Appendix 5

Air Quality Assessment

(Total No. of pages including blank pages = 24)

Modified New Berrima Clay/Shale Quarry PA08_0212

Report No. 744/16 Appendix 5

This page has intentionally been left blank

Modified New Berrima Clay/Shale Quarry PA08_0212

16 March 2015

610.14985-R1 Letter Report 16Mar2015.docx

R.W. Corkery & Co. Pty Limited Level 1, 12 Dangar Road PO Box 239 Brooklyn NSW, 2083

Attention: Chris Dickson

Dear Chris

New Berrima Quarry S75W Modification Air Quality Assessment

Thank you for commissioning SLR Consulting Australia Pty Ltd (SLR) to provide an updated assessment of the potential air quality impacts associated with the proposed site layout changes for the New Berrima Clay / Shale Quarry. This letter report outlines the agreed scope of work, approach and findings of our review. We trust the following information is sufficient to meet the requirements of the reviewing authority, however should you require any further information please do not hesitate to contact us.

1 Background

In 2010, SLR (formerly Heggies Pty Ltd) was commissioned by R.W Corkery & Co. Pty Ltd (RWC) to undertake an Air Quality and Greenhouse Gas Assessment for a proposed New Berrima Clay / Shale Quarry, on the "Mandurama" property, east of New Berrima. This assessment included a quantitative air dispersion modelling study, based on estimated particulate emissions for the proposed on-site activities and is referred to as the "2010 AQIA" in this letter. The quarry received development approval in July 2012 as Project Approval PA08_0212, although construction or any activities at the quarry have not yet been initiated.

Since the initial air quality assessment was performed (2010 AQIA), the Proponent has identified a resource within the Project Site, containing higher quality materials than contained within the approved extraction area and is now seeking a modification to the existing approval to enable access to this resource. The modified Project (the Proposal) would include the following components:

- Relocation of the extraction area to a location within the clay/shale resource boundary, with access to higher quality materials than the approved extraction area;
- Construction of appropriately located visibility barriers (constructed progressively); and
- Relocation and replacement of water management / sedimentation dams and related water diversion structures.

Plans showing the locations and extents of the original and modified extraction areas are presented in Figure 1.

SLR Consulting Australia Pty Ltd 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW 1595 Australia) T: +61 2 9427 8100 F: +61 2 9427 8200 E: sydney@slrconsulting.com ABN/2001 F98457

Modified New Berrima Clay/Shale Quarry PA08_0212

SLR Consulting Australia Pty Ltd

Modified New Berrima Clay/Shale Quarry PA08_0212

R.W. Corkery & Co. Pty Limited New Berrima Quarry S75W Modification Air Quality Assessment

16 March 2015 610.14985-R1 Letter Report 16Mar2015.docx Page 3

The Proposal would not result in changes to the following approved quarry components.

- Quarry life 31 March 2042 (Condition 2(5)).
- Maximum extraction rate 150 000tpa (Condition 2(7)).
- Hours of Operation (Condition 3(6)).

SLR has been commissioned to review the proposed changes to the on-site activities and to provide an assessment of the potential implications of these changes on the air quality impacts predicted in the 2010 AQIA. This review has included the following tasks:

- Review the Project emissions inventory to determine the distribution of particulate emissions (TSP and PM₁₀) between the approved extraction area, wind erosion and haul road emissions sources.
- Review the predicted maximum incremental and cumulative particulate concentrations at each of the identified sensitive receptors.
- Perform a qualitative assessment of the likely incremental and cumulative change in predicted impacts at each receptor, based on the relocation of the extraction area, taking into account the predicted and measured air quality concentrations/dust deposition levels.
- Assess the likely air quality mitigation effects of the proposed visibility barriers and any other air quality management measures proposed to be employed on site and not included in the 2010 AQIA dispersion modelling exercise.
- Review the range of emissions controls that will be employed at the Project Site and how these accord with best management practice.

2 Impact of the Proposal

2.1 Emissions Estimation

In order to predict off-site particulate concentrations likely to be associated with operations at the Project Site, the 2010 AQIA used published emission estimation methods from USEPA AP-42 documentation and the Australian Government National Pollution Inventory (NPI) document, *Emission Estimation Technique Manual (EETM) for Mining* (NPI 2001). This EETM has since been updated (NPI, 2012) and as part of this review the implications of changes to the relevant emission factors used in the 2010 AQIA emission inventory have been assessed, as well as changes in the proposed site operations.

The emission factors used in the 2010 AQIA are summarised for each of the identified dust-generating sources in **Table 1**. **Table 2** lists the changes in the emission factors recommended for use in the *EETM for Mining* (2012). While the emission factors for bulldozer operations have remained unchanged, all other source types have modified emission factors, and in the case of wind erosion and scrapers, the units of the emission factors have also changed.

Modified New Berrima Clay/Shale Quarry PA08_0212

R.W. Corkery & Co. Pty Limited New Berrima Quarry S75W Modification Air Quality Assessment 16 March 2015 610.14985-R1 Letter Report 16Mar2015.docx Page 4

Table 1 Emission Factors Used in the 2010 AQIA Assessment based on NPI Emission Estimation Technique Manual (2001)

Source	Emission Factor Equation		Emissio	n Factor	
	TSP	PM ₁₀	TSP	PM ₁₀	Units
Wind erosion	$EF = 1.9 \times \left(\frac{s}{1.5}\right) \times 365 \times \left(\frac{365 - p}{235}\right) \times \left(\frac{f}{15}\right)$	= 50% of TSP estimate	21,069	10,534	kg/ha/yeai
from	s = silt content = 19%				
stockpiles	p = number of days when rainfall is ≻ 0.25 mm = 133 days				
	f = % of time that wind speed at the mean height of the stockpile is greater than 5.4 m/s = 36.4%				
Scraper on	$EF = k imes s^a W^b$	$EF = k \times s^{a}W^{b}$	4.641	1.609	kg/VKT
topsoil	k = 0.0000076; a = 1.3; b = 1.4	k = 0.00000132; a = 2.4; b = 2.5			
	s = silt content = 19.5%	s = silt content = 19.5%			
	W = vehicle mass = 51.5 tonnes	W = vehicle mass = 51.5 tonnes			
Bulldozer on topsoil	$EF = k \times \frac{s^{1/2}}{M^{1/3}}$	$EF = k \times \frac{s^{1/2}}{M^{1/3}}$	11.333	3.076	kg/hr
	k = 2.6; a = 1.2; b = 1.3	k = 0.34; a = 1.5; b = 1.4			
	s = silt content = 19.5%	s = silt content = 19.5%			
	M = moisture content = 5%	M = moisture content = 5%			
Bulldozer on shale	$EF = k imes rac{s^{1/2}}{M^{1/3}}$	$EF = k \times \frac{s^{1/2}}{M^{1/3}}$	15.270	4.465	kg/hr
	k = 2.6; a = 1.2; b = 1.3	k = 0.34; a = 1.5; b = 1.4			
	s = silt content = 25%	s = silt content = 25%			
	M = moisture content = 5%	M = moisture content = 5%			
Truck	$E = k > 0.0016 < (U/2.2)^{1.3} \times (M/2)^{-1.4}$	$E = k \times 0.0016 \times (U/2.2)^{1.3} \times (M/2)^{-1.4}$	0.0009	0.0004	kg/tonne
loading	k = 0.74	k = 0.35			
(front-end loader)	U = mean wind speed = 4.7 m/s	U = mean wind speed = 4.7 m/s			
Wheel- generated	$EF = k_{i} \times (s/12)^{4} \times \left(\frac{(W/3)^{\beta}}{(M/0.2)^{C}}\right)$	$EF = k_i \times (s/12)^4 \times \left(\frac{(W/3)^p}{(M/0.2)^{\gamma}}\right)$	1.544	0.428	kg/VKT
dust – despatch	k = 2.82; A = 0.8; B = 0.5; C = 0.4	k = 0.733; A = 0.8; B = 0.4; C = 0.3			
and	s = road silt content = 5.6%	s = road silt content = 5.6%			
overburden	W = weight of trucks = 40 tonnes	W = weight of trucks = 40 tonnes			
trucks	M = moisture content = 5%	M = moisture content = 5%			

Modified New Berrima Clay/Shale Quarry PA08_0212

R.W. Corkery & Co. Pty Limited New Berrima Quarry S75W Modification Air Quality Assessment 16 March 2015 610.14985-R1 Letter Report 16Mar2015.docx Page 5

Source	Emission Factor Equation		Emissio	n Factor	
	TSP	PM ₁₀	TSP	PM ₁₀	Units
Wind erosion from stockpiles	New default factor	New default factor	0.40	0.20	kg/ha/hour
Scraper on topsoil	New default factor	New default factor	0.029	0.0073	kg/tonne topsoil
Bulldozer on topsoil	No change	No change	11.333	3.076	kg/hr
Bulldozer on shale	No change	No change	15.270	4.465	kg/hr
Truck loading (front-end loader)	New default factor	New default factor	0.025	0.012	kg/tonne
Wheel-generated dust – despatch and overburden	$EF = k_i \times \left(s/12\right)^A \times \left(\frac{\left(W \times 1.1023\right)}{3}\right)^B$	$EF = k_i \times (s/12)^4 \times \left(\frac{(W \times 1.1023)}{3}\right)^B$	2.713	0.714	kg/VKT
trucks	k = 1.38; A = 0.7; B = 0.45 s = road silt content = 5.6% W = weight of trucks = 40 t	k = 0.423; A = 0.9; B = 0.45 s = road silt content = 5.6% W = weight of trucks = 40 t			

Table 2 Revised Emission Factors based on NPI Emission Estimation Technique Manual (2012)

Table 3 summarises the peak hourly and annual emission estimates used in the 2010 AQIA and compares them to the emission estimations calculated using the updated emission factors. The activity data used in the emissions calculations for the Proposal have also been reviewed and updated where required to reflect the revised extraction area layout. Specifically, the changes are:

- Scraper emissions have been estimated based on 18,000 m² being cleared to a depth of 15 cm over a three month period (Stage 1);
- The distance travelled by haul trucks carrying product from the excavation area off site has been increased by 20% to account for the slightly longer distance to the northern side of the excavation area;
- The distance travelled by haul trucks carrying overburden from the excavation area to the Surplus Overburden Stockpile Area has been increased from 0.6 km to 0.8 km.

The numbers of truck trips have been assumed to remain the same. The control factor of 50% for road watering has also been retained, which is based on a water application rate of 1 L/m²/application with time between applications of two hours (watering up to 5 occasions per day) (Corkery, 2012). The 30% control factor for the bulldozer emission estimates has also been retained to take into consideration the windbreak effect of the amenity bund around the bulldozer when ripping and pushing up shale within the quarry.

Table 3 shows that on an annual basis, the dust emission estimates have decreased based on the updated information. This is predominantly due to significant reductions in the wind erosion and scraper emission estimates due to changes in the recommended emission factors. However the haul road emissions have approximately doubled, principally due to the use of updated emission factors. In terms of peak hourly emissions, the total site TSP and PM₁₀ emission estimate have decreased slightly.

Modified New Berrima Clay/Shale Quarry

PA08_0212

16 March 2015 610.14985-R1 Letter Report 16Mar2015.docx

Table 3 Revised Estimated Particulate Emissions Compared to 2010 AQIA	culate Em	issions	Compared	to 2010 A	QIA							
Source	Emission	ission Factors		Activity Data)ata			Control	Hourly Emissions (kalbr)	ions	Annual Emissions (kg/annum)	issions um)
	TSP	PM ₁₀	Units	Hectares	VKT/hr	Hoursfyear	Tonnes/hr	Lactor	TSP (1971	PM ₁₀	TSP	PM ₁₀
2010 Air Quality Impact Assessment												
Wind erosion from stockpiles	21,069	10,534	kg/ha/year	1.5	'		•	%0	3.61	1.80	31,604	15,801
Scraper on topsoil	4.641	1.609	kg/VKT	. 	5.0	2,600	1	%0	23.20	8.05	60,331	20,917
Bulldozer on topsoil	11.333	3.076	kg/h			1,300		%0	11.33	3.08	14,733	3,999
Bulldozer on shale	15.270	4.465	kg/h		'	1,300	·	30%	10.69	3.13	13,896	4,063
Truck loading (front-end loader)	0.0009	0.0004	kg/t			2,600	200	%0	0.18	0.08	458	217
Vehicle movements – despatch trucks	1.544	0.427	kg/VKT		22.7	2,340		50%	17.50	4.84	40,956	11,336
Vehicle movements – overburden trucks	1.544	0.427	kg/VKT	•	0.6	2,340	•	50%	0.46	0.13	1,081	299
TOTAL SITE EMISSIONS									67	21	163,059	56,632
Revised Emission Factors and Activity Data	Data											
Wind erosion from stockpiles	0.40	0.20	kg/ha/hr	1.5				%0	0.60	0:30	5,256	2,628
Scraper on topsoil	0.029	0.007	kg/tonnes		,	2,600	8.0	%0	0.23	0.06	603	152
Bulldozer on topsoil	11.333	3.076	kg/h			1,300		%0	11.33	3.08	14,733	3,999
Bulldozer on shale	15.270	4.465	kg/h			1,300		30%	10.69	3.13	13,896	4,063
Truck loading (front-end loader)	0.025	0.012	kg/t			2,600	200	%0	5.00	2.40	13,000	6,240
Vehicle movements – despatch trucks	2.713	0.714	kg/VKT		22.7	2,340	•	20%	36.90	9.71	86,337	22,723
Vehicle movements – overburden trucks	2.713	0.714	kg/VKT		0.0	2,340	-	20%	1.22	0.32	2,849	750
TOTAL SITE EMISSIONS									99	19	136,674	40,554

ENVIRONMENTAL ASSESSMENT

Report No. 744/16 Appendix 5

R.W. Corkery & Co. Pty Limited New Berrima Quarry

16 March 2015 610.14985-R1 Letter Report 16Mar2015.docx Page 7

PA08_0212

R.W. Corkery & Co. Pty Limited New Berrima Quarry S75W Modification Air Quality Assessment

2.2 Predicted Off-Site Impacts

The following discussion provides a qualitative assessment of the likely impacts on the off-site TSP, PM₁₀ and deposited dust levels predicted in the 2010 AQIA based on the changes in the emission inventory for the proposed site activities as presented in **Table 3**. For reference, contour plots showing the particulate levels predicted in the 2010 AQIA are included in **Attachment A**.

2.2.1 Annual Average TSP and PM₁₀ Concentrations

Maximum off-site annual average TSP and PM_{10} concentrations predicted at all sensitive receptors assessed in the 2010 AQIA were well below the relevant criteria levels. Given this, and the significant decrease in the estimated total site annual emission rates for TSP and PM_{10} , it is expected that the off-site annual average concentrations presented in the 2010 AQIA would be conservative over-estimates of actual impacts. In addition, the 2010 AQIA utilised the AUSPLUME dispersion model, which is likely to over-predict the downwind concentrations and would add to the conservative nature of the assessment.

While the locations of the extraction-related activities will move further north, the combined emission estimates for these sources (specifically, the scraper, bulldozer and truck loading emissions) have decreased by approximately 50% for both TSP and PM_{10} . For the receptors located to the north of the site, this reduction in the estimated extraction-related emission rates would be expected to more than compensate for the estimated increase in emissions due to truck movements in this part of the site.

For receptors located to the south of the site, the increase in estimated annual emissions from the truck movements in this part of the site may result in an increase in the annual average TSP and PM_{10} concentrations. However the annual average TSP and PM_{10} concentrations predicted at receptors R2 and R3S in the 2010 AQIA due to the proposed quarry were $3 - 7 \ \mu g/m^3$ and $1 - 2 \ \mu g/m^3$ respectively. These values are far below the relevant OEH air quality criteria of 90 $\ \mu g/m^3$ and $30 \ \mu g/m^3$ respectively. Even if these predictions were to double, and assuming the background concentrations of $19.2 \ \mu g/m^3$ TSP and $12.8 \ \mu g/m^3$ PM₁₀ adopted in the 2010 AQIA, the predicted cumulative impacts would still be well below the relevant criteria.

2.2.2 24-hour PM₁₀ Concentrations

In the 2010 AQIA, modelling of 24-hour average PM_{10} concentrations indicated the potential for exceedances of the relevant OEH criterion of 50 µg/m³ at two sensitive receptors (R3N and R19) located approximately 1.2 km and 1.6 km to the east-northeast of the proposed extraction area respectively. This modelling study was based on the use of a contemporaneous background PM_{10} dataset compiled from measurements recorded by the Oakdale air quality monitoring station in 2007, located 60 km to the north of the Project Site. These exceedances were associated with a day when the background 24-hour average PM_{10} concentration was elevated (49.2 µg/m³). The predicted incremental impacts associated with the proposed on-site activities on this day were very low (e.g. 1.4 µg/m³ at R19).

As presented in **Table 3**, the updated emission inventory for the proposed on-site activities shows a decrease in the estimated total peak hourly emission rates for PM_{10} . On this basis it would be expected that the maximum off-site 24-hour PM_{10} concentrations would decrease correspondingly. While the locations of the extraction-related activities will move to the northeast, closer to R3N and R19, the combined hourly emission estimates for these sources have decreased by approximately 40% for both TSP and PM_{10} and these reductions would be expected to more than compensate for the estimated increase in emissions due to truck movements in this part of the Project Site.

For receptors located to the south of the Project Site (i.e. R2 and R3S), the increase in estimated hourly emissions from the truck movements at the southern end of the Project Site has the potential to result in an increase in the maximum 24-hour average PM_{10} concentrations. However no significant cumulative impacts were predicted for these receptors in the 2010 AQIA, which indicates that background levels are generally low when winds are blowing from the northwest – northeast. A detailed analysis of the model output showed that the incremental 24-hour average PM_{10} concentrations were predicted to be $\leq 10 \ \mu g/m^3$ for 97% of the time at receptor R2 and 98.1% of the time at receptor R3S.

Modified New Berrima Clay/Shale Quarry PA08_0212

R.W. Corkery & Co. Pty Limited New Berrima Quarry S75W Modification Air Quality Assessment 16 March 2015 610.14985-R1 Letter Report 16Mar2015.docx Page 8

Given this, the fact that the peak hourly total site PM_{10} emission estimates have essentially remained the same, and that the extraction activities will move further north, it is considered unlikely that significant adverse impacts would be predicted at receptors R2 and R3S as a result of the Proposal. As noted above, the 2010 AQIA also utilised the AUSPLUME dispersion model, which is likely to over-predict the downwind concentrations and add to the conservative nature of the assessment.

2.2.3 Monthly Dust Deposition Rates

Annual average monthly dust deposition rates predicted at the nearest sensitive receptors in the 2010 AQIA were below the OEH guideline of 2 g/m²/month (incremental impact).

Given the significant decrease in the estimated total site annual emission rates for TSP, it is expected that the off-site annual average monthly deposition rates presented in the 2010 AQIA would be conservative over-estimates of actual impacts.

3 Dust Management

3.1 Proposed Control Measures

The Air Quality Management Plan (AQMP) for the New Berrima Quarry is currently in draft form. The dust management measures contained within the draft AQMP are presented in **Table 4**.

As discussed in **Section 2.1** and shown in **Table 3**, the emission inventory prepared for the quarry includes the following control factors:

- 50% control of emissions from unsealed haul roads by watering of roads; and
- 30% control of emissions from the bulldozer working on shale to take into consideration the windbreak effect of the amenity bund.

The visual amenity bunds would also assist in reducing emissions from truck loading and vehicle movements within the extraction area by reducing wind speeds across the site. The vegetative (tree) screens will also assist in this regard, and the foliage will act by filtering dust from the air, particularly under northwesterly wind conditions. The effects of these control measures has not been accounted for the in the 2010 AQIA or the revised emission inventory, hence the emission estimates are expected to be conservative over-estimates.

The major emission sources identified in the revised emission inventory are the haul road emissions and the bulldozer emissions. These sources contribute just over 85% of the total site annual TSP emissions. A review of potential control measures for these sources is provided in the following sections.

Report No. 744/16 Appendix 5 Modified New Berrima Clay/Shale Quarry PA08_0212

R.W. Corkery & Co. Pty Limited New Berrima Quarry S75W Modification Air Quality Assessment 16 March 2015 610.14985-R1 Letter Report 16Mar2015.docx Page 9

Source	Control Procedures	Personnel Responsible
General	 Visually inspect operations for visible dust and adjust operations to reduce visible dust. 	Quarry supervisor
Clearing Operations	• Disturb only the minimum area necessary for quarrying and related operations.	Quarry Supervisor
	 Maintain water sprays/water truck on stockpiles to minimise the generation of dust, as required. 	Quarry Supervisor All personnel
Soil Stripping	 Maintain water sprays/water truck on stockpiles to minimise the generation of dust, as required. 	Quarry Supervisor All personnel
Topsoil Stockpiles	Revegetate long term topsoil stockpiles.	Quarry Supervisor
Loading of clay/shale	 Minimise the drop heights between front-end loader buckets and truck carrying quarry materials. 	Quarry Supervisor and Equipment Operators
Internal Roads	 All unsealed roads and trafficked areas will be watered, as required, to minimise the generation of dust. 	Quarry Supervisor
	• Enforce a speed limit of 40 km/hr on the site access road and 20 km/hr on all unsealed roads within the Site.	All personnel
	 All roads will have edges clearly defined with marker posts or equivalent to control their locations. 	Quarry Manager
	 Development of minor roads or tracks will be limited and the locations of these clearly defined. 	Quarry Manager
	 Obsolete roads will be ripped and re-vegetated. 	Quarry Manager
Product Stockpiles	 Maintain product handling areas / stockpiles in a moist condition as required to minimise wind-blown and traffic-generated dust. 	Quarry Manager
Transportation Product	 Maximise truck capacities to reduce the number of movements necessary to transport products. 	Quarry Manager
	 Cover all loads with tarps prior to leaving site. 	Quarry Supervisor
Rehabilitation	 Establish the interim or final landform as soon as areas become available for rehabilitation. 	Quarry Manager
	 Revegetate interim or final landforms as soon as conditions are favourable. 	Quarry Manager
	 Apply dust suppressants if conditions are not favourable for the establishment of vegetation. 	Quarry Supervisor

Table 4 Proposed Dust Control Measures

R.W. Corkery & Co. Pty Limited New Berrima Quarry S75W Modification Air Quality Assessment 16 March 2015 610.14985-R1 Letter Report 16Mar2015.docx Page 10

3.2 Review of Potential Control Measures

Katestone Environmental Pty Ltd completed a benchmarking study in year 2010 for coal mining in NSW detailing the International Best Practice Measures to prevent and/or minimise emissions of particulate matter from coal mining (Katestone 2010, hereafter "the Katestone report"). In the absence of any such study for controlling particulate emissions from hard rock quarries, it is considered appropriate to adopt the best practice measures from the Katestone report.

3.2.1 Haul Roads

The haul roads proposed for the transportation of clay and shale from the extraction area to the product stockpile area and off-site will be unpaved. A summary of potential control measures for minimising particulate emissions from haul roads, and their effectiveness, is provided in **Table 5** (Katestone, 2010).

As noted above, the 2010 AQIA incorporated surface watering on the haul roads within the dispersion modelling, based on an assumed 50% reduction in particulate emissions from this source. This control factor was based on a water application rate of 1 L/m²/application with time between applications of two hours (watering up to 5 occasions per day). A review of water availability and water storage capacity concluded that this watering rate was achievable by the site (Corkery, 2012 (*attached to this letter for reference*)). The restriction of vehicle speeds to 40 km/hr on the site access road and 20 km/hr on all unsealed roads within the site will also reduce emissions, as shown by **Table 5**. As this has not been accounted for in the 2010 AQIA modelling study or revised inventory, it can be expected that the haul road emissions presented in **Table 3** are conservative over estimates of the actual emissions that may be expected.

Control Type	Control Measure	Effectiveness
Vehicle Restrictions	Reduction from 75 km/hr to 50 km/hr	40-75%
	Reduction from 65 km/hr to 30 km/hr	50-85%
	Grader speed reduction from 16 km/hr to 8 km/hr	75%
Surface Treatments	Watering (standard procedure)	10-74%
	Watering Level 2 (>2 l/m²/hr)	75%
	Watering twice a day for industrial unpaved road	55%
	Hygroscopic salts	Av. 45% over 14 days
		82% within 2 weeks
	Lignosulphonates	66-70% over 23 days
	Polymer emulsions	70% over 58 days
	Tar and bitumen emulsions	70% over 20 days
Other	Use larger vehicles rather than smaller vehicles to minimise number	90t to 220t: 40% ^a
	of trips	140t to 220t: 20% ^a
		140t to 360t: 45% ^a
	Use conveyors in place of haul roads	>95% ^a

Table 5 Best Practice Control Measures - Haul Roads

Source: Katestone 2010, Table 66

Modified New Berrima Clay/Shale Quarry PA08_0212

R.W. Corkery & Co. Pty Limited New Berrima Quarry S75W Modification Air Quality Assessment

16 March 2015 610.14985-R1 Letter Report 16Mar2015.docx Page 11

3.2.2 Bulldozers

Katestone (2010) presents a comprehensive summary of an options appraisal conducted by Connell Hatch for the control of particulate emissions from bulldozers at the RG Tanna Coal Terminal. Options considered in the study included:

- Minimising travel speed and travel distance;
- Stabilising bulldozer travel routes and use of water or suppressants on travel routes;
- Manage material moisture to ensure coal is sufficiently moist when working; and
- Modify design of the bulldozer to minimise emissions.

A summary of the potential control measures for minimising particulate emissions from bulldozers, and their effectiveness, is provided in **Table 6** (Katestone, 2010).

Table 6 Best Practice Control Measures – Bulldozers

Control Measure		Effectiveness
Bulldozer	Minimise travel speed and distance	Not quantified
	Keep travel routes and materials moist	50%

Source: Katestone (2010), Table 76

As noted above, the 2010 AQIA incorporated a 30% reduction in particulate emissions from the bulldozer when operating on shale based on the shielding effect of the amenity bund. As the use of windbreaks is not specifically addressed in the Katestone report for bulldozer emissions, this is discussed further in **Section 3.2.3**. The use of water sprays is also identified as an effective control measure and the use of the water truck/sprays on the stockpiles and access roads (as per the draft AQMP) at the New Berrima Quarry would assist in reducing emissions from this source.

3.2.3 Wind Erosion from Stockpiles

The Katestone report does not provide best management practices for wind erosion of non-coal stockpiles. In the absence of such measures, the best practice measures for coal stockpiles have been reviewed. It is acknowledged that the nature of material stockpiled will have a significant effect on the wind erosion profile, in addition to other factors. Generally, stockpiles provide a surface for the generation of wind-eroded material and the subsequent propagation of particulate matter emissions. In addition to stockpile dimensions, emissions generated by wind erosion from stockpiles are also dependent on the frequency of disturbance of the exposed surface. Over time, the surface of an undisturbed stockpile will become depleted of erodible material and emissions of particulate matter will reduce. However, the nature of product stockpiles is that they are frequently disturbed, causing fresh surface material to be exposed restoring the erosion potential (Katestone, 2010).

A summary of the potential control measures for minimising particulate emissions from wind erosion from coal stockpiles, and their effectiveness, is provided in **Table 7** (Katestone, 2010). The use of vegetative wind breaks are estimated to reduce emissions by 30% and the use of water sprays by 50%.

As noted above, a 30% reduction due to the sheltering effect of the amenity bund was applied to the bulldozer working on shale. To provide a conservative assessment, and to account for any activities occurring on-site outside of the areas sheltered by the amenity bund, this control factor was not applied to bulldozers working on overburden, product/overburden loading or the product stockpile area. The draft AQMP also provides for the use of water sprays to control emissions from the stockpile area which was not included in the 2010 AQIA emission estimates or the revised inventory. This will add to the conservative nature of the assessment.

Modified New Berrima Clay/Shale Quarry PA08_0212

Appendix 5

R.W. Corkery & Co. Pty Limited New Berrima Quarry S75W Modification Air Quality Assessment 16 March 2015 610.14985-R1 Letter Report 16Mar2015.docx Page 12

Control Type	Control Measure	Effectiveness
Avoidance	Bypassing stockpiles	100% reduction in wind erosion for coal bypassing stockpiles
Surface stabilisation	Water spray	50%
	Chemical wetting agents	80-99% 85% 90%
	Surface crusting agent	95%
	Carry over wetting from load in	80%
Enclosure	Silo with bag house	100% 95-99% 99%
	Cover storage pile with a tarp during high winds	99%
Wind speed reduction	Vegetative wind breaks	30%
	Reduced pile height	30%
	Wind screens/wind fences >80% 75-80%	
	Pile shaping/orientation	<60%
	Erect 3-sided enclosure around storage piles	75%

	Table 7	Best Practice Control Measures – Wind Erosion of Coal Stockpiles
--	---------	--

Source: Katestone 2010, Table 72

4 Conclusions

The main conclusions of this review are as follows:

- The proposed modification to the extraction area is not anticipated to have a significant impact on the dust emissions that would be emitted from the site.
- A detailed review of the emission inventory compiled for the 2010 AQIA has shown that updates to the published emission factors recommended for use in estimating potential dust emissions from the activities proposed to be undertaken on site have resulted in a decrease in the estimated total site emissions. There has also been a significant change in the contribution of specific activities to the total Project Site emissions, with unpaved haul road emissions becoming the potentially most significant source.
- Maximum off-site annual average TSP and PM₁₀ concentrations predicted at the nearest sensitive receptors in the 2010 AQIA were well below the relevant criteria levels. Given this, and the significant decrease in the estimated total site annual emission rates for TSP and PM₁₀, it is expected that the off-site annual average concentrations presented in the 2010 AQIA would be well below the relevant assessment criteria, even with the locations of the extraction-related activities moving further north and the increased significance of the haul road emissions.
- In the 2010 AQIA, modelling of 24-hour average PM₁₀ concentrations indicated the potential for exceedances of the relevant OEH criterion of 50 µg/m³ at two sensitive receptors (R3N and R19) located to the northeast of the Project Site. These exceedances were associated with a day when the background 24-hour average PM₁₀ concentration was abnormally high (49.2 µg/m³). The predicted incremental impacts associated with the proposed on-site activities on this day were very low (e.g. 1.4 µg/m³ at R19). The updated emission inventory for the proposed on-site activities shows a slight decrease in the estimated total peak hourly emission rates for PM₁₀. On this basis it would be expected that the maximum off-site 24-hour PM₁₀ concentrations would decrease slightly. While the locations of the extraction-related activities will move to the northeast, closer to R3N and R19, the combined hourly emission estimates for these sources have decreased by approximately 40% for

SLR Consulting Australia Pty Ltd

R.W. Corkery & Co. Pty Limited New Berrima Quarry S75W Modification Air Quality Assessment 16 March 2015 610.14985-R1 Letter Report 16Mar2015.docx Page 13

both TSP and PM₁₀. These reductions would be expected to more than compensate for the estimated increase in emissions due to truck movements in this part of the site.

- Annual average monthly dust deposition rates predicted at the nearest sensitive receptors in the 2010 AQIA were below the OEH guideline of 2 g/m²/month (incremental impact) and given the significant decrease in the estimated total site annual emission rates for TSP, it is expected that the off-site annual average monthly deposition rates presented in the 2010 AQIA would be conservative overestimates of actual impacts.
- A review of the proposed dust control measures included in the draft AQMP has been performed. There are a number of dust control measures proposed for the site that have not been incorporated into the emission inventory and the modelling performed in the 2010 AQIA, including the use of a vegetative screen to control wind erosion from the product stockpile, and vehicle speed reductions. Given this, and the use of the AUSPLUME model which would be expected to result in conservative predictions of off-site dust levels, it is expected that the TSP and PM₁₀ concentrations, and dust deposition rates, predicted for the nearest sensitive receptors in the 2010 AQIA will be conservative over estimates of the levels that would actually occur.

5 References

- Corkery, 2012 Water Requirement for Berrima Clay/Shale Quarry, email transmission from R.W. Corkery & Co, 7 June 2012.
- Heggies, 2010 Air Quality Impact assessment for the New Berrima Clay/Shale Quarry, ref 10-7182
- Katestone, 2010 NSW Coal Mining Benchmarking Study: International Best Practice Measures to prevent and/or Minimise Emissions of Particulate Matter from Coal Mining, prepared for Department of Environment, Climate Change and Water KE1006953, Katestone Environmental Pty Ltd, December 2010.
- NPI 2001 *National Pollutant Inventory Emission Estimation Technique Manual for Mining*, Version 2.3, Environment Australia, December 2001.
- NPI 2012 *National Pollutant Inventory Emission Estimation Technique Manual for Mining*, Version 3.1, Department of Sustainability, Environment, Water, Population and Communities, January 2012.

Yours sincerely

KIRSTEN LAWRENCE Principal

Modified New Berrima Clay/Shale Quarry PA08_0212

Report No. 744/16 Appendix 5

Appendix A

610.14985-R1 Letter Report 16Mar2015.docx Page 1 of 4

Figure A-1 Predicted Annual Average TSP Concentrations Due to Proposed Site Activities As Presented in the 2010 Air Quality Impact Assessment Background TSP estimated at 19.2 μg/m^{3,} OEH Criterion = 90 μg/m³ (contours in μg/m³)

ENVIRONMENTAL ASSESSMENT Report No. 744/16 Appendix 5

PA08_0212

Modified New Berrima Clay/Shale Quarry

R.W. Corkery & Co. Pty Limited New Berrima Quarry S75W Modification Air Quality Assessment 16 March 2015 610.14985-R1 Letter Report 16Mar2015.docx Page 2

Figure A-2 Predicted Annual Average PM₁₀ Concentrations Due to Proposed Site Activities As Presented in the 2010 Air Quality Impact Assessment Background PM₁₀ estimated at 12.8 μg/m³, OEH Criterion = 30 μg/m³ (contours in μg/m³)

R.W. Corkery & Co. Pty Limited New Berrima Quarry S75W Modification Air Quality Assessment

PA08_0212

16 March 2015 610.14985-R1 Letter Report 16Mar2015.docx Page 3

Figure A-3 Predicted 24-hour Average PM₁₀ Concentrations Due to Proposed Site Activities As Presented in the 2010 Air Quality Impact Assessment OEH Criterion = 50 μg/m³ (contours in μg/m³)

PA08_0212 16 March 2015

Modified New Berrima Clay/Shale Quarry

R.W. Corkery & Co. Pty Limited New Berrima Quarry S75W Modification Air Quality Assessment 16 March 2015 610.14985-R1 Letter Report 16Mar2015.docx Page 4

Figure A-4 Predicted Annual Average Dust Deposition Rates Due to Proposed Site Activities As Presented in the 2010 Air Quality Impact Assessment OEH Criterion = 2 g/m²/month (contours in g/m²/month)

Modified New Berrima Clay/Shale Quarry PA08_0212

∲ R.W.		and Ei	& CO. P nvironmental Cons : 31 002 033 712		LIMITED
Brooklyn Office: 1st Floor, 12 Dangar Road BROOKLYN NSW 208	d	Orange 62 Hill S ORANG			Brisbane Office: Suite 5, Building 3 Pine Rivers Office Park 205 Leitchs Road
Phone: (02) 9985 8511 Fax: (02) 9985 8208 Email: brooklyn@rwco		Phone: Fax: Email:	(02) 6362 5411 (02) 6361 3622 orange@rwcorkery.com		BRENDALE QLD 4500 Mobile: 0437 858 511 Mobile: 0402 060 522 Email: brisbane@rwcorkery.com
	EMAI	L T	RANSMISSI	ON	-
TO:	David Mooney		EMAIL:	david.m	ooney@planning.nsw.gov.au
ORGANISATION:	Department of Plann and Infrastructure	ning	DATE:	7 June	2012
COPY:	Austral, SLR, SEEC	ļ	REFERENCE:	744	
NO. OF PAGES (inc	luding attachments):	4			
SUBJECT: Re:	Water Requirement fo	or Berri	ma Clay/Shale Quarry		
Confidential	Please Reply	For F	Tollow-up Ur	gent	For your information

MESSAGE: Greetings David,

I have reviewed the contents of the Environmental Assessment and the air quality and surface water assessments and established the following.

- There are indeed inconsistencies between both the air quality and surface water assessments. (i)
- The assumptions used by both the air quality and surface water assessments in reality will be (ii) not applicable to the operations.

I have discussed the assumptions with both SEEC and SLR Consulting Australia Pty Limited (formerly Heggies Pty Ltd) and established the following would be practical for the proposed quarry.

- Water application rates for dust suppression of 1L/m²/application with time between (a) applications of 2 hours (watering up to 5 occasions per day).
- (b) The location of the water application would be confined to an 850m section of the site access road, i.e. from the floor of the extraction area to the end of the unsealed section of the site access road. The width of the road covered would be approximately 4m. Overall, the surface area of the road requiring regular watering would be 3400m².
- (c) It would not be practical nor necessary to regularly apply water to the extraction area and overburden stockpile. The key area for dust suppression remains the unsealed roads between the active extraction area and the areas where materials are transported for placement on site or the site access road.

It is noted the air quality assessment conducted by SLR Consulting did not assume any watering within either the extraction area or on the overburden stockpile as this is not a practice normally undertaken in quarries. Rather, the emphasis for the air quality modelling was the unsealed road for a distance of 1.7km at a rate of $2L/m^2/hr$ over the 9 operational hours per day. This rate of water application was included in the model to achieve an emission reduction of 50%. SLR Consulting has provided additional information on the basis for the $2L/m^2/hr$ application rate and has established that this rate of water application is recommended within the National Pollutant Inventory Emission Estimation Technique Manual for Mining. This manual is generally

IF THIS TRANSMISSION HAS BEEN SENT TO YOU BY MISTAKE: The content of this Email message and any attachments may be privileged, in confidence or sensitive. Any usuathinosed use is expressly prohibited. If you have received this Email in error please notify the sender and delete the Email Email maybe corrupted or interfered with. R.W. Orkery & Co. Pty. Limited cannot guarantee that the message you receive is the sense as that which was sent. At the discretion of R.W. Corkery & Co. Pty. Limited we may send a paper copy for confirmation. In the event of any discrepancy between paper and deletonic versions, the paper version is to take precedence.

Y:\Jobs 531 to 1000\744\Reports\74402 EA 2008\Letters\74402 05F12 Mooney e MD.docx

🚓 R.W. CORKERY & CO. PTY. LIMITED

8 June 2012

Page 2

used for large coal mine Projects where heavy and frequent traffic movements on off-road haul roads (and their substantive widths) are far in excess of those proposed for the New Berrima Project.

An alternate and more appropriate approach has been identified by SLR Consulting, i.e. through consideration of the following variables.

Р	=	Potential Average Daytime Evaporation Rate (mm/day)
D	=	Average Hourly Daytime Traffic Data (veh/hr)
Т	=	Time Between Applications (hrs)
Ι	=	Application Intensity (L/m ²)

The USEPA (1987) developed the following equation incorporating these inputs.

Control Efficiency (CE) = 100-(0.8 xPxDxT/I).

The aim of this approach is to identify the watering regime required to achieve the 50% control efficiency on haul roads utilised within the Air Quality Assessment. Known values are the evaporation rates (sourced from the Goulburn TAFE BoM AWS [ID 070263]) and vehicle trips (7.6/hr).

The table below lists the results of the analysis for a constant 2 hour period between watering (i.e. 5 x per day) or a constant application rate of $1L/m^2/application$.

CE=100-(0.8*P*D*T/I)

P = Potential Average Hourly Daytime Evaporation Rate (mm/hr)

Winter 1.4mm/day, Spring 3.9mm/day, Summer 5.3mm/day, Autumn 4mm/day (Goulburn TAFE - closest with evap data)

D = Average Hourly Daytime Traffic Rate (veh/hr) - 7.6 per hour (68 per day maximum over 9 hours)

T = Time Between Applications (hr) - Variable

I = Application Intensity (I/m2) - Variable

Assumed hourly evap from daily/12

Keeping T constant at 2 hours	Annual	Winter	Spring	Summer	Autumn
Р	0.29	0.12	0.33	0.44	0.33
D	7.6	7.6	7.6	7.6	7.6
Т	2	2	2	2	2
1	0.07	0.03	0.08	0.11	0.08
CE=100-(0.8*P*D*T/I)	50	50	50	50	50
Keeping I constant at 1 litre	Annual	Winter	Spring	Summer	Autumn
Р	0.29	0.12	0.33	0.44	0.33
D	7.6	7.6	7.6	7.6	7.6
Т	28	71	25	19	25
1	1	1	1	1	1
CE=100-(0.8*P*D*T/I)	50	50	50	50	50

The outcome from the above calculations is that in order to obtain controlled emissions from the proposed access road at a rate of 50% (the level assumed in the modelling originally undertaken in 2010), water application rates of $<1L/m^2/2hrs$ are appropriate.

Based upon a very conservative $1L/m^2/application$ for 5 applications per day, the quality of water used would be $3400m^2 \ge 1 \ge 50\%$ of the quantity of water nominated by SEEC in their water balance. Therefore the quantity of daily usage is highly conservative.

In light of the above estimate of daily usage, the annual usage would conservatively be in the order of 4.25ML/yr (17 000L x 250 days). In reality, trucks would not be in operation 250 days per year and on many days, the level of rainfall would remove the need for watering.

Y:\Jobs 531 to 1000\744\Reports\74402_EA_2008\Letters\74402_05F12_Mooney_e_MD.docx

IF THIS TRANSMISSION HAS BEEN SENT TO YOU BY MISTAKE:

The content of this Email message and any attachments may be privileged, in confidence or sensitive. Any numberised use is expressly prehibited. If you have received this Email in error please notify the sender and delete the Email. Email may be corrupted or interfered with, RW. Corkery & Co. Py. Limited carned guarantee that the message you receive is the same as that which was sent. At the discretion of RW. Corkery & Co. Py. Limited we may send a paper copy for confirmation. In the event of any discretance between paper and electronic versions, the paper version is to take precedence.

Modified New Berrima Clay/Shale Quarry PA08_0212

8 June 2012

Page 3

SEEC has prepared a revised RATES model to establish the ability of the on-site dams (with a capacity of 4.59ML) to supply the original 33 400L/day. The results of the model outcomes are attached. Essentially a 4.59ML storage would be able to supply the nominated 33 400L/day for 98.7% of the time. Based on this outcome, it is proposed that the amount of 17 000L/day would be able to be supplied 100% of the time.

IF THIS TRANSMISSION HAS BEEN SENT TO YOU BY MISTAKE: The content of this Email message and any attachments may be privileged, in confidence or sensitive. Any unauthorised use is expressly prohibited. If you have received this Email in error please notify the sender and delete the Email. Email may be corrupted or interfered with. R.W. Corkery & Co. Pty. Limited earnet guarantee that the message you receive is the same as that which was sent. At the discretion of R.W. Corkery & Co. Pty. Limited we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions, the paper version is to take precedence.

Y:\Jobs 531 to 1000\744\Reports\74402_EA_2008\Letters\74402_05F12_Mooney_e_MD.docx

Report No. 744/16 Appendix 5

🔁 R.W. CORKERY & CO. PTY. LIMITED

8 June 2012

Page 4

Conclusion

The practical water requirement for dust suppression at the New Berrima Quarry would be satisfied by the proposed dams on site for 100% of the time.

I trust this response satisfies the Department and that you are now in a position to proceed to determination of the application.

Should you have any questions about the information provided, please do not hesitate to contact me.

Regards

Rob Corkery

Attached: RATES Model Output (1 page)

IF THIS TRANSMISSION HAS BEEN SENT TO YOU BY MISTAKE: The content of this Email message and any attachments may be privileged, in confidence or sensitive. Any unauthorised use is expressly prohibited. If you have received this Email in error please notify the sendor and delete the Email. Email may be corrupted or interfered with. R. W. Corkery & Co. Py. Limited earned guarantee that the message you receive is the same as that which was send. A thick discretion of R. W. Corkery & Co. Py. Limited earned guarantee that the message you receive is the same as that which was send. A thick as sends at the discretion of R. W. Corkery & Co. Py. Limited earned guarantee that the message you receive is the same as that which was send. A the discretion of R. W. Corkery & Co. Py. Limited earned guarantee that the message you receive is the same as that which was send. A thick as sends at Att which was send. Att which was send at the size of the same sender which was send. Att we have the same sender which was send. Att was attended with the size of the same sender which was sendered with a sender attended with a sendered attended with a send

Y:\Jobs 531 to 1000\744\Reports\74402_EA_2008\Letters\74402_05F12_Mooney_e_MD.docx

Modified New Berrima Clay/Shale Quarry PA08_0212

8 June 2012

Page 5

Report No. 744/16

Appendix 5

ENVIRONMENTAL ASSESSMENT

🖻 🖻 🖻 🗧 E C MORSE MCVEY

SEEC RATES IV Results Site: New Berrima Rain station: Moss Vale 68045

Avg annual rainfall (mm): 954.57

Max daily rainfall (mm): 422

Longest dry spell (days): 57 Days when rain > S1 initial loss: 4380

Avg days/yr rain > S1 initial loss: 44.09544

Total years: 99.33 Total days: 36278 Total no of days when rain fell: 11614 Avg days per year when rain fell: 116.9233867 Avg wet day rainfall (mm): 8.16

Input statistics:		9ML storage)	Model 2 (2.9ML storage)	
Capacity (L):	459	0000	290	0000
Startup % full:	1	10	1	0
Catchment area (sqm):	195	5000	195	5000
Initial loss per day (mm):		5		5
Runoff percentage:	60		6	60
Apply use A on wet days (Y/N):		Y	,	Y
Apply use B on wet days (Y/N):		N	1	N
Revert to mains at threshold (Y/N):	N		1	N
Mains reversion threshold (% full):	0			0
Overflows into Storage 2 (Y/N):	N		N	/A
USAGE stats (L/day):	Storage 1		Stor	age 2
Usage type:	A	В	Α	в
January	2000	100200	2000	100200
February	2000	66800	2000	66800
March	2000	33400	2000	33400
April	2000	8350	2000	8350
May	2000	8350	2000	8350
June	2000 8350		2000	8350
July	2000 8350		2000	8350
August	2000 8350		2000	8350
September	2000	33400	2000	33400
October	2000	33400	2000	33400
November	2000	66800	2000	66800
December	2000	100200	2000	100200
Results:	Stor	age 1	Stor	age 2
% of time demand met:	9	8.7	96	3.2
% of demand supplied from mains:		0	0	
Longest time storage ran dry (days):	3	38	56	
Avg annual mains demand (L):		0		0
Avg wet day overflow (L):	4945	62.71	5013	14.29
Avg no of overflow events annually:	31.94	402497	32.437	733011
Avg annual supply from rain in (L):	1298	35609	1233	6107
Max daily overflow (L):	4875	55950	4875	5950
Annual demand (L):	13329	934.06	13329	934.06

IF THIS TRANSMISSION HAS BEEN SENT TO YOU BY MISTAKE: The content of this Email message and any attachments may be privileged, in confidence or sensitive. Any unauthorised use is expressly prohibited. If you have received this Email in error please notify the sender and delete the Email. Email may be corrupted or interfered with. R.W. Cockery & Co. Py. Limited earnet guarantee that the message you receive it the same as that which was sent. At the discretion of R.W. Corkery & Co Py. Limited we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions, the paper version is to take precedence.

Y:\Jobs 531 to 1000\744\Reports\74402_EA_2008\Letters\74402_05F12_Mooney_e_MD.docx

