Modification request report for an extension to blasting hours, airblast overpressure and vibration limits

Pacific Highway Upgrade - Tintenbar to Ewingsdale

Appendix 8 – Blasting Fact Sheet

RPT-ENV-004 Page 103 of 107

Fact sheet

MAY 2012

ST HELENA TUNNEL BLASTING WORKS

Roads and Maritime Services, has awarded a contract to Baulderstone Pty Ltd (Baulderstone) to design and construct the Pacific Highway upgrade — Tintenbar to Ewingsdale. This project is jointly funded by the NSW State and Federal Governments. The upgrade will provide approximately 16.3 kilometres of dual carriageway, starting at the northern end of the Ballina bypass at Ross Lane and extending to the Ewingsdale interchange. It is anticipated that substantial construction will commence in mid 2012.

The alignment of the upgrade has been designed to avoid the steep grades of St Helena hill. To achieve this, a tunnel will be constructed through St Helena hill which will also remove the dangerous accident black spot at the top of the hill.

St Helena tunnel features and benefits

- The tunnel is 434 metres in length.
- Two side by side tunnels will be built, each being 19 metres wide with a 10 metre wide rock pillar separating the two tunnels.
- The tunnel is approximately 46 metres below the ridge line.

Background

Controlled tunnel blasting will be required to break up approximately 155,000m³ of high strength basalt rock during construction of the northbound and southbound tunnels through St Helena hill. It is anticipated that controlled blasting in the tunnel is expected to be carried out up to six times per day. Each blast event in the tunnel is expected to take approximately 10 seconds to complete, with the instantaneous blasts in the separate tunnels initiated within a few seconds of each other.

Controlled open cut blasting will also be required to break up the rock at the tunnel portals (entrances) and the tunnel control centre on top of St Helena hill. The type of controlled tunnel blasting inside the tunnel will differ from controlled 'open cut' blasting that will be undertaken at the tunnel portals and tunnel control centre.

What is controlled tunnel blasting?

Controlled tunnel blasting is a process used in the excavation of tunnels using explosives to break up material in a highly controlled manner that is unable to be practically broken up by traditional mechanical methods. Controlled blasting involves drilling a series of production holes (approximately 45mm in diameter) in a predetermined pattern in the tunnel face.

For each blast there may be in excess of 100 holes drilled. To assist the blast and reduce ground vibration, a number of larger diameter holes known as relief holes are drilled to create a weak zone in the rock face. The blasting holes are then loaded with explosives and set off in a predetermined pattern to break the rock. The blasted material is 'mucked out' from the face by specialised underground loaders and trucks.

What is controlled open cut blasting?

Controlled open cut blasting will be used to excavate the tunnel portals and tunnel control centre with explosives where traditional mechanical methods such as rock hammers are not feasible due to the strength of the rock, the volume of material to be removed and the significant associated noise and vibration impacts to nearby residents. The broken rock will then be excavated and taken away by earthworks equipment.

Why is controlled blasting required?

The St Helena tunnel will connect Ewingsdale to the Tinderbox Valley. Geotechnical investigation and testing has determined that the rock, which is

Pacific Highway upgrade – Tintenbar to Ewingsdale

Reply paid 85913

PO Box 624, BANGALOW NSW 2479

www.rms.nsw.gov.au/pacific

E communityinfo@t2e.com.au T 1800 882 787

This project is funded by the NSW State and Federal Governments.

'basalt', in the tunnel is of a very high strength. Due to this very high strength rock, it is not suited to mechanical excavation techniques such as roadheaders and will require the use of controlled tunnel blasting to excavate.

When is controlled blasting likely to start?

It is anticipated that controlled open cut blasting at the tunnel portals and the tunnel control centre will start in the second half of 2012, and controlled tunnel blasting will start in late 2012.

How often will controlled tunnel blasting occur?

It is anticipated that there will be a morning and an afternoon blast cycle each day in the St Helena tunnel (up to three blasts in each of the two tunnels per day). This activity will take place over a 12 month period, however, the time taken to complete the tunnel will be largely determined by the geology, strength and condition of the rock that is encountered.

How often will controlled open cut blasting occur?

The controlled blasting at the tunnel portals and the tunnel control centre will involve a maximum of one blast per day, although blasts will not be occurring on a daily basis. Controlled blasting at the tunnel portals will take approximately three months and controlled blasting at the tunnel control centre will take approximately 4-6 weeks to complete.

What time will controlled tunnel blasting occur?

Blasting inside the tunnel would occur sometime between 7am and 6pm each day (pending approval of the extension of blasting hours for the tunnel). It is anticipated that there will be one blast period in the morning and a second blast period in the afternoon. Controlled blasting will not take place on Saturdays after 1pm, on Sundays or on public holidays.

What time will controlled open cut blasting occur?

Controlled blasting for the tunnel portals and tunnel control centre will only occur between 9am and 5pm. Controlled blasting will not take place on Saturdays after 1pm or, Sundays or on public holidays.

What are the potential impacts of controlled blasting?

Both open cut and tunnel controlled blasting have a number of potential issues which need to be managed, including:

 Ground vibration i.e. shaking of the ground and objects sitting on it (e.g. structures and buildings).

- Air blast overpressure or noise.
- Dust.
- Scattering of 'fly rock'.

These impacts will be carefully managed by the project team to avoid and or minimise any potential impacts on local residents, and/or motorists. The proposed increased limits would still ensure the comfort and safety of residents during each The blasting limits would be controlled blast. below the level at which any cosmetic damage to structures, such a minor paint cracking, may The vibration from controlled blasts is occur. expected to be very minor beyond the immediate vicinity of the blast zone. Monitoring will be carried out to record noise and vibration for each controlled blast. All blasts will be designed and controlled to ensure that the nominated vibration limits are not exceeded at the nearest sensitive receiver (nearby residents).

There will be minimal dust and no fly rock beyond the immediate vicinity of the blasts at the tunnel, tunnel portals and tunnel control centre.

How do we manage the impacts of controlled blasting?

Significant blast design and modelling work considering the geology of the area, the location and condition of sensitive receivers and vibration and air blast overpressure limits is undertaken. In addition, the project team will prepare a project specific Blast Management Plan and associated work method statements.

Vibration is controlled by adjusting the size and timing of the maximum instantaneous charge (MIC), which is the amount of explosive detonated at any particular instant. The size of the MIC is adjusted so that the limits for ground vibration and air blast overpressure for each sensitive receiver are not exceeded. The size of the MIC is managed by using delays on the detonators so that the controlled blast is set off in a predetermined sequence and by reducing or extending the length of each controlled blast.

The data recovered from the monitoring of each controlled blast, incluiding an initial trial blast, is compared to the predicted effects, to enable the project team to further refine and optimise each blast design.

Noise monitoring will be undertaken initially at the start of any controlled blasting (i.e., at the tunnel portals, in the tunnel and at the tunnel control centre) and subsequently on a monthly basis or more frequent as may be required to ensure compliance with approved limits and the various management plans for the project, or in response to community complaints. Monitoring to record vibration levels and airblast overpressure will be carried out for each controlled blast. Flashing warning lights attached to vibration monitors, triggered by vibrations in excess of the component Peak Particle Velocity limit for the relevant building type will provide a "real time" visual warning of vibration exceedances. This information will be regularly uploaded to the project website.

Where there is the potential for fly rock, 'blast mats' (made of thick shock absorbing rubber) may be used or alternatively the overburden earth material may be kept in place.

What are the vibration and airblast overpressure limits for controlled blasting?

The current approved controlled blasting vibration limits for the tunnel, tunnel portals and tunnel control centre is set at 5 mm/s and 115 dB (Lin Peak) for airblast overpressure and are not to be exceeded for 95% of the controlled blasts.

The project team is currently proposing to increase the vibration limit to 15mm/s and the airblast overpressure limit to 125 dB (Lin Peak) for 95% of the controlled blasts. Increasing the limits will minimise the overall number of blasts, blasting program duration and the extent of rock hammering works in the St Helena Road area. These proposed changes to the vibration and airblast overpressure limits are currently being discussed in consultation with affected residents and require Department of Planning and Infrastructure approval.

What are the blasting mitigation measures?

Affected residents will be informed prior to any controlled blast. Public safety and government guidelines require that all people, vehicles and livestock are a safe distance away from the blast zone. To ensure people are at a safe distance from each blast, mitigation measures may include: -

- Temporary closure of access locations to local roads, and property accesses (residents will be notified in advance).
- Stopping of traffic on St Helena Road for up to 10 minutes and 'rolling stoppages' on the Pacific

Highway. These measures will be coordinated to ensure that they have minimal impact on the local community. Provision will be made to ensure that emergency access is maintained during any road closures.

 For safety reasons, some residents within close proximity to controlled blasts may be asked to remain indoors or be temporarily relocated during controlled blasting (open cut blasting only). The community relations team will be in contact with affected residents in advance.

These mitigation measures relate to the controlled open cut blasting only. The controlled tunnel blasting is contained within the tunnel and, as such, it is not envisaged that any specific mitigation measures will be required.

What about the safety of animals and pets during open cut blasting?

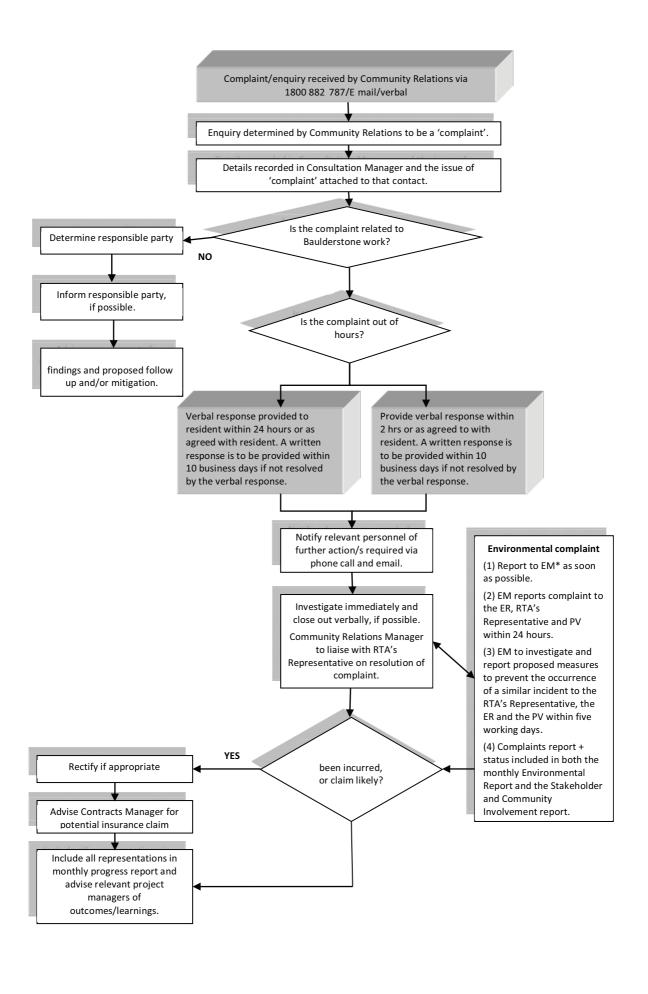
It is advisable to keep smaller pets inside during blasting for their safety and wellbeing. Animals in paddocks should be checked before and after controlled blasting. The community relations team will provide specific timing details to those residents with nearby animals in paddocks on an individual basis.

What should I do if I have valuables and antiques in my house?

Whilst there should be no discernable impact for most residents from the blasting operations, it may be advisable, as a precautionary measure, to remove any valuables and antiques from shelves or walls during the controlled blasting works. The project team will be available to inspect individual properties and provide additional guidance on this matter on a case by case basis.

What should I do if I think my house has been damaged?

In the unlikely event that any damage is sustained to your property during the blasting process please Community Relations the immediately on 1800 882 787 (free call). The project team will organise to have the damage inspected and will monitor your dwelling during future blasts to determine if the controlled blasting has caused the damage. Any damage sustained as a result of the controlled blasting works will be rectified.

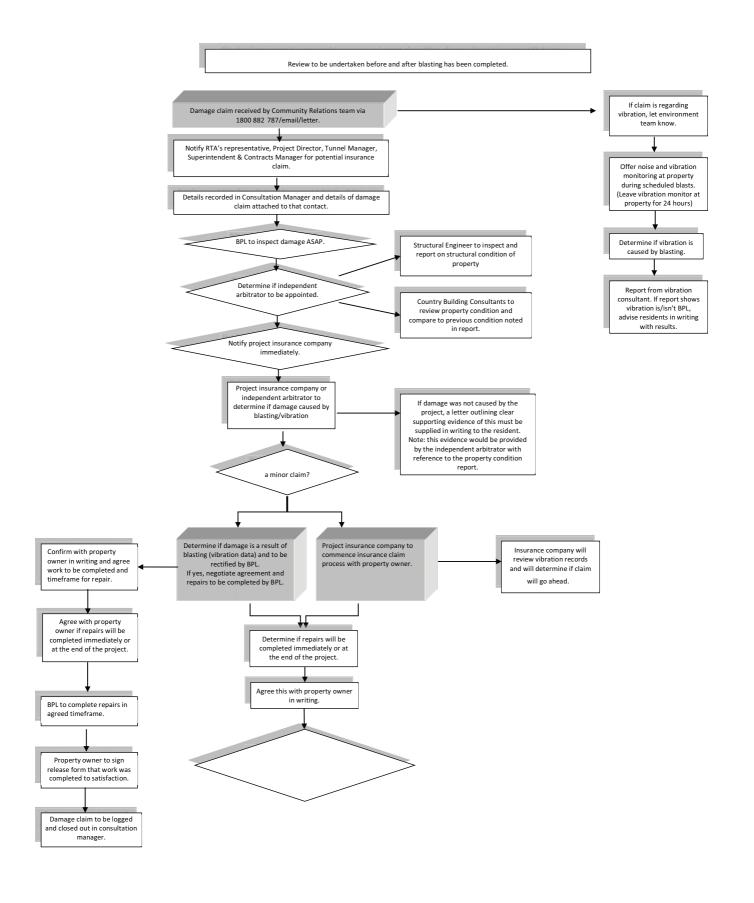

Modification request report for an extension to blasting hours, airblast overpressure and vibration limits

Pacific Highway Upgrade - Tintenbar to Ewingsdale

Appendix 9 – Complaints Management Procedure

RPT-ENV-004 Page 104 of 107

Modification request report for an extension to blasting hours, airblast overpressure and vibration limits


Pacific Highway Upgrade - Tintenbar to Ewingsdale

Appendix 10 – Damage Claim Procedure

RPT-ENV-004 Page 105 of 107

DAMAGE CLAIM PROCEDURE - RESIDENTS WITHIN 500M OF ST HELENA TUNNEL

If there is a dispute, provide reports (vibration and structural) to independent arbitrator.

Modification request report for an extension to blasting hours, airblast overpressure and vibration limits

Pacific Highway Upgrade - Tintenbar to Ewingsdale

Appendix 11 – Tunnelling Diagram

RPT-ENV-004 Page 106 of 107

Installing rock bolts to provide roof support

Additional roof support - shotcrete

Optimised 24 Hour Schedule

(5)

Drilling blast holes

Mucking out spoil

Loading explosives into drill holes

Modification request report for an extension to blasting hours, airblast overpressure and vibration limits

Pacific Highway Upgrade - Tintenbar to Ewingsdale

Appendix 12 – Trial Blast Report

RPT-ENV-004 Page 107 of 107

TRIAL BLAST REPORT

Pacific Highway Upgrade Tintenbar to Ewingsdale

Client: Roads and Maritime Services (RMS)

Document Number: RPT-ENV-006 Rev 0

Ŋ	Prepared by: Shashi Ranggaraja Project Engineer			30/10/2019
APPROVALS	Reviewed by: Mark Dowell Project Manager	M.R.Don	fen 1	30/10/12
	Approved by: Dave Packer Construction Manager	kn	DiPacher	31/10/2

Pacific Highway Upgrade - Tintenbar to Ewingsdale

Table of Contents

RIAL BLAST	3
.1.1 Introduction	
DBJECTIVE OF TRIAL BLAST	3
ONTROLLING CRITERIA	3
RIAL RESULTS	4
RIAL BLAST 1	4
RIAL BLAST 2	5
RIAL BLAST 3	5
RIAL BLAST 4	6
UMMARY OF RESULTS	

Attached Document

Appendix 1 – Blast Timetable /Countdown Procedure/Blast Gua	uard L	_ocations
---	--------	-----------

Appendix 2 – Blast Parameters and vibration Records for Test 1. Appendix 3 – Blast Parameters and vibration Records for Test 2.

Appendix 4 – Blast Parameters and vibration Records for Test 3.

Appendix 5 – Blast Parameters and vibration Records for Test 4.

Appendix 6 – Monitor Distances to Houses (Additional input). Appendix 7 – John Heilig Review

Pacific Highway Upgrade - Tintenbar to Ewingsdale

TRIAL BLAST

1.1.1 INTRODUCTION

This report collects the data recorded at the Southern Portal Trial Blast completed on Friday the 19th October 2003.

The trial blast is required to;

- Satisfy and release the hold point nominated by G36 "Results of vibration trial, dominant frequencies
 of vibration, upper limit "component" peak particle velocities and derived safe operating distances
 for each item of major plant."; and
- 2. Enable Baulderstone blast to better determine the site characteristics in the area of the blast and for the future activities of the open cut excavation and the tunnel excavation located nearby and within the similar geological setting.

The trial blast was completed in accordance with Australian Standard 2198.2-2006 – *Explosives – Storage and Use, Part 2: Use of Explosives* (AS2187.2-2006) and as set out in CWMS-TPW-003 TRIAL BLAST.

The trial blast required a number of small blasts to be initiated with the resulting vibration to be monitored at various know locations, the recovered data is then analysed to and compared to the initial assumptions made.

AS 2187.2 – 2006 part J7.3- Ground Vibration provides an estimate of expected vibration levels in "average conditions" using the site constant values for K_g and B in the formula

 $V=K_g (R/Q^{1/2})^{-B}$

Where

V = ground vibration as a vector peak particle velocity in millimetres per second

R = distance between charge and point of measurement in metres

Q= maximum instantaneous charge in Kilograms

 K_{g} , B= constants related to site and rock properties for estimation purposes.

OBJECTIVE OF TRIAL BLAST

- To release the G36 Hold Point;
- To establish a procedure for monitoring ground vibration;
- To determine the influence of blast design parameters on ground vibration;
- To establish site law correlations as per RTA D&C G36 CL6.8

CONTROLLING CRITERIA

Drill and blast works on this project will be Limited by the requirements of the Ministers Conditions of Approval.

Ministers Conditions of Approval requirements

The Proponent shall ensure that air blast overpressure generated by blasting associated with the Project does not exceed the criteria specified in Table A when measured at the most affected residence or other sensitive receiver.

RPT-ENV-006 Rev 0 Page 3 of 6

Pacific Highway Upgrade - Tintenbar to Ewingsdale

Table A - Air blast Overpressure Criteria						
Air blast Overpressure (dB(Lin Peak))	Allowable Exceedance					
115	5% of total number of blasts over a 12 month period					
120	Never					

The Proponent shall ensure that ground vibration generated by blasting associated with project does not exceed the criteria specified in Table B when measured at the most affected residence or other sensitive receiver.

Table B - Peak Particle Velocity Criteria					
Peak Particle Velocity (mms ⁻¹)	Allowable Exceedance				
5	5% of total number of blasts over a 12 month period				
10	Never				

The trial blasting works was conducted in accordance with these conditions.

TRIAL RESULTS

TRIAL BLAST 1

Target vibration at the nearest sensitive receiver, V= 3.93 mms^{-1} Distance to the nearest sensitive receiver, R=135 m Charge weight, Q=2.4 kg Site constants (assumed), K=5000, B=-1.6

Property owners							
Monitor Type	Instantel	Instantel	Instantel	Orica	Instantel	Orica	Instantel
Distance m - Blast to monitor	185	173	143	135	135	145	161
Predicted PPV mms ¹	2.38	2.64	3.59	3.93	3.93	3.51	2.97
Actual Reading Peak Particle velocity mms ¹ (Tran)	DNT*	DNT*	DNT*	1.00	DNT*	1.05	1.11
Actual Reading Peak Particle velocity mms ¹ (Vert)	DNT*	DNT*	DNT*	0.50	DNT*	0.65	0.41
Actual Reading Peak Particle velocity mms ¹ (Long)	DNT*	DNT*	DNT*	0.75	DNT*	0.60	1.05
Vector sum PPV mms ¹				1.05		1.05	1.38
Decibel (db)	0.00	0.00	0.00	94.50	0.00	99.50	98.80

^{*}Did not trigger

RPT-ENV-006 Rev 0 Page 4 of 6

Pacific Highway Upgrade - Tintenbar to Ewingsdale

TRIAL BLAST 2

Target vibration at the nearest sensitive receiver, V=3.33 mms⁻¹
Distance to the nearest sensitive receiver, R=122m
Charge weight, Q= 2.4kg
Site constants (assumed), K=3600, B= -1.6

Property owners							
Monitor Type	Instantel	Instantel	Instantel	Orica	Instantel	Orica	Instantel
Distance m - Blast to monitor	165	154	127	122	122	157	179
Predicted PPV mms ¹	2.05	2.29	3.12	3.33	3.33	2.22	1.80
Actual Reading Peak Particle velocity mms ¹ (Tran)	DNT*	DNT*	0.43	0.80	DNT*	0.75	DNT*
Actual Reading Peak Particle velocity mms ¹ (Vert)	DNT*	DNT*	0.46	0.40	DNT*	0.55	DNT*
Actual Reading Peak Particle velocity mms ¹ (Long)	DNT*	DNT*	1.10	0.50	DNT*	0.55	DNT*
Vector sum PPV mms ¹			1.13	0.78		0.91	
Decibel (db)	0.00	0.00	100.00	97.00	0.00	101.00	0.00

^{*}Did not trigger

TRIAL BLAST 3

Based on above value, the predicted PPV and actual reading for each monitors are as below.

Target vibration at the nearest sensitive receiver, V= 3.93 mms^{-1} Distance to the nearest sensitive receiver, R=121 m Charge weight, Q=4.8 kg Site constants (assumed), K=2800, B=-1.6

Property owners							
Monitor Type	Instantel	Instantel	Instantel	Orica	Instantel	Orica	Instantel
Distance m - Blast to monitor	181	168	133	121	121	131	153
Predicted PPV mms ¹	2.40	2.70	3.93	4.57	4.57	4.02	3.14
Actual Reading Peak Particle velocity mms ¹ (Tran)	1.41	1.37	0.87	1.60	1.65	1.70	3.05
Actual Reading Peak Particle velocity mms ¹ (Vert)	0.62	0.64	1.21	1.15	0.87	1.25	1.06
Actual Reading Peak Particle velocity mms ¹ (Long)	1.25	1.38	1.54	1.40	2.02	1.30	3.33
Vector sum PPV mms ¹	1.60	1.68	1.76	1.94	2.03	1.84	4.54
Decibel (db)	101.00	100.00	102.80	107.00	106.00	107.00	106.50

^{*}Did not trigger

RPT-ENV-006 Rev 0 Page 5 of 6

Pacific Highway Upgrade - Tintenbar to Ewingsdale

TRIAL BLAST 4

Target vibration at the nearest sensitive receiver, V= 5.02 mms^{-1} Distance to the nearest sensitive receiver, R=114 m Charge weight, Q=4.8 kg Site constants (assumed), K=2800, B=-1.6 Distance from monitor to house is 13 M where the predicted V= 4.23 mms^{-1}

Property owners							
Monitor Type	Instantel	Instantel	Instantel	Orica	Instantel	Orica	Instantel
Distance m - Blast to monitor	168	156	122	114	114	141	167
Predicted PPV mms ¹	2.70	3.04	4.51	5.02	5.02	3.58	2.73
Actual Reading Peak Particle velocity mms ¹ (Tran)	1.02	1.08	1.11	2.15	1.52	1.55	2.06
Actual Reading Peak Particle velocity mms ¹ (Vert)	0.54	0.65	1.16	1.05	0.87	1.05	0.91
Actual Reading Peak Particle velocity mms ¹ (Long)	0.94	1.32	2.40	1.15	1.16	1.40	2.81
Vector sum PPV mms ¹	1.33	1.66	2.74	2.37	1.96	1.64	3.24
_Decibel (db)	95.90	97.50	109.50	98.00	104.90	100.00	101.00

^{*}Did not trigger

SUMMARY OF RESULTS

The dominant frequencies of vibration; was found to be is 30 hz.

The maximum upper limit "component" peak particle velocities; were found to be 3.33 mms⁻¹ during blast 3 at the monitor.

The derived safe operating distances for each item of major plant; this is not required as the G36 specification is referring to mobile plant however in this instance the causal variable is the charge weight rather than the distance of a particular machinery.

DISCUSSION OF RESULTS

The charges used provided vibration that was generally lower than what was expected.

The monitors were installed in accordance with AS 2187.2 part J3.2.2 and as such were closer to the blast site than the sensitive receiver; they are likely to experience a higher vibration and air blast over pressure peak than the sensitive receiver.

The monitor at the farm measured the highest peak particle velocities for 3 of the 4 trials even though this monitor was further away than other monitors that measured lower values of vibration.

CONCLUSIONS AND RECOMMENDATIONS

The Trial has been completed in accordance with G36 and consequently the Hold Point is to be released

The procedure to monitor ground vibration and air blast proved successful.

The results from the trial provide confirmation that the preliminary modelling (with a K_g of 3090 and B of 1.60) is suitable to be used in the near future, once further data is recovered BPL the site constants may be modified.

If possible a further monitoring site should be located closer to the blast site (around 50m) to provide a better spread of results.

RPT-ENV-006 Rev 0 Page 6 of 6

APPENDIX 1 - BLAST TIMETABLE / COUNT DOWN PROCEDURE & BLAST GUARDS AND TRAFFIC CONTROLLER LOCATIONS

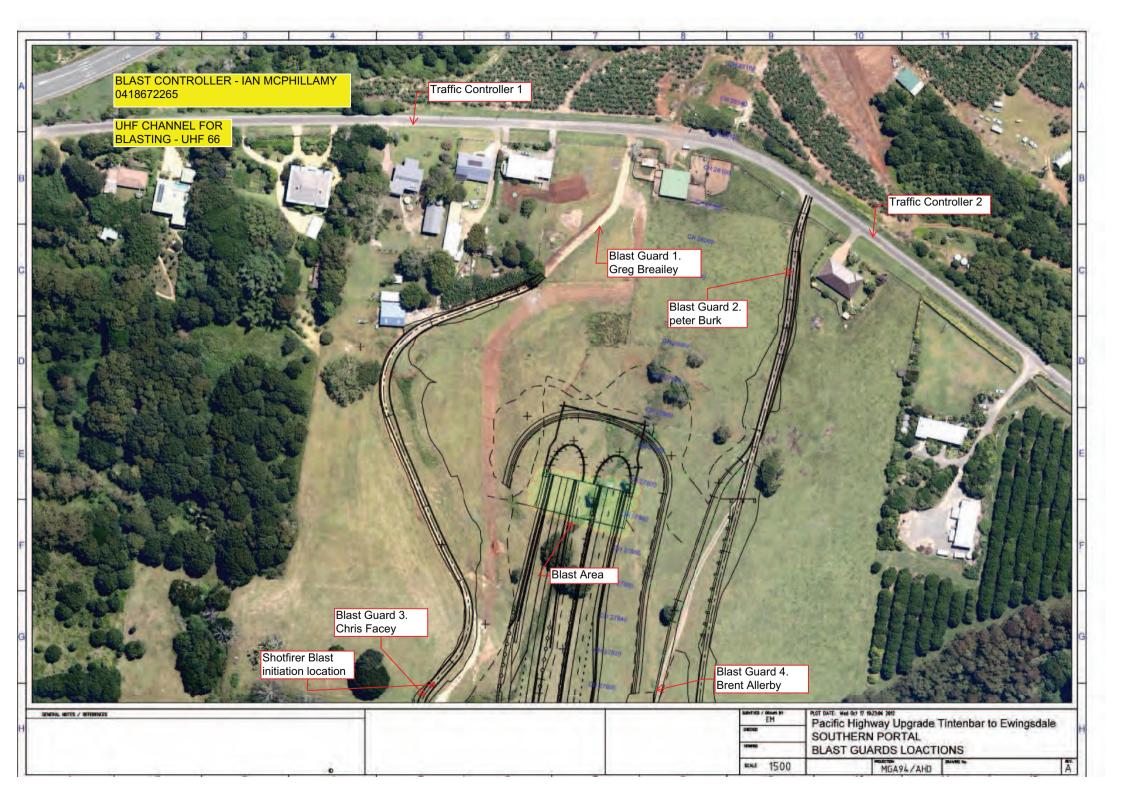
Location of Blast: (Southern Portal) St.Helena Tunnel

Blast date: 19/10/12

Blast Controller - Ian McPhillamy (Goldie)

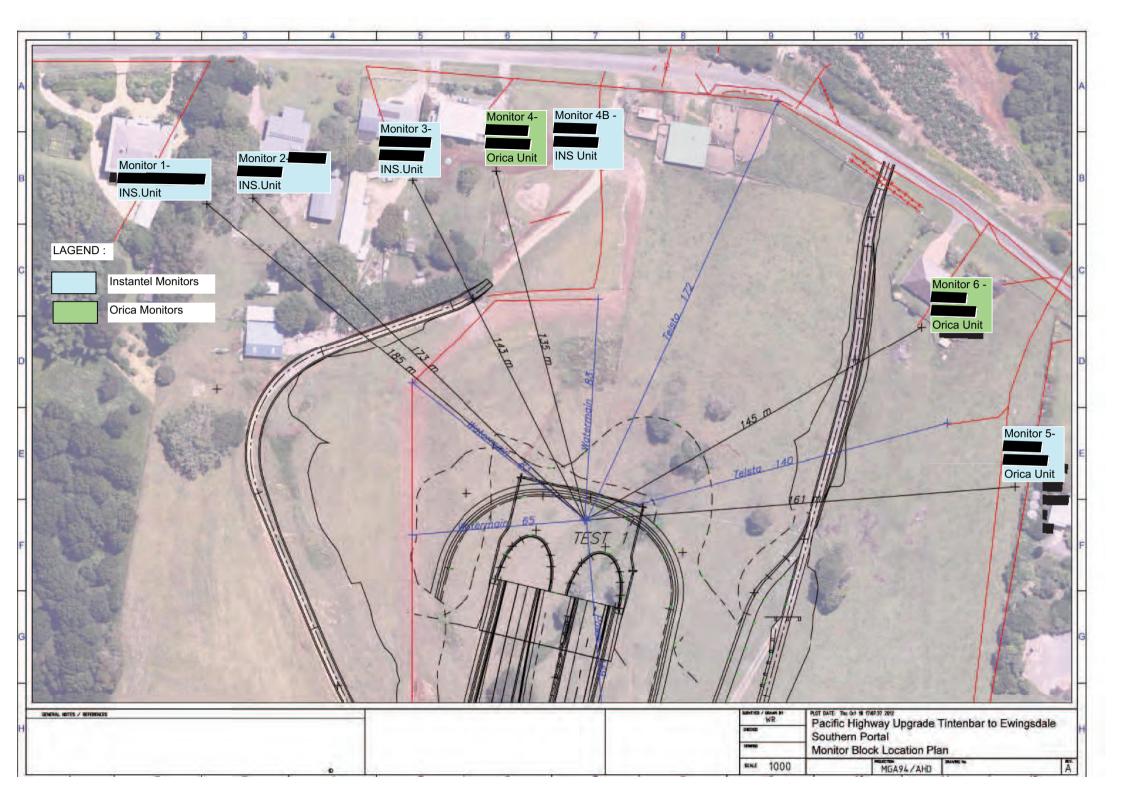
0418672265

1	_	_			
	From	То	Mins 120 min	Description 1.Inform vibration monitoring technician / site eng. To setup monitoring unit in sensitive receiver areas.	Responsibility Completed BK /SKR/Super
				Prestart Run Blast countdown procedure to blast guards.	BK /SKR/Super
				A.) Weather check specifically wind direction and strength.	BK /SKR/Super
			30 mins	B.)Blast guards at compound for sign on and briefing.	All guards
				C.)Blast Guards dispatched to their locations.	All guards
				D.) Complete parking up gear and clear area . E.)Confirm all blast monitors active	F/man & Super BK /SKR/Super
		unt down -22 min		1.Contact Blast controller / blast guard to ensure that blast	
	Res	start point		may proceed as planned. 2.Blast controller / blast guard to give feedback to shotfirer to Confirm construction & blast area is "ALL CLEAR". Blast guards can call at any time to stop blast operation by clearly stating "Abort Blast" "Abort Blast" the	BK/ SKR/ Shot firer All blast guards/Super
			15 mins	blast operation if any issue arises. The shot firer will stop all activities and will hand over the site to blast guards. Once the issues are resolved, shotfirer will start countdown from -22 min stage. 3. Any issue raised will be investigated and will be assessed immediately whether to proceed, postpone or to abort the	Super/gen.Super/
				blast operation.	Project Manager/Area Manager.
2 & 3				Confirm "all clear" from blast guards to shotfirer 1. Ensure all plant,personnel are in safe zone.Inclusive areas	All blast guards
1,		unt down -7 min start point		along alignment and neighbouring areas. All local roads to be blocked if necessary.	All blast guards
TRIAL BLAST				Blast guard to hand over site to shotfirer to make final connection to fire the shot.	All blast guards
TRI/			5 mins	A.) Confirm to Donnelly Drill and Blast to make final tie up and run out leads	Blast Controller
				B.) Donnelly's to confirm all Det's are ready to go. C.) TC to stop traffic on local roads (st.Helena) confirm st.helena haul roads are clear.	Shot Firer TC & Super
				D.) Shot firer to Announce "Blast in Southern portal in 2 mins"	Shot Firer
			1 Mins	Count Down with siren 1st Siren Blow	shotfirer
			30 secs	Count Down with siren 2nd Siren Blow Shot firer to Announce " Blast in Southern portal in 30 secs "	shotfirer
				Step 1 verbal countdown 10 to 6 seconds. Step 2 Radio silence until shot firer detonates the blast.	
			soas 0E	2.During final countdown,Blast guards can call at any time to stop blast operation by clearly stating "Abort Blast" "Abort Blast" the blast operation if any issue arises.The shot firer will stop all activities and will hand over the site to blast guards.Once the issues are resolved, shotfirer will start countdown from -7 min stage.	Shot Firer / Blast Guards
			0:00	FIRE SHOT	
				After the blast when the explosive gasess dissipate, "All CLEAR GO" signal will be given to the blast guards. Traffic control and blast guard to confirm local roads/properties are clear of debris.	Shot Firer TC & Blast guards
			30 Mins	Blast guard will confirm their area is safe and will open for normal activities. Donnelly to advise T2E that shot is clear and hand site	Shot Firer
				back to Blast Controller or Area Superintendant. b.) Release local roads and movement on properties c.) Blast guards to return to yard and blast debrief as	BK/ SKR/ Shot firer TC All Guards All Guards
			hours	required.	Blast Controller


Blast guard Locations	Blast Guards Name	Contact No.
1	Greg Brearley	0407033633
2	Peter Burk	0404812210
3	Chris Facey	0400720461
4	Brent Allerby	0419700725
5	Traffic controller 1	
6	Traffic controller 2	

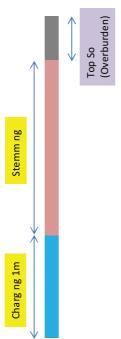
Project form contact details - Other Emergency Provoned						
Em trion / No r	Rure	Photoe				
General Superintendent	lan Shilling	0439 074 634				
Construction Manager	Dave Packer	0418 281 532				
Project Manager	Mark Dowel	0404 812 134				
Safety Manager	Derek Billing	0420 301 356				
Road Works Area Manager	Brendon Kirkwood	457883189				
Senior Project Engineer	lan Webb	0403 611 756				
Project Engineer	Shashi Ranggaraja	0408 510 951				
Tunnel Superintendent	lan McPhillamy	0418 672 265				
Tunnel Superintendent	Peter Burk	0404 812 210				
Environmental Manager	Chris McCallum	0408 264 164				
RTA's Representative	Peter Borelli	0407 254 363				
RTA's Representative	Tobias Jones	423773183				
RMS' Environmental Officer	Claire Everett	0428 288 525				
Environmental Representative	Bill Gardyne	0414 936 639				
Manager Roads and Infrastructure Projects	Michael Young	(02) 9228 6437				
Community Relations Manager	Susan Scott	0427 758 719				

Allocated blast Visitor's name


Nos.	Name	Contact
1		
2		
3		
4		
5		
6		
7		

COMMENTS FROM PRE-START

APPENDIX 2 - TRIAL BLAST 1 RECORDS


TRIAL BLAST - TEST 1

Trial Blast operation St. Helena tunnel

Project : T2E Baulderstone

Date: 19/10/2012

Drill Log-Trial Blast 1

Hole No.1

18/10/2012 **Drill date Drill Operator Dan Donnelly Top Elevation** 102.607 **Total Depth** 4.5 m **Top soil Depth** 0.5m **Rock Depth** 4 m Hole size 76 mm Charging kg 2.4 kg Stemming Length 3.4 m

<u>Date: 19/10/12</u> <u>Location:</u> <u>St. Helena tunnel Portal</u> <u>Scope of work : Defining K value</u>

Day: Friday Subject : Trial Blast 1

From Trial Blast 1

Distance	Vibration Monitors	185 M
Distance	Vibration Monitors	173 M
Distance	Vibration Monitors	143 M
Distance	Vibration Monitors	135 M

		From Trial Blast 1
Distance	Vibration Monitors	135 M
Distance	Vibration Monitors	145 M
Distance	Vibration Monitors	161 M

BLAST PATTERN referances	
Blast parameters :-Trial Blast 1	
Time Of Blast	10:37
Decks per Hole	1
Rock density (tne/m^3)	2.98
Total Charge Wt/Hole kg	2.4
Total Charge Wt kg	2.4
Total Hole	1
Powder Factor (kg/m³)	0.00
KG/DECK	2.4
Hole Diameter (M)	0.076
Hole Angle (deg)	0
Hole Total depth (M)	4.5

Top soil overburden	0.5
Depth in Rock	4
Stemming in rock (M)	3.4
Sub drill (M)	0
Burden (M)	0
Spacing (M)	0
Bottom charge height (mm)	0.00
Intermediate charge height (m)	0.00
Yield/ blasthole M³	
Burden stiffness ratio (> 3.5 good frag)	
K Value used	

Trial Blast 1 - Vibration Monitors reading

_								
	Trial Blast 1 Vibration Data							
Property owners								
Monitor Type	Instantel	Instantel	Instantel	Orica	Instantel	Orica	Instantel	
Distance From Trial Blast 1	185 M	173 M	143 M	135 M	135 M	145 M	161 M	
Data Tran	0.00 mm/s	0.00 mm/s	0.00 mm/s	1.00 mm/s	0.00 mm/s	1.05 mm/s	1.11 mm/s	
Data Vert	0.00 mm/s	0.00 mm/s	0.00 mm/s	0.50 mm/s	0.00 mm/s	0.65 mm/s	0.41 mm/s	
Data Long	0.00 mm/s	0.00 mm/s	0.00 mm/s	0.75 mm/s	0.00 mm/s	0.60 mm/s	1.05 mm/s	
VPPV				1.05 mm/s		1.05 mm/s	1.38 mm/s	
Decibel (db)	0.00	0.00	0.00	94.50	0.00	99.50	98.80	
Highest Peak Chosen	0.00 mm/s	0.00 mm/s	0.00 mm/s	1.00 mm/s	0.00 mm/s	1.05 mm/s	1.11 mm/s	
Q^1/2	1.55	1.55	1.55	1.55	1.55	1.55	1.55	
Value K based on Higest PPV	0	0	0	1272	0	1497	1871	

Trial Blast 1 Highest K value 1871

Event Report

Tran at 10:37:00 October 19, 2012 Date/Time

Trigger Source Geo: 1.00 mm/s Range Geo: 31.7 mm/s 5.0 sec at 2048 sps **Record Time**

Job Number:

Notes

Location: Location 5, Tintenbar to Ewingsdale Client: User Name: Brendon Kirkwood

General: Trial Blast

Extended Notes

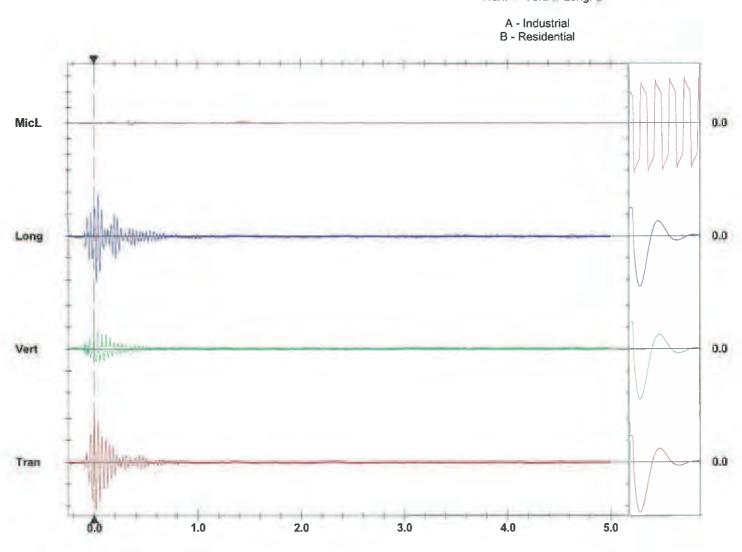
Trial blast at St Helena, South Portal.

Microphone Linear Weighting 98.8 dB(L) at 0.332 sec PSPL

ZC Freq 45 Hz

Channel Test Passed (Freq = 19.7 Hz Amp = 526 mv)

	Tran	Vert	Long	
PPV	1.11	0.413	1.05	mm/s
PPV	51.9	43.3	51.4	dB
ZC Freq	27	33	30	Hz
Time (Rel. to Trig)	0.020	0.038	0.024	sec
Peak Acceleration	0.0331	0.0166	0.0265	g
Peak Displacement	0.00638	0.00221	0.00535	mm
Sensor Check	Passed	Passed	Passed	
Frequency	7.4	7.6	7.8	Hz
Overswing Ratio	3.8	3.5	3.4	


Serial Number BE18978 V 10.40-1.1 Minimate Blaster **Battery Level**

6.4 Volts

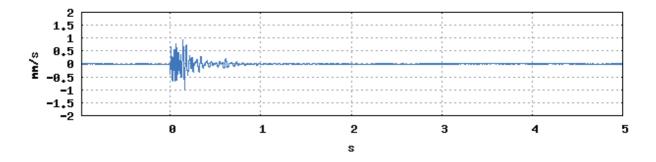
Unit Calibration September 28, 2012 by Instantel

File Name T978EIAO.500

Time Scale: 0.20 sec/div Amplitude Scale: Geo: 0.500 mm/s/div Mic: 10.00 pa.(L)/div Trigger = ▶

Sensor Check

Wave Form Page 1 of 2


Wave Form

				Print
Measurement Point	AIR001	GEO001	GE0001	GEO001
lacement				
xis	Air shock	Vertical	Longitudinal	Transversal
ound				
me	19/10/2012 09:37:03	19/10/2012 09:37:03	19/10/2012 09:37:03	19/10/2012 09:37:03
alue	99.5 dBL	0.65 mm/s	0.60 mm/s	1.05 mm/s
	1.89 Pa	0.19 m/s2	0.16 m/s2	0.36 m/s2
	0.03 Pas	4.60 um	4.58 um	5.30 um
	27.1 Hz	42.8 Hz	26.8 Hz	29.0 Hz
isplay Format	Picture Create			
		AIR001 Air shock		
1.5				
1 }				
0.5	A Maria Maria		and the second second second	A STATE OF THE REAL PROPERTY.
e 0 -0.5		A STATE OF THE PARTY OF THE PARTY.		
-1 }				
-1.5				
-2	9	1 2	3	4
	Ü		ū	7
	ů	S GEO001 Vertical	ū	•
1		s		-
		s		7
0.5		s		
0.5		s		
0.5 × 0		s		7
0.5 % 0 -0.5	of property and a second	s		7
0.5 × 0	of hoppings and a	S GEO001 Vertical		4
0.5 % 0 -0.5	8	GEO001 Vertical	3	4
0.5 % 0 -0.5	of hoppings and a	S GEO001 Vertical	3	4
0.5 ····································	of hoppings and a	S GEO001 Vertical	3	4
0.5 % 0 -0.5 -1	of hoppings and a	S GEO001 Vertical	3	4
0.5 -0.5 -1	of hoppings and a	S GEO001 Vertical	3	4
0.5 W 0 -0.5 -1	of hoppings and a	S GEO001 Vertical	3	4
0.5 -0.5 -1	of hoppings and a	S GEO001 Vertical	3	4
0.5 -0.5 -1 1 0.5 -1	of hoppings and a	S GEO001 Vertical	3	4
0.5 -0.5 -1	of hoppings and a	S GEO001 Vertical	3	4

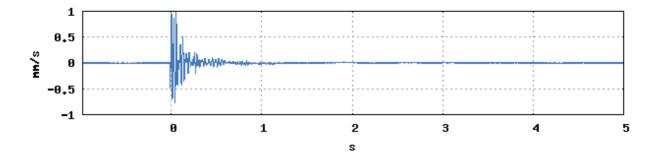
Wave Form Page 2 of 2

Demo Office

Wave Form

Wave Form Page 1 of 2

Demo Office

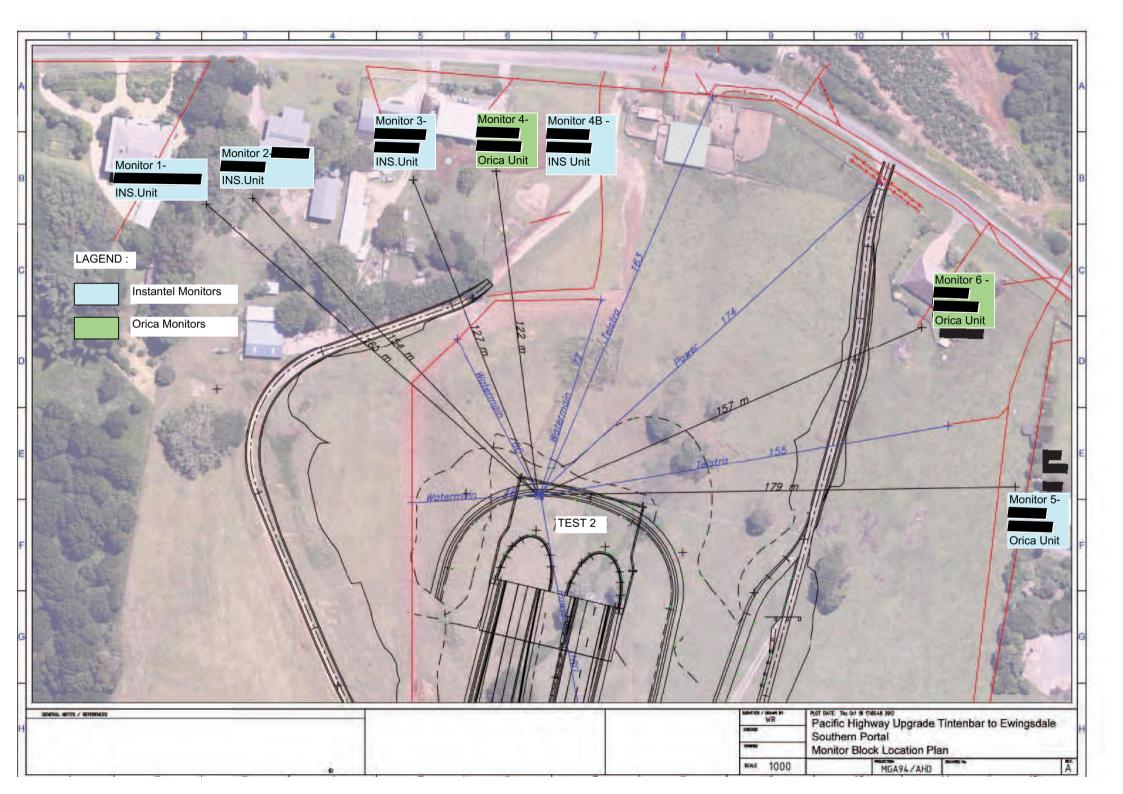

Wave Form

				Print C
Measurement Point	AIR002	GE0002	GE0002	GE0002
Placement				
Axis	Air shock	Vertical	Longitudinal	Transversal
Round				
ime	19/10/2012 09:37:03	19/10/2012 09:37:03	19/10/2012 09:37:03	19/10/2012 09:37:03
/alue	94.5 dBL	0.50 mm/s	0.75 mm/s	1.00 mm/s
	1.09 Pa	0.18 m/s2	0.24 m/s2	0.26 m/s2
	0.02 Pas	3.38 um	3.86 um	4.78 um
	60.2 Hz	27.4 Hz	41.3 Hz	33.4 Hz
Display Format	Picture Create			
		AIR002 Air shock		
2		<u> </u>		
1.5		· · · · · · · · · · · · · · · · · · ·		
0.5	and the second	1	Reduction of the same	
	the said of the land of the la	STATE OF THE PERSON NAMED IN	A STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	
-0.5 -1 -1.5				
- - -				
-1. 5 ∤······				;
-1.5 -2				
-1.5 -2	-0.5 0 0),5 1 1,5	2 2,5	3 3.5
-1.5 -2	-0.5 0 0	0,5 1 1,5 s	2 2.5	3 3,5
-1,5 -2	-0.5 0 0		2 2,5	3 3,5
-2	-0.5 0 0	S	2 2.5	3 3.5
0.4 ······	-0.5 0 0	S	2 2.5	3 3.5
0.4 ······	-0.5 0 0	S	2 2,5	3 3,5
0.4 ······	-0.5 9 8	S	2 2.5	3 3.5
θ.4 θ.2	-0.5 0 0	S	2 2.5	3 3.5
0.4 0.2 10.2	-0.5 0 0	S	2 2,5	3 3.5
0.4 0.2 0.2 -0.2	- I Mylmman	S GEO002 Vertical		3 3.5
0.4 0.2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.5 0 0	S GEO002 Vertical	2 2.5	3 3.5
0.4 0.2 E 0 -0.2	- I Mylmman	S GEO002 Vertical	3	3 3.5
0.4 0.2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- I Mylmman	S GEO002 Vertical	3	3 3.5
-2 0.4 0.2 -0.2 -0.4	- I Mylmman	S GEO002 Vertical	3	3 3.5
-2 0.4 0.2 -0.2 -0.4	- I Mylmman	S GEO002 Vertical	3	3 3.5
-2 0.4 0.2 -0.2 -0.4	- I Mylmman	S GEO002 Vertical	3	3 3.5
-2 -0.4 -0.2 -0.4 -0.4 -0.5 -0.5	- I Mylmman	S GEO002 Vertical	3	3 3.5
0.4 0.2 0.2 -0.2 -0.4 1 0.5 0.5	- I Mylmman	S GEO002 Vertical	3	3 3.5
-2 -0.4 0.2 -0.2 -0.4 -0.5 0.5	- I Mylmman	S GEO002 Vertical	3	4

Wave Form Page 2 of 2

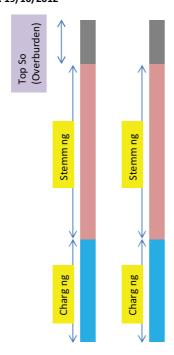
Demo Office

Wave Form


Orica SIGICOm vibration unit setup for Trial Blast 0n the 19/10/12.

Unit AIR001 = Unit AIR002 = Orica vibration units is registed based on QLD time.

Measurement Point	Placement	Date	Time	Value	Unit	Limit	Part of Limit	Vppv	Distance	Round	Remark
GEO001 L		19/10/2012		0.05	mm/s	5	1	0.1 mm/s			
GEO001 T		19/10/2012		0.05	mm/s	5	1	0.1 mm/s			
AIR001		19/10/2012	10:46	115	dBL	115	100				
GEO001 V		19/10/2012		0.05	mm/s	5	1	0.07 mm/s			
GEO001 L		19/10/2012		0.05	mm/s	5	1	0.07 mm/s			
GEO001 T		19/10/2012		0.05	mm/s	5	1	0.07 mm/s			
AIR001		19/10/2012		116	dBL	115	101	,			
GEO001 V		19/10/2012		0.05	mm/s	5	1	0.07 mm/s			
GEO001 L		19/10/2012		0.05	mm/s	5	1	0.07 mm/s			
GEO001 T		19/10/2012		0.05	mm/s	5	1	0.07 mm/s			
AIR001		19/10/2012		117	dBL	115	102	0.07,0			
GEO001 V		19/10/2012		0.05	mm/s	5	1	0.07 mm/s			
GEO001 L		19/10/2012		0.05	mm/s	5	1	0.07 mm/s			
GEO001 T		19/10/2012		0.05	mm/s	5	1	0.07 mm/s			
AIR001		19/10/2012		118	dBL	115	103	0.07 11111/3			
GEO001 V		19/10/2012		0.05	mm/s	5	1	0.08 mm/s			
GEO001 L		19/10/2012		0.05	mm/s	5	1	0.08 mm/s			
GEO001 T		19/10/2012		0.05	mm/s	5	1	0.08 mm/s			
AIR002		19/10/2012		116	dBL	115	101	0.00, 0			
GEO002 V		19/10/2012		0.05	mm/s	5	1	0.06 mm/s			
GEO002 L		19/10/2012		0.05	mm/s	5	1	0.06 mm/s			
GEO002 T		19/10/2012		0.05	mm/s	5	1	0.06 mm/s			
AIR002		19/10/2012		115	dBL	115	100	0.00 11111/3			
GEO002 V		19/10/2012		0.05	mm/s	5	1	0.07 mm/s			
GEO002 L		19/10/2012		0.05	mm/s	5	1	0.07 mm/s			
GEO002 T		19/10/2012		0.05	mm/s	5	1	0.07 mm/s			
AIR001		19/10/2012	9:37	99.5	dBL	115	87	0107 1111170			
AIR002		19/10/2012	9:37	94.5	dBL	115	82				
GEO001 V		19/10/2012	9:37	0.65	mm/s	5	13	1.05 mm/s			Т 1
GEO001 L		19/10/2012		0.6	mm/s	5	12	1.05 mm/s			AS.
GEO001 T		19/10/2012		1.05	mm/s	5	21	1.05 mm/s			- BI
GEO002 V		19/10/2012	9:37	0.5	mm/s	5	10	1.05 mm/s			TR AL BLAST 1
GEO002 L		19/10/2012	9:37	0.75	mm/s	5	15	1.05 mm/s			⊨
GEO002 T		19/10/2012	9:37	1	mm/s	5	20	1.05 mm/s			
AIR001		19/10/2012		94.5	dBL	115	82				
GEO001 V		19/10/2012		0.25	mm/s	5	5	0.46 mm/s			
GEO001 L		19/10/2012		0.3	mm/s	5	6	0.46 mm/s			
GEO001 T		19/10/2012		0.4	mm/s	5	8	0.46 mm/s			
AIR001		19/10/2012		96	dBL	115	83	2			
GEO001 V		19/10/2012		2	mm/s	5	40	2.5 mm/s			
GEO001 V		19/10/2012		1.65	mm/s	5	33	2.5 mm/s			
GEO001 T		19/10/2012		0.45	mm/s	5	9	2.5 mm/s			
AIR002		19/10/2012		94	dBL	115	82	2.5 //////			
GEO002 V		19/10/2012		1.85	mm/s	5	37	3.12 mm/s			
GEO002 V		19/10/2012		1.05	mm/s	5	21	3.12 mm/s			
GEO002 T		19/10/2012		2.4	mm/s	5	48	3.12 mm/s			
323302 1	l	-5/ 10/ 2012	,,,,,		173	,		J. 12 ///////	l	<u> </u>	


APPENDIX 3 - TRIAL BLAST 2 RECORDS

TRIAL BLAST - TEST 2

Trial Blast operation St. Helena tunnel

Project : T2E Baulderstone Date : 19/10/2012

Drill Log-Trial Blast 2

Hole No.1

= 18/10/2012 **Drill date Drill Operator** = Dan Donnelly **Top Elevation** = 108.253 **Total Depth** = 6.6 m Top soil Depth = 2.6 m **Rock Depth** = 4 m Hole size = 76 mm Charging kg = 2.4 kgStemming Length = 3.4 m

Hole No.2

Drill date = 18/10/2012 **Drill Operator** = Dan Donnelly = 108.296 **Top Elevation Total Depth** = 6.5 m Top soil Depth = 2.5 m **Rock Depth** = 4 m Hole size = 76 mm Charging kg $= 2.4 \, kg$ Stemming Length = 3.4

Date: 19/10/12 St.Helena tunnel Portal Scope of work : Defining K value Location:

Day: Friday Trial Blast: 2 Subject :

Distance	Vibration Monitors	
Distance	Vibration Monitors	
Distance	Vibration Monitors	
Distance	Vibration Monitors	

From Tria	al Blast 2
165	М
154	М
127	М
122	М

Distance Vibration Monitors 122 M	
Distance Vibration Monitors 157 M	
Distance Vibration Monitors 179 M	

BLAST PATTERN referances	
Blast parameters :-Trial Blast 2	
Time Of Blast	12:18
Decks per Hole	1
Rock density (tne/m^3)	2.98
Total Charge Wt/Hole (kg)	2.4
Total Charge Wt (kg)	4.8
Total Hole	2
Powder Factor (kg/m³)	0.37
KG/DECK	2.4
Hole Diameter (M)	0.076
Hole Angle (deg)	0
Hole Total depth (M)	6.6

Top soil overburden	2.6 / 2.5
Depth in Rock	4
Stemming in rock (M)	3.4
Sub drill (M)	0
Burden (M)	1.8
Spacing (M)	1.8
Bottom charge height (mm)	0.00
Intermediate charge height (m)	0.00
Yield/ blasthole M³	12.96
Burden stiffness ratio (> 3.5 good frag)	2.22
K Value	

Trial Blast 2 - Vibration Monitors reading

			Trial I	Blast 2 Vibration	Data		
Property owners							
Monitor type	Instantel	Instantel	Instantel	Orica	Instantel	Orica	Instantel
Distance From Trial Blast 1	165 M	154 M	127 M	122 M	122 M	157 M	179 M
Data Tran	0.00 mm/s	0.00 mm/s	0.43 mm/s	0.80 mm/s	0.00 mm/s	0.75 mm/s	0.00 mm/s
Data Vert	0.00 mm/s	0.00 mm/s	0.46 mm/s	0.40 mm/s	0.00 mm/s	0.55 mm/s	0.00 mm/s
Data Long	0.00 mm/s	0.00 mm/s	1.10 mm/s	0.50 mm/s	0.00 mm/s	0.55 mm/s	0.00 mm/s
VPPV	0.00 mm/s	0.00 mm/s	1.13 mm/s	0.78 mm/s	0.00 mm/s	0.91 mm/s	0.00 mm/s
Decibel (db)	0.00	0.00	100.00	97.00	0.00	101.00	0.00
Highest Peak Chosen	0.00 mm/s	0.00 mm/s	1.10 mm/s	0.80 mm/s	0.00 mm/s	0.75 mm/s	0.00 mm/s
Q^1/2	1.55	1.55	1.55	1.55	1.55	1.55	1.55
Value K based on Higest PPV	0	0	1269	865	0	1214	0

Trial Blast 2 Highest K value

1269

Event Report

Long at 12:18:26 October 19, 2012 Date/Time

Trigger Source Geo: 1.00 mm/s Range Geo: 31.7 mm/s **Record Time** 5.0 sec at 2048 sps

Job Number:

Notes

Location: Location 3, Client: Tintenbar to Ewingsdale Brendon Kirkwood User Name:

General: **Trial Blast**

Extended Notes

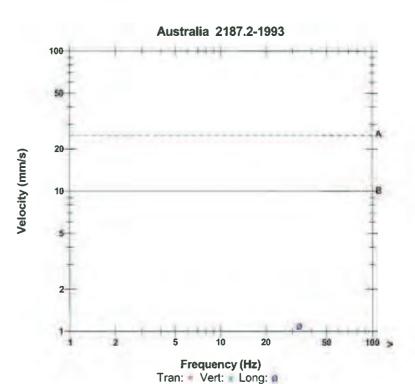
Trial blast at St Helena, South Portal

Linear Weighting Microphone 100.0 dB(L) at 4.910 sec **PSPL**

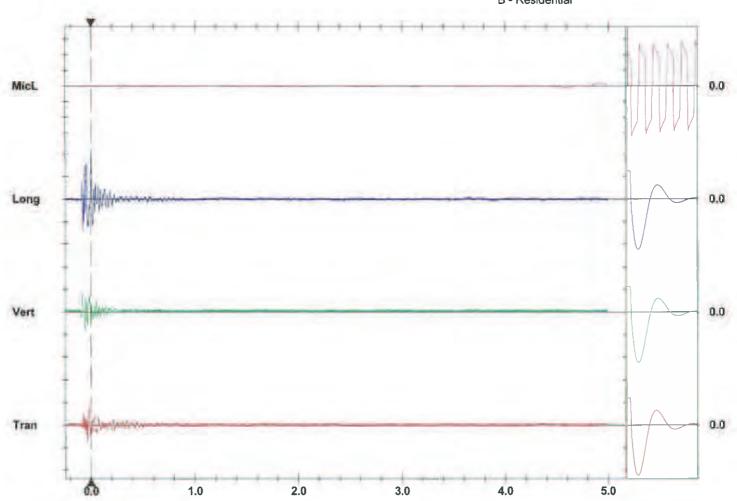
ZC Freq N/A

Channel Test Passed (Freq = 20.5 Hz Amp = 524 mv)

	Tran	Vert	Long	
PPV	0.429	0.460	1.10	mm/s
PPV	43.6	44.3	51.8	dB
ZC Freq	33	33	33	Hz
Time (Rel. to Trig)	-0.016	-0.085	0.001	sec
Peak Acceleration	0.0199	0.0199	0.0331	g
Peak Displacement	0.00186	0.00284	0.00551	mm
Sensor Check	Passed	Passed	Passed	
Frequency	7.8	7.3	7.4	Hz
Overswing Ratio	3.5	3.7	3.7	


N/A: Not Applicable

Serial Number BE18976 V 10.40-1.1 Minimate Blaster **Battery Level** 6.3 Volts Unit Calibration


File Name

September 28, 2012 by Instantel

T976EIAS.UQ0

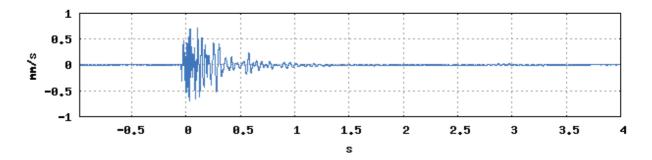
A - Industrial B - Residential

Trigger = ▶

Time Scale: 0.20 sec/div Amplitude Scale: Geo: 0.500 mm/s/div Mic: 10.00 pa.(L)/div

Sensor Check

Wave Form Page 1 of 2


Wave Form

									Prin	
leasurement Point	AIR001		GI	0001		GEO001		GEO0	001	
lacement										
kis	Air shock		Ve	ertical		Longitudin	ıal	Trans	sversal	
ound										
me	19/10/2012	2 11:18:30		/10/2012 11	1:18:30		12 11:18:30		0/2012 11:18	30
lue	101 dBL			55 mm/s		0.55 mm/s			mm/s	
	2.14 Pa			15 m/s2		0.16 m/s2		0.31		
	0.03 Pas			42 um		5.50 um		4.15		
	15.5 Hz		37	'.6 Hz		20.2 Hz		28.7	HZ	
isplay Format	Picture Create									
				AIR001	Air shock					
2				;			;			
1										
- [Control (1980)	later .	Bearing to	all and a second	لدون وأوسلهم	ta barrett.	ر المراجعة	talk as a	politica per pro-	i id
and the state of t				the second second second second		adall Arientificati		AND THE RES	للمستراف بالعا	
2 0 (main)		Main Albert	Marrian	The state of		1 1		Maria Land	1 :	40.0
2 8 (NA)	e e partito de la lacentia de la constitución de la	Man Allian	1							
·	en en el el el el el en el el el	Marin Property								
-1 -2	3.5	0	0.5	1	1.5	2	2.5	3	3.5	
-1 -2	3.5	8	0.5		1.5 s	2	2.5	3	3.5	
-1 -2 -1	3.5	8	0.5		s	2	2.5	3	3.5	
-1 -2 -(3.5	8	0.5		s	2	2.5	3	3.5	
-1 -2 -(3.5	6	0.5 M		s	2	2.5	3	3.5	
-1 -2 -(3.5	8	0.5		s	2	2.5	3	3.5	
1 0.5 % 4 -0.5	3.5	6	0.5 W		s	2	2.5	3	3.5	
1 0.5	-0.5	8	0.5 0.5		S 1 Vertical 1.5	2	2.5	3	3.5	
-1 -2 -0.5 % 0 -0.5		-Villagen	Municipan	GEO00	S 1 Vertical					
1 0.5 0.5 -0.5		-Villagen	Municipan	GE000	S 1 Vertical 1.5	2				
1 0.5 % 4 -0.5		-Villagen	Municipan	GE000	S 1 Vertical 1.5 S	2				
1 0.5 0.5 -0.5		-Villagen	Municipan	GE000	S 1 Vertical 1.5 S	2				
1 0.5 0.5 -0.5 -1		-Villagen	Municipan	GE000	S 1 Vertical 1.5 S	2				
-1 -2 -0.5 -0.5 -1		-Villagen	Municipan	GE000	S 1 Vertical 1.5 S	2				
1 0.5 0.5 -0.5 -1		-Villagen	Municipan	GE000	S 1 Vertical 1.5 S	2				
-1 -2 -1 0.5 -0.5 -1 -1 -0.5 -1		-Villagen	Municipan	GE000	S 1 Vertical 1.5 S	2				

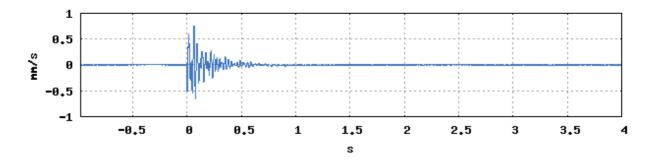
Wave Form Page 2 of 2

Demo Office

Wave Form

Wave Form Page 1 of 2

Demo Office


Wave Form

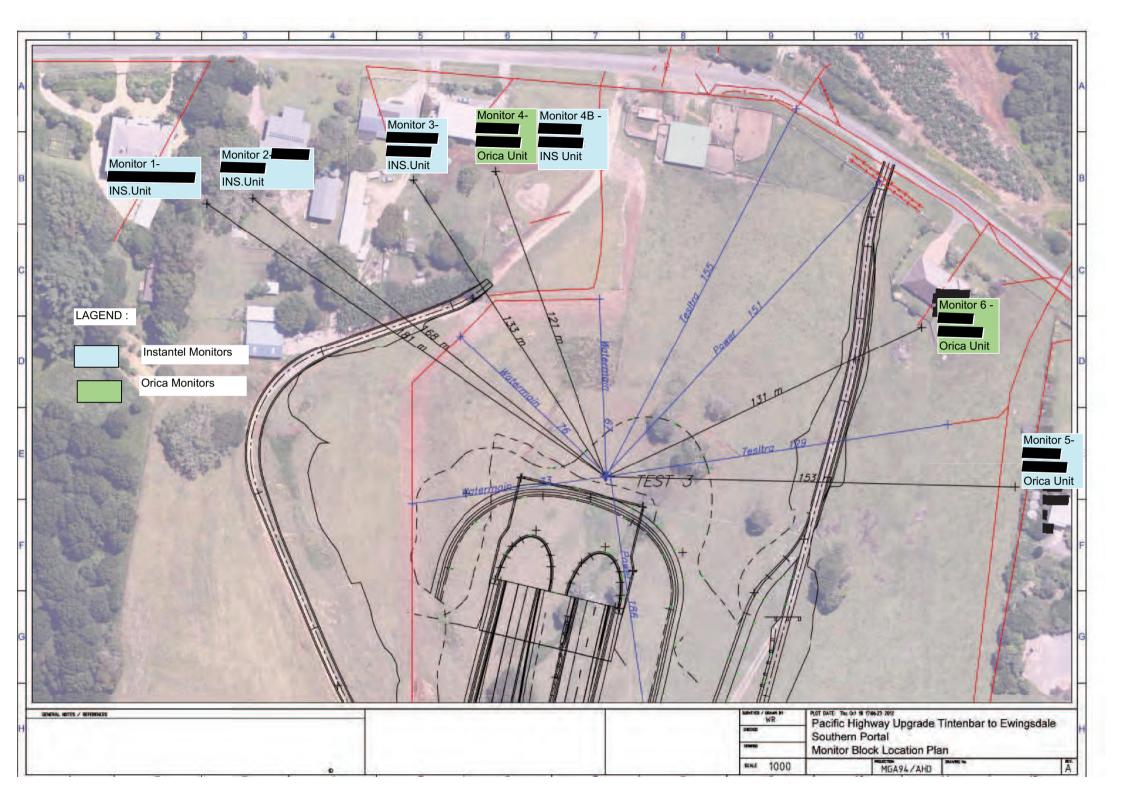
								Prin	t C
easurement Point	AIR002	GEO	002		GE0002		GEO0	02	
acement									
ris	Air shock	Verti	cal		Longitudin	al	Trans	versal	
und									
ne	19/10/2012 11:18		0/2012 11:18	3:30		2 11:18:30)/2012 11:18:	:30
lue	97.0 dBL		mm/s		0.50 mm/s		0.80		
	1.34 Pa		m/s2		0.19 m/s2		0.21		
	0.04 Pas	3.58			2.97 um		3.97		
	24.7 Hz	44.2	Hz		26.9 Hz		30.6	Hz	
splay Format	Picture								
_			AIR002 Air	shock					
1.5									
1									
0.5	and the second second		ta ale M	ALC: NO.	and the con-		I MAN	u Maak	Jim
_0.5 -0.5	kirily e killer om bleve kreistelinge	dad the cut			A Company		W W		
-1 ∤						7	' 		
-1.5									
-2	-0.5 0	0.5	1	1.5	2	2.5	3	3.5	
				S				-•-	
			GE0002 V						
0.4									
0.2									
φ •• <u>·</u>	10.6%	Hum							
\$ 0		HIL HARRING AND	(Alabameren						
-0.2		1.1							
-0.4									
	-0.5 0	0.5	1	1.5	2	2.5	3	3.5	
				s					
		(GEO002 Long	gitudinal					
0.4									
0.2		4							
ø •	M	Million Land							
ς θ	····	Industribution-			:		:		- Police
-0.2	····	1							
-0.4		<u> </u>							
	-0.5 0	0.5	1	1.5 s	2	2.5	3	3.5	

Wave Form Page 2 of 2

Demo Office

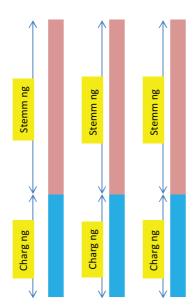
Wave Form

Orica SIGICOm vibration unit setup for Trial Blast 0n the 19/10/12.


Unit AIR001 =

Unit AIR002 = Orica vibration units is registed based on QLD time.

Measurement Point	Placement	Date	Time	Value	Unit	Limit	Part of Limit	Vppv	Distance	Round	Remark
AIR001	1 10001110111		12:11	107	dBL	115	93	1661	Diotailos	110 0110	TTOTTION TO
AIR002		19/10/2012		107	dBL	115	93				
GEO001 V		19/10/2012		1.25	mm/s	5	25	1.84 mm/s			Т3
GEO001 L		19/10/2012		1.3	mm/s	5	26	1.84 mm/s			AS
GEO001 T		19/10/2012		1.7	mm/s	5	34	1.84 mm/s			tr al Blast
GEO002 V		19/10/2012		1.15	mm/s	5	23	1.94 mm/s			. ∀
GEO002 L		19/10/2012		1.4	mm/s	5	28	1.94 mm/s			Ξ.
GEO002 T		19/10/2012		1.6	mm/s	5	32	1.94 mm/s			
AIR002		19/10/2012		116	dBL	115	101	1.54 11111/3			
GEO002 V		19/10/2012		0.05	mm/s	5	1	0.09 mm/s			
GEO002 V		19/10/2012		0.05	mm/s	5	1	0.09 mm/s			
GEO002 T		19/10/2012		0.05	mm/s	5	1	0.09 mm/s			
AIR001		19/10/2012		118	dBL	115	103	0.03 11111/3			
GEO001 V		19/10/2012		0.05	mm/s	5	103	0.08 mm/s			
GEO001 V		19/10/2012		0.05	mm/s	5	1	0.08 mm/s			
GEO001 T		19/10/2012		0.05	mm/s	5	1	0.08 mm/s			
AIR001		19/10/2012		116	dBL	115	101	0.06 11111/3			
GEO001 V		19/10/2012		0.05	mm/s	5	101	0.08 mm/s			
		19/10/2012		0.05							
GEO001 L				0.05	mm/s	5	1	0.08 mm/s 0.08 mm/s			
GEO001 T		19/10/2012 19/10/2012		117	mm/s dBL	115	102	0.06 11111/5			
AIR002 GEO002 V		19/10/2012		0.05		5	102	0.00 mm/s			
GEO002 V		19/10/2012		0.05	mm/s mm/s	5	1	0.08 mm/s			
								0.08 mm/s			
GEO002 T		19/10/2012		0.05	mm/s	5	1	0.08 mm/s			
AIR001		19/10/2012		102	dBL	115	89	0.00/-			
GEO001 V		19/10/2012		0.3	mm/s	5	6	0.86 mm/s			
GEO001 L GEO001 T		19/10/2012 19/10/2012		0.8	mm/s	5 5	16 8	0.86 mm/s 0.86 mm/s			
AIR001				115	mm/s dBL	115	_	0.86 11111/5			
GEO001 V		19/10/2012 19/10/2012		0.05	mm/s	5	100	0.07 mm/s			
							1	•			
GEO001 L GEO001 T		19/10/2012 19/10/2012		0.05	mm/s	5 5	1	0.07 mm/s			
		19/10/2012		101	mm/s dBL	115	88	0.07 mm/s			
AIR001 AIR002		19/10/2012		97	dBL	115	84				
GEO001 V		19/10/2012		0.55	mm/s	5	11	0.01 mans/s			. 2
GEO001 V		19/10/2012		0.55	mm/s	5	11	0.91 mm/s 0.91 mm/s			AL BLAST
GEO001 T		19/10/2012		0.33	mm/s	5	15	0.91 mm/s			BL
GEO001 1		19/10/2012				5	8				
GEO002 V		19/10/2012	-	0.4	mm/s	5	10	0.78 mm/s 0.78 mm/s			TR
GEO002 T		19/10/2012			mm/s	5	16	0.78 mm/s			
AIR001		19/10/2012			mm/s dBL	115	101	0.76 11111/3			
GEO001 V		19/10/2012			mm/s	5	101	0.08 mm/s			
GEO001 V GEO001 L											
GEO001 T		19/10/2012 19/10/2012			mm/s mm/s	5 5	1	0.08 mm/s 0.08 mm/s			
		19/10/2012		117	dBL		102	0.00 11111/5			
AIR002 GEO002 V		19/10/2012		0.05	mm/s	115 5	102	0.07 mm/s			
GEO002 V GEO002 L		19/10/2012		0.05		5		0.07 mm/s			
GEO002 L GEO002 T		19/10/2012			mm/s	5	1	0.07 mm/s 0.07 mm/s			
				0.05	mm/s		102	0.07 mm/s			
AIR001		19/10/2012		117	dBL	115	102	0.00 /-			
GEO001 V		19/10/2012		0.05	mm/s	5	1	0.08 mm/s			
GEO001 L		19/10/2012		0.05	mm/s	5	1	0.08 mm/s			
GEO001 T		19/10/2012		0.05	mm/s	5	1	0.08 mm/s			
AIR001		19/10/2012		119	dBL	115	103	0.1 /			
GEO001 V		19/10/2012	10:51	0.1	mm/s	5	2	0.1 mm/s			


APPENDIX 4 - TRIAL BLAST 3 RECORDS

TRIAL BLAST - TEST 3

Trial Blast operation St. Helena tunnel

Project : T2E Baulderstone Date 19/10/2012

Drill Log-Trial Blast 3

Hole No.1

= 18/10/2012 **Drill date Drill Operator** = Dan Donnelly **Top Elevation** = 104.618 **Total Depth** = 4.4 m **Top soil Depth** = 0 m **Rock Depth** = 4.4 m Hole size = 76 mm Charging kg = 4.8 kgStemming Length = 3.2 m

Hole No.2

= 18/10/2012 **Drill date Drill Operator** = Dan Donnelly **Top Elevation** = 104.708 **Total Depth** = 4.6 m **Top soil Depth** = 0 m = 4.6 m **Rock Depth** Hole size = 76 mm Charging kg = 4.8 kg Stemming Length = 3.4 m

Hole No.3

Drill date = 18/10/2012 **Drill Operator** = Dan Donnelly **Top Elevation** = 104.883 **Total Depth** = 4.6 m = 0 **Top soil Depth** = 4.6 m **Rock Depth** Hole size = 76 mm Charging kg = 4.8 kgStemming Length = 3.4 m

Date: 19/10/12 Location: St.Helena tunnel Portal Scope of work : Defining K value

Day: Friday Subject : Trial Blast: 3

Distance Vibration Monitors Distance Vibration Monitors Distance Vibration Monitors Distance Vibration Monitors

From Tria	al Blast 3
181	М
168	М
133	М
121	М

	From Trial Blast 3
Distance Vibration Monitors	121 M
Distance Vibration Monitors	131 M
Distance Vibration Monitors 5	153 M

BLAST PATTERN referances	
Blast parameters :-Trial Blast 3	
Time Of Blast	13:11
Decks per Hole	1
Rock density (tne/m^3)	2.98
Total Charge Wt/Hole kg	4.8
Total Charge Wt kg	14.4
Total Hole	3
Powder Factor (kg/m³)	0.00
KG/DECK	4.8
Hole Diameter (M)	0.076
Hole Angle (deg)	0
Hole Total depth (M)	4.4

Top soil overburden	0
Depth in Rock	4.4
Stemming in rock (M)	3.2
Sub drill (M)	0
Burden (M)	1.8
Spacing (M)	1.8
Bottom charge height (mm)	0.00
Intermediate charge height (m)	0.00
Yield/ blasthole M³	14.256
Burden stiffness ratio (> 3.5 good frag)	2.44
K Value	

Trial Blast 3 - Vibration Monitors reading

	Trial Blast 3 Vibration Data							
Property owners								
Monitor type	Instantel	Instantel	Instantel	Orica	Instantel	Orica	Instantel	
Distance From Trial Blast 1	181 M	168 M	133 M	121 M	121 M	131 M	153 M	
Data Tran	1.41 mm/s	1.37 mm/s	0.87 mm/s	1.60 mm/s	1.65 mm/s	1.70 mm/s	3.05 mm/s	
Data Vert	0.62 mm/s	0.64 mm/s	1.21 mm/s	1.15 mm/s	0.87 mm/s	1.25 mm/s	1.06 mm/s	
Data Long	1.25 mm/s	1.38 mm/s	1.54 mm/s	1.40 mm/s	2.02 mm/s	1.30 mm/s	3.33 mm/s	
VPPV	1.60 mm/s	1.68 mm/s	1.76 mm/s	1.94 mm/s	2.03 mm/s	1.84 mm/s	4.54 mm/s	
Decibel (db)	101.00	100.00	102.80	107.00	106.00	107.00	106.50	
Highest Peak Chosen	1.41 mm/s	1.38 mm/s	1.54 mm/s	1.60 mm/s	2.02 mm/s	1.70 mm/s	3.33 mm/s	
Q^1/2	2.19	2.19	2.19	2.19	2.19	2.19	2.19	
Value K based on Higest PPV	1646	1430	1098	981	1238	1183	2971	

Trial Blast 3 Highest K value

2971

Date/Time Long at 13:11:41 October 19, 2012

Trigger Source Geo: 1.00 mm/s Range Geo: 31.7 mm/s Record Time 5.0 sec at 2048 sps

Job Number: 1

Notes

Location: Location 1,
Client: Tintenbar to Ewingsdale
User Name: Brendon Kirkwood

General: Trial Blast

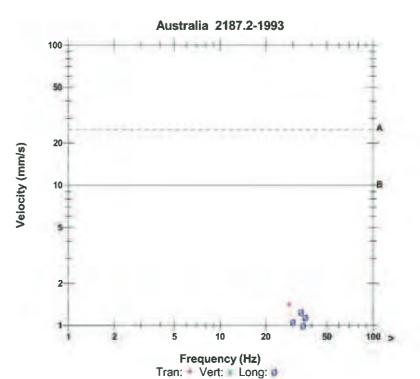
Extended Notes

Trial blast at St Helena, South Portal

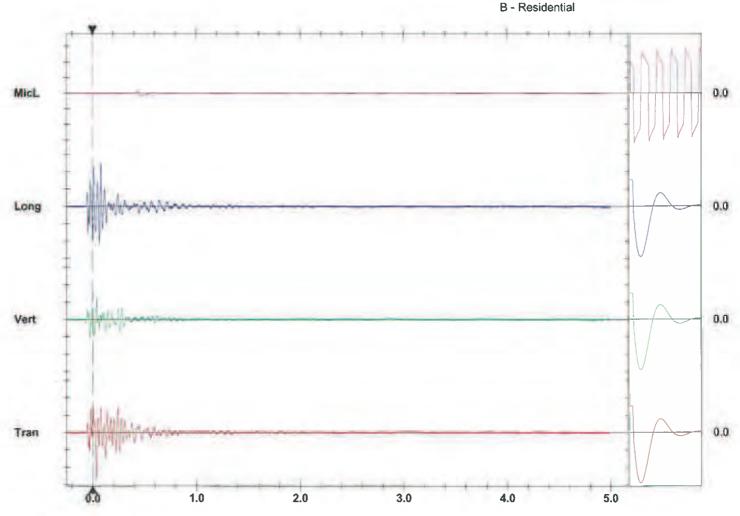
Microphone Linear Weighting
PSPL 101.0 dB(L) at 0.470 sec

ZC Freq 5.3 Hz

Channel Test Passed (Freq = 20.1 Hz Amp = 549 mv)


Tran	Vert	Long	
1.41	0.619	1.25	mm/s
54.0	46.8	53.0	dB
28	37	34	Hz
0.033	0.040	0.081	sec
0.0331	0.0166	0.0331	g
89900.0	0.00323	0.00573	mm
Passed	Passed	Passed	
7.5	7.6	7.5	Hz
3.8	3.5	3.8	
	1.41 54.0 28 0.033 0.0331 0.00668 Passed 7.5	1.41 0.619 54.0 46.8 28 37 0.033 0.040 0.0331 0.0166 0.00668 0.00323 Passed Passed 7.5 7.6	1.41 0.619 1.25 54.0 46.8 53.0 28 37 34 0.033 0.040 0.081 0.0331 0.0166 0.0331 0.00668 0.00323 0.00573 Passed Passed Passed 7.5 7.6 7.5

Serial Number BE18974 V 10.40-1.1 Minimate Blaster


Battery Level 6.4 Volts

Unit Calibration September 28, 2012 by Instantel

File Name T974EIAV.BH0

A - Industrial

Sensor Check

Date/Time Long at 13:11:42 October 19, 2012

Trigger Source Geo: 1.00 mm/s Range Geo: 31.7 mm/s 5 0 sec at 2048 sps **Record Time**

Job Number:

Notes

Location: Location 2,

Tintenbar to Ewingsdale Client: User Name: Brendon Kirkwood

General: Trial Blast

Extended Notes

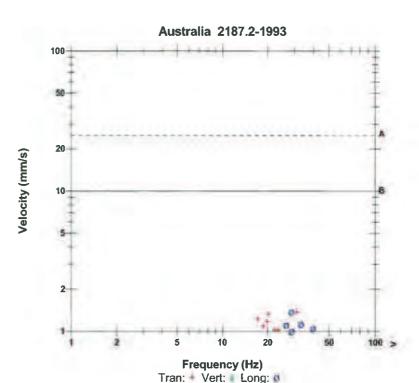
Trial Blast at St Helena, South Portal

Microphone Linear Weighting **PSPL** 100.0 dB(L) at 0.438 sec.

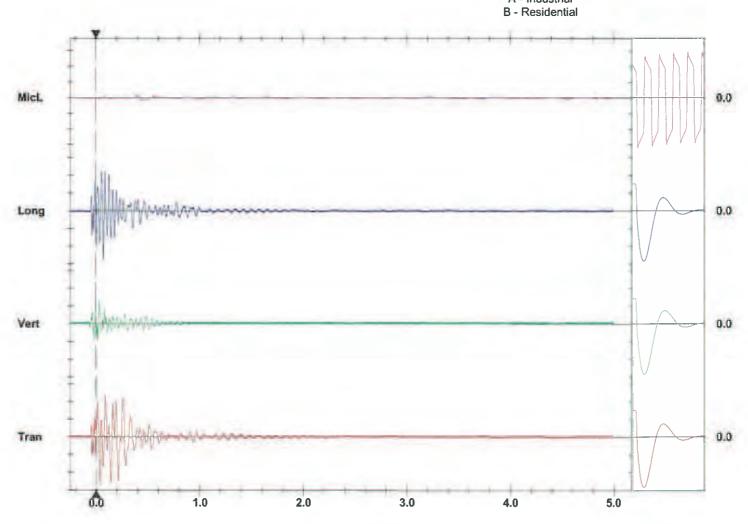
ZC Freq 5.4 Hz

Channel Test Passed (Freq = 20.1 Hz Amp = 554 mv)

	Tran	Vert	Long	
PPV	1.37	0.635	1.38	mm/s
PPV	53.7	47.1	53.8	dB
ZC Freq	31	27	28	Hz
Time (Rel. to Trig)	0.037	0.030	0.071	sec
Peak Acceleration	0.0298	0.0199	0.0298	g
Peak Displacement	0.00982	0.00323	0.00653	mm
Sensor Check	Passed	Passed	Passed	
Frequency	7.5	7.2	7.6	Hz
Overswing Ratio	3.9	3.9	3.8	


Serial Number BE18975 V 10.40-1.1 Minimate Blaster

Battery Level 6.4 Volts


File Name

Unit Calibration September 28, 2012 by Instantel

T975EIAV.BIO

A - Industrial

Time Scale: 0.20 sec/div Amplitude Scale: Geo: 0.500 mm/s/div Mic: 10.00 pa.(L)/div

Sensor Check

Date/Time Long at 13:11:41 October 19, 2012

Trigger Source Geo: 1.00 mm/s Range Geo: 31.7 mm/s **Record Time** 5.0 sec at 2048 sps

Job Number:

Notes

Location: Location 3, Tintenbar to Ewingsdale Client: User Name: Brendon Kirkwood

General: Trial Blast

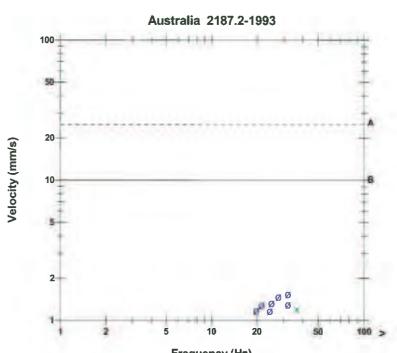
Extended Notes

Trial blast at St Helena, South Portal

Microphone Linear Weighting P\$PL 102.8 dB(L) at 0.370 sec.

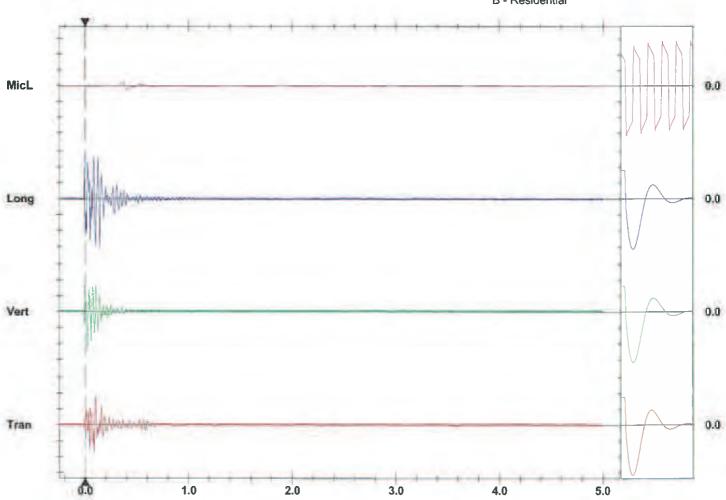
ZC Freq 13.3 Hz

Channel Test Passed (Freq = 20.5 Hz Amp = 488 mv)


Tran	Vert	Long	
0.873	1.21	1.54	mm/s
49.8	52.6	54.7	dB
28	37	32	Hz
0.096	0.020	0.141	sec
0.0398	0.0298	0.0497	g
0.00531	0.00527	0.00774	mm
Passed	Passed	Passed	
7.8	7.2	7.4	Hz
3.4	3.7	3.6	
	0.873 49.8 28 0.096 0.0398 0.00531 Passed 7.8	0.873 1.21 49.8 52.6 28 37 0.096 0.020 0.0398 0.0298 0.00531 0.00527 Passed Passed 7.8 7.2	0.873 1.21 1.54 49.8 52.6 54.7 28 37 32 0.096 0.020 0.141 0.0398 0.0298 0.0497 0.00531 0.00527 0.00774 Passed Passed Passed 7.8 7.2 7.4

Serial Number BE18976 V 10.40-1.1 Minimate Blaster

Battery Level 6.4 Volts


Unit Calibration September 28, 2012 by Instantel File Name

T976EIAV.BH0

Frequency (Hz) Tran: Vert: Long:

A - Industrial B - Residential

Trigger = ▶

Time Scale: 0.20 sec/div Amplitude Scale: Geo: 0.500 mm/s/div Mic: 10.00 pa.(L)/div

Sensor Check

Date/Time Long at 13:11:42 October 19, 2012

Trigger Source Geo: 1.00 mm/s Range Geo: 31.7 mm/s 5.0 sec at 2048 sps **Record Time**

Job Number:

Notes

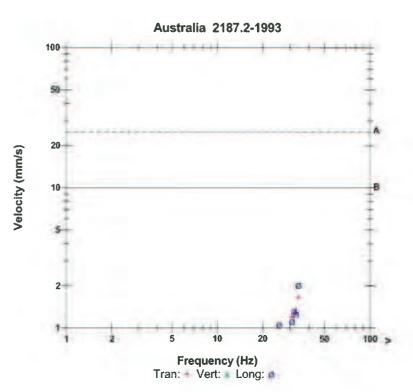
Location: Location 4, Gilmore Property Tintenbar to Ewingsdale Client: Brendon Kirkwood User Name: General: Trial Blast

Extended Notes

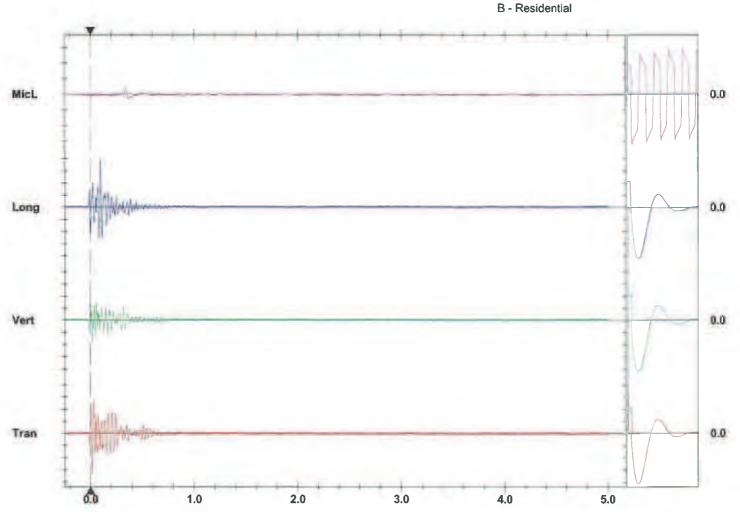
Trial blast at St Helena, South Portal.

Microphone Linear Weighting 106.0 dB(L) at 0.336 sec **PSPL ZC Freq** 13.5 Hz

Channel Test Passed (Freq = 20.1 Hz Amp = 534 mv)


	Tran	Vert	Long	
PPV	1.65	0.873	2.02	mm/s
PPV	55.4	49.8	57.1	dB
ZC Freq	34	35	34	Hz
Time (Rel. to Trig)	0.016	0.019	0.097	sec
Peak Acceleration	0.0597	0.0365	0.0563	g
Peak Displacement	0.00803	0.00458	0.00905	mm
Sensor Check	Passed	Passed	Passed	
Frequency	7.5	7.6	7.3	Hz
Overswing Ratio	3.8	3.6	3.9	

Serial Number BE18977 V 10.40-1.1 Minimate Blaster


Battery Level 6.4 Volts

Unit Calibration September 28, 2012 by Instantel File Name

T977EIAV.BI0

A - Industrial

Time Scale: 0.20 sec/div Amplitude Scale: Geo: 0.500 mm/s/div Mic: 10.00 pa.(L)/div Trigger = ▶

Sensor Check

File Name

Tran at 13:11:42 October 19, 2012 Date/Time

Geo: 1.00 mm/s **Trigger Source** Geo: 31.7 mm/s Range **Record Time** 5.0 sec at 2048 sps

Job Number:

Notes

Location: Location 5, Client: Tintenbar to Ewingsdale User Name: Brendon Kirkwood

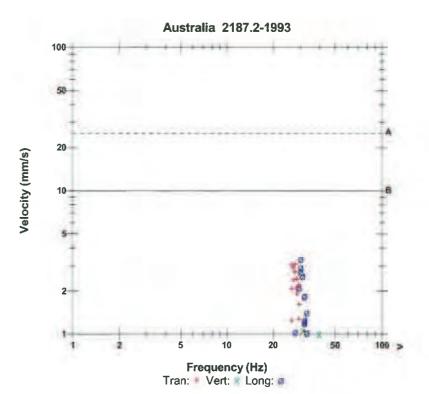
General: Trial Blast

Extended Notes

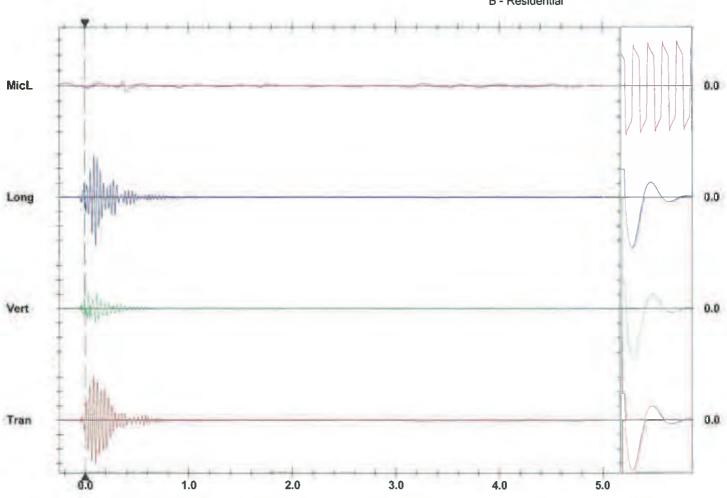
Trial blast at St Helena, South Portal.

Microphone Linear Weighting 106.5 dB(L) at 0.418 sec **PSPL**

ZC Freq 5.1 Hz


Channel Test Passed (Freq = 19.7 Hz Amp = 547 mv)

	Tran	Vert	Long	
PPV	3.05	1.06	3.33	mm/s
PPV	60.7	51.5	61.5	dB
ZC Freq	28	31	30	Hz
Time (Rel. to Trig)	0.079	0.112	0.099	sec
Peak Acceleration	0.0663	0.0365	0.0762	g
Peak Displacement	0.0169	0.00522	0.0172	mm
Sensor Check	Passed	Passed	Passed	
Frequency	7.5	7.6	7.9	Hz
Overswing Ratio	3.7	3.5	3.4	


Serial Number BE18978 V 10.40-1.1 Minimate Blaster **Battery Level**

6.4 Volts

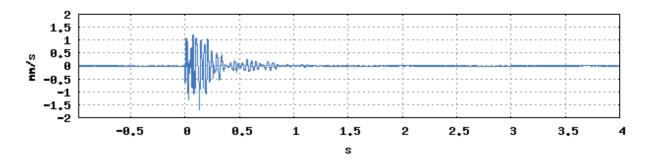
September 28, 2012 by Instantel T978EIAV.BI0 Unit Calibration

Trigger = ▶

Time Scale: 0.20 sec/div Amplitude Scale: Geo: 1.000 mm/s/div Mic: 10.00 pa.(L)/div

Sensor Check

Wave Form Page 1 of 2


Wave Form

									Prin	
leasurement Point	AIR001		G	GEO001		GEO001		GE00	01	
racement xis	Air shock		V	ertical		Longitudin	al	Transv	versal	
ound	All SHOCK		v	Citical		Longitudin	ui	Trans	versar	
me	19/10/20:	12 12:11:4	15 1	9/10/2012 12	2:11:45	19/10/201	2 12:11:45	19/10	/2012 12:11:	:45
ilue	107 dBL			.25 mm/s		1.30 mm/s		1.70 r		
	4.47 Pa			.40 m/s2		0.39 m/s2		0.46 r	n/s2	
	0.08 Pas		6	.07 um		8.15 um		8.49 ເ	ım	
	9.71 Hz		4	7.5 Hz		20.7 Hz		24.7 H	Hz	
isplay Format	Picture Create									
				AIR001	Air shock					
4										
2										
- 0		Justine	Compa						and the second	مدا الحا
			1 1 1 1 2 2 2 1 1	Andreas of the last of the las	the second second	A STATE OF THE PARTY OF THE PAR	-black, -files proportions			
		- Autilia	Life in							
-2										
			V.							
-2 -4	0.5	0	0.5	1	1.5	2	2,5	3	3.5	
-2 -4	0.5	0	0. 5	1	1.5 s	2	2.5	3	3.5	
-2 -4	0.5	8	0.5			2	2,5	3	3.5	
-2 -4	0.5	8	0.5		s	2	2.5	3	3.5	
-2 -4	0.5	8	0.5		s	2	2.5	3	3.5	
-2 -4	0.5	8	0.5		s	2	2.5	3	3.5	
-2 -4 -1.5 1 0.5 1 0.5 1 0.5	0.5	8	8.5		s	2	2.5	3	3.5	
-2 -4 -1,5 1,5 1,0,5 0,5 0,5 -1,0,5	0.5	9	9. 5		s	2	2.5	3	3.5	
-2 -4 -1.5 1 0.5 1 0.5 1 0.5		-	hindrow-	GEO00	S 1 Vertical					
-2 -4 -2 1.5 1 0.5 0.5 -0.5 -1 -1.5	-0.5	9	0.5 0.5		S 1 Vertical 1.5	2	2.5	3	3.5	
-2 -4 -2 1.5 1 0.5 0.5 -1 -1.5		-	hindrow-	GE000	S 1 Vertical 1.5 S	2				
-2 -4 -1.5 1.5 1.5 0.5 0.5 0.5 -1.5 -1.5 -2		-	hindrow-	GE000	S 1 Vertical 1.5	2				
-2 -4 1.5 1 0.5 1 -0.5 -1 -1.5 -2		-	hindrow-	GE000	S 1 Vertical 1.5 S	2				
-2 -4 -1.5 -1.5 -1.5 -1.5 -2		-	hindrow-	GE000	S 1 Vertical 1.5 S	2				
-2 -4 -1.5 -1.5 -1.5 -1.5 -2 2 1.5 -1.5 -2		-	hindrow-	GE000	S 1 Vertical 1.5 S	2				
-2 -4 -1,5 1,5 0.5 0.5 -1,5 -1,5 -2 2 1,5 1,5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.		-	hindrow-	GE000	S 1 Vertical 1.5 S	2				
-2 -4 -2 1.5 1 0.5 0.5 -1 -1.5 -2 2 1.5 -1.5 -2 0.5 -1 -1.5 -2		-	hindrow-	GE000	S 1 Vertical 1.5 S	2				
-2 -4 -1,5 -1,5 -1,5 -1,5 -2 2 1,5 -1,5 -2 2 1,5 -2 0,5		-	hindrow-	GE000	S 1 Vertical 1.5 S	2				

Wave Form Page 2 of 2

Demo Office

Wave Form

Wave Form Page 1 of 2

Demo Office


Wave Form

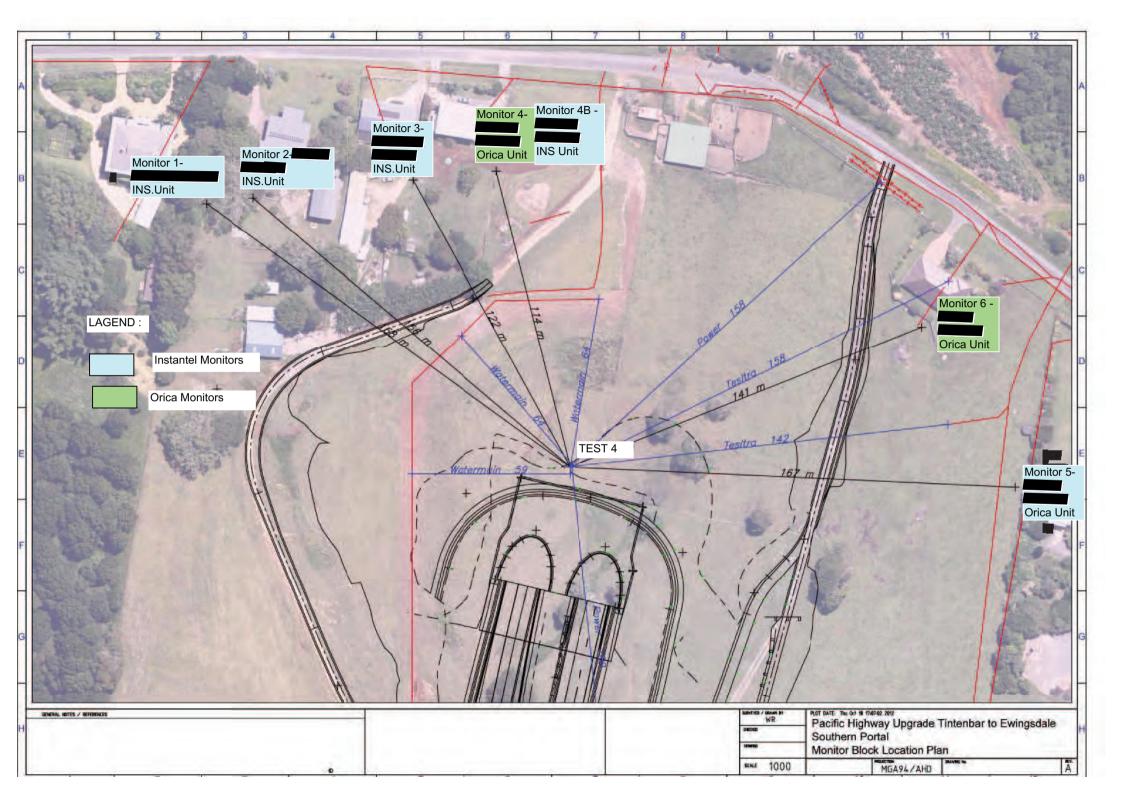
leasurement Point	AIR002		GEO	0002		GEO002		GEO0	02	
acement										
kis	Air shock		Ver	tical		Longitudina	al	Trans	versal	
ound										
me	19/10/2012	2 12:11:45		10/2012 12	:11:45	19/10/2013)/2012 12:11	:45
alue	107 dBL			5 mm/s		1.40 mm/s		1.60 r		
	4.47 Pa			9 m/s2		0.48 m/s2		0.39 ı		
	0.10 Pas			3 um		7.72 um		9.33 ι		
	5.19 Hz		52.	9 Hz		36.1 Hz		34.2 I	Hz	
splay Format	Picture Create									
		_		AIR002	Air shock					
4					;		;			
2		A.	A		nub					
		Acres Medical	of March March	Port of the last	The same of the same of	A Market	September 1		Appropriate the second	-
₽ 0 ·····	Annual Control	A.M. I.M.	Direction 🦠	No. of the last	100					
₽ 0 -2		A. A.								
		N. M								
-2 -4	9.5	W W	3 5	1	1.5	9	2.5	3	2.5	
-2 -4	9.5	0 6	3.5	1	1,5	2	2.5	3	3,5	
-2 -4	9.5	0 6	3. 5		s	2	2.5	3	3.5	
-2 -4	9.5	6 6	3.5			2	2,5	3	3.5	
-2 -4 -1	9.5	6 E	3.5		s	2	2.5	3	3,5	
-2 -4 -1 1.5	9.5	8 6	3.5		s	2	2.5	3	3.5	
-2 -4 -1,5	9.5	9 6	3.5		s	2	2,5	3	3.5	
1.5 1.5 0.5	9.5	6 6	3.5 Www.		s	2	2,5	3	3.5	
1.5 1.5 0.5 0.5 0.5	8.5	6 6	3.5 Www.		s	2	2.5	3	3.5	
-2 -4 -1,5 1,0,5 0,5 0,5		- MANAMAN	pki man	GEO002	S 2 Vertical					
2 1.5 1 0.5 0.5 0.5 -1 -1.5	-0.5	8	0.5		S 2 Vertical 1.5	2	2.5	3	3.5	
-2 -4 -1,5 1,0,5 0,5 0,5 -1,-1,5		- MANAMAN	pki man	GEO002	S 2 Vertical					
-2 -4 -1,5 1,0,5 0,5 0,5 -1,5 -1,5 -2		- MANAMAN	pki man	GE0002	S 2 Vertical 1.5	2				
-2 -4 -1,5 1,0,5 0,5 0,5 -1,5 -1,5 -2		- MANAMAN	pki man	GE0002	S Vertical 1.5 S	2				
-2 -4 -1,5 -1,5 -1,5 -1,5 -2		- MANAMAN	pki man	GE0002	S Vertical 1.5 S	2				
-2 -4 -1,5 1,0,5 0,5 0,5 -0,5 -1,5 -1,5 -2		- MANAMAN	pki man	GE0002	S Vertical 1.5 S	2				
2 1.5 1.5 0.5 0.5 0.5 -1.5 -1.5 -2 2 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0		- MANAMAN	pki man	GE0002	S Vertical 1.5 S	2				
-2 -4 -1.5 -1.5 -1.5 -1.5 -1.5 -2 1.5 -1.5 -2 2 1.5 -1.5 -2 2 1.5 -2 2 1.5 -2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		- MANAMAN	pki man	GE0002	S Vertical 1.5 S	2				
2 1.5 1.5 0.5 0.5 -1.5 -2 2 1.5 -1.5 -2 0.5 0.5 0.5 0.5 -1.5 -1.5 -1.5		- MANAMAN	pki man	GE0002	S Vertical 1.5 S	2				
-2 -4 -1,5 -1,5 -1,5 -1,5 -2 2,5 -1,5 -2 2,5 -1,5 -2 2,5 -1,5 -2 2,5 -2,5 -2,5 -2,5 -2,5 -2,5 -2,5		- MANAMAN	pki man	GE0002	S Vertical 1.5 S	2				

Wave Form Page 2 of 2

Demo Office

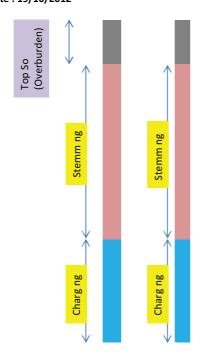
Wave Form

Orica SIGICOm vibration unit setup for Trial Blast 0n the 19/10/12.


Unit AIR001 =

Unit AIR002 = Orica vibration units is registed based on QLD time.

Measurement Point	Placement	Date	Time	Value	Unit	Limit	Part of Limit	Vppv	Distance	Round	Remark
AIR001	1 10001110111		12:11	107	dBL	115	93	1661	Diotailos	110 0110	TTOTTION TO
AIR002		19/10/2012		107	dBL	115	93				
GEO001 V		19/10/2012		1.25	mm/s	5	25	1.84 mm/s			Т3
GEO001 L		19/10/2012		1.3	mm/s	5	26	1.84 mm/s			AS
GEO001 T		19/10/2012		1.7	mm/s	5	34	1.84 mm/s			tr al Blast
GEO002 V		19/10/2012		1.15	mm/s	5	23	1.94 mm/s			. ∀
GEO002 L		19/10/2012		1.4	mm/s	5	28	1.94 mm/s			Ξ.
GEO002 T		19/10/2012		1.6	mm/s	5	32	1.94 mm/s			
AIR002		19/10/2012		116	dBL	115	101	1.54 11111/3			
GEO002 V		19/10/2012		0.05	mm/s	5	1	0.09 mm/s			
GEO002 V		19/10/2012		0.05	mm/s	5	1	0.09 mm/s			
GEO002 T		19/10/2012		0.05	mm/s	5	1	0.09 mm/s			
AIR001		19/10/2012		118	dBL	115	103	0.03 11111/3			
GEO001 V		19/10/2012		0.05	mm/s	5	103	0.08 mm/s			
GEO001 V		19/10/2012		0.05	mm/s	5	1	0.08 mm/s			
GEO001 T		19/10/2012		0.05	mm/s	5	1	0.08 mm/s			
AIR001		19/10/2012		116	dBL	115	101	0.06 11111/3			
GEO001 V		19/10/2012		0.05	mm/s	5	101	0.08 mm/s			
		19/10/2012		0.05							
GEO001 L				0.05	mm/s	5	1	0.08 mm/s 0.08 mm/s			
GEO001 T		19/10/2012 19/10/2012		117	mm/s dBL	115	102	0.06 11111/5			
AIR002 GEO002 V		19/10/2012		0.05		5	102	0.00 mm/s			
GEO002 V		19/10/2012		0.05	mm/s mm/s	5	1	0.08 mm/s			
								0.08 mm/s			
GEO002 T		19/10/2012		0.05	mm/s	5	1	0.08 mm/s			
AIR001		19/10/2012		102	dBL	115	89	0.00/-			
GEO001 V		19/10/2012		0.3	mm/s	5	6	0.86 mm/s			
GEO001 L GEO001 T		19/10/2012 19/10/2012		0.8	mm/s	5 5	16 8	0.86 mm/s 0.86 mm/s			
AIR001				115	mm/s dBL	115	_	0.86 11111/5			
GEO001 V		19/10/2012 19/10/2012		0.05	mm/s	5	100	0.07 mm/s			
							1	•			
GEO001 L GEO001 T		19/10/2012 19/10/2012		0.05	mm/s	5 5	1	0.07 mm/s			
		19/10/2012		101	mm/s dBL	115	88	0.07 mm/s			
AIR001 AIR002		19/10/2012		97	dBL	115	84				
GEO001 V		19/10/2012		0.55	mm/s	5	11	0.01 mans/s			. 2
GEO001 V		19/10/2012		0.55	mm/s	5	11	0.91 mm/s 0.91 mm/s			AL BLAST
GEO001 T		19/10/2012		0.33	mm/s	5	15	0.91 mm/s			BL
GEO001 1		19/10/2012				5	8				
GEO002 V		19/10/2012	-	0.4	mm/s	5	10	0.78 mm/s 0.78 mm/s			TR
GEO002 T		19/10/2012			mm/s	5	16	0.78 mm/s			
AIR001		19/10/2012			mm/s dBL	115	101	0.76 11111/3			
GEO001 V		19/10/2012			mm/s	5	101	0.08 mm/s			
GEO001 V GEO001 L											
GEO001 T		19/10/2012 19/10/2012			mm/s mm/s	5 5	1	0.08 mm/s 0.08 mm/s			
		19/10/2012		117	dBL		102	0.00 11111/5			
AIR002 GEO002 V		19/10/2012		0.05	mm/s	115 5	102	0.07 mm/s			
GEO002 V GEO002 L		19/10/2012		0.05		5		0.07 mm/s			
GEO002 L GEO002 T		19/10/2012			mm/s	5	1	0.07 mm/s 0.07 mm/s			
				0.05	mm/s		102	0.07 mm/s			
AIR001		19/10/2012		117	dBL	115	102	0.00 /-			
GEO001 V		19/10/2012		0.05	mm/s	5	1	0.08 mm/s			
GEO001 L		19/10/2012		0.05	mm/s	5	1	0.08 mm/s			
GEO001 T		19/10/2012		0.05	mm/s	5	1	0.08 mm/s			
AIR001		19/10/2012		119	dBL	115	103	0.1 /			
GEO001 V		19/10/2012	10:51	0.1	mm/s	5	2	0.1 mm/s			


APPENDIX 5 - TRIAL BLAST 4 RECORDS

TRIAL BLAST - TEST 4

Trial Blast operation St. Helena tunnel

Project : T2E Baulderstone Date : 19/10/2012

Drill Log-Trial Blast 4

Hole No.1

= 18/10/2012 **Drill date Drill Operator** = Dan Donnelly **Top Elevation** = 107.817 **Total Depth** = 5.8 m Top soil Depth = 1.8 m **Rock Depth** = 4 m Hole size = 76 mm Charging kg = 4.8 kg Stemming Length $= 2.8 \, \text{m}$

Hole No.2

Drill date = 18/10/2012 **Drill Operator** = Dan Donnelly = 107.999 **Top Elevation Total Depth** = 5.4 m **Top soil Depth** = 1.4 m **Rock Depth** = 4 m Hole size = 76 mm Charging kg = 4.8 kg Stemming Length $= 2.8 \, \text{m}$

Date: 19/10/12 St.Helena tunnel Portal Scope of work : Defining K value Location:

Day: Friday Subject : Trial Blast: 4

Distance	Vibration Monitors
Distance	Vibration Monitors
Distance	Vibration Monitors
Distance	Vibration Monitors

From Tria	l Blast 4
168	M
156	M
122	М
114	М

From	Trial	Blast 4

Distance	Vibration Monitors	114 M
Distance	Vibration Monitors	141 M
Distance	Vibration Monitors 5	167 M

BLAST PATTERN referances	
Blast parameters :-Trial Blast 4	
Time Of Blast	14:02
Decks per Hole	1
Rock density (tne/m^3)	2.98
Total Charge Wt/Hole kg	4.8
Total Charge Wt kg	9.6
Total Hole	2
Powder Factor (kg/m³)	0.74
KG/DECK	4.8
Hole Diameter (M)	0.076
Hole Angle (deg)	0
Hole Total depth (M)	5.8

Top soil overburden	1.8
Depth in Rock	4
Stemming in rock (M)	2.8
Sub drill (M)	0
Burden (M)	1.8
Spacing (M)	1.8
Bottom charge height (mm)	0.00
Intermediate charge height (m)	0.00
Yield/ blasthole M³	12.96
Burden stiffness ratio (> 3.5 good frag)	2.22
K Value	

Trial Blast 4 - Vibration Monitors reading

	Trial Blast 4 Vibration Data							
Property owners								
Monitor type	Instantel	Instantel	Instantel	Orica	Instantel	Orica	Instantel	
Distance From Trial Blast 1	168 M	156 M	122 M	114 M	114 M	141 M	167 M	
Data Tran	1.02 mm/s	1.08 mm/s	1.11 mm/s	2.15 mm/s	1.52 mm/s	1.55 mm/s	2.06 mm/s	
Data Vert	0.54 mm/s	0.65 mm/s	1.16 mm/s	1.05 mm/s	0.87 mm/s	1.05 mm/s	0.91 mm/s	
Data Long	0.94 mm/s	1.32 mm/s	2.40 mm/s	1.15 mm/s	1.16 mm/s	1.40 mm/s	2.81 mm/s	
VPPV	1.33 mm/s	1.66 mm/s	2.74 mm/s	2.37 mm/s	1.96 mm/s	1.64 mm/s	3.24 mm/s	
Decibel (db)	95.90	97.50	109.50	98.00	104.90	100.00	101.00	
Highest Peak Chosen	1.02 mm/s	1.32 mm/s	2.40 mm/s	2.15 mm/s	1.52 mm/s	1.55 mm/s	2.81 mm/s	
Q^1/2	2.19	2.19	2.19	2.19	2.19	2.19	2.19	
Value K based on Higest PPV	1057	1215	1491	1198	847	1214	2884	

Trial Blast 4 Highest K value

2884

Date/Time Tran at 14:02:31 October 19, 2012

Trigger Source Geo: 1.00 mm/s Range Geo: 31.7 mm/s 5.0 sec at 2048 sps **Record Time**

Job Number:

Notes

Location 1, Location:

Tintenbar to Ewingsdale Client: Brendon Kirkwood User Name:

General: Trial Blast

Extended Notes

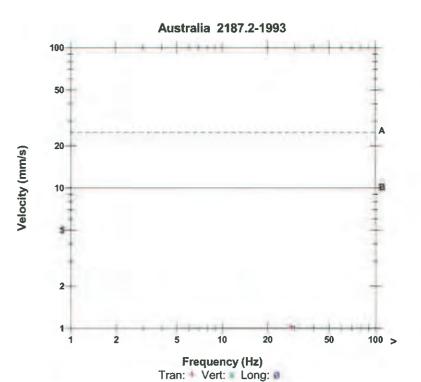
Trial blast at St Helena, South Portal

Microphone Linear Weighting **PSPL** 95.9 dB(L) at 0.397 sec

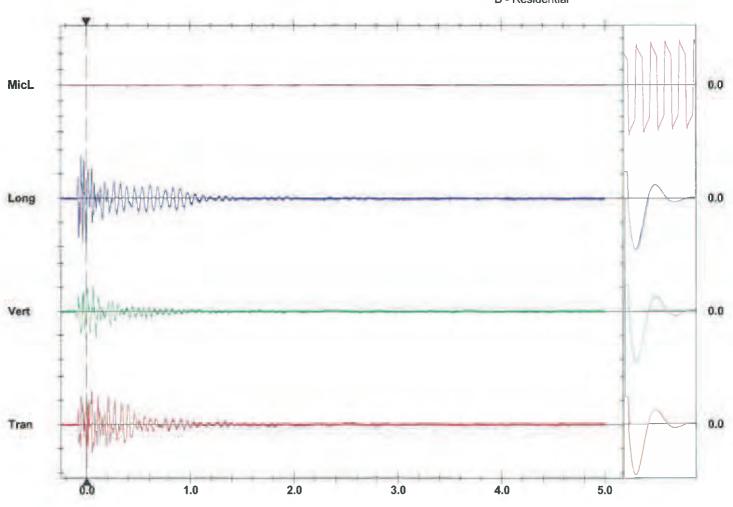
ZC Freq 13.0 Hz

Channel Test Passed (Freq = 20.1 Hz Amp = 513 mv)

	Tran	Vert	Long	
PPV	1.02	0.540	0.937	mm/s
PPV	51.1	45.6	50.4	dB
ZC Freq	28	19.0	26	Hz
Time (Rel. to Trig)	0.000	0.091	-0.004	sec
Peak Acceleration	0.0365	0.0199	0.0365	g
Peak Displacement	0.00441	0.00375	0.00626	mm
Sensor Check	Passed	Passed	Passed	
Frequency	7.5	7.6	7.5	Hz
Overswing Ratio	3.8	3.5	3.8	


Serial Number BE18974 V 10.40-1.1 Minimate Blaster

Battery Level 6.4 Volts


File Name

Unit Calibration September 28, 2012 by Instantel

T974EIAX.O70

A - Industrial **B** - Residential

Time Scale: 0.20 sec/div Amplitude Scale: Geo: 0.500 mm/s/div Mic: 10.00 pa.(L)/div Trigger = ▶

Sensor Check

Date/Time Long at 13:11:42 October 19, 2012

Trigger Source Geo: 1.00 mm/s Range Geo: 31.7 mm/s 5 0 sec at 2048 sps **Record Time**

Job Number:

Notes

Location: Location 2,

Tintenbar to Ewingsdale Client: User Name: Brendon Kirkwood

General: Trial Blast

Extended Notes

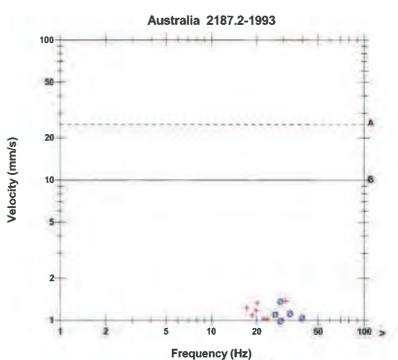
Trial Blast at St Helena, South Portal

Microphone Linear Weighting **PSPL** 100.0 dB(L) at 0.438 sec.

ZC Freq 5.4 Hz

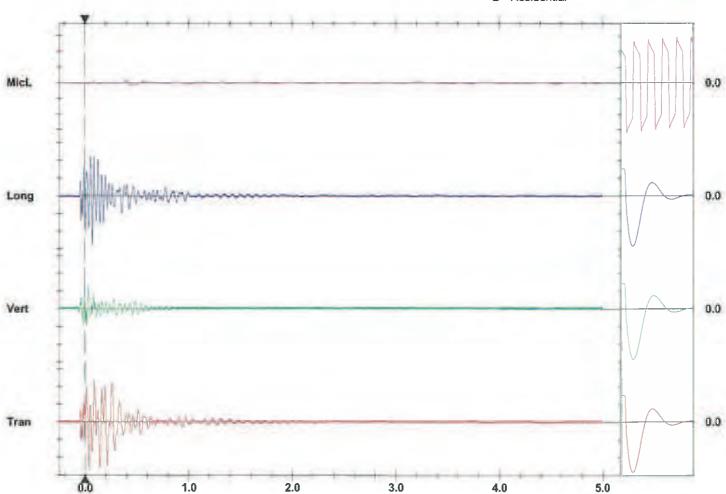
Channel Test Passed (Freq = 20.1 Hz Amp = 554 mv)

	Tran	Vert	Long	
PPV	1.37	0.635	1.38	mm/s
PPV	53.7	47.1	53.8	dB
ZC Freq	31	27	28	Hz
Time (Rel. to Trig)	0.037	0.030	0.071	sec
Peak Acceleration	0.0298	0.0199	0.0298	g
Peak Displacement	0.00982	0.00323	0.00653	mm
Sensor Check	Passed	Passed	Passed	
Frequency	7.5	7.2	7.6	Hz
Overswing Ratio	3.9	3.9	3.8	


Serial Number BE18975 V 10.40-1.1 Minimate Blaster

Battery Level 6.4 Volts

File Name


Unit Calibration September 28, 2012 by Instantel

T975EIAV.BIO

Tran: * Vert: Long: 0

A - Industrial B - Residential

Trigger = ▶

Time Scale: 0.20 sec/div Amplitude Scale: Geo: 0.500 mm/s/div Mic: 10.00 pa.(L)/div

Sensor Check

Date/Time Long at 14:02:31 October 19, 2012

Trigger Source Geo: 1.00 mm/s Geo: 31.7 mm/s Range **Record Time** 5.0 sec at 2048 sps

Job Number:

Notes

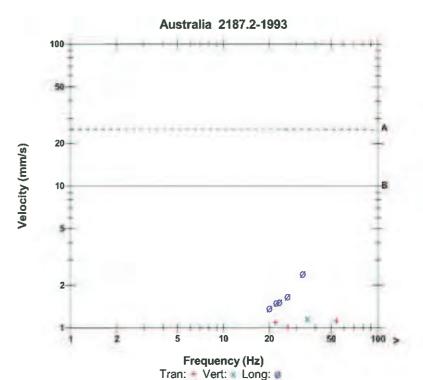
Location: Location 3, Client: Tintenbar to Ewingsdale Brendon Kirkwood User Name:

General: **Trial Blast**

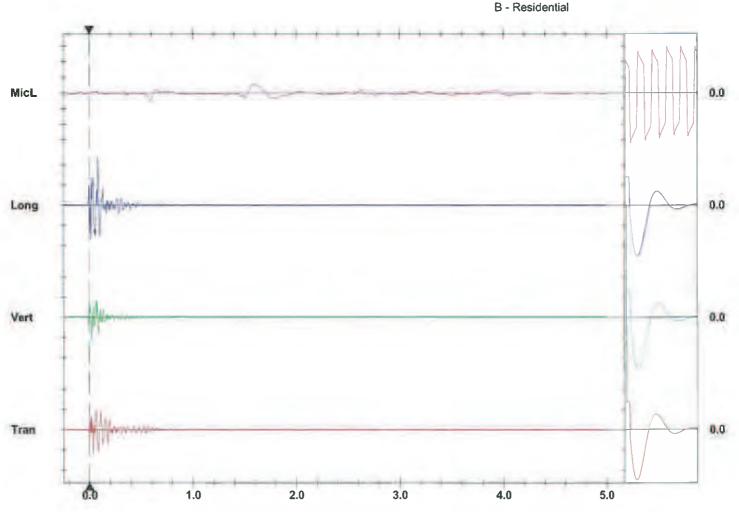
Extended Notes

Trial blast at St Helena, South Portal

Linear Weighting Microphone 109.5 dB(L) at 0.593 sec **PSPL ZC Freq** 5.8 Hz


Channel Test Passed (Freq = 20.5 Hz Amp = 474 mv)

	Tran	Vert	Long	
PPV	1.11	1.16	2.40	mm/s
PPV	51.9	52.3	58.6	dB
ZC Freq	54	35	33	Hz
Time (Rel. to Trig)	0.038	0.021	0.082	sec
Peak Acceleration	0.0365	0.0365	0.0729	g
Peak Displacement	0.00729	0.00402	0.0128	mm
Sensor Check	Passed	Passed	Passed	
Frequency	7.8	7.2	7.4	Hz
Overswing Ratio	3.4	3.7	3.6	


Serial Number BE18976 V 10.40-1.1 Minimate Blaster **Battery Level** 6.3 Volts

Unit Calibration September 28, 2012 by Instantel

T976EIAX.O70 File Name

A - Industrial

Time Scale: 0.20 sec/div Amplitude Scale: Geo: 1.000 mm/s/div Mic: 10.00 pa.(L)/div Trigger = ▶

Sensor Check

Long at 14:02:31 October 19, 2012 Date/Time

Trigger Source Geo: 1.00 mm/s Range Geo: 31.7 mm/s 5.0 sec at 2048 sps **Record Time**

Job Number:

Notes

Location: Location 4, Tintenbar to Ewingsdale Client:

Brendon Kirkwood User Name: Trial Blast General:

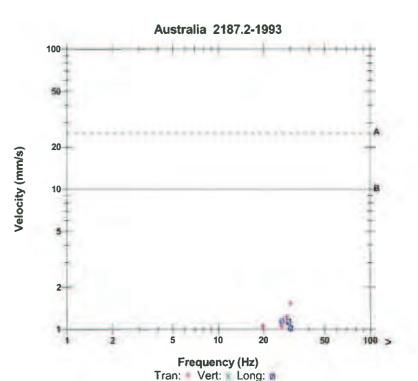
Extended Notes

Trial blast at St Helena, South Portal.

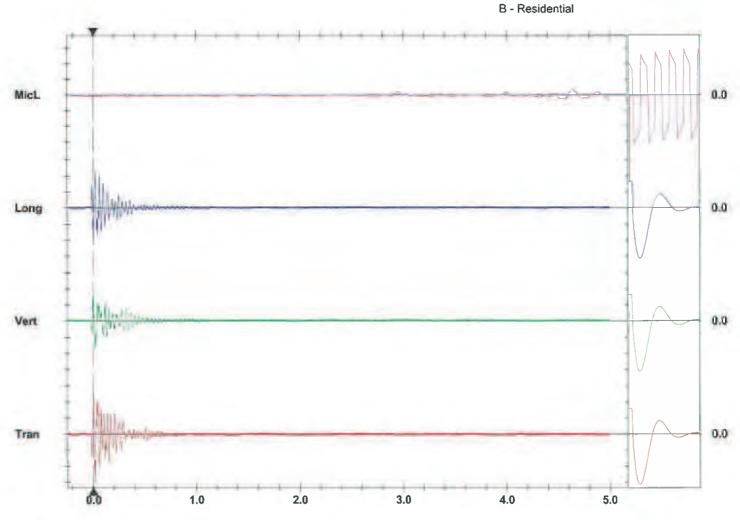
Microphone Linear Weighting 104.9 dB(L) at 4.637 sec **PSPL**

ZC Freq 5.4 Hz

Channel Test Passed (Freq = 19.7 Hz Amp = 514 mv)


	Tran	Vert	Long	
PPV	1.52	0.873	1.16	mm/s
PPV	54.7	49.8	52.3	dB
ZC Freq	30	20	26	Hz
Time (Rel. to Trig)	0.021	0.016	0.020	sec
Peak Acceleration	0.0663	0.0398	0.0331	g
Peak Displacement	0.00762	0.00614	0.00683	mm
Sensor Check	Passed	Passed	Passed	
Frequency	7.5	7.6	7.3	Hz
Overswing Ratio	3.8	3.6	3.9	

BE18977 V 10.40-1.1 Minimate Blaster Serial Number **Battery Level**


6.4 Volts

Unit Calibration September 28, 2012 by Instantel File Name

T977EIAX.O70

A - Industrial

Time Scale: 0.20 sec/div Amplitude Scale: Geo: 0.500 mm/s/div Mic: 10.00 pa.(L)/div

Date/Time Long at 14:02:32 October 19, 2012

Trigger Source Geo: 1.00 mm/s Range Geo: 31.7 mm/s Record Time 5.0 sec at 2048 sps

Job Number: 1

Notes

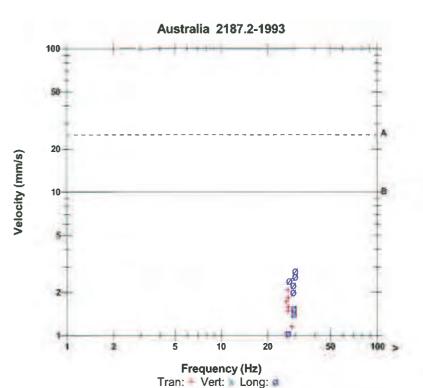
Location: Location 5, Client: Tintenbar to Ewingsdale User Name: Brendon Kirkwood Trial Blast

Extended Notes

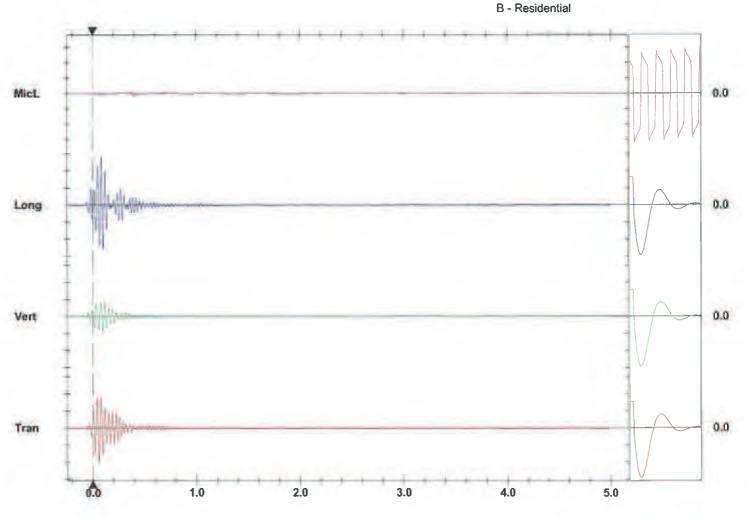
Trial blast at St Helena, South Portal.

Microphone Linear Weighting
PSPL 101.0 dB(L) at 0.400 sec

ZC Freq 8.1 Hz


Channel Test Passed (Freq = 19.7 Hz Amp = 537 mv)

	Tran	Vert	Long	
PPV	2.06	0.905	2.81	mm/s
PPV	57.3	50.1	60.0	dB
ZC Freq	27	28	30	Hz
Time (Rel. to Trig)	0.060	0.093	0.082	sec
Peak Acceleration	0.0365	0.0232	0.0563	g
Peak Displacement	0.0115	0.00564	0.0147	mm
Sensor Check	Passed	Passed	Passed	
Frequency	7.5	7.6	7.9	Hz
Overswing Ratio	3.7	3.5	3.4	


Serial Number BE18978 V 10.40-1.1 Minimate Blaster Battery Level 6.4 Volts

Unit Calibration September 28, 2012 by Instantel

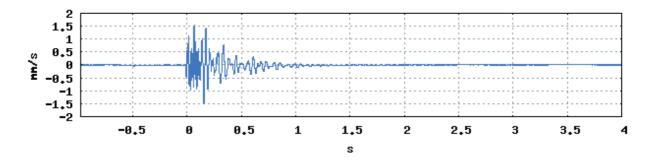
File Name T978EIAX.O80

A - Industrial

Time Scale: 0.20 sec/div Amplitude Scale: Geo: 1.000 mm/s/div Mic: 10.00 pa.(L)/div Trigger = ————

Sensor Check

Wave Form Page 1 of 2


Wave Form

									Prin	٠ .
leasurement Point	AIR001			GEO001		GEO001		GEO0	01	
lacement										
xis	Air shock			Vertical		Longitudinal	I	Trans	versal	
ound										
me	19/10/201	12 13:02:3	35	19/10/2012	13:02:35	19/10/2012	13:02:35	19/10	/2012 13:02	:35
lue	100 dBL			1.05 mm/s		1.40 mm/s		1.55 r		
	2.07 Pa			0.25 m/s2		0.39 m/s2		0.53 r	m/s2	
	0.03 Pas			5.11 um		8.84 um		7.92 ı		
	17.5 Hz			29.3 Hz		22.1 Hz		57.9 l	Hz	
splay Format	Picture Create									
				AIR00	1 Air shock					
2	:	. i		 	<u>-</u>	 				
1		- 4					(94)	istrat.	Ut all has only	
and the second	diam'r.	أداناهاط	سناوال ا	da american	and the	and the second				
2 9 Market	THE WHAT IS	HARALINA.	1		The state of the s		THE PERSON NAMED IN	The state of the s		u, ti
and the second	Talphia and the	4	1 7 7 1 1				THE PERSON NAMED IN			10, 11
2 0 m	Toleran Maria Maria	A PARTIE		A TOUR OF PARTY OF PARTY OF	Transfer Transfer					
© 0 -1 -2	Palata Apparlia		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A TOWN OF PARTY OF PROPERTY OF	The state of the s					
© 8 -1 -2	0.5	8	0.5	1	1.5	2	2.5	3	3.5	
© 0 -1 -2	9.5	0	0.5	1	1.5 S	2	2.5	3	3.5	
0 -1 -2	0.5	8	0.5			2	2.5	3	3.5	
e 0 -1 -2 -	9.5	9	0.5		s	2	2.5	3	3.5	
1.5	9.5	8	0.5		s	2	2.5	3	3.5	
1.5	9.5	8	0.5		s	2	2.5	3	3.5	
1.5	0.5	8	0.5		s	2	2.5	3	3.5	He public
1.5 1.5 1.5 0.5	9.5	9	0.5		s	2	2.5	3	3.5	
1.5 1.5 1.5 0.5 0.5	9.5	8	0.5		s	2	2.5	3	3.5	
1.5 1.5 1.5 0.5		111111111111111111111111111111111111111	han haire	GEO00	S 01 Vertical					
1.5 1.5 1.5 0.5 0.5 -1 -1.5	0.5 -0.5	9	0.5	GEO00	S 01 Vertical	2	2.5	3	3.5	
1.5 1.5 1.5 0.5 0.5 -1 -1.5		111111111111111111111111111111111111111	han haire	GEO00	S 01 Vertical					
2 1.5 1.5 1 0.5 0.5 -1 -1.5		111111111111111111111111111111111111111	han haire	GE000	S 01 Vertical 1.5	2				
2 1.5 1 0.5 1 0.5 -1 -1.5 -2		111111111111111111111111111111111111111	han haire	GE000	S 01 Vertical	2				
2 1.5 1 0.5 1 0.5 -1 -1.5 -2		111111111111111111111111111111111111111	han haire	GE000	S 01 Vertical 1.5	2				
2 1.5 1 0.5 1 0.5 -1 -1.5 -2		111111111111111111111111111111111111111	han haire	GE000	S 01 Vertical 1.5	2				
2 1.5 1 0.5 1 0.5 -1 -1.5 -2		111111111111111111111111111111111111111	han haire	GE000	S 01 Vertical 1.5	2				
2 1.5 1.5 0.5 0.5 -1.5 -1.5 -1.5 -2		111111111111111111111111111111111111111	han haire	GE000	S 01 Vertical 1.5	2				
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		111111111111111111111111111111111111111	han haire	GE000	S 01 Vertical 1.5	2				
2 1.5 1.5 0.5 0.5 -1.5 -1.5 -2 0.5 0.5 0.5 0.5 -1.5 -1.5 -1.5 -1.5		111111111111111111111111111111111111111	han haire	GE000	S 01 Vertical 1.5	2				
2 1.5 1.5 0.5 0.5 -1.5 -1.5 -2 2 1.5 0.5 0.5 -1.5 -1.5 -2		111111111111111111111111111111111111111	han haire	GEO001	S 01 Vertical 1.5	2				

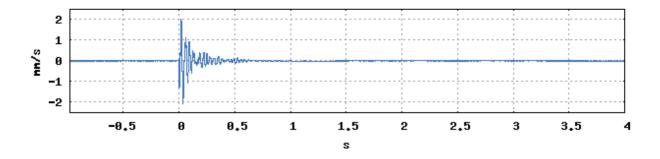
Wave Form Page 2 of 2

Demo Office

Wave Form

Wave Form Page 1 of 2

Demo Office

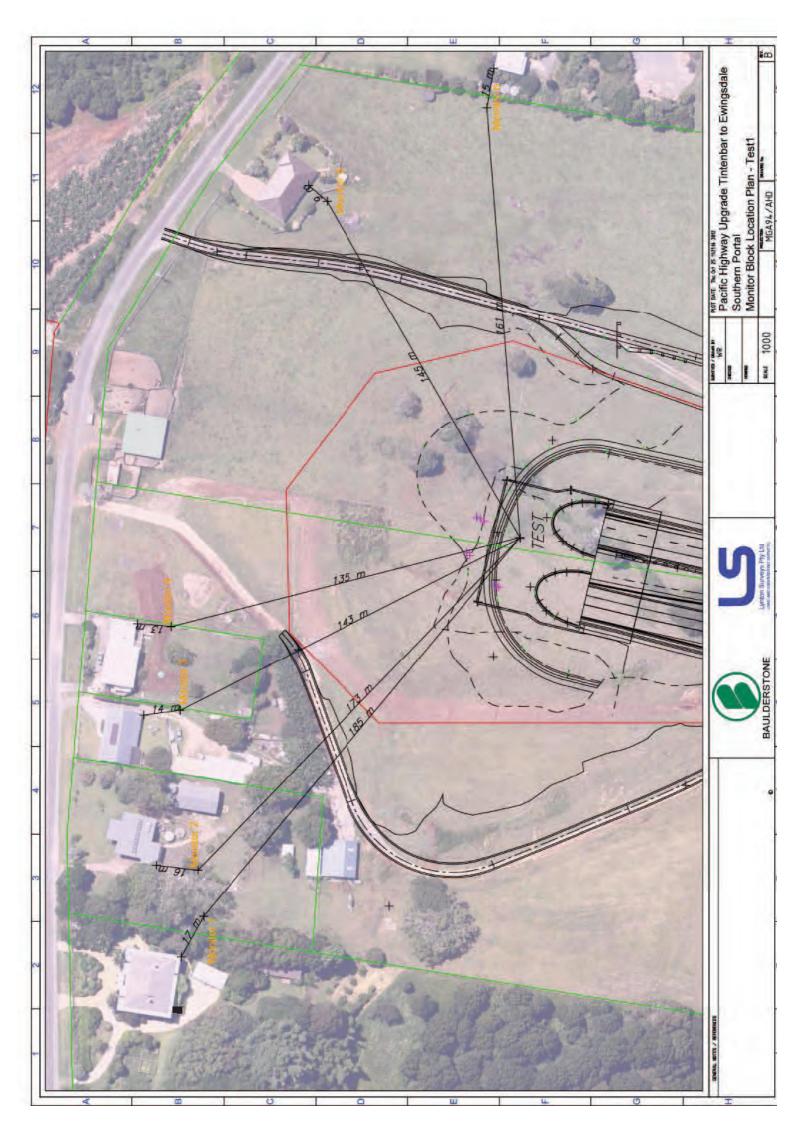

Wave Form

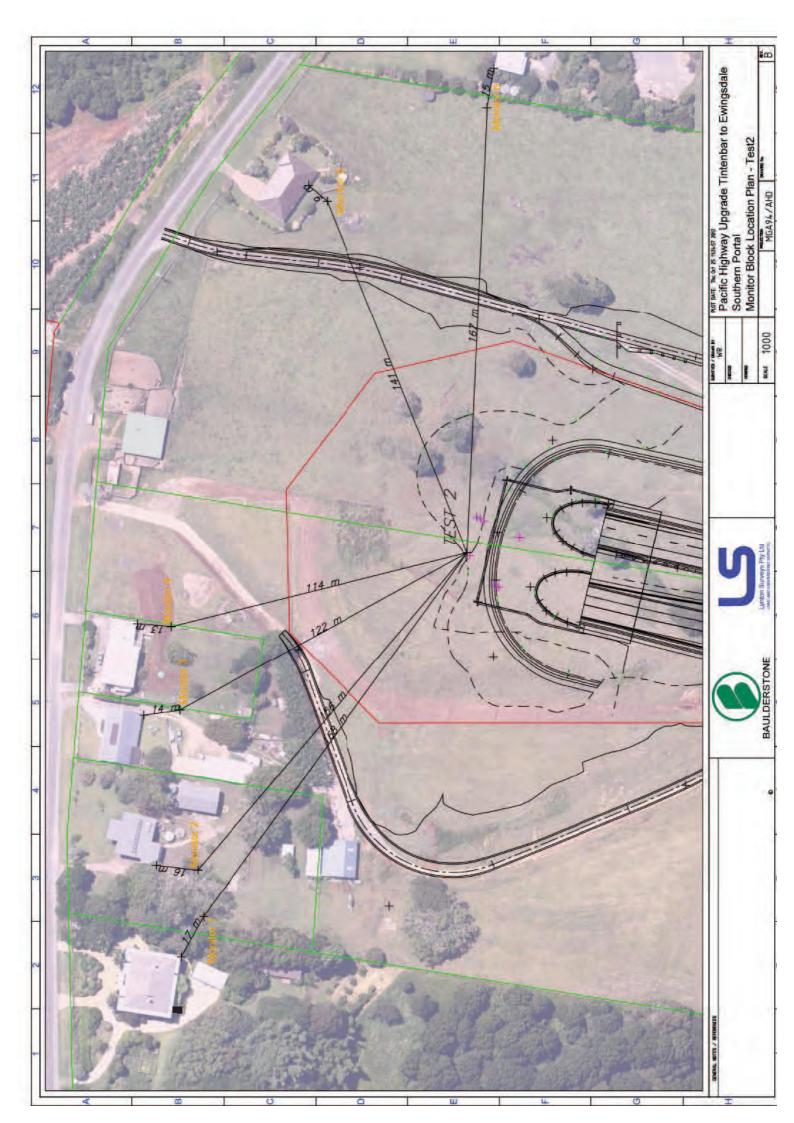
Measurement Point AIR002 Placement Axis Air shock Round 19/10/2012 13:02:35 Value 98.0 dBL 1.37 Pa 0.04 Pas 6.56 Hz Create	Ve 19 1. 0.	ertical 0/10/2012 13: 05 mm/s 37 m/s2 52 um 4.9 Hz	.02:35	GEO002 Longitudin 19/10/201 1.15 mm/s 0.42 m/s2 5.15 um 31.1 Hz	2 13:02:35	GEO002 Transve 19/10/2 2.15 mi 0.53 m, 10.0 un 22.7 Hz	ersal 2012 13:02: m/s /s2 m	35
Air shock Sound Sime 19/10/2012 13:02:35 98.0 dBL 1.37 Pa 0.04 Pas 6.56 Hz Picture Create 1-5 1 9.5 -0.5 -1 -1.5 -2 -8.5 0 1 9.5 0 1 9.5 0 1 9.5 0 1 9.5 0 1 9.5 0 1 9.5 0 1 9.5 0 1 9.5 0 1 9.5 0 1 1 1 1 1 1 1 1 1 1 1 1	19 1. 0. 7.	0/10/2012 13: 05 mm/s 37 m/s2 52 um I.9 Hz		19/10/201 1.15 mm/s 0.42 m/s2 5.15 um	2 13:02:35	19/10/2 2.15 mi 0.53 m _i 10.0 un	2012 13:02: m/s /s2 m	35
19/10/2012 13:02:35 98.0 dBL 1.37 Pa 0.04 Pas 6.56 Hz 1.5 1 0.5 1 0.5 -0.5 -1 -1.5 -2 -0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19 1. 0. 7.	0/10/2012 13: 05 mm/s 37 m/s2 52 um I.9 Hz		19/10/201 1.15 mm/s 0.42 m/s2 5.15 um	2 13:02:35	19/10/2 2.15 mi 0.53 m _i 10.0 un	2012 13:02: m/s /s2 m	35
19/10/2012 13:02:35 98.0 dBL 1.37 Pa 0.04 Pas 6.56 Hz splay Format Picture Create 1.5 1 0.5 -0.5 -1 -1.5 -2 -0.5 0 0 0 0	1.0 0.1 7.	05 mm/s 37 m/s2 52 um I.9 Hz		1.15 mm/s 0.42 m/s2 5.15 um	5	2.15 mi 0.53 m _i 10.0 un	m/s /s2 m	35
1.5 1.5 -0.5 -1.5 -1.5 -1.5 -2 -0.5 -1.5 -1.5 -2 -0.5 -1.5 -1.5 -2 -0.5 -1.5 -1.5 -2 -0.5 -1.5 -1.5 -2 -0.5 -1.5 -1.5 -2 -0.5 -1.5 -1.5 -2 -0.5 -1.5 -1.5 -2 -0.5 -1.5 -1.5 -2 -0.5 -1.5 -1.5 -2 -0.5 -1.5 -1.5 -2 -0.5 -1.5 -1.5 -2 -0.5	1.0 0.1 7.	05 mm/s 37 m/s2 52 um I.9 Hz		1.15 mm/s 0.42 m/s2 5.15 um	5	2.15 mi 0.53 m _i 10.0 un	m/s /s2 m	35
1.37 Pa 0.04 Pas 6.56 Hz splay Format Picture Create 1.5 9.5 -0.5 -1 -1.5 -2 -0.5 0 1.5 1.5 1.5 1.5 1.5 1.5 1.	0. 7.	37 m/s2 52 um i.9 Hz	Air shock	0.42 m/s2 5.15 um		0.53 m, 10.0 un	/s2 m	
0.04 Pas 6.56 Hz splay Format Picture Create 1.5 1 0.5 1 0.5 -0.5 -1 -1.5 -2 -0.5 0 1 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.	52 um I.9 Hz	Air shock	5.15 um		10.0 un	m	
6.56 Hz Splay Format Picture Create 1.5 1 0.5 1 0.5 -0.5 -1 -1.5 -2 -0.5 0 0 1.5 1 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		I.9 Hz	Air shock					
2 1.5 1 0.5 -0.5 -1 -1.5 -2 -0.5 0 0 1.5 1 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14		Air shock	31.1 Hz		22.7 Hz	z	
Create 1.5 1.5 1.5 -0.5 -1.5 -1.5 -2 -0.5 0 0.5 -1.5 -1.5 -2 -0.5 0 1.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0 0.5 0 0 0.5 0 0 0 0	Mary Control	AIROO2	Air shock					
1.5 0.5 0.5 0.5 -0.5 -1 -1.5 1 0.5 1 0.5 1 0.5 -1 -1.5 -1		AIROO2	Air shock	74. VC.10		M		
1.5 1 0.5 -0.5 -1 -1.5 -2 -0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Here		1	M. ACII				
1 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Holy			Mar At II				
9.5 -8.5 -1 -1.5 -2 -8.5 8 1 0.5 -1 -1.5 -1 -1.5 -2 -8.5 8	How			MA ACIO		Maria Maria		4.
1.5 -0.5 -1 -1.5 -2 -0.5 0.5 0.5 -1 -1.5 -1 -1.5 -2 -0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	THE P	A Particular	A STATE OF	AND BUILDING		T THE LOCAL PROPERTY AND ADDRESS OF THE PARTY.	4 h m.	h -A-
1.5 -0.5 0.5 0.5 -1 -1.5 -2 -0.5 0.5 -1 -1.5 -2 -0.5 0.5 0.5 -1 -1.5 -2 -0.5 0.5 -1	1				CANDALL		∄ /\/™¥	11
-1.5 -0.5 0 0.5 0 0.5 -1 -1.5 -2 -0.5 0 0 0 0 0 0 0 0 0 0 0 0 0				THE RESIDENCE	Arraga Mar		W N	14
-2 -0.5 0 1.5 1 0.5 1 -0.5 -1 -1.5 -2 -0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	()
-0.5 0 1.5 1 0.5 1 -0.5 -0.5 -1 -1.5 -2 -0.5 0 1.5 1 0.5 0 0.5 0								
1.5 1.5 0.5 0.5 -1.5 -2 -0.5 0.5 0.5 0.5 0.5 0.5	0.5	1	1.5	2	2.5	3	3.5	
1.5 1.5 0.5 0.5 -0.5 -1 -1.5 -2 -0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5			s					
1.5 1.5 0.5 0.5 -0.5 -1 -1.5 -2 -0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		GE0002	Vertical					
0.5 0.5 0.5 -1.5 -2 -0.5 0.5 0.5 1 0.5 0.5								
0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
-1 -1.5 -2 -0.5 0								
-1 -1.5 -2 -0.5 0.5	Home	-		-		-		_
-1.5 -2 -0.5 0								
-2 -0.5 0								
1.5 1 0.5 0.5	0.5	<u>1</u>	1.5	2	2,5	3	3.5	
0.5 0.5	0,0	-	s	_	-,0	Ū	0.0	
φ θ.5 ξ θ			3					
φ θ.5 ξ θ		GEO002 Lo	ongitudina	ıl				
9.5 2 9						!		
2 0								
<u> </u>								
	hopom		1					
= -0.5 -1								
-1.5								
-2 -0.5 0		1	1.5	2	2.5	3	3.5	
-*	0.5	_	s	_	_ • -	_	- 	

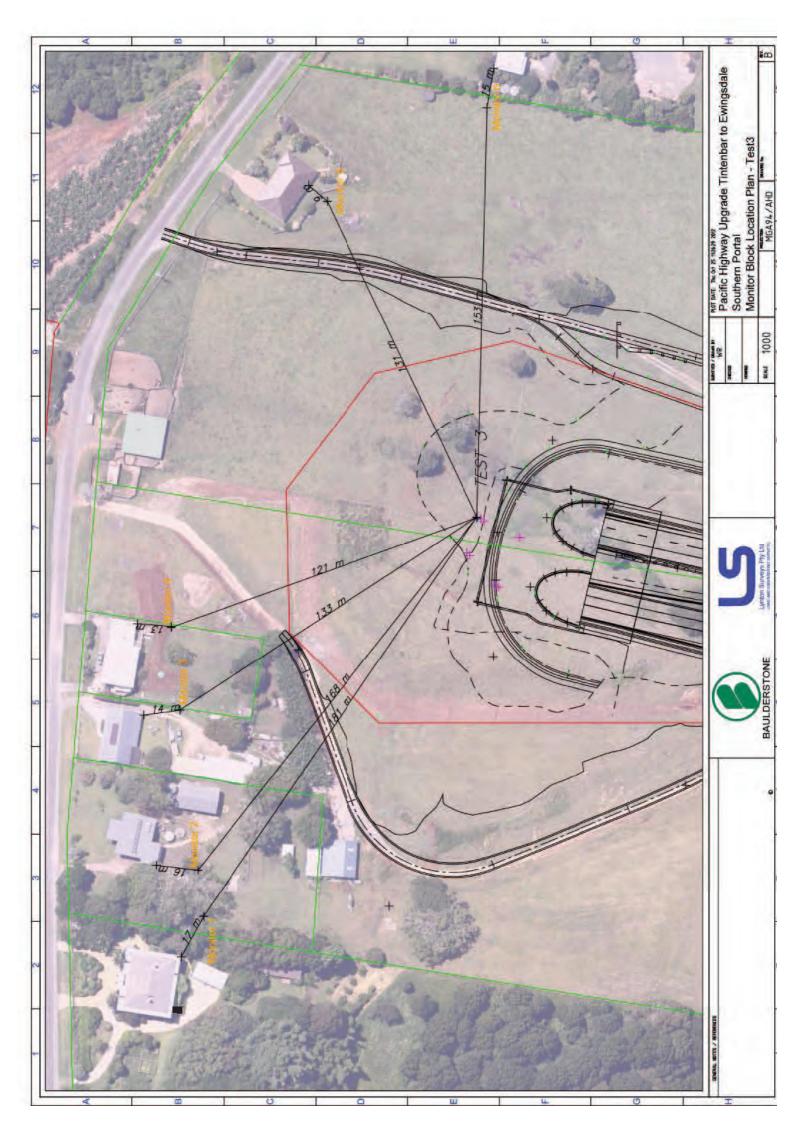
Wave Form Page 2 of 2

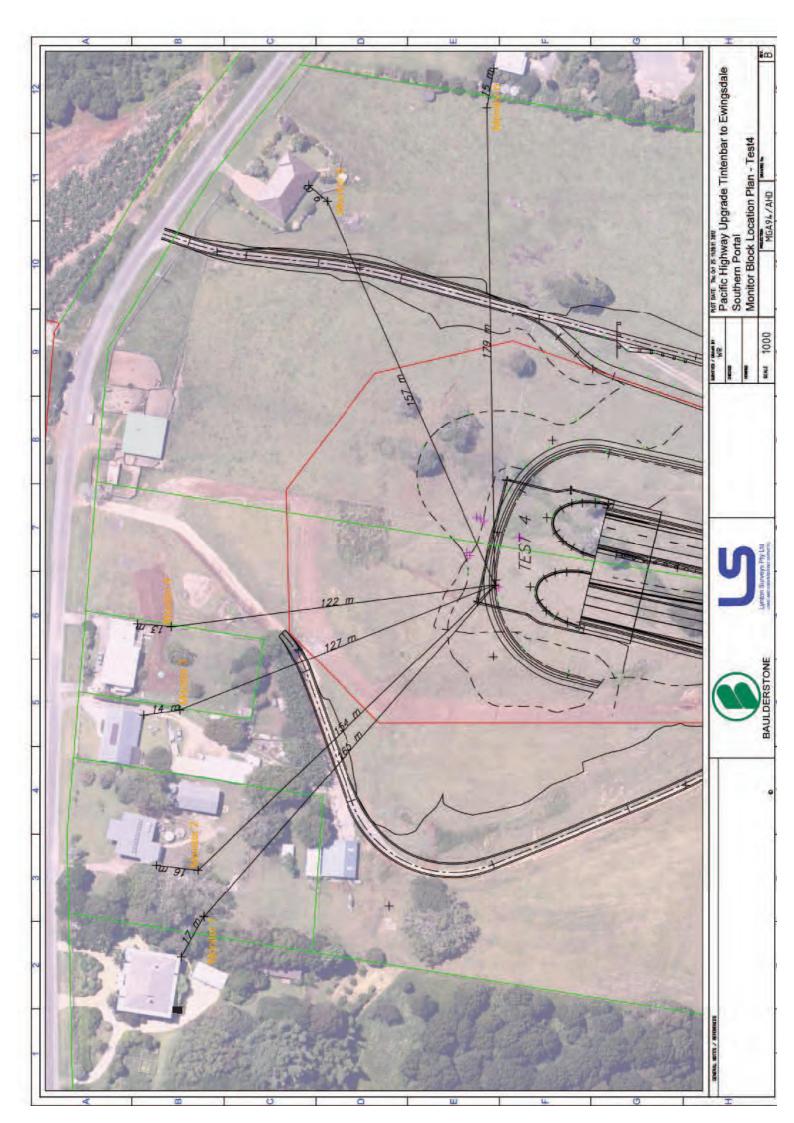
Demo Office

Wave Form


Orica SIGICOm vibration unit setup for Trial Blast 0n the 19/10/12.


Unit AIR001 =


Unit AIR002 = Orica vibration units is registed based on QLD time.


Measurement Point	Placement	Date	Time	Value	Unit	Limit	Part of Limit	Vppv	Distance	Round	Remark
GEO001 L	ridecinent	19/10/2012		14.9	mm/s	5	298	* PP *	Distance	Hourid	rterriari
GEO001 T		19/10/2012		16.6	mm/s	5	332				
AIR001		19/10/2012		118	dBL	115	103				
GEO001 V		19/10/2012		0.05	mm/s	5	1	0.09 mm/s			
GEO001 L		19/10/2012		0.05	mm/s	5	1	0.09 mm/s			
GEO001 T		19/10/2012		0.05	mm/s	5	1	0.09 mm/s			
AIR001		19/10/2012		115	dBL	115	100	0.05 11111/3			
GEO001 V		19/10/2012		0.05	mm/s	5	1	0.06 mm/s			
GEO001 L		19/10/2012		0.05	mm/s	5	1	0.06 mm/s			
GEO001 T		19/10/2012		0.05	mm/s	5	1	0.06 mm/s			
AIR001	+	19/10/2012		116	dBL	115	101	0.00 11111/3			
GEO001 V	+	19/10/2012		0.05	mm/s	5	1	0.09 mm/s			
GEO001 V		19/10/2012		0.05	mm/s	5	1	0.09 mm/s			
GEO001 T						5	1				
		19/10/2012		0.05	mm/s dBL			0.09 mm/s			
AIR001 GEO001 V		19/10/2012		117 0.05	mm/s	115 5	102	0.00 mana/a			
		19/10/2012 19/10/2012						0.09 mm/s			
GEO001 L				0.05	mm/s	5	1	0.09 mm/s			
GEO001 T		19/10/2012		0.05	mm/s	5	1	0.09 mm/s			
AIR001		19/10/2012		100	dBL	115	87				ŀ
AIR002		19/10/2012		98	dBL	115	85	4.64			4
GEO001 V		19/10/2012	_	1.05	mm/s	5	21	1.64 mm/s			TR AL BLAST
GEO001 L		19/10/2012		1.4	mm/s	5	28	1.64 mm/s			BL/
GEO001 T		19/10/2012	_	1.55	mm/s	5	31	1.64 mm/s			¥
GEO002 V		19/10/2012		1.05	mm/s	5	21	2.37 mm/s			쑽
GEO002 L		19/10/2012		1.15	mm/s	5	23	2.37 mm/s			
GEO002 T		19/10/2012		2.15	mm/s	5	43	2.37 mm/s			
AIR002		19/10/2012		120	dBL	115	104				
GEO002 V		19/10/2012		0.05	mm/s	5	1	0.07 mm/s			
GEO002 L		19/10/2012		0.05	mm/s	5	1	0.07 mm/s			
GEO002 T		19/10/2012		0.05	mm/s	5	1	0.07 mm/s			
AIR001		19/10/2012		123	dBL	115	107				
GEO001 V		19/10/2012		0.05	mm/s	5	1	0.07 mm/s			
GEO001 L		19/10/2012		0.05	mm/s	5	1	0.07 mm/s			
GEO001 T		19/10/2012		0.05	mm/s	5	1	0.07 mm/s			
AIR001		19/10/2012		116	dBL	115	101				
GEO001 V		19/10/2012		0.05	mm/s	5	1	0.09 mm/s			
GEO001 L		19/10/2012			mm/s	5	1	0.09 mm/s			
GEO001 T		19/10/2012				5	1	0.09 mm/s			
AIR001		19/10/2012		116	dBL	115	101				
GEO001 V		19/10/2012			mm/s	5	1	0.08 mm/s			
GEO001 L		19/10/2012			mm/s	5	1	0.08 mm/s			
GEO001 T		19/10/2012		0.05	mm/s	5	1	0.08 mm/s			
AIR001		19/10/2012		118	dBL	115	103				
GEO001 V		19/10/2012	12:29	0.05	mm/s	5	1	0.08 mm/s			
GEO001 L		19/10/2012	12:29	0.05	mm/s	5	1	0.08 mm/s			
GEO001 T		19/10/2012	12:29	0.05	mm/s	5	1	0.08 mm/s			
AIR001		19/10/2012	12:27	116	dBL	115	101				
GEO001 V		19/10/2012	12:27	0.05	mm/s	5	1	0.08 mm/s			
GEO001 L	1	19/10/2012		0.05	mm/s	5	1	0.08 mm/s		1	
GLOODI L		13/10/2012							 		
			12:27	0.05	mm/s	5	1	0.08 mm/s			
GEO001 T		19/10/2012		0.05	mm/s dBL		1 102	0.08 mm/s			
GEO001 T AIR001		19/10/2012 19/10/2012	12:13	117	dBL	5 115 5					
GEO001 T		19/10/2012	12:13 12:13	117 0.05		115	102	0.08 mm/s 0.08 mm/s 0.08 mm/s			

APPENDIX 6 - MONITOR DISTANCE TO HOUSES WITH EACH TRIAL BLAST EVENT (Additional input)

APPENDIX 7 - John Heilig Review

- Tunnelling
- Construction
- Open Pit Mining
- Quarrying
- Underground Mining
- Blast Design
- Blast Permitting
- Vibration Monitoring
- Vibration Analysis
- Expert Witness

91 Burdekin Drive Sinnamon Park. QLD. 4073. Australia P.O. Box 176 Sumner Park BC. QLD. 4074. Australia

> **Telephone** +61 7 3715 7599 Facsimile +61 7 3715 7588

Email group@heiligandpartners.com.au www.heiligandpartners.com.au

vibration management software

Ref:jhh:T2E Blast review.docx

Monday, October 29, 2012

Shashi Ranggaraja Baulderstone Pty Ltd (NSW) Pacific Highway Upgrade Tintenbar to Ewingsdale

RE: Review of T2E trial blast data

Dear Shashi,

Further to the data provided from the T2E project, and in particular the measurement of vibration levels from the trial blasting completed as part of the planned blasting areas, please accept this technical letter as a review of the blasting activities. The technical letter covers the results associated with the four trial blasts completed at the portal on the 19th October, 2012.

Four trial blasts were initiated on the 19th October 2012. Each blast was monitored at up to six locations varying between 114 to 181 metres from the blast, noting that at some locations for each blast, the level of vibration was not recorded. The resulting levels of vibration have been analysed to better understand the relationship between vibration level, distance and explosive quantity. This section provides the results of the trial blasts undertaken to assess the level of vibration from the planned blasting activities required as part of the project.

The primary factors known to influence the level of ground vibration from blasting include:

- The weight of explosive per blasthole;
- The distance between the blastholes and the point of measurement;
- The local geological conditions, including rock mass conditions.

The blasting was planned with an explosive weight varying between 2.4 and 4.8 kilograms per blasthole for both patterns.

The vibration data have been analysed using techniques consistent with the recommendations provided in the Australian Standard AS2187.2. The form of the equation typically used to predict the level of vibration for a given explosive quantity and distance is used and has the following form:

$$PPV \quad K\left(\frac{d}{\sqrt{w}}\right)^{\alpha}$$

where PPV is the peak particle velocity measured in mm/s, d is the distance from the blast measured in metres, w is the maximum quantity of explosive per delay, and K and α are site constants. The term in brackets (d/ \sqrt{w}) is referred to as the scaled distance term.

Figure 1 shows the recorded vibration data for each of the trials according to the production blast. The values on the Y axis indicate the measured vibration level (vector sum value). The values on the X axis represent the value of the scaled distance term, calculated as the distance between the blast and the monitoring site divided by the square root of the explosive quantity.

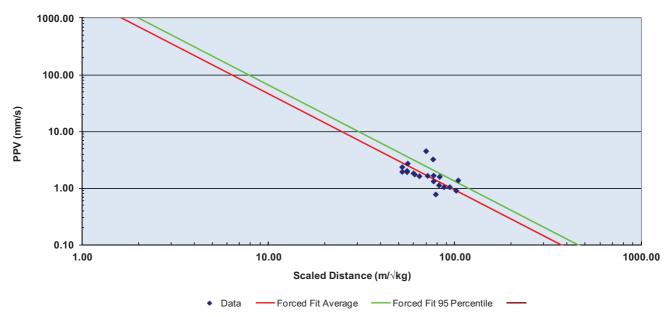


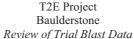
Figure 1 – Graph showing measured vibration levels as a function of the scaled distance term

A relationship between the level of vibration, the quantity of explosive and the distance from the blast has been derived from vibration measurements collected from the different monitoring locations and two trial blasts. The regressed equation is as follows:

$$PPV_{Average} = 2160 \left(\frac{d}{\sqrt{w}}\right)^{1.68}$$

To account for variability in the explosive performance and rock mass variations, best practice is to predict vibration levels as the "effective maximum" where this level exceeds 95% of all measurements. The equation is as follows:

$$PPV_{Maximum\ Blasting}$$
 3120 $\left(\frac{d}{\sqrt{w}}\right)^{1.68}$


where $PPV_{Maximum\ Blasting}$ is the "effective maximum vibration level", d is the distance between the blasthole and the point of measurement and w is the maximum quantity of explosive per blasthole.

The equations could be compared to the preliminary modelling which was based upon the following equation:

$$PPV_{\text{Preliminary Modelling}} \quad 3090 \left(\frac{d}{\sqrt{w}}\right)^{1.60}$$

The following comments are also offered with respect to the trial data:

- The data are collected over a relatively narrow band of distances ranging only between 114
 metres and 181 metres. Extrapolating beyond this range may provide erroneous results. Ideally,
 recording of some vibration levels nearer to the blast (say 50 metres) as well as information at
 further distances (say 250 metres) would assist in better defining the attenuation of vibration.
- The data indicate that the vibration levels measured at expected when compared to the levels from the same blast recorded at the other properties. As

an example, for the third blast a level of 4.54mm/s was measured at the property at 153 metres from the blast whilst at the closer property which was 131 metres from the same blast, the levels was less than half at 1.84mm/s. The results all show similar cases of measuring higher vibration levels when compared to other closer points from the blast.

It is not suggested that any further adjustments to the preliminary modelling are completed until some further data are collected, particularly information at the specific property. Analyses from subsequent blasting would also be enhanced by recording vibration levels at two additional distances of say 50 and 250 metres to assist in defining the attenuation parameter.

As always, you are most welcome to contact me at your convenience to discuss in further detail any of the issues raised in this letter.

Yours truly,

John Heilig

Dr. John Heilig Principal - Heilig & Partners Pty Ltd

Modification request for an extension to blasting hours, airblast overpressure and vibration limits

Pacific Highway Upgrade - Tintenbar to Ewingsdale

Appendix 13 – Consultation with ERG Member Agencies

RPT-ENV-004 Page 112 of 112

Report name	Pacific Highway Upgrade - Tintenbar to Ewingsdale – Proposed Blasting Modification							
Agency name	Environment Protection Authority							
Section	Comment	Adequacy	Merit	How addressed by RMS				
		Tick where applicable						
	1. The EPA has no objection to increased ground vibration limits at the most affected residence or noise sensitive location as detailed in section 2.9 of the Baulderstone Modification Request provided agreement is reached with the occupier that a higher limit may apply (as per condition L3.5 of Environmental Protection Licence 20138)			Noted. This is as proposed in the Modification Request for an Extension to Blasting Hours, Air Blast Overpressure and Vibration Limits.				
	2. Continuation of blasting at the greater limit should be on a blast by blast basis and subject to there being no unresolved complaints.			Agreed. As proposed in the Modification Request for an Extension to Blasting Hours, Air Blast Overpressure and Vibration Limits, operation at the higher blast vibration and over pressure limits is subject to the written and continued consent of the affected property owner. Consultation with affected residents, including the signed agreement included the statement: - "If you consent to the proposal to increased blasting vibration and airblast overpressure limits at the St Helena tunnel, as set out in this letter, please sign the consent declaration below and return in the reply paid envelope provided at your earliest convenience. If the increase in controlled blasting and airblast overpressure limits are unsatisfactory due to vibration or any other impacts you may experience, please notify the Tintenbar to Ewingsdale project team to arrange a meeting to resolve any issues. If a resolution cannot be reached by both parties during these discussions you may give notice to the project team for the termination of this agreement.				

Report name	Pacific Highway Upgrade - Tintenbar to Ewingsdale – Proposed Blasting Modification						
Agency name	Environment Protection Authority						
Section	Comment	Adequacy	Merit	How addressed by RMS			
		Tick where applicable					
	3. In the event that there are unresolved complaints the ground vibration limit should revert to 5mm/s (95%) and 10mm/s (100%)			If you choose to terminate the agreement, the current approved blast limits under the Minister's approval (of no exceedence of 10 millimetres per second for vibration and 120 dB (Lin Peak) for airblast overpressure at any time) would continue to apply to your property." which makes affected residents aware they can terminate the written agreement and the current approved blast limits under the Minister's approval would apply. Agreed. Please also refer to the response to Item 2 above.			
	as per the standard Environmental Protection Licence conditions. 4. The EPA has no objection to increased airblast overpressure limits as detailed in section 2.8 of the Baulderstone Modification Request if written agreement is reached with the occupier that a higher limit may apply (as per condition L3.5 of the Environmental Protection Licence).			 Noted. This is as proposed in the Modification Request for an Extension to Blasting Hours, Air Blast Overpressure and Vibration Limits. 			
	5. The EPA has no objection to the extension of blasting hours to make them consistent with construction hours (7:00am to 6:00pm) as detailed in section 2.6 of the Baulderstone Modification Request provided that written agreement is reached			 Noted. This is as proposed in the Modification Request for an Extension to Blasting Hours, Air Blast Overpressure and Vibration Limits. 			

Report	Pacific Highway Upgrade - Tintenbar to Ewingsdale - Proposed Blasting Modification				
name					
Agency	Environment Protection Authority				
name					
Section	Comment	Adequacy	Merit	How addressed by RMS	
		Tick where applicable			
	with potentially affected receivers or where compelling safety reasons exist as per condition L4.5 of the Environmental Protection Licence 20138				
	6. The EPA acknowledges the efforts made by Baulderstone with regard to undertaking community consultation in relation to the proposed increase in the blasting limits			Thankyou. Please note the community consultation efforts were a joint project team effort with RMS project staff who provided valuable guidance, learning's and experiences gathered across a range of recent Pacific Highway and other major project as well as attendance at various meetings and discussions with residents.	

Kieran Metcalfe

From: Craig Dunk craig.Dunk@epa.nsw.gov.au
Sent: Thursday, 24 January 2013 10:06 AM

To: Peter Borrelli

Cc: Chris McCallum; Bill Gardyne; Chris Sheen; Kieran Metcalfe; Robert Donohoe **Subject:** RE: Modification Request for an extension to blasting hours, airblast overpressure

and vibration

Hi Peter.

The EPA acknowledges the responses to the EPA comments regarding the modification request for an extension of blasting hours, airblast overpressure and vibration and has no further comments.

Regards

Craig Dunk

Regional operations Officer | NSW Environment Protection Authority |

☎: (02) 6640 2514 | Mobile ☎: 0427 237 154 | 揭: (02) 6640 2539 | 🕆 : Craig. Dunk@epa.nsw.gov.au

From: BORRELLI Peter [mailto:Peter.BORRELLI@rms.nsw.gov.au]

Sent: Wednesday, 23 January 2013 12:18 PM

To: Dunk Craig; Donohoe Robert

Cc: Chris McCallum; Bill Gardyne; Sheen Chris; kmetcalfe@baulderstone.com.au

Subject: RE: Modification Request for an extension to blasting hours, airblast overpressure and vibration

Importance: High

Craig, Robert,

Thank you very much for the prompt EPA reply. Much appreciated.

Please find attached our proposed response to your comments. All of our responses are essentially acknowledging / agreeing with your comments.

So that we may include this in the final document that goes to DoPI and close the loop so as to speak, could you please advice if you are happy with our responses.

Any queries please call me on 0407 254 363.

Thanks

Peter Borrelli Senior Project Manager, Strategic Projects 23 January 2013

From: Craig Dunk [mailto:Craig.Dunk@epa.nsw.gov.au]

Sent: Tuesday, 22 January 2013 4:45 PM

To: Chris McCallum

Cc: BORRELLI Peter; Robert Donohoe; Bill Gardyne; Chris Sheen; kmetcalfe@baulderstone.com.au **Subject:** RE: Modification Request for an extension to blasting hours, airblast overpressure and vibration

Hi Chris,

The Environment Protection Authority (EPA) appreciates the opportunity to comment on the Modification request made to the Department of Planning and Infrastructure to modify the project approval for an extension to blasting hours, airblast overpressure and vibration limits for the Tintenbar to Ewingsdale (T2E) Pacific Highway Upgrade Project. Below are comments in relation to the proposal documents received from Baulderstone on the 9 January 2012.

- The EPA has no objection to increased ground vibration limits at the most affected residence or noise sensitive location as detailed in section 2.9 of the Baulderstone Modification Request provided agreement is reached with the occupier that a higher limit may apply (as per condition L3.5 of Environmental Protection Licence 20138).
- Continuation of blasting at the greater limit should be on a blast by blast basis and subject to there being no unresolved complaints.
- In the event that there are unresolved complaints the ground vibration limit should revert to 5mm/s (95%) and 10mm/s (100%) as per the standard Environmental Protection Licence conditions.
- The EPA has no objection to increased airblast overpressure limits as detailed in section 2.8 of the Baulderstone Modification Request if written agreement is reached with the occupier that a higher limit may apply (as per condition L3.5 of the Environmental Protection Licence).
- The EPA has no objection to the extension of blasting hours to make them consistent with construction hours (7:00am to 6:00pm) as detailed in section 2.6 of the Baulderstone Modification Request provided that written agreement is reached with potentially affected receivers or where compelling safety reasons exist as per condition L4.5 of the Environmental Protection Licence 20138.
- The EPA acknowledges the efforts made by Baulderstone with regard to undertaking community consultation in relation to the proposed increase in the blasting limits.

Please give me a call on 6640 2514 if you would like to discuss any of the above comments.

Regards

Craig Dunk

Regional operations Officer | NSW Environment Protection Authority |

奮: (02) 6640 2514 | Mobile 奮: 0427 237 154 | 愚: (02) 6640 2539 | ௴: Craig.Dunk@epa.nsw.gov.au

From: Chris McCallum [mailto:CMcCallum@baulderstone.com.au]

Sent: Monday, 21 January 2013 4:23 PM

To: Anthony Acret; Donohoe Robert; Dunk Craig; Bill Gardyne; Wes Johnstone; Michael King; Patrick Pahlow;

Chris Rumpf; james.sakker@industry.nsw.gov.au; Sheen Chris

Cc: Peter Borrelli

Subject: Modification Request for an extension to blasting hours, airblast overpressure and vibration

Folks,

A gentle reminder that the review period for the Modification Request for an extension to blasting hours, airblast overpressure and vibration closes this Wednesday. To facilitate the approval process with Department of Planning and Infrastructure, your feedback or statement of no comment by would be appreciated.

Please call if you require any further information or clarification

Thanks

Chris McCallum | Environmental Manager | Baulderstone Pty Ltd (NSW) Tintenbar to Ewingsdale Pacific Highway Upgrade

Corner Pacific Highway & Bangalow Road

PO Box 604, Bangalow NSW 2479

Mobile: 0408 264 164 | Desk: (02) 6618 6147 | Fax: (02) 6618 6101 Email: cmccallum@baulderstone.com.au | www.baulderstone.com.au | www.baulderstone.com.au | www.baulderstone.com | www.baulderstone.com | www.baulderstone.com | www.baulderstone.com | www.baulderstone.com | www.baulderstone.com | <a href="mailto:www.ba

IMPORTANT NOTICE:

This e mail and any attachments to it is intended only to be read or used by the named addressee. It is confidential and may contain legally privileged information. No confidentiality or privilege is waived or lost by any mistaken transmission to you. If you receive this e mail in error, please immediately delete it from your system and notify the sender. You must not disclose, copy or use any part of this e mail if you are not the intended recipient. The sender is not responsible for any unauthorised alterations to this e mail or attachments to it.

This email is intended for the addressee(s) named and may contain confidential and/or privileged information.

If you are not the intended recipient, please notify the sender and then delete it immediately. Any views expressed in this email are those of the individual sender except where the sender expressly and with authority states them to be the views of the Environment Protection Authority.

PLEASE CONSIDER THE ENVIRONMENT BEFORE PRINTING THIS EMAIL

Before printing, please consider the environment

IMPORTANT NOTICE: This e mail and any attachment to it are intended only to be read or used by the named addressee. It is confidential and may contain legally privileged information. No confidentiality or privilege is waived or lost by any mistaken transmission to you. Roads and Maritime Services (RMS) is not responsible for any unauthorised alterations to this e mail or attachment to it. Views expressed in this message are those of the individual sender, and are not necessarily the views of RMS. If you receive this e mail in error, please immediately delete it from your system and notify the sender. You must not disclose, copy or use any part of this e mail if you are not the intended recipient.

This email is intended for the addressee(s) named and may contain confidential and/or privileged information. If you are not the intended recipient, please notify the sender and then delete it immediately. Any views expressed in this email are those of the individual sender except where the sender expressly and with authority states them to be the views of the Environment Protection Authority.

PLEASE CONSIDER THE ENVIRONMENT BEFORE PRINTING THIS EMAIL

Your Anti-virus Service scanned this email. It is safe from known viruses. For more information regarding this service, please contact your service provider.

Kieran Metcalfe

From: Chris McCallum

Sent: Tuesday, 22 January 2013 1:53 PM

To: Kieran Metcalfe

Subject: FW: Modification Request for an extension to blasting hours, airblast overpressure

and vibration

FYI

Chris McCallum | Environmental Manager | Baulderstone Pty Ltd (NSW)

Tintenbar to Ewingsdale Pacific Highway Upgrade

Corner Pacific Highway & Bangalow Road PO Box 604, Bangalow NSW 2479

Mobile: 0408 264 164 | Desk: (02) 6618 6147 | Fax: (02) 6618 6101 Email: cmccallum@baulderstone.com.au | www.baulderstone.com.au | www.baulderstone.com.au | www.baulderstone.com | www.baulderstone.com | www.baulderstone.com | www.baulderstone.com | www.baulderstone.com | www.baulderstone.com | <a href="mailto:www.bauld

From: Wes Johnstone [mailto:wesj@ballina.nsw.gov.au]

Sent: Tuesday, 22 January 2013 1:53 PM

To: Chris McCallum

Subject: RE: Modification Request for an extension to blasting hours, airblast overpressure and vibration

Chris

No Comment

Regards

Wes Johnstone | Project Engineer - Works Civil Services Ballina Shire Council

www.ballina.nsw.gov.au

p: (02) 6686 1229 | f: (02) 6686 9514 | m: 0428864443

From: Chris McCallum [mailto:CMcCallum@baulderstone.com.au]

Sent: Monday, 21 January 2013 4:23 PM

To: Anthony Acret; Robert Donohoe (Robert.Donohoe@epa.nsw.gov.au); Dunk Craig (Craig.Dunk@epa.nsw.gov.au); Bill Gardyne; Wes Johnstone; Michael King; Patrick Pahlow; Chris Rumpf; james.sakker@industry.nsw.gov.au; Chris Sheen

Cc: Peter Borrelli

Subject: Modification Request for an extension to blasting hours, airblast overpressure and vibration

Folks,

A gentle reminder that the review period for the Modification Request for an extension to blasting hours, airblast overpressure and vibration closes this Wednesday. To facilitate the approval process with Department of Planning and Infrastructure, your feedback or statement of no comment by would be appreciated.

Please call if you require any further information or clarification

Thanks

Chris McCallum | Environmental Manager | Baulderstone Pty Ltd (NSW)
Tintenbar to Ewingsdale Pacific Highway Upgrade
Corner Pacific Highway & Bangalow Road
PO Box 604, Bangalow NSW 2479
Mabiles 0408 3644 1644 | Decky (02) 6648 6447 | Fow (02) 6648 6404

Mobile: 0408 264 164 | Desk: (02) 6618 6147 | Fax: (02) 6618 6101 Email: cmccallum@baulderstone.com.au | www.baulderstone.com.au

IMPORTANT NOTICE:

This e mail and any attachments to it is intended only to be read or used by the named addressee. It is confidential and may contain legally privileged information. No confidentiality or privilege is waived or lost by any mistaken transmission to you. If you receive this e mail in error, please immediately delete it from your system and notify the sender. You must not disclose, copy or use any part of this e mail if you are not the intended recipient. The sender is not responsible for any unauthorised alterations to this e mail or attachments to it.

The environment thanks you for not printing this message ...

This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error please pass it on to the intended recipient in its original form, or contact the Ballina Shire Council.

Opinions, conclusions and other information contained within this message that do not relate to official Council business are those of the individual sender, and shall be understood as being neither given nor endorsed by the Ballina Shire Council.

	_		
This e-mail message has been scanned for Viruses and Content and cleared by NetIQ MailMarshal			
Safe Stamp			
Your Anti-virus Service scanned this email. It is safe from known viruses.			
For more information regarding this service, please contact your service provider.			

Kieran Metcalfe

From: Chris McCallum

Sent: Tuesday, 22 January 2013 8:00 AM

To: Kieran Metcalfe

Subject: FW: Modification Request for an extension to blasting hours, airblast overpressure

and vibration

FYI

Chris McCallum | Environmental Manager | Baulderstone Pty Ltd (NSW)

Tintenbar to Ewingsdale Pacific Highway Upgrade

Corner Pacific Highway & Bangalow Road PO Box 604, Bangalow NSW 2479

Mobile: 0408 264 164 | Desk: (02) 6618 6147 | Fax: (02) 6618 6101 Email: cmccallum@baulderstone.com.au | www.baulderstone.com.au | www.baulderstone.com.au | www.baulderstone.com | www.baulderstone.com | www.baulderstone.com | www.baulderstone.com | www.baulderstone.com | www.baulderstone.com | <a href="mailto:www.bauld

From: james.sakker@dpi.nsw.gov.au [mailto:james.sakker@dpi.nsw.gov.au]

Sent: Tuesday, 22 January 2013 7:56 AM

To: Chris McCallum

Subject: Re: Modification Request for an extension to blasting hours, airblast overpressure and vibration

NSW DPI have no comment on this modification request

regards James

James Sakker Conservation Manager (Pacific Highway Upgrade) Department of Primary Industries NSW (NSW DPI)

1243 Bruxner Highway Wollongbar NSW 2477

M 0419 185378 F 02 66283264 james.sakker@industry.nsw.gov.au

From: Chris McCallum < CMcCallum@baulderstone.com.au>

To: Anthony Acret "Robert Donohoe (Robert.Donohoe@epa.nsw.gov.au")" "Robe

Cc: Peter Borrelli < Peter.borrelli@rms.nsw.gov.au >

Date: 21/01/2013 04:23 PM

Subject: Modification Request for an extension to blasting hours, airblast overpressure and vibration

Folks,

A gentle reminder that the review period for the Modification Request for an extension to blasting hours, airblast overpressure and vibration closes this Wednesday. To facilitate the approval process with Department of Planning and Infrastructure, your feedback or statement of no comment by would be appreciated.

Please call if you require any further information or clarification

Thanks

Chris McCallum | Environmental Manager | Baulderstone Pty Ltd (NSW)

Tintenbar to Ewingsdale Pacific Highway UpgradeCorner Pacific Highway & Bangalow Road

PO Box 604, Bangalow NSW 2479

Mobile: 0408 264 164 | Desk: (02) 6618 6147 | Fax: (02) 6618 6101 Email: cmccallum@baulderstone.com.au | www.baulderstone.com.au | www.baulderstone.com.au | www.baulderstone.com | www.baulderstone.com | www.baulderstone.com | www.baulderstone.com | www.baulderstone.com | www.baulderstone.com | <a href="mailto:www.ba

IMPORTANT NOTICE:

This e mail and any attachments to it is intended only to be read or used by the named addressee. It is confidential and may contain legally privileged information. No confidentiality or privilege is waived or lost by any mistaken transmission to you. If you receive this e mail in error, please immediately delete it from your system and notify the sender. You must not disclose, copy or use any part of this e mail if you are not the intended recipient. The sender is not responsible for any unauthorised alterations to this e mail or attachments to it.

This message is intended for the addressee named and may contain confidential information.

If you are not the intended recipient, please delete it and notify the sender. Views expressed in this message are those of the individual sender, and are not necessarily the views of their organisation.

-----Safe Stamp-----

Your Anti-virus Service scanned this email. It is safe from known viruses.

For more information regarding this service, please contact your service provider.

From: Chris McCallum

To: Kieran Metcalfe

Subject: FW: Modification Request for an extension to blasting hours, airblast overpressure and vibration

Date: Tuesday, 22 January 2013 11:58:42 AM

FYI

Chris McCallum | Environmental Manager | Baulderstone Pty Ltd (NSW)

Tintenbar to Ewingsdale Pacific Highway Upgrade

Corner Pacific Highway & Bangalow Road

PO Box 604, Bangalow NSW 2479

Mobile: 0408 264 164 | Desk: (02) 6618 6147 | Fax: (02) 6618 6101 Email: cmccallum@baulderstone.com.au | www.baulderstone.com.au | www

From: Patrick Pahlow [mailto:Patrick.Pahlow@water.nsw.gov.au]

Sent: Tuesday, 22 January 2013 11:33 AM

To: Chris McCallum

Subject: Re: Modification Request for an extension to blasting hours, airblast overpressure and

vibration

no comment

Patrick Pahlow | Senior Licensing Officer |

NSW Department of Primary Industries | Office of Water |

135 Murwillumbah Street | Murwillumbah NSW 2484

PO Box 796 | Murwillumbah NSW 2484

T: 02 6676 7386 | F: 02 6676 7388 | E: patrick.pahlow@water.nsw.gov.au

W: www.dpi.nsw.gov.au | www.water.nsw.gov.au

>>> Chris McCallum <<u>CMcCallum@baulderstone.com.au</u>> 1/21/2013 4:22 pm >>> Folks,

A gentle reminder that the review period for the Modification Request for an extension to blasting hours, airblast overpressure and vibration closes this Wednesday. To facilitate the approval process with Department of Planning and Infrastructure, your feedback or statement of no comment by would be appreciated.

Please call if you require any further information or clarification

Thanks

Chris McCallum | Environmental Manager | Baulderstone Pty Ltd (NSW)

Tintenbar to Ewingsdale Pacific Highway Upgrade

Corner Pacific Highway & Bangalow Road

PO Box 604, Bangalow NSW 2479

Mobile: 0408 264 164 | Desk: (02) 6618 6147 | Fax: (02) 6618 6101 Email: cmccallum@baulderstone.com.au | www.baulderstone.com.au | ww

IMPORTANT NOTICE:

This e mail and any attachments to it is intended only to be read or used by the named addressee. It is confidential and may contain legally privileged information. No confidentiality or privilege is waived or lost by any mistaken transmission to you. If you receive this e mail in error, please immediately delete it from your system and notify the sender. You must not disclose, copy or use any part of this e mail if you are not the intended recipient. The sender is not responsible for any unauthorised alterations to this e mail or attachments to it.

-----Safe Stamp-----

Your Anti-virus Service scanned this email. It is safe from known viruses. For more information regarding this service, please contact your service provider.