GeoEnvironmental Consultants

ACN 079 083 640

Specialising in the Earth and what's built on it

ty Ltd

129 Outlook Crescent Bardon Qld. 4065

E-mail: mtisdall@bigpond.com

Phone: (07) 3367 2266 Fax: (07) 3367 2377 Mobile: 0407 178 802

REPORT

LIMITED ENVIRONMENTAL SITE ASSESSMENT SERVICE STATION 39-45 TWEED COAST ROAD, CABARITA, NSW

Prepared for: STOCKWELL

March 2008 Ref N°: 6056/04

RECORD OF DISTRIBUTION

Report Status	Report Format	Distributed To:	Date	No. of Copies
Draft	Electronic Copy	Stockwell	6 Feb 08	1
		GeoEnvironmental		1
Final	Hard Copy	Stockwell	12 Mar 08	3 (1 unbound)
1 11101		GeoEnvironmental		1
	Electronic PDF	Stockwell	12 Mar 08	1
		GeoEnvironmental		1

Page 1 of 2

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
	1.1 Objectives	1
2.0	SCOPE OF WORK	1
3.0	BACKGROUND INFORMATION	2
	3.1 Site Identification	2
4.0	SAMPLING AND ANALYSIS PROGRAM	3
	4.1 Sampling Rationale	3
	4.2 Sampling Methodology	3
	4.3 Results of Field Sampling	4
	4.3.1 Soil	4
	4.3.2 Groundwater	4
	4.4 Analysis Rationale	4
	4.5 Analytical Program	5
	4.6 Assessment Criteria	5
	4.6.1 Soil	5
	4.6.2 Groundwater	6
	4.7 Laboratory Analytical Results	8
	4.7.1 Soil	8
	4.7.2 Groundwater	8
5.0	QUALITY ASSURANCE	9
6.0	CONCLUSIONS	9
7.0	I IMITATIONS OF DEDODT	10

Continued on Page 2 of 2

Page 2 of 2

TABLE OF CONTENTS

DRAWINGS

Drawing No. 6056/04-1 Site Location

Drawing No. 6056/04-2 Site Layout & Sampling Locations

TABLES

Table 1 – Soil Analytical Results – TPH, BTEX, Lead

Table 2 – Soil Analytical Results – Metals, OC/OP Pesticides

Table 3 – Soil Analytical Results – TCLP Metals

Table 4 – Groundwater Analytical Results –TPH, BTEX, Lead

Table 5 – Groundwater Level Gauging Results

APPENDICES

Appendix A – Borehole Drill Logs

Appendix B – Laboratory Reports and Chain of Custody Forms

Appendix C – Quality Assurance Procedures

GeoEnvironmental Consultants

ACN 079 083 640

Specialising in the Earth and what's built on it

Pty Ltd

129 Outlook Crescent Bardon Qld. 4065

E-mail: mtisdall@bigpond.com

Phone: (07) 3367 2266 Fax: (07) 3367 2377 Mobile: 0407 178 802

1.0 INTRODUCTION

Stockwell Developments engaged GeoEnvironmental Consultants to undertake a limited environmental assessment of the existing service station and adjoining buildings located at 39-45 Tweed Coast Road, Cabarita, NSW.

The subject site forms part of a proposed commercial redevelopment on the south west side of Tweed Coast Road and includes the Cabarita Beach House Motel, the Cabarita Beach Service Station and the Bogangar Newsagency. The site location and layout is shown on Drawing Nos. 1 and 2.

The assessment has been conducted in accordance with requirements of the NSW EPA *Guidelines for Assessing Service Station Sites*, December 1994. Previous environmental work has been reviewed and considered during this assessment.

1.1 Objectives

The objective of the limited environmental assessment is to assess whether or not significant contamination exists as a result of service station activities. Soil beneath concrete slabs under each of the three site buildings was also assessed.

2.0 SCOPE OF WORK

The following scope of work was completed:

- Site inspection and underground services identification;
- Drilling of three (3) solid stem auger boreholes on 18th December 2007 designated as Borehole Nos. CB1 to CB3 and installation of one groundwater monitoring well in CB1;
- Collection of soil samples from CB1 to CB3 and from under slab locations US1 to US6 for geological description and laboratory analysis;
- Selection of soil samples from boreholes for laboratory analysis for total petroleum hydrocarbons (TPH), benzene, toluene, ethyl benzene and xylene (BTEX) compounds, and lead (Pb)
- Selection of soil samples from under slab locations for analysis of metals arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), zinc (Zn) and organochlorine and organophosphate (OC/OP) pesticides;
- Gauging of Monitoring Well No. CB1 and two other un-named, existing monitoring wells and collection of four groundwater samples designated as

WS1 (from CB1), WS2 and WS3 and field duplicate DUP1 and laboratory analysis for TPH, BTEX and lead;

- Analysis of two soil samples for leachable As, Cu, Pb and Zn using the acidified toxicity characteristic leachate procedure (TCLP) test; and
- Data analysis and reporting.

3.0 BACKGROUND INFORMATION

3.1 Site Identification

The site is located on the south-west side of Tweed Coast Road and includes:

- Cabarita Beach House Motel on Lot 20 in DP31218;
- Cabarita Beach Service Station on Lots 21 and 22 in DP31218; and
- Bogangar Newsagency on Lot 23 in DP31218.

The motel is located at the north end of the three properties with a ramp leading down from street level to the lower site area. The service station occupies the central part of the site with three underground fuel storage tanks (USTs) and bowsers in the street level forecourt area. A ramp leads down to the lower south western site area that is approximately 3m lower. The Bogangar Newsagency is in the southern building that is elevated on stumps.

The following report was reviewed:

Preliminary Contamination Assessment for Cabarita Service Station, Lot 22 on DP31208, The Coast Road, Cabarita Beach by Border-Tech Geotechnical Engineering Services, Ref: BT14292, February 2005.

The report included a review of site history details and the results of drilling and sample collection from eight locations BH1 to BH8. TPH, BTEX and Pb concentrations in five samples collected from boreholes BH1 to BH3 located to the south and north of the USTs were below adopted regulatory criteria. TPH, BTEX and metal concentrations in four surface soil samples collected from the lower site area were below adopted regulatory criteria. There was no groundwater sampling conducted.

While inspecting the site on 18th December 2007, evidence of previously completed environmental assessment work was identified. Evidence included the resealed borehole drill locations of Border-Tech's BH1, BH2 and BH3 drilled in 2005. There were also two existing groundwater monitoring wells that service station staff advised were installed earlier in 2007. There were also two other resealed borehole locations that were apparently drilled at the time of monitoring well installation. There was no information available on the drilling activities that had occurred or any environmental data. The 50mm PVC monitoring wells under roadbox covers were inspected and were in good condition and suitable for groundwater sample collection. The two monitoring well and two borehole locations are shown on Drawing No. 2.

There was also evidence of old boreholes in close proximity to BH1 and BH2 for which no information was available.

4.0 SAMPLING AND ANALYSIS PROGRAM

4.1 Sampling Rationale

The sampling rationale was based on results of the site inspection, location of existing groundwater monitoring wells and review of available data. The subject site area has been assessed by drilling on 18th December 2007 as follows:

- Borehole No. **CB1** was located on the lower service station area to the south of the USTs and building. The borehole/well was positioned to assess potential contamination from oil drums in the area and potential migration in a southerly direction away from the higher USTs and bowser area. Groundwater was encountered at approximately 2.7n depth and a groundwater monitoring well was installed;
- Borehole No. **CB2** was located on the upper forecourt area in a safe location just east of the southern UST and bowser area. The borehole was positioned to assess potential contaminant migration in an easterly direction. CB2 was drilled to 6.0m depth;
- Borehole No. **CB3** was located on the lower service station area near the southern corner of the service station building to assess the area of an existing pit, possibly an interceptor pit. CB3 was drilled to 4.5m depth, nearly 2.0m below the observed groundwater level;
- US1, US2 and US4 were located under accessible parts of the ground level slab of the service station building and adjacent concrete ramp. Samples were collected by hand tools immediately beneath the concrete; and
- US3 was collected beneath the ground level concrete slab under the Bogangar Newsagency and US5 and US6 were collected beneath the ground level concrete slabs under the motel building.

The sampling locations were selected based on site observations, potential contaminant sources and likely contaminant migration directions. The upper level existing monitoring well was located in a good position to assess potential contaminant migration in an easterly direction away from the USTs. The lower level existing monitoring well was located in a good position to assess potential contaminant migration in a westerly direction away from the USTs. The location of the three completed monitoring wells provided good coverage to assess groundwater conditions and potential groundwater contamination. The sampling locations are shown on Drawing No. 2.

4.2 Sampling Methodology

Sampling locations were selected after considering the objectives, access restrictions and safety issues such as underground and overhead utilities and traffic control. Work was conducted under an Australian Institute of Petroleum (AIP) Work Clearance Form signed by the service station manager and under a specific Site Safety Plan.

Subsurface investigations were conducted using a 4WD mounted geotechnical drill rig equipped with solid stem augers and supplied and operated by Soil Surveys. The 50mm PVC monitoring well was installed directly into the approximate 100mm diameter borehole at CB1 as soon as the augers were removed.

Groundwater samples were collected in accordance with standard **GeoEnvironmental**Consultants procedures that are detailed in Appendix C. The new monitoring well at CB1 was developed by bailing approximately five well volumes with a disposable bailer. The two existing wells were gauged and lightly bailed prior top sampling as recharge rates were not known. A disposable bailer dedicated to each well was used to collect water samples.

4.3 Results of Field Sampling

4.3.1 Soil

The geological profile at each sampling location was described in detail and borehole logs for Borehole Nos. CB1 to CB3 are presented in Appendix A. Hydrocarbon odour and staining occurrence has been noted on the drill logs. Field observations were used to select soil samples for laboratory analysis. Soil was classified in accordance with the Unified Soil Classification System (USCS) and group symbols are shown on each borehole log.

The observed soil profile on the lower service station area was typically comprised of a thin layer of reworked site sand or sand fill overlying sand and silty sand. On the upper service station area there was approximately 2.7m of fill material overlying natural sand and silty sand. The fill was comprised of mixed layers of sand and gravel with rocks and rubble in some layers.

The observed soil in each of the six under slab sampling locations was typically dry silt and/or sand with no evidence of rubble, staining or odours.

4.3.2 Groundwater

Groundwater was initially encountered at approximately 2.7m below ground level in the lower part of the service station site and at about 6.0m deep in the upper service station area.

Top of Casing (TOC) elevations were approximated based on nearby spot height survey data relative to the Australian Height Datum (AHD). TOC elevations, depth to groundwater gauging data and groundwater elevations relative to AHD are presented in Table No. 5.

It is evident from the gauging and survey data that the groundwater flow direction is in an easterly to south easterly direction towards the Tweed Coast Road. The existing monitoring well to the east of the USTs and Borehole No. CB2 are in good positions to identify contaminant migration away from the USTs and bowser area.

4.4 Analysis Rationale

All soil sample glass containers were transported to the laboratory to be either analysed or held for possible future analyses in accordance with instructions included on the Chain of Custody form.

Soil samples were designated by **GeoEnvironmental Consultants** unique project number (6056/04) followed by a number which corresponded to the sample location i.e. Sample No. 6056/04/CB1.1 relates to the first sample collected from Borehole No. CB1. US1 to US6

relate to the six under slab surface samples collected beneath buildings. The top and bottom depths of each sampling interval are shown on the borehole drill logs in Appendix A and specified in Table Nos. 1 to 4. Groundwater samples were designated by the project number (6056/04) followed by a sample number i.e. Sample No 6056/04/WS1.

Upon completion of fieldwork, soil samples were selected for laboratory analysis on the basis of visual assessment and professional judgment, odour and changes in lithology. The rationale for sample analysis selection at each sampling location was as follows:

- Sample No. CB1.1 was selected to assess potential contamination in surface soil where oil drums had been stored and there was evidence of surficial hydrocarbon staining. CB1.2 was selected to assess natural sand just beneath the observed staining to help define the vertical extent of any contamination that may be present. CB1.5 was selected to assess potential soil contamination at the water table, sourced from either storage in the area or the USTs located to the north;
- Sample Nos. CB2.1, CB2.4, CB2.5 and CB2.7 were selected to assess potential contamination in shallow fill sourced from bowsers and pipework and in natural sand beneath the base level of the USTs where any loss from the USTs would potentially migrate; and
- Sample Nos. CB3.1 and CB3.2 were selected to assess potential contamination in surface soil near the existing pit. CB1.5 was selected to assess potential soil contamination at the water table sourced from either the nearby pit, storage in nearby areas or from the USTs located to the north east.

4.5 Analytical Program

A total of eleven (11) soil samples collected on 18th December 2007 from Borehole Nos. CB1 to CB3 were selected for laboratory analysis of TPH, BTEX compounds and total lead. One duplicate sample DUP1, a field duplicate of CB3.2 was included in the above analyses. Six (6) under slab samples were analysed for a suite of seven metals including As, Cd, Cr, Cu, Ni, Pb and Zn, and OC/OP pesticides.

Four (4) groundwater samples collected on 18th December including one duplicate were analysed for TPH and BTEX compounds and dissolved lead with filtration performed in the laboratory upon sample receipt within 24 hours after collection. Soil and groundwater analyses were performed by Amdel who are National Association of Testing Authorities (NATA) registered for the analyses performed.

4.6 Assessment Criteria

4.6.1 Soil

Adopted assessment criteria are as follows:

• Total Metals: The National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999, Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater provides Ecological Investigation Levels (EILs) and

Health-based Investigation Levels (HILs). The EIL levels and HIL levels for a commercial/industrial exposure setting (Setting "F") are as follows:

		EIL	HIL(F)
_	Arsenic	20 mg/kg	500 mg/kg
_	Cadmium	3 mg/kg	100 mg/kg
_	Chromium	400 mg/kg	60%
_	Copper	100 mg/kg	5,000 mg/kg
_	Nickel	60 mg/kg	3,000 mg/kg
_	Lead	300 mg/kg	1,500 mg/kg
_	Zinc	200 mg/kg	35,000 mg/kg

NEPM criteria are shown on Table 2.

• Total Petroleum Hydrocarbons (TPH) and BTEX Compounds: The NSW Environment Protection Authority (EPA) published *Guidelines for Assessing Service Station Sites, December 1994*. The guideline provides the following threshold concentrations for sensitive land use.

_	TPH	C_6 - C_9	65 mg/kg dry wt
_	TPH	C_{10} - C_{40}	1000 mg/kg dry wt
_	Benzene		1 mg/kg dry wt
_	Toluene		1.4 mg/kg dry wt
_	Ethyl benzene		3.1 mg/kg dry wt
_	Total xylenes		14 mg/kg dry wt

- OC/OP Pesticides: The National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999, Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater provides Health-based Investigation Levels (HILs) for selected OC pesticides. Pesticide criteria for commercial/industrial settings include aldrin plus dieldrin (50 mg/kg), chlordane (250 mg/kg), DDT and derivatives (1000 mg/kg) and heptachlor (50 mg/kg);
- Leachable Metals: The NSW EPA Environmental Guidelines: Assessment, Classification & Management of Liquid and Non-liquid Wastes (1999) details a process for assessment and classification of liquid and non-liquid waste. The objective is to classify waste as Inert, Solid, Industrial or Hazardous based on comparison of total and/or leachable (TCLP) concentrations with established values.

4.6.2 Groundwater

For the purpose of evaluating groundwater quality the following guidelines have been referenced:

1. Australian and New Zealand Environment and Conservation Council (ANZECC), Australian Water Quality Guidelines for Fresh and Marine Waters (November 1992), Protection of Aquatic Ecosystems:

Lead:

1 to 5 μ g/L

TPH and BTEX Compounds:

_	Alkanes	C_6-C_{36}	Not Established
	Monocyclic aromatics	Benzene	300 μg/L
		Toluene	300 μg/L
		Ethyl Benzene	140 μg/L
		Xvlene	Not Established

NSW Environment Protection Authority (EPA), Guidelines for Assessing Service Station Sites 1994, Table 4, Threshold concentrations – waters (Protection of aquatic ecosystems):

Lead:		1 to 5 μ g/L
TPH and BTEX Compounds:		
Alkanes	C_6 - C_9	10,000 μg/L ^a
	C_{10} - C_{36}	$10,\!000~\mu \mathrm{g/L}^{\mathrm{a}}$
 Monocyclic aromatics 	Benzene	300 μg/L
•	Toluene	300 μg/L
	Ethyl Benzene	140 μg/L
	Xvlene	380 µg/L ^b

3. National Environment Protection Measure (NEPM), Guideline on the Investigation Levels for Soil and Groundwater, December 1999, Schedule B(1), Table 5-B, Groundwater Investigation Levels (GILs):

Lead:	1 to 5 μg/L
-------	-------------

TPH and BTEX Compounds:

_	Alkanes	C_6-C_{36}	Not Established
_	Monocyclic aromatics	Benzene	300 μg/L
	•	Toluene	300 μg/L
		Ethyl Benzene	Not Established
		Xylene	Not Established

4. ANZECC, Australian and New Zealand Guidelines for Fresh and Marine Water Quality (October 2000), Trigger Values for Freshwater, level of protection 95% of species:

species.	
Lead:	3.4 μg/L

TPH and BTEX Compounds:

-	Alkanes	C_6-C_{36}	Not Established
_	Monocyclic aromatics	Benzene	950 μg/L
	•	Toluene	${ m ID}_{ m c}$
		Ethyl Benzene	${ m I\!D}$
		Xylene	550 μg/ $ m L^d$

Information needed to select threshold concentrations is incomplete. NSW guidelines indicate that discharges should be visually free of oil and grease. Experience has demonstrated that this criterion is equivalent to an oil and grease concentration of approximately 10 mg/L (10,000 µg/L).

b Netherlands 1994 Maximum Permissable Concentration for total xylenes.

c ID = insufficient data to derive a reliable trigger value.

d Sum of ortho-xylene (350 μg/L) and para-xylene (200 μg/L)

It should be noted that use of surface water guidelines is considered very conservative, as these guidelines are applicable to the receiving water and not to groundwater. Contaminant concentrations detected in groundwater at the site will typically reduce during migration to receiving waters and through dilution within the receiving waters.

4.7 Laboratory Analytical Results

4.7.1 Soil

Laboratory results for all soil samples analysed are presented in Table Nos. 1 to 3. Full laboratory reports including Chain of Custody documentation are included in Appendix B.

Soil samples with analyte concentrations above adopted assessment criteria include:

- Sample No. CB1.1 with TPH C₁₅-C₂₈ and C₂₉-C₃₆ carbon chain length concentrations of 3800 mg/kg and 5400 mg/kg respectively and a total lead concentration of 930 mg/kg. The sample was collected at 0.00-0.20m depth in sand and sandy fill in the lower service station area where oil staining and odours were noted. The detected concentrations are above the adopted criteria of 1000 mg/kg for the full C₁₀-C₃₆ carbon chain length range and 300 mg/kg for total lead;
- Sample No. US1 with an arsenic concentration of 29 mg/kg. The sample was collected at 0.00-0.10m depth beneath concrete under the service station building. The detected concentration is above the adopted ecological criteria of 20 mg/kg and below the commercial/industrial criteria of 500 mg/kg;
- Sample No. US2 with arsenic, copper, lead and zinc concentrations of 25, 2400, 840 and 470 mg/kg respectively. The sample was collected at 0.00-0.10m depth beneath concrete under the service station building and near the plumbers store door. The detected concentrations are above the adopted ecological criteria and below commercial/industrial criteria;

Leachability testing using the acidified TCLP test returned leachable lead concentrations for Sample Nos. CB1.1 and US2 of 0.56 and 1.6 mg/L respectively. The results indicate that soil from these areas would be classified as Solid Waste for offsite soil disposal purposes.

All other TPH, BTEX, metal and OC/OP pesticide concentrations in soil were below adopted criteria.

4.7.2 Groundwater

Laboratory results for groundwater Sample Nos. WS1 to WS3 are presented in Table No. 4. Full laboratory reports including Chain of Custody documentation are included in Appendix B.

TPH and BTEX compounds were detected in groundwater sample WS1 collected from CB1 but at concentrations below adopted criteria. TPH and BTEX compound concentrations in Samples WS2 and WS3 were below the laboratories practical quantitation limit and adopted criteria. All dissolved lead concentrations were below the laboratories practical quantitation limit and adopted criteria.

5.0 QUALITY ASSURANCE

All soil samples collected during this assessment were collected in accordance with the Quality Assurance and Quality Control Procedures outlined in Appendix C.

Laboratory QA procedures are described in Appendix C and results reported in the Amdel Quality Reports included in Appendix B.

The organic and inorganic data reported for this assessment can be considered to be of sufficient quality to enable valid assessment of site conditions and to achieve the project objectives.

6.0 CONCLUSIONS

GeoEnvironmental Consultants conclude on the basis of the completed scope of work that the site is underlain by natural sand and silty sand under the lower western part. The eastern part is raised by approximately 3m to street level with approximately 2.7m depth of mixed fill behind retaining walls. The depth to groundwater beneath the lower western site area is approximately 2.7m. Groundwater flow direction is interpreted to be in an easterly to south easterly direction based on gauging of three monitoring wells.

There is no evidence of significant soil contamination in the UST tank and bowser area of the upper Service Station forecourt. Being an operational service station there is potential for localized contamination around bowser bases and within UST tank pits that may not have been intersected by the completed investigation.

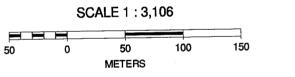
Evidence of significant shallow soil contamination was identified in the lower site area assessed by Borehole No. CB1. TPH in the longer C_{15} to C_{36} carbon chain length ranges, indicative of oil or grease and total lead was identified in the top 0.2m. The total lead concentration was below adopted criteria for commercial/industrial land use. Results for a sample collected at 0.3 to 0.5m depth were low, indicating that the identified contamination is a localized surface occurrence related to the storage and spillage of petroleum products and workshop wastes in the area.

Sample collection and analysis from under slab areas identified low level arsenic concentrations beneath the service station building. Copper, lead and zinc were identified at concentrations above environmental criteria and below commercial/industrial criteria at one location under the service station building. The identified metals may be the result of wash from plumbing activities outside the plumbers store and/or from the nearby in ground pit. Lead was sufficiently leachable under acidified TCLP testing to confirm that shallow soil from the areas assessed by Borehole No. CB1 and US2 would be classified as solid waste for offsite soil disposal purposes. There was no significant contamination identified under the motel or newsagency buildings.

Sample collection and analysis of groundwater from three monitoring wells confirmed that there is no indication of significant groundwater contamination.

7.0 LIMITATIONS OF REPORT

GeoEnvironmental Consultants have prepared this report in accordance with generally accepted consulting practice. No warranty, expressed or implied, is made as to the results included in this report. The report has not been prepared for the use by parties other than Stockwell, their authorised third parties, local government authorities and the EPA. It may not contain sufficient information for the purposes of other parties or for other uses.


To the best of our knowledge, information contained in this report is accurate at the date of issue. However, subsurface conditions, including contaminant concentrations, are subject to change in a limited time. In addition, as this investigation has been limited in extent and depth and there are always some variations in subsurface conditions across a site, it is unlikely that the measurements and values obtained by sampling and analysis during this program will represent the extremes of conditions, which exist within the site.

for GeoEnvironmental Consultants Pty Ltd

Michael Tisdall BSc. PGDipSc.

DRAWINGS

Enlighten Map EWOOD AVE AEGE WATER CROSS SCALE 1:3,106

Disclaimer

While every care istaken to ensure the accuracy of this data. Tweed Shire Council makes no representations or rearrant
expressed or implied, startably or otherwise, about its accuracy, reliability, completeness or availability for any particular
purpose and disclaim all responsibility and all Lability (indusing without limitation, liability in negligence) for all operate
losses, damages (including indirect or consequential damage) and costs which may be incured as a resulted data been
indicathed any every and not any reason. This information is supplied for the general guidance and is to be considered
indicather and diagrammationary, it should not be used for sureey or constitution purposes and phorto any expansations
a Tital before the IDF entirely must be made by or saling 1100.

The information contained on this document remains valid for 30 days only from the date of supply.

TABLES

TABLE 1

SOIL ANALYTICAL RESULTS - TPH, BTEX, LEAD 39-45 TWEED COAST ROAD, CABARITA, NSW.

Samples collected 18th December 2007

Page 1 of 1

SAMPLE No.	DEPTH (m)	ТРН	ТРН	TPH	ТРН	В	T	Ш.	×	LEAD
		62 - 92	C10-C14	C15-C28	C29-C36					
CB1.1	0.00-0.10	^	62	3800	5400	<0.2	\ \ \	\ \ \	\$	930
CB1.2	0.30-0.50	<5	<10	<20	23	<0.2	^	7	~	^
CB1.5	2.80-3.00	<5	<10	24	20	<0.2	\ \	\ \	~	<5
CB2.1	0.00-0.20	<5	<10	<20	28	<0.2	^	۲ ۰	\ \ \	6
CB2.4	1.80-2.00	~ 5	<10	<20	<20	<0.2	۲ ۰	٧	~	12
CB2.5	2.80-3.00	<5	<10	<20	<20	<0.2	^	^	<3	8.1
CB2.7	5.80-6.00	<5	<10	<20	<20	<0.2	\	<u>۲</u>	~	<5
CB3.1	0.00-0.20	<5	<10	<20	40	<0.2	<1	>	%	14
CB3.2	0.30-0.50	^ 2	<10	<20	<20	<0.2	\	۲ ۰	<3	6
CB3.5	2.80-3.00	^ 2	<10	<20	<20	<0.2	٧	٧	~	<5
DUP1	Dup of CB3.2	<5	<10	32	46	<0.2	٧	٧	~	20
									;	
PQL		2	10	20	20	0.2	_	_	3	5
NSW Service Station Thresholds	on Thresholds	65		1000		-	1.4	3.1	14	300

All results are in mg/kg, dry unit weight basis, unless otherwise stated

TPH = total petroleum hydrocarbons, B = benzene, T = toluene, E = ethyl benzene, X = meta, para and ortho xylene.

Bold Results - denotes concentration above NSW Guidelines for Assessing Service Stations Thresholds.

NA = Not Analysed, NE = Not Established, PQL = Practical Quantitation Limit ۶. 4. *ب*

Complete analytical results from Amdel are attached.

GeoEnvironmental Consultants Pty Ltd Prepared by:.....Checked by:.....

Prepared by:.....Checked by:.....

TABLE 2

SOIL ANALYTICAL RESULTS - METALS, OC PESTICIDES 39-45 TWEED COAST ROAD, CABARITA, NSW

Samples collected 18th December 2007

П
of
-
ø
Page
Д

SAMPLE No. 6056/04	DEPTH (m)	Moisture Content %	As	PO	ပ်	n O	Ż	Pb	Zu	TOTAL OC	TOTAL
US1	0.00-0.10	3	29	₹	5	71	2	15	36	<0.5	<0.5
US2	0.00-0.10	က	25	2.6	13	2400	12	840	470	<0.5	<0.5
US3	0.00-0.10	7	4.1	⊽	7	5.3	7	13	37	9.0	<0.5
US4	0.00-0.10	4	6.2	⊽	2	22	7	7.9	9	<0.5	<0.5
US5	0.00-0.10	~	8	₹	2.4	1.3	7	\ \5	4.7	<0.5	<0.5
9SN	0.00-0.10	က	۲ ۲	₹	2.8	5.5	%	9.4	4.7	9.0	<0.5
							c			u 0	2
Practical Quantitation Limit	tion Limit		3	1	7	_	7	C	7	0.0	0.0
Ecological Investigation Levels	gation Levels		20	က	400	100	09	009	200	빙	NE
Health-based Inves	Health-based Investigation Level "F"		500	100	%09	2000	3000	1500	35000	50	NE

Notes:

- 1. All results are in mg/kg, dry unit weight basis, unless otherwise stated
- As = arsenic, Cd = cadmium, Cr= chromium, Cu = copper, Ni = nickel, Pb = lead, Zn = zinc, OC = organochlorine, OP = organophosphate pesticides
 - Bold Results denotes concentration above Ecological Investigation Level (EIL), (NEPM, 1999).
- Bold Results denotes concentration above Health-based Investigation level for a commercial/industrial exposure setting, (Exposure Setting "F") (NEPM, 1999)
- * HIL(F) levels for individual OC pesticides include 50 mg/kg for aldrin + dieldrin, 250mg/kg for chlordane, 1000 mg/kg for DDT and derivatives, and 50 kg/kg for heptachlor.
 - ND = Not detected, na = Not Analysed, NE = Not Established, LOR = Level of Reporting, NR = Not reported
- Complete analytical results from Amdel are attached.

TABLE 3 SOIL ANALYTICAL RESULTS - TCLP METALS 39-45 TWEED COAST ROAD, CABARITA, NSW

Samples collected 18th December 2007

SAMPLE No. 6056/04	DEPTH (m)	Arsenic	Copper	Lead	Zinc
	0.00.0.40	<0.0F	1.3	0.56	2.1
CB1.1	0.00-0.10	<0.05			İ
US2	0.00-0.10	<0.05	18	1.6	14
Laboratory Level of Report	ing		0.1	0.1	0.1
NSW EPA - CT 1	8	10 mg/kg	NE	10 mg/kg	NE
- CT 2		100 mg/kg	NE	100 mg/kg	NE
- CT 3		400 mg/kg	NE	400 mg/kg	NE
- SCC1		500 mg/kg	NE	1500 mg/kg	NE
- SCC2		500 mg/kg	NE	1500 mg/kg	NE
- SCC3		2000 mg/kg	NE	6000 mg/kg	NE
- TCLP 1		0.5	NE	0.5	NE
- TCLP 2		5	NE	5	NE
- TCLP 3		20	NE	20	NE

- All results are in mg/L, unless otherwise stated
- NE = Not Established 2.
- CT = Contaminant threshold values, without doing the leaching test
- SCC = specific contaminant concentration
- TCLP = Toxicity Characteristics Leaching Procedure
- Bold Results denotes concentration above NSW EPA Leachable Concentration TCLP1 criteria for Inert Waste 6.
- Bold Results denotes concentration above NSW EPA Leachable Concentration TCLP2 criteria for Solid Waste 7.
- (Bold Results) denotes concentration above NSW EPA Leachable Concentration TCLP3 criteria for Industrial Waste 8.
- Complete analytical results from Amdel are attached.

GeoEnvironmental Consultants Pty Ltd Prepared by:.....Checked by:.....

GROUNDWATER ANALYTICAL RESULTS - TPH, BTEX, LEAD 39-45 TWEED COAST ROAD, CABARITA, NSW TABLE 4

Samples collected 18th December 2007

Page 1 of 1

SAMPLE No.	Benzene	Toluene	Ethyl benzene	Xylene	Total BTEX	TPH C6 - C9	TPH C10-C14	TPH C15-C28	TPH C29-C36	LEAD
WS1 WS2 WS3 DUP1	40.540.540.540.5	8 2 2 2	\(\nu\) \(\nu\)	8 8 8 8	39 <5.5 <5.5 <5.5	38 420 420 420	<40 <40 <40 <40	124 <100 <100 <100	106 <100 <100 <100	abla abla abla abla
IOU	L C	-	1	က	5.5	20	40	100	100	-
ANTECC 1992	300	300	140	빌	焸	NE NE	NE	NE	NE	1 to 5
ANZECC 1992 NEW FDA 1994	300	300	140	380*	NE.	10,000		10,000		1 to 5
NSW EFA 1954 NFPM 1999	300	300	₩ V	N E	빙	NE	NE	NE	NE	1 to 5
DUTCH	30	1000	150	70	NE	NE		009		75
ANZECC 2000	950	QI	Ol	550	NE	¥.	NE NE	빙	IJ.	3.4

All results are in ug/l.

DUP1 is a Field Duplicate of WS3.

ANZECC 1992 = Australian & New Zealand Environment & Conservation Council, Australian Water Quality Guidelines for Fresh and Marine Waters, November 1992: (Protection of Aquatic 3

NSW EPA 1994 = Guidelines for Assessing Service Station Sites, December 1994: Table 4 Threshold concentrations - waters (Protection of aquatic ecosystems)

NEPM 1999 = National Environment Protection Measure, Guideline on the Investigation Levels for Soil & Groundwater, December 1999: Schedule B(1), Table 5-B Groundwater Investigation

DUTCH = Dutch Intervention Level 1994

ANZECC 2000 = Australian & New Zealand Guidelines for Fresh and Marine Water Quality, October 2000: Table 3.4.1 (Trigger Values for Freshwater, Level of Protection 95% of species). Bold Results - denotes concentrations above ANZECC, NSW EPA or NEPM criteria

ID = Insufficient Data to derive a reliable trigger value, NE = Not Established, NA = Not Analysed, * from Netherlands 1994, Maximum Permissable Concentration for total xylenes

Complete analytical results from Amdel are attached.

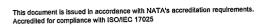
APPENDICES

APPENDIX A BOREHOLE DRILL LOGS

ENVIRONMENTAL LOG	во	REHO	LE No.	,	
PROJECT: SERVICE STATION LOCATION: 39-45 TWEED COAST ROAD, BOREHOLE LOCATION: Refer Drawing	CAB	ARITA	, NSW	DATE SUPE	COMMENCED: 18-12-07 COMPLETED: 18-12-07 RVISED BY: MWT KED BY: MWT
SOIL DESCRIPTION SOIL TYPE: plasticity or particle characteristics, colour, secondary & minor components, moisture and consistency or relative density	USCS Symbol	Depth in Meters	Sample Nos. 6056/04	PID Readings (ppm) NIL	
_ SAND: dark gray to gray, moist, loose, possibly _ fill to 0.3m, reworked site sand? gray sand, as above slightly moist	SW		CB1.1 CB1.2 CB1.3		Hydrocarbon (HC) odour (grease) & staining Sample selected for analysis No HC odour at 0.3m Sample selected for analysis No HC odour or staining
	SM		CB1.4		No HC odour or staining
SAND: brownish gray, more coarse grained,			CB1.5		Becoming wet at 2.6m to 2.7m No HC odour or staining Sample selected for analysis
		- - - - - 4.0	CB1.6		No HC odour or staining
Drilling Method: Soil Surveys, Solid Stem geotechnical rights GeoEnvironmental Consultants Pty Lto Specialising in the Earth and what's built on it 129 Outlook Crescent, Bardon, QLD 4065 Phone: 07	i	2266	ACN 079 08: Fax: 07 336'		R.L. Surface: ~4.32 R.L. Datum: AHD Job No. 6056/04 Figure No: A1

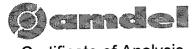
ENVIRONMENTAL LOG	во	REHO	LE No.	CB1	SHEET 2 of 2
PROJECT: SERVICE STATION LOCATION: 39-45 TWEED COAST ROAD, BOREHOLE LOCATION: Refer Drawing	CAB	ARITA	, NSW	DATE SUPEI	COMMENCED: 18-12-07 COMPLETED: 18-12-07 RVISED BY: MWT KED BY: MWT
SOIL DESCRIPTION SOIL TYPE: plasticity or particle characteristics, colour, secondary & minor components, moisture and consistency or relative density	USCS Symbol	Depth in Meters	Sample Nos. 6056/04	PID Readings (ppm) NIL	COMMENTS, TEST RESULTS, GROUNDWATER, ETC
Borehole No. CB1 terminated at 5.3m depth, collapsing wet sand.					Groundwater from ~ 2.7m. Monitoring well installed. Well Construction Details: - Base of well 4.6m bgs due to 0.7m collapse. - 50mmClass 18 PVC - 3.0m screen, 0.5mm slotted - Blank to 1.25m above ground (no roadbox cover) - Geofabric sock and 2- 3mm graded washed sand sand pack - 300mm bentonite seal above screen level - Bailer developed, turbid dark brown water, no HC odour.
Drilling Method: Soil Surveys, Solid Stem geotechnical rig	<u></u>				R.L. Surface: ~4.32 R.L. Datum: AHD
GeoEnvironmental Consultants Pty Ltd Specialising in the Earth and what's built on it 129 Outlook Crescent, Bardon, QLD 4065 Phone: 07		2266	ACN 079 083		Job No. 6056/04 Figure No: A1

()


()

ENVIRONMENTAL LOG	BO	REHO	LE No.	CB2	SHEET 1 of 1
PROJECT: SERVICE STATION LOCATION: 39-45 TWEED COAST ROAD, BOREHOLE LOCATION: Refer Drawing	CAB	ARITA	, NSW	DATE SUPE	COMMENCED: 18-12-07 COMPLETED: 18-12-07 RVISED BY: MWT KED BY: MWT
SOIL DESCRIPTION SOIL TYPE: plasticity or particle characteristics, colour, secondary & minor components, moisture and consistency or relative density	USCS Symbol	Depth in Meters	Sample Nos. 6056/04	PID Readings (ppm) NIL	COMMENTS, TEST RESULTS, GROUNDWATER, ETC
_ FILL: under thin asphalt, Gravel, Sand, road base brown, moist, loose	GM		CB2.1		No HC odour or staining. Sample selected for analysis
	GM	_0.40	CB2.2		No HC odour Thin band of dark sand fill at 0.4m (Concrete at 0.7m, 2 nd attempt).
FILL: Silty Sand, minor Gravel, dark gray brown, zero to low plasticity (partly clayey), moist, loose	GM		CB2.3		No HC odour or staining
FILL: Silty Clay & minor Gravel, rubbish, plastic.	GM		CB2.4		No HC odour or staining Sample selected for analysis
					Initial refusal on rock fill at 2.2m. Moved south 0.5m and met refusal at 0.7m, then moved 0.2m north of original location.
SAND: dark gray, moist, loose	sw		CB2.5		No HC odour or staining Sample selected for analysis
SAND: gray, slightly moist, loose			<u>CB2.6</u>		No HC odour or staining
Drilling Method: Soil Surveys, Solid Stem geotechnical rig	g	L	<u> </u>	.1	R.L. Surface: ~7.43 R.L. Datum: AHD
GeoEnvironmental Consultants Pty Lto Specialising in the Earth and what's built on it 129 Outlook Crescent, Bardon, QLD 4065 Phone: 07		2266	ACN 079 083		Job No. 6056/04 Figure No: A2

PROJECT: SERVICE STATION LOCATION: 39-45 TWEED COAST ROAD, BOREHOLE LOCATION: Refer Drawing			LE No. , NSW	DATE DATE SUPER	SHEET 2 of 2 COMMENCED: 18-12-07 COMPLETED: 18-12-07 RVISED BY: MWT KED BY: MWT
SOIL DESCRIPTION SOIL TYPE: plasticity or particle characteristics, colour, secondary & minor components, moisture and consistency or relative density	USCS Symbol	Depth in Meters	Sample Nos. 6056/04	PID Readings (ppm) NIL	COMMENTS, TEST RESULTS, GROUNDWATER, ETC
Borehole No. CB2 terminated at 6.0m depth, collapsing sand.		- - - - - - - - - - - - - - - - - - -	CB2.7		No HC odour or staining Sample selected for analysis. Becoming wet at base, collapsing sand. Groundwater just present.
Drilling Method: Soil Surveys, Solid Stem geotechnical rig	g				R.L. Surface: ~7.43 R.L. Datum: AHD
GeoEnvironmental Consultants Pty Lto Specialising in the Earth and what's built on it 129 Outlook Crescent, Bardon, QLD 4065 Phone: 07		2266	ACN 079 08 Fax: 07 336		Job No. 6056/04 Figure No: A2


ENVIRONMENTAL LOG	BO	REHO	LE No.	CB3	SHEET 1 of 1
PROJECT: SERVICE STATION LOCATION: 39-45 TWEED COAST ROAD, BOREHOLE LOCATION: Refer Drawing	CAB	ARITA	, NSW	DATE SUPER	COMMENCED: 18-12-07 COMPLETED: 18-12-07 RVISED BY: MWT KED BY: MWT
SOIL DESCRIPTION SOIL TYPE: plasticity or particle characteristics, colour, secondary & minor components, moisture and consistency or relative density	USCS Symbol	Depth in Meters	Sample Nos. 6056/04	PID Readings (ppm) NIL	COMMENTS, TEST RESULTS, GROUNDWATER, ETC
_ FILL: Sand, Gravel, road base, rocky brown, moist, loose	GM	- -	CB3.1		No HC odour or staining. Sample selected for analysis
SAND: Gray to brown, moist, loose	SW	_0.40 	CB3.2 <u>DUP1</u>		No HC odour Sample selected for analysis
SAND: pale gray, slightly moist, loose	SW		CB3.3		No HC odour or staining
SILTY SAND: dark chocolate brown, loose, medium grained, very moist.	SM		CB3.4		No HC odour or staining "Coffee Rock"?
			CB3.5		Wet at 2.7m No HC odour or staining Sample selected for analysis
SAND: gray, slightly moist, loose	SW				
 		- -4.0 - -			No HC odour or staining
Borehole No. CB3 terminated at 4.5m depth,. Drilling Method: Soil Surveys, Solid Stem geotechnical ri	g		CB3.6		R.L. Surface: ~4.26 R.L. Datum: AHD
GeoEnvironmental Consultants Pty Lt Specialising in the Earth and what's built on it 129 Outlook Crescent, Bardon, QLD 4065 Phone: 07		2266	ACN 079 08 Fax: 07 336		Job No. 6056/04 Figure No: A3

APPENDIX B LABORATORY REPORTS AND CHAIN OF CUSTODY FORMS

Accreditation Number: 14356

Certificate of Analysis

GeoEnvironmental Consultants 129 Outlook Cresent BARDON QLD 4065 Australia

Attention: Michael Tisdall

Project

07ENBR0028043

Client Reference

6056/4

Order Number

CABARITA 6056/4

Received Date

20/12/2007 08:00:00 AM

ustomer Sample ID mdel Sample Number ate Sampled		CB1.1 776819 18/12/2007	CB1.2 776820 18/12/2007	CB1.5 776823 18/12/2007
OC est/Reference	PQL Unit			
100 BTEX &(C6-C9) in Soil by P&T	_	.0.0	<0.2	<0.2
enzene	0.2 mg/kg	<0.2	<1 .	<1
thylbenzene	1 mg/kg	<1 <2	<2	<2
1eta- & Para- Xylene	2 mg/kg		<1	- <1
Ortho-Xylene	1 mg/kg	<1	<1	· <1
oluene	1 mg/kg	-	<3	<3
otal Xylenes	3 mg/kg	•	<5 <5	<5
C6-C9 Fraction	5 mg/kg	-	_	89
-Bromofluorobenzene - Surrogate	- %	•	94	-
Toluene	1 mg/kg	<1	-	-,
Total Xylenes	3 mg/kg	<3	-	•
C6-C9 Fraction	5 mg/kg	<5	-	-
4-Bromofluorobenzene - Surrogate	- %	99	-	-
SVOC				
Test/Reference	PQL Unit			
2000 TPH (C10 - C36) in Soil by GC		62	<10	<10
C10-C14 Fraction	10 mg/kg	3800	<20	24
C15-C28 Fraction	20 mg/kg		23	50
C29-C36 Fraction	20 mg/kg	5400	25	•••
Metals Test/Reference	PQL Unit			
3200 Total Metals in Soil by ICP/AES Lead	5 mg/kg	930	<5	<5
Miscellaneous Test/Reference	PQL Unit			
5000 Moisture Content % Moisture	1 %	11	3	9
Customer Sample ID		CB2.1	CB2.4	CB2.5
Amdel Sample Number		776825	776828	776829
Date Sampled		18/12/2007	18/12/2007	18/12/2007
VOC				
Test/Reference	PQL Unit			

Final Report Number: 272952

Customer Sample ID		CB2.1	CB2.4	CB2.5
Amdel Sample Number		776825	776828	776829
Date Sampled		18/12/2007	18/12/2007	18/12/2007
VOC Test/Reference	PQL Unit			
				<u></u>
1100 BTEX &(C6-C9) in Soil by P&T Benzene	0.2 mg/kg	<0.2	<0.2	<0.2
Ethylbenzene	1 mg/kg	<1	<1	<1
Meta- & Para- Xylene	2 mg/kg	<2	<2	<2
Ortho-Xylene	1 mg/kg	<1	- <1	- <1
Toluene	1 mg/kg	<1	<1	<1
	3 mg/kg	<3	<3	<3
Total Xylenes		<5	<5	<5
C6-C9 Fraction	• •			
4-Bromofluorobenzene - Surrogate	- %	91	96	93
SVOC	DOI 11-4			
Test/Reference	PQL Unit			
2000 TPH (C10 - C36) in Soil by GC	40	a	-10	-10
C10-C14 Fraction	10 mg/kg	<10	<10	<10
C15-C28 Fraction	20 mg/kg	<20	<20	<20
C29-C36 Fraction	20 mg/kg	28	<20	<20
Metals				
Test/Reference	PQL Unit			
3200 Total Metals in Soil by ICP/AES				
Lead	5 mg/kg	9.0	12	8.1
Miscellaneous				
Test/Reference	PQL Unit			
FOOD Blacks on Content				
5000 Moisture Content				
% Moisture Content	1 %	5	14	9
	1 %	5 CB2.7	14 CB3.1	9 CB3.2
% Moisture	1 %			
% Moisture Customer Sample ID	1 %	CB2.7	CB3.1	CB3.2
% Moisture Customer Sample ID Amdel Sample Number Date Sampled VOC		CB2.7 776831	CB3.1 776832	CB3.2 776833
% Moisture Customer Sample ID Amdel Sample Number Date Sampled	1 % PQL Unit	CB2.7 776831	CB3.1 776832	CB3.2 776833
% Moisture Customer Sample ID Amdel Sample Number Date Sampled VOC Test/Reference 1100 BTEX &(C6-C9) in Soil by P&T	PQL Unit	CB2.7 776831 18/12/2007	CB3.1 776832 18/12/2007	CB3.2 776833 18/12/2007
% Moisture Customer Sample ID Amdel Sample Number Date Sampled VOC Test/Reference 1100 BTEX &(C6-C9) in Soil by P&T Benzene	PQL Unit	CB2.7 776831 18/12/2007	CB3.1 776832 18/12/2007	CB3.2 776833 18/12/2007
% Moisture Customer Sample ID Amdel Sample Number Date Sampled VOC Test/Reference 1100 BTEX &(C6-C9) in Soil by P&T Benzene Ethylbenzene	PQL Unit 0.2 mg/kg 1 mg/kg	CB2.7 776831 18/12/2007 <0.2 <1	CB3.1 776832 18/12/2007 <0.2 <1	CB3.2 776833 18/12/2007
% Moisture Customer Sample ID Amdel Sample Number Date Sampled VOC Test/Reference 1100 BTEX &(C6-C9) in Soil by P&T	PQL Unit 0.2 mg/kg 1 mg/kg 2 mg/kg	CB2.7 776831 18/12/2007	CB3.1 776832 18/12/2007 <0.2 <1 <2	CB3.2 776833 18/12/2007 <0.2 <1 <2
% Moisture Customer Sample ID Amdel Sample Number Date Sampled VOC Test/Reference 1100 BTEX &(C6-C9) in Soil by P&T Benzene Ethylbenzene	PQL Unit 0.2 mg/kg 1 mg/kg	CB2.7 776831 18/12/2007 <0.2 <1	CB3.1 776832 18/12/2007 <0.2 <1	CB3.2 776833 18/12/2007 <0.2 <1 <2 <1
% Moisture Customer Sample ID Amdel Sample Number Date Sampled VOC Test/Reference 1100 BTEX &(C6-C9) in Soil by P&T Benzene Ethylbenzene Meta- & Para- Xylene	PQL Unit 0.2 mg/kg 1 mg/kg 2 mg/kg	CB2.7 776831 18/12/2007 <0.2 <1 <2	CB3.1 776832 18/12/2007 <0.2 <1 <2	CB3.2 776833 18/12/2007 <0.2 <1 <2
% Moisture Customer Sample ID Amdel Sample Number Date Sampled VOC Test/Reference 1100 BTEX &(C6-C9) in Soil by P&T Benzene Ethylbenzene Meta- & Para- Xylene Ortho-Xylene Toluene	PQL Unit 0.2 mg/kg 1 mg/kg 2 mg/kg 1 mg/kg	CB2.7 776831 18/12/2007 <0.2 <1 <2 <1	CB3.1 776832 18/12/2007 	CB3.2 776833 18/12/2007 <0.2 <1 <2 <1
Customer Sample ID Amdel Sample Number Date Sampled VOC Test/Reference	PQL Unit 0.2 mg/kg 1 mg/kg 2 mg/kg 1 mg/kg 1 mg/kg	CB2.7 776831 18/12/2007 <0.2 <1 <2 <1	CB3.1 776832 18/12/2007 	CB3.2 776833 18/12/2007 <0.2 <1 <2 <1 <1
Customer Sample ID Amdel Sample Number Date Sampled VOC Test/Reference 1100 BTEX &(C6-C9) in Soil by P&T Benzene Ethylbenzene Meta- & Para- Xylene Ortho-Xylene Toluene Total Xylenes C6-C9 Fraction	PQL Unit 0.2 mg/kg 1 mg/kg 2 mg/kg 1 mg/kg 1 mg/kg 3 mg/kg	CB2.7 776831 18/12/2007 <0.2 <1 <2 <1 <1 <1	CB3.1 776832 18/12/2007 <0.2 <1 <2 <1 <1 <1	CB3.2 776833 18/12/2007 <0.2 <1 <2 <1 <1 <1
Customer Sample ID Amdel Sample Number Date Sampled VOC Test/Reference 1100 BTEX &(C6-C9) in Soil by P&T Benzene Ethylbenzene Meta- & Para- Xylene Ortho-Xylene Toluene Total Xylenes C6-C9 Fraction 4-Bromofluorobenzene - Surrogate	PQL Unit 0.2 mg/kg 1 mg/kg 2 mg/kg 1 mg/kg 1 mg/kg 3 mg/kg 5 mg/kg	CB2.7 776831 18/12/2007 <0.2 <1 <2 <1 <1 <1 <3 <5	CB3.1 776832 18/12/2007 <0.2 <1 <2 <1 <1 <1 <3 <5	CB3.2 776833 18/12/2007 <0.2 <1 <2 <1 <1 <3 <5
Customer Sample ID Amdel Sample Number Date Sampled VOC Test/Reference 1100 BTEX &(C6-C9) in Soil by P&T Benzene Ethylbenzene Meta- & Para- Xylene Ortho-Xylene Toluene Total Xylenes C6-C9 Fraction 4-Bromofluorobenzene - Surrogate SVOC	PQL Unit 0.2 mg/kg 1 mg/kg 2 mg/kg 1 mg/kg 1 mg/kg 3 mg/kg 5 mg/kg	CB2.7 776831 18/12/2007 <0.2 <1 <2 <1 <1 <1 <3 <5	CB3.1 776832 18/12/2007 <0.2 <1 <2 <1 <1 <1 <3 <5	CB3.2 776833 18/12/2007 <0.2 <1 <2 <1 <1 <3 <5
Customer Sample ID Amdel Sample Number Date Sampled VOC Test/Reference 1100 BTEX &(C6-C9) in Soil by P&T Benzene Ethylbenzene Meta- & Para- Xylene Ortho-Xylene Toluene Total Xylenes C6-C9 Fraction 4-Bromofluorobenzene - Surrogate SVOC Test/Reference	PQL Unit 0.2 mg/kg 1 mg/kg 2 mg/kg 1 mg/kg 3 mg/kg 5 mg/kg - %	CB2.7 776831 18/12/2007 <0.2 <1 <2 <1 <1 <1 <3 <5	CB3.1 776832 18/12/2007 <0.2 <1 <2 <1 <1 <1 <3 <5	CB3.2 776833 18/12/2007 <0.2 <1 <2 <1 <1 <3 <5
% Moisture Customer Sample ID Amdel Sample Number Date Sampled VOC Test/Reference 1100 BTEX &(C6-C9) in Soil by P&T Benzene Ethylbenzene Meta- & Para- Xylene Ortho-Xylene	PQL Unit 0.2 mg/kg 1 mg/kg 2 mg/kg 1 mg/kg 3 mg/kg 5 mg/kg - %	CB2.7 776831 18/12/2007 <0.2 <1 <2 <1 <1 <1 <3 <5	CB3.1 776832 18/12/2007 <0.2 <1 <2 <1 <1 <1 <3 <5	CB3.2 776833 18/12/2007 <0.2 <1 <2 <1 <1 <3 <5
Customer Sample ID Amdel Sample Number Date Sampled VOC Test/Reference 1100 BTEX &(C6-C9) in Soil by P&T Benzene Ethylbenzene Meta- & Para- Xylene Ortho-Xylene Total Xylenes C6-C9 Fraction 4-Bromofluorobenzene - Surrogate SVOC Test/Reference	PQL Unit 0.2 mg/kg 1 mg/kg 2 mg/kg 1 mg/kg 3 mg/kg 5 mg/kg - % PQL Unit	CB2.7 776831 18/12/2007 <0.2 <1 <2 <1 <1 <3 <5 97	CB3.1 776832 18/12/2007 <0.2 <1 <2 <1 <1 <3 <5	CB3.2 776833 18/12/2007 <0.2 <1 <2 <1 <1 <3 <5 93
Customer Sample ID Amdel Sample Number Date Sampled VOC Test/Reference 1100 BTEX &(C6-C9) in Soil by P&T Benzene Ethylbenzene Meta- & Para- Xylene Ortho-Xylene Toluene Total Xylenes C6-C9 Fraction 4-Bromofluorobenzene - Surrogate SVOC Test/Reference 2000 TPH (C10 - C36) in Soil by GC C10-C14 Fraction	PQL Unit 0.2 mg/kg 1 mg/kg 2 mg/kg 1 mg/kg 3 mg/kg 5 mg/kg - % PQL Unit	CB2.7 776831 18/12/2007 <0.2 <1 <2 <1 <1 <3 <5 97	CB3.1 776832 18/12/2007 <0.2 <1 <2 <1 <1 <3 <5 93	CB3.2 776833 18/12/2007 <0.2 <1 <2 <1 <1 <3 <5 93
Customer Sample ID Amdel Sample Number Date Sampled VOC Test/Reference 1100 BTEX &(C6-C9) in Soil by P&T Benzene Ethylbenzene Meta- & Para- Xylene Ortho-Xylene Toluene Total Xylenes C6-C9 Fraction 4-Bromofluorobenzene - Surrogate SVOC Test/Reference 2000 TPH (C10 - C36) in Soil by GC C10-C14 Fraction C15-C28 Fraction	PQL Unit 0.2 mg/kg 1 mg/kg 2 mg/kg 1 mg/kg 3 mg/kg 5 mg/kg - % PQL Unit	CB2.7 776831 18/12/2007 <0.2 <1 <2 <1 <1 <3 <5 97	CB3.1 776832 18/12/2007 <0.2 <1 <2 <1 <1 <3 <5 93 <10 <20	CB3.2 776833 18/12/2007 <0.2 <1 <2 <1 <1 <3 <5 93 <10 <20

Final Report Number: 272952

Customer Sample ID		CB2.7	CB3.1	CB3.2
Amdel Sample Number		776831	776832	776833
Date Sampled		18/12/2007	18/12/2007	18/12/2007
Metals				
Test/Reference	PQL Unit			
3200 Total Metals in Soil by ICP/AES Lead	5 mg/kg	<5	· 14	9.0
Miscellaneous Test/Reference	PQL Unit			
5000 Moisture Content % Moisture	1 %	5	5	5

Customer Sample ID Amdel Sample Number Date Sampled			CB3.5 776836 18/12/2007	DUP1 776838 18/12/2007	US1 776839 18/12/2007
VOC Test/Reference	PQL	Unit			
1100 BTEX &(C6-C9) in Soil by P&T		· • · · · · · · · · · · · · · · · · · ·		·	
Benzene	0.2	mg/kg	<0.2	<0.2	-
Ethylbenzene	1	mg/kg	<1	<1	-
Meta- & Para- Xylene	2	mg/kg	<2	<2	-
Ortho-Xylene	1	mg/kg	<1	<1	-
Toluene	1	mg/kg	<1	<1	-
Total Xylenes	3	mg/kg	<3	<3	-
C6-C9 Fraction	5	mg/kg	<5	<5	-
4-Bromofluorobenzene - Surrogate	-	%	99	92	-
SVOC					
Test/Reference	PQL	Unit			
2300 OC Pesticides in Soil by GC-MS					
a-BHC	0.5	mg/kg	-	-	<0.5
a-Chlordane	0.5	mg/kg	-	-	<0.5
a-Endosulfan	0.5	mg/kg	-	-	<0.5
Aldrin	0.5	mg/kg	-	-	<0.5
b-BHC	0.5	mg/kg	-	, -	<0.5
b-Endosulfan	0.5	mg/kg	-	-	<0.5
d-BHC	0.5	mg/kg	-	-	<0.5
DDD	0.5	mg/kg	-	-	<0.5
DDE	0.5	mg/kg	-	•	<0.5
DDT	0.5	mg/kg	-	-	<0.5
Dieldrin	0.5	mg/kg	<u>.</u>	-	<0.5
Endosulfan sulfate	0.5	mg/kg	_	=	<0.5
Endrin	0.5	mg/kg	_	-	<0.5
Endrin Aldehyde	0.5	mg/kg	-	-	<0.5
g-BHC	0.5	mg/kg	-	-	<0.5
g-Chlordane	0.5	mg/kg	-	-	<0.5
Heptachlor	0.5	mg/kg	-	-	<0.5
Heptachlor epoxide	0.5	mg/kg	-	-	<0.5
Hexachlorobenzene (HCB)	0.5	mg/kg	-		<0.5
Methoxychlor	0.5	mg/kg	-		<0.5
Oxychlordane	0.5	mg/kg		-	<0.5
	-	//////////////////////////////////////	_	_	100
2,4,5,6-tetrachloro-m-xylene - Surrogate 2400 OP Pesticides in Soil by GCMS	-	70	•	-	100

Customer Sample ID Amdel Sample Number		CB3.5 776836	DUP1 776838	US1 776839
Date Sampled		18/12/2007	18/12/2007	18/12/2007
svoc				
Test/Reference	PQL Unit			
Chlorpyrifos	0.5 mg/kg	-	-	<0.5
Chlorpyrifos Methyl	0.5 mg/kg	-	-	<0.5
Diazinon	0.5 mg/kg	-	-	<0.5
Ethion	0.5 mg/kg	-	-	<0.5
Fenitrothion	0.5 mg/kg	•	•	<0.5
Fenthion	0.5 mg/kg	-	, -	<0.5
Malathion	0.5 mg/kg	-	-	<0.5
Methyl Parathion	0.5 mg/kg	•		<0.5
Parathion	0.5 mg/kg	-	•	<0.5
Ronnel	0.5 mg/kg	-	-	<0.5
Triphenyl Phosphate - Surrogate	1 %	-	-	128
2000 TPH (C10 - C36) in Soil by GC				
C10-C14 Fraction	10 mg/kg	<10	<10	-
C15-C28 Fraction	20 mg/kg	<20	32	-
C29-C36 Fraction	20 mg/kg	<20	46	-
Metals				
Test/Reference	PQL Unit			
3200 Total Metals in Soil by ICP/AES				
Arsenic	3 mg/kg	-	- .	29
Cadmium	1 mg/kg	-	-	<1
Chromium	2 mg/kg	-	-	5.0
Copper	1 mg/kg	-	-	71
Lead	5 mg/kg	<5	20	15
Nickel	2 mg/kg	-	-	2.2
Zinc	2 mg/kg	-	-	36
Miscellaneous				
Test/Reference	PQL Unit			
5000 Moisture Content	· · · · · · · · · · · · · · · · · · ·			
% Moisture	1 %	11	13	3

Customer Sample ID Amdel Sample Number Date Sampled SVOC Test/Reference	PQL Unit	US2 776840 18/12/2007	US3 776841 18/12/2007	US4 776842 18/12/2007
2300 OC Pesticides in Soil by GC-MS				
a-BHC	0.5 mg/kg	<0.5	<0.5	<0.5
a-Chlordane	0.5 mg/kg	<0.5	<0.5	<0.5
a-Endosulfan	0.5 mg/kg	<0.5	<0.5	<0.5
Aldrin	0.5 mg/kg	<0.5	<0.5	<0.5
o-BHC	0.5 mg/kg	<0.5	<0.5	<0.5
o-Endosulfan	0.5 mg/kg	<0.5	<0.5	<0.5
d-BHC	0.5 mg/kg	<0.5	<0.5	<0.5
ODD	0.5 mg/kg	<0.5	<0.5	<0.5
ODE	0.5 mg/kg	<0.5	<0.5	<0.5
ODT	0.5 mg/kg	<0.5	<0.5	<0.5

First Reported: 2 January 2008 Date Printed: 2 January 2008 Amdel Ltd 1/21 Smallwood PI Murarrie QLD Australia 4172 ABN: 30 008 127 802 Telephone: (07) 3902 4600 Facsimile: (07) 3902 4646 Page 4 of 17

Final Report Number: 272952

customer Sample ID amdel Sample Number pate Sampled			US2 776840 18/12/2007	US3 776841 18/12/2007	US4 776842 18/12/2007
SVOC Test/Reference	PQL	Unit			
		mg/kg	<0,5	0.8	<0.5
Dieldrin Endosulfan sulfate		mg/kg	<0.5	<0.5	<0.5
		mg/kg	<0.5	<0.5	<0.5
Endrin		mg/kg	<0.5	<0.5	<0.5
Endrin Aldehyde		mg/kg	<0.5	<0.5	<0.5
1-BHC		mg/kg	<0.5	<0.5	<0.5
g-Chlordane		mg/kg	<0.5	<0.5	<0.5
Heptachlor Heptachlor epoxide		mg/kg	<0.5	<0.5	<0.5
Hexachlorobenzene (HCB)		mg/kg	<0.5	<0.5	<0.5
		mg/kg	<0.5	<0.5	<0.5
Methoxychlor		mg/kg	<0.5	<0.5	<0.5
Oxychlordane		%	96	103	107
2,4,5,6-tetrachloro-m-xylene - Surrogate	•				
2400 OP Pesticides in Soil by GCMS Chlorpyrifos	0.5	mg/kg	<0.5	<0.5	<0.5
Chlorpyrifos Methyl		mg/kg	<0.5	<0.5	<0.5
Diazinon		mg/kg	<0.5	<0.5	<0.5
Ethion		mg/kg	<0.5	<0.5	<0.5
Ethion Fenitrothion		mg/kg	<0.5	<0.5	<0.5
Fenthion		mg/kg	<0.5	<0.5	<0.5
Malathion		mg/kg	<0.5	<0.5	<0.5
		mg/kg	<0.5	<0.5	<0.5
Methyl Parathion Parathion	0.5	mg/kg	<0.5	<0.5	<0.5
	0.5	mg/kg	<0,5	<0.5	<0.5
Ronnel	1	%	Q09 141	120	107
Triphenyl Phosphate - Surrogate		70			
Metals Test/Reference	PQL	Unit			
3200 Total Metals in Soil by ICP/AES					0.0
Arsenic	3	mg/kg	25	4.1	6.2
Cadmium	1	mg/kg	2.6	<1	<1
Chromium	2	mg/kg	13	<2	2.0
Copper	1	mg/kg	2400	5.3	22
Lead	5	mg/kg	840	13	7.9
Nickel	2	mg/kg	12	<2	<2
Zinc	2	mg/kg	470	37	5.8
Miscellaneous					
Test/Reference	PQL	Unit			
5000 Moisture Content % Moisture	1	%	3	2	4
					-
Customer Sample ID Amdel Sample Number			US5 776843	US6 776844	WS1 776845
Date Sampled			18/12/2007	18/12/2007	18/12/2007
voc					
Test/Reference	PQL	_ Unit		<u> </u>	
1200 BTEX & (C6-C9) in Water by P&T Benzene	0.5	μg/L	-	-	<0.5

Customer Sample ID Amdel Sample Number			US5 776843 18/12/2007	US6 776844 18/12/2007	WS1 776845 18/12/2007
Date Sampled VOC			10/12/2001		••••
Test/Reference	PQL	Unit			
Ethylbenzene	1	μg/L	+	-	<1
Meta- & Para- Xylene	2	μg/L	-	-	<2
Ortho-Xylene	1	μg/L	-	•	<1
Toluene	1	μg/L	-	•	39
Total Xylenes	3	µg/L	-	•	<3
C6-C9 Fraction	20	μg/L	-	-	38
4-Bromofluorobenzene - Surrogate	-	%	-	•	103
SVOC Test/Reference	PQL	Unit			
2300 OC Pesticides in Soil by GC-MS				.o. F	
a-BHC	0.5	mg/kg	<0.5	<0.5	-
a-Chlordane	0.5	mg/kg	<0.5	0.8	•
a-Endosulfan	0.5	mg/kg	<0.5	<0.5	-
Aldrin	0.5	mg/kg	<0.5	<0.5	<u>.</u>
b-BHC	0.5	mg/kg 	<0.5	<0.5 <0.5	-
b-Endosulfan	0.5	mg/kg	<0.5	<0.5 <0.5	-
d-BHC	0.5	mg/kg	<0.5		_
DDD	0.5	mg/kg	<0.5	<0.5	-
DDE	0.5	mg/kg	<0.5	<0.5	-
DDT	0.5	mg/kg	<0.5	<0.5	•
Dieldrin	0.5	mg/kg	<0.5	<0.5 <0.5	-
Endosulfan sulfate	0.5	mg/kg	<0.5	<0.5	_
Endrin	0.5	mg/kg	<0.5	<0.5	<u>-</u>
Endrin Aldehyde	0.5	mg/kg	<0.5	<0.5	<u>-</u>
g-BHC	0.5	mg/kg	<0.5	<0.5	<u>.</u>
g-Chlordane	0.5	mg/kg	<0.5 <0.5	<0.5	_
Heptachlor	0.5	mg/kg	<0.5	<0.5	_
Heptachlor epoxide	0.5	mg/kg		<0.5	_
Hexachlorobenzene (HCB)	0.5	mg/kg	<0.5	<0.5	_
Methoxychlor	0.5	mg/kg	<0.5	<0.5	_
Oxychlordane	0.5	mg/kg	<0.5	95	•
2,4,5,6-tetrachloro-m-xylene - Surrogate	-	%	97	93	
2400 OP Pesticides in Soil by GCMS	0.5	mg/kg	<0.5	<0.5	-
Chloropyrifos	0.5	mg/kg	<0.5	<0.5	-
Chlorpyrifos Methyl	0.5	mg/kg	<0.5	<0.5	-
Diazinon	0.5	mg/kg	<0.5	<0.5	-
Ethion	0.5	mg/kg	<0.5	<0.5	-
Fenitrothion	0.5	mg/kg	<0.5	<0.5	-
Fenthion	0.5	mg/kg	<0.5	<0.5	-
Malathion	0.5	mg/kg	<0.5	<0.5	-
Methyl Parathion	0.5	mg/kg	<0.5	<0.5	_
Parathion	0.5	mg/kg	<0.5	<0.5	-
Ronnel	1	mg/kg %	87	81	-
Triphenyl Phosphate - Surrogate	'	70	₩ 1	· ·	
2000 TPH (C10 - C36) in Water by GC C10-C14 Fraction	40	μg/L	-	-	<40
C15-C28 Fraction	100		-	-	124
C29-C36 Fraction	100		-	-	106
Metals					

Customer Sample ID Amdel Sample Number Date Sampled Metals			US5 776843 18/12/2007	US6 776844 18/12/2007	WS1 776845 18/12/2007
Test/Reference	PQL	Unit			
3300 Dissolved Metals in Water by GFAAS Lead	1	μg/L	-	-	<1
3200 Total Metals in Soil by ICP/AES Arsenic	3	mg/kg	<3	<3	-
Cadmium	1	mg/kg	<1	<1	-
Chromium	2	mg/kg	2.4	2.8	-
Copper	1	mg/kg	1.3	5.5	-
Lead	5	mg/kg	<5	9.4	•
Nickel	2	mg/kg	<2	<2	-
Zinc	2	mg/kg	4.7	4.7	-
Miscellaneous Test/Reference	PQL	_ Unit			
5000 Moisture Content % Moisture	1	%	1	3	-

Customer Sample ID Amdel Sample Number Date Sampled		WS2 776846 18/12/2007	WS3 776847 18/12/2007	DUP1 776848 18/12/2007
VOC Test/Reference	PQL Unit			
1200 BTEX & (C6-C9) in Water by P&T			_	.o. =
Benzene	0.5 μg/L	<0.5	<0.5	<0.5
Ethylbenzene	1 μg/L	<1	<1	<1
Meta- & Para- Xylene	2 μg/L	<2	<2	<2
Ortho-Xylene	1 μg/L	<1	<1	<1
Toluene	1 μg/L	<1	<1	<1
Total Xylenes	3 μg/L	<3	<3	<3
C6-C9 Fraction	20 μg/L	<20	<20	<20
4-Bromofluorobenzene - Surrogate	- %	102	104	99
svoc				
Test/Reference	PQL Unit			
2000 TPH (C10 - C36) in Water by GC				<40
C10-C14 Fraction	40 μg/L	<40	<40	
C15-C28 Fraction	100 μg/L	<100	<100	<100
C29-C36 Fraction	100 μg/L	<100	<100	<100
Metals Test/Reference	PQL Unit			
3300 Dissolved Metals in Water by GFAAS Lead	1 μg/L	<1	<1	<1

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Extracted	Analysed
1100 BTEX &(C6-C9) in Soil by P&T	24/12/2007	28/12/2007
1200 BTEX & (C6-C9) in Water by P&T	21/12/2007	24/12/2007
2000 TPH (C10 - C36) in Soil by GC	27/12/2007	02/01/2008
2000 TPH (C10 - C36) in Water by GC	24/12/2007	28/12/2007
2300 OC Pesticides in Soil by GC-MS	27/12/2007	31/12/2007
2400 OP Pesticides in Soil by GCMS	27/12/2007	31/12/2007
3200 Total Metals in Soil by ICP/AES	27/12/2007	31/12/2007
3300 Dissolved Metals in Water by GFAAS	31/12/2007	02/01/2008
5000 Moisture Content	24/12/2007	27/12/2007

Amdel Internal Quality Control Review

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Proficiency Trial results are available on request.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spike or surrogate recoveries.
- 5. Test samples duplicated or spiked, are for this job only and are identified in the following QC report.
- 6. SVOC analyses on waters are performed on homogenized, unfiltered sample, unless noted otherwise.
- 7. When individual results are qualified in the body of a report, refer to the qualifier descriptions that follow.
- 8. The 'Sum of PAHs' result in the body of the report is the sum of any positive results and PQLs of other non-detected results.
- 9. Sampled Dates quoted in this report are those listed on the COC or sample jars; if no sample dates are noted, the date the samples are received at the laboratory have been used
- 10. Matrix Spike recoveries are calculated on an 'As Received' basis; the parent sample result is moisture corrected after the %recovery is determined

Holding Times

Please refer to 'Sampling and Preservation Chart for Soils & Waters' for holding times. (Amdel form AS-FOR-ADM-020)

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgement. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitability qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Quality Control Results

Laboratory: EN_METALS

				Acceptance		Qualifying
Sample, Test, Result Reference	Units	Result 1		Limits	Limits	Codes
780495 [Method Blank]			•			
3300 Dissolved Metals in Water by GFAAS						
Arsenic	μg/L	<1		<1	Т	
Cadmium	μg/L	<0.1		< 0.1	Т	
Lead	µg/L	<1		<1	Т	
Selenium	μg/L	<1		<1	Т	
781012 [Method Blank]	•					ļ
3200 Total Metals in Soil by ICP/AES						ļ
Arsenic	mg/kg	<3		< 3	T	
Barium	mg/kg	<5		< 5	T	
Beryllium	mg/kg	<5		< 5	Т	<u> </u>
Cadmium	mg/kg	<1		<1	T	
Chromium	mg/kg	<2		< 2	T	
Cobalt	mg/kg	<5		< 5	T	ļ
Copper	mg/kg	<1		<1	T	ļ
Lead	mg/kg	<5		< 5	T	ļ
Manganese	mg/kg	<5		< 5	Т	
Nickel	mg/kg	<2		< 2	T	
Selenium	mg/kg	<5		< 5	Т	
Tin	mg/kg	<5		< 5	Т	
Vanadium	mg/kg	<5		< 5	Т	
Zinc	mg/kg	<2		< 2	Т	

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
781164 [Method Blank]						1	
3200 Total Metals in Soil by ICP/AES							
Arsenic	mg/kg	<3			<3	Т	Q15
Cadmium	mg/kg	<1			<1	Т	Q15
Chromium	mg/kg	<2			< 2	Т	Q15
Copper	mg/kg	<1			<1	Т	Q15
Lead	mg/kg	<5			< 5	T	Q15
Nickel	mg/kg	<2			< 2	Т	Q15
Zinc	mg/kg	<2			< 2	T	Q15
780497 [Laboratory Control Sample]							
3300 Dissolved Metals in Water by GFAAS			Expected Value	Percent Recovery		<u>,</u>	
Arsenic	μg/L	11	10.0	106	80-120 %	T	
Cadmium	μg/L	2.1	2.0	105	80-120 %	T	
Lead	μg/L	11	10.0	110	80-120 %	T	
Selenium	μg/L	12	10.0	120	80-120 %	Т	
781013 [Laboratory Control Sample]					·		
3200 Total Metals in Soil by ICP/AES			Expected Value	Percent Recovery	****		
Arsenic	mg/kg	50	50.0	101	70-130 %	T	
Barium	mg/kg	53	50.0	107	70-130 %	1 -	
Beryllium	mg/kg	52	50.0	104	70-130 %	T	
Cadmium	mg/kg	51	50.0	102	70-130 %	Ţ	
Chromium	mg/kg	51	50.0	101	70-130 %	Т	
Cobalt	mg/kg	52	50.0	103	70-130 %	T	
Copper	mg/kg	52	50.0	103	70-130 %	T	
Lead	mg/kg	51	50.0	102	70-130 %	T	
Manganese	mg/kg	52	50.0	104	70-130 %	T	
Nickel	mg/kg	51	50.0	103	70-130 %	T	
Selenium	mg/kg	48	50.0	97	70-130 %	T	
Tin	mg/kg	53	50.0	106	70-130 %		
Vanadium	mg/kg	52	50.0	105	70-130 %	T	
Zinc	mg/kg	52	50.0	104	70-130 %		
781165 [Laboratory Control Sample]			-I	1			
3200 Total Metals in Soil by ICP/AES		γ	Expected Value	Percent Recovery			
Arsenic	mg/kg	50	50.0	100	70-130 %	T	
Cadmium	mg/kg	49	50.0	99	70-130 %	T	<u> </u>
Chromium	mg/kg	51	50.0	102	70-130 %	T	<u> </u>
Copper	mg/kg	51	50.0	102	70-130 % 70-130 %	T	
Lead	mg/kg	49	50.0	97		+-	
Nickel	mg/kg	52	50.0	104	70-130 %	++	
Zinc	mg/kg	51	50.0	102	70-130 %		
777513 [Duplicate of 776828]			-	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • • •	
3200 Total Metals in Soil by ICP/AES			Result 2	RPD	0.00.0/	—— <u>—</u>	
LeadDB	mg/kg	14	12	18	0-30 %	T	
777514 [Duplicate of 776829]							ļ
3200 Total Metals in Soil by ICP/AES			Result 2	RPD		·	
LeadDB	mg/kg	13	8.1	50	0-30 %	F	Q15
777520 [Spike of 776836]							<u> </u>
3200 Total Metals in Soil by ICP/AES			Spike Value	Percent Recovery			
Lead	mg/kg	49	50.0	97	70-130 %	Т	ļ
_aboratory: EN_SVOC	•						τ
Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifyii Codes
780525 [Method Blank]							
2000 TPH (C10 - C36) in Water by GC			_				
C10-C14 Fraction	μg/L	<40			< 40	Т	
C15-C28 Fraction	µg/L	<100			< 100	Т	
C29-C36 Fraction	μg/L	<100	1		< 100	Т	

Page 11 of 17

Final Report Number: 272952

Laboratory: EN_SVOC

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
781061 [Method Blank]			•				
2000 TPH (C10 - C36) in Soil by GC							
C10-C14 Fraction	mg/kg	<10			< 10	Т	
C15-C28 Fraction	mg/kg	<20			< 20	Т	
C29-C36 Fraction	mg/kg	<20			< 20	T	
2300 OC Pesticides in Soil by GC-MS							
a-BHC	mg/kg	<0.5			< 0.5	T	
a-Chlordane	mg/kg	<0.5			< 0.5	Т	
a-Endosulfan	mg/kg	<0.5			< 0.5	Т	
Aldrin	mg/kg	<0.5			< 0.5	Т	
b-BHC	mg/kg	<0.5			< 0.5	т	
b-Endosulfan	mg/kg	<0.5			< 0.5	Т	
d-BHC	mg/kg	<0.5			< 0.5	T	
DDD	mg/kg	<0.5			< 0.5	T	
DDE	mg/kg	<0.5			< 0.5	T	
DDT	mg/kg	<0.5			< 0.5	Т	
Dieldrin	mg/kg	<0.5			< 0.5	Т	
Endosulfan sulfate	mg/kg	<0.5			< 0.5	Т	
Endrin	mg/kg	<0.5			< 0.5	T	
Endrin Aldehyde	mg/kg	<0.5			< 0.5	Т	
g-BHC	mg/kg	<0,5			< 0.5	Т	
g-Chlordane	mg/kg	<0.5			< 0.5	т	
Heptachlor	mg/kg	<0.5			< 0.5	Т	
Heptachior epoxide	mg/kg	<0.5			< 0.5	Т	
Hexachiorobenzene (HCB)	mg/kg	<0.5			< 0.5	Т	
Methoxychlor	mg/kg	<0.5		11 11 11 11 11 11 11 11 11 11 11 11 11	< 0.5	Т	
Oxychlordane	mg/kg	<0.5			< 0.5	Т	
2,4.5.6-tetrachloro-m-xylene-SURROGATE	%	101			70-130 %	Т	
2400 OP Pesticides in Soil by GCMS							
Chlorpyrifos	mg/kg	<0.5			< 0.5	Т	
Chlorpyrifos Methyl	mg/kg	<0.5			< 0.5	Т	
Diazinon	mg/kg	<0.5			< 0.5	Т	
Ethion	mg/kg	<0.5			< 0.5	Т	
Fenitrothion	mg/kg	<0.5			< 0.5	τ	
Fenthion	mg/kg	<0.5			< 0.5	Т	
Malathion	mg/kg	<0.5			< 0.5	Т	
Methyl Parathion	mg/kg	<0.5			< 0.5	Т	
Parathion	mg/kg	<0.5			< 0.5	Т	
Ronnel	mg/kg	<0.5			< 0.5	Т	
Triphenyl Phosphate - OPP SURROGATE	%	94			70-130 %	Т	

Laboratory: EN_SVOC

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
781070 [Method Blank]			 -	- -		•	
2300 OC Pesticides in Soil by GC-MS							
a-BHC	mg/kg	<0.5			< 0.5	Т	
a-Chlordane	mg/kg	<0.5		-	< 0.5	Т	
a-Endosulfan	mg/kg	<0.5			< 0.5	Т	
Aldrin	mg/kg	<0.5			< 0.5	Т	
b-BHC	mg/kg	<0.5			< 0.5	T	
b-Endosulfan	mg/kg	<0.5			< 0.5	T	
d-BHC	mg/kg	<0.5			< 0.5	T	
DDD	mg/kg	<0.5			< 0.5	Т	
DDE	mg/kg	<0.5			< 0.5	Т	
DDT	mg/kg	<0.5			< 0.5	Т	
Dieldrin	mg/kg	<0.5			< 0.5	Т	
Endosulfan sulfate	mg/kg	<0.5			< 0.5	Т	
Endrin	mg/kg	<0.5			< 0.5	Т	
Endrin Aldehyde	mg/kg	<0.5			< 0.5	Т	
g-BHC	mg/kg	<0.5			< 0.5	Т	
g-Chlordane	mg/kg	<0.5			< 0.5	T	
Heptachlor	mg/kg	<0.5			< 0.5	Т	
Heptachlor epoxide	mg/kg	<0,5			< 0.5	Т	
Hexachlorobenzene (HCB)	mg/kg	<0.5			< 0.5	Т	
Methoxychlor	mg/kg	<0.5			< 0.5	Т	
Oxychlordane	mg/kg	<0.5			< 0.5	Т	
2.4.5.6-tetrachloro-m-xylene-SURROGATE	%	98			70-130 %	٢	
2400 OP Pesticides in Soil by GCMS							
Chlorpyrifos	mg/kg	<0.5			< 0.5	Т	
Chlorpyrifos Methyl	mg/kg	<0.5			< 0.5	Т	
Diazinon	mg/kg	<0,5			< 0.5	Т	
Ethion	mg/kg	<0.5			< 0.5	T	
Fenitrothion	mg/kg	<0,5			< 0.5	T	
Fenthion	mg/kg	<0.5			< 0.5	T	ļ
Malathion	mg/kg	<0.5			< 0.5	T	
Methyl Parathion	mg/kg	<0.5			< 0.5	Т	
Parathion	mg/kg	<0.5			< 0.5	T	
Ronnel	mg/kg	<0.5			< 0.5	<u> </u>	
Triphenyl Phosphate - OPP SURROGATE	%	74			70-130 %	Т	
780527 [Laboratory Control Sample]							
2000 TPH (C10 - C36) in Water by GC			Expected Value	Percent Recovery			
C10-C14 Fraction	μg/L	190	200.0	93	70-130 %	T	
C15-C28 Fraction	μg/L	182	200.0	91	70-130 %	T	
C29-C36 Fraction	μg/L	186	200.0	93	70-130 %	Т	
781062 [Laboratory Control Sample]	•					-	
2000 TPH (C10 - C36) in Soil by GC			Expected Value	Percent Recovery			
C10-C14 Fraction	mg/kg	130	125.0	107	70-130 %	T	
C15-C28 Fraction	mg/kg	130	125.0	107	70-130 %	Т	
C29-C36 Fraction	mg/kg	140	125.0	115	70-130 %	T	<u></u>

Laboratory: EN SVOC

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
781063 [Laboratory Control Sample]	•	٠				-	
2300 OC Pesticides in Soil by GC-MS			Expected Value	Percent Recovery			
a-BHC	mg/kg	2.3	2.0	115	70-130 %	Т	
a-Chlordane	mg/kg	2.2	2.0	109	70-130 %	Т	
a-Endosulfan	mg/kg	2.2	2.0	108	70-130 %	T	
Aldrin	mg/kg	2.2	2.0	109	70-130 %	т	
b-BHC	mg/kg	2.4	2.0	120	70-130 %	T	
b-Endosulfan	mg/kg	2.4	2.0	122	70-130 %	Т	
d-BHC	mg/kg	2.1	2.0	103	70-130 %	Т	
DDD	mg/kg	2.4	2.0	120	70-130 %	T	
DDE	mg/kg	2.3	2.0	116	70-130 %	Т	
DDT	mg/kg	2.3	2.0	116	70-130 %	т	
Dieldrin	mg/kg	2.2	2.0	111	70-130 %	T	
Endosulfan sulfate	mg/kg	2.5	2.0	124	70-130 %	Т	
Endrin	mg/kg	2.5	2.0	124	70-130 %	Т	
Endrin Aldehyde	mg/kg	2.3	2.0	114	70-130 %	T	
g-BHC	mg/kg	2.3	2.0	114	70-130 %	Т	
g-Chlordane	mg/kg	2.3	2.0	117	70-130 %	Т	
Heptachlor	mg/kg	2.1	2.0	103	70-130 %	Т	
Heptachlor epoxide	mg/kg	2.0	2.0	102	70-130 %	Т	
Methoxychlor	mg/kg	2.5	2.0	124	70-130 %	T	
2400 OP Pesticides in Soil by GCMS			Expected Value	Percent Recovery		•	
Chlorpyrifos	mg/kg	2.1	2.0	104	70-130 %	Т	
Chlorpyrifos Methyl	mg/kg	1.9	2.0	93	70-130 %	Т	
Diazinon	mg/kg	2.2	2.0	110	70-130 %	Т	
Ethion	mg/kg	2.3	2.0	116	70-130 %	Т	
Fenitrothion	mg/kg	1.7	2.0	83	70-130 %	T	
Fenthion	mg/kg	2.1	2.0	103	70-130 %	Т	
Malathion	mg/kg	2.0	2.0	100	70-130 %	Т	
Methyl Parathion	mg/kg	1.4	2.0	72	70-130 %	Т	
Parathion	mg/kg	1.9	2.0	94	70-130 %	Т	
Ronnel	mg/kg	2.0	2.0	98	70-130 %	Т	
Triphenyl Phosphate - OPP SURROGATE	%	115	N/A	N/A	70-130 %	Т	

Laboratory: EN_SVOC

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifyin Codes
781072 [Laboratory Control Sample]			1	 		1	23400
2300 OC Pesticides in Soil by GC-MS			Expected Value	Percent Recovery			
a-BHC	mg/kg	2.0	2.0	102	70-130 %	Т	
a-Chiordane	mg/kg	1.9	2.0	97	70-130 %	Т	
a-Endosulfan	mg/kg	1.8	2.0	91	70-130 %	Т	
Aldrin	mg/kg	1.9	2.0	95	70-130 %	Т	
b-BHC	mg/kg	2.4	2.0	118	70-130 %	Т	
b-Endosulfan	mg/kg	2.1	2.0	103	70-130 %	Т	
d-BHC	mg/kg	1.8	2.0	88	70-130 %	T	
DDD	mg/kg	1.9	2.0	96	70-130 %	T	
DDE	mg/kg	1.9	2.0	96	70-130 %	Т	
DDT	mg/kg	1.8	2.0	92	70-130 %	Т	
Dieldrin	mg/kg	2.0	2.0	98	70-130 %	T	
Endosulfan sulfate	mg/kg	2.0	2.0	99	70-130 %	T	
	_	2.0	2.0	101	70-130 %	 	
Endrin Carlos Addato de	mg/kg		2.0	93	70-130 %	 ' -	
Endrin Aldehyde	mg/kg	1.9 1.9	2.0	93	70-130 %	+ +	
g-BHC	mg/kg		2.0	99	70-130 %	 ' -	
g-Chlordane	mg/kg	2.0		93	70-130 %	T	
Heptachlor	mg/kg	1.9	2.0		70-130 % 70-130 %	- <u> </u>	
Heptachlor epoxide	mg/kg	1.7	2.0	84 100	70-130 %	 	<u> </u>
Methoxychlor	mg/kg	2.0			70-130 %	<u> </u>	
2400 OP Pesticides in Soil by GCMS	_	ı	Expected Value	Percent Recovery			
Chlorpyrifos	mg/kg	1.8	2.0	92	70-130 %	T	
Chlorpyrifos Methyl	mg/kg	1.6	2.0	82	70-130 %	Т	
Diazinon	mg/kg	1.8	2.0	88	70-130 %	T	<u> </u>
Ethion	mg/kg	1.9	2.0	95	70-130 %	T	
Fenitrothion	mg/kg	1.7	2.0	85	70-130 %	Т	
Fenthion	mg/kg	1.8	2.0	92	70-130 %	T	
Malathion	mg/kg	1.7	2.0	84	70-130 %	Т	
Methy! Parathion	mg/kg	1.6	2.0	82	70-130 %	Т	
Parathion	mg/kg	1.7	2.0	87	70-130 %	T	
Ronnel	mg/kg	1.7	2.0	86	70-130 %	T	<u> </u>
777515 [Duplicate of 776840]	•	•				•	
2300 OC Pesticides in Soil by GC-MS			Result 2	RPD			Ī
a-BHCDB	mg/kg	<0.5	<0.5	<1	0-30 %	Т	
a-ChlordaneDB	mg/kg	<0,5	<0.5	<1	0-30 %	Т	
a-EndosulfanDB	mg/kg	<0.5	<0.5	<1	0-30 %	Т	
AldrinDB	mg/kg	<0.5	<0.5	<1	0-30 %	T	
b-BHCDB	mg/kg	<0.5	<0.5	<1	0-30 %	T	
b-EndosulfanDB	mg/kg	<0.5	<0.5	<1	0-30 %	T	
	mg/kg	<0.5	<0.5	<1	0-30 %	T	
d-BHCDB		<0.5	<0.5	<1	0-30 %	 '	
DDDDB	mg/kg	<0.5	<0.5	<1	0-30 %	 	
DDEDB	mg/kg	-	<0.5	<1	0-30 %	 	
DDTDB	mg/kg	<0.5		<1	0-30 %		1
DieldrinDB	mg/kg	<0.5	<0.5	<1	0-30 %	 ' -	
Endosulfan sulfateDB	mg/kg	<0.5	<0.5	<1	0-30 %	+ +	
Endrin AldehydeDB	mg/kg	<0.5	<0.5				
EndrinDB	mg/kg	<0.5	<0.5	<1	0-30 %	T T	
g-BHCDB	mg/kg	<0.5	<0.5	<1	0-30 %	T	┼
g-ChlordaneDB	mg/kg	<0.5	<0.5	<1	0-30 %	T	
Heptachlor epoxideDB	mg/kg	<0.5	<0.5	<1	0-30 %	T	<u> </u>
HeptachlorDB	mg/kg	<0.5	<0.5	<1	0-30 %	T	
Hexachlorobenzene (HCB)DB	mg/kg	<0.5	<0.5	<1	0-30 %	Т	<u> </u>
		<0.5	<0.5	<1	0-30 %	T	1
MethoxychlorDB	mg/kg	~0.5	40.0	<1	0-30 %	T	

Laboratory: EN_SVOC

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
777516 [Duplicate of 776840]						•	
2400 OP Pesticides in Soil by GCMS	-		Result 2	RPD			
Chlorpyrifos MethylDB	mg/kg	<0.5	<0.5	<1	0-30 %	Т	
ChlorpyrifosDB	mg/kg	<0.5	<0.5	<1	0-30 %	Т	
DiazinonDB	mg/kg	<0.5	<0.5	<1	0-30 %	T	
EthionDB	mg/kg	<0.5	<0.5	<1	0-30 %	Т	
FenitrothionDB	mg/kg	<0.5	<0.5	<1	0-30 %	Т	
FenthionDB	mg/kg	<0.5	<0.5	<1	0-30 %	Т	
MalathionDB	mg/kg	<0.5	<0,5	<1	0-30 %	т	
Methyl ParathionDB	mg/kg	<0.5	<0.5	<1	0-30 %	T	
ParathionDB	mg/kg	<0.5	<0.5	<1	0-30 %	T	
RonnelDB	mg/kg	<0.5	<0,5	<1	0-30 %	T	
	%	156	N/A	N/A	70-130 %	F	Q09
Triphenyl Phosphate - OPP SURROGATE	70	100	<u> </u>			-	
777517 [Duplicate of 776828]				222			
2000 TPH (C10 - C36) in Soil by GC			Result 2	RPD	0-30 %	Т	
C10-C14 FractionDB	mg/kg	<10	<10	<1	···		
C15-C28 FractionDB	mg/kg	<20	<20	<1	0-30 %	T	<u> </u>
C29-C36 FractionDB	mg/kg	<20	<20	<1	0-30 %	T	<u> </u>
777518 [Duplicate of 776829]							
2000 TPH (C10 - C36) in Soil by GC			Result 2	RPD			
C10-C14 FractionDB	mg/kg	<10	<10	<1	0-30 %	T	<u> </u>
C15-C28 FractionDB	mg/kg	<20	<20	<1	0-30 %	Т	
C29-C36 FractionDB	mg/kg	<20	<20	<1	0-30 %	Т	
777521 [Spike of 776844]	<u> </u>						
· · · · · · · · · · · · · · · · · · ·			Spike Value	Percent Recovery		-	i –
2300 OC Pesticides in Soil by GC-MS	mallea	2.0	2.0	101	70-130 %	Т	<u> </u>
a-BHC	mg/kg	3.2	2.0	125	70-130 %	T	
a-Chlordane	mg/kg	2.0	2.0	101	70-130 %	T	
a-Endosulfan	mg/kg		2.0	93	70-130 %	T	
Aldrin	mg/kg	1.9		118	70-130 %	 	
b-BHC	mg/kg	2.4	2.0	113	70-130 %	 	
b-Endosulfan	mg/kg	2.3	2.0		70-130 %	+ +	
d-BHC	mg/kg	1.8	2.0	91	70-130 %	 	
DDD	mg/kg	2.0	2.0	102		_	
DDE	mg/kg	2.1	2.0	106	70-130 %	<u> </u>	
DDT	mg/kg	1.9	2.0	94	70-130 %	Т	
Dieldrin	mg/kg	2.2	2.0	110	70-130 %	T	
Endosulfan sulfate	mg/kg	1.9	2.0	95	70-130 %		
Endrin	mg/kg	2.1	2.0	106	70-130 %	Т	
Endrin Aldehyde	mg/kg	1.8	2.0	91	70-130 %	T	
g-BHC	mg/kg	1.9	2.0	95	70-130 %	Т	
g-Chlordane	mg/kg	2.2	2.0	112	70-130 %	T	
Heptachlor	mg/kg	2.0	2.0	98	70-130 %	T	
Heptachlor epoxide	mg/kg	1.8	2.0	86	70-130 %	Т	
Methoxychlor	mg/kg	2.0	2.0	98	70-130 %	Т	
			<u> </u>				
777522 [Spike of 776844]			Spike Value	Percent Recovery			1
2400 OP Pesticides in Soil by GCMS		4.0	Spike Value 2.0	92	70-130 %	Т	
Chlorpyrifos	mg/kg	1.8			70-130 %	'	
Chlorpyrifos Methyl	mg/kg	1.6	2.0	82		 	+
Diazinon	mg/kg	1.8	2.0	88	70-130 %	+	-
Ethion	mg/kg	1.8	2.0	90	70-130 %		
Fenitrothion	mg/kg	1.6	2.0	80	70-130 %	<u></u>	
Fenthion	mg/kg	1.8	2.0	89	70-130 %		
Malathion	mg/kg	1.6	2.0	80	70-130 %	Т	-
Methyl Parathion	mg/kg	1.5	2.0	77	70-130 %	Т	4
Parathion	mg/kg	1.8	2.0	88	70-130 %	Т	<u> </u>
Ronnel	mg/kg	1.7	2.0	87	70-130 %	Т	1

Lahora	tan:	CVA	^

	1				Acceptance	Pass	Qualifying
Sample, Test, Result Reference	Units	Result 1			Limits	Limits	Codes
777523 [Spike of 776836]							
2000 TPH (C10 - C36) in Soil by GC			Spike Value	Percent Recovery			
C10-C14 Fraction	mg/kg	120	125.0	95	70-130 %	Т	
C15-C28 Fraction	mg/kg	120	125.0	98	70-130 %	Т	
C29-C36 Fraction	mg/kg	120	125.0	95	70-130 %	Т	
Laboratory: EN_VOC							
Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
779908 [Method Blank]	,						
1200 BTEX & (C6-C9) in Water by P&T							
Benzene	μg/L	<0.5			< 0.5	Т	
C6-C9 Fraction	μg/L	<20			< 20	Т	
Ethylbenzene	μg/L	<1			<1	Т	
Meta- & Para- Xylene	μg/L	<2			< 2	Т	
Ortho-Xylene	μg/L	<1			< 1	Т	
Toluene	µg/L	<1			<1	Т	
Total Xylenes	µg/L	<3			< 3	Т	
4-Bromofluorobenzene - Surrogate	%	101			70-130 %	т	
781051 [Method Blank]						•	
1100 BTEX &(C6-C9) in Soil by P&T							
Benzene	mg/kg	<0.2			< 0.2	Т	
C6-C9 Fraction	mg/kg	<5			< 5	Т	
Ethylbenzene	mg/kg	<1			<1	Т	
Meta- & Para- Xylene	mg/kg	<2			< 2	T	
Ortho-Xylene	mg/kg	<1			< 1	Т	
Toluene	mg/kg	<1			< 1	т	
4-Bromofluorobenzene - Surrogate	%	90			70-130 %	Т	
779909 [Laboratory Control Sample]		···	- 			•	
1200 BTEX & (C6-C9) in Water by P&T			Expected Value	Percent Recovery			
Benzene	μg/L	9.0	10,0	90	70-130 %	Т	İ
C6-C9 Fraction	µg/L	130	140.0	90	70-130 %	Т	
Ethylbenzene	μg/L	8.6	10.0	86	70-130 %	T	<u> </u>
Meta- & Para- Xylene	µg/L	19	20.0	94	70-130 %	Т	
Ortho-Xylene	μg/L	8.9	10.0	89	70-130 %	т	
Toluene	μg/L	8.8	10.0	88	70-130 %	T	
781052 [Laboratory Control Sample]							
1100 BTEX &(C6-C9) in Soil by P&T			Expected Value	Percent Recovery			1
Benzene	mg/kg	4.7	5.0	93	70-130 %	T	<u> </u>
C6-C9 Fraction	mg/kg	48	50.0	96	70-130 %	Т	1
	mg/kg	4.7	5.0	94	70-130 %	Т	
Ethylbenzene Meta- & Para- Xylene	mg/kg	9.0	10.0	90	70-130 %	T	†
Ortho-Xylene	mg/kg	4.4	5.0	87	70-130 %	- - 	
Toluene	mg/kg	4.7	5.0	93	70-130 %	 	†
777511 [Duplicate of 776828]	Пулу	4,7	0.0				
			Dogult 2	RPD			
1100 BTEX &(C6-C9) in Soil by P&T	1	<0.2	Result 2	<1	0-30 %	Т	
BenzeneDB	mg/kg	<5	<5	<1	0-30 %	 	
C6-C9 FractionDB	mg/kg		<1	<1	0-30 %	 	
EthylbenzeneDB	mg/kg	<1	<2	<1	0-30 %	T	
Meta- & Para- XyleneDB	mg/kg	<2	<1	<1	0-30 %	т Т	-
Ortho-XyleneDB	mg/kg	<1	<u> </u>		J-30 /0		+
777512 [Duplicate of 776829]	· · · · · · · · · · · · · · · · · · ·		<u> </u>	 			
1100 BTEX &(C6-C9) in Soil by P&T		·	Result 2	RPD	0.000	1 =	
BenzeneDB	mg/kg	<0.2	<0.2	<1	0-30 %	T	1
C6-C9 FractionDB	mg/kg	<5	<5	<1	0-30 %	T	_
EthylbenzeneDB	mg/kg	<1	<1	<1	0-30 %	T	
Meta- & Para- XyleneDB	mg/kg	<2	<2	<1	0-30 %	T -	
Ortho-XyleneDB	mg/kg	<1	<1	<1	0-30 %	Т	
	mg/kg	<1	<1	<1	0-30 %	l T	

Laboratory: EN VOC

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
777519 [Spike of 776836]							
1100 BTEX &(C6-C9) in Soil by P&T			Spike Value	Percent Recovery			
Benzene	mg/kg	4.2	5.0	83	70-130 %	Т	
C6-C9 Fraction	mg/kg	42	50.0	84	70-130 %	Т	
Ethylbenzene	mg/kg	4.2	5.0	84	70-130 %	T	
Meta- & Para- Xylene	mg/kg	8.6	10.0	86	70-130 %	Т	
Ortho-Xylene	mg/kg	4.1	5.0	82	70-130 %	Т	
Toluene	mg/kg	4.3	5.0	85	70-130 %	Т	

Project Comments

Comments

Lab filtration/acidification required for Dissolved Metals in Water

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Samples correctly preserved

Organic samples had Teflon liners

Samples received with Zero Headspace

Samples received within HoldingTime

Yes

Some samples have been subcontracted

Yes

Qualifier Codes/Comments

Code Description

Q09 The Surrogate recovery is outside of the recommended acceptance criteria due to matrix interference. Acceptance Criteria were met for all other QC

Q15 The RPD reported passes Amdel's Acceptance Criteria as stipulated in AS-POL-002. The Criteria displayed in this report are for results >10 x PQL; the results of this sample are < 10 x PQL

Authorised By

Elizabeth Button Michael Mowle Senior Analyst - Environmental

Accreditation Number: 14356

MyMbeell

Team Leader - Environmental

Accreditation Number: 14356

Laboratory Manager

Michael Mowle

Team Leader - Environmental

Final Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Amdel Limited shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Amdel Limited be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Sampled dates quoted in this report are those listed on the COC or sample jars; if no sample dates are noted, the date the samples are received at the laboratory have been used.

The samples were not collected by Amdel staff.

First Reported: 2 January 2008

Date Printed: 2 January 2008

To: And Set To	Geo Environ Especialism in the Earth and what's built on it	ESSESSES CONS Specialising in the Earth, and What's built on it	sultants	2.5		:		\cup	S C	Chain of Custody No.: 6056/4	po d	À	Page/of Z	
Size National Tisolal Size Name: CABAR 744 Ph. Ph.	From:	129 Outlook Crescen Bardon QLD 4065	ıt						To:	amy	E7.			
Sum Water Sum Wiseled Expansion Project/Order No. COCS 6/44 Turnarround Time. Stray.	Contact:	MICHAEL TISDAL	1	Site Name:		CABA	R174		Con	tact:		y	13061	Page
Sumple Date Collected Sample Type Preservation No. of Analyses Requested Project/Order No OS 6/4 Analyses Requested Production Project/Order No Os of Analyses Requested Production Project/Order No Os of Analyses Requested Production Project/Order No Os of Analyses Requested Production Project/Order Production Producti	3367 2266 0407 178 802	÷	7 bigpond com	Location C	ode:		•		Ph:			Fax:	OTENBROOZ8	5408
Somple Date Collected Sample Type Preservation No. of Analyses Requested	Project Manager.	-		Project/Or	der No.:	60%	56/4		Tur	naround Time.		AZ	W	
CB 1-1 18-12-7 Actd None Glass Plastic TRIM HOLD CB 1-2 CB 1-2 CB 1-3	ļ	Date Collected	Sample Type	Preser Met	vation hod	No. o Contain	f / / lers		Anal	yses Requested			Comments	ients
CE 1. 18-12-7 CE 1. 2 CE 1. 2 CE 1. 2 CE 1. 2 CE 1. 2 CE 2. 2					j l	<u> </u>	ည			1		dul.		
1.4 1.4 1.5 1.6 1.6 2.2 2.3 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5		18-12-7		/		1		\ \ \	W					
1.3 1.4 1.5 1.5 1.6 1.6 2.7 2.4 2.5 2.5 2.5 2.5 2.7 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	1 20 CB1.2	/		1				/	د.					
2.2 2.3 2.4 2.4 2.5 2.4 2.5 2.7 2.4 2.5 2.7 2.4 2.5 2.7 2.4 2.5 2.7 2.7 2.6 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	- CB1.3	/		,								7		
1.5 2.7 2.3 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	- CEI.4											/		
2.5 2.4 2.5 2.5 2.5 2.5 2.5 2.7 3.7 3.1 3.2 3.4 5.3 5.3 5.3 5.3 5.3 5.3 5.4 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	CBI							>	.3					
2.7 2.4 2.5 2.5 2.5 2.7 2.7 2.7 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4	9.187 -											/		
2.5 2.6 2.6 2.7 2.6 2.7 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4	Ç							>	-					
2.4 2.5 2.7 2.7 3.1 3.1 3.1 5.2 3.4 1.0 I	CB											/		
2.4 2.5 2.5 3.4 3.4 3.4 5.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	- CB23											7		
2.5 2.7 3.7 3.2 3.4 5.5 1.5								>						
2.5 3.7 3.2 3.4 3.4 3.6 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		1						\						
2.7 3.2 3.4 3.5 3.4 5.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.285 -											Ż	1	
3.7 3.2 3.4 3.6 10 10 10 10 10 10 10 10 10 10	776831(BZ-)							>						
3.2 3.4 3.6 1.								>		\				
3.4 3.5 3.6 V V Couriered by: AS44 Time: 3.00074 Time:	V 33 CB3.2		-					\	-2			,	, debis Admir verb experience	
3.6 1	- CB3.3											7		
3.6 V V Couriered by: #2849 Time: 3.000 by: Time:	- CB34	/	***									7		
3.6 1		_						\						
Date: Date: Couriered by: H2849 Time: 3.0007 Beceived Time:	- c83.6	1	/ 1									7		
Date: Date: ASAP #2849 Time: 3.000ml Date: Time: 3.000ml			1	7		7		>		/				
2.00 131 1 120 ty Time: 3.00 1	Relinquished by:	() ()·		Couriered		0000	Date:	912-7		eceived		<u> </u>	Date: 19/12/07	107
	Melas	Jak!	Time 2.00	1211		440	Time		J. Jen				TO STATE OF THE PARTY NAMED OF	1630

Geofficial Consultants Societism of the Earth and What's built on it.

Filter Note: Not held Fax: 076482028043 19/12/07 Comments 1630 Page 2 of Z Albered Date: Time: Chain of Custody No.: 6056/4 Turnaround Time .: Analyses Requested merans Medals Off Received by: Contact: #284 9 Time: 3-00 TPH BTEX CABARITA Plastic Containers No. of Pages 2 viet Glass 2 viek 2 Viels 2.5kg None Couriered by: Project/Order No.: Preservation Location Code: Method Acid Site Name: Ice Water Time: 2.60 Date; (2-) Sample Type Fax: 3367 2377
Email: mtisdall@bigpond.com Soil 129 Outlook Crescent Bardon QLD 4065 MICHAEL TISDALL Date Collected 18-12-7 13 pm-7 18-12-7 Michael Tisdall Musdall Sample ID W53 **WS** 2 GE DUP! WSI じ う ら り 4/ 053 42 054 43 455 150 688927 40 052 **Ph:** 3367 2266 0407 178 802 Project Manager. Relinquished by: 47 44 776845 te t Lab No. Contact: From:

Sample Receipt Advice

Customer Service - 1300 552 389

Client Name:

GeoEnvironmental Consultants

Date Received:

20 December 2007

Attention:

Michael Tisdall

Due Date:

31 December 2007

Client Reference number:

6056/4 **CABARITA** Turnaround:

Standard

Amdel Reference number:

07ENBR0028043

Your Amdel Contact: David Bates

+61 7 3902 4600

If you have any queries regarding turnaround and sample progress, technical queries or wish to make changes please contact the laboratory immediately.

Job Information

Project Comments

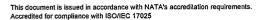
Comments

Lab filtration/acidification required for Dissolved Metals in Water

Sample Integrity

Yes Ittempt to Chill was evident Samples correctly preserved No Yes Organic samples had Teflon liners Yes Samples received with Zero Headspace Samples received within HoldingTime Yes Some samples have been subcontracted No Yes Custody Seals Intact (if used)

Analysis Requested


Analysis Requested	Method Code	Number Of Samples
BTEX &(C6-C9) in Soil by P&T	1100	11
BTEX & (C6-C9) in Water by P&T	1200	4
Dissolved Metals in Water by GFAAS	3300	4
Total Metals in Soil by ICP/AES	3200	17
Moisture Content	5000	17
OC Pesticides in Soil by GC-MS	2300	6
OP Pesticides in Soil by GCMS	2400	6
→PH (C10 - C36) in Soil by GC	2000	11
TPH (C10 - C36) in Water by GC	2000	4

Note

- Turnaround time starts when samples are received at the Laboratory
- For samples received after 4pm, turnaround time starts the next working day
- For samples received on the last day of holding time, notification of testing requirements must be given at least 6 hours prior to the sample receipt deadlines; Should the laboratory not receive the information in the required timeframe a suitably qualified results may still be reported.
- Surcharges may apply for 24 and 48 hour turnaround.
- Water samples will be discarded after 4 weeks unless notified.
- Soil samples are chilled for 1 month and will be discarded after 3 months unless notified.
- UNLESS ADVISED OTHERWISE Sample analysis will commence regardless of integrity issues and / or non-conformance and these will be recorded on the final report.
- Samples submitted for Micro analysis on a Friday may incur a \$150 surcharge and / or be analysed outside holding time (24 Hour Holding Time).

Logged in by: Jane Walker

Date: Thu 20 December 2007

Accreditation Number: 14356

GeoEnvironmental Consultants 129 Outlook Cresent **BARDON QLD 4065** Australia

Attention: Michael Tisdall

Project

08ENBR0000373

Client Reference

6056/4

CABARITA

Order Number

6056/4

Received Date

07/01/2008 02:26:00 PM

Customer Sample ID Amdel Sample Number Date Sampled Metals Test/Reference	PQL	. Unit	CB1.1 790883 18/12/2007	US2 790884 18/12/20	007
3200 Metals in Leachate by ICP-AES Arsenic	50 50	µg/L µg/L	<50 1300	<50 18000	
Copper Lead Zinc	50 50	μg/L μg/L	560 2100	1600 14000	
Miscellaneous Test/Reference	PQL	. Unit			
5700 TCLP - Acidic Buffer pH of Extraction Fluid	0.1	pН	5.0	5.0 8.3	
pH Leachate - Initial pH Leachate - Final	0.1 0.1	pH pH	6.9 5.0	5.0	
Sample History Where samples are submitted/analysed over	severa	il days, the la	st date of extraction and a	nalysis is reporte	ed.
Description			Extracted		Analysed
3200 Metals in Leachate by ICP-AES 5700 TCLP - Acidic Buffer			08/01/200	8	10/01/2008 09/01/2008

Amdel Internal Quality Control Review

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Proficiency Trial results are available on request.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spike or surrogate recoveries.
- 5. Test samples duplicated or spiked, are for this job only and are identified in the following QC report.
- 6. SVOC analyses on waters are performed on homogenized, unfiltered sample, unless noted otherwise.
- 7. When individual results are qualified in the body of a report, refer to the qualifier descriptions that follow.
- 8. The 'Sum of PAHs' result in the body of the report is the sum of any positive results and PQLs of other non-detected results.
- 9. Sampled Dates quoted in this report are those listed on the COC or sample jars; if no sample dates are noted, the date the samples are received at the laboratory have been used
- 10. Matrix Spike recoveries are calculated on an 'As Received' basis; the parent sample result is moisture corrected after the %recovery is determined

Holding Times

Please refer to 'Sampling and Preservation Chart for Soils & Waters' for holding times. (Amdel form AS-FOR-ADM-020)

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgement.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitability qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Quality Control Results

Laboratory: EN_METALS

					Acceptance		Qualifying
Sample, Test, Result Reference	Units	Result 1	<u> </u>		Limits	Limits	Codes
793816 [Method Blank]							
3200 Metals in Leachate by ICP-AES							
Arsenic	μg/L	<50			< 50	T	
Copper	μg/L	<50			< 50	T	
Lead	μg/L	<50			< 50	Т	
Zinc	μg/L	<50			< 50	T	ļ
793817 [Laboratory Control Sample]			•				<u> </u>
3200 Metals in Leachate by ICP-AES			Expected Value	Percent Recovery			
Arsenic	µg/L	1100	1000.0	108	80-120 %	Т	
Copper	μg/L	1000	1000.0	104	80-120 %	Т	<u> </u>
Lead	µg/L	960	1000.0	96	80-120 %	T	
Zinc	µg/L	1100	1000.0	108	80-120 %	Т	

Sample Integrity

Custody Seals Intact (if used)	Yes
Attempt to Chill was evident	Yes
Samples correctly preserved	Yes
Organic samples had Teflon liners	Yes
Samples received with Zero Headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Elizabeth Button

Senior Analyst - Environmental

Accreditation Number: 14356

Laboratory Manager

Michael Mowle

Team Leader - Environmental

MMowle

Final Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Amdel Limited shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Amdel Limited be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Sampled dates quoted in this report are those listed on the COC or sample jars; if no sample dates are noted, the date the samples are received at the laboratory have been used.

The samples were not collected by Amdel staff.

Page 3 of 3

Lagrandian I no I again		/// / / / / / / / / / / / / / / / / / /	Fax: Sque que to	STANDAKD	Corments		TCLP for	As Co. 06 24				191236	(2) DEFUENCE (2)	 11 Page 7 - 1 0	(0086N8/20000373/12)	12:14		;	dayn da	Date: 07, 01, 08	Time: 1026	
No. 5535/4	To: AMDEL	lact:			Analyscs Requested	metals TCLP														Received	The same	
)	STORED SAMPLES OTENBROO28043	CABARITA		DOSP/4	No. of / Containers	ic TPEU BTEX							D							Date:	Tine:	
	STORED S OTENBR	Site Name:	Location Code:	Project/Order No.:	Preservation Method	Ice Acid None														Couriered by:	4	
A E	aut	T	3367 2377 mtisdall@bigpond.com		Sample Type	Soil Water	7													Date: 108	Time: 8.45	
Specialistry in the Earth and whate built on A	129 Outlook Crescent Bardon QLD 4065	MICHABL TISDALL	Fax: 3367 2377 Email: mtisdell@b	Michael Tisdall	Date Collected		18-12-07	9														
Tile in the second seco		Contact:	Ph: 3367 2266 0407 178 802	Project Manager.	Lab No. Sample	3	100 002 CAI.		1											Relinquished by:	Mode	•

Page of Z Geo<u>Fire Internet in the Factor and Wants bullton to</u>

A 150 MIN 100	Specialismo	Specialising in the Earth and what's built on it									-			-	CONTRACTOR SERVICE CONTRACTOR SERVICES		
From:		129 Outlook Crescent Bardon QLD 4065									H	T0:	AMDEL	اء -			
Contact:		MICHAEL TISDALL	,	<u> </u>	Site Name:	ne:	2	1881	CABARITA	-4-		Contact:			en	19 DEC AUD	-
Ph: 3367 2266 0407 178 8	3367 2266 0407 178 802	Fax: 3367 2377 Email: mtisdall@biogond.com	japond.com		Location Code:	a Code:			,	٠	<u>e</u>	Ph:		Fax:	Fax: 707ENGROOZSO	2002	
Project Manager.	lager.		17		Project	Project/Order No.:	10.:	60	1951	Z		urnarou	Turnaround Time.:	STAN	27427		
Lab No.	Sample m	Date Collected	Sample Type	Type	Pre	Preservation Method	a	No. of Containers	of / (iners		Ą	Analyses Requested	equested		/	Comments	ats
			Soil	Water	Ice	Acid	None	Glass	Plastic	TPH/ BTEX		な		HOLD	A		
618922	CB (i.l.	1.8-1.5-2	/		7			1		>	B	Z					
\$ 20 0	20 CE1.2		•					J		/		/				,	
,	C81.3				-	-								2			
1	CE1.4													7			774
776823	CRIS									>		/					
	CRIP													7			
128826	いのシン				_					>		/					
1	CB 2:2													7			
	C873													7			
776828	C82.4									>		7					
 	CB 2.5	1								>		\					
	0.285													2			
776831CB2-7	(1827)									>		/					
32 (1.833									>		/					
V 33	33 683.2	/								1		7			,		
	C83.3													3			
1	CB3.4	/ 7	*****											7			
776836	CR3.5	_										7					
1	c B3.6	, 1/	/ 1		71									3			
776838	IDNA	7	1		7		-	7		>		7		MACE SERVICE CONTRACTOR			
Relinquished by:	od by:		Date:	te: (4:72-)	Courie	Couriered by:	#			Date: 912-7	2-7	Received by:	ed #7/1 /c.		Date:	19/12/07	107
· \	Meles	dall	Time	2.00	45	S.F.	#2849	85 50	-	Time: 3	3.000	,	Samo		Time:	1630	70
	STEE					March Control of the										,	

Chain of Custody

から NOTE: Not hold Filter Fax: 07500280028003 19/12/07 Comments 1630 Page of 2. filtered Time: Date: Z. No.: 6056/4 To: AMDEL Turnaround Time .: Analyses Requested mennis Matak Oglo Received by: Contact: <u>P</u>:: # 284 9 Time: 3-00 TPH/ BTEX PRARITA Glass Plastic COSCO, Containers No. of 5.06 J 2 in 2.viole None Couriered by: Project/Order No.: Preservation Location Code: Method Acid Site Name: <u>I</u>ce Time: 2.60 Date; (2-12-) Water Sample Type Geofficial Consultants Fax: 3367 2377 Email: mtisdoll@bigpond.com Soil MICHAEL TISDALL 129 Outlook Crescent Bardon QLD 4065 Date Collected 18-12-7 13 pm-7 12-21-81 Michael Tisdall Musdal Sample ID W53 48 DUPI **%**85 523 **756** 776845 WS1 45 1724 43 1155 40 052 120 688927 Ph: 3367 2266 0407 178 802 Relinquished by: Project Manager. 47 7 4/6 e t 1 Lab No. Contact: From:

Sample Receipt Advice

Customer Service - 1300 552 389

Client Name:

GeoEnvironmental Consultants

Date Received:

7 January 2008

Attention:

Michael Tisdall

Due Date:

14 January 2008

Client Reference number:

6056/4 **CABARITA** Turnaround:

Standard

Amdel Reference number:

08ENBR0000373

Your Amdel Contact: David Bates

+61 7 3902 4600

If you have any queries regarding turnaround and sample progress, technical queries or wish to make changes please contact the laboratory immediately.

Job Information

Sample Integrity

Yes Attempt to Chill was evident Samples correctly preserved Yes)rganic samples had Teflon liners Yes Samples received with Zero Headspace Yes Yes Samples received within HoldingTime No Some samples have been subcontracted Yes Custody Seals Intact (if used)

Analysis Requested

Analysis Requested Metals in Leachate by ICP-AES **Method Code**

Number Of Samples

3200

TCLP - Acidic Buffer

5700

2

Note

- Turnaround time starts when samples are received at the Laboratory
- For samples received after 4pm, turnaround time starts the next working day
- For samples received on the last day of holding time, notification of testing requirements must be given at least 6 hours prior to the sample receipt deadlines; Should the laboratory not receive the information in the required timeframe a suitably qualified results may still be reported.
- Surcharges may apply for 24 and 48 hour turnaround.
- Water samples will be discarded after 4 weeks unless notified.
- Soil samples are chilled for 1 month and will be discarded after 3 months unless notified.
- UNLESS ADVISED OTHERWISE Sample analysis will commence regardless of integrity issues and / or non-conformance and these will be recorded on the final report.
- Samples submitted for Micro analysis on a Friday may incur a \$150 surcharge and / or be analysed outside holding time (24 Hour Holding Time).

Logged in by: Jane Walker

Date: Mon 7 January 2008

APPENDIX C QUALITY ASSURANCE PROCEDURES

APPENDIX C

QUALITY ASSURANCE

The following procedures were utilized to ensure the integrity of the data collected during the assessment.

Sample Collection and Containers

All samples were collected by a **GeoEnvironmental Consultants** engineer or scientist specifically trained in hazardous waste field investigation techniques and health and safety procedures.

Soil sample collection included:

- Utilization of pre-cleaned solid stem augers. The drill rig utilizes inert non-hydrocarbon based greases and lubricants in areas that may come into contact with soil;
- Sample collection equipment is inspected by the **GeoEnvironmental Consultants** engineer / scientist prior to commencement of fieldwork to ensure equipment cleanliness and adequacy. Mechanical equipment is inspected for oil leaks or other potential sources of cross contamination.
- Transfer of the disturbed auger sample to the engineer/scientist on pre-cleaned PVC sections. Sample handling is conducted in a work area that is wiped clean for each sampling event and kept clear of mess and potential cross contamination sources;
- Selection by the engineer/scientist of depth(s) to be sampled;
- The engineer/scientist wears a new pair of disposable nitrile gloves for each sample collection event;
- Immediate transfer of soil by gloved hand and/or decontaminated sampling equipment to pre-labelled, 250 ml laboratory supplied glass jars with Teflon lid inserts. Jars are filled to ensure sufficient sample is provided for laboratory purposes. The container lip is cleaned if necessary before firmly screwing on the container lid. A clean lip is required to ensure that the Teflon lid insert is not damaged and that volatile and semi-volatile compounds do not escape from the container prior to analysis;

Groundwater sample collection included:

- Gauging depth to water (DTW) in each monitoring well prior to development using decontaminated equipment;
- Utilization of one-use, disposable bailers for each individual monitoring well. New bailer cord is used for each well. The disposable bailers were also used for well development;
- Sample collection equipment is inspected by the **GeoEnvironmental Consultants** engineer / scientist prior to commencement of fieldwork to ensure equipment cleanliness and adequacy;
- The engineer/scientist wears a new pair of disposable nitrile gloves for each sample collection event; and
- Immediate transfer of water from the bailer to pre-labelled, 250 ml laboratory supplied glass jars with Teflon lid inserts. The containers for laboratory analysis are filled to form a meniscus with no headspace. The container lid is then firmly sealed.

Decontamination

Soil Sampling.

All field sampling equipment was decontaminated prior to use and between samples to prevent cross contamination. Equipment included trowels, bowls, knives etc used by the engineer/scientist to transfer the sample to containers. Decontamination of equipment involved the following processes:

- Scrub in clean potable water to remove gross contamination;
- Scrub in a solution of Extran MA03, (phosphate free alkaline cleaner) in clean potable and/or deionised water;
- Rinse in clean potable and/or deionised water; and
- Air dry.

Between boreholes the solid stem augers are removed to a designated cleaning area and cleaned using water spray.

Groundwater Sampling.

The pre wrapped disposable bailer was rinsed with demineralized water prior to well development. For this project there was no requirement to further decontaminate sampling equipment as the disposable bailer was used to transfer samples directly into laboratory prepared containers.

Field Records and Sample Identification

Good, accurate documentation and record keeping at the time of fieldwork performance is considered critical for project success. Detailed field notes are recorded both on drill log sheets and field note books. Records include but are not limited to:

- Name and address of site;
- Identification of field personnel
- Identification of sampling locations
- Date of sample collection
- Method of sample collection
- Depths of sample collection
- Description of soil samples, including USCS Classification and odour
- Depth of first groundwater occurrence
- Depth of static groundwater elevation
- Depth to bottom of borehole, screen/casing
- Number and volume of samples collected
- Survey data as applicable

All samples are identified with a unique sample number, the project number and date of collection. Sample identification details are also recorded on the drill log sheets and Chain of Custody documents.

Field Testing

Headspace field screening was not conducted as it was determined that soil samples would be collected from the known dry soil profile above shallow groundwater.

Sample Transport

All samples to be transported to the laboratory were packed securely in an Esky containing ice. Samples were transported under Chain of Custody procedures from the site to the laboratory. More samples were sent to the laboratory than selected for initial analysis. The laboratory was requested to hold samples for subsequent analysis, if required, or future disposal.

Sample receipt advice from the laboratory indicated whether all sample containers arrived intact. The laboratory also advises if there are any irregularities between sample containers / numbers supplied and Chain of Custody requests.

Instrument Calibration

Instruments used to conduct the field investigations were all calibrated in accordance with the manufacturers recommended procedures, if required.

QUALITY CONTROL

In order to assess the accuracy and precision of the analytical data obtained, the following quality control samples are collected:

Field Duplicates

Field duplicates are a second sample taken from the same position as the first (or a split sample). One field duplicate is typically collected for each 10 (or fewer) samples. A lesser duplicate to field sample ratio may be acceptable under certain site conditions such as consistent lack of contamination and consistent ground conditions.

The field duplicate is analysed to check for consistency of laboratory performance and the variability of the contaminants in the sample. Field duplicate results are used to assess the precision of the whole process including sampling, sample preservation and analysis.

Equipment (Rinsate) Blanks

Equipment blanks are deionised water solutions that are transported to the site, opened in the field, and poured over or through the sample collection device, collected in a sample container, and returned to the laboratory. Equipment blanks are used to check the cleanliness of the sampling device and to confirm the quality of field decontamination procedures.

One equipment blank is typically collected per sampling day event. Use of new disposable bailers for each well negated the need for equipment blanks.

Field Blanks

Field blanks are deionised water that is taken to the sampling site and poured into the sample container prior to sample collection. The sample container remains open throughout the collection of samples and is then sealed and returned to the laboratory with the other samples.

Field blanks are typically collected when requested by the client or when warranted by specific site conditions and/or contaminants of concern. Field blanks perform a similar function to *Trip Blanks*, which are pre-prepared samples used to measure the incidental or accidental contamination of samples by volatile organic compounds (VOCs) during transport, field work and storage. Trip blanks are usually prepared by the laboratory using containers which are filled with VOC free water. These pre-prepared samples are then handled in the same manner as regular VOC sample collection containers.

Matrix Spike Samples

Matrix spikes are samples prepared in the laboratory by spiking an aliquot of a field sample with known concentrations of specific analytes. The matrix spike is then analysed and the results are used to assess the effects of the sample matrix on the accuracy of the analyses.

Accuracy is assessed by calculation of percent recovery, where:

Percent recovery (PR) = $X/T \times 100\%$

Where X = the observed value of measurement T = "true" value

Typical acceptable spike recoveries as follows:

- 70-130 % for metals, BTEX and TPH C₆-C₉.
- 50 150 % for TPH C_{10} - C_{36} .

Laboratory Control samples

Laboratory Control Samples (or Quality Control Check Samples) are samples prepared within the laboratory by spiking an aliquot of an appropriate clean matrix reagent with known concentrations of specific analytes. The check sample is then analysed and the results are used to assess the laboratory performance on sample preservation and analysis procedure.

Accuracy is assessed by calculation of percent recovery, where:

Percent recovery (PR) = $X/T \times 100\%$

Where X = the observed value of measurement T = "true" value

Relative Percentage Difference (RPD)

The relative percentage difference or RPD of each set of duplicate samples is calculated to assess overall precision, where:

RPD =
$$\frac{(D1 - D2)}{(D1 + D2)/2}$$
 x 100%

where D1 = Sample concentration

D2 = Duplicate sample concentration

RPDs for the Cabarita project were acceptable although only low concentrations were detected.