				XX	GM	FILL: Silty GRAVEL, (ASH) medium Gravel, grey pale grey,	Đ	i.	Appeared Loosely compacted . Ash from old
		Sample 0.2		XX		.0 , 1 0 ,	:		boiler
		to 0.4m		XX					Sides of test pit
									unstable collapsing
]]		Sample 0.4 to 1.5m				·			
							Ð		
	д		1.0	XX					
	RVE			XX					
	BSE								
TO.	ER C								
EXCAVATOR	NO GROUNDWATER OBSERVED						,		
EXC	NDV)				
	ROU								
	(F)								
	Z		2.0	XX					
				KXX					
				KXX					
			2.3	A X	GP	GRAVEL:coarse to cobbles, pale brown			ALLUVIAL
				00	C.J.				
				0 0					
			2.7	U 0		ON TOTAL L. L. C. L. L.			
				a pagent \$ tre sore e etas i ir upera i com		SILTSTONE; pale brown & dark brown			Highly Weathered
			3.0			Test Pit TP 6 Terminated at 3.0m			

REFER TO IMPORTANT INFORMATION SHEETS FOR DESCRIPTIONS OF SOIL AND ROCK

Document ID:

R-T32-06

Unit 5 Walter St PO Box 3003 Singleton NSW 2330

EXCAVATION LOG

EACHVATION LOG	Project No: HGS 1031
	Hole No: TP 7
	Sheet: 1 of 1
Client: NSW Department of Commerce	Started: 13.08.07
Project: Site Investigation for proposed New Hospital Extensions	Finished: 13.08.07
Location: Manilla Hospital	Logged: RT
Test Location: Refer to Site Plan	Checked: V Da Silva
Equipment type: Bob Cat Mini Excavator	RL surface:

		S	T		~~~	Material description		,	Comments
method	water	les, tes	depth (m)	graphic log	USCS symbol	Sail turn martials characteristics or fings	Moisture condition	Consistency relative	
me	M	Samples, tests etc	dep	grap	USCS	Soil type, particle characteristics or fines plasticity, colour, secondary and minor components	Mc	Cons	Notes, structure and additional observations
				X	GP	FILL: GRAVEL, Siltstone, orange brown, With bitumen fragments.	D	L	Appeared Loosely compacted
			Address of the control of the contro						Sides of test pit unstable collapsing
	_		0.8	X X		SILTSTONE; pale brown .			Highly Weathered
	RVEL		1.0						
SE SE	S OBSE			, man					
EXCAVATOR	NO GROUNDWATER OBSERVED		anna lafficialet urtikatif finatoletikation kan kan kan kan kan kan kan kan kan ka	y percent of 15					
	NO G								
			2.0	a dela a des					
			2.3	a drum a s gram y drum a scrupe. y sy many y ah. a sovers. Co y					
			2.3	Service into the service of the serv	GP	SILTSTONE; pale brown & dark brown			Highly Weathered
			<u> </u>	Parate & street		The Divitor of The section and the 2 Section 2.			
						Test Pit TP 7 Terminated at 2.8m			

REFER TO IMPORTANT INFORMATION SHEETS FOR DESCRIPTIONS OF SOIL AND ROCK

Document ID:

R-T32-07

Unit 5 Walter St PO Box 3003 Singleton NSW 2330

EXCAVATION LOG

	Project No: HGS 1031
	Hole No: TP 8
	Sheet: 1 of l
Client: NSW Department of Commerce	Started: 13.08.07
Project: Site Investigation for proposed New Hospital Extensions	Finished: 13.08.07
Location: Manilla Hospital	Logged: RT
Test Location: Refer to Site Plan	Checked: V Da Silva
Equipment type: Bob Cat Mini Excavator	RL surface:

		R				Material description			Comments
method	water	Samples, tests etc	depth (m)	graphic log	USCS symbol	Soil type, particle characteristics or fines	Moisture condition	Consistency / relative	
a	Λ	Samp	del	graj		plasticity, colour, secondary and minor components		Cons	additional observations
EXCAVATOR	NO GROUNDWATER OBSERVED		0.8		GP	FILL: Clayey GRAVEL, medium to coarse Gravel, pale brown, low to medium, Plasticity fines SILTSTONE; pale brown.	D		ALLUVIAL Highly Weathered
	NO GROUN			g district is the control of the con					
						Test Pit TP 8 Terminated at 1.5m			

REFER TO IMPORTANT INFORMATION SHEETS FOR DESCRIPTIONS OF SOIL AND ROCK

Carlo Billio Albanda Carlo Carlo

Document ID:

R-T32-08

Hunter Geotechnics Pty Limited ACN 088 399 124 ph 02 65721234 ABN 80 088 399 124 fax 02 65721572

Unit 5 Walter St PO Box 3003 Singleton NSW 2330

EXCAVATION LOG

	Project No: HGS 1031
	Hole No: TP 9
	Sheet: l of l
Client: NSW Department of Commerce	Started: 13.08.07
Project: Site Investigation for proposed New Hospital Extensions	Finished: 13.08.07
Location: Manilla Hospital	Logged: RT
Test Location: Refer to Site Plan	Checked: V Da Silva
Equipment type: Bob Cat Mini Excavator	RL surface:

[ţţ	<u> </u>	T	- 1 5	Material description		<i>+</i> .	Comments
method	water	les, tes etc	depth (m)	graphic log	USCS symbol	Soil type, particle characteristics or fines	Moisture condition	Consistency / relative	
III	ß	Samples, tests etc	deb	grap	USCS	plasticity, colour, secondary and minor components	MC COT	Cons	Notes, structure and additional observations
EXCAVATOR	NO GROUNDWATER OBSERVED		1.0		GP	FILL: Clayey GRAVEL, medium to coarse Gravel, pale brown, low to medium, Plasticity fines SILTSTONE; pale brown & grey.	ď		ALLUVIAL Highly Weathered
						Test Pit TP 9 Terminated at 1.5m			

REFER TO IMPORTANT INFORMATION SHEETS FOR DESCRIPTIONS OF SOIL AND ROCK

Document ID:

R-132-09

Issue No:

Appendix B Laboratory Reports

ANALYTICAL REPORT

14 May 2009

Coffey Environments Pty Ltd

Lot 101, 19 Warabrook Blvd Warabrook

NSW 2304

Attention:

Emma Coleman

Your Reference:

ENVIWARA00401AA

Our Reference:

SE69125

Samples:

80 Soils, 6 Ash, 1 Fibro, 6 Waters

Received:

8/5/09

Preliminary Report Sent:

Not Issued

These samples were analysed in accordance with your written instructions.

For and on Behalf of:

SGS ENVIRONMENTAL SERVICES

Client Services:

Simon Matthews

Simon.Matthews@sgs.com

Sample Receipt:

Angela Mamalicos

AU.SampleReceipt.Sydney@sgs.com

Laboratory Manager:

Edward Ibrahim

Edward.Ibrahim@sgs.com

Results Approved and/or Authorised by:

Ravee Sivasubramaniam

Asbestos Signatory

Huong **€**rawford Metals Signatory

WORLD RECOGNISED ACCREDITATION

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 1 of 58

REPORT NO: SE69125 PROJECT: ENVIWARA00401AA

VCLIa(27) in pail Cudnou Water			
VCHs(37) in soil Sydney Water	UNITS	SE69125-1	SE69125-2
Our Reference:	UNITS	8	6
Your Reference		SB5	SB7
Sample Matrix		Soil	Soil
Date Sampled		5/05/2009	5/05/2009
Depth		0.9-1.0	0.0-0.1
Date extracted		11/05/2009	11/05/2009
Date analysed		12/05/2009	12/05/2009
Dichlorodifluoromethane	mg/kg	<0.50	<0.50
Chloromethane	mg/kg	<0.50	<0.50
Vinyl Chloride	mg/kg	<0.50	<0.50
Bromomethane	mg/kg	<0.50	<0.50
Chloroethane	mg/kg	<0.50	<0.50
Trichlorofluoromethane	mg/kg	<0.50	<0.50
1,1-Dichloroethene	mg/kg	<0.50	<0.50
trans-1,2-Dichloroethene	mg/kg	<0.50	<0.50
1,1-Dichloroethane	mg/kg	<0.50	<0.50
cis-1,2-Dichloroethene	mg/kg	<0.50	<0.50
Bromochloromethane	mg/kg	<0.50	<0.50
Chloroform	mg/kg	<1.0	<1.0
2,2-Dichloropropane	mg/kg	<0.50	<0.50
1,2-Dichloroethane	mg/kg	<0.50	<0.50
1,1,1-Trichloroethane	mg/kg	<0.50	<0.50
1,1-Dichloropropene	mg/kg	<0.50	<0.50
Carbon tetrachloride	mg/kg	<0.50	<0.50
Dibromomethane	mg/kg	<0.50	<0.50
1,2-Dichloropropane	mg/kg	<0.50	<0.50
Trichloroethene	mg/kg	<0.50	<0.50
Bromodichloromethane	mg/kg	<0.50	<0.50
trans-1,3-Dicloropropene	mg/kg	<0.50	<0.50
cis-1,3-Dichloropropene	mg/kg	<0.50	<0.50
1,1,2-Trichloroethane	mg/kg	<0.50	<0.50
1,3-Dichloropropane	mg/kg	<0.50	<0.50
Dibromochloromethane	mg/kg	<0.50	<0.50
1,2-Dibromoethane	mg/kg	<0.50	<0.50
Tetrachloroethene	mg/kg	<0.50	<0.50
1,1,1,2-Tetrachloroethane	mg/kg	<0.50	<0.50
Chlorobenzene	mg/kg	<0.50	<0.50
Bromoform	mg/kg	<0.50	<0.50
1,1,2,2-Tetrachloroethane	mg/kg	<0.50	<0.50
1,2,3-Trichloropropane	mg/kg	<0.50	<0.50
Bromobenzene	mg/kg	<0.50	<0.50

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

VCHs(37) in soil Sydney Water			
Our Reference:	UNITS	SE69125-1	SE69125-2
		8	6
Your Reference		SB5	SB7
Sample Matrix		Soil	Soil
Date Sampled		5/05/2009	5/05/2009
Depth		0.9-1.0	0.0-0.1
2-Chlorotoluene	mg/kg	<0.50	<0.50
4-Chlorotoluene	mg/kg	<0.50	<0.50
1,3-Dichlorobenzene	mg/kg	<0.50	<0.50
1,4-Dichlorobenzene	mg/kg	<0.50	<0.50
1,2-Dichlorobenzene	mg/kg	<0.50	<0.50
1,2-Dibromo-3-chloropropane	mg/kg	<0.50	<0.50
1,2,4-Trichlorobenzene	mg/kg	<0.50	<0.50
Hexachlorobutadiene	mg/kg	<0.50	<0.50
1,2,3-Trichlorobenzene	mg/kg	<0.50	<0.50
Dibromofluoromethane	%	95	98
1,2-Dichloroethane-d4	%	98	95
Toluene-d8 Surrogate 2	%	100	98
4-Bromofluorobenzene Surrogate 3	%	95	94

REPORT NO: SE69125

REPORT NO: SE69125 PROJECT: ENVIWARA00401AA

UNITS	SE69125-1	SE69125-1	SE69125-1	SE69125-1	SE69125-2
		0	2	8	0
	SB1	SB3	SB4	SB5	SB5
	Soil	Soil	Soil	Soil	Soil
	5/05/2009	5/05/2009	5/05/2009	5/05/2009	5/05/2009
	0.0-0.1	0.4-0.5	0.1-0.2	0.9-1.0	2.9-3.0
	11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
	12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
mg/kg	<0.5	<0.5	8.0	<0.5	<0.5
mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
mg/kg	<1.5	<1.5	<1.5	<1.5	<1.5
%	91	88	77	85	101
	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	SB1 Soil 5/05/2009 0.0-0.1 11/05/2009 12/05/2009 12/05/2009 mg/kg <0.5 mg/kg <0.5 mg/kg <1.0 mg/kg <0.5 mg/kg <1.5 mg/kg <1.5	SB1 SB3 Soil Soil 5/05/2009 0.0-0.1 11/05/2009 12/05/2009 12/05/2009 12/05/2009 12/05/2009 12/05/2009 12/05/2009 12/05/2009 12/05/2009 mg/kg <0.5 <0.5 mg/kg <0.5 <0.5 mg/kg <1.0 <1.0 mg/kg <0.5 <0.5 mg/kg <1.0 <1.0 mg/kg <1.5 <1.5	SB1 SB3 SB4 Soil Soil Soil Soil 5/05/2009 5/05/2009 5/05/2009 0.0-0.1 0.4-0.5 0.1-0.2 11/05/2009 11/05/2009 11/05/2009 12/05/2009 12/05/2009 12/05/2009 mg/kg <0.5 <0.5 <0.5 mg/kg <0.5 <0.5 0.8 mg/kg <1.0 <1.0 <1.0 mg/kg <0.5 <0.5 <0.5 mg/kg <1.0 <1.0 <1.0 mg/kg <1.5 <1.5 <1.5	SB1 SB3 SB4 SB5 Soil Soil Soil Soil Soil 5/05/2009 0.0-0.1 0.4-0.5 0.1-0.2 0.9-1.0 11/05/2009 12/05/2009 12/05/2009 12/05/2009 12/05/2009 12/05/2009 12/05/2009 12/05/2009 mg/kg <0.5 <0.5 <0.5 <0.5 mg/kg <0.5 <0.5 <0.5 mg/kg <1.0 <1.0 <1.0 <1.0 mg/kg <0.5 <0.5 <0.5 mg/kg <1.0 <1.0 <1.0 mg/kg <0.5 <0.5 <0.5 mg/kg <1.0 <1.0 <1.0 mg/kg <1.5 <1.5 <1.5

BTEX in Soil						
Our Reference:	UNITS	SE69125-2	SE69125-2	SE69125-2	SE69125-2 8	SE69125-3
		2	4	6	1	'
Your Reference		SB6	SB6	SB7	SB7	SB8
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		5/05/2009	5/05/2009	5/05/2009	5/05/2009	5/05/2009
Depth		0.4-0.5	1.9-2.0	0.0-0.1	0.9-1.0	0.0-0.1
Date Extracted (BTEX)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (BTEX)		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
m&p-Xylenes	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
o- Xylene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Xylenes	mg/kg	<1.5	<1.5	<1.5	<1.5	<1.5
BTEX Surrogate (%)	%	74	90	90	92	104

o- Xylene

Total Xylenes

BTEX Surrogate (%)

BTEX in Soil Our Reference: UNITS SE69125-3 SE69125-3 SE69125-4 SE69125-4 SE69125-4 n 1 Your Reference SS-1 SS-5 SS-6 SS-7 SS-9 Sample Matrix Soil Soil Soil Soil Soil Date Sampled 6/05/2009 6/05/2009 6/05/2009 6/05/2009 6/05/2009 Depth Date Extracted (BTEX) 11/05/2009 11/05/2009 11/05/2009 11/05/2009 11/05/2009 Date Analysed (BTEX) 12/05/2009 12/05/2009 12/05/2009 12/05/2009 12/05/2009 Benzene < 0.5 < 0.5 <0.5 mg/kg < 0.5 < 0.5 Toluene <0.5 < 0.5 < 0.5 mg/kg < 0.5 < 0.5 Ethylbenzene <0.5 <0.5 <0.5 mg/kg <0.5 < 0.5 m&p-Xylenes <1.0 <1.0 mg/kg <1.0 <1.0 <1.0

<0.5

<1.5

106

mg/kg

mg/kg

%

<0.5

<1.5

104

<0.5

<1.5

81

REPORT NO: SE69125

<0.5

<1.5

89

< 0.5

<1.5

117

BTEX in Soil						
Our Reference:	UNITS	SE69125-4	SE69125-4	SE69125-4	SE69125-5	SE69125-5
		4	6	8	4	7
Your Reference		SS-10	SS-12	SS-14	TP2	TP3
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		6/05/2009	6/05/2009	6/05/2009	6/05/2009	6/05/2009
Depth		-	-	-	0.4-0.5	0.0-0.1
Date Extracted (BTEX)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (BTEX)		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
m&p-Xylenes	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
o- Xylene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Xylenes	mg/kg	<1.5	<1.5	<1.5	<1.5	<1.5
BTEX Surrogate (%)	%	81	93	83	83	93

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 5 of 58

REPORT NO: SE69125 PROJECT: ENVIWARA00401AA

			, 		
BTEX in Soil					
Our Reference:	UNITS	SE69125-6	SE69125-6	SE69125-7	SE69125-7
		7	9	2	9
Your Reference		TP4	TP4	QC1	QC6
Sample Matrix		Soil	Soil	Soil	Soil
Date Sampled		6/05/2009	6/05/2009	5/05/2009	6/05/2009
Depth		0.0-0.1	0.9-1.0	-	-
Date Extracted (BTEX)		11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (BTEX)		12/05/2009	12/05/2009	12/05/2009	12/05/2009
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<0.5	<0.5	<0.5	<0.5
m&p-Xylenes	mg/kg	<1.0	<1.0	<1.0	<1.0
o- Xylene	mg/kg	<0.5	<0.5	<0.5	<0.5
Total Xylenes	mg/kg	<1.5	<1.5	<1.5	<1.5
BTEX Surrogate (%)	%	86	84	82	98

TRH in soil withC6-C9 by P/T						
Our Reference:	UNITS	SE69125-1	SE69125-1	SE69125-1	SE69125-1	SE69125-2
			0	2	8	0
Your Reference		SB1	SB3	SB4	SB5	SB5
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		5/05/2009	5/05/2009	5/05/2009	5/05/2009	5/05/2009
Depth		0.0-0.1	0.4-0.5	0.1-0.2	0.9-1.0	2.9-3.0
Date Extracted (TRH C6-C9 PT)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (TRH C6-C9 PT)		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
TRH C6 - C9 P&T	mg/kg	<20	<20	<20	<20	<20
Date Extracted (TRH C10-C36)		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
Date Analysed (TRH C10-C36)		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
TRH C10 - C14	mg/kg	<20	<20	<20	<20	<20
TRH C15 - C28	mg/kg	<50	<50	<50	<50	<50
TRH C29 - C36	mg/kg	<50	<50	<50	<50	<50

TRH in soil withC6-C9 by P/T						
Our Reference:	UNITS	SE69125-2	SE69125-2	SE69125-2	SE69125-2	SE69125-3
		2	4	6	8	1
Your Reference		SB6	SB6	SB7	SB7	SB8
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		5/05/2009	5/05/2009	5/05/2009	5/05/2009	5/05/2009
Depth		0.4-0.5	1.9-2.0	0.0-0.1	0.9-1.0	0.0-0.1
Date Extracted (TRH C6-C9 PT)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (TRH C6-C9 PT)		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
TRH C6 - C9 P&T	mg/kg	<20	<20	<20	<20	<20
Date Extracted (TRH C10-C36)		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
Date Analysed (TRH C10-C36)		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
TRH C10 - C14	mg/kg	<20	<20	<20	<20	450
TRH C15 - C28	mg/kg	<50	<50	<50	<50	1,900
TRH C29 - C36	mg/kg	<50	<50	<50	<50	<50

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

TRH in soil withC6-C9 by P/T						
Our Reference:	UNITS	SE69125-3	SE69125-3	SE69125-4	SE69125-4	SE69125-4
		5	9	0	1	3
Your Reference		SS-1	SS-5	SS-6	SS-7	SS-9
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		6/05/2009	6/05/2009	6/05/2009	6/05/2009	6/05/2009
Depth		-	-	-	-	-
Date Extracted (TRH C6-C9 PT)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (TRH C6-C9 PT)		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
TRH C6 - C9 P&T	mg/kg	<20	<20	<20	<20	<20
Date Extracted (TRH C10-C36)		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
Date Analysed (TRH C10-C36)		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
TRH C10 - C14	mg/kg	150	<20	28	<20	<20
TRH C15 - C28	mg/kg	130	<50	180	<50	<50
TRH C29 - C36	mg/kg	130	<50	120	<50	<50

REPORT NO: SE69125

TRH in soil withC6-C9 by P/T						
Our Reference:	UNITS	SE69125-4	SE69125-4	SE69125-4	SE69125-5	SE69125-5
		4	6	8	4	7
Your Reference		SS-10	SS-12	SS-14	TP2	TP3
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		6/05/2009	6/05/2009	6/05/2009	6/05/2009	6/05/2009
Depth		-	-	-	0.4-0.5	0.0-0.1
Date Extracted (TRH C6-C9 PT)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (TRH C6-C9 PT)		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
TRH C6 - C9 P&T	mg/kg	<20	<20	<20	<20	<20
Date Extracted (TRH C10-C36)		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
Date Analysed (TRH C10-C36)		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
TRH C10 - C14	mg/kg	<20	26	<20	<20	<20
TRH C15 - C28	mg/kg	<50	260	<50	<50	<50
TRH C29 - C36	mg/kg	51	84	<50	<50	<50

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

TRH in soil withC6-C9 by P/T					
Our Reference:	UNITS	SE69125-6	SE69125-6	SE69125-7	SE69125-7
		7	9	2	9
Your Reference		TP4	TP4	QC1	QC6
Sample Matrix		Soil	Soil	Soil	Soil
Date Sampled	e a la company de la compa	6/05/2009	6/05/2009	5/05/2009	6/05/2009
Depth		0.0-0.1	0.9-1.0	-	-
Date Extracted (TRH C6-C9 PT)		11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (TRH C6-C9 PT)		12/05/2009	12/05/2009	12/05/2009	12/05/2009
TRH C6 - C9 P&T	mg/kg	<20	<20	<20	<20
Date Extracted (TRH C10-C36)		12/05/2009	12/05/2009	12/05/2009	12/05/2009
Date Analysed (TRH C10-C36)		12/05/2009	12/05/2009	12/05/2009	12/05/2009
TRH C10 - C14	mg/kg	<20	<20	<20	180
TRH C15 - C28	mg/kg	<50	<50	<50	300
TRH C29 - C36	mg/kg	<50	<50	<50	200

PAHs in Soil			-		-	
Our Reference:	UNITS	SE69125-1	SE69125-1	SE69125-1	SE69125-1	SE69125-2
			0	2	8	0
Your Reference		SB1	SB3	SB4	SB5	SB5
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		5/05/2009	5/05/2009	5/05/2009	5/05/2009	5/05/2009 2.9-3.0
Depth		0.0-0.1	0.4-0.5	0.1-0.2	0.9-1.0	2.9-3.0
Date Extracted		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
Date Analysed		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
Naphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
2-Methylnaphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
1-Methylnaphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Acenaphthylene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Acenaphthene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Fluorene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Phenanthrene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Fluoranthene	mg/kg	<0.10	<0.10	0.12	0.11	<0.10
Pyrene	mg/kg	<0.10	<0.10	<0.10	0.17	<0.10
Benzo[a]anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Chrysene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo[b,k]fluoranthene	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo[a]pyrene	mg/kg	<0.05	<0.05	<0.05	0.11	<0.05
Indeno[123-cd]pyrene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Dibenzo[ah]anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo[ghi]perylene	mg/kg	<0.10	<0.10	<0.10	0.14	<0.10
Total PAHs (sum)	mg/kg	<1.7	<1.7	<1.77	<1.93	<1.7
Nitrobenzene-d5	%	88	82	81	72	72
2-Fluorobiphenyl	%	103	98	101	92	87
p -Terphenyl-d14	%	90	82	75	80	81

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Your Reference SB6 SB6 SB7 SB7 Sample Matrix Soil	59125-3 1 SB8 Soil 5/2009 .0-0.1 05/2009 0.10 0.10 0.10 0.10
Your Reference SB6 SB6 SB7 SB7 Sample Matrix Soil	SB8 Soil 5/2009 .0-0.1 05/2009 0.10 0.10 0.10 0.10
Sample Matrix Soil	Soil 5/2009 .0-0.1 05/2009 0.5/2009 0.10 0.10 0.10 0.10
Date Sampled Depth Depth	5/2009 .0-0.1 05/2009 0.10 0.10 0.10 0.10
Depth 0.4-0.5 1.9-2.0 0.0-0.1 0.9-1.0 0 Date Extracted 12/05/2009 0.10	0-0.1 05/2009 0.5/2009 0.10 0.10 0.10 0.10
Date Extracted 12/05/2009 20.10 20.10 20.10 20.10 20.10 20.10 20.10 20.10	05/2009 05/2009 0.10 0.10 0.10 0.10
Date Analysed 12/05/2009 20.10 12/05/2009 20.10	0.10 0.10 0.10 0.10 0.10 0.10
Naphthalene mg/kg <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	0.10 0.10 0.10 0.10 0.10
2-Methylnaphthalene mg/kg <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <td>0.10 0.10 0.10 0.10</td>	0.10 0.10 0.10 0.10
1-Methylnaphthalene mg/kg <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <td>0.10 0.10 0.10</td>	0.10 0.10 0.10
Acenaphthylene mg/kg <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	0.10 0.10
Acenaphthene mg/kg <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	0.10
Fluorene mg/kg <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	
Phenanthrene mg/kg 0.10 <0.10 0.17 <0.10 < Anthracene mg/kg <0.10	0.10
Anthracene mg/kg <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	0
Fluoranthene mg/kg <0.10 <0.10 0.25 <0.10 < Pyrene mg/kg <0.10	0.10
Pyrene mg/kg <0.10 <0.10 0.25 <0.10 < Benzo[a]anthracene mg/kg <0.10	0.10
Benzo[a]anthracene mg/kg <0.10 <0.10 0.12 <0.10 < Chrysene mg/kg <0.10	0.10
Chrysene mg/kg <0.10 <0.10 0.12 <0.10 <	0.10
, , , , , , , , , , , , , , , , , , , ,	0.10
	0.10
Benzo[<i>b,k</i>]fluoranthene mg/kg <0.20 <0.20 <0.20 <	0.20
Benzo[a]pyrene mg/kg <0.05 0.05 0.10 <0.05 <	0.05
Indeno[123-cd]pyrene mg/kg <0.10 <0.10 <0.10 <0.10 <	0.10
Dibenzo[ah]anthracene mg/kg <0.10 <0.10 <0.10 <0.10 <	0.10
Benzo[<i>ghi</i>]perylene mg/kg <0.10 <0.10 <0.10 <0.10 <	0.10
Total PAHs (sum) mg/kg <1.7 <1.7 <2.21 <1.7	<1.7
Nitrobenzene-d5 % 82 86 83 73	92
2-Fluorobiphenyl % 103 105 101 88	101
p -Terphenyl-d14 % 80 92 87 70	99

PAHs in Soil						
Our Reference:	UNITS	SE69125-3	SE69125-3	SE69125-4	SE69125-4	SE69125-4
		5	9	0	1	3
Your Reference		SS-1	SS-5	SS-6	SS-7	SS-9
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled Depth		6/05/2009	6/05/2009	6/05/2009	6/05/2009	6/05/2009
•		-	<u>-</u>	-		
Date Extracted		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
Date Analysed		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
Naphthalene	mg/kg	<0.10	<0.10	0.24	<0.10	<0.10
2-Methylnaphthalene	mg/kg	<0.10	<0.10	0.34	<0.10	<0.10
1-Methylnaphthalene	mg/kg	<0.10	<0.10	0.25	<0.10	<0.10
Acenaphthylene	mg/kg	<0.10	<0.10	0.27	<0.10	<0.10
Acenaphthene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Fluorene	mg/kg	<0.10	<0.10	0.21	<0.10	<0.10
Phenanthrene	mg/kg	<0.10	<0.10	2.2	<0.10	<0.10
Anthracene	mg/kg	<0.10	<0.10	1.1	<0.10	<0.10
Fluoranthene	mg/kg	<0.10	<0.10	6.3	<0.10	<0.10
Pyrene	mg/kg	<0.10	<0.10	5.2	<0.10	<0.10
Benzo[a]anthracene	mg/kg	<0.10	<0.10	5.4	<0.10	<0.10
Chrysene	mg/kg	<0.10	<0.10	4.4	<0.10	<0.10
Benzo[b,k]fluoranthene	mg/kg	<0.20	<0.20	11	<0.20	<0.20
Benzo[a]pyrene	mg/kg	<0.05	<0.05	4.4	<0.05	<0.05
Indeno[123-cd]pyrene	mg/kg	<0.10	<0.10	2.9	<0.10	<0.10
Dibenzo[ah]anthracene	mg/kg	<0.10	<0.10	0.66	<0.10	<0.10
Benzo[ghi]perylene	mg/kg	<0.10	<0.10	2.6	<0.10	<0.10
Total PAHs (sum)	mg/kg	<1.7	<1.7	<47.68	<1.7	<1.7
Nitrobenzene-d5	%	82	84	93	107	110
2-Fluorobiphenyl	%	94	98	98	102	104
p -Terphenyl-d14	%	89	90	92	95	98

PAHs in Soil						
Our Reference:	UNITS	SE69125-4	SE69125-4	SE69125-4	SE69125-4	SE69125-5
		4	6	8	9	4
Your Reference		SS-10	SS-12	SS-14	TP1	TP2
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		6/05/2009	6/05/2009	6/05/2009	6/05/2009	6/05/2009
Depth		-		-	0.0-0.1	0.4-0.5
Date Extracted		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
Date Analysed		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
Naphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
2-Methylnaphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
1-Methylnaphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Acenaphthylene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Acenaphthene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Fluorene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Phenanthrene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Fluoranthene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Pyrene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo[a]anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Chrysene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo[b,k]fluoranthene	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo[a]pyrene	mg/kg	<0.05	<0.05	<0.05	0.08	0.06
Indeno[123-cd]pyrene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Dibenzo[<i>ah</i>]anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo[<i>ghi</i>]perylene	mg/kg	<0.10	<0.10	<0.10	0.11	0.14
Total PAHs (sum)	mg/kg	<1.7	<1.7	<1.7	<1.79	<1.80
Nitrobenzene-d5	%	104	105	102	95	102
2-Fluorobiphenyl	%	99	103	94	89	96
p -Terphenyl-d14	%	92	96	91	87	92

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 13 of 58

REPORT NO: SE69125

PAHs in Soil						
Our Reference:	UNITS	SE69125-5	SE69125-6	SE69125-6	SE69125-7	SE69125-7
		7	7	9	2	9
Your Reference		TP3	TP4	TP4	QC1	QC6
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		6/05/2009	6/05/2009	6/05/2009	5/05/2009	6/05/2009
Depth		0.0-0.1	0.0-0.1	0.9-1.0	-	-
Date Extracted		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
Date Analysed		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
Naphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
2-Methylnaphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
1-Methylnaphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Acenaphthylene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Acenaphthene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Fluorene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Phenanthrene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Fluoranthene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Pyrene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo[a]anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Chrysene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo[b,k]fluoranthene	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo[a]pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno[123-cd]pyrene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Dibenzo[ah]anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo[ghi]perylene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Total PAHs (sum)	mg/kg	<1.7	<1.7	<1.7	<1.7	<1.7
Nitrobenzene-d5	%	89	107	91	83	92
2-Fluorobiphenyl	%	90	99	86	90	89
p -Terphenyl-d14	%	69	97	82	94	88

This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

PAHs in Soil		1
Our Reference:	UNITS	SE69125-8
		2
Your Reference		QC8
Sample Matrix		Soil
Date Sampled		6/05/2009
Depth		-
Date Extracted		12/05/2009
Date Analysed		12/05/2009
Naphthalene	mg/kg	<0.10
2-Methylnaphthalene	mg/kg	<0.10
1-Methylnaphthalene	mg/kg	<0.10
Acenaphthylene	mg/kg	<0.10
Acenaphthene	mg/kg	<0.10
Fluorene	mg/kg	<0.10
Phenanthrene	mg/kg	<0.10
Anthracene	mg/kg	<0.10
Fluoranthene	mg/kg	0.14
Pyrene	mg/kg	0.15
Benzo[a]anthracene	mg/kg	0.15
Chrysene	mg/kg	0.13
Benzo[b,k]fluoranthene	mg/kg	0.33
Benzo[a]pyrene	mg/kg	0.11
Indeno[123-cd]pyrene	mg/kg	0.16
Dibenzo[ah]anthracene	mg/kg	<0.10
Benzo[ghi]perylene	mg/kg	0.22
Total PAHs (sum)	mg/kg	<2.29
Nitrobenzene-d5	%	96
2-Fluorobiphenyl	%	90
p -Terphenyl-d14	%	88

This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full. REPORT NO: SE69125

OC Pesticides in Soil			l			
Our Reference:	UNITS	SE69125-1	SE69125-1 0	SE69125-3	SE69125-3 5	SE69125-3
Your Reference		SB1	SB3	SB8	SS-1	SS-5
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		5/05/2009	5/05/2009	5/05/2009	6/05/2009	6/05/2009
Depth		0.0-0.1	0.4-0.5	0.0-0.1	+	-
Date Extracted		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
Date Analysed		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC (Lindane)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
o,p-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-Endosulfan	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
cis-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
p,p-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
o,p-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
o,p-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-Endosulfan	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
p,p-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
p,p-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
2,4,5,6-Tetrachloro-m-xylene (Surrogate	%	109	116	112	114	107

OC Pesticides in Soil						
Our Reference:	UNITS	SE69125-4	SE69125-4	SE69125-4	SE69125-4	SE69125-
		3	5	8	9	4
Your Reference		SS-9	SS-11	SS-14	TP1	TP2
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled Depth		6/05/2009	6/05/2009	6/05/2009	6/05/2009 0.0-0.1	6/05/2009 0.4-0.5
Date Extracted		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/200
Date Analysed		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/200
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	· <0.1
gamma-BHC (Lindane)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
o,p-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-Endosulfan	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
cis-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
p,p-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
o,p-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
o,p-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-Endosulfan	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
p,p-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
p,p-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
2,4,5,6-Tetrachloro-m-xylene (Surrogate	Ing/kg %	113	115	111	119	79

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

OC Pesticides in Soil				
Our Reference:	UNITS	SE69125-7	SE69125-7	SE69125-8
Vaux Dafaranaa		2	9	2
Your Reference Sample Matrix		QC1 Soil	QC6 Soil	QC8 Soil
Date Sampled		5/05/2009	6/05/2009	6/05/2009
Depth		-	-	-
Date Extracted		12/05/2009	12/05/2009	12/05/2009
Date Analysed		12/05/2009	12/05/2009	12/05/2009
HCB	mg/kg	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC (Lindane)	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
o,p-DDE	mg/kg	<0.1	<0.1	<0.1
alpha-Endosulfan	mg/kg	<0.1	<0.1	<0.1
trans-Chlordane	mg/kg	<0.1	<0.1	<0.1
cis-Chlordane	mg/kg	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	<0.1	<0.1	<0.1
p,p-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
o,p-DDD	mg/kg	<0.1	<0.1	<0.1
o,p-DDT	mg/kg	<0.1	<0.1	<0.1
beta-Endosulfan	mg/kg	<0.1	<0.1	<0.1
p,p-DDD	mg/kg	<0.1	<0.1	<0.1
p,p-DDT	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	<0.1	<0.1	<0.1
2,4,5,6-Tetrachloro-m-xylene (Surrogate	%	87	87	97

PCBs in Soil						
Our Reference:	UNITS	SE69125-1	SE69125-3	SE69125-3	SE69125-4	SE69125-7
			1	9	9	2
Your Reference		SB1	SB8	SS-5	TP1	QC1
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		5/05/2009	5/05/2009	6/05/2009	6/05/2009	5/05/2009
Depth		0.0-0.1	0.0-0.1	-	0.0-0.1	-
Date Extracted		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
Date Analysed		12/05/2009	12/05/2009	12/05/2009	12/05/2009	12/05/2009
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1262	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1268	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total Positive PCB	mg/kg	<0.90	<0.90	<0.90	<0.90	<0.90
PCB_Surrogate 1	%	109	112	107	119	87

PCBs in Soil		
Our Reference:	UNITS	SE69125-8
		2
Your Reference		QC8
Sample Matrix		Soil
Date Sampled		6/05/2009
Depth		-
Date Extracted		12/05/2009
Date Analysed		12/05/2009
Arochlor 1016	mg/kg	<0.1
Arochlor 1221	mg/kg	<0.1
Arochlor 1232	mg/kg	<0.1
Arochlor 1242	mg/kg	<0.1
Arochlor 1248	mg/kg	<0.1
Arochlor 1254	mg/kg	<0.1
Arochlor 1260	mg/kg	<0.1
Arochlor 1262	mg/kg	<0.1
Arochlor 1268	mg/kg	<0.1
Total Positive PCB	mg/kg	<0.90
PCB_Surrogate 1	%	97

This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

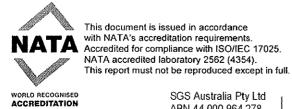
Total Phenolics in Soil			
Our Reference:	UNITS	SE69125-1	SE69125-2
		8	6
Your Reference		SB5	SB7
Sample Matrix		Soil	Soil
Date Sampled		5/05/2009	5/05/2009
Depth		0.9-1.0	0.0-0.1
Date Extracted (Phenols)		11/05/2009	11/05/2009
Date Analysed (Phenols)		11/05/2009	11/05/2009
Total Phenolics (as Phenol)	mg/kg	<0.1	<0.1

Metals in Soil by ICP-OES						
Our Reference:	UNITS	SE69125-1	SE69125-5	SE69125-1	SE69125-1	SE69125-1
				0	2	8
Your Reference		SB1	SB2	SB3	SB4	SB5
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		5/05/2009	5/05/2009	5/05/2009	5/05/2009	5/05/2009
Depth		0.0-0.1	0.0-0.1	0.4-0.5	0.1-0.2	0.9-1.0
Date Extracted (Metals)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (Metals)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Arsenic	mg/kg	6	6	3	8	6
Cadmium	mg/kg	0.4	0.5	0.5	0.3	0.4
Chromium	mg/kg	20	23	10	15	16
Copper	mg/kg	20	22	33	19	26
Lead	mg/kg	20	12	28	9	280
Nickel	mg/kg	19	18	8.4	13	14
Zinc	mg/kg	58	46	73	35	150

Metals in Soil by ICP-OES						
Our Reference:	UNITS	SE69125-2	SE69125-2	SE69125-2	SE69125-2	SE69125-2
		0	2	4	6	8
Your Reference		SB5	SB6	SB6	SB7	SB7
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		5/05/2009	5/05/2009	5/05/2009	5/05/2009	5/05/2009
Depth		2.9-3.0	0.4-0.5	1.9-2.0	0.0-0.1	0.9-1.0
Date Extracted (Metals)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (Metals)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Arsenic	mg/kg	7	4	<3	4	4
Cadmium	mg/kg	0.6	0.4	<0.3	0.4	0.4
Chromium	mg/kg	20	14	11	21	17
Copper	mg/kg	56	64	8.6	20	20
Lead	mg/kg	9.3	59	4	17	24
Nickel	mg/kg	20	11	6.4	16	17
Zinc	mg/kg	65	120	16	120	44

This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

Metals in Soil by ICP-OES						
Our Reference:	UNITS	SE69125-3	SE69125-3	SE69125-3	SE69125-3	SE69125-3
		1	2	5	7	9
Your Reference		SB8	SB8	SS-1	SS-3	SS-5
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		5/05/2009	5/05/2009	6/05/2009	6/05/2009	6/05/2009
Depth		0.0-0.1	0.4-0.5	-	-	-
Date Extracted (Metals)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (Metals)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Arsenic	mg/kg	3	4	6	4	5
Cadmium	mg/kg	0.3	0.4	0.5	0.5	0.4
Chromium	mg/kg	14	21	20	21	18
Copper	mg/kg	18	24	24	25	18
Lead	mg/kg	4	7	22	7	9
Nickel	mg/kg	16	21	13	24	18
Zinc	mg/kg	32	34	370	57	140


REPORT NO: SE69125

Metals in Soil by ICP-OES		· ·				
Our Reference:	UNITS	SE69125-4	SE69125-4	SE69125-4	SE69125-4	SE69125-4
		0	1	3	4	5
Your Reference		SS-6	SS-7	SS-9	SS-10	SS-11
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		6/05/2009	6/05/2009	6/05/2009	6/05/2009	6/05/2009
Depth		-	-	-	-	-
Date Extracted (Metals)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (Metals)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Arsenic	mg/kg	5	<3	7	5	4
Cadmium	mg/kg	0.5	<0.3	0.5	0.3	<0.3
Chromium	mg/kg	18	7.2	22	19	17
Copper	mg/kg	22	7.4	20	18	16
Lead	mg/kg	32	21	30	15	7
Nickel	mg/kg	18	3.7	14	19	17
Zinc	mg/kg	92	280	82	66	40

Metals in Soil by ICP-OES						
Our Reference:	UNITS	SE69125-4	SE69125-4	SE69125-4	SE69125-5	SE69125-5
		6	8	9	4	7
Your Reference		SS-12	SS-14	TP1	TP2	TP3
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		6/05/2009	6/05/2009	6/05/2009	6/05/2009	6/05/2009
Depth		-	-	0.0-0.1	0.4-0.5	0.0-0.1
Date Extracted (Metals)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (Metals)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Arsenic	mg/kg	4	5	13	4	<3
Cadmium	mg/kg	<0.3	<0.3	0.4	0.4	<0.3
Chromium	mg/kg	16	14	11	11	2.5
Copper	mg/kg	15	14	31	20	7.9
Lead	mg/kg	14	8	18	7	5
Nickel	mg/kg	15	14	12	7.9	3.3
Zinc	mg/kg	52	41	52	43	19

REPORT NO: SE69125

Metals in Soil by ICP-OES						
Our Reference:	UNITS	SE69125-6	SE69125-6	SE69125-7	SE69125-7	SE69125-8
		7	9	2	9	2
Your Reference		TP4	TP4	QC1	QC6	QC8
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		6/05/2009	6/05/2009	5/05/2009	6/05/2009	6/05/2009
Depth		0.0-0.1	0.9-1.0	-	-	-
Date Extracted (Metals)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (Metals)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Arsenic	mg/kg	<3	6	5	6	11
Cadmium	mg/kg	0.3	0.5	0.3	0.6	0.4
Chromium	mg/kg	15	26	18	23	12
Copper	mg/kg	19	21	18	23	25
Lead	mg/kg	7	32	15	19	20
Nickel	mg/kg	9.1	18	17	13	12
Zinc	mg/kg	22	95	51	220	46

Mercury Cold Vapor/Hg Analyser						
Our Reference:	UNITS	SE69125-1	SE69125-5	SE69125-1 0	SE69125-1 2	SE69125-1 8
Your Reference		SB1	SB2	SB3	SB4	SB5
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		5/05/2009	5/05/2009	5/05/2009	5/05/2009	5/05/2009
Depth		0.0-0.1	0.0-0.1	0.4-0.5	0.1-0.2	0.9-1.0
Date Extracted (Mercury)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (Mercury)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Mercury	mg/kg	<0.05	<0.05	0.08	<0.05	0.29

Mercury Cold Vapor/Hg Analyser						
Our Reference:	UNITS	SE69125-2	SE69125-2	SE69125-2	SE69125-2	SE69125-2
		0	2	4	6	8
Your Reference		SB5	SB6	SB6	SB7	SB7
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		5/05/2009	5/05/2009	5/05/2009	5/05/2009	5/05/2009
Depth		2.9-3.0	0.4-0.5	1.9-2.0	0.0-0.1	0.9-1.0
Date Extracted (Mercury)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (Mercury)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Mercury	mg/kg	<0.05	0.53	<0.05	<0.05	<0.05

Mercury Cold Vapor/Hg Analyser						
Our Reference:	UNITS	SE69125-3	SE69125-3	SE69125-3	SE69125-3	SE69125-3
		1	2	5	7	9
Your Reference		SB8	SB8	SS-1	SS-3	SS-5
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		5/05/2009	5/05/2009	6/05/2009	6/05/2009	6/05/2009
Depth		0.0-0.1	0.4-0.5	-	-	-
Date Extracted (Mercury)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (Mercury)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Mercury	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05

Mercury Cold Vapor/Hg Analyser						
Our Reference:	UNITS	SE69125-4	SE69125-4	SE69125-4	SE69125-4	SE69125-4
		0	1	3	4	5
Your Reference		SS-6	SS-7	SS-9	SS-10	SS-11
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		6/05/2009	6/05/2009	6/05/2009	6/05/2009	6/05/2009
Depth		-	-	-	-	-
Date Extracted (Mercury)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (Mercury)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Mercury	mg/kg	0.09	<0.05	0.09	0.05	0.06

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Mercury Cold Vapor/Hg Analyser						
Our Reference:	UNITS	SE69125-4 6	SE69125-4 8	SE69125-4 9	SE69125-5 4	SE69125-5 7
Your Reference		SS-12	SS-14	TP1	TP2	TP3
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		6/05/2009	6/05/2009	6/05/2009	6/05/2009	6/05/2009
Depth		-	-	0.0-0.1	0.4-0.5	0.0-0.1
Date Extracted (Mercury)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (Mercury)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05

REPORT NO: SE69125

Mercury Cold Vapor/Hg Analyser						
Our Reference:	UNITS	SE69125-6	SE69125-6	SE69125-7	SE69125-7	SE69125-8
		7	9	2	9	2
Your Reference		TP4	TP4	QC1	QC6	QC8
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		6/05/2009	6/05/2009	5/05/2009	6/05/2009	6/05/2009
Depth		0.0-0.1	0.9-1.0	-	-	-
Date Extracted (Mercury)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Date Analysed (Mercury)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Mercury	mg/kg	<0.05	0.09	<0.05	0.05	<0.05

REPORT NO: SE69125

Asbestos ID in soil						
Our Reference:	UNITS	SE69125-1	SE69125-2	SE69125-3	SE69125-3	SE69125-4
		8	6	5	9	5
Your Reference		SB5	SB7	SS-1	SS-5	SS-11
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		5/05/2009	5/05/2009	6/05/2009	6/05/2009	6/05/2009
Depth		0.9-1.0	0.0-0.1	-	-	-
Date Analysed		13/05/2009	13/05/2009	13/05/2009	13/05/2009	13/05/2009
Sample Description		38g soil,rocks	65g soil,plant matter	47g soil,plant matter,clay	44g sand,soil,pl ant matter	107g soil,plant matter
Asbestos ID in soil	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Asbestos ID in soil				
Our Reference:	UNITS	SE69125-4	SE69125-4	SE69125-6
		8	9	9
Your Reference		SS-14	TP1	TP4
Sample Matrix		Soil	Soil	Soil
Date Sampled		6/05/2009	6/05/2009	6/05/2009
Depth		-	0.0-0.1	0.9-1.0
Date Analysed		13/05/2009	13/05/2009	13/05/2009
Sample Description		121g soil,plant matter	90g clay,rocks	87g soil,clay,ro cks
Asbestos ID in soil	-	No asbestos detected	No asbestos detected	No asbestos detected

BTEX in Water (µg/L)					
Our Reference:	UNITS	SE69125-8	SE69125-8	SE69125-8	SE69125-9
		6	7	8	0
Your Reference		QCA	QCB	TB #1	WTS #1
Sample Matrix		Water	Water	Water	Water
Date Sampled		5/05/2009	6/05/2009	4/05/2009	5/05/2009
Depth		-	-	-	-
Date Extracted (BTEX)		12/05/2009	12/05/2009	12/05/2009	12/05/2009
Date Analysed (BTEX)		12/05/2009	12/05/2009	12/05/2009	12/05/2009
Benzene	μg/L	<0.5	<0.5	<0.5	<0.5
Toluene	µg/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	μg/L	<0.5	<0.5	<0.5	<0.5
m&p-Xylene	μg/L	<1	<1	<1	<1
o-Xylene	μg/L	<0.5	<0.5	<0.5	<0.5
Total Xylenes	μg/L	<1.5	<1.5	<1.5	<1.5
Surrogate	%	116	122	121	123

TRH C6-C9 by P/T ONLY-in water		
Our Reference:	UNITS	SE69125-8
		8
Your Reference		TB#1
Sample Matrix		Water
Date Sampled		4/05/2009
Depth		-
Date Extracted (TRH C6-C9 PT)		12/05/2009
Date Analysed (TRH C6-C9 PT)		12/05/2009
TRH C6 - C9 P&T in µg/L	μg/L	<40

TRH in water with C6-C9 by P/T			
Our Reference:	UNITS	SE69125-8	SE69125-8
		6	7
Your Reference		QCA	QCB
Sample Matrix		Water	Water
Date Sampled		5/05/2009	6/05/2009
Depth		-	-
Date Extracted (TRH C6-C9 PT)		12/05/2009	12/05/2009
Date Analysed (TRH C6-C9 PT)		12/05/2009	12/05/2009
TRH C6 - C9 P&T in μg/L	μg/L	<40	<40
Date Extracted (TRH C10-C36)		12/05/2009	12/05/2009
Date Analysed (TRH C10-C36)		12/05/2009	12/05/2009
TRH C10 - C14	μg/L	<100	<100
TRH C15 - C28	μg/L	<200	<200
TRH C29 - C36	μg/L	<200	<200

PAHs in Water			
Our Reference:	UNITS	SE69125-8	SE69125-8
Year Bufferson		6	7
Your Reference		QCA	QCB
Sample Matrix Date Sampled		Water 5/05/2009	Water 6/05/2009
Date Sampled Depth		3/03/2009	-
•		40/05/0000	40/05/0000
Date Extracted		12/05/2009	12/05/2009
Date Analysed		12/05/2009	12/05/2009
Naphthalene	μg/L	<0.50	<0.50
2-Methylnaphthalene	μg/L	<0.5	<0.5
1-Methylnaphthalene	μg/L	<0.5	<0.5
Acenaphthylene	μg/L	<0.50	<0.50
Acenaphthene	μg/L	<0.50	<0.50
Fluorene	μg/L	<0.50	<0.50
Phenanthrene	μg/L	<0.50	<0.50
Anthracene	μg/L	<0.50	<0.50
Fluoranthene	μg/L	<0.50	<0.50
Pyrene	μg/L	<0.50	<0.50
Benzo[a]anthracene	μg/L	<0.50	<0.50
Chrysene	μg/L	<0.50	<0.50
Benzo[b,k]fluoranthene	μg/L	<1.0	<1.0
Benzo[a]pyrene	μg/L	<0.50	<0.50
Indeno[123-cd]pyrene	μg/L	<0.50	<0.50
Dibenzo[ah]anthracene	μg/L	<0.50	<0.50
Benzo[ghi]perylene	μg/L	<0.50	<0.50
Total PAHs	μg/L	<9	<9
Nitrobenzene-d5	%	83	77
2-Fluorobiphenyl	%	94	83
ρ -Terphenyl-d14	%	94	91

OC Pesticides in Water			
Our Reference:	UNITS	SE69125-8	SE69125-8 7
Your Reference		QCA	QCB
Sample Matrix		Water	Water
Date Sampled		5/05/2009	6/05/2009
Depth		-	-
Date Extracted		12/05/2009	12/05/2009
Date Analysed		12/05/2009	12/05/2009
нсв	μg/L	<0.2	<0.2
alpha-BHC	μg/L	<0.2	<0.2
gamma -BHC(lindane)	μg/L	<0.2	<0.2
Heptachlor	μg/L	<0.2	<0.2
Aldrin	μg/L	<0.2	<0.2
beta-BHC	μg/L	<0.2	<0.2
delta-BHC	μg/L	<0.2	<0.2
Heptachlor Epoxide	μg/L	<0.2	<0.2
o,p-DDE	μg/L	<0.2	<0.2
alpha-Endosulfan	μg/L	<0.2	<0.2
trans-Chlordane	μg/L	<0.2	<0.2
cis-Chlordane	μg/L	<0.2	<0.2
trans-Nonachlor	μg/L	<0.2	<0.2
p,p-DDE	μg/L	<0.2	<0.2
Dieldrin	μg/L	<0.2	<0.2
Endrin	μg/L	<0.2	<0.2
o,p-DDD	μg/L	<0.2	<0.2
o,p-DDT	μg/L	<0.2	<0.2
beta-Endosulfan	μg/L	<0.2	<0.2
p,p-DDD	μg/L	<0.2	<0.2
ρ,ρ-DDT	μg/L	<0.2	<0.2
Endosulfan Sulphate	μg/L	<0.2	<0.2
Endrin Aldehyde	μg/L	<0.2	<0.2
Methoxychlor	μg/L	<0.2	<0.2
Endrin Ketone	μg/L	<0.2	<0.2
2,4,5,6-Tetrachloro-m-xylene (Surrogate	%	71	70

This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

PCBs in Water			
Our Reference:	UNITS	SE69125-8	SE69125-8
		6	7
Your Reference		QCA	QCB
Sample Matrix		Water	Water
Date Sampled		5/05/2009	6/05/2009
Depth		-	-
Date Extracted (PCB's)		12/05/2009	12/05/2009
Date Analysed (PCB's)		12/05/2009	12/05/2009
Arochlor 1016	μg/L	<10	<10
Arochlor 1221	μg/L	<10	<10
Arochlor 1232	μg/L	<10	<10
Arochlor 1242	μg/L	<10	<10
Arochlor 1248	μg/L	<10	<10
Arochlor 1254	μg/L	<10	<10
Arochlor 1260	μg/L	<10	<10
Arochlor 1262	μg/L	<10	<10
Arochlor 1268	μg/L	<10	<10
Total Positive PCB	μg/L	<90.00	<90.00
PCB_Surrogate 1	%	71	70

Trace HM (ICP-MS)-Dissolved			
Our Reference:	UNITS	SE69125-8	SE69125-8
		6	7
Your Reference		QCA	QCB
Sample Matrix		Water	Water
Date Sampled		5/05/2009	6/05/2009
Depth		-	-
Date Extracted (Metals-ICPMS)		11/05/2009	11/05/2009
Date Analysed (Metals-ICPMS)		11/05/2009	11/05/2009
Arsenic	μg/L	<1	<1
Cadmium	μg/L	<0.1	<0.1
Chromium	μg/L	<1	<1
Copper	μg/L	<1	<1
Lead	μg/L	<1	<1
Nickel	μg/L	<1	<1
Zinc	μg/L	73	120

Mercury Cold Vapor/Hg Analyser			
Our Reference:	UNITS	SE69125-8	SE69125-8
		6	7
Your Reference		QCA	QCB
Sample Matrix		Water	Water
Date Sampled		5/05/2009	6/05/2009
Depth		-	-
Date Extracted (Mercury)		11/05/2009	11/05/2009
Date Analysed (Mercury)		11/05/2009	11/05/2009
Mercury (Dissolved)	mg/L	<0.0005	<0.0005

REPORT NO: SE69125 PROJECT: ENVIWARA00401AA

Asbestos ID in materials		
Our Reference:	UNITS	SE69125-6
		3
Your Reference		TP3
Sample Matrix		Fibro
Date Sampled		6/05/2009
Depth		0.9-1.0
Date Analysed		13/05/2009
Sample Description		120x10x4m
		m cement
		sheet
		fragments
Asbestos ID in materials	-	Chrysotile
		asbestos
		detected
		Amosite
		asbestos
		detected

PROJECT: ENVIWARA00401AA **REPORT NO: SE69125**

Moisture						
Our Reference:	UNITS	SE69125-1	SE69125-5	SE69125-1	SE69125-1	SE69125-1
				0	2	8
Your Reference		SB1	SB2	SB3	SB4	SB5
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		5/05/2009	5/05/2009	5/05/2009	5/05/2009	5/05/2009
Depth		0.0-0.1	0.0-0.1	0.4-0.5	0.1-0.2	0.9-1.0
Date Analysed (moisture)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Moisture	%	12	9	12	12	15

Moisture						
Our Reference:	UNITS	SE69125-2	SE69125-2	SE69125-2	SE69125-2	SE69125-2
		0	2	4	6	8
Your Reference		SB5	SB6	SB6	SB7	SB7
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		5/05/2009	5/05/2009	5/05/2009	5/05/2009	5/05/2009
Depth		2.9-3.0	0.4-0.5	1.9-2.0	0.0-0.1	0.9-1.0
Date Analysed (moisture)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Moisture	%	15	18	10	13	8

Moisture						
Our Reference:	UNITS	SE69125-3	SE69125-3	SE69125-3	SE69125-3	SE69125-3
		1	2	5	7	9
Your Reference		SB8	SB8	SS-1	SS-3	SS-5
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		5/05/2009	5/05/2009	6/05/2009	6/05/2009	6/05/2009
Depth		0.0-0.1	0.4-0.5	-	-	-
Date Analysed (moisture)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Moisture	%	6	8	14	4	2

Moisture						
Our Reference:	UNITS	SE69125-4	SE69125-4	SE69125-4	SE69125-4	SE69125-4
		0	1	3	4	5
Your Reference		SS-6	SS-7	SS-9	SS-10	SS-11
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		6/05/2009	6/05/2009	6/05/2009	6/05/2009	6/05/2009
Depth		-	-	-	-	-
Date Analysed (moisture)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Moisture	%	16	3	6	4	3

This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

Moisture						
Our Reference:	UNITS	SE69125-4	SE69125-4	SE69125-4	SE69125-5	SE69125-5
		6	8	9	4	7
Your Reference		SS-12	SS-14	TP1	TP2	TP3
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		6/05/2009	6/05/2009	6/05/2009	6/05/2009	6/05/2009
Depth		-	-	0.0-0.1	0.4-0.5	0.0-0.1
Date Analysed (moisture)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Moisture	%	9	4	10	11	17

Moisture						
Our Reference:	UNITS	SE69125-6	SE69125-6	SE69125-7	SE69125-7	SE69125-8
		7	9	2	9	2
Your Reference		TP4	TP4	QC1	QC6	QC8
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		6/05/2009	6/05/2009	5/05/2009	6/05/2009	6/05/2009
Depth		0.0-0.1	0.9-1.0	-	-	-
Date Analysed (moisture)		11/05/2009	11/05/2009	11/05/2009	11/05/2009	11/05/2009
Moisture	%	9	9	25	10	12

PROJECT: ENVIWARA00401AA REPORT NO: SE69125

Method ID	Methodology Summary
SEO-019	Volatile Organic Compounds - Soil samples are extracted with methanol, purged and concentrated by a purge and trap apparatus, and then analysed using GC/MS technique. Water samples undergo the same analysis without the extraction step. Based on USEPA 5030B and 8260B.
SEO-018	BTEX / C6-C9 Hydrocarbons - Soil samples are extracted with methanol, purged and concentrated by a purge and trap apparatus, and then analysed using GC/MS technique. Water samples undergo the same analysis without the extraction step. Based on USEPA 5030B and 8260B.
SEO-017	BTEX/TRH C6-C9 - Determination by Purge and Trap Gas Chromatography with Flame Ionisation Detection (FID) and Photo Ionisation Detection (PID). The surrogate spike used is aaa-trifluorotoluene.
SEO-020	Total Recoverable Hydrocarbons - determined by solvent extraction with dichloromethane / acetone for soils and dichloromethane for waters, followed by instrumentation analysis using GC/FID. Where applicable Solid Phase Extraction Manifold technique is used for aliphatic / aromatic fractionation.
SEO-030	Polynuclear Aromatic Hydrocarbons - determined by solvent extraction with dichloromethane / acetone for soils and dichloromethane for waters, followed by instrumentation analysis using GC/MS SIM mode.
SEO-005	OC/OP/PCB - Determination of a suite of Organchlorine Pesticides, Chlorinated Organo-phosphorus Pesticides and Polychlorinated Biphenyls (PCB's) by liquid-liquid extraction using dichloromethane for waters, or mechanical extraction using acetone / hexane for soils, followed by instrumentation analysis using GC/ECD. Based on USEPA 8081/8082.
AN289	Total Phenols - Determined by colourimetric method using Discrete Analyser, following distillation of the sample. Based on APHA 21st Edition 5530B and 5530D.
SEM-010	Determination of elements by ICP-OES following appropriate sample preparation / digestion process. Based on USEPA 6010C / APHA 21st Edition, 3120B.
SEM-005	Mercury - determined by Cold-Vapour AAS following appropriate sample preparation or digestion process. Based on APHA 21st Edition, 3112B.
AN602	Analysed using in house method AN602 - Qualitative identification of Asbestos Fibres, Synthetic Mineral Fibres and Organic Fibres in bulk samples (including building materials and soils) using Polarised Light Microscopy and Dispersion Staining Techniques. Our NATA Accreditation does not currently cover the identification of Synthetic Mineral Fibres and Organic Fibres, however, according to new NATA requirements, the reporting of these fibres is compulsory if detected.
PEO-800	PEO-800 - Volatile Organic Compounds and the C6-C9 Hydrocarbons fraction in waters, soils and sediments analysed by SGS Perth using Purge & Trap GC/MS. Method based on USEPA 8260, contained in SW846 Update 1, July 1992.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN002	Preparation of soils, sediments and sludges undergo analysis by either air drying, compositing, subsampling and 1:5 soil water extraction where required. Moisture content is determined by drying the sample at 105 \pm 5°C.

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 38 of 58

PROJECT: ENVIWARA00401AA REPORT NO: SE69125

Method ID	Methodology Summary

This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

REPORT NO:	SE69125
------------	---------

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
VCHs(37) in soil Sydney Water						Base + Duplicate + %RPD		Duplicate + %RPD
Date extracted				11/05/0 9	[NT]	[NT]	LCS	11/05/09
Date analysed				12/05/0 9	[NT]	[NT]	LCS	12/05/09
Dichlorodifluoromethane	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
Chloromethane	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
Vinyl Chloride	mg/kg	0.50	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
Bromomethane	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
Chloroethane	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
Trichlorofluoromethane	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
1,1-Dichloroethene	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	LCS	113%
trans-1,2-Dichloroeth ene	mg/kg	0.5	SEO-019	<0.50	[NT]	(NT)	[NR]	[NR]
1,1-Dichloroethane	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
<i>cis-</i> 1,2-Dichloroethen e	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
Bromochloromethane	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
Chloroform	mg/kg	1	SEO-019	<1.0	[NT]	[NT]	LCS	110%
2,2-Dichloropropane	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
1,2-Dichloroethane	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	LCS	123%
1,1,1-Trichloroethane	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
1,1-Dichloropropene	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
Carbon tetrachloride	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
Dibromomethane	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
1,2-Dichloropropane	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
Trichloroethene	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	LCS	112%
Bromodichloromethane	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
trans-1,3-Dicloroprop ene	mg/kg	0.5	SEO-019	<0.50	[NT]	(NT)	[NR]	[NR]
cis-1,3-Dichloroprope ne	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
1,1,2-Trichloroethane	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
1,3-Dichloropropane	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
Dibromochloromethane	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
1,2-Dibromoethane	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
Tetrachloroethene	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	(NR)	[NR]
1,1,1,2-Tetrachloroethan e	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
Chlorobenzene	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	LCS	122%
Bromoform	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
1,1,2,2-Tetrachloroethan e	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]

WORLD RECOGNISED ACCREDITATION

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 40 of 58

mg/kg

mg/kg

%

%

%

%

0.5

0.5

0

0

0

0

SEO-019

SEO-019

SEO-019

SEO-019

SEO-019

SEO-019

Hexachlorobutadiene

1,2,3-Trichlorobenzene

Dibromofluoromethane

1,2-Dichloroethane-d4

Toluene-d8 Surrogate

4-Bromofluorobenzene

Surrogate 3

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery Duplicate + %RPD
VCHs(37) in soil Sydney Water						Base + Duplicate + %RPD		Duplicate + 70111-D
1,2,3-Trichloropropane	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	(NR)
Bromobenzene	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	(NR)
2-Chlorotoluene	mg/kg	0.5	SEO-019	<0.50	(NT)	[NT]	[NR]	(NR)
4-Chlorotoluene	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	(NR)
1,3-Dichlorobenzene	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
1,4-Dichlorobenzene	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
1,2-Dichlorobenzene	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]
1,2-Dibromo-3-chloropro pane	mg/kg	0.5	SEO-019	<0.50	(NT)	[TM]	[NR]	[NR]
1,2,4-Trichlorobenzene	mg/kg	0.5	SEO-019	<0.50	[NT]	[NT]	[NR]	[NR]

<0.50

<0.50

104

104

100

91

[NT]

[NT]

(NT)

(NT)

[NT]

[NT]

(NT)

(NT)

[NT]

[NT]

[NT]

[NT]

REPORT NO: SE69125

[NR]

[NR]

LCS

LCS

LCS

LCS

[NR]

[NR]

101%

95%

97%

97%

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
BTEX in Soil						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted (BTEX)				11/05/0 9	SE69125-2 8	11/05/2009 11/05/2009	SE69125-5 7	11/05/09
Date Analysed (BTEX)				12/05/0 9	SE69125-2 8	12/05/2009 12/05/2009	SE69125-5 7	12/05/09
Benzene	mg/kg	0.5	SEO-018	<0.5	SE69125-2 8	<0.5 <0.5	SE69125-5 7	69%
Toluene	mg/kg	0.5	SEO-018	<0.5	SE69125-2 8	<0.5 <0.5	SE69125-5 7	73%
Ethylbenzene	mg/kg	0.5	SEO-018	<0.5	SE69125-2 8	<0.5 <0.5	SE69125-5 7	75%
m&p- Xylenes	mg/kg	1.0	SEO-017	<1.0	SE69125-2 8	<1.0 <1.0	SE69125-5 7	77%
o- Xylene	mg/kg	0.5	SEO-018	<0.5	SE69125-2 8	<0.5 <0.5	SE69125-5 7	76%
Total Xylenes	mg/kg	1.5	SEO-018	<1.5	SE69125-2 8	<1.5 <1.5	SE69125-5 7	77%
BTEX Surrogate (%)	%	0	SEO-018	108	SE69125-2 8	92 89 RPD: 3	SE69125-5 7	85%

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
FRH in soil withC6-C9 by P/T						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted (TRH C6-C9 PT)				11/05/0 9	SE69125-2 8	11/05/2009 11/05/2009	SE69125-5 7	11/05/09
Date Analysed (TRH C6-C9 PT)				12/05/0 9	SE69125-2 8	12/05/2009 12/05/2009	SE69125-5 7	12/05/09
TRH C6 - C9 P&T	mg/kg	20	SEO-018	<20	SE69125-2 8	<20 <20	SE69125-5 7	77%
Date Extracted (TRH C10-C36)				12/05/0 9	SE69125-2 8	12/05/2009 [N/T]	SE69125-5 7	12/05/09
Date Analysed (TRH C10-C36)				12/05/0 9	SE69125-2 8	12/05/2009 [N/T]	SE69125-5 7	12/05/09
TRH C10 - C14	mg/kg	20	SEO-020	<20	SE69125-2 8	<20 [N/T]	SE69125-5 7	109%
TRH C15 - C28	mg/kg	50	SEO-020	<50	SE69125-2 8	<50 [N/T]	SE69125-5 7	111%
TRH C29 - C36	mg/kg	50	SEO-020	<50	SE69125-2	<50 [N/T]	SE69125-5	83%

8

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
PAHs in Soil						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted				12/05/0 9	SE69125-1	12/05/2009 12/05/2009	SE69125-1 2	12/05/09
Date Analysed				12/05/0 9	SE69125-1	12/05/2009 12/05/2009	SE69125-1 2	12/05/09
Naphthalene	mg/kg	0.1	SEO-030	<0.10	SE69125-1	<0.10 <0.10	SE69125-1 2	93%
2-Methylnaphthalene	mg/kg	0.1	SEO-030	<0.10	SE69125-1	<0.10 <0.10	[NR]	[NR]
1-Methylnaphthalene	mg/kg	0.1	SEO-030	<0.10	SE69125-1	<0.10 <0.10	[NR]	[NR]
Acenaphthylene	mg/kg	0.1	SEO-030	<0.10	SE69125-1	<0.10 <0.10	SE69125-1 2	81%
Acenaphthene	mg/kg	0.1	SEO-030	<0.10	SE69125-1	<0.10 <0.10	SE69125-1 2	109%
Fluorene	mg/kg	0.1	SEO-030	<0.10	SE69125-1	<0.10 <0.10	(NR)	(NR)
Phenanthrene	mg/kg	0.1	SEO-030	<0.10	SE69125-1	<0.10 <0.10	SE69125-1 2	95%
Anthracene	mg/kg	0.1	SEO-030	<0.10	SE69125-1	<0.10 <0.10	SE69125-1 2	98%
Fluoranthene	mg/kg	0.1	SEO-030	<0.10	SE69125-1	<0.10 <0.10	SE69125-1 2	91%
Pyrene	mg/kg	0.1	SEO-030	<0.10	SE69125-1	<0.10 <0.10	SE69125-1 2	100%
Benzo[a]anthracene	mg/kg	0.1	SEO-030	<0.10	SE69125-1	<0.10 <0.10	[NR]	[NR]
Chrysene	mg/kg	0.1	SEO-030	<0.10	SE69125-1	<0.10 <0.10	[NR]	[NR]

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 42 of 58

REPORT NO: SE69125

7

%

%

2-Fluorobiphenyl

p -Terphenyl-d

14

0

0

SEO-030

SEO-030

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
PAHs in Soil						Base + Duplicate + %RPD		Duplicate + %RPD
Benzo[b,k]fluoranthe ne	mg/kg	0.2	SEO-030	<0.20	SE69125-1	<0.20 <0.20	(NR)	[NR]
Benzo[a]pyrene	mg/kg	0.05	SEO-030	<0.05	SE69125-1	<0.05 <0.05	SE69125-1 2	74%
Indeno[123-cd]pyren e	mg/kg	0.1	SEO-030	<0.10	SE69125-1	<0.10 <0.10	[NR]	(NR)
Dibenzo[ah]anthrace ne	mg/kg	0.1	SEO-030	<0.10	SE69125-1	<0.10 <0.10	[NR]	(NR)
Benzo[ghi]perylene	mg/kg	0.1	SEO-030	<0.10	SE69125-1	<0.10 <0.10	[NR]	[NR]
Total PAHs (sum)	mg/kg	1.75	SEO-030	<1.7	SE69125-1	<1.7 <1.7	[NR]	[NR]
Nitrobenzene-d5	%	0	SEO-030	85	SE69125-1	88 87 RPD: 1	SE69125-1	84%

98

86

SE69125-1

SE69125-1

REPORT NO: SE69125

2 SE69125-1

SE69125-1

2

103 || 102 || RPD: 1

90 || 90 || RPD: 0

102%

83%

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
OC Pesticides in Soil						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted				12/05/0 9	SE69125-3 9	12/05/2009 12/05/2009	SE69125-4 9	12/05/09
Date Analysed				12/05/0 9	SE69125-3 9	12/05/2009 12/05/2009	SE69125-4 9	12/05/09
НСВ	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
gamma-BHC (Lindane)	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	(NR)
Heptachlor	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	SE69125-4 9	75%
Aldrin	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	SE69125-4 9	73%
beta-BHC	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
delta-BHC	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	SE69125-4 9	85%
Heptachlor Epoxide	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
o,p-DDE	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
alpha-Endosulfan	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

RFI	PORT	NO·	SE69125

PROJECT:	ENVIVA	KAUU4U1	AA			REPORT	NO: SE6	9125
QUALITY CONTROL OC Pesticides in Soil	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Matrix Spike % Recovery Duplicate + %RPD
trans-Chlordane	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
cis-Chlordane	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
trans-Nonachlor	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	(NR)
p,p-DDE	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
Dieldrin	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	SE69125-4 9	67%
Endrin	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	SE69125-4 9	75%
o,p-DDD	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
o,p-DDT	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
beta-Endosulfan	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	(NR)	[NR]
p,p-DDD	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
p,p-DDT	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	SE69125-4 9	76%
Endosulfan Sulphate	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
Methoxychlor	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	(NR)	[NR]
Endrin Ketone	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
2,4,5,6-Tetrachloro-m-xy lene (Surrogate	%	0	SEO-005	92	SE69125-3 9	107 113 RPD: 5	SE69125-4 9	77%
	`							·

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025, NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

REPORT NO: SE69125

QUALITY CONTROL PCBs in Soil	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate Base + Duplicate +	Spike Sm#	Matrix Spike % Recovery Duplicate + %RPD
						%RPD		
Date Extracted				12/05/0 9	SE69125-3 9	12/05/2009 12/05/2009	SE69125-7 2	12/05/09
Date Analysed				12/05/0 9	SE69125-3 9	12/05/2009 12/05/2009	SE69125-7 2	12/05/09
Arochlor 1016	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
Arochlor 1221	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	(NR)
Arochlor 1248	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	(NR)
Arochlor 1254	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
Arochlor 1260	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	SE69125-7 2	74%
Arochlor 1262	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
Arochlor 1268	mg/kg	0.1	SEO-005	<0.1	SE69125-3 9	<0.1 <0.1	[NR]	[NR]
Total Positive PCB	mg/kg	0.9	SEO-005	<0.90	SE69125-3 9	<0.90 <0.90	[NR]	[NR]
PCB_Surrogate 1	%	0	SEO-005	92	SE69125-3 9	107 113 RPD: 5	SE69125-7 2	86%

This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

UNITS

mg/kg

0.1

AN289

QUALITY CONTROL

Total Phenolics in Soil

Date Extracted (Phenols)

Date Analysed (Phenols)

Total Phenolics (as

Phenol)

LOR	METHOD	Blank	Duplicate Sm#	Duplicate Base + Duplicate + %RPD	Base + Duplicate +	
		11/05/0 9	[NT]	[NT]	SE69125-1	11/05/09
		11/05/0	INTI	(NT)	SE69125-1	11/05/09

[NT]

REPORT NO: SE69125

SE69125-1

101%

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
Metals in Soil by ICP-OES						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted (Metals)				11/05/2 009	SE69125-1	11/05/2009 11/05/2009	SE69125-5	11/05/2009
Date Analysed (Metals)				11/05/2 009	SE69125-1	11/05/2009 11/05/2009	SE69125-5	11/05/2009
Arsenic	mg/kg	3	SEM-010	<3	SE69125-1	6 6 RPD: 0	SE69125-5	70%
Cadmium	mg/kg	0.3	SEM-010	<0.3	SE69125-1	0.4 0.4 RPD: 0	SE69125-5	75%
Chromium	mg/kg	0.3	SEM-010	<0.3	SE69125-1	20 20 RPD: 0	SE69125-5	76%
Copper	mg/kg	0.5	SEM-010	<0.5	SE69125-1	20 20 RPD: 0	SE69125-5	83%
Lead	mg/kg	1	SEM-010	<1	SE69125-1	20 19 RPD: 5	SE69125-5	70%
Nickel	mg/kg	0.5	SEM-010	<0.5	SE69125-1	19 19 RPD: 0	SE69125-5	74%
Zinc	mg/kg	0.5	SEM-010	<0.5	SE69125-1	58 59 RPD: 2	SE69125-5	86%

9

<0.1

[NT]

QUALITY CONTROL Mercury Cold Vapor/Hg Analyser	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Matrix Spike % Recovery Duplicate + %RPD
Date Extracted (Mercury)				11/05/2 009	SE69125-1	11/05/2009 11/05/2009	SE69125-5	11/05/2009
Date Analysed (Mercury)				11/05/2 009	SE69125-1	11/05/2009 11/05/2009	SE69125-5	11/05/2009
Mercury	mg/kg	0.05	SEM-005	<0.05	SE69125-1	<0.05 <0.05	SE69125-5	100%

WORLD RECOGNISED ACCREDITATION

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

t +61 (0)2 8594 0400 f + 61 (0)2 8594 0499

QUALITY CONTROL	UNITS	LOR	METHOD	Blank
Asbestos ID in soil				
Date Analysed				[NT]

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
BTEX in Water (µg/L)						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted (BTEX)				12/05/0 9	[NT]	[NT]	LCS	12/05/09
Date Analysed (BTEX)				12/05/0 9	[NT]	[NT]	LCS	12/05/09
Benzene	μg/L	0.5	SEO-018	<0.5	[NT]	[NT]	LCS	101%
Toluene	μg/L	0.5	SEO-018	<0.5	[NT]	[NT]	LCS	101%
Ethylbenzene	μg/L	0.5	SEO-018	<0.5	[NT]	(NT)	LCS	101%
m&p-Xylene	μg/L	1	PEO-800	<1	[NT]	(NT)	LCS	100%
o-Xylene	µg/L	0.5	SEO-018	<0.5	[NT]	[NT]	LCS	101%
Total Xylenes	µg/L	1.5	SEO-018	<1.5	[NT]	(NT)	LCS	101%
Surrogate	%	0	SEO-018	98	[NT]	(NT)	LCS	76%

REPORT NO: SE69125

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
TRH C6-C9 by P/T ONLY-in water						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted (TRH C6-C9 PT)				12/05/0 9	[NT]	[NT]	LCS	12/05/09
Date Analysed (TRH C6-C9 PT)				12/05/0 9	[NT]	[NT]	LCS	12/05/09
TRH C6 - C9 P&T in µg/L	μg/L	40	SEO-018	<40	[NT]	[NT]	LCS	98%

QUALITY CONTROL TRH in water with C6-C9 by P/T	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Matrix Spike % Recovery Duplicate + %RPD
Date Extracted (TRH C6-C9 PT)				12/05/0 9	[NT]	[NT]	LCS	12/05/09
Date Analysed (TRH C6-C9 PT)				12/05/0 9	(NT)	[NT]	LCS	12/05/09
TRH C6 - C9 P&T in µg/L	μg/L	40	SEO-018	<40	(NT)	[NT]	LCS	98%
Date Extracted (TRH C10-C36)				12/05/2 009	(NT)	[NT]	LCS	12/05/2009
Date Analysed (TRH C10-C36)				12/05/2 009	(NT)	[NT]	LCS	12/05/2009
TRH C10 - C14	μg/L	100	SEO-020	<100	[NT]	[NT]	LCS	93%

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

QUALITY CONTROL TRH in water with C6-C9 by P/T	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Matrix Spike % Recovery Duplicate + %RPD
TRH C15 - C28	µg/L	200	SEO-020	<200	[NT]	[NT]	LCS	98%
TRH C29 - C36	μg/L	200	SEO-020	<200	[NT]	(NT)	LCS	90%

REPORT NO: SE69125

QUALITY CONTROL PAHs in Water	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Matrix Spike % Recovery Duplicate + %RPD
Date Extracted				12/05/0 9	[NT]	[NT]	LCS	12/05/09
Date Analysed				12/05/0 9	[NT]	[NT]	LCS	12/05/09
Naphthalene	μg/L	0.5	SEO-030	<0.50	[NT]	[NT]	LCS	102%
2-Methylnaphthalene	µg/L	0.5	SEO-030	<0.5	[NT]	[NT]	[NR]	(NR)
1-Methylnaphthalene	µg/L	0.5	SEO-030	<0.5	[NT]	[NT]	[NR]	[NR]
Acenaphthylene	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	LCS	94%
Acenaphthene	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	LCS	121%
Fluorene	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	[NR]	[NR]
Phenanthrene	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	LCS	111%
Anthracene	μg/L	0.5	SEO-030	<0.50	[NT]	[NT]	LCS	113%
Fluoranthene	μg/L	0.5	SEO-030	<0.50	[NT]	[NT]	LCS	113%
Pyrene	μg/L	0.5	SEO-030	<0.50	[NT]	[NT]	LCS	121%
Benzo[a]anthracene	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	[NR]	[NR]
Chrysene	µg/L	0.5	SEO-030	<0.50	(NT)	[NT]	[NR]	[NR]
Benzo[b,k]fluoranthe ne	µg/L	1	SEO-030	<1.0	[NT]	[NT]	[NR]	[NR]
Benzo[a]pyrene	μg/L	0.5	SEO-030	<0.50	[NT]	(NT)	LCS	107%
Indeno[123-cd]pyren e	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	(NR)	[NR]
Dibenzo[ah]anthrace ne	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	[NR]	[NR]
Benzo[ghi]perylene	μg/L	0.5	SEO-030	<0.50	(NT)	[NT]	[NR]	[NR]
Total PAHs	µg/L	9	SEO-030	<9	(NT)	[NT]	[NR]	[NR]
Nitrobenzene-d5	%	0	SEO-030	98	[NT]	[NT]	LCS	98%
2-Fluorobiphenyl	%	0	SEO-030	102	[NT]	[NT]	LCS	98%
p -Terphenyl-d 14	%	0	SEO-030	106	[NT]	[NT]	LCS	101%

This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

REPORT NO: SE69125

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
OC Pesticides in Water						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted				12/05/0 9	[NT]	[NT]	LCS	12/05/09
Date Analysed				12/05/0 9	[NT]	[NT]	LCS	12/05/09
HCB	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	[NR]	[NR]
alpha-BHC	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	[NR]	[NR]
gamma -BHC(lindane)	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	[NR]	[NR]
Heptachlor	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	LCS	97%
Aldrin	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	LCS	96%
beta-BHC	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	[NR]	[NR]
delta-BHC	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	LCS	107%
Heptachlor Epoxide	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	[NR]	[NR]
o,p-DDE	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	[NR]	[NR]
alpha-Endosulfan	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	[NR]	[NR]
trans-Chlordane	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	[NR]	[NR]
cis-Chlordane	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	[NR]	[NR]
trans-Nonachlor	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	[NR]	[NR]
p,p-DDE	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	[NR]	[NR]
Dieldrin	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	LCS	88%
Endrin	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	LCS	98%
o,p-DDD	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	[NR]	[NR]
o,p-DDT	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	(NR)	(NR)
beta-Endosulfan	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	[NR]	[NR]
p,p-DDD	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	[NR]	[NR]
p,p-DDT	µg/L	0.2	SEO-005	<0.2	[NT]	[NT]	LCS	91%
Endosulfan Sulphate	μg/L	0.2	SEO-005	<0.2	[NT]	(NT)	[NR]	[NR]
Endrin Aldehyde	μg/L	0.2	SEO-005	<0.2	[NT]	(NT)	[NR]	[NR]
Methoxychlor	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	[NR]	[NR]
Endrin Ketone	μg/L	0.2	SEO-005	<0.2	[NT]	[NT]	[NR]	[NR]
2,4,5,6-Tetrachloro-m-xy lene (Surrogate	%	0	SEO-005	92	[NT]	[NT]	LCS	90%

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
PCBs in Water	The state of the s					Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted (PCB's)				12/05/0 9	(NT)	[NT]	LCS	12/05/09
Date Analysed (PCB's)				12/05/0 9	[NT]	[NT]	LCS	12/05/09
Arochlor 1016	µg/L	10	SEO-005	<10	[NT]	[NT]	[NR]	[NR]
Arochlor 1221	µg/L	10	SEO-005	<10	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	μg/L	10	SEO-005	<10	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	μg/L	10	SEO-005	<10	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	μg/L	10	SEO-005	<10	[NT]	[NT]	[NR]	(NR)
Arochlor 1254	μg/L	10	SEO-005	<10	[NT]	[NT]	[NR]	(NR)
Arochlor 1260	μg/L	10	SEO-005	<10	[NT]	[NT]	LCS	92%
Arochlor 1262	µg/L	10	SEO-005	<10	(NT)	[NT]	[NR]	[NR]
Arochlor 1268	μg/L	10	SEO-005	<10	[NT]	[NT]	[NR]	[NR]
Total Positive PCB	μg/L	10	SEO-005	<90	[NT]	[NT]	[NR]	[NR]
PCB_Surrogate 1	%	0	SEO-005	92	[NT]	[NT]	LCS	91%

REPORT NO: SE69125

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
Trace HM (ICP-MS)-Dissolved						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted (Metals-ICPMS)				11/05/2 009	(NT)	[NT]	SE69125-1	11/05/2009
Date Analysed (Metals-ICPMS)				11/05/2 009	[NT]	[NT]	SE69125-1	11/05/2009
Arsenic	μg/L	1	AN318	<1	[NT]	[NT]	SE69125-1	98%
Cadmium	μg/L	0.1	AN318	<0.1	[NT]	[NT]	SE69125-1	102%
Chromium	µg/L	1	AN318	<1	[NT]	[NT]	SE69125-1	101%
Copper	μg/L	1	AN318	<1	[NT]	[NT]	SE69125-1	99%
Lead	μg/L	1	AN318	<1	(NT)	[NT]	SE69125-1	101%
Nickel	µg/L	1	AN318	<1	[NT]	[NT]	SE69125-1	100%
Zinc	μg/L	1	AN318	<1	[NT]	[NT]	SE69125-1	99%

WORLD RECOGNISED ACCREDITATION

This document is issued in accordance with NATA's accreditation requirements. A Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

QUALITY CONTROL Mercury Cold Vapor/Hg Analyser	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Matrix Spike % Recovery Duplicate + %RPD
Date Extracted (Mercury)				11/05/2 009	[NT]	[NT]	LCS	11/05/2009
Date Analysed (Mercury)				11/05/2 009	[NT]	[NT]	LCS	11/05/2009
Mercury (Dissolved)	mg/L	0.0005	SEM-005	<0.000 5	[NT]	[NT]	LCS	109%

REPORT NO: SE69125

QUALITY CONTROL	UNITS	LOR	METHOD	Blank
Asbestos ID in materials				
Date Analysed				[NT]

QUALITY CONTROL	UNITS	LOR	METHOD	Blank
Hold sample-NO test required				
Sample on HOLD		[NT]		[NT]

QUALITY CONTROL	UNITS	LOR	METHOD	Blank
Moisture				
Date Analysed (moisture)				(NT)
Moisture	%	1	AN002	<1

QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
TRH in soil withC6-C9 by P/T			Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted (TRH C6-C9 PT)		SE69125-6 7	11/05/2009 11/05/2009	[NR]	[NR]
Date Analysed (TRH C6-C9 PT)		SE69125-6 7	12/05/2009 12/05/2009	[NR]	[NR]
TRH C6 - C9 P&T	mg/kg	SE69125-6 7	<20 <20	[NR]	[NR]
Date Extracted (TRH C10-C36)		SE69125-6 7	12/05/2009 12/05/2009	SE69125-1 0	12/05/09
Date Analysed (TRH C10-C36)		SE69125-6 7	12/05/2009 12/05/2009	SE69125-1 0	12/05/09
TRH C10 - C14	mg/kg	SE69125-6 7	<20 <20	SE69125-1 0	103%
TRH C15 - C28	mg/kg	SE69125-6 7	<50 <50	SE69125-1 0	102%

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 51 of 58

REPORT NO: SE69125

QUALITY CONTROL TRH in soil withC6-C9 by	UNITS	Dup. Sm#	Duplicate Base + Duplicate +	Spike Sm#	Matrix Spike % Recovery Duplicate + %RPD
P/T			%RPD		Dupilcate + %RPD
TRH C29 - C36	mg/kg	SE69125-6 7	<50 <50	SE69125-1 0	81%

QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted		SE69125-3 5	12/05/2009 12/05/2009	SE69125-8 2	12/05/09
Date Analysed		SE69125-3 5	12/05/2009 12/05/2009	SE69125-8 2	12/05/09
Naphthalene	mg/kg	SE69125-3 5	<0.10 <0.10	SE69125-8 2	93%
2-Methylnaphthalene	mg/kg	SE69125-3 5	<0.10 <0.10	[NR]	[NR]
1-Methylnaphthalene	mg/kg	SE69125-3 5	<0.10 <0.10	[NR]	[NR]
Acenaphthylene	mg/kg	SE69125-3 5	<0.10 <0.10	SE69125-8 2	88%
Acenaphthene	mg/kg	SE69125-3 5	<0.10 <0.10	SE69125-8 2	111%
Fluorene	mg/kg	SE69125-3 5	<0.10 <0.10	[NR]	[NR]
Phenanthrene	mg/kg	SE69125-3 5	<0.10 <0.10	SE69125-8 2	99%
Anthracene	mg/kg	SE69125-3 5	<0.10 <0.10	SE69125-8 2	103%
Fluoranthene	mg/kg	SE69125-3 5	<0.10 <0.10	SE69125-8 2	103%
Pyrene	mg/kg	SE69125-3 5	<0.10 <0.10	SE69125-8 2	106%
Benzo[a]anthracene	mg/kg	SE69125-3 5	<0.10 <0.10	[NR]	[NR]
Chrysene	mg/kg	SE69125-3 5	<0.10 <0.10	[NR]	[NR]
Benzo[b,k]fluoranthene	mg/kg	SE69125-3 5	<0.20 <0.20	[NR]	(NR)
Benzo[a]pyrene	mg/kg	SE69125-3 5	<0.05 <0.05	SE69125-8 2	97%
Indeno[123-cd]pyrene	mg/kg	SE69125-3 5	<0.10 <0.10	[NR]	[NR]
Dibenzo[ah]anthracene	mg/kg	SE69125-3 5	<0.10 <0.10	(NR)	[NR]

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 52 of 58

REPORT NO: SE69125

QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		Duplicate + %RPD
Benzo[<i>ghi</i>]perylene	mg/kg	SE69125-3 5	<0.10 <0.10	[NR]	[NR]
Total PAHs (sum)	mg/kg	SE69125-3 5	<1.7 <1.7	[NR]	[NR]
Nitrobenzene-d5	%	SE69125-3 5	82 77 RPD: 6	SE69125-8 2	86%
2-Fluorobiphenyl	%	SE69125-3 5	94 87 RPD: 8	SE69125-8 2	80%
p -Terphenyl-d14	%	SE69125-3 5	89 74 RPD: 18	SE69125-8 2	78%

QUALITY CONTROL Metals in Soil by ICP-OES	UNITS	Dup. Sm#	Duplicate Base + Duplicate +	Spike Sm#	Matrix Spike % Recovery Duplicate + %RPD
			%RPD		
Date Extracted (Metals)		SE69125-3 1	11/05/2009 11/05/2009	SE69125-4 8	11/05/2009
Date Analysed (Metals)		SE69125-3 1	11/05/2009 11/05/2009	SE69125-4 8	11/05/2009
Arsenic	mg/kg	SE69125-3 1	3 3 RPD: 0	SE69125-4 8	81%
Cadmium	mg/kg	SE69125-3 1	0.3 0.3 RPD: 0	SE69125-4 8	82%
Chromium	mg/kg	SE69125-3 1	14 13 RPD: 7	SE69125-4 8	89%
Copper	mg/kg	SE69125-3 1	18 17 RPD: 6	SE69125-4 8	92%
Lead	mg/kg	SE69125-3 1	4 4 RPD: 0	SE69125-4 8	75%
Nickel	mg/kg	SE69125-3 1	16 15 RPD: 6	SE69125-4 8	83%
Zinc	mg/kg	SE69125-3 1	32 29 RPD: 10	SE69125-4 8	90%

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

•	ED	\sim	ЭΤ	N	0:	Q1	E69	125
R	רם	UI	∢ι.	N	U:	- 51	EOS	120

QUALITY CONTROL Mercury Cold Vapor/Hg Analyser	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Matrix Spike % Recovery Duplicate + %RPD
Date Extracted (Mercury)		SE69125-3 1	11/05/2009 11/05/2009	LCS	11/05/2009
Date Analysed (Mercury)		SE69125-3 1	11/05/2009 11/05/2009	LCS	11/05/2009
Mercury	mg/kg	SE69125-3 1	<0.05 <0.05	LCS	111%

QUALITY CONTROL BTEX in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD
Date Extracted (BTEX)		SE69125-5 4	11/05/2009 11/05/2009
Date Analysed (BTEX)		SE69125-5 4	12/05/2009 12/05/2009
Benzene	mg/kg	SE69125-5 4	<0.5 <0.5
Toluene	mg/kg	SE69125-5 4	<0.5 <0.5
Ethylbenzene	mg/kg	SE69125-5 4	<0.5 <0.5
m&p- Xylenes	mg/kg	SE69125-5 4	<1.0 <1.0
o- Xylene	mg/kg	SE69125-5 4	<0.5 <0.5
Total Xylenes	mg/kg	SE69125-5 4	<1.5 <1.5
BTEX Surrogate (%)	%	SE69125-5 4	83 78 RPD: 6

QUALITY CONTROL TRH in soil withC6-C9 by P/T	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD
Date Extracted (TRH C6-C9 PT)		SE69125-5 4	11/05/2009 11/05/2009
Date Analysed (TRH C6-C9 PT)		SE69125-5 4	12/05/2009 12/05/2009
TRH C6 - C9 P&T	mg/kg	SE69125-5 4	<20 <20
Date Extracted (TRH C10-C36)		SE69125-5 4	12/05/2009 [N/T]
Date Analysed (TRH C10-C36)		SE69125-5 4	12/05/2009 [N/T]
TRH C10 - C14	mg/kg	SE69125-5 4	<20 [N/T]
TRH C15 - C28	mg/kg	SE69125-5 4	<50 [N/T]
TRH C29 - C36	mg/kg	SE69125-5 4	<50 [N/T]

QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate
PAHs in Soil			Base + Duplicate + %RPD
Date Extracted		SE69125-6 7	12/05/2009 12/05/2009
Date Analysed		SE69125-6 7	12/05/2009 12/05/2009
Naphthalene	mg/kg	SE69125-6 7	<0.10 <0.10
2-Methylnaphthalene	mg/kg	SE69125-6 7	<0.10 <0.10
1-Methylnaphthalene	mg/kg	SE69125-6 7	<0.10 <0.10
Acenaphthylene	mg/kg	SE69125-6 7	<0.10 <0.10
Acenaphthene	mg/kg	SE69125-6 7	<0.10 <0.10
Fluorene	mg/kg	SE69125-6 7	<0.10 <0.10
Phenanthrene	mg/kg	SE69125-6 7	<0.10 <0.10
Anthracene	mg/kg	SE69125-6 7	<0.10 <0.10
Fluoranthene	mg/kg	SE69125-6 7	<0.10 <0.10
Pyrene	mg/kg	SE69125-6 7	<0.10 <0.10

This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

Page 55 of 58

	T	T	I
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate
PAHs in Soil			Base + Duplicate + %RPD
Benzo[a]anthracene	mg/kg	SE69125-6 7	<0.10 <0.10
Chrysene	mg/kg	SE69125-6 7	<0.10 <0.10
Benzo[b,k]fluoranthene	mg/kg	SE69125-6 7	<0.20 <0.20
Benzo[a]pyrene	mg/kg	SE69125-6 7	<0.05 <0.05
Indeno[123-cd]pyrene	mg/kg	SE69125-6 7	<0.10 <0.10
Dibenzo[ah]anthracene	mg/kg	SE69125-6 7	<0.10 <0.10
Benzo[ghi]perylene	mg/kg	SE69125-6 7	<0.10 <0.10
Total PAHs (sum)	mg/kg	SE69125-6 7	<1.7 <1.7
Nitrobenzene-d5	%	SE69125-6 7	107 103 RPD: 4
2-Fluorobiphenyl	%	SE69125-6 7	99 96 RPD: 3
p -Terphenyl-d14	%	SE69125-6 7	97 94 RPD: 3

QUALITY CONTROL Metals in Soil by ICP-OES	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD
Date Extracted (Metals)		SE69125-4 6	11/05/2009 11/05/2009
Date Analysed (Metals)		SE69125-4 6	11/05/2009 11/05/2009
Arsenic	mg/kg	SE69125-4 6	4 4 RPD: 0
Cadmium	mg/kg	SE69125-4 6	<0.3 <0.3
Chromium	mg/kg	SE69125-4 6	16 15 RPD: 6
Copper	mg/kg	SE69125-4 6	15 14 RPD: 7
Lead	mg/kg	SE69125-4 6	14 13 RPD: 7
Nickel	mg/kg	SE69125-4 6	15 15 RPD: 0
Zinc	mg/kg	SE69125-4 6	52 50 RPD: 4

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

QUALITY CONTROL Mercury Cold Vapor/Hg Analyser	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD
Date Extracted (Mercury)		SE69125-4 6	11/05/2009 11/05/2009
Date Analysed (Mercury)	All parties of the state of the	SE69125-4 6	11/05/2009 11/05/2009
Mercury	mg/kg	SE69125-4 6	0.05 <0.05

QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate
TRH in soil withC6-C9 by P/T		along Market and a state of the	Base + Duplicate + %RPD
Date Extracted (TRH C6-C9 PT)		SE69125-1	11/05/2009 (N/T)
Date Analysed (TRH C6-C9 PT)		SE69125-1	12/05/2009 [N/T]
TRH C6 - C9 P&T	mg/kg	SE69125-1	<20 [N/T]
Date Extracted (TRH C10-C36)		SE69125-1	12/05/2009 12/05/2009
Date Analysed (TRH C10-C36)		SE69125-1	12/05/2009 12/05/2009
TRH C10 - C14	mg/kg	SE69125-1	<20 <20
TRH C15 - C28	mg/kg	SE69125-1	<50 <50
TRH C29 - C36	mg/kg	SE69125-1	<50 <50

QUALITY CONTROL TRH in soil withC6-C9 by P/T	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD
Date Extracted (TRH C6-C9 PT)		SE69125-3 5	11/05/2009 [N/T]
Date Analysed (TRH C6-C9 PT)		SE69125-3 5	12/05/2009 [N/T]
TRH C6 - C9 P&T	mg/kg	SE69125-3 5	<20 [N/T]
Date Extracted (TRH C10-C36)		SE69125-3 5	12/05/2009 12/05/2009
Date Analysed (TRH C10-C36)		SE69125-3 5	12/05/2009 12/05/2009
TRH C10 - C14	mg/kg	SE69125-3 5	150 130 RPD: 14
TRH C15 - C28	mg/kg	SE69125-3 5	130 110 RPD: 17
TRH C29 - C36	mg/kg	SE69125-3 5	130 150 RPD: 14

This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

PROJECT: ENVIWARA00401AA REPORT NO: SE69125

Result Codes

[INS] : Insufficient Sample for this test

[NR] : Not Requested

[NT] : Not tested

[RPD] : Relative Percentage Difference* : Not part of NATA Accreditation

[N/A] : Not Applicable

Report Comments

Sampled by the client

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos-containing bulk materials using polarised light microscopy.

This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

No respirable fibres detected using trace analysis technique.

Asbestos analysed by Approved Identifier Ravee Sivasubramaniam.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Date Organics extraction commenced:

11/05/09

NATA Corporate Accreditation No. 2562, Site No 4354

Note: Test results are not corrected for recovery (excluding Dioxins/Furans*)

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

Quality Control Protocol

Method Blank: An analyte free matrix to which all reagents are added in the same volume or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. A method blank is prepared every 20 samples.

Duplicate: A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.

Surrogate Spike: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are added to samples before extraction to monitor extraction efficiency and percent recovery in each sample.

Internal Standard: Added to all samples requiring analysis for organics (where relevant) or metals by ICP after the extraction/digestion process; the compounds/elements serve to give a standard of retention time and/or response, which is invariant from run-to-run with the instruments.

Laboratory Control Sample: A known matrix spiked with compound(s) representative of the target analytes. It is used to document laboratory performance. When the results of the matrix spike analysis indicates a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

Matrix Spike: An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Quality Acceptance Criteria

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf

WORLD RECOGNISES

ACCREDITATION

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Environmental Consulting Pty. Ltd.

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal address: P. O. Box 276, Oakleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190 Email: mgt@mgtenv.com.au

CERTIFICATE OF ANALYSIS

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook

New South Wales 2304 Site: ENVIWARA00401AA Report Number: 245139-A-V1 Page 1 of 8

Order Number:

Date Received: May 11, 2009 Date Sampled: May 11, 2009 Date Reported: May 15, 2009 Contact: Emma Coleman

Methods

- USEPA 8082 Polychlorinated Biphenyls
 USEPA 8081A Organochlorine Pesticides
 USEPA 8270C Polycyclic Aromatic Hydrocarbons
 USEPA 8260B MGT 350A Monocyclic Aromatic Hydrocarbons
- TŔH C6-C36 MGT 100A
- USEPA 6010B Heavy Metals & USEPA 7470/71 Mercury
- Method 102 ANZECC % Moisture

Comments

Notes

Authorised

Report Number: 245139-A-V1

Michael Wright Laboratory Manager NATA Signatory

Onur Mehmet Client Manager NATA Signatory

Orlando Scalzo Chief Organic Chemist NATA Signatory

Tammy Lakeland Chief Inorganic Chemist

NATA Accredited
Laboratory Number 1261
The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced, except in full.

Environmental Consulting Pty. Ltd.

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal address: P. O. Box 276, Oakleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190

Email: mgt@mgtenv.com.au

GLOSSARY OF TERMS

UNITS

mg/kg ug/i

ora/100ml

milligrams per Kilogram micrograms per litre Parts per billion

Organisms per 100 millilitres

ma/l ppm MTH

milligrams per litre Parts per million Percentage

TERMS

ppb

Dry LOR Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

SPIKE

Addition of the analyte to the sample and reported as percentage recovery. Relative Percent Difference between two Duplicate pieces of analysis.

RPD LCS

Laboratory Control Sample - reported as percent recovery

CRM Method Blank

Certified Reference Material - reported as percent recovery In the case of solid samples these are performed on laboratory certified clean sands.

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate

The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate

A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate Batch SPIKE

A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis. Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA

United States Environment Protection Authority

ΔΡΗΔ

American Public Health Association

ASLP TCLP

Australian Standard Leaching Procedure (AS4439.3)

Toxicity Characteristic Leaching Procedure

COC

Chain of Custody

SRA

Sample Receipt Advice

QC - ACCEPTANCE CRITERIA
RPD Duplicates Results <10 times the LOR : No Limit

Results between 10-20 times LOR: RPD must lie between 0-50%

Results >20 times LOR : RPD must lie between 0-20%

LCS Recoveries **CRM Recoveries** Recoveries must lie between 70-130% - Phenois 40-150% Recoveries must lie between 70-130% - Phenols 40-150%

Method Blanks

Not to exceed LOR

SPIKE Recoveries Recoveries must lie between 70-130% - Phenols 40-150%

GENERAL COMMENTS

- All results in this report supersede any previously corresponded results.
- All soil results are reported on a dry basis
- Samples are analysed on an as received basis.

QC DATA GENERAL COMMENTS

- Where a result is reported as a less than (<), higher than the nominated LOR this is due to either Matrix Interference, extract dilution required due to
- interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.

 Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS. Orgaonchlorine Pesticide analysis - where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report
- 6. Recovery Data (Spikes & Surrogates) - where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that
- Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- Duplicate RPD's are calculated from raw analytical data thus it is possible to have two two sets of data below the LOR with a positive RPD eg: LOR 0.1, Result A = <0.1 (raw data is 0.02) & Result B = <0.1 (raw data is 0.03) resulting in a RPD of 40% calculated from the raw data.

REPORT SPECIFIC NOTES

Environmental Consulting Pty. Ltd.

Coffey Environments Pty Ltd Newcastle	Client Sample ID		QC1A	
Lot 101, 19 Warabrook Boulevard				
Warabrook	Lab Number		M09-MY03057	
New South Wales 2304	Matrix		Soil	
	Sample Date		May 11, 2009	
Analysis Type	LOR	Units		
Total Recoverable Hydrocarbons				
TRH C6-C9 Fraction by GC	20	mg/kg	< 20	
TRH C10-C14 Fraction by GC	50	mg/kg	< 50	
TRH C15-C28 Fraction by GC	100	mg/kg	< 100	
TRH C29-C36 Fraction by GC	100	mg/kg	< 100	
Monocyclic Aromatic Hydrocarbons				
Benzene	0.05	mg/kg	< 0.05	
Toluene	0.05	mg/kg	< 0.05	
Ethylbenzene	0.05	mg/kg	< 0.05	
Xylenes(ortho.meta and para)	0.05	mg/kg	< 0.05	
Fluorobenzene (surr.)	1	%	85	
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	0.1	mg/kg	< 0.1	
Acenaphthylene	0.1	mg/kg	< 0.1	
Anthracene	0.1	mg/kg	< 0.1	
Benz(a)anthracene	0.1	mg/kg	< 0.1	
Benzo(a)pyrene	0.1	mg/kg	< 0.1	
Benzo(b)fluoranthene	0.1	mg/kg	< 0.1	
Benzo(g.h.i)perylene	0.1	mg/kg	< 0.1	
Benzo(k)fluoranthene	0.1	mg/kg	< 0.1	
Chrysene	0.1	mg/kg	< 0.1	
Dibenz(a.h)anthracene	0.1	mg/kg	< 0.1	
Fluoranthene	0.1	mg/kg	< 0.1	
Fluorene	0.1	mg/kg	< 0.1	
Indeno(1.2.3-cd)pyrene	0.1	mg/kg	< 0.1	
Naphthalene	0.1	mg/kg	< 0.1	
Phenanthrene	0.1	mg/kg	< 0.1	
Pyrene	0.1	mg/kg	< 0.1	
Total PAH	0.1	mg/kg	< 0.1	
Terphenyl-d14 (surr.)	1	%	106	
2-Fluorobiphenyl (surr.)	1	%	119	
, , , ,				

Coffey Environments Pty Ltd Newcastle	Client Sample ID		QC1A	
Lot 101, 19 Warabrook Boulevard	Lab Number		M09-MY03057	
Warabrook	Matrix		Soil	
New South Wales 2304	Sample Date		May 11, 2009	
Analysis Type	LOR	Units		
Organochlorine Pesticides		ref Milatoria eventur (1.) etminote parimentur (1.)		
4.4'-DDD	0.05	mg/kg	< 0.05	
4.4'-DDE	0.05	mg/kg	< 0.05	
4.4'-DDT	0.05	mg/kg	< 0.05	
a-BHC	0.05	mg/kg	< 0.05	
Aldrin	0.05	mg/kg	< 0.05	
b-BHC	0.05	mg/kg	< 0.05	
Chlordane	0.1	mg/kg	< 0.1	
d-BHC	0.05	mg/kg	< 0.05	
Dieldrin	0.05	mg/kg	< 0.05	
Endosulfan I	0.05	mg/kg	< 0.05	
Endosulfan II	0.05	mg/kg	< 0.05	
Endosulfan sulphate	0.05	mg/kg	< 0.05	
Endrin	0.05	mg/kg	< 0.05	
Endrin aldehyde	0.05	mg/kg	< 0.05	
Endrin ketone	0.05	mg/kg	< 0.05	
g-BHC (Lindane)	0.05	mg/kg	< 0.05	
Heptachlor	0.05	mg/kg	< 0.05	
Heptachlor epoxide	0.05	mg/kg	< 0.05	
Hexachlorobenzene	0.05	mg/kg	< 0.05	
Methoxychlor	0.05	mg/kg	< 0.05	
Toxophene .	0.1	mg/kg	< 0.1	
Dibutylchlorendate (surr.)	1	%	94	
Tetrachloro-m-xylene (surr.)	1	%	133	
Polychlorinated Biphenyls				
Aroclor-1016	0.1	mg/kg	< 0.1	
Aroclor-1221	0.1	mg/kg	< 0.1	
Aroclor-1232	0.1	mg/kg	< 0.1	
Aroclor-1242	0.1	mg/kg	< 0.1	

Coffey Environments Pty Ltd Newcastle	Client Sample ID		QC1A
Lot 101, 19 Warabrook Boulevard	Lab Number	No established 12 Angelsia 2 to 2 Angelsia 2 to 2 Angelsia 2 Angel	M09-MY03057
Warabrook	Matrix	1	Soil
New South Wales 2304	Sample Date		May 11, 2009
Analysis Type	LOR	Units	gan <mark>wala ka</mark> ara ay ay a
Aroclor-1248	0.1	mg/kg	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1
Total PCB	1	mg/kg	< 1
Dibutylchlorendate (surr.)	1	%	94
Tetrachloro-m-xylene (surr.)	1	%	133
% Moisture	0.1	%	5.5
Heavy Metals			susti <mark>acalul ele</mark> el colo el colo el
Arsenic	2.0	mg/kg	6.9
Cadmium	0.5	mg/kg	< 0.5
Chromium	5	mg/kg	24
Copper	5	mg/kg	20
Lead	5	mg/kg	12
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	21
Zinc	5	mg/kg	56

Coffey Environments Pty Ltd Newcastle	Client Sample D	QC1A	QC1A	RPD	SPIKE	LCS	Method blank
Lot 101, 19 Warabrook Boulevard	Lab Number	09-MY03057	09-MY03057	09-MY03057	09-MY03057	Batch	Batch
Warabrook	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery	% Recovery	
New South Wales 2304	Matrix	Soil	Soil	Soil	Soil	Soil	Soil
	Sample Date	May 11, 2009	May 11, 2009	May 11, 2009	May 11, 2009	May 11, 2009	May 11, 2009
Analysis Type	Units			% RPD	% Recovery	% Recovery	mg/kg
Total Recoverable Hydrocarbons		Batch	Batch	Batch	Batch		
TRH C6-C9 Fraction by GC		-	-	9.0	92	79	< 20
TRH C10-C14 Fraction by GC		-	-	< 1	99	99	< 50
TRH C15-C28 Fraction by GC		-	-	< 1	-	-	< 100
TRH C29-C36 Fraction by GC		-	-	< 1	-	-	< 100
Monocyclic Aromatic Hydrocarbons		Batch	Batch	Batch	Batch		
Benzene		-	-	13	75	76	< 0.05
Toluene		-	-	3.0	78	83	< 0.05
Ethylbenzene		-	-	4.0	83	79	< 0.05
Xylenes(ortho.meta and para)		-	-	2.0	81	75	< 0.05
Polycyclic Aromatic Hydrocarbons	WEST TO BEAUTIFE	Batch	Batch	Batch	Batch		
Acenaphthene		-	-	<1	101	78	< 0.1
Acenaphthylene		-	-	< 1	104	85	< 0.1
Anthracene		-	-	< 1	110	72	< 0.1
Benz(a)anthracene		-	-	< 1	103	79	< 0.1
Benzo(a)pyrene		_	-	< 1	100	81	< 0.1
Benzo(b)fluoranthene		-	-	< 1	97	80	< 0.1
Benzo(g.h.i)perylene		-	-	< 1	102	82	< 0.1
Benzo(k)fluoranthene		<u></u>	_	< 1	86	76	< 0.1
Chrysene		-	-	< 1	81	78	< 0.1
Dibenz(a.h)anthracene		-	_	< 1	78	88	< 0.1
Fluoranthene		-	-	< 1	75	77	< 0.1
Fluorene		-	-	< 1	113	80	< 0.1
Indeno(1.2.3-cd)pyrene		-	_	< 1	79	85	< 0.1
Naphthalene		-	-	< 1	88	71	< 0.1
Phenanthrene		-	-	< 1	91	82	< 0.1
Pyrene		-	-	< 1	85	76	< 0.1
Organochlorine Pesticides		Batch	Batch	Batch	Batch		
4.4'-DDD		_	-	< 1	128	94	< 0.05

Coffey Environments Pty Ltd Newcastle	Client Sample	QC1A	QC1A	RPD	SPIKE	LCS	Method blank
Lot 101, 19 Warabrook Boulevard	Lab Number	09-MY03057	09-MY03057	09-MY03057	09-MY03057	Batch	Batch
Warabrook	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery	% Recovery	
New South Wales 2304	Matrix	Soil	Soil	Soil	Soil	Soil May 11, 2009	Soil
	Sample Date	May 11, 2009	May 11, 2009	May 11, 2009	May 11, 2009		May 11, 2009
Analysis Type	Units	7		% RPD	% Recovery	% Recovery	mg/kg
Organochlorine Pesticides		Batch	Batch	Batch	Batch		MAGE ST
4.4'-DDE		-	-	< 1	108	94 -	< 0.05
4.4'-DDT		-	-	< 1	98	75	< 0.05
a-BHC		-	-	< 1	118	82	< 0.05
Aldrin		-	-	< 1	115	91	< 0.05
b-BHC		-	-	< 1	105	82	< 0.05
Chlordane		-	-	< 1	71	-	< 0.1
d-BHC		-	-	< 1	117	75	< 0.05
Dieldrin		-	-	< 1	118	97	< 0.05
Endosulfan I		-	-	< 1	108	98	< 0.05
Endosulfan II		-	-	< 1	121	92	< 0.05
Endosulfan sulphate			-	< 1	112	101	< 0.05
Endrin		-	-	< 1	122	79	< 0.05
Endrin aldehyde		-	-	< 1	113	92	< 0.05
Endrin ketone		-	-	< 1	103	86	< 0.05
g-BHC (Lindane)		-	-	< 1	125	78	< 0.05
Heptachlor		-	-	< 1	116	91	< 0.05
Heptachlor epoxide		-	-	< 1	110	97	< 0.05
Hexachlorobenzene		-	-	< 1	128	85	< 0.05
Methoxychior		-	•	< 1	95	77	< 0.05
Toxophene		-	-	< 1	-	-	< 0.1
Polychlorinated Biphenyls		Batch	Batch	Batch	Batch	S (A COLO I promoteration ACC)	
Aroclor-1016		-	•	< 1	-	-	< 0.1
Aroclor-1221		-	-	< 1	-	-	< 0.1
Aroclor-1232		-	-	< 1	-	-	< 0.1
Aroclor-1242		-	-	< 1	-	-	< 0.1
Aroclor-1248		-	-	< 1	-	-	< 0.1
Aroclor-1254		-	-	< 1	-	-	< 0.1
Aroclor-1260		-	-	< 1	105	96	< 0.1

COMMENTS:

MGT Report No. 245139-A-V1 Page 7 of 8

Coffey Environments Pty Ltd Newcastle	Client Sample	QC1A	QC1A	RPD	SPIKE	LCS	Method blan
ot 101, 19 Warabrook Boulevard	Lab Number	09-MY03057	09-MY03057	09-MY03057	09-MY03057	Batch	Batch
Warabrook	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery	% Recovery	
New South Wales 2304	Matrix	Soil	Soil	Soil	Soil	Soil	Soil
	Sample Date	May 11, 2009	May 11, 2009	May 11, 2009	May 11, 2009	May 11, 2009	May 11, 2009
Analysis Type	Units			% RPD	% Recovery	% Recovery	mg/kg
Polychlorinated Biphenyls		Batch	Batch	Batch	Batch		Control of the Contro
Total PCB		-	-	< 1	105	96	< 1
Heavy Metals		Batch	Batch	Batch	Batch		1 200 100 (2005)
Arsenic		-	-	14	-	89	< 2
Cadmium		-	-	< 1	-	90	< 0.5
Chromium		-	-	5.4	_	96	< 5
Copper		-	-	< 1	75	90	< 5
Lead		-	-	< 1	-	91	< 5
Mercury		-	_	< 1	71	96	< 0.1
Nickel		-	-	20	-	91	< 5
Zinc		_	-	4.2	-	100	< 5

COFFEY ENVIRONMENTS PTY LTD ATTN EMMA COLEMAN LOT 101, 19 Warabrook Boulvard 2304 NSW Australia

ANALYTICAL REPORT: IAC-09050507

Your reference:

SE69125A - Client ref ENVIWARA00401AA

Number of samples:

1

Date of receipt:

27-5-2009

Identification of the samples:

IAC-09050507.001

SE69125A-60 - Client TP3(0.4-0.5m)

Analytical results:

^B Determination of 2,3,7,8 substituted PCDF's and PCDD's (HRGC/HRMS; ECO/AV/IAC/012)

^B The analyses marked with B are Belac ISO17025 accredited (N.005-TEST)

Remarks:

Date extracted: 02/06/2009 Date analysed: 09/06/2009

ANTWERP, 10/06/2009

I.A.C.

A division of SGS Belgium NV

B E L A C

Belac ISO17025 (N.005-TEST)

Marc Van Ryckeghem Division Manager

The analytical report can only be used within the specific context of the order and is only valid for the samples analysed. Reports are established on behalf of and for the principal, who expressly accepts that these reports purely represent the situation at a given time and that they must always be presented and/or mentioned in their totality and in their particular context. A description of the used analytical methods, the identity of the external laboratories for the marked (E) analyses and the uncertainty of measurement of analyses are available upon request. Possible mentioned norms or criteria are made in accordance with the client. SGS Belgium NV, issuer of the reports, cannot be held liable for errors or modifications of results during electronic or fax transmission. Only the originally signed report is binding.

SGS Belgium NV Institute for Applied Chromatography Haven 407 Polderdijkweg 16 B-2030 Antwerpen

Determination of 2,3,7,8-substituted PCDFs and PCDDs.

Sample identification: IAC-09050507.001

Your reference: SE69125A-60 - Client TP3(0.4-0.5m)

Date sampled: 06/05/2009

Component	Concentration (ng/kg)	I-TEF	I-TEQ (ng/kg)
2,3,7,8-TCDF	< 0,77	0,1	< 0,077
2,3,7,8-TCDD	< 0,77	1	< 0,77
1,2,3,7,8-PeCDF	< 0,77	0,05	< 0,038
2,3,4,7,8-PeCDF	< 0,77	0,5	< 0,38
1,2,3,7,8-PeCDD	< 0,77	0,5	< 0,38
1,2,3,4,7,8-HxCDF	< 0,77	0,1	< 0,077
1,2,3,6,7,8-HxCDF	< 0,77	0,1	< 0,077
2,3,4,6,7,8-HxCDF	< 0,77	0,1	< 0,077
1,2,3,7,8,9-HxCDF	< 0,77	0,1	< 0,077
1,2,3,4,7,8-HxCDD	< 0,77	0,1	< 0,077
1,2,3,6,7,8-HxCDD	< 0,77	0,1	< 0,077
1,2,3,7,8,9-HxCDD	< 0,77	0,1	< 0,077
1,2,3,4,6,7,8-HpCDF	2,2	0,01	0,022
1,2,3,4,7,8,9-HpCDF	< 1,3	0,01	< 0,013
1,2,3,4,6,7,8-HpCDD	2,1	0,01	0,021
OCDF	< 2,6	0,001	< 0,0026
OCDD	24	0,001	0,024
Total			0,067 - 2,3

The TEQ values have been calculated using the toxicity equivalence factors according to J.A. van Zorge et al. (Chemosphere 19 (1989), 1881-1895). The measurement uncertainty has been determined and is available in the laboratory. On request, the data will be transmitted.

The RSD of the control sample is less than 10%.

Recovery standards - 2,3,7,8-substituted PCDFs & PCDDs.

Sample identification: IAC-09050507.001

Your reference: SE69125A-60 - Client TP3(0.4-0.5m)

Recovery extraction standards			
Component	Recovery 13C extraction standards (%)		
13C-2,3,7,8-TCDF	74,5		
13C-2,3,7,8-TCDD	61,3		
13C-1,2,3,7,8-PeCDF	78,2		
13C-2,3,4,7,8-PeCDF	80,6		
13C-1,2,3,7,8-PeCDD	88,6		
13C-1,2,3,4,7,8-HxCDF	97,9		
13C-1,2,3,6,7,8-HxCDF	83,9		
13C-2,3,4,6,7,8-HxCDF	97,9		
13C-1,2,3,7,8,9-HxCDF	97,9		
13C-1,2,3,4,7,8-HxCDD	107		
13C-1,2,3,6,7,8-HxCDD	98,1		
13C-1,2,3,4,6,7,8-HpCDF	98,3		
13C-1,2,3,4,7,8,9-HpCDF	83,1		
13C-1,2,3,4,6,7,8-HpCDD	125		
13C-OCDF	96,1		
13C-OCDD	102		

Appendix C Data Validation Report

DATA COMPLETENESS

Field Considerations

	Yes / No	Comment
Were all critical locations sampled?	Yes	
Were all critical depths sampled?	Yes	
Were the SOPs appropriate and complied with?	Yes	
Was the sampler adequately experienced?	Yes	
Was the field documentation complete?	Yes	
Is a copy of the signed chain of custody form for each batch of samples included?	Yes	

Laboratory Considerations

	Yes / No	Comment
Were all critical samples analysed according to sampling plan?	Yes	
Were analytes analysed as per sampling plan?	Yes	
Were the laboratory methods appropriate?	Yes	
Were the laboratory methods adopted NATA endorsed?	Yes	
Was the NATA Seal on the laboratory reports?	Yes	
Were the laboratory reports signed by an authorised person?	Yes	
Were the laboratory PQLs below the criteria?	Yes	

Was sample documentation complete?	Yes	
Were sample holding times complied with?	Yes	

COMPLETENESS CONCLUSION

	Yes / No	Comment
Was data adequately complete?	Yes	

DATA COMPARABILITY

Field considerations

	Yes / No	Comment
Was there more than one sampling round?	No	
Were the same sampling methodology and SOPs used for all sampling?	Yes	
Was all sampling undertaken by the same sampler?	Yes	
Were sample containers, preservation, filtering the same?	Yes	
Could climatic conditions (temperature, rainfall, wind) have influenced data comparability?	No	It is not considered that climatic conditions would affect the data comparability.
Were the same types of samples collected (filtered, size fractions etc) for each media?	Yes	

Laboratory Considerations

	Yes / No	Comment
Were the same analytical methods used (including clean up)?	Yes	
Were the PQLs the same?	Yes	
Were the same laboratories used?	No	Primary, duplicate and wash blank samples were analysed by SGS Australia Pty Ltd. The triplicate sample was analysed by MGT Pty Ltd
Were the units reported the same?	Yes	

COMPARABILITY CONCLUSION

	Yes / No	Comment
Was data adequately comparable?	Yes	

DATA REPRESENTATIVENESS

Field Considerations

	Yes / No	Comment
Was appropriate media sampled?	Yes	
Was media identified sampled?	Yes	
Were the samples properly and adequately preserved? This includes keeping the samples chilled, where applicable.	Yes	
Were the samples in proper custody between the field and reaching the laboratory?	Yes	
Were the samples received by the laboratory in good condition?	Yes	

Laboratory Considerations

	Yes / No	Comment
Were all samples analysed according to SAQP?	NA	There was no SAQP for this assessment.

REPRESENTATIVENESS CONCLUSION

	Yes / No	Comment
Was data adequately representative?	Yes	

DATA PRECISION AND ACCURACY

Field considerations

	Yes / No	Comment
Were the SOPs appropriate and complied with?	Yes	Based on available Coffey Environments Standard Operating Procedures.

Laboratory Considerations for Soil

	Metals	TPH	BTEX	PAH	ОСР	РСВ	Asbestos	VHCs	Phenol
Primary	27	22	22	23	10	4	9	2	2
Field QA/QC									
Intralab Dup	3, 11%	2, 9%	2, 9%	3, 13%	3,30%	2, 50%	0	0	0
Interlab Dup	1, 4%	1, 4%	1,47%	1, 4%	1, 10%	1, 25%	0	0	0
Trip Spike	NA	NA	0	NA	NA	NA	NA	NA	NA
Trip Blank	NA	NA	2	NA	NA	NA	NA	NA	NA
Wash Blanks	1	1	1	1	1	1	0	0	0
LAB QA/QC									
Lab Blanks	2	3	2	2	2	2	0	1	1
Lab Dups	3	4	2	3	1	1	0	0	0
Matrix Spikes	3	2	1	2	1	1	0	0	1
Lab Control	0	1	0	1	1	1	0	1	0
Surrogate	0	0	1	3	1	1	0	4	0

	Yes / No	Comment
Field QA/QC		
Were an adequate number of field duplicates analysed?	Yes	Refer to above table. Soil duplicate samples generally exceeded the requirement of 1 duplicate per 10 primary samples. Triplicate samples were generally analysed at 1 per 20 samples
Were the RPDs of the field duplicates within control limits?	No	Four RPDs exceeded the control limit of 50%. These are discussed in the report in Section 8.1.3.
Were an adequate number of trip blanks analysed?	Yes	
Were the trip blanks free of contaminants	Yes	
Were an adequate number of trip spikes analysed?	No	No trip spikes were analysed. The laboratory mistakenly sent a trip blank labelled as a trip spike. Given the low concentrations of volatiles recorded it is not considered that the lack of a trip spike significantly affects the data precision and accuracy.
Were the trip spikes recoveries within control limits?	NA	
Were an adequate number of wash blanks analysed?	Yes	One wash blank was analysed for each day of sampling.
Were the wash blanks free of contaminants?	No	Zinc was detected in both wash blanks. The zinc may have been present within the wash blank water. Taking into account the concentrations of zinc in the samples, it is considered that its detection in the wash blank does not affect the usability of the data.
Lab QA/QC		
Were an adequate number of laboratory blank samples analysed?	Yes	
Were the blanks free of contaminants?	Yes	

Were an adequate number of laboratory matrix spikes and laboratory control samples analysed?	Yes	
Were an adequate number of surrogate spike samples analysed?	Yes	
Were the spikes recoveries within control limits?	Yes	
Were an adequate number of laboratory duplicates analysed?	Yes	
Were the laboratory duplicate RPDs within control limits?	Yes	

PRECISION AND ACCURACY CONCLUSION

	Yes / No	Comment
Was soil data adequately precise?	Yes	
Was soil data adequately accurate?	Yes	
Was groundwater data adequately precise?	NA	
Was groundwater data adequately accurate?	NA	

Table D1: Laboratory Methodologies (SGS)

Analysis	Method Based On	NATA Registered
TPH C6-C9/BTEX	Based on USEPA 8260	Yes
TPH C10-C36	Based on USEPA 8015B	Yes
РАН	Based on USEPA 8270	Yes
Metals	Based on USEPA 200.7 (soil) / USEPA 6020A (water)	Yes
OCP	Based on USEPA 8080/8140	Yes
PCB	Based on USEPA 8080	Yes
Phenols	Based on APHA 21 st ed 5530B and 5530D	Yes
Asbestos	In-house method AN602	Yes
VHCs	Based on USEPA 5030B and 8260B	Yes

Table D2: Holding Times (SGS)

Soil Analysis	Holding Time	Maximum Time Between Sampling and Extraction	Holding Times Met
TPH C6-C9/BTEX	14 days	6 days	Yes
TPH C10-C36	14 days	7 days	Yes
PAH	14 days	7 days	Yes
Metals	6 months	6 days	Yes
ОСР	14 days	7 days	Yes
РСВ	14 days	7 days	Yes
Asbestos	NA	8 days	NA
VHCs	14 days	6 days	Yes
Phenols	14 days	6 days	Yes