

Cardno Eppell Olsen Pty Ltd ABN 82 095 614 154

Transportation and Traffic Specialists

Level 11 Green Square North Tower 515 St Paul's Terrace Locked Bag 4006 Fortitude Valley Queensland 4006 Australia **Telephone: 07 3310 2401** Facsimile: 07 3369 9722 Email: eop@eo.com.au www.cardno.com.au/eo

Our Ref: CE008491 Date: 20 September 2010

DESIGN NOTE

CASUARINA TOWN CENTRE – ALTERNATIVE INTERSECTION LAYOUT FOR CASUARINA WAY/THE BOULEVARD INTERSECTION

Cardno Eppell Olsen has been requested to provide a SIDRA assessment for a roundabout option at the intersection of Casuarina Way and The Boulevard, in the Casuarina Town Centre. This request has emerged from Part B14 of the Project Approval, as approved by the Acting Director, Regional Projects Assessment on 17 June 2010. The objective of this Design Note is to provide results so that the intersection can be assessed for signal warrants within RTA guidelines. Pedestrians have also been considered when assessing the roundabout scenario.

The traffic volumes used for this assessment are the same as the traffic volumes reported in the Casuarina Town Centre Concept Plan Traffic Impact Study dated June 2008 (Cardno Eppell Olsen). This Design Note will focus on the AM and PM peak periods for the years 2018 and 2028, representing the future assessment year horizons adopted in the June 2008 report. This Design Note should be read in conjunction with Plan DA119, attached to this document at Appendix B.

SIDRA Analysis

To model the operation of a roundabout the SIDRA Intersection 3.2 Programme (SIDRA) was used. This programme calculates the operation of intersections based on input parameters, including geometry and traffic volumes. As an output, SIDRA provides values for the degree of saturation (DOS), queues and delays. The DOS is a commonly used value, which is essentially a volume over capacity ratio. The typically adopted upper limit for the DOS is 0.85 for a roundabout. A DOS exceeding this value indicates that the intersection is nearing it operational capacity. Above this value, users of the intersection are likely to experience unsatisfactory queuing and delays.

Single Lane Roundabout

The single lane roundabout was modelled with a single lane approach and a single lane exit for all four legs. The roundabout island diameter was modelled as 10m which is measured along a line across the centre of the roundabout island. The circulating width was modelled as 5m around the whole roundabout with a single circulating lane.

Results for the single lane roundabout scenario are summarised in Table 1 for the AM and PM peak hours. Summary outputs from SIDRA, including intersection layouts are attached at Appendix A.

Table 1		SIDRA An	alysis Resu	lts: Sin	gle Lane F	Roundabout
		AM Pea	k		PM Pea	k
Scenarios	DOS	Delay (s)	95 th %le Queue (m)	DOS	Delay (s)	95 th %le Queue (m)
2018 Masterplan Roundabout (single lane)	0.58	12	49	1.16	184	1,375
2028 Masterplan Roundabout (single lane)	0.68	13	68	1.23	279	1,888

Eppell Olsen

The analysis shows that the single lane roundabout at the Casuarina Way/The Boulevard intersection is capable of accommodating the traffic during the AM peak, however during the PM peak the single lane roundabout would be over capacity due to the volume of traffic, resulting in long delays and queues.

A single lane roundabout is clearly not sufficient on traffic capacity grounds.

Two-Lane Roundabout

Table 2

To achieve an increase in capacity at the roundabout, two-lane approaches and two-lane exits were added for each leg of the roundabout. An additional lane was added to the circulating lane to increase it from a signal lane to a double circulating lane. The increase in circulating lanes meant that the circulating width increased to 10m but the island diameter remained the same at 10m.

Intersection operation results for the two lane roundabout scenario are summarised in Table 2 for the AM and PM peak hours. Summary outputs from SIDRA, including intersection layouts are attached at Appendix A.

SIDRA Analysis Results: Two Lane Roundabout

		AM Peal	(PM Peak					
Scenarios	DOS	Delay (s)	95 ^{tn} %le Queue (m)	DOS	Delay (s)	95 ^{tn} %le Queue (m)			
2018 Masterplan Roundabout (two-lane)	0.37	10	22	0.52	12	34			
2028 Masterplan Roundabout (two-lane)	0.44	11	28	0.58	13	47			

The analysis shows that a two lane roundabout at the Casuarina Way/The Boulevard intersection is capable of accommodating the traffic which is likely to be generated for both scenarios and there is enough capacity at the intersection to allow for extra traffic beyond 2028.

Consideration of Pedestrians and Cyclists

Roundabouts are less preferred for pedestrian and cyclist movements than signalised intersections, due to the increased risks to pedestrian and cyclist safety. However, roundabouts can offer safe and effective pedestrian crossings, provided they are correctly designed. The aspects below should be considered in the design of the roundabout, to ensure the maximum safety level can be provided.

Vehicles leaving a roundabout are not required to give way to pedestrians. Given this, it is not appropriate for multi-lane roundabouts to require pedestrians to cross all lanes in a single movement, as it reduces opportunities for pedestrians to cross. Therefore, the design of the roundabout should include pedestrian medians/splitter islands on every leg, breaking up the pedestrian journey.

Pedestrian kerb ramps are to be provided one or two car lengths in advance of the holding line, preventing pedestrians from being impeded by vehicles waiting on the approach.

Other key design elements include:

- appropriate entry and exit geometry to reduce vehicle speeds;
- splitter islands that are large (wide) enough to comfortably accommodate pedestrians and enable drivers to anticipate their movement onto the road;
- prohibition of parking on approaches to provide clear visibility;
- pram crossings that are designed for persons who have a disability;
- street lighting;
- signs and vegetation located so as not to obscure 'smaller' pedestrians;
- conformance to the Australian Commonwealth Disability and Discrimination Act (1992) or the equivalent New Zealand Act as appropriate, and also AS 1428:2003 and NZS 4121:2001;

2

- **Cardno** Eppell Olsen
- provision of formal (eg. zebra) pedestrian crossings on approaches (where warrants are met).

U-Turn Pocket

A further design requirement for the local street network is the need to include a new u-turn pocket on The Boulevard, between the Casuarina Way/The Boulevard intersection and the Tweed Coast Road/The Boulevard intersection. This u-turn pocket is required in order to allow motorists who utilise the angle parking on the southern side of The Boulevard to return to the Casuarina Way/The Boulevard roundabout, instead of continuing to the Tweed Coast Road/The Boulevard intersection, thereby reducing the traffic flow at the latter intersection. Similarly, it allows vehicles from within Casuarina to access the angled parking on the northern side of The Boulevard without going through the Tweed Coast Road/The Boulevard intersection.

<u>Summary</u>

In conclusion, the analysis of the roundabout option demonstrates that a two lane roundabout will be sufficient to provide for the projected traffic demand at the Casuarina Way/The Boulevard intersection. The use of a roundabout, however, will require careful consideration of pedestrian provisions. The two lane roundabout and a u-turn pocket at the western end of The Boulevard, have been included in updated road layout plans (see DA119 at Appendix B) as prepared by Cardno.

Appendix A

SIDRA Outputs

. .

Casuarina Way The Boulevard 2018 Masterplan AM Peak (Single Lane) Intersection ID: 0 Roundabout

Lane No.					8HV	Basic	Eff Grn (secs)	Sat	Delay	Longest Queue	Lane
							1st 2nd			(m)	(m)
South: 1 LTR	Casu 146	arina 138	Way 11	South 295	4			0.466	15.0	33	
				295	4			0.466	15.0	33	
East: 1 LTR	11	168	48	227	4					24	
	11	168	48	227	4					24	
North: 1 LTR	Casu 39	arina 154	Way 436	North 629	4			0.582	11.9	49	
	39	154	436	629	4			0.582	11.9	49	
West: 1 LTR	The B 334	oulev 112	ard 75	(west) 521	4					38	
	334	112	75	521	4			0.489		38	
all ve	ALL VEHICLES Total Flow 1672							Max X	Aver.	Max Queue	<u> </u>

Peak flow period = 60 minutes.

Queue values in this table are 95% back of queue (metres).

Note: Basic Saturation Flows are not adjusted at roundabouts or signcontrolled intersections and apply only to continuous lanes.

١

Casuarina Way The Boulevard 2018 Masterplan PM Peak (Single Lane) Intersection ID: 0 Roundabout

						Adj. Eff Grn Basic (secs)			Longest	Shrt Lane
	\mathbf{L}	\mathbf{T}	R	Tot		Satf. 1st 2nd	x	(sec)	(m)	(m)
South: 1 LTR	Casu 254	arina 339	Way 24	South 617	4				506	
				617				155.2	506	
East: ' l LTR	24	181	79	(east) 284		بر بر با بر	0.703	32,7	68	500
	24	181	79	284	4		0.703			
North:	Casu 82	arina 267	Way 435	North 784	4		1,021	101.5	477	500
	82	267	435	784	4			101.5		
West: 9 L LTR	Fhe B 452	oulev 203	ard (282	(west) 937	4		1.160	318.3	1375	150
	452	203	282	937	4		1.160	318,3	1375	
ALL VEI				Total Flow 2622	¥ HV	ی پی او با او	Max X 1.160	Delay	Queue	and on a

Peak flow period = 60 minutes.

Queue values in this table are 95% back of queue (metres).

1

Table S.14 - Summary of Input and Output Data

Casuarina Way The Boulevard 2028 Masterplan AM Peak (Single Lane) Intersection ID: 0 Roundabout

							Eff Grn (secs)			Longest Oueue	
10.							1st 2nd				
South: 1 LTR	146	149	11		4					44	
				306					18.5		
East: 1 LTR	11	168	48	• •				0.447	17.0	32	500
	11	168	48	227	4			0.447	17.0	32	
North: 1 LTR	Casu 39	arina 180	Way 523	North	4					68	
				742				0.681			
West: 1 LTR				•	4			0.531	10.1	43	150
	370	112	75	557	4			0.531	10.1	43	
ALL VE	HICLE	S	ina kati kati k	Total Flow 1832		a in in in in in		Max X 0.684		Queue	

Peak flow period = 60 minutes.

Queue values in this table are 95% back of queue (metres).

Note: Basic Saturation Flows are not adjusted at roundabouts or signcontrolled intersections and apply only to continuous lanes.

1

Casuarina Way The Boulevard 2028 Masterplan FM Peak (Single Lane) Intersection ID: 0 Roundabout

L Casua 254 254 254 he Bo	T arina 360 360	R Way 24 24	Tot South 638	 4	Basic (secs) Satf. 1st 2nd	x 	(sec) 	(m)	(m)
Casua 254 254 254 he Bo	arina 360 360	Way 24 24	South 638	4		1,136	291,2	967	
254 	360	24						007	500
	ouleva	,_,		4		1,136	291.2	867	
24		ard ((east)			4 6+9 6+4 8+4 1+4 mai dua mu			
	181	79	284	4		0.739	37.3	75	500
24	181								
Casua	arina								
				4					
he Bo	ouleva	ard ((west)					***	
523	203	282	1008	4		1.228	437.0	1888	150
			1008	4		1,228	437.0	1888	
			Total	 %	ی ہوا ہیں اور پی اور	Max	Aver,	Max	
	82 82 82 90 Bo 523	Casuarina 82 283 82 283 82 283 96 Bouleva 523 203	Casuarina Way 82 263 487 82 283 487 82 283 487 be Boulevard 23 203 282 523 203 282 283 282	Casuarina Way North 82 283 487 852 82 283 487 852 Be Boulevard (west) 323 203 282 1008 323 203 282 1008 323 203 282 1008 CCLES Total Flow Total Flow	Casuarina Way North 82 283 487 852 4 82 283 487 852 4 Be Boulevard (West) 523 203 282 1008 4 523 203 282 1008 4	Casuarina Way North 82 283 487 852 4 82 283 487 852 4 Be Boulevard (west) 523 203 282 1008 4 523 203 282 1008 4 CCLES Total % Flow HV	Casuarina Way North 82 283 487 852 4 1.067 82 283 487 852 4 1.067 82 283 487 852 4 1.067 82 283 487 852 4 1.067 be Boulevard (west) 523 203 282 1008 4 1.228 523 203 282 1008 4 1.228 523 203 282 1008 4 1.228 523 203 282 1008 4 1.228 523 203 282 1008 4 1.228 524 Total % Max Max Flow HV X X	Casuarina Way North 82 283 487 852 4 1.067 162.8 82 283 487 852 4 1.067 162.8 82 283 487 852 4 1.067 162.8 be Boulevard (west) 523 203 282 1008 4 1.228 437.0 523 203 282 1008 4 1.228 437.0 523 203 282 1008 4 1.228 437.0 523 203 282 1008 4 1.228 437.0 523 203 282 1008 4 1.228 437.0 524 Total % Max Aver, Flow HV X Delay	Casuarina Way North 82 283 487 852 4 1.067 162.8 740 82 283 487 852 4 1.067 162.8 740 82 283 487 852 4 1.067 162.8 740 be Boulevard (west) 523 203 282 1008 4 1.228 437.0 1888 523 203 282 1008 4 1.228 437.0 1888 523 203 282 1008 4 1.228 437.0 1888 523 203 282 1008 4 1.228 437.0 1888 CCLES Total % Max Aver. Max Flow HV X Delay Queue

Peak flow period = 60 minutes.

Queue values in this table are 95% back of queue (metres),

Casuarina Way The Boulevard 2018 Masterplan AM Peak (Two Lane) Intersection ID: 0 Roundabout

				7eh/h)		Eff Grn (secs)			Longest Queue	
	Ŀ	Ţ				1st 2nd			(m)	(m)
South:						 		• •••• #•• ?••• #•• #•• #•• #		
L LT	146			154	4		0.186	10.8	9	500
? TR				141	5		0,186			30
ad and one has see and such here	146	138	11	295	4		0.186		9	
East:						 				
LT -	11	107		118	5		0.142	9.5	7	500
? TR	·	61		109			0.142			40
	11	168		227	4		0.142		7	
North:	Casu	arina	Wav	North		 				
				193	4		0.216	8.3	11	500
2 R			436	436	4		0.368	12.3	22	250
	39	154	436	629	4	 	0.368		22	
West:		oulev	ard ((west)		 				
Ъ				334	4		0.288			150
TR				187	4	 	0.194	9.6	10	100
	334	112	75		4		0.288	9.0	16	
ALL VE	HICLE	s		Total	8		Max	Aver.	Max	
				Flow	ΗV		х			
				1672	4			10.3		

Peak flow period = 60 minutes.

Queue values in this table are 95% back of queue (metres).

Casuarina Way The Boulevard 2018 Masterplan PM Peak (Two Lane) Intersection ID: 0 Roundabout

Lane No.			-			Adj. Ef Basic			Longest Oueue	
101	L	T	R			Satf. 1s		(sec)		
South:	Casu	arina	Way	South			 			
1 LT	254			322	4				24	
2 TR		271		295	4		 0.413	11.6		30
		339		617	4		0.413	11.6		
East:	The B	soulev	ard	(east)			 			
1 LT	24	128		152	4		0.235	11.2	12	500
2 TR				132	4		0.235	14,5	11	40
	24		79	284	4		 0.235	12,7	12	
North:	Casu	arina		North	***		 	put init link line fore fore and n		
	82			349	4		0.440	10.4	26	500
2 R				435	4		0.497	14.8	33	250
	82	267		784	4		 0.497	12.8	33	
West:	The B	Soulev	ard	(west)			 			
1 LT	452	28		480	4		0.515			• •
2 TR				457	4		 0,515	12.8	34	100
	452		282	937	4		0.515		34	
ALL VE						78	 Max	Aver,		
				Flow	HV		х	Delay	Queue	
				2622	4		0.516	12.2	34	

Peak flow period = 60 minutes.

Queue values in this table are 95% back of queue (metres).

Casuarina Way The Boulevard 2028 Masterplan AM Peak (Two Lane) Intersection ID: 0 Roundabout

				/eh/h)		Adj. Eff Grn Basic (secs)			Longest	Shrt Lane
	ľ	т	R	Tot	0 -2 (Satf. 1st 2nd	X	(sec)	(m)	(m)
South:	Casu	arina	Way	South						
LT.	146	15	-	161	4		0,210	11.4	11	500
? TR				145			0.210	11.2	11	
u baa ana kuu taad awa cad a		149		306	4		0.210			
East: '	rhe B	oulev	ard							
				119	5		0.155	10.0	7	500
? TR		60	48	108			0,155	12.3	7	40
	11	168	48					11.1	7	
North:	Casu	arina	Way	North						
LT.	39	180	-	219	4		0.251	8.4	13	500
R			523	523	4		0.438	12.3	28	250
	39	180	523	742	4		0,438		28	
West: 1	ľhe B	oulev	ard (west)					46 948 6a) yay 1-0 5-0 5-0 fee 6	
L				370	4		0.322	8.8	19	150
TR		112	75	187	4		0,203	9.8	10	
		112	. +	557	-			9.1		
ALL VE				Total	8		Max	Aver.	Max	
				Flow	ΗV		Х			
				1832	4		0.438	10,6	28	

Peak flow period = 60 minutes.

Queue values in this table are 95% back of queue (metres).

Casuarina Way The Boulevard 2028 Masterplan PM Peak (Two Lane) Intersection ID: 0 Roundabout

Lane							Eff Grn			Longest	
No.		T		Tot			(secs) 1st 2nd				
South:	Casu	arina	Way	South							
1 LT	254			335	4					29	
2 TR				303	4				12.7		30
		360			4			0.457	12.6	29	
East:	The B	oulev	ard ((east)							
1. LT	24	129		153	4					13	
2 TR					4			0.254			40
		181		284	4			0.254			
North:	Casu	arina	Way	North		~~~~					
1 LT	82	283	-	365	4			0.485			
2 R			• •	487	4			0.578	16.3	47	250
			487	852	4				14.2		
West:											
1 L	523			523	4					42	150
2 TR		203	282	485	4			0.563	13.4	40	100
	523			1008				0.573		42	
ALL VE				Total				Max	Aver.		
				Flow	HV			x	Delay	Queue	
				2782	4			0.578	13.1	47	

Peak flow period = 60 minutes.

Queue values in this table are 95% back of queue (metres).

Appendix B

Casuarina Town Centre Subdivision Layout Plan

