Appendix G Water Quality Calculations

Contents

1.	Calculation of Combined Temperature Changes	1
2.	Calculation of Concentration Factor	2
3.	Calculation of Combined Density & Salinity Changes for Low and High Lake Illawarra Salinity Scenarios	3
4.	Calculation of Water Quality from the Combined Discharges of Stage A and Stage B	6
5.	Calculation of Worst Case Peracetic Acid Concentration	9
6.	Calculation of Worst Case HEDP Concentration	10

1. Calculation of Combined Temperature Changes

The combined discharge temperature was calculated according to the following formula:

Combined Discharge Temperature = $(A/C \times A_t) + (B/C \times B_t)$

The temperature difference from the lake input was calculated according to the following formula:

Temperature Difference from Lake Input = Combined Discharge Temperature - A_t

Where:

A is the flow rate in L/s of Stage A

B is the flow rate in L/s of Stage B

C is the combined flow rate of Stage A + B

 A_t is the output temperature of Stage A

 B_t is the output temperature of Stage B

	Stage A		Stage	Stage B		Combined (Stages A & B)			
	Flow (L/S)	Outlet Temperature (deg C)	Flow (L/S)	Outlet Temperature (deg C)	Flow (L/S)	Combined Discharge Temperature	Temperature Difference from Lake Input		
Equation Reference	А	At	В	Bt	С	(deg C)	(deg C)		
Design	11550	25.1	217	29.4	11767	25.2	0.08		
Hot Day	11550	33.1	271	29.9	11821	33.0	-0.07		
Cold Day	11550	13.3	168	18.5	11718	13.4	0.07		

2. Calculation of Concentration Factor

Most water quality parameters (aside from phosphorus and peracetic acid which are added as biocides and antiscalents) are concentrated due to evaporation rather than an added quantity during the cycling process a concentration factor was calculated to determine the combined discharge of various water quality parameters once Stage A and B were combined. The concentration factor of output parameters from Stage A and Stage B was calculated according to the following formula:

Concentration Factor = $(A/C \times CF1) + (B/C \times CF2)$

Where:

A is the flow rate in L/s of Stage A

B is the flow rate in L/s of Stage B

C is the combined flow rate of Stage A + B

Cflis the concentration of Stage A

Cf2 is the concentration of Stage B

	Stage A		Stage	В	Combined (Stages A & B)		
	Flow (L/S)	Concentration Factor	Flow (L/S)	Concentration Factor	Flow (L/S)	Concentration Factor	
Equation Reference	А	Cf1	В	Cť2	С		
Design	11550	1	217	1.4	11767	1.007	
Hot Day	11550	1	271	1.4	11821	1.009	
Cold Day	11550	1	168	1.4	11718	1.006	

Note:

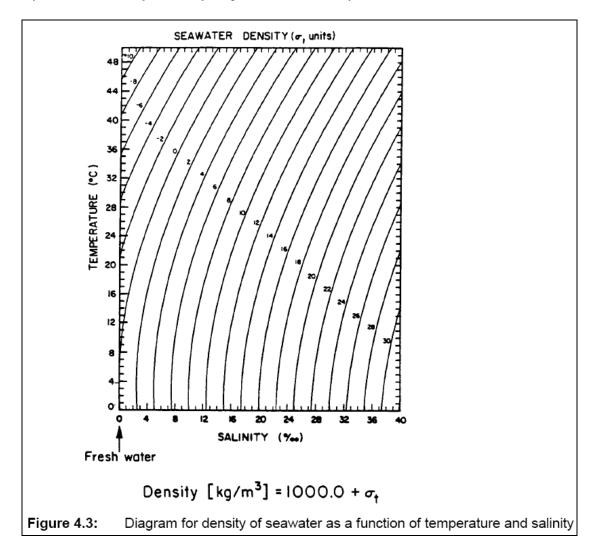
Stage A is a once-through cooling system. Concentration of intake water is by a factor of 1.0 (per comm Angus McLennan 15/1/08)

Stage B concentration factor limited to 1.4 for control of system salinity and scaling (Section 2.6.1.1 of Tallawarra B Concept Design Draft Report, SKM Dec 2007)

3. Calculation of Combined Density & Salinity Changes for Low and High Lake Illawarra Salinity Scenarios

The combined discharge density was calculated under high salinity (32ppt) and low salinity scenarios (10ppt). As Stage A does not concentrate the salinity due to the once-through cooling system the discharge salinity of Stage A is the same as the input Lake Illawarra concentration. Combined discharge Salinity once Stage A and B are combined was calculated using the following formula:

Combined discharge Salinity = (Lake Salinity x Concentration Factor)


The concentration factor was calculated under each operating scenario in Step 2 above. Once the Combined Discharge Salinity was calculated density estimates for the combined discharge and input lake were obtained from Figure 4.8 of the Donker & Jirka (2007) Cormix User Manual (see below). Figure 4.8 uses the Salinity concentration and the associated temperature to determine the density as kg/m³. The combined discharge temperature was calculated in Step 1 above.

The density change associated with Stage B from the Lake Illawarra input discharge was calculated according to the following formula:

Density Change = (Combined discharge density – Stage A density) ÷ Lake Illawarra density

	Lake Illawarra (Low Salinity)		Stage A Disc	ge A Discharge			Combined Discharge			
	Temp (deg C)	Salinity (ppt)	Density (kg/m³)	Discharge Salinity (ppt)	Temperature (deg C)	Density (kg/m³)	Discharge Salinity (ppt)	Combined Discharge Temperature (deg C)	Combined Density (kg/m ³)	Density Change
Equation Reference			*	Same as Lake (B)	From Step 1	*		Calculated in Step 1	*	
Design	20	10	1006.7	10	25.1	1005.5	10.07	25.2	1005.5	0.00%
Hot Day	28	10	1004.2	10	33.1	1002.5	10.09	33.0	1002.5	0.00%
Cold Day	8	10	1009	10	13.3	1008.2	10.06	13.4	1008.2	0.00%
-		•	•	•	Donker & Jirka (2 Salinity virtually	, .	•	d salinity. ill be virtually the s	ame	

	Lake Illawarra (High Salinity)		Stage A Disc	harge		Combined Discharge				
	Temperature (deg C)	Salinity (ppt)	Density (kg/m³)	Discharge Salinity (ppt)	Temperature (deg C)	Density (kg/m³)	Discharge Salinity (ppt)	Combined Discharge Temperature (deg C)	Density (kg/m³)	Density Change
Equation Reference			*	Same as Lake (B)	Calculated in Step 1	*		Calculated in Step 1	*	
Design	20	32	1021.4	32	25.1	1019.8	32.24	25.2	1020	0.02%
Hot Day	28	32	1018.8	32	33.1	1017	32.29	33.0	1017.2	0.02%
Cold Day	8	32	1023.7	32	13.3	1023	32.18	13.4	1023.1	0.01%
* Density calc	ulated using the de	ensity calcul	ation figure f	rom Donker &	Jirka (2007) using	temperatur	e and salinity.			

Density Calculation as a function of temperature and salinity (Donker & Jirka 2007)

Reference: Donker, R.L. and G.H. Jirka, "CORMIX User Manual: A Hydrodynamic Mixing Zone Model and Decision Support System for Pollutant Discharges into Surface Waters", EPA-823-K-07-001, Dec. 2007. Available for download at http://www.mixzon.com/downloads/

4. Calculation of Water Quality from the Combined Discharges of Stage A and Stage B

Mean water quality of Lake Illawarra (presented in the table below) was determined from the following available literature:

- Scanes, P., Coade, G., Doherty, M., & Hill, R., (2007) Evaluation of the utility of water quality based indicators of estuarine lagoon condition in NSW, Australia. *Estuarine, coastal and Shelf Science* 74: 306:319;
- Monitoring, Evaluation and Reporting (MER) data (Mean 2007 2008);
- EPA Unpublished Report South Coast Water Quality Report (Mean 1994 1996);
- EPA Unpublished Data (Summer 2003); and
- LIA (2006) Lake Illawarra Estuary Management Study and Strategic Plan. Prepared by WBM Oceanics Australia for Lake Illawarra Authority, Queensland

Parameter	Scanes et al. (2007) Mean Water Quality in Shallow Sub-Littoral Fringe 2002	Scanes et al. (2007) Mean WQ in Deep Mud Basin 2002	Scanes et al. (2007). Mean WQ between 1994 -1996	EPA Unpublished Data - Monitoring Evaluation and Reporting	EPA Unpublished Data -Scanes et al. (2007) Summer 2003	EPA Unpublished Data - EPA Unpublished South Coast Water Quality Monitoring Report	LIA (2006) Historic Mean Value
No _x (µg/L)	1.25	1	-	3	1	9	15
NH₃ Ammonia (µg/L)	6.88	-	-	13	7	9	
Total Nitrogen (µg/L)	470	420	340	302	470	340	300
FRP (Filterable Reactive Phosphorus) (µg/L)	2	-	-	32	2	-	5
Total Phosphorus (µg/L)	120	-	70	58	120	70	30
Salinity	34.7	-	26.1	-	-	-	25
Dissolved Oxygen (%sat)	98.85	97.35		-	-	-	-
Temperature (°C)	-	-	21.2	-	-	-	15-35
Turbidity (NTU)	7.05	7.6	5.1	-	-	-	5
Chlorophyll-a (µg/L)	6.96	15.24	6.3	-	-	-	5

Combined discharge water quality from Stage A and Stage B was calculated under the three alternative operating scenarios using the Concentration factor determined in Step 2 according to the following formula:

Combined Water Quality Parameter = (Concentration Factor x Mean Water Quality Parameter)

These concentrations were compared to the relevant ANZECC and LIA Management and Strategic Plan guidelines.

Parameter	Mean Water Quality	Combined Design Output	Combined Hot Day Output	Designed Cold Day Output	ANZECC (2000) Guidelines	LIA Estuary Management and Strategic Plan Guidelines (LIA 2006)
No _x (ug/L)	5.04	5.08	5.09	5.07	15	-
NH ₃ Ammonia (ug/L)	8.97	9.04	9.05	9.02	-	-
Total Nitrogen (ug/L)	377.43	380.21	380.89	379.59	300	500
FRP (Filterable Reactive Phosphorus) (ug/L)	10.25	16.62	16.62	16.62	5	20
Total Phosphorus (ug/L)	78.00	86.15	86.15	86.15	30	50
Salinity	28.60	28.81	28.86	28.76	20-30	-
Dissolved Oxygen (%sat)	98.10	98.82	99.00	98.66	-	-
Temperature (°C)	21.20	21.36	21.39	21.32	-	-
Turbidity	6.19	6.23	6.24	6.22	1–20	-
Chlorophyll-a (ug/L)	8.38	8.44	8.45	8.42	15	4

*Mean water quality data obtained from Scanes et al. (2007); DECC Unpublished Data & LIA (2006).

5. Calculation of Worst Case Peracetic Acid Concentration

The mixing chamber is 892.9m³, which enables it to contain 892900L when filled to capacity. Under all operating scenarios the flow rate of Tallawarra A is 1150L/sec. The flow rate from Tallawarra B depends upon the operating scenario, ranging from 168 L/sec to 271 L/sec. The time until the mixing chamber becomes full was calculated based on the combined flow rate per second at each operating scenario.

A total of 9mg/L of peracetic acid is to be dosed from Tallawarra B over a 15 minute interval, which equates to 0.01mg/L peracetic acid per second.

Operating Scenario	Stage A Flow rate L/s	Stage B Flow rate L/s	Combined Flow L/s (Stages A & B)	Mixing Chamber (892900 L) Full Capacity Rate	Total Peracetic Acid (mg) Per 892900L	Total Peracetic Acid (ug/L)
Design	11550	217	11767	75.8817 seconds	0.758817	0.000849
Hot Day	11550	271	11821	75.5351 seconds	0.755351	0.000845
Cold Day	11550	168	11718	76.1990 seconds	0.76199	0.000853

6. Calculation of Worst Case HEDP Concentration

The mixing chamber is 892.9m³, which enables it to contain 892900L when full. Under all operating scenarios the flow rate of Tallawarra A is 1150L/sec. The flow rate from Tallawarra B depends upon the operating scenario, ranging from 168 L/sec to 271 L/sec. The time until the mixing chamber becomes full was calculated based on the combined flow rate per second at each operating scenario.

HEDP is to be dosed at 1mg/L based upon the blow down rate of Tallawarra B under different operating scenarios.

	Flow Rate	Cycles of Concentration	Blow Down Rate	HEDP Concentration
	L/sec		L/sec	mg/sec
Design	217	1.4	155	155
Hot Day	271	1.4	193.5714	193
Cold Day	168	1.4	120	120

Blowdown rate = Flow rate \div cycles of concentration

Operating Scenario	Stage A Flow rate L/s	Stage B Flow rate L/s	Combined Flow L/s (Stages A & B)	Mixing Chamber (892900L) Full Capacity Rate	Total HEDP (mg) Per 892900L	Total HEDP (mg/L)
Design	11550	217	11767	75.8817 seconds	11761.6635	0.013
Hot Day	11550	271	11821	75.5351 seconds	14578.2743	0.016
Cold Day	11550	168	11718	76.1990 seconds	9143.88	0.010