

further investigation into potential environmental impact and phytotoxicity issues.

As the NEPM guidelines for TPH's are not specific to the various TPH fractions and there are no guidelines for BTEX, guidelines for TPH's were adopted from the NSW EPA *Guidelines for Assessing Service Station Sites* (Table 3).

A summary of the Soil Investigation Levels is provided in Table 3.3.1.

3.3.2 Soil analytical results

The analytical results of recovered soil samples are shown in results tabled numbered 3.1 to 3.3 (at the end of this section). Results exceeding the HIL-A and EILs are highlighted. The certificates of analysis, quality control report and chain of custody documentation are attached as Appendix 7.

Staining was witnessed directly under the cradle housing the above ground storage tank (AST) containing diesel fuel. Staining was confined to the footprint of the AST cradle. No odours or visible evidence of contamination were identified within the two locations adjacent to historical banana plantations, surrounding the former nursery shed or within the former orchard area.

The analytical results for soils indicate that there is no contamination in any of the samples analysed, with the exception of the following:

- Surface samples BH37 (0-0.15m), BH39 (0-0.15m) and BH42(0-0.15m) contained Arsenic (25, 31, and 33mg/kg), marginally exceeding the EIL and phytotoxicity-based IL (for As, 20mg/kg)).
- BH4 (0-0.15m) and BH4 (0.2-0.3m) contained TPH C_{10} - C_{14} (640mg/kg and 2400mg/kg) exceeding the NSW EPA guideline (100mg/kg).
- BH4 (0-0.15m) and BH4 (0.2-0.3m) contained TPH C₁₅-C₂₈ (5,610mg/kg and 14,100mg/kg), exceeding the NSW EPA guideline (1,000mg/kg).
- BH3 (0-0.15m) contained TPH C29-C36 (1,260mg/kg), exceeding the NSW EPA guideline (1,000mg/kg).

The identified arsenic contamination adjacent to the southern banana plantation is only marginally above the EIL and consistent with background

Table 3.3.1 Health Based Soil Investigation levels for land use exposure setting A (Residential) and the Environmental Investigation Levels

Analyte	Health-based Investigation levels(A) (mg/kg)	Environmental Investigation Levels (mg/kg)
Metals/Metalloids		
Arsenic	100	20
Cadmium	20	3
Chromium (VI)	100	-
Copper	1000	60
Lead	300	300
Nickel	600	60
Zinc	7000	200
Mercury (Inorganic)	15	1
Total Petroleum H	ydrocarbons (TI	PH)
C6 - C9 Fraction	100	-
C10 – C14 Fraction	100	-
C15 – C28 Fraction	1000	-
C29 – C36 Fraction	1000	-
BTEX		
Benzene	1	-
Toluene	1.4	-
Ethyl benzene	3.1	-
Total Xylenes	14	-
Polycyclic Aromati	c Hydrocarbons	(PAH)
Total	100	-
Organics (Organo- phosphorus pestic		gano-
Aldrin + Dieldrin	10	0.2
Chlordane	50	-
DDT+DDD+DDE	200	0.2
Heptachlor	10	-
Other		
Asbestos	No discoverable fibres	

arsenic concentrations. These concentrations do not represent a health risk and therefore are not a constraint to the proposed development of the site for residential and ancillary purposes.

The TPH concentrations displayed within shallow samples extracted directly below the diesel AST (which was still in use at the time of this assessment) indicate that over a period of continual use diesel fuel has been spilt onto the soil surface and penetrated it to a depth at least 0.3mBGS. The presence of TPH fractions exceeding the HIL at this location could readily be remediated and therefore do not present a constraint to the proposed project application. Soils beneath the AST would be removed and validation samples collected from the base and walls of the removed AST footprint. The analytical results presented are sufficient enough to make and informed planning decision against the DGR's.

3.4 Quality assurance and control

3.4.1 Field quality assurance (QA)

All sampling was undertaken by appropriately qualified and trained environmental scientists in accordance with AS4482.1-2005.

Quality assurance (QA) samples were collected during the investigation for quality control purposes. This included the collection of 3 duplicate soil samples, all of which were split into triplicate samples.

All duplicate samples were analysed by ALS Brisbane and all triplicate samples were sent to SGS, a third party NATA accredited laboratory.

Two (2) rinsate samples were collected following the decontamination of the Jarrett head hand auger during each day of soil sampling and from the bailer used during the groundwater sampling process. One (1) trip blank sample was added to the first sample batch prior to the transport of chilled eskies to the laboratory. This first sample batch contained samples extracted from directly under and surrounding the AST and were the only samples analysed for volatile fuel constituents.

The sampling tools (split spoon sampler and Jarrett head hand auger) were decontaminated between sampling events in accordance with standard procedures. This involved the removal of soil followed by cleaning of the implements with a phosphate-free detergent and rinsing with clean water.

The implements used for crushing and mixing of interlaboratory split (3 in total) and blind intralaboratory duplicate (3 in total) samples, were rinsed in phosphate-free detergent between samples followed by a clean water rinse.

All split and duplicate samples were homogenised in the field. No samples analysed for VOC's were duplicated or homogenised in the field as this practice may dilute the presence of VOC's.

All samples were stored in laboratory supplied glass jars or bottles, sealed with Teflon-lined lids and stored in a chilled esky. Samples were submitted to ALS and/or SGS Laboratories with appropriate chain-of-custody documentation.

Chain-of-custody and laboratory quality control documentation is supplied with the analytical results in Appendix 7.

Two (2) rinsate blanks were collected from the common soil sampling equipment which was utilised across the site following cleaning with a phosphate-free detergent. These samples were used to evaluate the efficacy of the field decontamination procedure and the risk of cross contamination.

Table 3.4.1 shows the sampling equipment rinsate results against arsenic (a key COPC for this investigation).

Table 3.4.1 Equipment rinsate results

Rinsate sample	Date	Equipment	Arsenic (mg/L)
Rinsate 1	27.01.11	Hand auger	<0.001
QC4	01.02.11	Hand auger	<0.001

The rinsate results were all below ALS LOR (<0.001mg/L) and indicates the decontamination process was adequate to negate the potential effects of cross contamination between sampling locations.

3.4.2 Internal quality control

The results of the original and duplicate samples were compared via the relative percentage difference (RPD) method as shown in tables 3.1-3.4 included at the end of Section 3.

Generally the RPD is expected to be in the range of 30% – 50% (as per AS4482.1 2005) however

greater variation may occur due to numerous factors, including:

- · very low analyte concentrations
- organic analysis (which generally contains greater variation than inorganic analysis)
- · sample heterogeneity.

Where measured analytes returned levels below the respective laboratory's limits of reporting the RPD could not be calculated. Where concentrations of the specified analytes were detected, the quality control duplicate RPD results ranged from 0% to 36%.

All calculated RPD values were below the 50% acceptable limit for all duplicates and triplicate samples.

On the basis of the RPD comparisons, the duplicate results demonstrate that the field QA processes generally were adequate and that the laboratory results are precise. The split sample results indicate a satisfactory correlation between the laboratories.

3.4.3 Laboratory quality control

Laboratory quality control (QC) included duplicate analysis of 10% of the samples and analysis of Laboratory Control Samples (LCS), Method Blanks and Matrix Spikes at a rate of 5% for each batch.

Laboratory QC data is also presented in the certified laboratory reports and is included in Appendix 1. Laboratory QC analytical results are summarised below.

- For all matrices, no Method Blank value outliers occurred.
- For all matrices, no Duplicate outliers occurred with the exception of;
- Sample BH24 0.0-0.15 shows poor matrix spike recovery due to matrix interference. Poor matrix recovery was confirmed by re-extraction and re-analysis.
- Sample BH2 shows poor matrix spike recovery due to matrix interference. Confirmed by reextraction and re-analysis.
- Sample BH31 shows poor matrix spike recovery due to matrix interference

- For all regular sample matrices, no surrogate recovery outliers occurred.
- No Analysis Holding Time Outliers existed.
- Results for Demeton-S-methyl should be scrutinised as QC data indicates abnormally low recovery.

In summary we consider that the laboratory QC results are acceptable and that the data can be relied upon for the purposes of this investigation.

3.5 Dip site

Previous investigations surrounding the dip site were completed to a level where the identified contamination associated with dipping operations is fully delineated.

A Remediation Action Plan (RAP) was prepared in support of a previous Development Application in 2001. Whilst contamination has been identified and delineated in previous studies it will be necessary to further delineate prior to its remediation. This could be deferred until prior to operational works.

Previous investigations and the proposed remedial strategy for the dip site are adequate to address the DGR 6.1 for the Stage 1 Project Application.

The RAP is based on the findings of the investigation conducted by SKM in 1992 and outlines the proposed remediation strategy and validation procedure.

The proposed remediation strategy involves a combination of on-site containment, treatment and off-site disposal relative to the concentration of the contaminants in various locations.

3.6 Conclusion

The identified arsenic contamination in the vicinity of the southern banana plantation does not represent a health risk and therefore is not a constraint to the proposed development of the site for residential and ancillary purposes.

TPH results displayed within shallow soil samples extracted from beneath the diesel AST indicate minor contamination of shallow soils has occurred as a result from the use of the AST for refueling

machinery over a period of time. TPH contamination is readily manageable using standard remediation and bioremediation techniques and as such, we do not consider that these results represent a development constraint.

Remediation and validation of contaminated soils would be required prior to the site being rendered suitable for residential development.

	gs Forest ults	: Site inve	estigation	Parameter	Arsenic	mg/kg	Chromium	Chromium (III)	Chromium(VI)	Copper	Lead	mg/kg	Zinc	mg/kg
									0.5					
				Limit of reporting (ALS)	5	1	2	2	<0.5	5	5	2	5	0.1
			Sample# / Depth	HIL(a)	100	20	100	12,000	100	1000	300	600	7000	15
Lab	Lab batch #	Sample date:	(m)	EIL	20	3	50	50	-	100	300	60	200	1
ALS ALS	EB1101638 EB1101638	27/01/11 27/01/11	BH1/0-0.15m BH2/0-0.15m		<5	<1	6			12	11 9	3	77	<0.1 <0.1
ALS	EB1101638	27/01/11	BH2/0.2-0.3m								<5			<0.1
ALS	EB1101638	27/01/11	BH3/0-0.15m								9			
ALS	EB1101638	27/01/11	BH3/0.2-0.3m								<5			
ALS	EB1101638 EB1101638	27/01/11 27/01/11	BH4/0-0.15m BH4/0.2-0.3m								- 6 <5			
ALS	EB1101638	24/01/11	BH5/0-0.15m								<5			
ALS	EB1101638	24/01/11	BH5/0.2-0.3m								<5			
ALS	EB1101638	24/01/11	BH6/0-0.15m								<5			
ALS ALS	EB1101638 EB1101638	24/01/11 24/01/11	BH6/0.2-0.3m BH7/0-0.15m		 <5	<1	13			16	<5 13	9	80	<0.1
ALS	EB1101638	24/01/11	BH8/0-0.15m		<5	<1	15			10	8	12	83	<0.1
ALS	EB1101638	24/01/11	BH9/0-0.15m		<5	<1	11			12	7	8	72	<0.1
ALS	EB1101638	24/01/11	BH10/0-0.15m		<5	<1	12			10	6	9	64	<0.1
ALS ALS	EB1101638 EB1101638	27/01/11	BH11/0-0.15m BH12/0-0.15m		<5 <5	<1 <1	10 8			6 81	<5 <5	8	55 48	<0.1 <0.1
ALS	EB1101638	27/01/11	BH13/0-0.15m		<5	<1	16			20	<5	22	60	0.1
ALS	EB1101638	27/01/11	BH14/0-0.15m		<5	<1	22			15	<5	14	52	<0.1
ALS	EB1101638	27/01/11	QC1	Duplicate of BH14/0-0.15m	<5	<1	21			16	<5	16	55	<0.1
ccc	Relative Per ME105304	centage Differenc 18/10/10	e (RPD) between BH1 QC1A	4/0-0.15m & QC1 Triplicate of BH14/0-0.15m	<3	1.8	5% 17			6% 13	7	13% 11	6% 58	
SGS			(RPD) between BH14		<3	1.8	26%			14%		24%	11%	<0.05
ALS	EB1101638	27/01/11	BH15/0-0.15m	Wo orisin a gent	<5	<1	28			19	<5	24	92	0.1
ALS	EB1102915	27/01/11	BH16/0-0.15m		<5	<1	27			12	<5	17	63	0.1
ALS	EB1101638	27/01/11	BH17/0-0.15m		<5 -r	<1	32			12	<5 -r	19	71	0.1
ALS ALS	EB1101638 EB1101638	27/01/11 27/01/11	BH18/0-0.15m BH19/0-0.15m		<5 <5	<1 <1	18 26			14 19	<5 <5	19 21	58 74	0.1
ALS	EB1101638	27/01/11	BH20/0-0.15m		<5	<1	26			15	<5	21	64	0.1
ALS	EB1101638	27/01/11	BH21/0-0.15m		<5	<1	31			15	<5	20	78	0.1
ALS	EB1101638	27/01/11	BH22/0-0.15m		<5	<1	22			28	<5	25	101	<0.1
ALS	EB1101858 EB1101858	1/02/11	BH23/0-0.15m BH24/0-0.15m		<5 <5	<1 <1	28 25			17 18	<5 5	24	90 88	0.1
ALS	EB1101858	1/02/11	BH25/0-0.15m		<5	<1	24			16	<5	20	75	0.1
ALS	EB1101858	1/02/11	BH26/0-0.15m		<5	<1	29			18	<5	23	114	0.1
ALS	EB1101858	1/02/11	BH27/0-0.15m		<5	<1	12			<5	<5	6	25	<0.1
ALS ALS	EB1101638 EB1101638	27/01/11 27/01/11	BH28/0-0.15m BH29/0-0.15m		<5 <5	<1 <1	21 11			16 7	<5 <5	18 10	77 42	0.2 0.1
ALS	EB1101638	27/01/11	BH30/0-0.15m		<5	<1	25			18	<5	21	82	<0.1
ALS	EB1101638	27/01/11	BH31/0-0.15m		<5	<1	15			12	5	10	52	<0.1
ALS	EB1101638	27/01/11	BH32/0-0.15m		<5	<1	18			15	10	16	89	0.1
ALS	EB1101858 EB1101858	1/02/11	BH33/0-0.15m QC2	Duplicate of BH33/0-0.15m	<5	<1	2			<5	<5	<2	<5	<0.1
ALS	Relative Per		IQC2 e (RPD) between BH3	3/0-0.15m & OC2	<5 						<5 			
SGS	ME105304	1/02/11	QC2A	Triplicate of BH33/0-0.15m	<3						1			
	Relative Perc		(RPD) between BH3	3/0-0.15m & QC2A										
ALS	EB1101858 EB1101858	1/02/11	BH34/0-0.15m BH35/0-0.15m		<5 <5						<5 9			
ALS ALS	EB1101858	1/02/11	BH35/0-0.15m BH36/0-0.15m		<5 <5						<5			
ALS	EB1101858	1/02/11	BH37/0-0.15m		25						28			
ALS	EB1101858	1/02/11	BH38/0-0.15m		17						10			
ALS	EB1101858	1/02/11	BH39/0-0.15m		31	-	-			-	9			
ALS	EB1101858 EB1101858	1/02/11	BH40/0-0.15m BH41/0-0.15m		8 6						13 13			
ALS	EB1101858	1/02/11	BH42/0-0.15m		33						37			
ALS	EB1101858	1/02/11	QC3	Duplicate of BH42/0-0.15m	31						35			
			e (RPD) between BH4	2/0-0.15m & QC3	6%						6%			
SGS	ME105304	1/02/11	QC3A	Triplicate of BH42/0-0.15m	23		-				30			
ALS	EB1101858	entage Difference	(RPD) between BH42 BH43/0-0.15m	2/U-U.13III & QC3A	36% <5						21% <5			
72	1-01101030	1102111	15/145/0 V.15/11		~2						~3			

Notes:

Iotes:

-- Not analysed
(OC) Interlab split
(QCA) Blind intralab duplicate
N/A No guideline available
Exceeds health-based investigation level (HIL) for standard residential setting (A) of the DRAFT Guidelines for the Assessment and Management of Contaminated Lands in Queensland, May 1998.

Exceeds environmental investigation level (EIL) of the DRAFT Guidelines for the Assessment and Management of Contaminated Lands in Queensland, May 1998.

* Derived from the Unpublished Department of Environment, Queensland, Guidelines for Service Station Assessments (TPH/BTEX guideline limits.

King resu	•	Site inve	stigation	Parameter	Hept	Chlordane	Aldrin	Dieldrin	DDD +DDE	Endosulfan Sulfate and beta endosulfan	DDT	Other OC Pesticides	Ethion	Monocrotophos	Parathion	Bromophos- ethyl	Other OP Pesticides
				Units Limit of reporting (ALS)	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	mg/kg 0.05	0.05	mg/kg 0.2	mg/kg 0.05	mg/kg 0.05	mg/kg 0.2	mg/kg 0.2	mg/kg 0.05	mg/kg 0.05
				HIL(a)	10	50	10	10	200	380	200	N/A	N/A	N/A	N/A	N/A	N/A
Lab	Lab batch #	Sample date:	Sample# / Depth (m)	EIL	N/A	N/A	0.2	0.2	0.2	NA	0.2	N/A	N/A	N/A	N/A	N/A	N/A
ALS	EB1101638	27/01/11	BH1/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101638	27/01/11	BH2/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101638 EB1101638	27/01/11 27/01/11	BH2/0.2-0.3m BH3/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101638	27/01/11	BH3/0.2-0.3m														
ALS	EB1101638	27/01/11	BH4/0-0.15m														
ALS ALS	EB1101638 EB1101638	27/01/11 24/01/11	BH4/0.2-0.3m BH5/0-0.15m														
ALS	EB1101638	24/01/11	BH5/0.2-0.3m														
ALS	EB1101638	24/01/11	BH6/0-0.15m														
ALS	EB1101638 EB1101638	24/01/11 24/01/11	BH6/0.2-0.3m BH7/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101638	24/01/11	BH8/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101638	24/01/11	BH9/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101638	24/01/11	BH10/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS ALS	EB1101638 EB1101638	27/01/11 27/01/11	BH11/0-0.15m BH12/0-0.15m		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.2 <0.2	<0.05 <0.05	<0.05 <0.05	<0.2 <0.2	<0.2	<0.05 <0.05	<0.05 <0.05
ALS	EB1101638	27/01/11	BH13/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101638	27/01/11	BH14/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101638	27/01/11	QC1	Duplicate of BH14/0-0.15m	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
SGS	ME105304	18/10/10	(RPD) between BH1 QC1A	Triplicate of BH14/0-0.15m	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05
			(RPD) between BH14	4/0-0.15m & QC1A													
ALS	EB1101638 EB1102915	27/01/11 27/01/11	BH15/0-0.15m BH16/0-0.15m		<0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05	<0.05 <0.05	<0.2	<0.05 <0.05	<0.05	<0.2	<0.2	<0.05 <0.05	<0.05 <0.05
ALS	EB1101638	27/01/11	BH17/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101638	27/01/11	BH18/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101638	27/01/11	BH19/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101638 EB1101638	27/01/11 27/01/11	BH20/0-0.15m BH21/0-0.15m		<0.05	<0.05	<0.05 <0.05	<0.05	<0.05	<0.05 <0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05 <0.05	<0.05 <0.05
ALS	EB1101638	27/01/11	BH22/0-0.15m		<0.05	<0.05	<0.05	<0.05	0.07	0.33	<0.2	0.09	<0.05	<0.2	<0.2	<0.05	0.08
ALS	EB1101858	1/02/11	BH23/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS ALS	EB1101858 EB1101858	1/02/11	BH24/0-0.15m BH25/0-0.15m		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.2 <0.2	<0.05 <0.05	<0.05 <0.05	<0.2	<0.2	<0.05 <0.05	<0.05 <0.05
ALS	EB1101858	1/02/11	BH26/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101858	1/02/11	BH27/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101638 EB1101638	27/01/11 27/01/11	BH28/0-0.15m BH29/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05 <0.05
ALS	EB1101638	27/01/11	BH30/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05 <0.05	<0.05	<0.2	<0.2	<0.05 <0.05	<0.05
ALS	EB1101638	27/01/11	BH31/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101638	27/01/11	BH32/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101858 EB1101858	1/02/11	BH33/0-0.15m QC2	Duplicate of BH33/0-0.15m	<0.05	<0.05	<0.05 <0.05	<0.05 <0.05	<0.05	<0.05 <0.05	<0.2 <0.2	<0.05	<0.05	<0.2	<0.2	<0.05 <0.05	<0.05 <0.05
7.25		.,	(RPD) between BH3														
SGS	ME105304	1/02/11	QC2A	Triplicate of BH33/0-0.15m	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05
ALS	Relative Perc	entage Difference 1/02/11	(RPD) between BH33 BH34/0-0.15m	3/0-0.15m & QC2A	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101858	1/02/11	BH35/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101858	1/02/11	BH36/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101858	1/02/11	BH37/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS ALS	EB1101858 EB1101858	1/02/11	BH38/0-0.15m BH39/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05 <0.05	<0.05 <0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05 <0.05	<0.05 <0.05
ALS	EB1101858	1/02/11	BH40/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101858	1/02/11	BH41/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101858	1/02/11	BH42/0-0.15m	D	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
ALS	EB1101858 Relative Per	1/02/11	QC3 (RPD) between BH4	Duplicate of BH42/0-0.15m	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05
SGS	ME105304	1/02/11	QC3A	Triplicate of BH42/0-0.15m	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05
	Relative Perc	entage Difference	(RPD) between BH42														
ALS	EB1101858	1/02/11	BH43/0-0.15m		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.2	<0.2	<0.05	<0.05

													_	_	_	
					41	ne		ne	ne	rene	=	C6 - C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	
King	gs Forest	Site inve	stigation	Parameter	Benzene	Ethylbenzene	Toluene	rotal Xylene	Napthalene	Benzo(a)pyreno	PAH total	Frac	Fra	Fra	Fra	C10 - C36 Fraction
resu	ults			rarameter	Ben;	ylb	7olu	(Te	apth	zo(a	ΑH	6	C14	C28	36	Frac
						器		10	ž	Ben	-	- 93	10	-315	.29-	
				Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
				Limit of reporting (ALS)	0.2	0.5	0.5	0.5	0.5	0.5	0.5	10	50	100	100	50
				Limit of reporting (ALS)	0.2	0.5	0.5	0.5	0.5	0.5	0.5	10	50	100	100	
				HIL(a)	14	14	14	14	N/A	N/A	N/A	100*	100*	1000*	1000*	1000*
Lab	Lab batch #	Sample date:	Sample# / Depth (m)	EIL	N/A	N/A	N/A	N/A	N/A	1	100	N/A	N/A	N/A	N/A	N/A
ALS	EB1101638	27/01/11	BH1/0-0.15m													
ALS	EB1101638 EB1101638	27/01/11 27/01/11	BH2/0-0.15m BH2/0.2-0.3m		<0.2	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<10 <10	<50 <50	<100 <100	<100 <100	<50 <50
ALS	EB1101638		BH3/0-0.15m		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	90	920	<100	1010
ALS	EB1101638	27/01/11	BH3/0.2-0.3m		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	12	250	1260	1510
ALS	EB1101638 EB1101638	27/01/11 27/01/11	BH4/0-0.15m BH4/0.2-0.3m		<0.2	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<10 18	640 2500	5610 14100	180 120	6430 16700
ALS	EB1101638	24/01/11	BH5/0-0.15m		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<50	<100	160	160
ALS	EB1101638	24/01/11	BH5/0.2-0.3m		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<50	<100	<100	<50
ALS	EB1101638	24/01/11	BH6/0-0.15m		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<50	<100	<100	<50
ALS	EB1101638	24/01/11	BH6/0.2-0.3m		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<50	<100	<100	<50
ALS	EB1101638 EB1101638	24/01/11 24/01/11	BH7/0-0.15m BH8/0-0.15m													
ALS	EB1101638		BH9/0-0.15m													
ALS	EB1101638	24/01/11	BH10/0-0.15m													
ALS	EB1101638	27/01/11	BH11/0-0.15m													
ALS	EB1101638 EB1101638	27/01/11 27/01/11	BH12/0-0.15m BH13/0-0.15m													
ALS	EB1101638	27/01/11	BH14/0-0.15m													
ALS	EB1101638		QC1	Duplicate of BH14/0-0.15m												
	Relative Perc	entage Difference	(RPD) between BH1	14/0-0.15m & QC1												
SGS	ME105304		QC1A	Triplicate of BH14/0-0.15m												
ALS	EB1101638		(RPD) between BH1- BH15/0-0.15m	4/0-0.15m & QC1A												
ALS	EB1101638		BH16/0-0.15m													
ALS	EB1101638	27/01/11	BH17/0-0.15m													
ALS	EB1101638	27/01/11	BH18/0-0.15m													
ALS	EB1101638	27/01/11	BH19/0-0.15m													
ALS	EB1101638 EB1101638	27/01/11 27/01/11	BH20/0-0.15m BH21/0-0.15m													
ALS	EB1101638	27/01/11	BH22/0-0.15m													
ALS	EB1101858	1/02/11	BH23/0-0.15m													
ALS	EB1101858	1/02/11	BH24/0-0.15m													
ALS	EB1101858	1/02/11	BH25/0-0.15m													
ALS	EB1101858 EB1101858		BH26/0-0.15m BH27/0-0.15m													
ALS	EB1101638	27/01/11	BH28/0-0.15m													
ALS	EB1101638	27/01/11	BH29/0-0.15m													
ALS	EB1101638	27/01/11	BH30/0-0.15m													
ALS	EB1101638	27/01/11	BH31/0-0.15m													
ALS	EB1101638 EB1101858	27/01/11 1/02/11	BH32/0-0.15m BH33/0-0.15m													
ALS	EB1101858	1/02/11	QC2	Duplicate of BH33/0-0.15m												
	Relative Perc	entage Difference	(RPD) between BH3	33/0-0.15m & QC2												
SGS	ME105304		QC2A	Triplicate of BH33/0-0.15m												
ALS	Relative Perce	ntage Difference	(RPD) between BH3 BH34/0-0.15m	3/U-U.15M & QC2A												
ALS	EB1101858	1/02/11	BH35/0-0.15m													
ALS	EB1101858	1/02/11	BH36/0-0.15m													
ALS	EB1101858	1/02/11	BH37/0-0.15m													
ALS	EB1101858	1/02/11	BH38/0-0.15m													
ALS	EB1101858 EB1101858	1/02/11	BH39/0-0.15m BH40/0-0.15m													
ALS	EB1101858	1/02/11	BH41/0-0.15m													
ALS	EB1101858	1/02/11	BH42/0-0.15m													
ALS	EB1101858	1/02/11	QC3	Duplicate of BH42/0-0.15m												
			(RPD) between BH4													
SGS	ME105304		QC3A (RPD) between BH4.	Triplicate of BH42/0-0.15m												
ALS	EB1101858		BH43/0-0.15m	210-0.13III & QC3A												

Notes:
-- Not analysed
(S) Interlab split

(S) Interlab split
(D) Blind intralab duplicate
NIA No guideline available

Exceeds health-based investigation level (HIL) for standard residential setting (A) of the DRAFT Guidelines for the
Assessment and Management of Contaminated Lands in Queensland, May 1998.

Exceeds environmental investigation level (EIL) of the DRAFT Guidelines for the Assessment and Management of
Contaminated Lands in Queensland, May 1998.

Derived from the Unpublished Department of Environment, Queensland, Guidelines for Service Station Assessments
(TPH/BTEX) guideline limits.

4 Radiation assessment

Gilbert & Sutherland Pty Ltd (G&S) conducted a preliminary investigation of surface radiation levels and constructed boreholes to enable radiation profiling of the sub soils within portions of the site potentially affected by sand mining activities.

The purpose of the preliminary investigation was to address DGR 6.9 and to characterise the site's radiological profile and propose site management and/or remediation techniques (if required) for the Kings Forest development.

4.1 Surface radiation level survey

A site inspection and surface radiation survey was conducted on 4 November 2009 and a subsurface investigation (drilling program) was completed on 10 November 2009, by suitably qualified G&S environmental scientists. The drilling program was conducted by MazLab under the supervision of a G&S scientist.

4.1.1 Methodology

A walkover survey strategy was employed for the site. This involved the measurement of surface radiation levels in a 25m x 25m grid pattern across four (4) separate areas (shown on Drawing No. 10468.7.3) to characterise the site and to aid comparison with guideline radiation level limits.

The four (4) investigation areas surveyed were identified as possibly being affected by historical mineral sand mining within Aspect North's assessment of disturbance within the Kings Forest area. Size estimates of the four (4) survey areas are as follows.

- Area 1 approximately 134,000 m²
- Area 2 approximately 63,000 m²
- Area 3 approximately 10,800 m²
- Area 4 approximately 11,400 m².

A Ludlum 2241-3/HP270 survey meter (serial number 248102/604064) was used to measure the surface radiation levels at a distance of one (1) metre Above the Ground Surface (AGS). The instrument was calibrated by the Government of

Western Australia Department of Health, utilising a range of ambient equivalent dose rates emitted from Caesium (Cs-137) and traceable to national standards via the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). All traceable calibration levels were recorded in microGray's per hour (μ Gy.h-1), which is the unit of measurement specified for environmental exposure rates. Calibration records are presented in Appendix 5.

4.1.2 Results

The surface radiation level survey results are presented in Appendix 1 (Section 6.1 tables 1 to 4). The survey transects are shown on Drawing No. 10468.7.4.

Survey results were recorded in micro Sieverts per hour (μ Sv.h⁻¹), which for effective dose rates for gamma and beta rays is equivalent to microGray per hour (μ Gy.h⁻¹) at a ratio of 1:1. For the purposes of this assessment all results were recorded in μ Sv.h-1 and all guideline comparisons utilise the same dose rate reading at a 1:1 ratio to the guideline unit (microGray per hour).

Effective dose rates, (gamma rates) recorded within Appendix 1 (Section 7.1 tables 1 to 4) were compared to radiation level limits adopted by the Radiation Control Section, New South Wales Environmental Protection Authority (EPA) in its guideline, Radiation Safety Information Series No. 12 – Clean Up and Disposal of Radioactive Residues from Commercial Operations involving Mineral Sands, (RSIS No 12). This guideline is utilised for specific remediation trigger levels associated with former mineral sands mining operations occurring within areas proposed for residential use.

The surface radiation results are summarised as follows:

- No surface radiation levels recorded across the four survey areas exceeded the remediation trigger guideline limit of 0.7 μ Sv.h⁻¹ (equivalent to 0.7 μ Gy.h⁻¹) for 'dwellings, schools, businesses and industries where occupancies by the same people occurs on a day to day basis'.
- No surface radiation level results across the four survey areas were recorded above 0.2 μSv.h⁻¹,

which is consistent with the survey meter's background level readings and is generally considered representative of natural background radiation level.

A copy of the NSW Radiation Safety Policy (RSIS No. 12) is presented in Appendix 3.

4.2 Subsurface soil survey

4.2.1 Methodology

A total of 24 boreholes were drilled across the four surveyed areas to a minimum depth of 2.0 metres below ground surface (mBGS).

Borehole locations were chosen (where possible) to broadly reflect a grid pattern, over the four areas identified as potentially being affected by sand mining activities. The target depth for each borehole was 2.0 mBGS to account for residential dwelling footing depths and possible excavation of materials for the installation of services and/or swimming pools. A select number of boreholes were extended to refusal depths with a solid flight auger drill rig.

Measurements of gross radioactivity, recorded in μ Sv.h⁻¹, were logged at 100mm depth intervals using a custom HP 270 extendable probe assembly mated to the Ludlum 2241-3 survey meter. The gross radioactivity results were used to derive empirical radiation exposure levels for each 100mm interval of sub soil.

This derived exposure reading is representative of the radiation levels that would be expected if the sub soils were exposed to the surface and surveyed as per the methodology described in Section 3.1.1 above. Therefore the derived sub soil radiation level results can be directly compared with the NSW policy document remediation trigger value of 0.7 μ Sv.h⁻¹ (equivalent to 0.7 μ Gy.h⁻¹) for dwellings, schools, businesses and industries where occupancies by the same people occurs on a day-to-day basis.

The borehole logging method provides an estimate of the likely exposure to be recorded should thin sand lenses be bulked to a thickness greater than 300mm by site works or erosion.

Attributable errors associated with borehole logging of radiation exposures arise from the

material densities and counting geometry variations. The method used may overestimate derived sub soil radiation levels where contaminant material is less than 100mm thick. Errors for this method should be considered as + 30% of reported values.

4.2.2 Results

Results of radiation levels in boreholes are presented in Appendix 1 (Section 7.2, tables 5 to 10). Borehole locations are shown on Drawing No. 10468.7.5 and the soil profiles are recorded within bore logs presented in Appendix 4.

Vertical soil strata recorded in borehole logs revealed the site is characterised by grey, brown and white, fine sands with shallow groundwater existing across the assessed area at an average depth ranging from 1.1m to 1.4 mBGS. The presence of indurated black sands was recorded within the 24 boreholes at an approximate depth range of between 1.2m and 1.9 mBGS. The maximum depth of logged gross radiation levels was 2.1 mBGS within borehole BH24 located within Survey Area 1.

Derived gross radiation levels recorded within each borehole were compared to the DECCW NSIS No. 12 guideline. The subsurface-derived gross radiation results are summarised as follows:

- No subsurface-derived gross radiation level results across the four survey areas exceeded the remediation trigger guideline limit of 0.7 μ Sv.h⁻¹ (equivalent to 0.7 μ Gy.h⁻¹) for dwellings, schools, businesses and industries where occupancies by the same people occurs on a day-to-day basis.
- All subsurface-derived gross radiation level results across the four survey areas were below 0.2 μ Sv.h⁻¹ (which is consistent with background radiation levels for the survey meter and natural background levels) except for the following two results.
- BH11, located within Survey Area 4 at 0.100 mBGS, recorded 0.217 μSv.h⁻¹ which is slightly above natural background levels (0.2 μSv.h⁻¹).
- BH12, located within Survey Area 4 at 0.000 and 0.500 mBGS recorded 0.204 and 0.225 μ

www.access.gs

Sv.h⁻¹ respectively, each of which are slightly above natural background levels (0.2 μ Sv.h⁻¹).

4.3 Conclusion

All areas potentially disturbed by sand mining exploration or extraction have been identified and no radioactivity was identified at levels that would create a health risk. Therefore no further investigation is necessary.

5 Landfill impact assessment

The following site investigations have been undertaken of the capped Bogangar Landfill since 2001:

- Detailed Site Contamination Assessment (Stage 2) – Proposed Methodology for Bogangar Road Landfill Site – March 2001.
- Depot Road Landfill Assessment of Remediation Options and Remediation Action Plan – June 2003.¹¹
- Report on Bogangar Landfill analysis of monitoring results – GHD, March 2008.

The assessment of the probable impact of the landfill on the proposed development is based on these reports.

Groundwater level monitoring was undertaken by Tweed Shire Council (TSC) and the data analysed by Coffey Geosciences Pty Ltd (Coffey Geosciences) to determine the groundwater flow conditions. The TSC data as analysed by Coffey Geosciences¹³ indicates the groundwater flows in a west north-westerly direction from the proposed Stage 1 Project Application development area towards the landfill. The groundwater continues to flow westwards from the landfill. The gradient of the groundwater is low – in the order of 0.35% (0.035 m/m). The Coffey Geosciences groundwater contours are attached in Appendix 6.

TSC has undertaken monitoring of the groundwater adjacent to the landfill for the period from 2001 to Dec 2007. The monitoring program collected data on the groundwater height, major ions, nitrogen compounds, phosphate and a range of metals. GHD's review of the data indicated that

the landfill leachate¹⁴ might be having some influence on the groundwater bores numbered 10 (GW10) and 16 (GW16).¹⁵ These bores are within the proposed development area but adjacent to the boundary (within 6m) of the landfill.

The GHD report concludes that the nature of the impact is marginal. GHD's assessment of the other bores within the monitoring bore field showed no evidence of landfill contamination within the surrounding environment.

GW10 and GW16 exhibited elevated ammonia N, total N and Total Kjeldahl N concentrations. The total N concentrations were directly connected to the increased ammonia N. ¹⁶ The form of ammonia is dependent on pH and water temperature. The impact of pH and temperature on the proportions of ammonia and ammonium are shown in Table 4.1 (following page).

GW16 showed ammonia ranging from 2-3.5 mgL⁻¹ and an acid pH (ranging from 3.0-5.0). At these pH levels the dominant ion in solution is ammonium (NH₄⁺). The expected concentrations of un-ionised ammonia (NH₃) are less than 0.001 mg L⁻¹ (see Table 4.1) for all the detected ammonia levels during the monitoring period.

GW10 showed ammonia concentrations ranging from 0.5-4.0mg L⁻¹ with pH ranging from 6.0-8.0. The higher pH associated with this bore increases the proportion of un-ionised ammonia in the solution (see Table 4.1).

For the high pH event (8.0) between March 2006 and September 2006 the ammonia was 1.0mgL⁻¹ and suggests an NH₃ concentration between 0.03 and 0.08mgL⁻¹ (depending on the water temperature). The high Ammonia concentration of approximately 4.0mg L⁻¹ corresponded to a pH of 6 and a non-ionised ammonia of between 0.001 and 0.003mg L⁻¹ (depending on the water temperature).

1

¹⁰ Philip Bell and Partners Pty Ltd (March 19, 2001) Detailed Site Contamination Assessment (Stage 2) – *Proposed Methodology for Old Bogangar Road Landfill Site (Issue 2) - Kings Forest Development Cudgen, New South Wales.*Prepared for Narui Gold Coast Pty Ltd.

11 Out 10 Country Country

¹¹ Coffey Geosciences (June 30, 2003) Depot Road Landfill, Cudgen – Assessment of Remediation Options and Remediation Action Plan. Prepared for Tweed Shire Council.

¹² GHD 2008 Tweed Shire Council - Report on Bogangar Landfill, Analysis of monitoring results. Report No. 41/19476/3328 March 2008.

Coffey Geosciences Pty Ltd 2003 Depot road landfill Assessment of remediation options and remediation action plan, September 2003.

¹⁴ GHD 2008 Tweed Shire Council - Report on Bogangar Landfill, Analysis of monitoring results. Report No. 41/19476/3328 March 2008.

^{41/19476/3328} March 2008.

15 Locations of bores GW 10 and 16 are shown in the Coffey Geosciences groundwater contour plan, attached to this report as Appendix 6.

GHD 2008 Tweed Shire Council - Report on Bogangar Landfill, Analysis of monitoring results. Report No. 41/19476/3328 March 2008. Pages 8-9.

Table 4.1 Concentration of un-ionised ammonia (mg L⁻¹) as a proportion¹⁷ of total ammonia in relation to pH and temperature (°C)

	Total ammonia	a 0.5 mg L ⁻¹				
Temp (°C)	pH 3	pH 4	pH 5	pH 6	pH 7	pH 8
15	0.000	0.000	0.000	0.000	0.001	0.014
20	0.000	0.000	0.000	0.000	0.002	0.020
25	0.000	0.000	0.000	0.000	0.003	0.029
30	0.000	0.000	0.000	0.000	0.004	0.040
	Total ammonia	a 1.0 mg L ⁻¹				
Temp (°C)	pH 3	pH 4	pH 5	pH 6	pH 7	pH 8
15	0.000	0.000	0.000	0.000	0.003	0.028
20	0.000	0.000	0.000	0.000	0.004	0.041
25	0.000	0.000	0.000	0.001	0.006	0.057
30	0.000	0.000	0.000	0.001	0.009 *	0.079
	Total ammonia	a 2.0 mg L ⁻¹				
Temp (°C)	pH 3	pH 4	pH 5	pH 6	pH 7	pH 8
15	0.000	0.000	0.000	0.001	0.006	0.057
20	0.000	0.000	0.000	0.001	0.008	0.082
25	0.000	0.000	0.000	0.001	0.012	0.115
30	0.000	0.000	0.000	0.002	0.017	0.159
	Total ammonia	a 4.0 mg L ⁻¹				
Temp (°C)	pH 3	pH 4	pH 5	pH 6	pH 7	pH 8
15	0.000	0.000	0.000	0.001	0.012	0.114
20	0.000	0.000	0.000	0.002	0.017	0.163
25	0.000	0.000	0.000	0.002	0.024	0.230
30	0.000	0.000	0.000	0.003	0.034	0.318

Notes: * = LC50 aquarium fish at 30°C and pH 7 for a 4 day exposure - 0.006 mg L⁻¹ 18

The Australian Drinking Water Guidelines indicate an aesthetic limit for NH₃⁻ ammonia of 0.5mgL⁻¹. ¹⁹ None of the calculated values in Table 4.1 exceed this value. There are no health criteria for ammonia in the drinking water guidelines.

The dominant NH⁴ is a non-toxic form of ammonia and poses an insignificant risk to human health and a minor risk in terms of environmental impact, given that the water is contained within the groundwater. The main hazard associated with this material is its nutrient impacts.

GW16 also showed elevated conductivity (and the associated major ions) and iron and manganese. The concentrations of these analytes were assessed by the GHD report as indicating the influence of landfill leachate. GW9, located within the Kings Forest Stage 1 Project Application area, ~50m from the landfill boundary, showed initial elevated N, P and iron levels that have (since March 2007 sampling) reduced to below average concentrations (for that bore). GW19, located in the Stage 1 Project Application area ~100m from the boundary, shows no evidence of leachate. ²⁰

Whilst the direction of groundwater flow is likely to change to south westerly to westerly, the proposed landuse to the south is community

¹⁷ Un-ionised NH₃ = total Ammonia/ $\{1+10^{((0.0902-pH)+(2730/(273.2+T))))}\}$

¹⁸ US Environmental Protection Authority. *Ambient Water Quality Criteria for Ammonia*, (EPA 440/5-85-001). January 1985

¹⁹ Australian Government 2004 National Water Quality Management Strategy. Australian Drinking Water Guidelines 6 2004. Endorsed by NHMRC 10-11 April 2003 Australian Government table 10.10 page 10-22.

²⁰ GHD 2008 Tweed Shire Council - Report on Bogangar Landfill, Analysis of monitoring results. Report No. 41/19476/3328 March 2008. Pages 9-10.

infrastructure. Such land use suggests that there would be no groundwater extraction for private use and the condition of the groundwater will pose no threat to the residential area. Similarly, any leachate transport to the west would pose no human health risk as there is no residential development to the west of the landfill. In addition, TSC intends to extend the surface drainage of the landfill site to connect the existing drain on the boundary with the flow line to the west of the landfill.²¹ This will direct any excess runoff from the landfill away from the site and towards open space.

The investigations indicate that the groundwater associated with the capped landfill will have no significant impact on the development proposed under the Kings Forest Stage 1 Project Application development area.

~ 4

²¹ Tweed Shire Council (Dec 2008): Depot road, Chinderah Sports fields and Amenities: Concept plan RC08008/01-07.

6 Conclusions

6.1 Site contamination assessment

Based on the review of previous environmental assessments undertaken in support of the Concept Plan application, no new potentially contaminating activities have occurred in the Stage 1 Project Application area. Based on a site inspection conducted on 4 November 2009, G&S did not identify any further potentially contaminating activities within the area of the Kings Forest Stage 1 Project Application.

6.2 Surface radiation survey

Based on the results of the surface radiation survey conducted across four (4) areas identified as potentially affected by historical sand mining activities, no effective dose radiation levels were recorded above the Ludlum survey meter's background level of $0.2\mu Sv.h^{-1}$ (generally consistent with natural background levels). G&S concludes that the site's surface radiation levels are compliant with the EPA guideline limit of 0.7 $\mu Gy.h^{-1}$ and therefore pose no constraint to the proposed development.

6.3 Sub surface radiation survey

No sub surface gross radiation levels existed above the NSW EPA radiation trigger value of 0.7μGy.h⁻¹. Based on these results no further assessment and/or remediation of sub surface soils within the Stage 1 Project Application development area is required.

G&S considers the risk of mineralised sands radiation levels to be low for the purposes of the site works and intended site use.

6.4 Contamination assessment of potentially contaminated areas

Based on the findings of this quantitative shallow soil assessment of areas previously identified to have had potentially contaminating activities occurring on or adjacent to them G&S considers neither the identified TPH concentrations (in excess of the HILs) nor the elevated arsenic concentrations (in excess of the EIL), constitute a development constraint. This is because, the identified arsenic contamination is only marginally above the EIL and consistent with background concentrations, whilst the TPH contamination can be readily remediated using standard techniques.

The shallow soil material below the diesel AST will require excavation and validation prior to the commencement of bulk earthworks in this area. This could occur in concurrence with the remediation of the former livestock dip.

6.5 Adjacent capped Bogangar Road landfill

The investigations of the impact of the capped landfill adjacent to the proposed development indicate that the groundwater associated with capped landfill will have no significant impact on the proposed development due the following considerations.

Groundwater flows in a westerly direction from the proposed development towards the landfill and through to the western side of the landfill.

The land use adjacent to the landfill will be community infrastructure and the likelihood of private or residential and exposure to the leachate will be avoided.

7 Appendix 1 – Results tables

7.1 Tables 1 to 4: Surface radiation survey results

Table 1: Area 1 survey results (transects 1 to 8). Approximate survey area 134,000 m²

Table 1: Area 1	survey results (tr	ansects 1 to 8). Appr	oximate surv	vey area 134,000 m ⁻
Transect No.	Sample No.	Reading (uSv/hr)	Clicks	Comments
1	1	0.075	3	GPS start: 554635N 6869520E
1	2	0.074	3	
1	3	0.028	2	
1	4	0.105	6	
1	5	0.083	3	
1	6	0.091	7	
1	7	0.126	9	Drainage line encountered
1	8	0.13	7	
1	9	0.123	8	
1	10	0.077	2	
1	11	0.118	7	
1	12	0.106	5	
1	13	0.087	3	
1	14	0.102	5	
1	15	0.102	8	
1	16	0.112	5	
1	17	0.064	3	
1	18	0.083	5	
1	19	0.112	4	
1	20	0.156	8	
1	21	0.195	9	
1	22	0.13	8	GPS finish: 554140N 6869602E
Transect 2				
2	1	0.068	3	GPS start: 554171N 6869631E
2	2	0.073	4	
2	3	0.081	5	
2	4	0.05	4	
2	5	0.072	4	
2	6	0.071	6	
2	7	0.073	4	
2	8	0.078	3	
2	9	0.045	1	
2	10	0.032	1	
2	11	0.093	5	
2	12	0.086	2	
2	13	0.146	6	Drainage line encountered
2	14	0.081	4	
2	15	0.075	1	
2	16	0.147	5	
2	17	0.114	2	

2	18	0.087	1	
2	19	0.072	1	
2	20	0.054	1	GPS finish: 554641N 6869533E
Fransect 3	20	0.004	·	ar a milion. 30404111 0000000E
3	1	0.066	1	GPS start: 554658N 6869565E
3	2	0.084	2	GI C CIGIT. CO 100014 CCCCCCC
3	3	0.082	1	
3	4	0.034	0	
3	5	0.053	1	
3	6	0.073	1	
3	7	0.134	6	Drainage line encountered
3	8	0.042	1	Brainage into encountered
3	9	0.058	1	
3	10	0.083	2	
3	11	0.055	1	
3	12	0.081	2	
3	13	0.077	1	
3	14	0.083	2	
3	15	0.058	1	
3	16	0.083	2	
3	17	0.083	1	
3	18	0.061	1	
3	19	0.103	4	GPS finish: 554210N 6869685E
ransect 4	19	0.103	4	GF3 IIIISI1. 554210N 0009005E
4	4	0.083	2	GPS start: 554217N 6869707E
4	2	0.083	3	GF3 Start. 55421711 6669707E
4	3	0.094	1	
4	4		5	
4	5	0.124 0.089	2	
4	6	0.107	4	
4	7		3	
		0.092		
4	8	0.061	1	
4	9	0.092	1	
4	10	0.045	+	
4	11	0.068	1	
4	12	0.058	1	Duning and line and accompany
4	13	0.051	1	Drainage line encountered
4	14 15	0.062	0	
4	16	0.083 0.091	2	
4	17	0.084	1	
4	18	0.107	3	CDS finish: EE 4600N 606000F
	19	0.064	1	GPS finish: 554682N 6869685E
ransect 5		0.000	•	ODC start: FF 4000N 0000040F
5	1	0.038	0	GPS start: 554683N 6869619E
5	2	0.062	0	
5	3	0.094	2	
5	4	0.098	2	
5	5	0.105	3	

5 7 0.062 2 Drainage line encountered 5 8 0.062 1 5 9 0.072 1 5 10 0.054 0 5 11 0.042 0 5 12 0.072 1 5 12 0.072 1 5 14 0.082 2 5 15 0.082 1 5 15 0.082 1 5 16 0.086 1 5 18 0.042 0 5 19 0.036 0 GPS finish: 554260N 6869788E Transet 6 6 1 0.092 2 GPS start: 554268N 6869810E 6 2 0.076 1 0 0 GPS finish: 554268N 6869810E 6 4 0.088 1 0 0 0 GPS finish: 554268N 6869810E 0 0 0 0					
5 8 0.062 1 5 9 0.072 1 5 10 0.054 0 5 11 0.042 0 5 11 0.042 0 5 12 0.072 1 5 13 0.074 1 5 14 0.082 2 5 15 0.082 1 5 16 0.086 1 5 17 0.077 1 5 18 0.042 0 5 19 0.036 0 GPS finish: 554260N 6869788E Transect 6 6 1 0.092 2 GPS start: 554268N 6869810E 6 2 0.076 1 <	5	6	0.098	2	
5 9 0.072 1 5 10 0.054 0 5 11 0.042 0 5 12 0.072 1 5 13 0.074 1 5 14 0.082 2 5 16 0.086 1 5 16 0.086 1 5 17 0.077 1 5 18 0.042 0 5 19 0.036 0 GPS finish: 554260N 6869788E Transect 6 6 1 0.092 2 GPS start: 554268N 6869810E 6 2 0.076 1 0 0 GPS finish: 554268N 6869810E Transect 6 6 1 0.092 2 GPS start: 554268N 6869810E Transect 7 1 0.041 0 0 GPS finish: 554268N 6869810E 0 0 0 GPS finish: 554268N 6869810E 0 0	5	7	0.062	2	Drainage line encountered
5 10 0.054 0 5 11 0.042 0 5 12 0.072 1 5 13 0.074 1 5 14 0.082 2 5 15 0.082 1 5 16 0.086 1 5 17 0.077 1 5 18 0.042 0 5 19 0.036 0 GPS finish: 554260N 6869788E Transect 6 6 1 0.092 2 GPS start: 554268N 6869810E 6 2 0.076 1 0.076 1 0.076 1 0.076 1 0.076 1 0.076 1 0.076 1 0.076 1 0.076 1 0.076 1 0.076 1 0.076 1 0.076 0.076 1 0.076 0.076 1 0.076 0.076 0.076 0.076 0.076	5	8	0.062	1	
5 11 0.042 0 5 12 0.072 1 5 13 0.074 1 5 14 0.082 2 5 15 0.082 1 5 16 0.086 1 5 17 0.077 1 5 18 0.042 0 5 19 0.036 0 GPS finish: 554260N 6869788E Transect 6 6 1 0.092 2 GPS start: 554268N 6869810E 6 2 0.076 1 0.076 1 0.076 1 0.076 1 0.076 1 0.076 1 0.076 1 0.076 1 0.076 1 0.076 1 0.076 1 0.076 0.076 1 0.076 0.076 1 0.076 0.076 1 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076	5	9	0.072	1	
5 12 0.072 1 5 13 0.074 1 5 14 0.082 2 5 15 0.082 1 5 16 0.086 1 5 16 0.086 1 5 17 0.077 1 5 18 0.042 0 5 19 0.036 0 6 1 0.092 2 6 1 0.092 2 6 2 0.076 1 6 3 0.068 1 6 3 0.068 1 6 4 0.086 1 6 5 0.041 0 6 6 0.061 1 6 7 0.092 4 6 8 0.126 5 6 9 0.083 1 6 11	5	10	0.054	0	
5 12 0.072 1 5 13 0.074 1 5 14 0.082 2 5 15 0.082 1 5 16 0.086 1 5 16 0.086 1 5 17 0.077 1 5 18 0.042 0 5 19 0.036 0 6 1 0.092 2 6 1 0.092 2 6 2 0.076 1 6 3 0.068 1 6 3 0.068 1 6 4 0.086 1 6 5 0.041 0 6 6 0.061 1 6 7 0.092 4 6 8 0.126 5 6 9 0.083 1 6 11	5	11	0.042	0	
5 13 0.074 1 5 14 0.082 2 5 15 0.086 1 5 16 0.086 1 5 16 0.086 1 5 17 0.077 1 5 18 0.042 0 5 19 0.036 0 GPS finish: 554260N 6869788E Transet 6 6 1 0.092 2 GPS start: 554268N 6869810E 6 2 0.076 1<					
5 14 0.082 2 5 15 0.082 1 5 16 0.086 1 5 17 0.077 1 5 18 0.042 0 5 19 0.036 0 GPS finish: 554260N 686978E Transect 6 6 1 0.092 2 GPS start: 554268N 6869810E 6 2 0.076 1 6 6 2 0.076 1 6 6 2 0.076 1 1 6 6 2 0.076 1 0 6 6 2 0.076 1 0 6 6 2 0.076 1 0 6 6 2 0.076 1 0 0 6 0					
5 15 0.082 1 5 16 0.086 1 5 17 0.077 1 5 18 0.042 0 5 19 0.036 0 GPS finish: 554260N 6869788E Transect 6 6 1 0.092 2 GPS start: 554268N 6869810E 6 2 0.076 1 0.092 4 0.086 1 0.086 0.086 1 0.086 0.086 1 0.086 0.086 1 0.086 0.086 0.086 1 0.086 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
5 16 0.086 1 5 17 0.077 1 5 18 0.042 0 5 19 0.036 0 GPS finish: 554260N 6869788E Transect 6 6 1 0.092 2 GPS start: 554268N 6869810E 6 2 0.076 1 1 6 3 0.068 1 1 6 4 0.086 1 1 6 5 0.041 0 0 6 6 5 0.041 0 6 6 0.061 1 1 6 6 0.061 1 1 6 7 0.092 4 4 6 8 0.126 5 6 6 9 0.083 1 1 6 10 0.042 0 0 6 13 0.068 1					
5 17 0.077 1 5 18 0.042 0 5 19 0.036 0 GPS finish: 554260N 6869788E Transect 6 6 1 0.092 2 GPS start: 554268N 6869810E 6 2 0.076 1 6 3 0.068 1 6 4 0.086 1 6 5 0.041 0 6 6 0.061 1 6 7 0.092 4 6 7 0.092 4 6 8 0.126 5 6 9 0.083 1 6 10 0.042 0 6 11 0.079 2 6 12 0.103 3 6 13 0.068 1 Drainage line encountered 6 14 0.066 1 GPS finish: 554665N 6869645E					
5 18 0.042 0 GPS finish: 554260N 6869788E Transect 6 6 1 0.092 2 GPS start: 554268N 6869810E 6 2 0.076 1 6 6 2 0.076 1 6 6 3 0.068 1 0 6 6 3 0.068 1 0 <td></td> <td></td> <td></td> <td></td> <td></td>					
5 19 0.036 0 GPS finish: 554260N 6869788E Transect 6 6 1 0.092 2 GPS start: 554268N 6869810E 6 2 0.076 1 6 3 0.068 1 6 4 0.086 1 6 5 0.041 0 6 6 0.061 1 6 7 0.092 4 6 8 0.126 5 6 9 0.083 1 6 9 0.083 1 6 10 0.042 0 6 11 0.079 2 6 12 0.103 3 6 13 0.068 1 Drainage line encountered 6 14 0.066 1 O GPS finish: 554665N 6869645E Transect 7 7 1 0.074 1 GPS start: 554710N 6869671E					
Transect 6 6					
6 1 0.092 2 GPS start: 554268N 6869810E 6 2 0.076 1 6 3 0.068 1 6 4 0.086 1 6 5 0.041 0 6 6 6 0.061 1 6 7 0.092 4 6 8 0.126 5 6 9 0.083 1 6 10 0.042 0 6 11 0.079 2 6 12 0.103 3 6 13 0.068 1 Drainage line encountered 6 14 0.066 1 1 6 15 0.083 1 1 6 15 0.083 1 0 6 17 0.087 0 GPS finish: 554665N 6869645E Transect 7 7 1 0.074 1<		19	0.036	0	GPS finish: 554260N 6869788E
6 2 0.076 1 6 3 0.068 1 6 4 0.086 1 6 5 0.041 0 6 6 0.061 1 6 6 0.061 1 6 7 0.092 4 6 8 0.126 5 6 9 0.083 1 6 10 0.042 0 6 11 0.079 2 6 12 0.103 3 6 13 0.068 1 Drainage line encountered 6 14 0.066 1 O GPS finish: 554665N 6869645E Transect 7 7 1 0.074 1 GPS start: 554710N 6869671E 7 2 0.074 0 GPS start: 554710N 6869671E 7 3 0.068 1 O O O O O O<	Transect 6				
6 3 0.068 1 1 6 6 4 0.086 1 1 6 6 5 0.041 0 0 6 6 6 0.061 1 1 6 6 7 0.092 4 6 6 8 0.126 5 6 6 9 0.083 1 1 6 1 0 0.042 0 0 6 11 0.079 2 6 12 0.103 3 6 12 0.103 3 1 0.068 1 1 0.066 1 1 0.066 1 1 0.066 1 1 0.083 1 1 0 0.083 1 1 0 0.066 1 1 0.083 1 1 0 0.083 1 1 0 0.066 1 1 0 0.087 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				2	GPS start: 554268N 6869810E
6 4 0.086 1 6 5 0.041 0 6 6 0.061 1 6 7 0.092 4 6 8 0.126 5 6 9 0.083 1 6 10 0.042 0 6 11 0.079 2 6 12 0.103 3 6 13 0.068 1 Drainage line encountered 6 14 0.066 1 Drainage line encountered 6 15 0.083 1 ORPS finish: 554665N 6869645E Transect 7 7 1 0.074 1 GPS start: 554710N 6869671E 7 2 0.074 0 0 7 3 0.068 1 1 7 4 0.048 0 0 7 5 0.103 2 0 7 6 0.073 0 0 7 7 0.103 4 <td></td> <td></td> <td></td> <td></td> <td></td>					
6 5 0.041 0 6 6 0.061 1 6 7 0.092 4 6 8 0.126 5 6 9 0.083 1 6 10 0.042 0 6 11 0.079 2 6 12 0.103 3 6 13 0.068 1 Drainage line encountered 6 14 0.066 1 Drainage line encountered 6 15 0.083 1 ORPS finish: 554665N 6869645E Transect 7 7 1 0.074 1 GPS start: 554710N 6869671E 7 2 0.074 0 ORPS finish: 554665N 6869671E 7 3 0.068 1 ORPS finish: 554710N 6869671E 7 4 0.048 0 ORPS finish: 554710N 6869671E 7 5 0.103 2 ORPS finish: 554710N 6869671E 7					
6 6 0.061 1 6 7 0.092 4 6 8 0.126 5 6 9 0.083 1 6 10 0.042 0 6 11 0.079 2 6 12 0.103 3 6 13 0.068 1 Drainage line encountered 6 14 0.066 1 0					
6 7 0.092 4 6 8 0.126 5 6 9 0.083 1 6 10 0.042 0 6 11 0.079 2 6 12 0.103 3 6 13 0.068 1 Drainage line encountered 6 14 0.066 1 0 0 6 1 0 0 6 1 0 <td></td> <td></td> <td></td> <td></td> <td></td>					
6 8 0.126 5 6 9 0.083 1 6 10 0.042 0 6 11 0.079 2 6 12 0.103 3 6 13 0.068 1 Drainage line encountered 6 14 0.066 1 0 0 6 1 0					
6 9 0.083 1 6 10 0.042 0 6 11 0.079 2 6 12 0.103 3 6 13 0.068 1 Drainage line encountered 6 14 0.066 1 0.074 1 0.074 0 GPS finish: 554665N 6869645E 0.074 0 GPS start: 554710N 6869671E 0.074 0 0.074 0 0.074 0 0.074 0 0.074 0 0.074 0 0.074 0					
6 10 0.042 0 6 11 0.079 2 6 12 0.103 3 6 13 0.068 1 Drainage line encountered 6 14 0.066 1 6 15 0.083 1 6 16 0.066 0 6 17 0.087 0 GPS finish: 554665N 6869645E Transect 7 7 1 0.074 1 GPS start: 554710N 6869671E 7 2 0.074 0 0 7 3 0.068 1 1 7 4 0.048 0 0 7 5 0.103 2 2 7 6 0.073 0 0 7 7 0.103 4 Drainage line encountered 7 8 0.06 0 7 9 0.053 2			0.126		
6 11 0.079 2 6 12 0.103 3 6 13 0.068 1 Drainage line encountered 6 14 0.066 1 0.083 1 0.083 1 0.066 0 0 GPS finish: 554665N 6869645E 0.087 0 GPS finish: 554665N 6869645E 0.074 0 0.074 1 GPS start: 554710N 6869671E 0.074 0 <td></td> <td></td> <td></td> <td>_</td> <td></td>				_	
6 12 0.103 3 0.068 1 Drainage line encountered 6 14 0.066 1 6 15 0.083 1 6 16 0.066 0 GPS finish: 554665N 6869645E Transect 7 7 1 0.074 1 GPS start: 554710N 6869671E 7 2 0.074 0 GPS finish: 554665N 6869645E 7 3 0.068 1 7 7 4 0.048 0 7 7 5 0.103 2 7 7 6 0.073 0 7 7 7 0.103 4 Drainage line encountered 7 8 0.066 0 7 9 0.053 2	6	10			
6 13 0.068 1 Drainage line encountered 6 14 0.066 1 6 15 0.083 1 6 16 0.066 0 6 17 0.087 0 GPS finish: 554665N 6869645E Transect 7 7 1 0.074 1 GPS start: 554710N 6869671E 7 2 0.074 0 0 7 3 0.068 1 1 7 4 0.048 0 0 7 5 0.103 2 0 7 6 0.073 0 0 7 7 0.103 4 Drainage line encountered 7 8 0.06 0 7 9 0.053 2	6			2	
6 14 0.066 1 6 15 0.083 1 6 16 0.066 0 GPS finish: 554665N 6869645E Transect 7 7 1 0.074 1 GPS start: 554710N 6869671E 7 2 0.074 0 7 3 0.068 1 7 4 0.048 0 7 5 0.103 2 7 6 0.073 0 7 7 7 0.103 4 Drainage line encountered 7 8 0.06 0 7 9 0.053 2	6	12	0.103	3	
6 15 0.083 1 6 16 0.066 0 6 17 0.087 0 GPS finish: 554665N 6869645E Transect 7 7 1 0.074 1 GPS start: 554710N 6869671E 7 2 0.074 0 7 3 0.068 1 7 4 0.048 0 7 5 0.103 2 7 7 6 0.073 0 7 7 7 0.103 4 Drainage line encountered 7 8 0.06 0 7 9 0.053 2	6	13	0.068	1	Drainage line encountered
6 16 0.066 0 6 17 0.087 0 GPS finish: 554665N 6869645E Transect 7 7 1 0.074 1 GPS start: 554710N 6869671E 7 2 0.074 0 7 3 0.068 1 7 4 0.048 0 7 5 0.103 2 7 6 0.073 0 7 7 0.103 4 Drainage line encountered 7 8 0.06 0 7 9 0.053 2				1	
6 17 0.087 0 GPS finish: 554665N 6869645E Transect 7 7 1 0.074 1 GPS start: 554710N 6869671E 7 2 0.074 0 7 3 0.068 1 7 4 0.048 0 7 5 0.103 2 7 6 0.073 0 7 7 0.103 4 Drainage line encountered 7 8 0.06 0 7 9 0.053 2	6	15		1	
Transect 7 7 1 0.074 1 GPS start: 554710N 6869671E 7 2 0.074 0 7 3 0.068 1 7 4 0.048 0 7 5 0.103 2 7 6 0.073 0 7 7 0.103 4 Drainage line encountered 7 8 0.06 0 7 9 0.053 2		16	0.066	0	
7 1 0.074 1 GPS start: 554710N 6869671E 7 2 0.074 0 7 3 0.068 1 7 4 0.048 0 7 5 0.103 2 7 6 0.073 0 7 7 0.103 4 Drainage line encountered 7 8 0.06 0 7 9 0.053 2		17	0.087	0	GPS finish: 554665N 6869645E
7 2 0.074 0 7 3 0.068 1 7 4 0.048 0 7 5 0.103 2 7 6 0.073 0 7 7 0.103 4 Drainage line encountered 7 8 0.06 0 7 9 0.053 2	Transect 7				_
7 3 0.068 1 7 4 0.048 0 7 5 0.103 2 7 6 0.073 0 7 7 0.103 4 Drainage line encountered 7 8 0.06 0 7 9 0.053 2	7			1	GPS start: 554710N 6869671E
7 4 0.048 0 7 5 0.103 2 7 6 0.073 0 7 7 0.103 4 Drainage line encountered 7 8 0.06 0 7 9 0.053 2			0.074	0	
7 5 0.103 2 7 6 0.073 0 7 7 0.103 4 Drainage line encountered 7 8 0.06 0 7 9 0.053 2					
7 6 0.073 0 7 7 0.103 4 Drainage line encountered 7 8 0.06 0 7 9 0.053 2					
7 7 0.103 4 Drainage line encountered 7 8 0.06 0 7 9 0.053 2					
7 8 0.06 0 7 9 0.053 2					
7 9 0.053 2					Drainage line encountered
7 10 0.069 1				_	
			0.069	1	
7 11 0.051 1					
7 12 0.096 2					
7 13 0.023 0				0	
7 14 0.075 2	7				
7 15 0.055 0	_				
7 16 0.075 1				1	1
7 17 0.074 1	7			1	
7 18 0.083 2 GPS finish: 554275N 6869853 E	7 7	17	0.074	1	

Transect 8				
8	1	0.077	2	GPS start: 554282N 6869881E
8	2	0.064	1	
8	3	0.092	2	
8	4	0.075	1	
8	5	0.068	1	
8	6	0.094	2	
8	7	0.083	1	
8	8	0.076	1	
8	9	0.042	0	
8	10	0.051	1	
8	11	0.093	3	
8	12	0.086	1	
8	13	0.055	0	Drainage line encountered
8	14	0.058	1	
8	15	0.096	2	
8	16	0.083	0	
8	17	0.106	2	
8	18	0.094	2	GPS finish: 554694N 6869704E

Table 2: Area 2 survey results (transects 1 to 4). Approximate survey area 63,000 m²

Transect No.	Sample No.	Reading (uSv/hr)	Clicks	Comments
1	1	0.104	3	GPS start: 554789N 6869814E
1	2	0.102	3	
1	3	0.09	1	
1	4	0.089	2	
1	5	0.089	1	
1	6	0.101	2	
1	7	0.107	3	
1	8	0.052	0	
1	9	0.019	0	
1	10	0.084	1	
1	11	0.058	0	
1	12	0.077	2	
1	13	0.088	1	GPS finish: 554515N E6869950
Transect 2				
2	1	0.088	2	GPS start: 554521N 6869978E
2	2	0.064	0	
2	3	0.077	1	
2	4	0.068	1	
2	5	0.068	1	
2	6	0.058	1	
2	7	0.121	3	
2	8	0.083	1	
2	9	0.055	0	
2	10	0.051	1	
2	11	0.066	1	GPS finish: 554787N 6869903E

Transect 3				
3	1	0.06	1	GPS start: 554799N 6869934E
3	2	0.073	2	
3	3	0.051	1	
3	4	0.072	0	
3	5	0.086	1	
3	6	0.104	3	
3	7	0.062	0	
3	8	0.032	0	
3	9	0.03	1	
3	10	0.06	0	
3	11	0.036	0	GPS finish:554549N 6870039E
Transect 4				
4	1	0.077	2	GPS start: 554552N 6870064E
4	2	0.068	0	
4	3	0.096	2	
4	4	0.068	0	
4	5	0.077	1	
4	6	0.034	0	
4	7	0.058	0	
4	8	0.073	1	
4	9	0.072	1	
4	10	0.048	0	
4	11	0.065	1	GPS finish:554774N 686997E

Table 3: Area 3 survey results. Approximate survey area 10,800 m²

Transect No.	Sample No.	Reading (uSv/hr)	Clicks	Comments
1	1	0.04	2	GPS start: 554399N 6870452E
1	2	0.064	2	
1	3	0.11	6	
1	4	0.092	4	
1	5	0.128	5	
1	6	0.131	5	
1	7	0.076	5	
1	8	0.021	0	
1	9	0.048	3	
1	10	0.073	3	
1	11	0.06	5	
1	12	0.128	6	GPS finish: 554345N 6870165E

Table 4: Area 4 survey results. Approximate survey area 11,400 m²

Transect No.	Sample No.	Reading (uSv/hr)	Clicks	Comments
1	1	0.103	5	GPS start: 554359N 6870258E
1	2	0.144	6	
1	3	0.042	4	
1	4	0.086	6	
1	5	0.114	7	
1	6	0.063	4	
1	7	0.094	6	
1	8	0.075	4	
1	9	0.116	5	
1	10	0.076	5	
1	11	0.132	8	
1	12	0.152	8	
1	13	0.141	10	
1	14	0.09	5	
1	15	0.107	8	GPS finish: 554021N 6870312E

7.2 Tables 5 to 10: Subsurface (borehole) gross radiation results

Table 5: Subsurface gross radiation results BH1 - BH4

Borehole	9.00	BH1			BH2			ВН3			BH4	
Depth (m)	Soil Description	Reading (uSv/hr)	Clicks									
0		0.040	0		0.071	3		0.112	4		0.085	2
0.1	Top Soil	0.032	1	Top Soil	0.051	2	Top Soil	0.074	4	Top Soil	0.074	2
0.2	LGS	0.019	1	GS	0.066	2	LGS	0.067	2	LGS	0.081	3
0.3	LGS	0.050	2	GS	0.073	2	LGS	0.062	2	LGS	0.062	2
0.4	LBS	0.065	3	GS	0.065	2	LGS	0.045	2	LGS	0.051	1
0.5	LBS	0.120	5	GS	0.036	3	DBS	0.032	1	BS	0.053	1
0.6	BS	0.104	4	BS	0.02	2	DBS	0.019	0	BS	0.042	1
0.7	BS	0.091	3	BS	0.038	1	DBS	0.025	0	DBS	0.038	1
0.8	BS	0.099	3	BS	0.08	2	DBS	0.031	0	DBS	0.042	1
0.9	BS	0.163	4	BS	0.068	2	DBS	0.048	1	DBS	0.032	0
1.0	BS	0.103	4	BS	0.058	2	BIS	0.04	4	DBS	0.04	0
1.1	BS	0.069	3							DBS	0.051	2
1.2										BIS	0.068	2
1.3										BIS	0.066	2
1.4										BIS	0.07	3

Notes:

BS Brown Sands **Bold** Radiation levels above background 0.2 μSv.h⁻¹

BIS Black Indurated Sands

DBS Dark Brown Sands

GS Grey Sand

LBS Light Brown Sands

LGS Light Grey Sands

WS White Siliceous Sands

Table 6: Subsurface gross radiation results BH5 – BH8

	J	BH5			BH6			BH7		BH8			
Borehole Depth (m)	Soil Description	Reading (uSv/hr)	Click s	Soil Description	Reading (uSv/hr)	Clicks	Soil Description	Reading (uSv/hr)	Click s	Soil Description	Reading (uSv/hr)	Click s	
0		0.083	3		0.12	4		0.102	5		0.071	6	
0.1	Top Soil	0.062	2	LGS	0.093	3	LGS	0.089	3	LGS	0.051	6	
0.2	LGS	0.081	3	DBS	0.082	3	LGS	0.071	2	GS	0.066	2	
0.3	LGS	0.06	1	DBS	0.045	2	DBS	0.088	2	BS	0.073	2	
0.4	LGS	0.047	1	DBS	0.058	2	DBS	0.094	2	BS	0.065	3	
0.5	LGS	0.062	1	DBS	0.051	1	DBS	0.074	3	DBS	0.036	1	
0.6	LGS	0.056	1	DBS	0.038	0	DBS	0.092	2	DBS	0.02	2	
0.7	LGS	0.068	1	DBS	0.042	1	DBS	0.071	2	DBS	0.038	3	
0.8	LGS	0.066	1	DBS	0.055	1	DBS	0.087	2				
0.9	LGS	0.058	1	DBS	0.071	2							
1.0	DBS	0.062	2	LGS & WS	0.092	3							
1.1		, in the second		LGS & WS	0.081	3		·					
1.2		<u> </u>		LGS & WS	0.094	4							

Notes:

BS Brown Sands Black
Black Indurated

Radiation levels above background 0.2 μSv.h⁻¹

BIS Sands

DBS Dark Brown Sands

GS Grey Sand

LBS Light Brown Sands

LGS Light Grey Sands

White Siliceous

WS Sands

Table 7: Subsurface gross radiation results BH9 – BH12

	g.	ВН9			BH10			BH11			BH12	
Borehole Depth (m)	Soil Description	Reading (uSv/hr)	Clicks									
0	-	0.101	3		0.097	3		0.186	7		0.204	7
0.1	LGS	0.133	4	Top Soil	0.105	4	Rocky Fill	0.217	8	Top Soil	0.195	6
0.2	LGS	0.107	3	LGS	0.094	3	DBS	0.198	7	LGS	0.186	5
	LGS &											
0.3	Rocky Fill	0.095	4	LGS	0.097	3	DBS	0.161	8	LGS	0.197	6
0.4	LGS	0.031	0	LGS	0.103	4	DBS	0.126	4	LGS	0.186	5
0.5	WS & LGS	0.042	1	WS & LGS	0.096	3	GS	0.092	3	LGS	0.225	6
0.6	WS & LGS	0.066	1	WS & LGS	0.112	4	GS	0.096	4	LGS & WS	0.109	4
0.7	WS & LGS	0.062	1	WS & LGS	0.058	1	GS	0.058	1	LGS & WS	0.125	5
8.0	WS & LGS	0.068	2	WS & LGS	0.065	2	GS	0.062	1	LGS & WS	0.084	2
0.9	WS & LGS	0.063	2	WS & LGS	0.06	1	GS	0.056	1	LGS & WS	0.097	3
1.0	WS & LGS	0.101	3	WS & LGS	0.04	1	GS	0.065	2	LGS & WS	0.107	4
1.1	WS & LGS	0.058	1	WS & LGS	0.038	1	LGS	0.068	2	LGS & WS	0.077	3
1.2	WS & LGS	0.045	1	WS & LGS	0.087	3	LGS	0.062	2	LGS & WS	0.058	2
1.3	WS & LGS	0.062	1	WS & LGS	0.091	4	LGS	0.059	2	LGS & WS	0.072	2
1.4	WS & LGS	0.086	2				LGS	0.068	3	LGS & WS	0.065	1
1.5	WS & LGS	0.114	3				LGS	0.079	2	BIS	0.061	1
1.6							LGS	0.075	2	BIS	0.083	2
1.7		·		·	·		LGS	0.086	3		·	

Notes:

BS Brown Sands Bold Radiation levels above background 0.2 μSv.h⁻¹

BIS Black Indurated Sands

DBS Dark Brown Sands

GS Grey Sand

LBS Light Brown Sands

LGS Light Grey Sands

WS White Siliceous Sands

35

AGRICULTURE WATER ENVIRONMENT

Table 8: Subsurface gross radiation results BH13 – BH16

	greet .	BH13			BH14			BH15			BH16	
Borehole Depth (m)	Soil Description	Reading (uSv/hr)	Clicks									
0		0.022	0		0.061	2		0.068	2		0.087	3
0.1	DBS	0.049	2	GS	0.054	2	LGS	0.042	1	Top Soil	0.092	4
0.2	DBS	0.051	2	GS	0.06	2	LGS	0.059	2	LGS	0.081	3
0.3	LGS	0.063	1	GS	0.045	1	LGS	0.055	2	LGS	0.073	3
0.4	LGS	0.083	3	GS	0.036	2	LGS	0.06	2	LGS	0.059	2
0.5	DBS	0.071	2	GS	0.061	4	LGS	0.079	2	WS	0.048	1
0.6	DBS	0.081	2	GS	0.058	3	LGS	0.088	3	WS	0.057	1
0.7	LGS & WS	0.079	2	GS	0.047	2	LGS	0.064	2	WS	0.064	2
0.8	LGS & WS	0.067	1	LGS & WS	0.042	1	LGS	0.049	2	WS	0.077	3
0.9	LGS & WS	0.062	1				LGS	0.045	3	WS	0.048	2
1.0	DGS	0.074	2				LGS	0.027	2	WS	0.051	2
1.1	DGS	0.092	3							WS	0.034	1
1.2	DGS	0.072	2							WS	0.052	2

BS Brown Sands Bold Radiation levels above background 0.2 μSv.h⁻¹

BIS Black Indurated Sands

DBS Dark Brown Sands

GS Grey Sand

LBS Light Brown Sands

LGS Light Grey Sands

WS White Siliceous Sands


36

Table 9: Subsurface gross radiation results BH17 – BH20

	Journade grood i	BH17			BH18			BH19		BH20			
Borehole Depth (m)	Soil Description	Reading (uSv/hr)	Clicks										
0		0.057	2		0.072	2		0.068	2		0.084	3	
0.1	Top Soil	0.048	1	Top Soil	0.051	2	WS & LGS	0.048	1	Top Soil	0.079	3	
0.2	GS	0.052	2	GS	0.062	3	WS & LGS	0.053	1	LGS & WS	0.064	2	
0.3	GS	0.051	2	GS	0.074	3	WS	0.070	2	LGS & WS	0.025	0	
0.4	GS	0.019	0	GS	0.052	2	WS	0.064	2	LGS & WS	0.029	0	
0.5	GS	0.028	0	GS	0.044	1	WS	0.079	3	LGS & WS	0.038	1	
0.6	GS	0.03	1	GS	0.062	2	WS	0.075	2	LGS & WS	0.042	2	
0.7	WS	0.038	2	GS	0.051	1	WS	0.042	1	LGS & WS	0.055	2	
0.8	WS	0.058	2	GS	0.062	2	WS	0.070	3	LGS & WS	0.047	2	
0.9	WS	0.047	1				WS	0.094	2	LGS & WS	0.084	3	
1.0	WS	0.049	2							WS	0.052	2	
1.1										WS	0.062	2	
1.2										WS	0.071	3	
1.3										WS	0.064	2	
1.4										WS	0.075	3	
1.5										WS	0.069	2	
1.6										WS	0.075	3	
1.7				_						WS	0.036	1	

Notes:

BIS Black Indurated Sands

DBS Dark Brown Sands

GS Grey Sand

LBS Light Brown Sands

LGS Light Grey Sands

WS White Siliceous Sands

Table 10: Subsurface gross radiation results BH21 – BH24

	Ŭ	BH21			BH22		В	H23			BH24	
Borehole Depth (m)	Soil Description	Reading (uSv/hr)	Clicks	Soil Description	Reading (uSv/hr)	Clicks	Soil Description	Reading (uSv/hr)	Clicks	Soil Description	Reading (uSv/hr)	Clicks
0		0.098	6		0.087	3		0.079	2		0.114	6
0.1	WS	0.137	7	LBS	0.073	2	LGS	0.08	2	Top Soil	0.102	6
0.2	WS	0.112	6	LBS	0.092	3	LGS	0.091	3	LGS	0.097	5
0.3	WS	0.092	4	LBS	0.102	4	LGS	0.081	2	LGS	0.091	5
0.4	WS	0.087	2	LBS	0.042	1	LGS	0.092	2	LGS	0.076	3
0.5	WS	0.077	3	LGS	0.031	1	LGS	0.091	2	LGS	0.081	3
0.6	WS	0.032	1	LGS	0.056	2	LGS	0.082	3	LGS	0.053	2
0.7	WS	0.038	1	LGS	0.032	1	LGS	0.071	3	LGS	0.052	2
0.8	WS	0.047	2	LGS	0.096	3	LGS	0.063	2	LGS	0.047	1
0.9	WS	0.051	2	LGS	0.072	2	LGS	0.042	1	LGS	0.068	2
1.0				BIS	0.068	1	LGS	0.051	2	LGS	0.074	3
1.1							LGS	0.062	1	LGS	0.084	3
1.2							LGS	0.079	2	LGS	0.081	3
1.3							LGS	0.064	3	LGS	0.067	2
1.4							LGS	0.078	2	LGS	0.077	2
1.5							LGS	0.069	2	LGS	0.075	3
1.6							BIS & LGS Seams	0.073	1	BS	0.091	4
1.7							BIS & LGS Seams	0.046	1	BS	0.084	4
1.8							BIS & LGS Seams	0.049	1	BS	0.069	2
1.9							BIS & LGS Seams	0.058	2	BIS	0.077	3
2.0											0.071	2
2.1											0.064	2

Notes:

BS Brown Sands Bold Radiation levels above background 0.2 μSv.h⁻¹

BIS Black Indurated Sands

DBS Dark Brown Sands

GS Grey Sand

LBS Light Brown Sands
LGS Light Grey Sands
WS White Siliceous Sands

8 Appendix 2 – 1962 Aerial photograph of Kings Forest

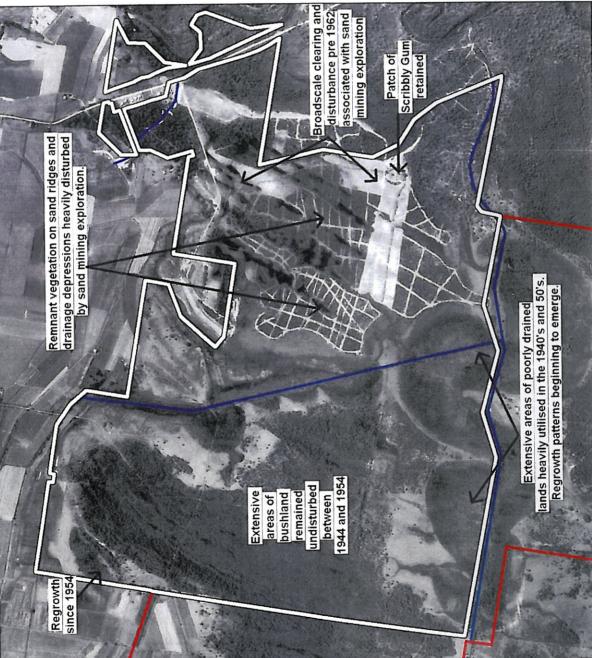


Plate 3. 1962 Aerial. Extensive disturbance associated with sand mining has occurred in the eastern part of the area.

14

9 Appendix 3 – NSW Radiation Safety Guideline (RSIS No.12)

RADIATION SAFETY INFORMATION SERIES No. 12

CLEAN-UP AND DISPOSAL OF RADIOACTIVE RESIDUES FROM COMMERCIAL OPERATIONS INVOLVING MINERAL SANDS

The National Health and Medical Research Council (N.H.M.R.C.) has adopted a set of standards relating to the clean-up and disposal of radioactive residues from commercial operations (5.1) involving sands. These standards cover the areas of:

- 1. action level criteria;
- 2. remedial action criteria;
- 3. disposal area criteria;
- 4. protection of disposal sites:

and the recommendations made by the N.H.M.R.C. are as set out below

1. Action Level Criteria

- 1.1 For dwellings, schools (Including playground) businesses, factories, etc. where occupancies by the same individuals occur regularly on a day by day basis, the remedial action level should be 0.7 μGy h¹ (or 70 μR h¹) for all points at 1 metre above the area of concern on the property.
- 1.2 For other areas, where occupancies are for a few hours per week by the same individuals or by differing individuals and for garden areas, the remedial action level should be 1.0 μGy h¹ (100 μR h¹) for all points at 1 metre above the lowest surface of the area.
- 1.3 For roads, paths, and other areas with intermittent occupancy, the remedial action level should be 2.5 μGy h⁻¹ (250 μR h⁻¹) for all points at 1 metre above the surface of the areas.
- 1.4 All values quoted above should include a value for normal natural background of 0.1 μGy h⁻¹ (10 μR h⁻¹)

2. Remedial Action Criteria

- 2.1 The remedial action required will depend on the particular situation, but it is only in rare cases that prompt action will be necessary. In many cases, exposures could have been going on for some time, so that a small extension of that time would have minimal effects.
- 2.2 Remedial action, when being considered, should take into account potential uses of an area as well as present uses. This will cover the fact that occupancy of an area can change dramatically following changes of use of that area. An example would be a house being extended so that a new room is now located over what was previously a garden area giving elevated radiation readings. However, realism will need to be applied in considering such matters.
- 2.3 Complete removal of contaminated soils will not always be necessary or desirable. Once commenced, removal of contaminated soil should continue until the radiation levels are as low as reasonably achievable below the action levels. Major undertakings, such as the removal of parts of, or all of, buildings should not be necessary but, if old or unsatisfactory, their removal may assist in remedial action.
- 2.4 The use of concrete for shielding purposes should be avoided if possible because, although of value in some cases, it could create problems in the future following the modification or removal of buildings.
- 2.5 Whilst remedial action may not seem necessary or urgent for particular circumstances, there remains the possibility that such action may be necessary in the distant future. Decisions must be made in these cases to carry out remedial action either as the need arises or in the immediate future. If the choice to carry out remedial action as the need arises is taken, it would be important to place some restrictions on the future use of the property. For public areas, such as roads and paths, the relevant authority should be informed so that roads, for example, cannot be opened in designated areas without advice from the health authorities.
- Whenever remedial action is to be undertaken, it will be necessary for an assessment to be made of the likely doses to persons undertaking the action. This assessment should taken into account the radiation likely to be received from external x-rays and from inhalation or ingestion of radioactive contaminants in dust or soil. Proper work procedures should be instituted and the workers advised of these and of appropriate personal hygiene. To date these levels have been shown to be low.

3 Disposal Area Criteria

The procedures for disposal of the recovered residues should follow those given in the Radioactive Waste Management (Mining and Milling) Code (1982) (5.2). Ideally, the residues should be returned to the area they came from, but if that area is not available, alternative sites should be used. Such sites should be in areas which are geologically sound and should not be subject to wind and water erosion.

4. Protection of Disposal Sites

Procedures should be instituted to prevent trespassing on and damage by vandalism at disposal sites. Following completion of disposal, rehabilitation and revegetation of the site should be carried out. Disposal sites should be subject to some restriction on their long-term use, but the extent of restriction would be dependent on each site and its characteristics.

- 5.1 National Health and Medical Research Council, report of the ninety-seventh session, June 1984; Australian Government Publishing Service (A.G.P.S.), Canberra.
- 5.2 Commonwealth of Australia. Code of practice on the management of radioactive wastes from the milling and milling of radioactive ores, 1982. A.G.P.S., Canberra

SER/NIMC RSIS 12

3.0

www.access.gs

10 Appendix 4 – Borelogs

Borehole: BH1 Project: GJ0873

Client:

RL(m):

GILBERT+SUTHERLAND
agriculture - water - environment

Depth (m): 3

Logged by: NG

Drilled by: Mazlab

Start date: 10/11/09

Drilling Method: Solid Auger

Northing: _____

Project 28

		Dri	lling	Soil Description			4		
Depth NSL(m)	Depth (RL) m	Method	Graphic log	Soil Description (as per McDonald et.al1990)	Aust, Soil Class.	Revised Standard Colour	Accessories	Additional Comments	Depth NSL(m)
_	-			SAND , Light grey, fine grained, moist, gradual change to;					
				SAND , Light brown, fine grained, moist, gradual change to;					-
_				SAND,Brown/light brown, fine grained, moist, gradual change to;					E
-									
1				SAND,Brown/light brown, fine grained, very moist, gradual change to;				Water table @ 1.25	-1
									-
- 2				SAND,Brown/light brown, fine grained, wet.					-2 -
-3									-3
-4									-4
-5									-5
6									6
-7									7
									-

Borehole: BH2
Project: GJ0873
Client: Project 28
Northing:

GILBERT+SUTHERLAND

agriculture - water - environment

Depth (m): 3 Logged by: NG

Drilled by: Mazlab

Easting: ______ Start date: 10/11/09

RL(m): _____ Drilling Method: Solid Auger

| Drilling | Soil Description |

8	_	חת	lling	Soil Description					l l
Depth NSL(m)	Depth (RL) m	Method	Graphic log	Soil Description (as per McDonald et.al1990)	Aust, Soil Class.	Revised Standard Colour	Accessories	Additional Comments	Depth NSL(m)
-				SAND , Grey/dark grey, fine grained, gradual change to;					
	1			SAND , Brown/light brown, fine grained, moist, gradual change to;					-
L									E
1									1
				SAND , Brown/light brown, fine grained, wet.				Water table @ 1.1	-
2								-	_
-									-2
3									3
-4									-4
5									5
[]									-
7									-6
								F	-
F								ļ	-

Borehole: BH3
Project: GJ0873
Client: Project 28
Northing: _____
Easting: _____

RL(m):

GILBERT+SUTHERLAND

agriculture - water - environment

Depth (m): 2 Logged by: NG

Drilled by: Mazlab
Start date: 10/11/09

_

		Dri	lling	Soil Description				1	
Depth NSL(m)	Depth (RL) m	Method	Graphic log	Soil Description (as per McDonald et.al1990)	Aust. Soil Class.	Revised Standard Colour	Accessories	Additional Comments	Depth NSL(m)
			(988)(60)(6	SAND , Light grey, fine grained, gradual change to;					1
-				SAND,Brown/dark brown, fine grained, moist, gradual change to;					-
-1				SAND,Brown/dark brown, fine grained, wel, gradual change to;				Water table @ 1 1	-1
				SAND , Dark brown/black indurated fill.					
2			ocoopaa						- 2
-3									-3
-4									-4
-5									-5
6									6
7									7
									-

Borehole: BH4 Project: GJ0873 Project 28 Client: Northing:

GILBERT+SUTHERLAND

agriculture - water - environment

Depth (m): 2 Logged by: NG

Drilled by: Mazlab Start date: 10/11/09

Drilling Method: Solid Auger

Easting: RL(m):

	L	Dri	lling	Soil Description				I	
Depth NSL(m)	Depth (RL) m	Method	Graphic log	Soil Description (as per McDonald et al 1990)	Aust. Soil Class.	Revised Standard Colour	Accessories	Additional Comments	Depth NSL(m)
				SAND , Light grey, fine grained, moist, gradual change to;					
-				SAND , Brown, fine grained, moist, gradual change to;					E
-1				SAND,Dark brown, fine grained, moist, gradual change to,					1
				SAND , Black indurated, fine grained				Water table @ 1.2	Ē
_									
									-
- 2									-2
-									Ė
									-
			8						-3
-									
-									_
-									
-4									-4
-									-
									-
									_
5									-5
									-
6					100				-6
-88									
7									_
'									- 7

Borehole: BH5 GJ0873 Project:

Project 28

Client:

Northing:

GILBERT+SUTHERLAND
agriculture - water - environment

Depth (m): 2 Logged by: NG

Drilled by: Mazlab

Start date: 10/11/09

Easting: RL(m):

		Dril	ling	Soil Description					
Depth NSL(m)	Depth (RL) m		Graphic log	Soil Description (as per McDonald et.al1990)	Aust. Soil Class.	Revised Standard Colour	Accessories	Additional Comments	Depth NSL(m)
-		-	Δ. Δ. Δ	SANDY LOAM , Black fine grained, gradual change to;					
Ŀ				SAND , Grey/light grey, fine grained, gradual change to;					
				SAND , Black, fine grained, moist, gradual change to;					
-1									_1
				SAND , Black, fine grained, wet.				Water table @ 1.2	
2			30000000						2
									-
3									3
									3
4			-						4
									-
-5									5
									J
6									6
7									7

Borehole: BH6
Project: GJ0873
Client: Project 28
Northing:

Easting:

RL(m):

GILBERT+SUTHERLAND

agriculture - water - environment

Depth (m): 6.2 Logged by: NG

Drilled by: Mazlab

Start date: 10/11/09

i.		Dri	lling	Soil Description			T	1	
Depth NSL(m)	Depth (RL) m	Method	Graphic log	Soil Description (as per McDonald et.al1990)	Aust. Soil Class.	Revised Standard Colour	Accessories	Additional Comments	Depth NSL(m)
-				SAND , Light grey, fine, dry, gradual change to; SAND , Black, moist, in-fills, gradual change to;					-
1	The state of the s			SAND,Light grey/white, fine grained, moist, gradual change to;					- - - 1
2									-2
-3							-25		-3
4				SAND , Black, fine grained, wet.				Water table @ 1.5	-4
-5									-5 5
6									-6
7									7

Borehole: BH7 **GILBERT+SUTHERLAND** GJ0873 Project: agriculture - water - environment Client: Project 28 Northing: Easting:

Depth (m): 2

Logged by: NG

Drilled by: Mazlab Start date: 10/11/09

Drilling Method: Solid Auger

RL(m): Drilling Soil Description

		Dri	lling	Soil Description					
Depth NSL(m)	Depth (RL) m	Method	Graphic log	Soil Description (as per McDonald et.a/1990)	Aust. Soil Class.	Revised Standard Colour	Accessories	Additional Comments	Depth NSL(m)
				SAND , Light grey, fine grained, gradual change to; SAND , Brown/dark brown, fine grained, moist, gradual change to;					-
-				over , stempedit stem, tile granted, most, graddal driange to,					-
				SAND , Light grey, fine grained, gradual change to;					-
1									-1
				CAND. Persuahkan finansiand usa					-
-				SAND,Brown/black, fine grained, wet.				Water table @ 1.2	-
									-
									_
- -3									-
									-3 -
									_
									-
4									-4
-									
									-
-5									5
-									-
6									6
									-
									-
7									- -7
								-	- 1
								-	

Borehole: BH8 GJ0873 Project: Client: Project 28 Northing: Easting:

GILBERT+SUTHERLAND

agriculture - water - environment

Depth (m): 2 Logged by: NG

Drilled by: Mazlab Start date: 10/11/09

	7					_			_
		Dri	lling	Soil Descripti	on				
Depth NSL(m)	Depth (RL) m	Method	Graphic log	Soil Description (as per McDonald et.al1990)	Aust. Soil Class.	Revised Standard Colour	Accessories	Additional Comments	
-			()(((((((((((((((((((((((((((((((((((((SAND , Light grey, fine grained, gradual change to;					
				SAND,Brown/black, fine grained, moist, gradual change to;				Water table @ 1.1	1
				SAND,Black, fine grained, wet.					
									3
									- - - - 4
									- 5
									-6
									7

Borehole: BH9
Project: GJ0873
Client: Project 28
Northing: _____
Easting: _____

RL(m):

Depth (m): 2 Logged by: NG

Drilled by: Mazlab
Start date: 10/11/09

		Dri	lling	Soil Description					
Depth NSL(m)	Depth (RL) m	Method	Graphic log	Soil Description (as per McDonald et.al1990)	Aust. Soil Class.	Revised Standard Colour	Accessories	Additional Comments	Depth NSL(m)
E				SAND , Light grey/grey, fine grained, dry, gradual change to; SAND , Light grey/grey, rocky seams, fine grained, dry, gradual change to;					-
1				SAND, White/grey, fine grained, moist.				Water table @ 1.4	- 1
2									2
- - - - - - - -									-3
4									-4
5									5
6									- -6
7									-7

Borehole: BH10 Project: GJ0873

GILBERT+SUTHERLAND
agriculture - water - environment

Depth (m): 2

Client: Project 28

Logged by: NG
Drilled by: Mazlab

Northing:

Start date: 10/11/09

RL(m): ____

Easting:

		Dri	lling	Soil Description					
Depth NSL(m)	Depth (RL) m	Method	Graphic log	Soil Description (as per McDonald et.al1990)	Aust. Soil Class.	Revised Standard Colour	Accessories	Additional Comments	Depth NSL(m)
			<u>. ۲</u> . ۵	SANDY LOAM , Grey/brown, fine grained, gradual change to;			-		
	in and the second			SAND , Light grey, fine grained, moist, gradual change to; SAND , Light grey/white, fine grained, moist, gradual change to;					
_ 1							-		_1
_2				SAND , Light grey/white, fine grained, wet.				Water table @ 1.4	2
3									-3
4									4
5									5
6									6
7									7

Borehole: BH11
Project: GJ0873
Client: Project 28
Northing:

GILBERT+SUTHERLAND

agriculture - water - environment

Depth (m): 2 Logged by: NG

Drilled by: Mazlab

Start date: 10/11/09

Drilling Method: Solid Auger

Easting: ______ RL(m): _____

		Dri	lling	Soil Description					
Depth NSL(m)	Depth (RL) m	Method	Graphic log	Soil Description (as per McDonald et al1990)	Aust. Soil Class.	Revised Standard Colour	Accessories	Additional Comments	Depth NSL(m)
-				SAND,Black, dry, gradual change to;					
-				SAND,Grey/light grey, moist, gradual change to,					-
-1				SAND,Grey/light grey, wet.				Water table @ 1.6	-1
- - 2									-2
- - - - - 3									-3
-4									-4
5									5
6									6
7									- 7
									-
									-

Borehole: BH12
Project: GJ0873
Client: Project 28

RL(m):

GILBERT+SUTHERLAND

agriculture - water - environment

Depth (m): 7.5 Logged by: NG

Drilled by: Mazlab

Start date: 10/11/09

Drilling Method: Solid Auger

Northing: _____

		Dri	lling	Soil Description					
Depth NSL(m)	Depth (RL) m		_	Soil Description (as per McDonald et.al1990)	Aust. Soil Class.	Revised Standard Colour	Accessories	Additional Comments	Depth NSL(m)
			Δ. 'Δ. 'Δ	SANDY LOAM , Brown, fine grained, dry, gradual change to; SAND , Grey/light grey, fine grained, dry, gradual change to; SAND , Grey/light grey, fine grained, dmoist, gradual change to;					-
1				SAND,Brown/dark brown, moist, gradual change to,					1
2				SAND,Brown/dark brown, wet, gradual change to,				Water table @ 1.9	_
3				SAND , Brown, black seams, gradual change to;					3
-4									-4
-5									5
6				SAND , Orange/brown, wet, gradual change to;					6
7				SAND,Black, indurated sand.					7

Borehole: BH13 Project: GJ0873 Client: Project 28

GILBERT+SUTHERLAND

agriculture - water - environment

Depth (m): 5.6 Logged by: NG

Drilled by: Mazlab Start date: 10/11/09

Drilling Method: Solid Auger

Northing: Easting: RL(m):

		Dri	lling	Soil Description	1 , ,				
Depth NSL(m)	Depth (RL) m	Method	Graphic log	Soil Description (as per McDonald et al 1990)	Aust. Soil Class.	Revised Standard Colour	Accessories	Additional Comments	Depth NSL(m)
-		-		SAND , Brown, fine grained, gradual change to;					-
-		-		SAND , Light grey/white, fine grained, gradual change to;					-
				SAND , Brown, fine grained, moist, gradual change to;					
-				SAND , Light grey/white, fine grained, moist, gradual change to;					
1				SAND , Brown/dark grey, fine grained, gradual change to;				Water table @ 1.5	-1
2				SAND , Brown/dark grey, fine grained, wet, gradual change to;					-2
3				SAND , Orange/brown, fine grained, wet, gradual change to;					-3
-4				SAND,Light brown, fine grained, wet, gradual change to;					-4
-5				SAND,Light brown, grey seams, fine grained, wet, gradual change to;					-5
-			20100(2000)	SAND , Indurated sands, bore hole terminated.					
6									6
7									- 7
									-