

CARTER RYTENSKILD GROUP

Traffic and Acoustical Consultants

GOLD COAST

2563 Gold Coast Highway Mermaid Beach Queensland 4218

POSTAL: PO Box 441 Mermaid Beach Queensland 4218

P: (07) 5527 7333 **F**: (07) 5527 7555

E: info@crg.net.au CRG Traffic & Acoustics Pty Ltd

BRISBANE

Level 36, Riparian Plaza 71 Eagle Street Brisbane Queensland 4000 POSTAL: Level 36, Riparian Plaza 71 Eagle Street Brisbane Queensland 4000

P: (07) 3121 3198 **F:** (07) 3121 3030

www.crg.net.au

ABN 47 553 772 655

Proposed Residential Subdivision Fraser Drive, Tweed Heads Major Project Approval MP 06-0243

ENVIRONMENTAL NOISE IMPACT REPORT

Prepared for:

Greenview Developments Pty Ltd

c/-

VKL Consulting Pty Ltd

17 February 2010 crgref: 09097a report Feb2010

1.0 INTRODUCTION

This report is in response to a request by VKL Consulting Pty Ltd on behalf of Greenview Developments Pty Ltd for an environmental noise impact assessment of a proposed residential subdivision situated on Fraser Drive at Tweed Heads.

In undertaking the above acoustic assessment, unattended noise monitoring was conducted, and through modeling, predictions of existing and future road traffic noise impacts were produced as well as commercial activity noise impacts (for the proposed onsite commercial lot).

This report is in addition to previous acoustic assessments undertaken for the development site (completed by Cardno (Qld) Pty Ltd in years 2006 and 2008) and provides additional information in response to an Acoustic Condition (B2) set by the NSW Minister for Planning for Major Project MP 06-0243. In detail, the Major Project Approval Acoustic Condition requires that for all residential lots the following noise criterion be achieved without the use of dwelling construction standards (i.e. architectural treatments).

- Day (7am 10pm): L_{Aeq(15hr)} 55; and
- Night (10pm 7am): L_{Aeq(9hr)} 50. (Refer to Appendix A for an extract of the condition)

The set criterion has been sourced from the NSW EPA "Environmental Criteria for Road Traffic Noise" (ECRTN) and relates to "new residential developments affected by freeway / arterial traffic noise"; given that Fraser Drive is to be upgraded within 10-15 years.

We note that the above criterion as presented in the ECRTN also refers to internal layouts, building materials and construction as methods for minimising road traffic noise impacts (for when the noise criteria is already exceeded); which conflicts with the Major Project MP 06-0243 Acoustic Condition B2.

Based upon the ECRTN noise criterion for "new residential developments affected by freeway / arterial traffic noise", this assessment explores available acoustic treatment options suitable (reasonable and achievable) for the development site and provides recommendations for a balanced acoustic treatment outcome. We note that a balanced treatment strategy is supported by both the ECRTN (refer to Section 3.6 of the document); and the NSW Department of Planning document "Development near Rail Corridors and Busy Roads – Interim Guideline" (refer to Section 3.8 of the document). We note that the DOP's Interim Guideline:

"assists in the planning, design and assessment of development in, or adjacent to, rail corridors and busy roads."

"It supports specific rail and road provisions of the State Environmental Planning Policy (Infrastructure) 2007 (the 'Infrastructure SEPP')."

"While consideration of the Guideline is a requirement for development specified under the Infrastructure SEPP it can also provide a useful guide for all development that may be impacted by, or may impact on, rail corridors or busy roads"

The final acoustic recommendations provided within this report not only provide a balance of suitable, reasonable and achievable options, which are generally considered urban planning best practice; but are also in-keeping with the existing built environment along Fraser Drive. Nearby existing development have either 2m high roadside acoustic barriers or no barriers at dwellings to the north, south and southeast of the subject site. It is further noted that the proposed development is an infill site, and not a greenfield site as indicated by DoP previous comments prior to the Minister making the determination to issue Major Project 06-0243 Approval.

2.0 SITE & DEVELOPMENT DESCRIPTION

The subject site is described as Lot 2 on DP1000385 and Lot 9 on DP1039569, Fraser Drive, Tweed Heads, NSW. The subject site is bounded by residential properties to the north, south and west, and Fraser Drive to the east.

The proposal is for a residential subdivision, comprising of 145 residential lots (comprising 132 detached lots and 13 attached lots; yielding 158 dwellings) and parkland lots. The development is divided into two precincts "A" and "B" to be developed in a total of 6 Stages with a future stage for integrated housing. Site entry and exits are proposed from Fraser Drive for the northern lots; and Ocean Avenue, Hillcrest Avenue and Merlot Court for the southern lots.

The acoustic environment at the site is influenced by traffic noise from Fraser Drive. Fraser Drive at the location of the site is a Council controlled two lane undivided road with a posted speed limit of 80km/hr. We have been advised by Council that Fraser Road is proposed to be upgraded to a four lane divided road within the next 10 to 15 years, with a predicted ultimate 2030 AADT volume of 16,868.

As the subdivision is likely to be impacted by road traffic noise from Fraser Road; the development is required to be assessed in accordance with New South Wales EPA "*Environmental Criteria for Road traffic Noise*" (ECRTN). The ECRTN requires assessment for a 10 year planning horizon (refer to Page 12 of the document).

Future potential onsite commercial activity noise at the local shops planned for the northeastern portion of the site (i.e. vehicle activities, deliveries, waste collection and mechanical plant) has the potential to impact upon onsite and surrounding noise sensitive receivers and has been assessed within this report for completeness, although it should be noted that a separate Development Application will be required for any future retail activity.

The nearest noise sensitive receivers are:

- Existing single storey residential dwellings to the north across the proposed new road;
- Future residential dwellings directly to the west and south of the possible future local shops; and
- Existing single storey bunkhouse accommodation to the east across Fraser Drive.

The location of the subject site is provided in Appendix A of this report. The development plans are provided in Appendix B.

3.0 AMBIENT NOISE SURVEY

3.1 Instrumentation

The following equipment was used to record ambient noise conditions at the subject site location:

- Rion NC 73 Calibrator; and
- Rion NL-21 Environmental Noise Loggers.

All instrumentation hold current calibration certificates from a certified NATA calibration laboratory.

3.2 Location A: Roadside Unattended Measurement Methodology

A logger was located along the eastern site boundary of the subject site fronting Fraser Drive. The microphone was in a free-field location approximately 1.2m above ground level and approximately 20m from the nearest lane of Fraser Drive. Refer to Figure 1 in Appendix A for the logger location.

The logger was set to record noise statistics in 15 minute blocks continually between 2pm on Wednesday 26/08/09 and 7am on Friday 4/09/09. The statistical interval was chosen to allow application of AS/NZS 2107:2000 "Acoustics – Recommended Design Sound Level and Reverberation Times for Building Interiors", and the NSW EPA's "Environmental Criteria for Road traffic Noise".

Road traffic noise levels were conducted generally in accordance with Australian Standard AS2702 - 1984 "*Acoustics - Methods for the measurement of road traffic noise*". The operation of the sound level logging equipment was field calibrated before and after the measurement session with no significant drift from the reference signal recorded.

Daily weather observations were obtained from the Bureau of Meteorology's website (<u>http://www.bom.gov.au/</u>) at the Coolangatta weather station. Weather conditions during the monitoring were fine, with temperatures between 6 and 28°C, relative humidity between 50 and 85% and winds generally below 5m/s. Refer to Appendix C for daily weather observations.

Table 1 below presents the measured ambient noise levels from the logger location A. Graphical presentation of the measured levels from the logger is presented in the Appendix C. We note that recorded wind data on Saturday 29/08/09 were above 5m/s and have therefore been omitted from the Rating Background Level (RBL) calculations as presented in Table 1.

T CC N	Time Period	Measured Level SPL dB(A) Leq							
Traffic Noise Descriptors		Thursday 27/08/09	Friday 28/08/09	Monday 31/08/09	Tuesday 1/09/09	Wednesday 2/09/09	Average		
LA10 (18hr)	6am - 12am	61	61	61	61	61	61		
LAeq (24hr)	N/A	57	57	57	57	57	57		
LAeq (15hr) Day	7am - 10pm	58	58	58	58	59	58		
LAeq (9hr) Night	10pm - 7am	47	50	46	47	47	47		
LAeq (1hr) Day	7am - 10pm	60	62	61	61	61	61		
LAeq (1hr) Night	10pm - 7am	57	54	56	57	57	56		
Daalaan d Na	·	Background Level LA90 dB(A)							
Background No	ise Levels	Daytime (7am-6pm)		Evening (6pm-10pm)		Night (10pm-6am)			
Thursday 27/08/	/09	46		42		29			
Friday 28/08/09		47		41		34			
Saturday 29/08/	09	50 (Omitted)		46 (Omitted)		34 (Omitted)			
Sunday 30/08/09)	45		37		26			
Monday 31/08/0	9	4	6	36		28			
Tuesday 1/09/09		4	6	39		34			
Wednesday 2/09/09		47		45		36			
Thursday 3/09/09		48		43		34			
Rating Backgro	und Levels	46		41		34			

Table 1: Measured ambient noise levels at logger location A.

3.3 Location B: Setback Unattended Measurement Methodology

A logger was located along the western site boundary of the subject site at the eastern end of Ocean Avenue. The microphone was in a free-field location approximately 1.2m above ground level and approximately 175m from the nearest lane of Fraser Drive. Refer to Figure 1 in Appendix A for the logger location.

The logger was set to record noise statistics in 15 minute blocks continually between 2pm on Wednesday 26/08/09 and 7am on Wednesday 2/09/09. The statistical interval was chosen to allow application of AS/NZS 2107:2000 'Acoustics – Recommended Design Sound Level and Reverberation Times for Building Interiors', and the NSW EPA's 'Environmental Criteria for Road traffic Noise'.

Road traffic noise levels were conducted generally in accordance with Australian Standard AS2702 - 1984 "*Acoustics - Methods for the measurement of road traffic noise*". The operation of the sound level logging equipment was field calibrated before and after the measurement session with no significant drift from the reference signal recorded.

Daily weather observations were obtained from the Bureau of Meteorology's website (<u>http://www.bom.gov.au/</u>) at the Coolangatta weather station. Weather conditions during the monitoring were fine, with temperatures between 6 and 28°C, relative humidity between 50 and 85% and winds generally below 5m/s. Refer to Appendix C for daily weather observations.

T (C)		Measured Level SPL dB(A) Leq							
Traffic Noise Descriptors	Time Period	Thursday 27/08/09	Friday 28/08/09	Monday 31/08/09	Tuesday 1/09/09	Wednesday 2/09/09	Average		
LA10 (18hr)	6am - 12am	54	54	53	55		54		
LAeq (24hr)	N/A	51	50	49	51		50		
LAeq (15hr) Day	7am - 10pm	52	52	50	52		51		
LAeq (9hr) Night	10pm - 7am	39	42	40	44		41		
LAeq (1hr) Day	7am - 10pm	55	54	54	55		55		
LAeq (1hr) Night	10pm - 7am	52	49	52	53		51		
Deelygnound No.	ao Lovola	Background Level LA90 dB(A)							
Background Noi	se Levels	Daytime (7am-6pm)		Evening (6	Evening (6pm-10pm)		Night (10pm-6am)		
Thursday 27/08/	09	40		37		29			
Friday 28/08/09		41		40		34			
Saturday 29/08/0	19	42 (Omitted)		43 (Omitted)		32 (Omitted)			
Sunday 30/08/09		39		32		25			
Monday 31/08/09		3	8	35		32			
Tuesday 1/09/09		40		41		38			
Rating Background Levels		40		37		32			
Minima Backgro	ound Levels	38		32		25			

Table 2 below presents the measured ambient noise levels from the logger location B. Graphical presentation of the measured levels from the logger is presented in the Appendix C.

 Table 2: Measured ambient noise levels at logger location B.

We note that recorded wind data on Saturday 29/08/09 were above 5m/s and have therefore been omitted from the Rating Background Level (RBL) calculations as presented in Table 1 above.

We note that we have applied the minimum recorded background noise levels during the survey period rather than Rating Background Levels as monitoring was conducted for less than 7 days due to battery failure.

4.0 NOISE CRITERIA

4.1 Road Traffic Noise

Assessment of potential noise impacts from road traffic are required to be conducted as per the New South Wales EPA ECRTN *"Environmental Criteria for Road traffic Noise"* (Refer to Table 3 below).

4.1.1 External Criterion

We note Fraser Drive is considered an Arterial Road based upon the road definitions provided within the ECRTN document. All other surrounding roads to the development (site access) are considered as local roads.

TYPE OF DEVELOPMENT		CRITERIA		
	DAY (7 am-10 pm) dB(A)	NIGHT (10 pm–7 ar dB(A)		WHERE CRITERIA ARE ALREADY EXCEEDED
2. New residential land use developments affected by freeway/arterial traffic noise	L _{Aeq(15hr)} 55	L _{Aeq(9hi)} 50		Where feasible and reasonable, existing noise levels should be reduced to meet the noise criteria via judicious design and construction of the development. Locations, internal layouts, building materials and construction should be chosen so as to minimise noise impacts.
7. Land use developments with potential to create additional traffic on existing freeways/arterials	L _{eq(15hr)} 60	L _{eq(9hr)} 55	mi ap of us ba In sh	here feasible, existing noise levels should be itigated to meet the noise criteria. Examples of plicable strategies include appropriate location private access roads; regulating times of use; ing clustering; using 'quiet' vehicles; and using rriers and acoustic treatments. all cases, traffic arising from the development ould not lead to an increase in existing noise vels of more than 2 dB.
13. Land use developments with potential to create additional traffic on local roads	L _{Aeq(lhr)} 55	L _{Aeq(lhr)} 50		Where feasible and reasonable, existing noise levels should be mitigated to meet the noise criteria. Examples of applicable strategies include appropriate location of private access roads; regulating times of use; using clustering; using 'quiet' vehicles; and using barriers and acoustic treatments. In all cases, traffic arising from the development should not lead to an increase in existing noise levels of more than 2 dB.

Table 3: Road noise criteria from NSW RTA's "Environmental Criteria for Road Traffic Noise".

Based upon the measured levels presented in Table 1 of Section 3.2, the noise criterion is currently exceeded prior to the development (refer to Table 3 above).

4.1.2 Internal Criterion

Further to the above, as the criterion for "*new residential developments affected by freeway / arterial traffic noise*" refers to internal layouts, building arterials and construction as methods for minimizing road traffic noise impacts (for when the noise criteria is already exceeded – refer to Table 1 of Section 3.2) we provide the following internal noise limits for assessment of internal areas of future onsite dwellings:

We recommend applying the "maximum" indoor sound levels as specified in Australian Standard AS/NZS 2107:2000 "Acoustics – Recommended Design Sound Level and Reverberation Times for Building Interiors". These levels expressed as L_{Aeq} and are presented in Table 4 below:

7. RESIDENTIAL BUILDINGS	Recommended Design So	ound Level, L _{Aeq} dB(A)
7. RESIDENTIAL BUILDINGS	Satisfactory	Maximum
Houses and apartments near major roads -		
Living areas	35	45
Sleeping areas	30	40
Work areas	35	45

 Table 4: Internal noise limits from AS/NZS 2107.

4.2 Onsite Commercial Activity Noise (Local Shopping Centre)

Onsite commercial activity noise associated the possible future local shops is regulated by the New South Wales EPA "*Industrial Noise Policy*".

The assessment procedure has three components:

- Control of intrusive noise impacts The limit criteria for this assessment is as follows: L_{Aeq}, 15 min ≤ rating background level¹ + 5 dB;
- Maintaining noise level amenity for residential premises. This is achieved by ensuring that the proposed development complies with the noise limit criteria set in Table 2.1 of the Policy. If we assume that the area is within a Urban Area (as defined in the Policy), the following limits apply:

Indicative Noise Amenity Area	Noise Amenity		L _{Aeq.} Noise Level, 8(A) n Section 2.2.1)
(see Notes in Section	on 2.2.1)	Acceptable (See Note 11)	Recommended Maximum (See Note 11)
Urban	Day	60	65
Evening		50	55
	Night	45	50

Table 5: Amenity Criterion Prescribed in the New South Wales EPA "Industrial Noise Policy".

With regards to the L_{Aeq} , $_{15 \text{ min}} \leq$ rating background level + 5 dB criterion, based upon the location of the subject site (i.e. possible Local Shops are located along Fraser Drive), the area is considered to be a Category R2 area (Areas with low density transportation) as defined in Australian Standard AS1055.2-1997. The background noise levels for a Category 2 are presented as an attachment in Appendix A (i.e. 45 dB(A) during the daytime, 40 dB(A) evening and 35 dB(A) night-time). These levels concur well with the measured RBLs at Logger Location A (i.e. possible Local Shops located along Fraser Drive).

By considering the above criteria, the measured daytime RBLs, we recommend the following noise limits for the proposed use:

•	Daytime (7 am – 6 pm Mon-Sat; 8 am – 6 pm Sun)	51 (RBL 46 + 5) dB(A) Leq;
•	Evening (6 pm – 10 pm)	46 (RBL 41 + 5) dB(A) Leq; and
•	Night (remaining periods)	39 (RBL 34 + 5) dB(A) Leq.

Overall, the resulting L_{Aeq} , $_{15 \text{ min}} \leq$ rating background level + 5 dB criterion based upon the measured daytime RBLs are below the acceptable amenity criterion levels for an Urban area (refer to Table 5).

Further to the above criteria, we recommend applying a design target of 45 dB(A) L_{10} inside living areas and bedrooms from short term noise events. This level is within sleep disturbance prevention criteria set by the World Health Organisation.

¹ The rating background level is the overall single figure background level representing each assessment period (day/evening/night over the whole monitoring period.

5.0 **RESULTS & CALCULATIONS**

5.1 Modeled Road Traffic Noise Levels – Existing Situation

5.1.1 Existing and Future Traffic Volumes

The existing traffic volume and the percentage of heavy vehicles for Fraser Drive and Hillcrest Avenue were obtained from the Tweed Shire Council. We were advised that traffic data was collected in year 2008 and 2005 respectively. Predicted traffic volumes are based upon projections for the year 2009 and 2019 which assume a 4.47% compound growth per annum taking into account the Kirkwood Road interchange upgrade.

Fraser Drive:

•	Surveyed Volume:	6,441 vpd volume, 2.4% heavy vehicles
•	Predicted Exiting Volume:	6,729 vpd volume, 2.4% heavy vehicles
•	Predicted Ultimate Volume:	10,420 vpd volume, 2.4% heavy vehicles

Hillcrest Avenue:

• Surveyed Volume: 1,055 vpd volume, 4% heavy vehicles

Peak hour traffic volumes for Merlot Drive and Ocean Street were obtained from the Cardno Eppell Olsen traffic count performed in 2006. Assuming peak hour rates are 10% of total volume the following daily traffic volumes apply:

<u>Merlot Drive:</u> :	335 vehicles per day
<u>Ocean Street:</u>	240 vehicles per day

Site Generated:

Trips generated by the residential lots are estimated to be at 9 trips per day for detached dwelling lots and 5 trips per day for medium density housing as per the *"RTA Guide to Traffic Generating Developments Version 2.2 (October 2002)"*. The possible Local Shops are estimated to generate 121 vehicles per day per 100m² GLFA.

As the proposed development is to contain 145 residential lots (132 attached lots and 13 detached lots, yielding 158 dwellings) and $2,500m^2$ of GLFA local shops the following trip generation is predicted:

Development Site	Lots	Detached dwellings	Medium density dwellings	Daily Trips	
Dwellings	145	132	26	1318	
Local Shops		$400m^2$ GLFA			
Total				1802	

 Table 6: Site Trip Generation.

5.1.2 Modeled Road Traffic Noise Levels – Existing Situation

Road traffic noise predictions were conducted using PEN3D, a CoRTN based model acceptable under the Environmental Protection (Noise) Policy. To verify the road traffic noise prediction model, the year 2009 L_{Aeq} _{24hr} traffic noise level was calculated for the logger location and compared to the measured noise level. For PEN3D point calculation sheets refer to Appendix C of this report.

We note that road elevations for Fraser Drive at the location of the subject site were obtained from longitudinal section drawings provided by VKL Consulting Pty Ltd.

The calculated existing $L_{A10 \ 18hr}$ noise level, approximately 20m from the nearest lane of Fraser Drive is 57.4 dB(A). Compared with the measured $L_{Aeq \ 24hr}$ level of 56.9 dB(A), the model is over-predicting by 0.5 dB(A), which is within the allowable 2 dB(A) deviation from measured levels.

5.1.3 Modeled Road Traffic Noise Levels – Year 2019

Based upon year 2019 traffic volumes, the PEN3D model predicts the following façade corrected traffic noise levels as detailed in Table 7. The following parameters were used in developing the PEN3D model for the development site:

- Recommended 2.0m high acoustic barrier treatments as detailed in Section 6.1.1.
- 80 km/hr posted speed limit on Fraser Drive.
- Dense graded asphalt surface (no road surface correction required).
- Ground Floor receiver heights taken at 1.8m above ground level.
- Ground Floor receiver heights taken at 4.6m above ground level.
- Lot numbering as per plans provided in Appendix B.
- Lots 1 and 3 designated for commercial use (i.e. retail centre).

Although PEN3D only calculates $L_{Aeq (24hr)}$ levels, the $L_{Aeq(1hr)}$ levels presented are based upon the measured relationship between the $L_{Aeq(24hr)}$ and the $L_{Aeq(1hr)}$ level at Logger Location A. For PEN calculations refer to Appendix C of this report.

Let Dession Leveling	Predicted 2019 Traffic Noise – Façade Corrected dB(A)						
Lot Receiver Location	LAeq (24hr)	LAeq (15hr)	L _{Aeq (9hr)}	LAeq (1hr) Daytime	LAeq (1hr) Night time		
Ground Floor Façades							
3	55	56	45	59	54		
4	54	55	44	58	53		
15	57	58	47	61	56		
22	60	61	50	64	59		
23	60	61	50	64	59		
24	60	61	50	64	59		
25	60	61	50	64	59		
26	61	62	51	65	60		
27	60	61	50	64	59		
28	60	61	50	64	59		
29	60	61	50	64	59		
30	60	61	50	64	59		
31	56	57	46	60	55		
32	54	55	44	58	53		
69	55	56	45	59	54		
70	57	58	47	61	56		
71	60	61	50	64	59		
88	55	56	45	59	54		
89	57	58	47	61	56		
90	61	62	51	65	60		
101	54	55	44	58	53		

Note - Lot building façades presented in bold have TNR values at or less than 25 - refer to Section 6.

Receiver Location	Predicted 2019 Traffic Noise – Façade Corrected dB(A)						
	LAeq (24hr)	LAeq (15hr)	L _{Aeq (9hr)}	LAeq (1hr) Daytime	LAeq (1hr) Night tin		
Ground Floor Façades				<u>(</u>)			
102	56	57	46	60	55		
103	60	61	50	64	59		
104	57	58	47	61	56		
105	60	61	50	64	59		
106	62	63	52	66	61		
107	<u>58</u> 56	59 57	<u>48</u> 46	62 60	57 55		
108					54		
109 110	55	56 56	45 45	59 59	54		
110	54	55	43	58	53		
113	60	61	50	64	59		
	58	59	48	62	57		
<u>114</u> 115	56	57	46	60	55		
115	55	56	40	59	54		
110	54	55	43	58	53		
117	54	55	44	58	53		
112	55	56	44	59	54		
110	55	56	45	59	54		
20	54	55	43	58	53		
21	55	56	45	59	54		
122	56	57	46	60	55		
123	56	57	46	60	55		
124	56	57	46	60	55		
125	62	63	52	66	61		
126	61	62	51	65	60		
127	61	62	51	65	60		
128	60	61	50	64	59		
129	62	63	52	66	61		
130	61	62	51	65	60		
131	62	63	52	66	61		
132	61	62	51	65	60		
133	60	61	50	64	59		
134	60	61	50	64	59		
135	59	60	49	63	58		
First Floor Façades	0,7	00	.,	00	00		
3	58	59	48	62	57		
4	56	57	46	60	55		
5	54	55	44	58	53		
15	59	60	49	63	58		
19	54	55	44	58	53		
20	55	56	45	59	54		
21	56	57	46	60	55		
22	68	69	58	72	67		
23	68	69	58	72	67		
24	67	68	57	71	66		
25	67	68	57	71	66		
26	67	68	57	71	66		
27	67	68	57	71	66		
28	68	69	58	72	67		
29	68	69	58	72	67		
30	67	68	57	71	66		
31	62	63	52	66	61		
32	58	59	48	62	57		
33	55	56	45	59	54		
49	55	56	45	59	54		
50	55	56	45	59	54		

Table 7: Predicted traffic noise impact levels at the proposed development.Page 11

Receiver Location	Predicted 2019 Traffic Noise – Façade Corrected dB(A)						
	LAeq (24hr)	LAeq (15hr)	L _{Aeq (9hr)}	LAeq (1hr) Daytime	LAeq (1hr) Night time		
First Floor Façades				-	-		
51	55	56	45	59	54		
68	55	56	45	59	54		
69	58	59	48	62	57		
70	62	63	52	66	61		
71	67	68	57	71	66		
87	55	56	45	59	54		
88	58	59	48	62	57		
89	61	62	51	65	60		
90	66	67	56	70	65		
101	55	56	45	59	54		
102	56	57	46	60	55		
103	65	66	55	69	64		
104	65	66	55	69	64		
105	65	66	55	69	64		
106	64	65	54	68	63		
107	59	60	49	63	58		
108	57	58	47	61	56		
109	56	57	46	60	55		
110	55	56	45	59	54		
111	55	56	45	59	54		
113	66	67	56	70	65		
113	63	64	53	67	62		
115	60	61	50	64	59		
115	59	60	49	63	58		
117	57	58	49	61	56		
117	57	58	47	61	56		
118	57	58 58	47 47	61 61	56 56		
119		58					
120	56		46	60	55		
121	57	58	47	61	56		
122	57	58	47	61	56		
123	57	58	47	61	56		
124	57	58	47	61	56		
125	67	68	57	71	66		
126	68	69 (0	58	72	67		
127	68	69 (2	58	72	67		
128	68	69	58	72	67		
129	68	69	58	72	67		
130	68	69	58	72	67		
131	68	69	58	72	67		
132	67	68	57	71	66		
133	68	69	58	72	67		
134	67	68	57	71	66		
135	65	66	55	69	64		
154	55	56	45	59	54		
155	55	56	45	59	54		

Note - Lot building façades presented in bold have TNR values at or less than 25 - refer to Section 6.

 Table 7: Predicted traffic noise impact levels at the proposed development.

We note that lots which are not presented in Table 7 above have predicted impact levels at or the below the adopted noise criterion. For PEN calculations refer to Appendix C of this report.

5.1.4 Predicted Noise Impacts from Additional Traffic on the Existing Road Network

Based upon the existing traffic volumes on the local roads and the trip generation rates expected from the completed development (as presented in Section 5.1.1) we present the following traffic noise increase predictions.

Based upon the Cardno Eppell Olsen traffic assessment dated December 2006, vehicles from the northern end of the development (Stages 1A, 2A and 3A) will enter and exit from Fraser Drive, with 75% of the traffic volume heading south and 25% heading north. We have assumed that 75% of the Local Shop patronage will come from the southern end of Fraser Drive and 25% from the northern end of Fraser Drive with all retail centre trips in addition to the residential trips calculated for the development (worst case). Refer to Table 8 below for existing traffic volumes on the local roads and predicted development traffic on the local roads.

For the southern end of the development (Stages 1B, 2B and 3B), 50% of the development traffic will enter and exit from Merlot Street and 25% from both Ocean Street and Hillcrest Avenue.

Existing Volumes on Local Roads			Traffic Volu	me	
Existing volumes on Local Roads	AADT	15hr	9hr	Day 1hr Peak	Night1hr Peak
Volume Percentage	100%	93%	7%	10%	3%
Fraser Drive	6729	6258	471	673	202
Ocean Street	240	223	17	24	7
Hillcrest A ven ue	1055	981	74	106	32
Merlot Street	350	326	25	35	11
			Traffic Volu	me	
Development Volumes on Local Roads	AADT	15hr	9hr	Day 1hr Peak	Night 1hr Peak
Volume Percentage	100%	93%	7%	10%	3%
Fraser Drive North	286	266	20	29	9
Fraser Drive South	859	799	60	86	26
Ocean Street	164	153	11	16	5
Hillcrest Avenue	164	153	11	16	5
Merlot Street	329	306	23	33	10

 Table 8:
 Traffic volumes on local roads: existing and completed development generation.

Measurements from a similar previous site in NSW were taken of vehicles travelling along a local road with a posted speed limit of 50 km/hr. Table 9 below presents the measured noise levels.

Noise Level Descriptor	Measured Level at 10m from Passing Vehicles dB(A)
Road Traffic Noise Measurements	
Average L _{Aeq passby}	59
Average SEL passby	71 (15 sec.)

Table 9: Measured vehicle bypass on a locale street.

Predicted L_{Aeq} levels for the local roads have been determined by multiplying the measured SEL of a vehicle pass-by by the number of car passes for each time period. Refer to Appendix C for calculations. We note that the above method has been applied due to the low traffic volumes anticipated upon the local road network, and to incorporate the local road environment (i.e. undertaking of attended measurements of vehicles using a local NSW road).

The predicted $L_{Aeq,15hr}$, $L_{Aeq,9hr}$, and $L_{Aeq,1hr}$ noise levels at existing offsite dwellings are presented in Table 10 over the page.

Receiver Location	Predi	cted Traffic Noise:	Façade Corrected	dB(A)
Receiver Location	LAeq 15hr	L _{Aeq 9hr}	LAeq 1hr Daytime	LAeq 1hr Night time
Existing Scenario				
Dwellings along Fraser Drive Nth	64	55		
Dwellings along Fraser Drive Sth	64	55		
Dwellings along Ocean Street			52	46
Dwellings along Hillcrest Avenue			58	53
Dwellings along Merlot Street			53	48
Completed Development Scenario	1			
Dwellings along Fraser Drive Nth	64	55		
Dwellings along Fraser Drive Sth	64	55		
Dwellings along Ocean Street			54	49
Dwellings along Hillcrest Avenue			59	53
Dwellings along Merlot Street			56	51
Criterion	60	55	55	50

Table 10: Predicted noise impacts at existing streets.

5.2 Onsite Commercial Activity Noise: Impacting Noise Sensitive Receivers

All noise source levels used in the assessment have been collected from similar previous investigations. All noise levels have been corrected for impulsiveness or tonality as per Australian Standard AS 1055:1997 – "Acoustics-Description and measurement of environmental noise".

The following noise sources are typically associated with the operation of a commercial site and have been assessed within this report:

Activity/Noise Source	Noise Level, SPL L _{Aeq} dB(A)
Car door closure	58 dB(A) @ 1m
Car bypass at 5km/hr	57 dB(A) @ 3m
Patrons at alfresco dining area	70 dB(A) @ 1m
Goods delivery	85 dB(A) @ 1m
Waste collection	88 dB(A) @ 1m
Cluster of air-conditioning units Indicative level	58 dB(A) @ 1m (2 x 55 dB(A) units)

 Table 11: Typical noise source levels associated with a commercial centre.

Based upon the location of the adjacent noise sensitive properties (façades and inside rooms assuming open windows), we predict the following noise impact levels from typically occurring activities at the subject site as presented in Tables 12 and 13 (ground and top floor level façades) over the page.

It is noted that the predicted level assume that the recommended acoustic treatments as detailed in Section 6.2 are incorporated into the development.

GROUND FLOOR LEVEL

	Predicted Noise Im	pact, SPL L _{Aeq} dB(A)
Noise source	Nearest Façade to Development	Inside with Windows Open	Rw to Achieve Criteria Inside
Onsite Lot 22 Dwelling	•		
Car door closure	29	22	N/A
Car bypass at 5km/hr	44	37	N/A
Patrons alfresco dining area	41	34	N/A
Goods delivery	63	55	Refer Below
Waste collection	74	66	Refer Below
A/C Units	38	31	N/A
Onsite Lot 21 Dwelling	·		
Car door closure	29	22	N/A
Car bypass at 5km/hr	35	28	N/A
Patrons alfresco dining area	41	34	N/A
Goods delivery	60	52	Refer Below
Waste collection	71	63	Refer Below
A/C Units	47	39	N/A
Onsite Lot 3 Dwelling	•		
Car door closure	36	28	N/A
Car bypass at 5km/hr	44	37	N/A
Patrons alfresco dining area	46	39	N/A
Goods delivery	49	41	Refer Below
Waste collection	60	52	Refer Below
A/C Units	47	39	N/A
Bunkhouse Accommodation Du	ie East		
Car door closure	<20	<	20
Car bypass at 5km/hr	26	<	20
Patrons alfresco dining area	28	2	21
Goods delivery	44	3	36
Waste collection	47	4	40
A/C Units	<20	<	20
Existing Dwellings Due North	·		
Car door closure	<20	<	20
Car bypass at 5km/hr	27		20
Patrons alfresco dining area	30		22
Goods delivery	45		38
Waste collection	49		41
A/C Units	<20	<	20
Criterion dB(A)	7am – 6pm: 51 / 6pm – 10pm: 46	Insic	le: 45

Table 12: Predicted noise impact from onsite noise sources at ground floor façades.

As waste collection and delivery activities are generally infrequent events (i.e. once or twice per week) and of short duration we have not based our Rw requirements on these predicted impact levels.

TOP FLOOR LEVEL

	Predicted Noise Im	pact, SPL L _{Aeq} dB(A)
Noise source	Nearest Façade to Development	Inside with Windows Open	Rw to Achieve Criteria Inside
Onsite Lot 22 Dwelling			
Car door closure	37	30	N/A
Car bypass at 5km/hr	52	45	N/A
Patrons alfresco dining area	49	42	N/A
Goods delivery	71	63	Refer Below
Waste collection	74	66	Refer Below
A/C Units	38	31	N/A
Onsite Lot 21 Dwelling			
Car door closure	37	30	N/A
Car bypass at 5km/hr	43	36	N/A
Patrons alfresco dining area	49	42	N/A
Goods delivery	68	60	Refer Below
Waste collection	71	63	Refer Below
A/C Units	47	39	N/A
Onsite Lot 3 Dwelling			
Car door closure	44	36	N/A
Car bypass at 5km/hr	52	45	N/A
Patrons alfresco dining area	54	47	Within 2 dB(A)
Goods delivery	57	49	Refer Below
Waste collection	60	52	Refer Below
A/C Units	47	39	N/A
Criterion dB(A)	7am – 6pm: 51 / 6pm – 10pm: 46	Insid	le: 45

 Table 13:
 Predicted noise impact from onsite noise sources at top floor façades.

As the average person cannot typically detect a 3 dB variation in sound pressure levels a 1 dB exceedance is unlikely to cause annoyance.

6.0 RECOMMENDED ACOUSTIC TREATMENTS

6.1 Road Traffic Noise Acoustic Treatments:

6.1.1 Acoustic Barriers

For strict compliance at ground floor level facades at all lots an acoustic barrier fronting Fraser Drive would have to be in the order of 3.3m to 4.5m in height. For strict compliance at ground and first floor level facades at all lots an acoustic barrier fronting Fraser Drive would have to be in the order of 6m to 7m in height.

A 3.3m to 4.5m or a 6m to 7m high acoustic barrier along the Fraser Drive frontage would have negative impacts on other urban planning issues such as visual amenity, streetscape, loss of breezes, passive surveillance along Fraser Drive and the early morning and afternoon shadows cast by such barriers. A 6 to 7m high barrier would also not be achievable due to costs associated with its construction and engineering (i.e. footing depth and wind loadings). For these reasons an alternative barrier solution has been adopted.

In-keeping with the existing built environment along Fraser Drive (i.e. residential dwellings both to the north, south and southeast of the subject site) given that the proposed development is an infill site we have recommended a maximum acoustic barrier height of 2.0m along the Fraser Drive frontage.

The recommended location of the 2.0m high acoustic barriers is presented in Sketch 2 of Appendix A. Barriers are to be constructed above the finished ground or existing ground, whichever is higher and be free of gaps and holes. Typical materials include earth berms, 19mm lapped timber fence (40% overlap), 6mm FC sheet, masonry, or a combination of the above (a minimum surface mass of 11kg/m^2 is required).

6.1.2 Building Treatments

Based upon the noise modelling (Refer to Table 7 of Section 5.1.3), traffic noise is predicted to exceed the external noise criterion at the nearest proposed lots; hence further acoustic treatments are required.

To determine the extent of acoustic treatments, assessment of habitable spaces (i.e. bedrooms and living/dining/kitchen areas) should be undertaken in accordance with Australian Standard AS3671:1989 "Acoustics – Road traffic noise intrusion – Building Siting and Construction" to achieve the "maximum" internal noise levels prescribed in AS/NZS 2107:1987 "Acoustics – Recommended Design Sound Level and Reverberation Times for Building Interiors" – refer to Section 4.1.

Based upon predicted impact levels at lot building façades (refer to Table 7 of Section 5.1.3), the TNR values (Traffic Noise Reduction) as defined in AS3671:1989 are as follows:

Receiver	Space	Impact dB(A)	Criteria dB(A)	TNR dB(A)
First Floor Living Areas	Lots 22 to 30, 71 and 125 to 134	72.0	45	27.0
First Floor Bedrooms	Lots 22 to 30, 71 and 125 to 134	67.0	40	27.0

Table 14: TNR values for noise affected habitable rooms.

TNR values between 10 and 25 (Lot building façades which are presented in Bold within in Table 7 of Section 5.1.3) are considered as Construction Category 2 within AS3671:1989, which is defined as follows:

"Standard construction, except for lightweight elements such as fibrous cement or metal cladding or all glass façades."

Australian Standard AS3671:1989 also provides guidance on standard building construction for those lots with TNR values between 10 and 25:

Fraser Drive Space	Building Component	Rw	Indicative Acoustic Treatment **Verify with supplier proposed element achieves required Rw**
Standard Building Const	ruction:		
	Glazing	24	4mm glass in a standard grade frame
Lots predicted to have TNR values up to 25	External Wall	33 - 35	Conventional timber stud framed wall, clad externally with 9mm thick timber or hardboards or flat cellulose-cement sheets, and internally with 10mm thick plasterboard; or conventional brick veneer construction
	Roof / Ceiling	33 - 35	Conventional pitched roof with tiles or corrogated metal, over 10mm thick plasterbaord

Table 15: Standard Building Shell Treatments.

TNR values between 25 and 35 (refer to Table 14 on the previous page) are considered as Construction Category 3 within AS3671:1989, which is defined as follows:

"Special construction, chosen in accordance with Clause 3.4. Windows, doors and other openings must be closed."

Hence, to achieve the internal noise criterion at habitable rooms of future dwellings on lots with a TNR values greater than 25 (refer to Table 14 on the previous page), we recommend that additional noise assessments be conducted once building plans are finalised.

Assessment of habitable rooms should be undertaken in accordance with Australian Standard AS3671:1989 'Acoustics – Road traffic noise intrusion – Building Siting and Construction' to achieve the maximum internal noise levels prescribed in AS/NZS 2107:1987 'Acoustics – Recommended Design Sound Level and Reverberation Times for Building Interiors'. To allow occupants to close windows and doors and still have a supply of fresh air, provision of air conditioning or sealed mechanical ventilation is required to noise affected habitable rooms.

We note that lots requiring upgraded building shell treatments are limited to approximately 12% of the overall number of lots proposed (i.e. 20 of 163 lots); hence 88% of the proposed lots require standard building shell treatments only due to setback buffer distance providing sufficient noise mitigation.

6.1.3 External Private Open Spaces

An option to achieve the criterion at private open spaces on lots affected by traffic noise above the external daytime criterion of 55 dB(A) (refer to Table 7 of Section 5.1.3) is to locate such areas at ground level and along the western facing dwelling façades allowing for partial or full physical screening of traffic noise by the building envelope.

Hence, for noise affected lots, the additional acoustic assessments (discussed in Section 6.1.2 above) would also need to consider the location of external private open spaces to ensure the external noise criterion can be achieved at these areas.

6.2 Recommended Acoustic Treatments for Onsite Commercial Activity

Based upon the assumed commercial noise source levels, the following acoustic treatments and management principles are recommended to mitigate onsite commercial noise emissions should Local Shop development proceed:

- Construction of the 1.8m high acoustic barriers as detailed in Sketch 1 of Appendix A. Barriers are to be constructed above the finished ground or existing ground, whichever is higher and be free of gaps and holes. Typical materials include earth berms, 19mm lapped timber fence (40% overlap), 6mm FC sheet, masonry, or a combination of the above (a minimum surface mass of 11kg/m² is required).
- Awnings above alfresco dining areas be of a solid construction, and be free of holes or gaps to mitigate noise intrusion to unit dwellings above.
- Commercial hours of operation be limited to 7am to 10pm.
- Waste collection and deliveries be limited to the daytime period of 7am to 6pm.
- Driveway and carpark areas of the Local Shops be finished with surface coatings which prevent tyre squeal (an uncoated surface is acceptable). Drainage grating over trafficable areas be well secured to prevent rattling.
- Mechanical plant at the general store be designed and installed to comply with the noise criterion presented in Section 4.2. As final plant selection has not been completed, additional acoustic assessment/s should be undertaken once plant selections are finalised. Such assessments should be undertaken prior to Building Approval; and be conditioned within the Development Approval.

7.0 **DISCUSSION**

7.1 Road Traffic Noise

Road traffic noise has been assessed against the ten year planning horizon after the completion of the development, and takes into account the impact of traffic on Fraser Drive. Based upon year 2019 traffic volumes, traffic noise levels are predicted to impact the proposed subdivision at levels above the adopted road traffic noise criterion; hence acoustic treatments are required.

The adopted criterion has been sourced from the NSW EPA "Environmental Criteria for Road Traffic Noise" (ECRTN) and relates to "new residential developments affected by freeway / arterial traffic noise". We note that the above criterion as presented in the ECRTN refers to internal layouts, building materials and construction as methods for minimising road traffic noise impacts (for when the noise criteria is already exceeded).

This assessment has explored available acoustic treatment options which are suitable (reasonable and achievable) for the development site and has provided recommendations for a balanced acoustic treatment outcome as a balanced treatment strategy is supported by both the ECRTN (refer to Section 3.6 of the document); and the NSW Department of Planning document "Development near Rail Corridors and Busy Roads – Interim Guideline" (refer to Section 3.8 of the document).

Final acoustic recommendations which include acoustic barriers, acoustic building shell treatments and appropriate locations of private open recreation spaces not only provide a balance of reasonable and achievable options but is also considered the preferred option for the following site specific reasons:

- The lot layout is constrained due to the site topography and the parcel of land is an infill site.
- We note that lots requiring upgraded building shell treatments are limited to approximately 12% of the overall number of lots proposed (i.e. 20 of 163 lots); hence 88% of the proposed lots require standard building shell treatments only due to setback buffer distance providing sufficient noise mitigation.
- The topography of the site (land rises up from Fraser Drive) limits the overall performance of acoustic barriers; with barriers able to provide screening to top floor levels of dwellings (if constructed) would need to be in the order of 8m in height.
- A 3.3m to 4.5m or a 6m to 7m high acoustic barrier along the Fraser Drive frontage would have negative impacts on other urban planning issues such as visual amenity, streetscape, loss of breezes, passive surveillance along Fraser Drive and the early morning and afternoon shadows cast by such a barrier.
- A 6m to 7m high barrier would also not be achievable due to costs associated with its construction and engineering (i.e. footing depth and wind loadings).
- The recommended treatments are in-keeping with the existing built environment along Fraser Drive (i.e. residential dwellings both to the north, south and southeast of the subject site) given that the proposed development is an infill site. Such built forms include a limitation of barrier height to 2m (i.e. a residential sub-division to the southeast of the subject site) and no acoustic barrier for those dwellings directly to the north and south of the site.
- CRG Traffic and Acoustical Consultants have undertaken a number of similar developments in Northern New South Wales which have had similar approved recommended acoustic treatments.

The increases in traffic volume on the local roads due to the completed development are predicted to increase noise levels by at or less then 2 dB(A) on Fraser Drive, Ocean Street and Hillcrest Avenue; and are within the allowable 2 dB(A) increase as presented in Table 3 of Section 4.1.

Traffic noise impacts at existing dwellings along Fraser Drive and Hillcrest Avenue are predicted to be above the daytime and night-time noise criterion for both the existing scenario and the scenario with the completed development at the subject site; however as mentioned above, impact levels (completed development) have not increased by more then 2 dB(A) from the existing scenario.

The increases in traffic volume on Merlot Street due to the completed development are predicted to increase by 3 dB(A); however the impact levels are within 1 dB(A) of the external noise criterion for "local roads" of 55 dB(A) for daytime and 50 dB(A) for the night-time. As the average person cannot typically detect a 3 dB variation in sound pressure levels a 1 dB exceedance is unlikely to cause annoyance.

We note that the development has five vehicle access points to the local roads to ensure development traffic is distributed and not limited to any single local road.

7.2 Commercial Noise

Based upon the assumed noise source levels and recommended acoustic treatments, noise impacts at the ground floor level residential building façades are predicted to be within 1 dB of the evening-time "Background +" external criterion and the adopted internal limit of 45 dB(A) with the exception of waste collection and deliveries.

Noise impacts at the first floor level residential building façades are predicted to be within 2 dB of the adopted internal limit of 45 dB(A) with the exception of waste collection and deliveries. We note that for most dwellings private recreation space is provided at ground floor level; therefore, only internal rooms of first floor levels have been assessed.

As the average person cannot typically detect a 3 dB variation in sound pressure level, we submit a 1 dB exceedance is unlikely to cause annoyance and is considered an acceptable outcome.

8.0 **CONCLUSIONS**

This report is in response to a request by VKL Consulting Pty Ltd on behalf of Greenview Developments Pty Ltd for an environmental noise impact assessment of a proposed residential subdivision situated on Fraser Drive, Tweed Heads.

Overall, the proposed development will generally be within acceptable levels of the adopted criterion, subject to the acoustic treatments recommended in Section 6 being integrated into the design, construction and operation of the development.

Report Reviewed By:

Report Compiled by:

JAY CARTER BSc Director

1st Gpz

Matthew Lopez BEng Consultant

APPENDIX A

Attachments, Subject Site, Noise Measurement Locations and Recommended Acoustic Barriers

Attachment A: NSW Department of Planning Acoustic Condition:

B2 Noise Attenuation

A revised acoustic assessment must be submitted to the Department for approval prior to the issue of a Construction Certificate for any stage of the subdivision to demonstrate that the following noise criteria can be achieved at the eastern boundary of all residential allotments without the use of residential dwelling construction standards (architectural treatment) to ameliorate road traffic noise:

- Day (7am 10pm): L_{Aeq(15hr)}55
- Night (10pm 7am): L_{Aeq(9hr)}50

Attachment B: Australian Standard AS1055.2-1997 Appendix A

AS 1055.2-1997

APPENDIX A

ESTIMATED AVERAGE BACKGROUND A-WEIGHTED SOUND PRESSURE LEVELS ($L_{A90,T}$) FOR DIFFERENT AREAS CONTAINING RESIDENCES IN AUSTRALIA

(Informative)

This Appendix may only be used as a guideline. Whenever possible values of $L_{A90,T}$ shall be measured in accordance with Clause 4.2.1. Where the measured values are obtainable, this Appendix shall not be used.

		Avei	age backgrou	und A-weight	ed sound pres	ssure level, L	A90,T
Noise area category (Notes	Description of neighbourhood	Mor	day to Satur	day		Sundays and oublic holiday	
1 and 2)		0700-1800	1800-2200	2200-0700	0900-1800	1800-2200	2200-0900
R1	Areas with negligible transportation	40	35	30	40	35	30
R2	Areas with low density transportation	45	40	35	45	40	35
R3	Areas with medium density transportation or some commerce or industry	50	45	40	50	45	40
R4	Areas with dense transportation or some commerce or industry	55	50	45	55	50	45
R5 (See Note 3)	Areas with very dense transportation or in commercial districts or bordering industrial districts	60 -	55	50	60	55	50
R6 (See Note 3)	Areas with extremely dense transportation or within predominantly industrial districts	65	60	55	65	60	55

NOTES:

1 The division into noise area categories is necessary in order to accommodate existing sound levels encountered at residential sites in predominantly commercial or industrial districts, or in areas located close to main land transport routes, i.e. road and rail.

2 The noise area category most appropriate should be selected irrespective of metropolitan or rural zoning and will vary from location to location.

3 Some industrial and commercial sites are not predominant sources of high background sound levels.

COPYRIGHT

Figure 2: Subject site and Locale (Google Earth)

Sketch No. 1: Local Shop Site Recommended Acoustic Barriers (Not to Scale)

RETAIL CENTRE ACOUSTIC BARRIER LEGEND

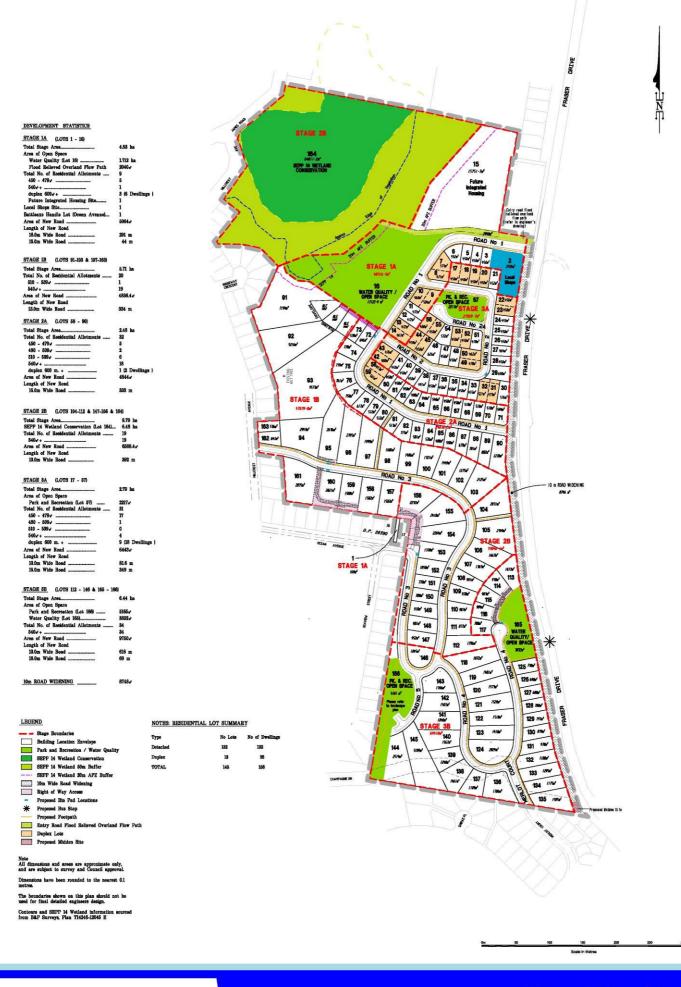
Recommended 1.8m high acoustic barrier constructed above the finished ground or existing ground, whichever is higher.

Barriers are to be constructed free of gaps and holes. Typical materials include earth berms, 19mm lapped timber fence (40% overlap), 6mm FC sheet, masonry, or a combination of the above (a minimum surface mass of 11kg/m^2 is required).

Sketch No. 2: Development Site Layout and Recommended Acoustic Barriers (Not to Scale)

ROAD TRAFFIC NOISE ACOUSTIC BARRIER LEGEND

Recommended 2.0m high acoustic barrier constructed above the finished ground or existing ground, whichever is higher.


Barriers are to be constructed free of gaps and holes. Typical materials include earth berms, 19mm lapped timber fence (40% overlap), 6mm FC sheet, masonry, or a combination of the above (a minimum surface mass of 11kg/m^2 is required).

APPENDIX B

Development Plan

B&PSURVEYS CONSULTING SURVEYORS Ware board man and the section of the section of

Proposed Subdivision Fraser Drive, Tweed Heads South Parish: Terranora County: Rous Our Ref: T14246 Date: 16/10/2009 Scale: 1:2000 @ A1 Drawing No: 17900B-A

APPENDIX C

Measurement Results and Model Calculations / Predictions

Coolangatta, Queensland August 2009 Daily Weather Observations

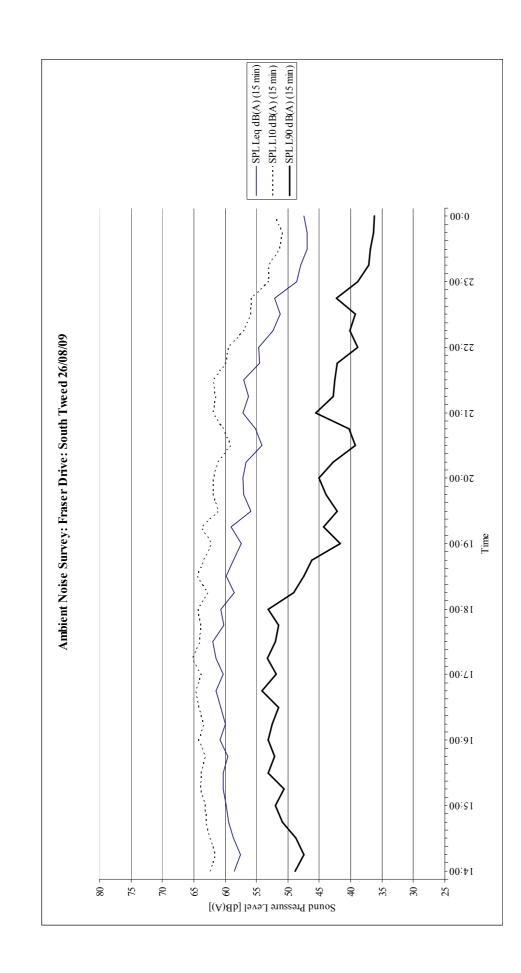
Australian Government

Day Temps Rain Fare Sam Fare Sam Sa			1				F	;		,			ſ						ľ			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			len	sdu	Rain	Evap	Sun	Max	wing gu					ε					3	E	,	
m house co is entres To is entres co is	Date	Day	Min	Мах		1		_	_	_	Temp	_	CId	Dim	Spd	MSLP	Temp	RH	CId	Dirn	Spd	MSLP
EEE 20 14.20 17.3 55.4 18.4 61 SSW 7 1025.1 10.0 6 EE 7 NNE 25 15.44 18.4 61 NW 16 1023.1 21.0 61 17 NNE 25 15.44 18.4 61 NW 16 1023.1 20.0 61 K 22 S 26 16.56 18.3 65 SSW 19 1023.1 20.0 NE 22 NNE 37 14.46 18.4 61 NW 17 17 17 10.2 24 10.7 24 10.7 26			°.	°.	шш	шш	hours		km/h	local	<u>.</u>	Η	eighths		km/h	hPa	•	9	elghths		km/h	hPa
EEE 20 12.33 16.9 74 SW 6 1027.7 20.0 56 E 71 NNE 25 15.54 17.4 70 SW 6 1023.1 12.40 60 NE 21 NNE 22 16.56 17.4 70 SSW 6 1023.1 12.40 60 NE 21 S 20 0670 17.4 55 SSW 1023.1 20.0 66 NE 22 S 20 0670 17.4 55 SSW 1102.1 20.0 66 NE 22 NNE 214.66 19.2 64 NNW 21 107.2 21.5 61 NE 22 NNW 27 1016.5 23.1 20 1017.2 21.5 24 107.2 21.5 24 10 22 NNW 21 1017.2 21.5 20 1017.2 21.5 24	-	Sa		21.0	0			ESE	26	14:26	17.6	50		SSW	7	1025.1	19.8	47		ESE	17	1022.5
NNE 35 16.44 18.4 61 NNE 35 16.4 18.4 61 NNE 52 16.4 18.2 60 NNE 52 61 55 71 70 55 70 70 55 71 70 55 70 70 55 71 70 55 70 70 55 70 70 55 70 70 55 70 50 61 71 70 55 70 70 55 70 50 70 <td>2</td> <td>Su</td> <td></td> <td>21.6</td> <td>0</td> <td></td> <td></td> <td>ESE</td> <td>26</td> <td>12:53</td> <td>16.9</td> <td>74</td> <td></td> <td>SW</td> <td>9</td> <td>1027.1</td> <td>20.0</td> <td>56</td> <td></td> <td>ш</td> <td>17</td> <td>1024.5</td>	2	Su		21.6	0			ESE	26	12:53	16.9	74		SW	9	1027.1	20.0	56		ш	17	1024.5
NI 22 1847 17.7 70 SSW 190 102.14 10.2 60 NIE 53 11.3 102.14 10.3 <td>33</td> <td>Mo</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>NNE</td> <td>35</td> <td>15:44</td> <td>18.4</td> <td>61</td> <td></td> <td>NN</td> <td>15</td> <td>1023.8</td> <td>21.4</td> <td>60</td> <td></td> <td>NNE</td> <td>26</td> <td>1019.8</td>	33	Mo			0			NNE	35	15:44	18.4	61		NN	15	1023.8	21.4	60		NNE	26	1019.8
SE 20 16.33 17.4 70 SSW 10 102.1,4 20.2 60 SE 10 SSW 11 102.1,1 20.0 10 SE 21 SSW 12 102.1,1 20.0 11 SSW 12 10.21,1 20.0 11 SSW 11 10.21,4 SS 21 10,4 SS 21 10,4 SS 21 10,4 SS 21 10,1 SSK 21 21 24 NNE 22 11 10,1 21 24 NNE 22 10,1 SSK 21 24 NNE 22 21 26 NNE 22 21 26 28 28 29 10,1 23 24 25 24 25 24 25 26 26 27 26 26 27 26 27 27 27 26 27 26 26 27 26 26 26 27 <th2< td=""><td>4</td><td>ΠT</td><td></td><td></td><td>0</td><td></td><td></td><td>z</td><td>22</td><td>18:47</td><td>17.7</td><td>70</td><td></td><td>SSW</td><td>a</td><td>1023.1</td><td>19.9</td><td>59</td><td></td><td>W</td><td>13</td><td>1019.3</td></th2<>	4	ΠT			0			z	22	18:47	17.7	70		SSW	a	1023.1	19.9	59		W	13	1019.3
NINE 22 0061 18.2 06 NINE 7 102.17 20.5 55 SS 31 NNE 31 12460 18.2 66 NNN 21 04.07 17.5 56 NNN 21 04.07 17.5 56 NNN 21 04.07 17.5 56 NNN 21 04.07 7 02.8 21 10 10 22 10 10 21 22 21 10 22 24 10 21 22 22 22 22 22 22 22 22 22 22 22 24 10 23 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 24 23 23 23 24 24 24 24	5	We			0			ß	26	15:35	17.4	79			Calm	1021.4	20.2	00		ш	15	1019.7
NNE 28 16:15 18.2 60 WNW 2 102:11 20.0 61 NNE 31 12:46 NNE 31 12:46 11 102:03 18.2 46 NNE 31 12:46 17.4 55 53 30 11 102:03 18.2 46 NNE 31 12:46 18.7 61 NN 21 102:13 20.0 18.2 46 NNE 31 12:46 101 21 22 21 60 NNE 32 44 NNE 32 44 NNE 31 101:13 21:13 60 NN 22 21:13<	9	Ę	-		0			S	28	09:51	18.3	65		SSW	19	1023.7	20.5	55		ŝ	19	1020.4
S 40 00:50 17.4 55 S 20 10120 18.2 40 NSE 30 NNE 37 14.56 19.3 61 NNW 17.1 1020.8 10.5 40 NSE 31 NNE 37 14.56 19.0 61 NNW 17 102.18 20.8 10.8 NNE 37 NNW 35 16:17 18.9 64 NNW 17 102.18 20.8 10 10 22.8 11 20 22.2 10 NNE 37 NNW 35 16:17 18.9 57 NNW 21 21.1 21.1 21.2 22.8 11 21.1 21.2 22.8 11 21.2 22.8<	7	Ę		22.0	0			NNE	28	16:15	18.2	69		WNW	2	1021.1	20.9	61		NNE	22	1016.5
SW 28 04-07 17.5 56 SSW 11 102.0 10.5 46 NE 16 NNE 37 12.40 18.7 61 NNW 9 102.24 20.1 0 102 24 24 NNE 57 14.46 19.0 64 NNW 20 101.7 21.0 66 NNE 24 NNW 35 16.17 18.0 64 NNW 20 101.7 21.0 66 NNE 22 NNW 35 16.17 18.0 64 NNW 20 107.1 21.1 60 NNE 20 N 46 12.35 18.0 68 NNW 21 102.7 21.1 67 N 22 24 26 26 26 26 26 26 26 26 26 26 26 26 27 26 27 21 27 27 27 <	8	Sa		20.0	0			S	46	09:59	17.4	55		S	26	1019.9	18.2	46		SSE	8	1017.8
NNE 31 12.40 18.7 61 NW 9 1022.4 20.1 56 NNE 23 NNWE 37 1456 19.8 64 NNW 17 1007.8 20.8 60 NNE 27 NNW 37 14.46 20.5 36 55 10.7 21.0 66 NNE 27 NNW 36 161.7 18.9 67 SSW 13 1017.6 21.1 60 NNE 24 NNW 36 161.7 18.9 67 SSW 13 1017.6 21.1 60 NNE 24 NN 46 12.56 21.2 62 NNW 21.6 60 NNE 22 NN 41 102.4 22.1 1007.7 21.9 60 NNE 22 NN 41 102.23 21.9 1007.7 21.0 60 NN 22 NN 1007.2	0	Su		21.0	0			SW	28	04:07	17.5	56		SSW	1	1020.8	19.5	46		ШN	15	1018.1
NNE 37 14:65 19.8 58 WNW 17 1021.8 20.8 60 NNE 27 NNW 52 14:05 19.0 64 NNW 20 1017.3 21.0 66 NN 27 NNW 53 00:10 23.0 55 NN 20 1017.3 21.15 616 N 28 NNW 35 16:17 18.8 57 52.0 1017.3 21.12 67 N 28 NNW 41 15:35 19.0 68 NN 107.13 21.12 67 N 28 N 44 15:35 19.0 68 NN 107.13 21.12 60 NN 28 N 46 02:25 18.7 46 55 NN 107.13 20.1 60 NN 22 N 46 02:25 18.5 NN 107.13 20.1 57 40	9	Mo		21.9	0	T	ſ	NNE	31	12:49	18.7	61	ſ	NW	8	1022.4	20.1	56		NNE	24	1019.7
NNW 52 14-08 19.0 64 NNW 20 1017.7 21.0 66 N 37 SE 37 14-08 16.17 13.0 1017.0 21.0 66 N 37 N 41 16.35 19.0 66 N 17 1017.3 21.12 67 N 22 N 41 16.35 19.0 66 N 17 1017.3 21.12 67 N 22 N 44 15.36 19.0 66 N 17 1021.3 21.12 67 N 22 N 44 10.35 53 N 17 1021.3 21.12 67 N 22 22 48 22	11	Tu		22.5	0			NNE	37	14:55	19.8	58		WNW	17	1021.8	20.8	60		NNE	28	1017.7
NIVW 38 00:10 21.0 56 N 13 1017.6 22.8 61 Enc 13 N 41 16.361 18.0 57 80 17 102.13 21.16 49 SE 224 N 41 16.361 18.0 66 NNW 24 1017.6 21.9 60 NNW 29 N 46 12.56 21.2 62 NNW 24 1017.1 21.19 60 NNW 29 N 46 12.56 23.1 54 NNW 24 1017.1 22.1 70 N 28 N 48 16.34 20.5 53 NNW 19 1017.1 22.0 70 N 28 N N 41 10.23 53 1016.7 22.14 76 NN 28 N N 23 55 53 1016.7 22.14 76 NN <td>12</td> <td>We</td> <td>,</td> <td>23.0</td> <td>0</td> <td></td> <td></td> <td>MNN</td> <td>52</td> <td>14:08</td> <td>19.0</td> <td>64</td> <td></td> <td>NNN</td> <td>20</td> <td>1017.7</td> <td>21.0</td> <td>66</td> <td></td> <td>z</td> <td>37</td> <td>1012.3</td>	12	We	,	23.0	0			MNN	52	14:08	19.0	64		NNN	20	1017.7	21.0	66		z	37	1012.3
SE 37 14:46 20.5 36 SSW 13 1017.6 21.5 49 SE 24 N 41 15:36 110.0 68 NN 117.1 21.2 57 N 20.5 S 46 02.22 18.7 40 SSW 7 1021.3 21.12 57 N 20 S 46 02.22 18.7 40 SSW 13 1027.7 20.3 52 20	13	f		24.6	0			MNN	38	00:10	21.0	33		Z	2	1015.5	22.8	61		ENE	13	1012.3
N 35 16:17 18.9 57 SSW 7 1021:3 21:2 57 N 22 N 41 16:35 19.0 68 N V 17 1021:3 21:9 60 NN 28 N 44 12:56 19.0 68 NN 24 1027.7 20.3 55 NN 28 N 44 16:41 19.0 60 NSW 9 1027.7 20.3 52 SSE 20 55 NN 28 22 1007.1 21.0 60 NN 28 22 1007.1 22.0 55 SSE 20 1017.1 22.0 56 NN 28 22 1017.1 22.0 56 NN 28 22 26 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28<	4	F			0			ß	37	14:46	20.5	36		SSW	5	1017.6	21.5	49		ŝ	24	1015.8
N 41 15.35 19.0 68 N 17 1021.1 21.9 60 N 22 S 46 12.56 21.2 62 NNW 24 107.4 24.6 60 NNW 26 S 34 6 0.2.22 18.7 46 55 NNW 27.0 55 56 NNW 26 NNW 41 10.0.50 23.1 54 NNW 1017.1 22.0 70 N 28 22 24 1017.1 22.0 70 N 28 22 55 SSE 24 1017.1 22.0 70 N 28 22 22 55 SSE 24 1017.1 22.0 75 N 28 20 105 27 9 NNE 17 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	15	Sa			0			z	35	16:17	18.9	57		SSW	7	1021.3		57		z	26	1017.8
N 46 12:56 21:2 62 NNW 24 1017.4 24.6 60 NNW 28 S 46 02:22 18.7 46 53:4 60 NNW 20 RSE 30 15:41 19.0 60 WSW 13 1027.7 20.3 55 NNW 20 NNW 41 00:59 23.1 54 NNW 22 1017.1 22.01 55 NN 28 NNW 41 10:59 23.1 54 NNW 22 1017.1 22.01 55 NN 28 NNW 41 12:30 25.3 50 SSE 4 1010.1 22.4,1 56 NN 28 N 23.7 30 SSE 4 1011.1 24.1 76 NN 28 N 31 31.5 51 23.7 30 SSE 4 1016.1 24.5 NE <td< td=""><td>16</td><td>Su</td><td></td><td></td><td>0</td><td></td><td></td><td>z</td><td>4</td><td>15:35</td><td>19.0</td><td>89</td><td></td><td>z</td><td>17</td><td>1021.3</td><td></td><td>60</td><td></td><td>z</td><td>28</td><td>1016.8</td></td<>	16	Su			0			z	4	15:35	19.0	89		z	17	1021.3		60		z	28	1016.8
S 46 02-22 18.7 46 S 26 1025.3 19.5 46 SSE 26 1027.7 20.3 52 8 32 8 32 1027.7 20.3 52 NN NN 48 16:34 20.5 53 NNW 19 1017.1 22.0 70 NN 23 NN NN 23 NN 23 23 1027.7 20.3 52 NN 24 16 SSE 26 NN 21 21.2 22.1 77 NN 21 22.0 24.1 56 NN 28 26 NN 28 26 NN 28 24.1 79 NN 28 27.2 26.7 NN 27 24.1 79 NN 28 28 28 28 28 28 28 28 28 28 27 28 28 28 28 28 28 28 28 28 28	17	Mo	,		0	T	T	z	46	12:59	21.2	62	T	NNW	24	1017.4	24.6	60		MNN	26	1013.5
ESE 30 15:41 19.0 60 SSW 13 1027.7.7 20.3 52 SE 22 N K 48 16:34 20.5 53 NNW 19 1017.11 22.01 56 NNE 19 N 48 16:32 22.1 77 NNW 22 1015.7 20.3 55 NNE 19 N A 41 10:22 22.1 77 NN 22 1015.0 24.1 56 NNE 19 N A 41 12:22 25.3 50 NN 22 1015.0 24.4 70 NN 28 N A 11:23 23.7 30 55E 4 1016.1 24.5 NE 17 N 52 11:43 10.8 57 NN 2 1016.1 24.5 NE 17 N 6 1012.1 24.5 12.2 14.5 <td>100</td> <td>Π</td> <td></td> <td>22.4</td> <td>0</td> <td></td> <td></td> <td>S</td> <td>46</td> <td>02-22</td> <td>18.7</td> <td>46</td> <td></td> <td>S</td> <td>26</td> <td>1025.3</td> <td>19.5</td> <td>46</td> <td></td> <td>SSE</td> <td>26</td> <td>1024.3</td>	100	Π		22.4	0			S	46	02-22	18.7	46		S	26	1025.3	19.5	46		SSE	26	1024.3
NE 28 13:26 18.0 60 WSW 9 102:28 20.1 55 NNE 19 NNW 41 00:59 53 NNW 10 1017.1 22.0 70 N 33 NNW 41 10:59 23.1 54 NNW 12 1015.7 22.0 70 N 33 NN 32 16:22 22.1 77 NNW 24 107.1 22.0 70 N 28 NN 32 16:53 23.7 30 SSE 4 1010.1 24.5 70 N 28 N 41 12.31 23.7 30 SSE 4 1010.1 24.5 76 N 26 N 57 SSE 4 1010.1 24.5 45 N N 27 N 57 SSE 4 1010.1 24.5 17 17 17	19	We			0			ESE	30	15:41	19.0	00		SSW	5	1027.7	20.3	52		ŝ	22	1023.7
NNW 48 16:34 20.5 53 NNW 19 1017.1 22.0 70 N 33 NNW 41 00:58 23.1 54 NNW 22 1015.7 22.0 70 N 28 NNW 41 00:58 27.9 46 NNW 20 1015.7 22.4.1 56 N 28 N 41 12:32 25.3 50 N 19 1015.7 22.4.1 56 N 28 N 41 12:32 25.3 50 N 19 1015.7 22.4 76 N 28 N 51 15:31 23.7 30 555 N 28 1016.1 24.42 N 17 N 51 15:4 67 NN 7 1018.2 75 N 17 N 24 1018.5 1018.5 1018.5 16.5 43 N 17	20	Ę		21.9	0			ШN	28	13:26	18.0	69		WSW	0	1022.8	20.1	55		NNE	19	1018.0
NNW 41 00:59 23.1 54 NNW 22 1015.7 22.4 58 N 28 N 28 15.22 22.1 77 N 13 1015.7 22.4 79 NNE 19 N 41 12.32 25.3 50 N 19 1010.8 24.1 65 N N 28 N 41 12.32 25.3 50 N 19 1010.8 24.1 65 N N 28 N 41 12.32 23.7 30 55E 4 1016.1 24.4 24 17 ENE 22 11:43 19.8 57 NE 85 NE 1018.2 23.4 74 NE 17 N 24 14:22 21.9 57 NE 1016.0 23.4 74 NN 17 N 23 13:16 23.1 15.4 67	21	F			0			z	48	16:34	20.5	53		MNN	19	1017.1	22.0	70		z	33	1012.0
NW 28 15.22 22.1 77 N 13 1015.7 22.4 78 NNE 19 NW 39 08:68 27.9 46 NNW 20 1015.7 22.4 78 NNE 19 N 41 12:32 25.3 50 N 19 1016.1 24.5 65 N 28 ENE 26 15:31 23.7 30 SSE 4 1016.1 24.5 42 NE 17 N 52 15:42 20.4 85 N 10 1016.1 24.5 42 NE 17 N 52 15:42 20.4 85 N 20 1018.2 22.7 75 NE 17 N 24 10:16.1 24.5 42 NK 17 17 17 N 23.4 74 NNW 7 1018.5 16 17 17 17	22	Sa			0			MNN	4	00:59	23.1	2		MNN	2	1013.0	24.1	28		z	28	1010.1
NW 39 08:58 27.9 46 NNW 20 1012.9 24.7 65 N 28 N 41 12:32 25.3 50 N 19 1010.8 24.6 65 N 28 ENE 26 15:31 23.7 30 SSE 4 1016.1 24.5 42 NE 17 ENE 28 15:31 23.7 30 SSE 4 1016.1 24.5 42 NE 17 N 52 15:42 20.4 85 NNE 9 1018.2 22.7 75 NE 17 N 52 15:42 20.4 85 N 20 1018.2 16.4 17 N 24 10.16.0 23.4 74 NNW 37 N 24 10.16.0 23.4 74 NNW 37 N 24 10.16.0 1018.5 10.18.5 10	23	Su		28.3	0			z	28	15:22	22.1	77		z	5	1015.7	22.4	79		NNE	19	1011.7
N 41 12:32 25.3 50 N 19 1010.8 24.6 65 N 28 ENE 26 15:31 23.7 30 SSE 4 1016.1 24.5 42 NE 17 ENE 28 15:31 23.7 30 SSE 4 1016.1 24.5 42 NE 17 R 52 15:42 20.4 85 NNE 9 1018.2 22.7 75 NE 17 N 52 15:42 20.4 85 N 20 1018.2 23.7 75 NE 17 N 31 13:16 23.7 54 WNW 7 1018.5 16.5 43 NE 17 N 24 12:31 15.4 67 WNW 7 1018.5 18.5 43 NE 15 N 24 13 1018.6 10110.8 18.2 42	24	Mo		31.7	0			NN	39	09:58	27.9	46		MNN	20	1012.9	24.7	65		z	26	1008.8
ENE 26 15:31 23.7 30 SSE 4 1016.1 24.5 42 NE 17 E 22 11:43 19:8 57 SE 6 1020.2 22.7 75 NE 17 N 52 15:42 20.4 85 N 20 1018.2 22.7 75 NE 17 N 52 15:42 20.4 85 N 20 1018.2 22.7 75 NE 17 N 52 15:42 20.4 85 NNW 7 1018.2 23.4 74 NNW 37 N 24 12:31 15.4 67 WNW 7 1018.5 18.5 43 NE 15 N 24 12:31 15.4 67 NNW 7 1018.5 18.2 43 NE 15 N 4 57 13 1019.6 21.6 57	25	ΠT		30.2	0			z	4	12:32	25.3	50		z	19	1010.8	24.6	65		z	28	1007.8
E 22 11:43 19.8 57 SE 6 1020.2 22.2 63 NE 17 N 52 15:42 20.4 85 NN 20 1018.2 22.7 75 NE 17 N 52 15:42 20.4 85 N 20 1018.2 22.7 75 NE 17 N 52 15:42 20.4 85 N 20 1016.0 23.4 74 NNW 37 N 24 12:31 15.4 67 WNW 7 1018.5 145 45 NNE 20 N 24 12:31 15.4 67 WNW 7 1018.5 18.2 43 NE 15 N 24 12:31 15.4 30 Caim 1010.8 18.2 43 NE 13 N 45 18 010.8 18.2 26.7 42 #	26	We		27.1	0			ENE	26	15:31	23.7	30		SSE	4	1016.1	24.5	42		NE	17	1013.6
ENE 24 14:22 21.9 57 NNE 9 1018.2 22.7 75 NE 17 N 52 15:42 20.4 85 N 20 1016.0 23.4 74 NNW 37 NE 31 13:16 23.7 54 WSW 6 1013.4 25.7 45 NNW 37 N 24 12:31 15.4 67 WNW 7 1018.5 19.5 43 NE 15 N 24 12:31 15.4 30 Caim 1010.8 18.2 43 NE 15 N 4 52 27.0 85 S 26 1027.7 25.7 79 # 13 N # 52 27.0 85 S 26 1027.7 25.7 79 # 37 N # 52 30 5 5 5 5 5	22	ЧĽ	2.3	25.0	0			ш	22	11:43	19.8	22		ЗS	9	1020.2	22.2	63		ΒN	17	1016.7
N 52 15:42 20.4 85 N 20 1016.0 23.4 74 NNW 37 N 31 13:16 23.7 54 WSW 6 1013.4 25.7 45 NNW 37 N 24 12:31 15.4 67 WNW 7 1018.5 19.5 43 NE 20 1 1 1 1 1 1 1 1 22 43 NE 27 1 1 1 1 1 1 1 22 43 NE 1 1 1 22 1 4 5 2 2 1 1 1 1 22 4 1 1 1 22 1 4 5 2 1 1 1 1 22 4 1 1 22 1 4 5 5 2 1	28	Ē			0			ENE	24	14:22	21.9	57		NNE	0	1018.2	22.7	75		ШN	17	1014.7
NE 31 13:16 23.7 54 WSW 6 1013.4 25.7 45 NNE 20 N 24 12:31 15.4 67 WNW 7 1018.5 18.5 43 NE 15 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 2 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2	29	Sa			0			z	52	15:42	20.4	85		z	20	1016.0	23.4	74		MNN	37	1009.9
N 24 12:31 15.4 67 WNW 7 1018.5 43 NE 15 1 1 1 1 1 1 1 1 22 2	30	Su			0			W	31	13:16	23.7	2		WSW	0	1013.4	25.7	45		NNE	2	1011.3
19.9 59 13 1019.6 21.6 57 22 # 52 15.4 30 Calm 1010.8 18.2 42 # 13 # 52 27.9 85 S 26 1027.7 25.7 79 # 37 Concretence S 26 1027.7 25.7 79 # 37	31	Mo		21	1.4			Z	24	12:31	15.4	67		WNW	7	1018.5	19.5	43		NE	15	1016.2
1 12 13 1010.6 21.6 57 22 1 15.4 30 Calm 1010.8 18.2 42 # 13 # 52 27.9 85 S 26 1027.7 26.7 79 # 37 # 52 27.9 85 S 26 1027.7 26.7 79 # 37 10 10.27.7 26.7 79 # 37 13 13 10 10.27.7 26.7 79 # 37 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 14 14 15 14 14 15 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16	Statistic	s for Au	ugust 20(_																		
15.4 30 Calm 18.2 42 # 13 # 52 27.9 85 S 26.1 79 # 37 # 52 27.9 85 S 26 1027.7 25.7 79 # 37 Copyright 52.0508 Prepared at 13.21 GMT on 2 8ep 2005 Copyright © 2005 Bineau of Meteorology 100.2005 Prepared at 13.21 GMT on 2 8ep 2005 Prepared at 13.22 GMT on 2 8ep 2005 Prepared		Mean									19.9	59			13	1019.6	21.6	57			22	1016.2
# 52 27.9 85 S 26 1027		Lowest	7.3	20.0							15.4	30			Calm	1010.8	18.2	42		#	13	1007.6
		Highest	18.6	31.7	1.4			#	52		27.9	85		S	26	1027.7	25.7	62		#	37	1024.5
		Total			1.4																	
	Observation	ns were dra	swn from Co	ociangatta	(station 040)	717)										ē3	CJDW4036.1	10 806002	repared at 1	13:21 GMT o	on 2 3ep 20	60
according to a contribution of the contribution of	Averages fo	r Southpo	rt should be	e se pasna	guide only.											3 =	sources of this s	we served and	daamad fe	ogy n have read	the Inform	nation and
																200	tepted the	onditions (decorlbed	In the note	c at	

Page 33

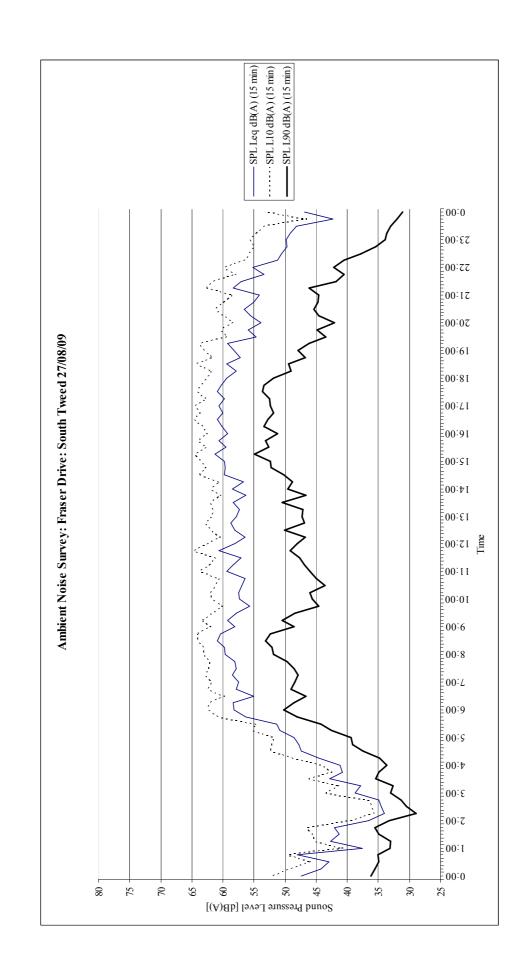
Coolangatta, Queensland September 2009 Daily Weather Observations

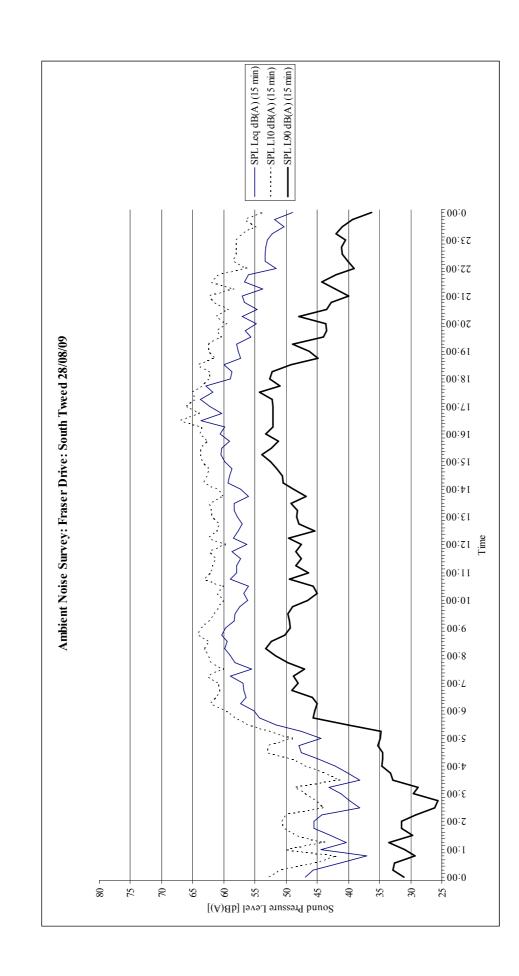
Australian Government

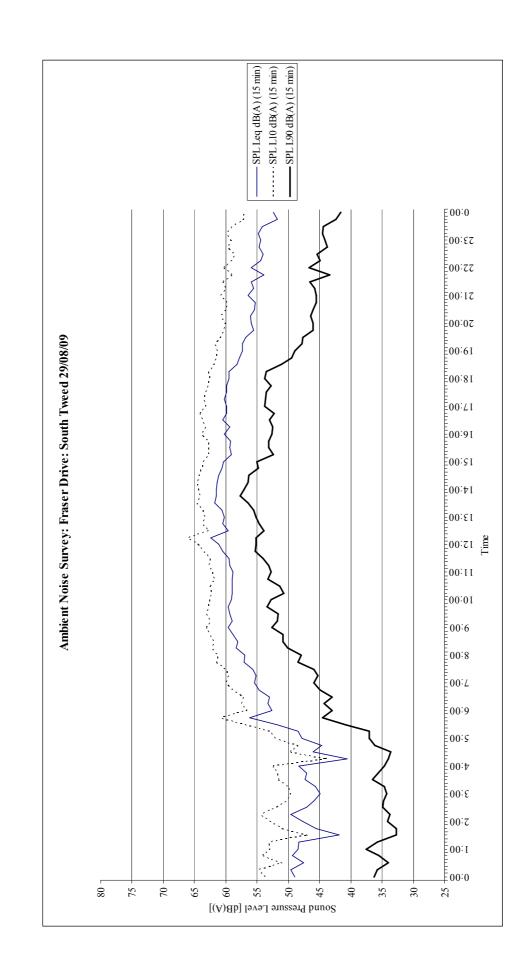

u P	ed in a	Rain	Fvan	Sun	Max	nax wing gust	2			mee	E						spm		
	Мах		1		Dirn	Spd	Time	Temp	RH	CIG	Dir	Spd	MSLP	Temp	RH	сId	Dir	Spd	MSLP
c	0	mm	mm	hours		km/h	local	•	%	elghihs		km/h	hPa	0.	%	elghths		km/h	hPa
2	23.0	0.2			ESE	33	11:15	19.3	48		S	15	1022.0	21.2	54		ESE	19	1019.9
10.8	22.9	0			ENE	22	09:03	20.6	57		S	9	1024.4	21.3	58		ШN	15	1021.9
10.6	22.9	0			NNE	24	11:32	20.9	51		NE	8	1024.2	21.5	51		NE	13	1021.1
13.0	21.9	0.8			N	35	11:27	19.4	81		MN	13	1020.6	20.8	82		N	28	1016.1
15.1	24.2	3.0			ŝ	37	15:08	16.9	88		WSW	7	1013.5	22.1	61		ŝ	26	1012.8
12.1		0.2						21.2	60		S	15	1018.4	21.8	63		ENE	19	1015.5
st 6 da	iys of St	Statistics for the first 6 days of September 2009	er 2009																
11.3	23.0							19.7	63			9	1020.5	21.5	60			20	1017.9
6.0	21.9							16.9	48		S	9	1013.5	20.8	51		ΒN	13	1012.8
15.1	24.2	3.0			В	37		21.2	88		S	15	1024.4	22.1	78		z	28	1021.9
		4.2																	

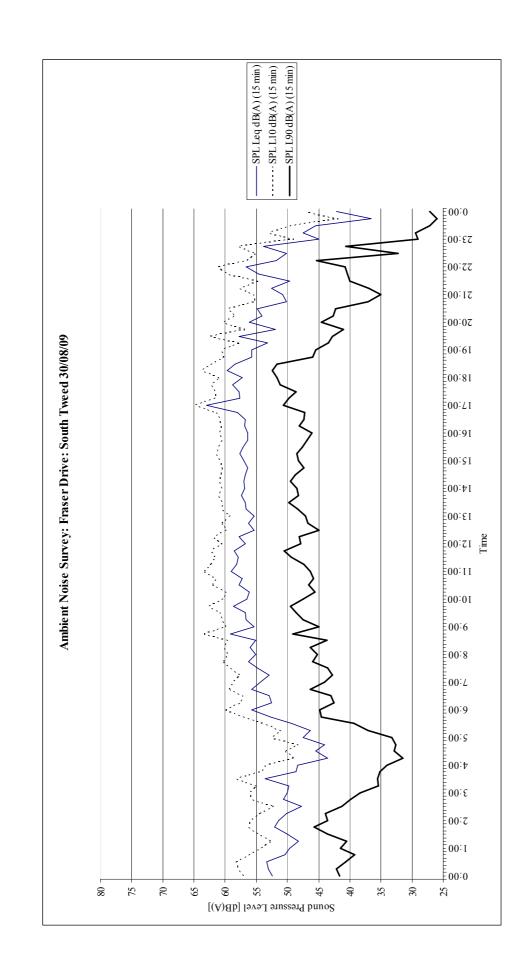
Observations were drawn from Coolangatta (station 040717) Averages for Southport should be used as a guide only.

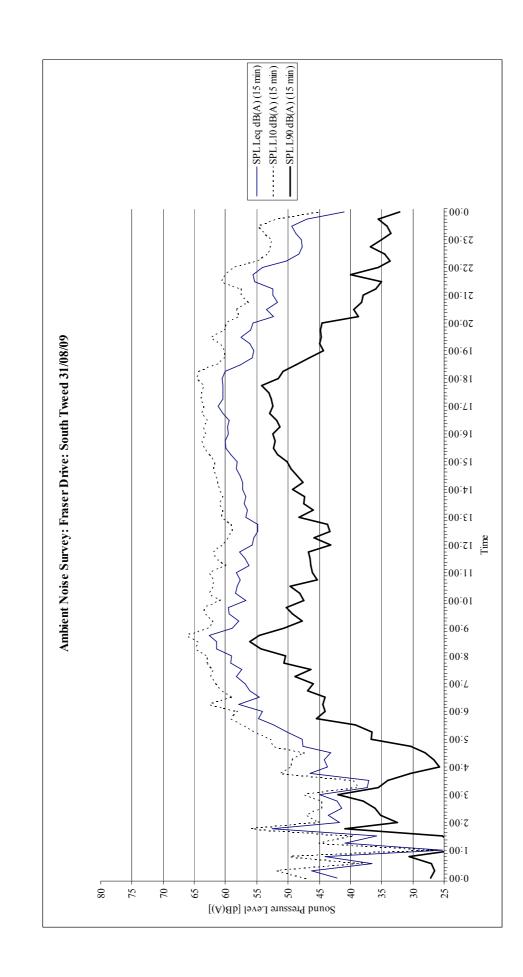
IDCJDIW4035.200909 Prepared at D6:26 GMT on 6 Gep 2009 Copyright 6: 2009 Bureau of Meteorology Users of this product are deamed to have read the Information and accepted the conditions described in the notes at http://www.bom.gov.au/oilimate/dwo/IDCJDW0000.pdf

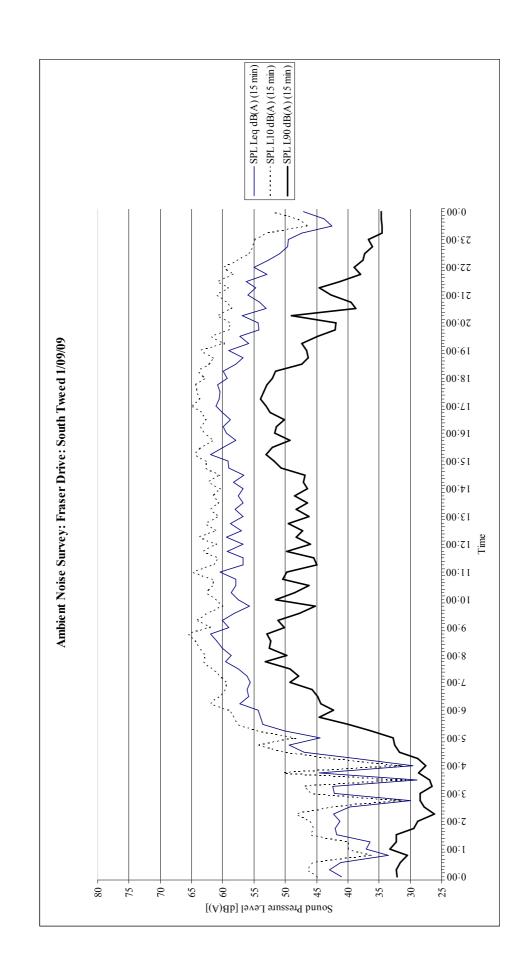

Page 34

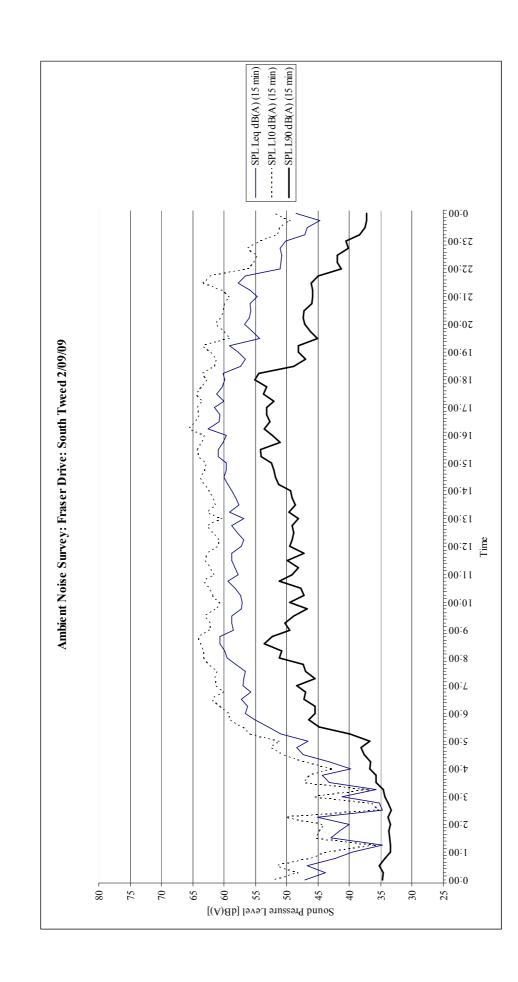


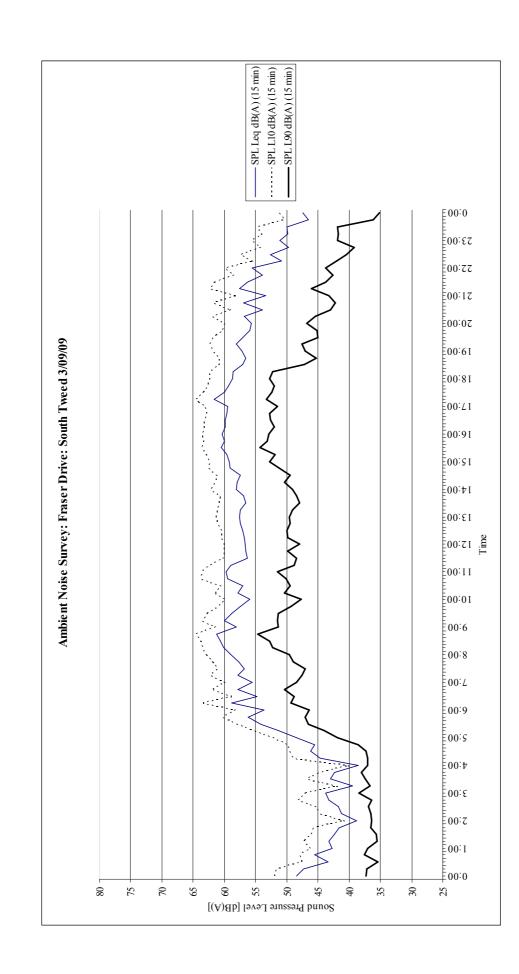


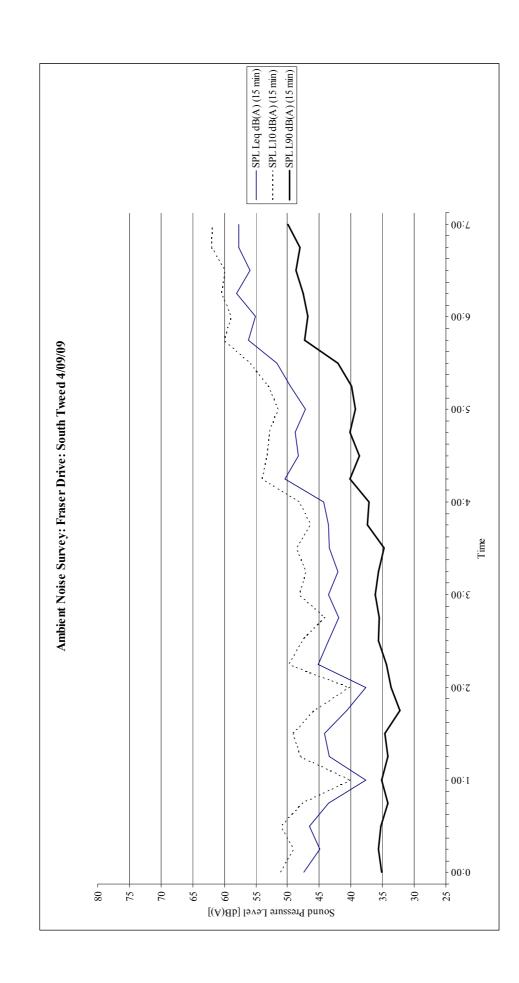


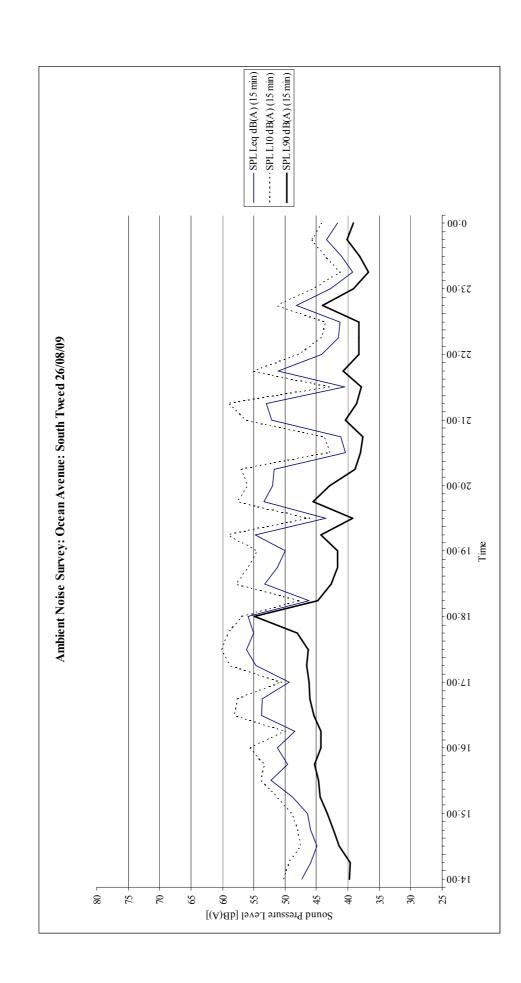


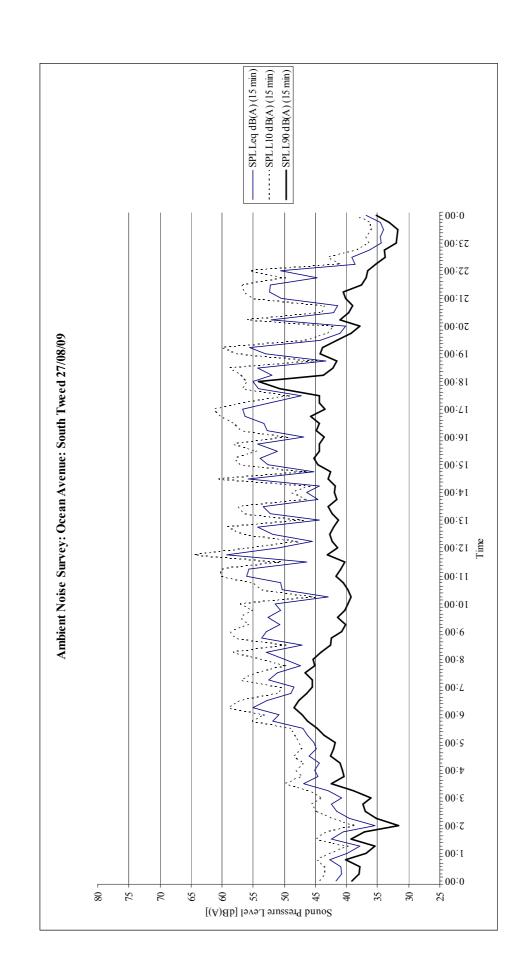


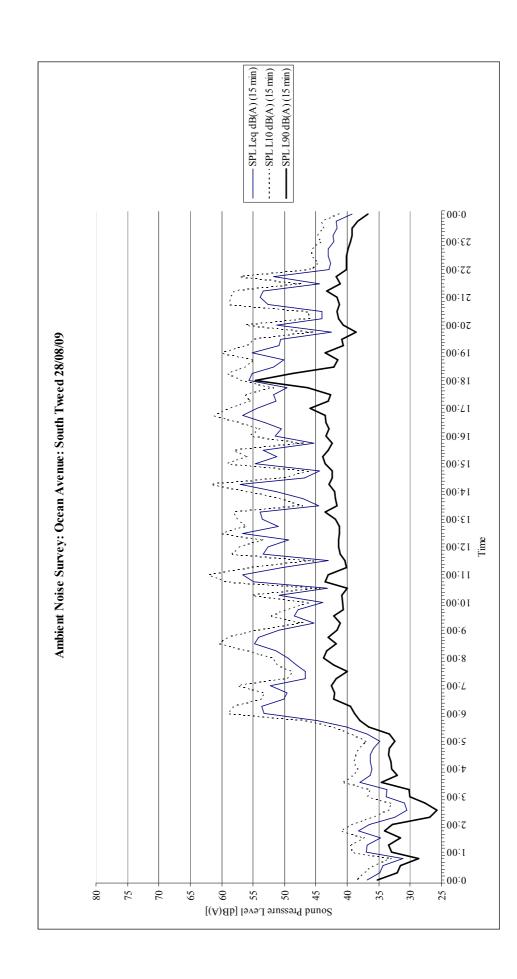




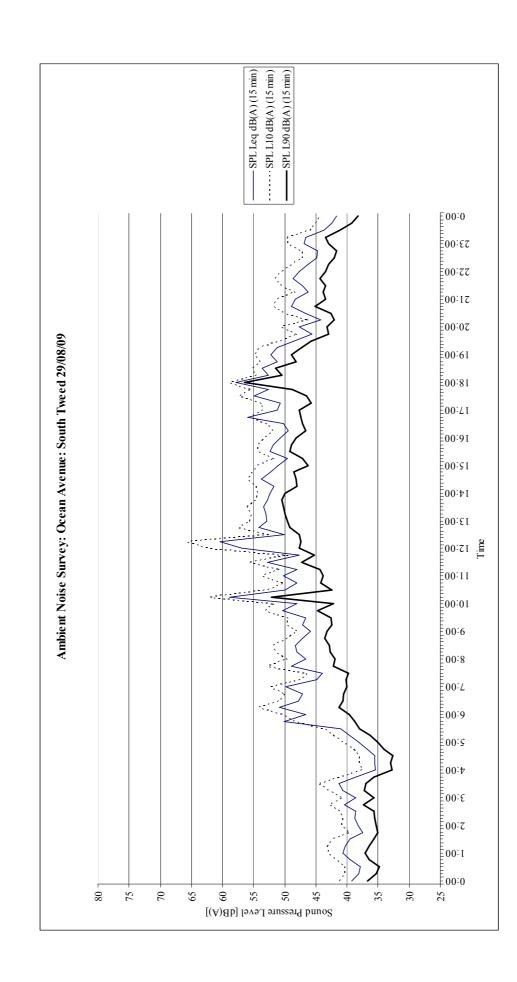


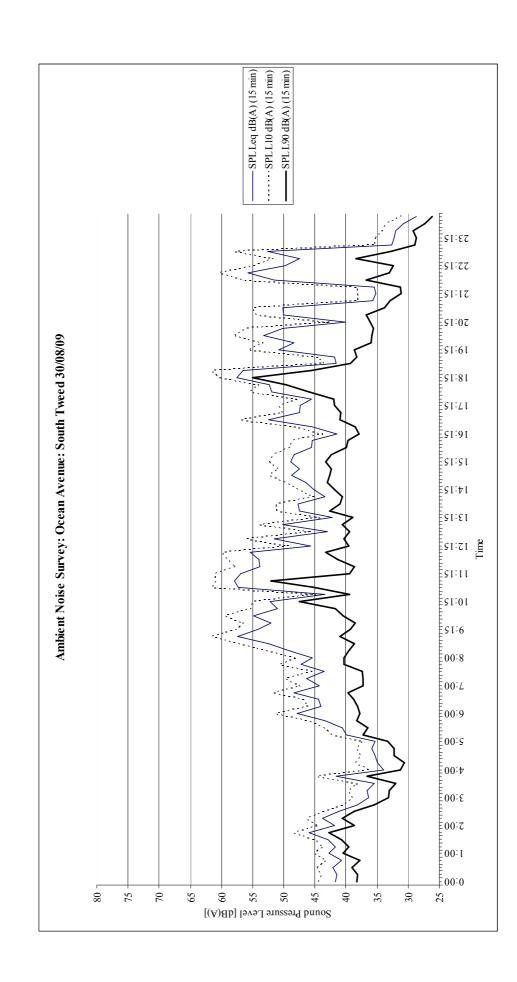




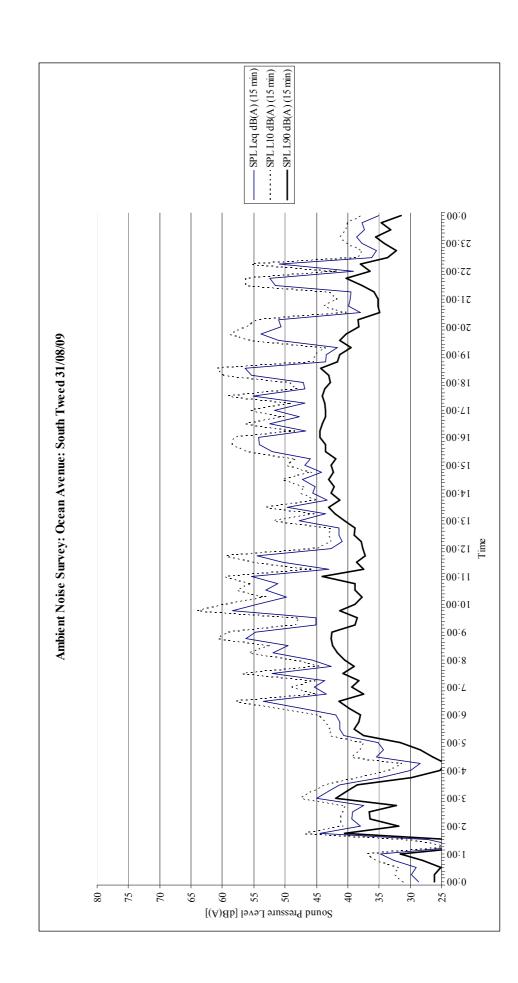


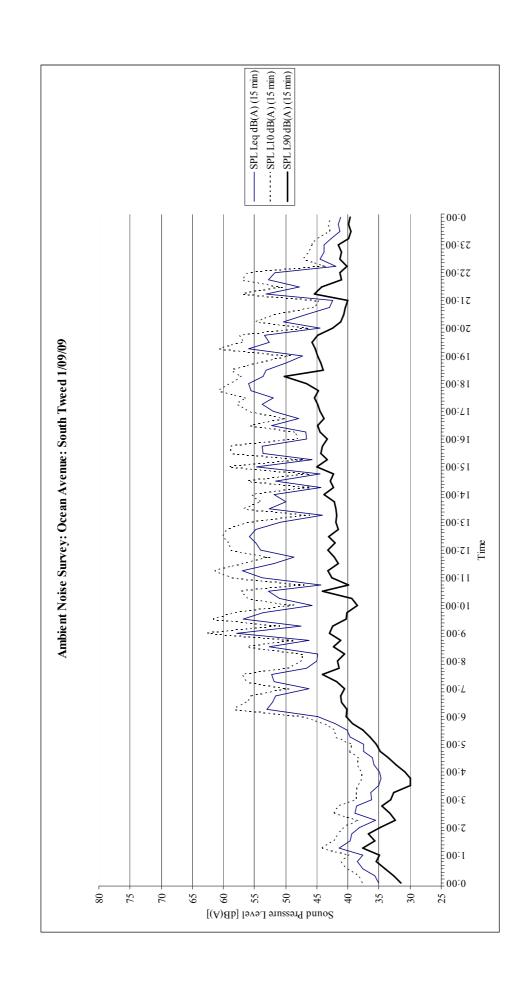
Page 45

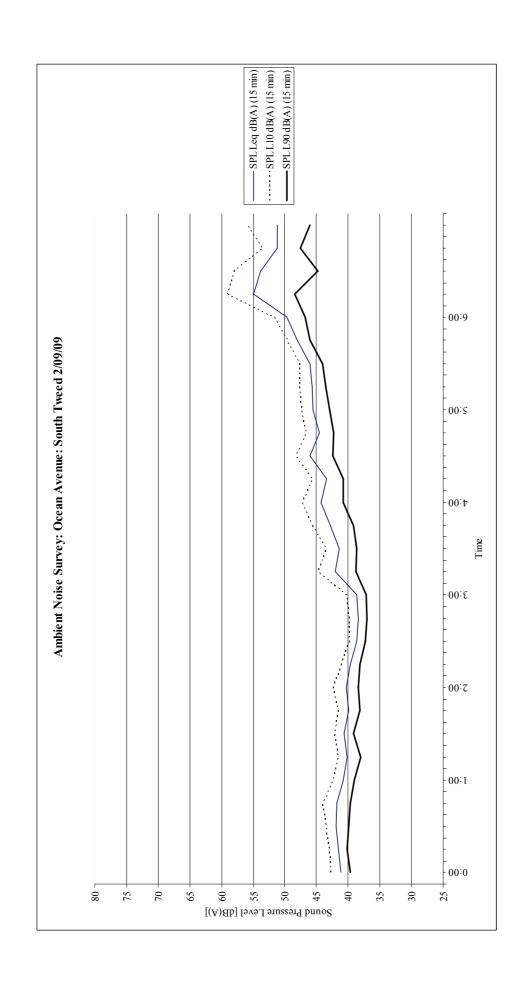




Page 47







POINT CALCULATIONS Pen3D2000 V1.9.8.1 Project Code:09097a Project Description:Noise assessment: Fraser Dr - Tweed Heads, NSW File:Z:\ACOUSTICS\09097a Frasers Dve Tweed Heads South RTN\PEN\09097a_existing.PEN File Description:Data file covering existing

Monday 07 Sep, 2009 at 16:17:12

CoRTN Calculations

All road segments included.	Segmentation angle: 1 degrees.	Road elevat	ions apply.	
Receptor	X Posn	Y Posn	Height	Leq(24hour)
	(m)	(m)	(m)	(dB(A))
logger a	987.5	4990.5	1.2	57.4 free-field

POINT CALCULATIONS

Pen3D2000 V1.9.8.1

Project Code:09097a

Project Description:Noise assessment: Fraser Dr - Tweed Heads, NSW

File:Z:\ACOUSTICS\09097a Frasers Dve Tweed Heads South RTN\PEN\09097a_ultimate 2m barrier feb2010.PEN File Description:Data file covering ultimate 2m barrier

Tuesday 16 Feb, 2010 at 14:02:30

CoRTN Calculations

All road segments included. Segmentation angle: 1degrees. Road elevations apply.

Receptor	X Posn	Y Posn	Height	Leq(24hour)
	(m)	(m)	(m)	(dB(A))
3	872.9	5807.3	1.8	54.9
4	858.2	5809.5	1.8	53.6
5	843.8	5811.7	1.8	52.3
6	828.4	5813.6	1.8	51.3
7	810.6	5795.7	1.8	50.1
8	808.5	5782.9	1.8	49.8
9	785.4	5742.8	1.8	48.5
10	771.7	5750	1.8	48
11	770.6	5720.7	1.8	48
12	762.1	5709.2	1.8	47.7
13	754.6	5696.6	1.8	47.4
14	747.2	5686	1.8	47.1
15	890	5909.4	1.8	56.6
16	738.8	5760.9	1.8	46.5
17	824	5784.1	1.8	50.7
18	838.5	5783	1.8	51.2
19	854.2	5781	1.8	51.7
20	868.1	5778.1	1.8	50.5
21	882.6	5777.1	1.8	47.8
22	907.8	5741.4	1.8	59.8
23	905.5	5726.8	1.8	59.8
24	903.2	5713	1.8	59.8
25	902.2	5698.9	1.8	60.1
26	900.6	5683.5	1.8	61.1
27	899.6	5669.2	1.8	59.5
28	899.1	5653.9	1.8	59.5
29	898	5634.7	1.8	59.7
30	896.2	5605	1.8	60.2
31	879.6	5606.3	1.8	55.9
32	865.9	5606.7	1.8	54.3
33	849.9	5609.9	1.8	52.7
		Page 53	3	

34	835.5	5611.9	1.8	51.3
35	820.7	5614	1.8	50.2
36	805.6	5616.5	1.8	49.3
37	791.3	5619.9	1.8	48.5
38	776.4	5621.2	1.8	48
39	763.9	5631.2	1.8	47.6
40	751.3	5639.6	1.8	47.1
41	738.8	5648.3	1.8	46.7
42	722	5649.4	1.8	46.2
43	725.3	5656	1.8	46.3
44	764.9	5684.1	1.8	47.7
45	776.7	5677	1.8	48.2
46	792.6	5666	1.8	48.9
47	807.9	5663.4	1.8	49.5
48	822.8	5659.8	1.8	50.3
49	854.2	5646.4	1.8	52.7
50	853.8	5656	1.8	52.5
51	855.3	5685.7	1.8	52.5
52	839.5	5689	1.8	51.1
53	825.9	5689.9	1.8	50.5
54	809.5	5691.3	1.8	49.7
55	794.4	5700.8	1.8	49
56	781.8	5708.7	1.8	48.4
57	860.8	5729.6	1.8	52.5
58	715.5	5635.3	1.8	45.9
59	710.4	5629.9	1.8	45.7
60	723.4	5622.2	1.8	46.1
61	736.5	5614.7	1.8	46.7
62	749.6	5607.1	1.8	47.2
63	763.1	5600.2	1.8	47.6
64	779	5594.8	1.8	48.3
65	796.9	5590.7	1.8	49.1
66	811.3	5587.6	1.8	50
67	826.1	5585.5	1.8	51.2
68	843	5582.7	1.8	52.9
69	860.1	5579.6	1.8	54.8
70	876.5	5577.3	1.8	56.9
71	893.9	5574.5	1.8	59.6
72	691	5689	1.8	45.4
73	677.1	5697.8	1.8	45.4
74	674.3	5664	1.8	44.8
75	665.1	5645.8	1.8	44.5
76	666.1	5630.1	1.8	44.4
77	680.7	5609.9	1.8	44.8
78	695	5600.7	1.8	45.3
79	708.3	5591.5	1.8	45.7
80	721.9	5582.5	1.8	46.2
81	739.3	5570.8	1.8	46.7
82	751	5556.2	1.8	47.3
83	768.2	5549.2	1.8	48.1
84	785.6	5545.6	1.8	49
85	800.2	5543.1	1.8	49.9
86	818.7	5539.7	1.8	51.4
		Page 54		

87	835.8	5534.3	1.8	53.1
88	853.2	5529	1.8	55
89	870.1	5523.3	1.8	57.4
90	891.1	5512.3	1.8	60.8
91	644.9	5740.5	1.8	44.8
92	657.2	5732.1	1.8	44.9
93	639.5	5608.4	1.8	45.1
94	614.6	5537.8	1.8	46.2
95	644	5540.3	1.8	46.5
96	672.2	5537.7	1.8	46.8
97	698.9	5529.8	1.8	47.1
98	732.9	5519	1.8	48.3
99	762.3	5510.1	1.8	50.2
100	790.2	5505.4	1.8	52
101	817.6	5495.2	1.8	53.9
102	839.4	5482.9	1.8	55.6
103	892.1	5480.3	1.8	60.2
104	896.7	5449.1	1.8	57.3
105	903.1	5397.1	1.8	60.1
106	900.2	5364.6	1.8	61.9
107	876.4	5343.1	1.8	58.3
108	858.2	5322.9	1.8	56
109	850	5307.3	1.8	55.3
110	841.6	5281.7	1.8	54.5
111	839.2	5257.4	1.8	54
113	909.9	5340.8	1.8	60.1
114	901.2	5310.9	1.8	57.5
115	890.5	5298.1	1.8	55.8
116	882.2	5275	1.8	54.8
117	870.5	5255.8	1.8	54.1
112	873.5	5236.6	1.8	54.4
118	880.2	5218.4	1.8	55
119	888.1	5197.2	1.8	54.9
120	895.8	5173.4	1.8	54.2
121	901.7	5147.3	1.8	54.6
122	903.7	5122.4	1.8	55.6
123	903.2	5099.6	1.8	55.8
124	901.9	5079.9	1.8	55.6
125	938.8	5201.3	1.8	61.5
126	943.1	5182.3	1.8	60.9
127	946.5	5162.1	1.8	60.6
128	950.3	5142.6	1.8	60.4
129	954.1	5123.2	1.8	61.5
130	958	5104	1.8	61.3
131	962	5083.5	1.8	61.6
132	965.9	5065.3	1.8	60.7
133	972.5	5046.1	1.8	60.3
134	978.7	5026.9	1.8	59.6
135	987.4	5000.6	1.8	58.6
136	900.5	5017.2	1.8	50.7
137	859.1	5021.9	1.8	48.6
138	842.5	5045.7	1.8	49.4
139	828.9	5060.8	1.8	49.9
		Page 55		

140	823	5080.8	1.8	50.2
141	824.3	5114.6	1.8	50.7
142	820.7	5145.8	1.8	50.2
143	811.5	5177.3	1.8	50.5
144	747.2	5056.2	1.8	44.1
145	780.5	5061.3	1.8	45.6
146	781.6	5213.6	1.8	50.6
147	786.8	5236.4	1.8	49.5
148	789.6	5258.7	1.8	49.9
149	789.3	5279.9	1.8	50.4
150	790.1	5301.2	1.8	50.4
151	792.9	5321.4	1.8	50.5
152	799.6	5342.9	1.8	51.1
153	811.4	5367	1.8	51.1
154	830.6	5397.7	1.8	52
155	822.7	5437.1	1.8	52.5
156	794.3	5456.1	1.8	51.6
157	734.6	5455.8	1.8	49.7
158	704.1	5456.1	1.8	48.3
159	673.7	5458.9	1.8	47.6
160	644.5	5463.5	1.8	47.2
161	606.7	5472.8	1.8	46.6
162	554.2	5541.2	1.8	45.2
163	553.4	5558.3	1.8	44.3
166	748.9	5155.7	1.8	50.0
3	872.9	5807.3	4.6	57.5
4	858.2	5809.5	4.6	55.9
5	843.8	5811.7	4.6	54.4
6	828.4	5813.6	4.6	53.2
7	810.6	5795.7	4.6	51.8
8	808.5	5782.9	4.6	51.6
9	785.4	5742.8	4.6	50
10	771.7	5750	4.6	49.5
11	770.6	5720.7	4.6	49.2
12	762.1	5709.2	4.6	48.9
13	754.6	5696.6	4.6	48.5
14	747.2	5686	4.6	48.2
15	890	5909.4	4.6	58.7
16	738.8	5760.9	4.6	48.1
17	824	5784.1	4.6	52.5
18	838.5	5783	4.6	53.3
19	854.2	5781	4.6	54.1
20	868.1	5778.1	4.6	54.6
21	882.6	5777.1	4.6	56.3
22	907.8	5741.4	4.6	67.8
23	905.5	5726.8	4.6	67.6
24	903.2	5713	4.6	67.3
25	902.2	5698.9	4.6	67.4
26	900.6	5683.5	4.6	67.4
27	899.6	5669.2	4.6	67.4
28	899.1	5653.9	4.6	67.5
29	898	5634.7	4.6	67.5
30	896.2	5605	4.6	67.3
		Page 56		

31	879.6	5606.3	4.6	61.9
32	865.9	5606.7	4.6	57.5
33	849.9	5609.9	4.6	54.9
34	835.5	5611.9	4.6	53.2
35	820.7	5614	4.6	51.8
36	805.6	5616.5	4.6	50.7
37	791.3	5619.9	4.6	49.8
38	776.4	5621.2	4.6	49.1
39	763.9	5631.2	4.6	48.6
40	751.3	5639.6	4.6	48.2
41	738.8	5648.3	4.6	47.8
42	722	5649.4	4.6	47.2
43	725.3	5656	4.6	47.3
44	764.9	5684.1	4.6	48.9
45	776.7	5677	4.6	49.4
46	792.6	5666	4.6	50.1
47	807.9	5663.4	4.6	50.8
48	822.8	5659.8	4.6	51.8
49	854.2	5646.4	4.6	55.1
50	853.8	5656	4.6	54.9
51	855.3	5685.7	4.6	55.1
52	839.5	5689	4.6	53.1
53	825.9	5689.9	4.6	52
54	809.5	5691.3	4.6	51.1
55	794.4	5700.8	4.6	50.2
56	781.8	5708.7	4.6	49.7
57	860.8	5729.6	4.6	55.4
58	715.5	5635.3	4.6	46.9
59	710.4	5629.9	4.6	46.7
60	723.4	5622.2	4.6	47.1
61	736.5	5614.7	4.6	47.7
62	749.6	5607.1	4.6	48.2
63	763.1	5600.2	4.6	48.7
64	779	5594.8	4.6	49.5
65	796.9	5590.7	4.6	50.5
66	811.3	5587.6	4.6	51.6
67	826.1	5585.5	4.6	53
68	843	5582.7	4.6	55.1
69	860.1	5579.6	4.6	57.6
70	876.5	5577.3	4.6	61.5
71	893.9	5574.5	4.6	67
72	691	5689	4.6	46.4
73	677.1	5697.8	4.6	46.3
74	674.3	5664	4.6	45.8
75	665.1	5645.8	4.6	45.4
76	666.1	5630.1	4.6	45.4
77	680.7	5609.9	4.6	45.7
78	695	5600.7	4.6	46.2
79	708.3	5591.5	4.6	46.6
80	721.9	5582.5	4.6	47.1
81	739.3	5570.8	4.6	47.7
82	751	5556.2	4.6	48.3
83	768.2	5549.2	4.6	49.2
		Page 57		

84	785.6	5545.6	4.6	50.3
85	800.2	5543.1	4.6	51.4
86	818.7	5539.7	4.6	53
87	835.8	5534.3	4.6	55
88	853.2	5529	4.6	57.5
89	870.1	5523.3	4.6	60.7
90	891.1	5512.3	4.6	65.8
91	644.9	5740.5	4.6	45.7
92	657.2	5732.1	4.6	45.9
93	639.5	5608.4	4.6	45.7
94	614.6	5537.8	4.6	46.6
95	644	5540.3	4.6	47
96	672.2	5537.7	4.6	47.3
97	698.9	5529.8	4.6	47.8
98	732.9	5519	4.6	49.1
99	762.3	5510.1	4.6	51.1
100	790.2	5505.4	4.6	52.8
101	817.6	5495.2	4.6	54.8
102	839.4	5482.9	4.6	56.4
103	892.1	5480.3	4.6	64.8
104	896.7	5449.1	4.6	65.2
105	903.1	5397.1	4.6	65.4
106	900.2	5364.6	4.6	63.9
107	876.4	5343.1	4.6	59.3
108	858.2	5322.9	4.6	57
109	850	5307.3	4.6	56.2
110	841.6	5281.7	4.6	55.4
111	839.2	5257.4	4.6	54.8
113	909.9	5340.8	4.6	65.8
114	901.2	5310.9	4.6	62.5
115	890.5	5298.1	4.6	60.2
116	882.2	5275	4.6	58.6
117	870.5	5255.8	4.6	56.6
112	873.5	5236.6	4.6	56.5
118	880.2	5218.4	4.6	56.7
119	888.1	5197.2	4.6	56.7
120	895.8	5173.4	4.6	56.4
121	901.7	5147.3	4.6	56.5
122	903.7	5122.4	4.6	57
123	903.2	5099.6	4.6	57
124	901.9	5079.9	4.6	56.7
125	938.8	5201.3	4.6	67.4
126	943.1	5182.3	4.6	67.6
127	946.5	5162.1	4.6	67.6
128	950.3	5142.6	4.6	67.7
129	954.1	5123.2	4.6	67.7
130	958	5104	4.6	67.6
131	962	5083.5	4.6	67.6
132	965.9	5065.3	4.6	67.4
133	972.5	5046.1	4.6	67.5
134	978.7	5026.9	4.6	66.8
135	987.4	5000.6	4.6	65.2
136	900.5	5017.2	4.6	52.6
		Page 58		

137	859.1	5021.9	4.6	50.2
138	842.5	5045.7	4.6	50.7
139	828.9	5060.8	4.6	50.9
140	823	5080.8	4.6	51.2
141	824.3	5114.6	4.6	52.4
142	820.7	5145.8	4.6	52.8
143	811.5	5177.3	4.6	52.7
144	747.2	5056.2	4.6	45.8
145	780.5	5061.3	4.6	47.5
146	781.6	5213.6	4.6	51.7
147	786.8	5236.4	4.6	51.6
148	789.6	5258.7	4.6	51.6
149	789.3	5279.9	4.6	51.5
150	790.1	5301.2	4.6	51.5
151	792.9	5321.4	4.6	51.7
152	799.6	5342.9	4.6	52.3
153	811.4	5367	4.6	52.9
154	830.6	5397.7	4.6	55.1
155	822.7	5437.1	4.6	54.7
156	794.3	5456.1	4.6	53
157	734.6	5455.8	4.6	50.3
158	704.1	5456.1	4.6	48.8
159	673.7	5458.9	4.6	48.1
160	644.5	5463.5	4.6	47.6
161	606.7	5472.8	4.6	47
162	554.2	5541.2	4.6	45.7
163	553.4	5558.3	4.6	44.9

OCEAN STREET	TREET							MERLOT STREET	SIKEEL					
Existing Daytime	aytime							Existing Daytime	ytime					
Car pass	LAeq	59.0	794328.2347	11914924	70.8 Si	70.8 SEL at 10m	10m	Car pass	LAeq	59.0	794328.2347	11914924	70.8 SEI	70.8 SEL at 10m
		15	15 seconds							15	15 seconds			
		3600	3600 seconds per 1 hour	ы						3600	3600 seconds per 1 hour	m		
		24	24 number of cars per hour	r hour						35	35 number of cars per hour	ber hour		
				SEL total								SEL total		
	SEL x number of cars =	= SIB	285958164.5	84.563025					SEL x numb	SEL x number of cars =	417022323.2	417022323.2 86.201593		
	L.Aeq lhr =		51.5 dB(A)	dB(A) at	rt 10m				LAeq lhr	11	53.1	53.1 dB(A) a	at 10m	
visting N	Existing Night-time					-		Existing Night-time	ght-time					
Car pass	LAeq	59.0	794328.2347	11914924	70.8 SI	SEL at 1	at 10m	Car pass	LAeq	59.0	794328.2347	11914924	70.8 SEL	C at 10m
I		15	15 seconds							15	15 seconds			
		3600	3600 seconds per 1 hour	н						3600	3600 seconds per 1 hour	m		
		٢	7 number of cars per hour	r hour						11	11 number of cars per hour	ber hour		
				SEL total								SEL total		
	SEL x number of cars =	ars =	85787449.35	79.334238					SEL x numb	SEL x number of cars =	125106697	80.972806		
	L.Aeq lhr =		46.3	46.3 dB(A) a	at 10m				LAeq lhr	11	47.9	47.9 dB(A) a	at 10m	
-								4 - - -			-			
u guntso	EXISTING DAYLINE WITH COMPLETED DEVELOPMENT	leted D	evelopment			_		Exasting U:	aytume with	Existing Daytime with Completed Development	evelopment			
Car pass	LAeq	59.0	794328.2347	11914924	70.8 SI	SEL at 1	at 10m	Car pass	LAeq	59.0	794328.2347	11914924	70.8 SEL	C at 10m
		15	15 seconds							15	15 seconds			
		3600	3600 seconds per 1 hour	ц						3600	3600 seconds per 1 hour	m		
		4	40 number of cars per hour	r hour						89	68 number of cars per hour	ber hour		
				SEL total								SEL total		
	SEL x number of cars =	ars =	481660783.3 86.827413	86.827413					SEL x numk	SEL x number of cars =	808427560.9 89.076411	89.076411		
	L'Aeq lhr =		53.8	53.8 dB(A) a	at 10m				LAeq lhr	11	56.0	56.0 dB(A) a	at 10m	
disting N	Existing Night-time with Completed Development	npleted	(Development			_		Existing Ni	ght-time wi	th Completed	Existing Night-time with Completed Development			
Car pass	LAeq	59.0	794328.2347	11914924	70.8 SI	SEL at 1	at 10m	Car pass	LAeq	59.0	794328.2347	11914924	70.8 SEL	C at 10m
		15	15 seconds							15	15 seconds			
		3600	3600 seconds per 1 hour	л						3600	3600 seconds per 1 hour	nur.		
		12	12 number of cars per hour	r hour						20	20 number of cars per hour	ber hour		
				SEL total								SEL total		
	SEL x number of cars =	= sre	144498235	81.598625					SEL x numb	SEL x number of cars =	242528268.3	83.847624		
	Láew lbr =		48 4	48.5 dB(A) at	t I0m				T Acc lbs	-	50.2		10-m	

TLCRE	HILLCREST AVENUE							FRASERI	FRASER DRIVE NORTH					
Existing Daytime	Jaytime							Existing Daytime	aytime					
Car pass	LAeq	59.0	794328.2347	11914924	70.8	70.8 SEL at 10m	10m	Car pass	LAeq	59.0	794328.2347	11914924	70.8 SEI	70.8 SEL at 10m
		15	15 seconds							15	15 seconds			
		3600	3600 seconds per 1 hour	н						54000	54000 seconds per 15 hour	no		
		106	106 number of cars per hour	ir hour						6258	6258 number of cars per hour	er hour		
				SEL total								SEL total		
	SEL x number of cars =	sr of cars =	1257024431	90.993437					SEL x number of cars =	of cars =	74563233946	108.72525		
	LAeq lhr		57.9	57.9 dB(A) at	10m				LAeq 15hr =		63.9	63.9 dB(A) at	at 10m	
disting N	Existing Night-time							Existing N	Existing Night-time					
Car pass	LAeq	59.0	794328.2347	11914924	70.8 SEL		at 10m	Car pass	LAeq	59.0	794328.2347	11914924	70.8 SEL	C at 10m
		15	15 seconds							15	15 seconds			
		3600	3600 seconds per 1 hour	л						32400	32400 seconds per 9 hour	'n		
		32	32 number of cars per hour	r hour						471	471 number of cars per hour	er hour		
			-	SEL total								SEL total		
	SEL x number of cars =	er of cars =	377107329.4	85.76465					SEL x number of cars =	of cars =	5612286426	97.491398		
	LÅeq lhr	"	52.7	52.7 dB(A) at	10m				Låeq 9hr =		54.9	54.9 dB(A) at	at 10m	
dsting D	Existing Davtime with Completed Development	Completed D	evelopment					Existing D	Existing Davtime with Completed Development	muleted De	welopment			
Car pass	LAeq	59.0	794328.2347	11914924	70.8 SEL		at 10m	Carpass	LAeq	59.0	794328.2347	11914924	70.8 SEL	C at 10m
		15	15 seconds							15	15 seconds			
		3600	3600 seconds per 1 hour	л						54000	54000 seconds per 15 hour	our		
		122	122 number of cars per hour	r hour						6524	6524 number of cars per hour	er hour		
				SEL total								SEL total		
	SEL x number of cars =	sr of cars =	1452727050	91.62184					SEL x number of cars =	of cars =	77735135524 108.90617	108.90617		
	LAeq lhr	Ш	58.6	58.6 dB(A) at	10m				LAeq I5hr =		64.1	64.1 dB(A) at	at 10m	
visting N	Vight-time with	h Completed	Existing Night-time with Completed Development					Existing N	Existing Night-time with Completed Development	Completed	Development			
Car pass	LAeq	59.0	794328.2347	11914924	70.8	70.8 SEL at 10m	10m	Car pass	LAeq	59.0	794328.2347	11914924	70.8 SEI	70.8 SEL at 10m
		15	15 seconds							15	15 seconds			
		3600	3600 seconds per 1 hour	л						32400	32400 seconds per 9 hour	'n		
		37	37 number of cars per hour	r hour						491	491 number of cars per hour	er hour		
				SEL total								SEL total		
	SEL x number of cars =	er of cars =	435818115.1	86.393053					SEL x number of cars =	of cars =	5851031706	5851031706 97.672325		
	LAeq lhr	"	53.3	53.3 dB(A) at	10m				L.Aeq 9hr =		55.1	55.1 dB(A) at	at 10m	

FRASER	FRASER DRIVE SOUTH	Н					
Existing Daytime	aytime						
Car pass	LAeq	59.0	794328.2347	11914924	70.8	70.8 SEL	at 10m
		15	15 seconds				
		54000	54000 seconds per 15 hour	лпо			
		6258	6258 number of cars per hour	er hour			
				SEL total			
	SEL x number of cars =	er of cars =	74563233946	108.72525			
	LAeq I5hr	Ш	63.9	63.9 dB(A)	at 10m		
Existing N	Existing Night-time						
Car pass	LAeq	59.0	794328.2347	11914924	70.8	70.8 SEL	at 10m
I		15	seconds				
		32400	32400 seconds per 9 hour	л			
		471	471 number of cars per hour	er hour			
				SEL total			
	SEL x number of cars =	er of cars =	5612286426	97.491398			
	LAeq 9hr	"	54.9	54.9 dB(A)	at 10m		
Consting D	Existing Daytime with Completed Development	Completed D	evelopment				
Car pass	LAeq	59.0	794328.2347	11914924	70.8	SEL	at 10m
		15	seconds				
		54000	54000 seconds per 15 hour	our			
		7057	7057 number of cars per hour	er hour			
				SEL total			
	SEL x number of cars =	er of cars =	84078938679	109.24687			
	LAeq I5hr	П	64.4	64.4 dB(A)	at 10m		
Existing N	light-time wit	h Completed	Existing Night-time with Completed Development				
Car pass	LAeq	59.0	794328.2347	11914924	70.8	Ē	at 10m
1		15	seconds				
		32400	32400 seconds per 9 hour	ш			
		531	531 number of cars per hour	er hour			
				01			
	SEL x number of cars =	er of cars =	6328522266	98.013023			
	L.Aea Ohr	"	55.4	55 d dR(A)	at 10m		

Onsite Lot 22 Dwelling			Onsite Lot 21 Dwelling			Onsite Lot 3 Dwelling		
Car door closure	58	dB(A) @ 1m	Car door closure	58	dB(A) @ 1m	Car door closure	58	dB(A) @ 1m
Distance source to receiver	15	m	Distance source to receiver	15	m	Distance source to receiver	7	m
Distance attenuation	-23.5	dB(A)	Distance attenuation	-23.5	dB(A)	Distance attenuation	-16.9	dB(A)
Barrier screening	-8	dB(A)	Barrier screening	-8	dB(A)	Barrier screening	-8	dB(A)
Façade reflection	2.5	dB(A)	Façade reflection	2.5	dB(A)	Façade reflection	2.5	dB(A)
Impact at ground façade		dB(A)	Impact at ground façade	29.0	dB(A)	Impact at ground façade		dB(A)
Impact inside open window		dB(A)	Impact inside open window	21.5	dB(A)	Impact inside open window		dB(A)
Impact at top floor façade		dB(A)	Impact at top floor façade	37.0	dB(A)	Impact at top floor façade	43.6	dB(A)
Impact inside open window	29.5	dB(A)	Impact inside open window	29.5	dB(A)	Impact inside open window	36.1	dB(A)
Car bypass	57	dB(A) @ 3m	Car bypass	57	dB(A) @ 3m	Car bypass	57	dB(A) @ 3m
Distance source to receiver	7	m	Distance source to receiver	20	m	Distance source to receiver	7	m
Distance attenuation	-7.4	dB(A)	Distance attenuation	-16.5	dB(A)	Distance attenuation	-7.4	dB(A)
Barrier screening	-8	dB(A)	Barrier screening	-8	dB(A)	Barrier screening	-8	dB(A)
Façade reflection	2.5	dB(A)	Façade reflection	2.5	dB(A)	Façade reflection	2.5	dB(A)
Impact at ground façade	44.1	dB(A)	Impact at ground façade	35.0	dB(A)	Impact at ground façade	44.1	dB(A)
Impact inside open window	36.6	dB(A)	Impact inside open window	27.5	dB(A)	Impact inside open window	36.6	dB(A)
Impact at top floor façade	52.1	dB(A)	Impact at top floor façade	43.0	dB(A)	Impact at top floor façade	52.1	dB(A)
Impact inside open window	44.6	dB(A)	Impact inside open window	35.5	dB(A)	Impact inside open window	44.6	dB(A)
Patrons dining	70	dB(A) @ 1m	Patrons dining	70	dB(A) @ 1m	Patrons dining	70	dB(A) @ 1m
Distance source to receiver	15	m	Distance source to receiver	15	m	Distance source to receiver	8	m
Distance attenuation	-23.5	dB(A)	Distance attenuation	-23.5	dB(A)	Distance attenuation	-18.1	dB(A)
Barrier screening	-8	dB(A)	Barrier screening	-8	dB(A)	Barrier screening	-8	dB(A)
Façade reflection	2.5	dB(A)	Façade reflection	2.5	dB(A)	Façade reflection	2.5	dB(A)
Impact at ground façade	41.0	dB(A)	Impact at ground façade	41.0	dB(A)	Impact at ground façade	46.4	dB(A)
Impact inside open window	33.5	dB(A)	Impact inside open window	33.5	dB(A)	Impact inside open window	38.9	dB(A)
Impact at top floor façade	49.0	dB(A)	Impact at top floor façade	49.0	dB(A)	Impact at top floor façade	54.4	dB(A)
Impact inside open window	41.5	dB(A)	Impact inside open window	41.5	dB(A)	Impact inside open window	46.9	dB(A)
Goods Delivery	85	dB(A) @ 1m	Goods Delivery	85	dB(A) @ 1m	Goods Delivery	85	dB(A) @ 1m
Distance source to receiver	7	m	Distance source to receiver	10	m	Distance source to receiver	35	m
Distance attenuation	-16.9	dB(A)	Distance attenuation	-20.0	dB(A)	Distance attenuation	-30.9	dB(A)
Barrier screening	-8	dB(A)	Barrier screening	-8	dB(A)	Barrier screening	-8	dB(A)
Façade reflection	2.5	dB(A)	Façade reflection	2.5	dB(A)	Façade reflection	2.5	dB(A)
Impact at ground façade	62.6	dB(A)	Impact at ground façade	59.5	dB(A)	Impact at ground façade	48.6	dB(A)
Impact inside open window	55.1	dB(A)	Impact inside open window	52.0	dB(A)	Impact inside open window	41.1	dB(A)
Impact at top floor façade	70.6	dB(A)	Impact at top floor façade	67.5	dB(A)	Impact at top floor façade	56.6	dB(A)
Impact inside open window	63.1	dB(A)	Impact inside open window	60.0	dB(A)	Impact inside open window	49.1	dB(A)
Waste Collection	88	dB(A) @ 1m	Waste Collection	88	dB(A) @ 1m	Waste Collection	88	dB(A) @ 1m
Distance source to receiver	7	m	Distance source to receiver	10	m	Distance source to receiver	35	m
Distance attenuation	-16.9	dB(A)	Distance attenuation	-20.0	dB(A)	Distance attenuation	-30.9	dB(A)
Building screening	0	dB(A)	Building screening	0	dB(A)	Building screening	0	dB(A)
Façade reflection	2.5	dB(A)	Façade reflection	2.5	dB(A)	Façade reflection	2.5	dB(A)
Impact at ground façade	73.6	dB(A)	Impact at ground façade	70.5	dB(A)	Impact at ground façade	59.6	dB(A)
Impact inside open window		dB(A)	Impact inside open window	63.0	dB(A)	Impact inside open window	52.1	dB(A)
Impact at top floor façade		dB(A)	Impact at top floor façade	70.5	dB(A)	Impact at top floor façade		dB(A)
Impact inside open window	66.1	dB(A)	Impact inside open window	63.0	dB(A)	Impact inside open window	52.1	dB(A)
A/C Plant	58	dB(A) @ 1m	A/C Plant	58	dB(A) @ 1m	A/C Plant	58	dB(A) @ 1m
Distance source to receiver	13		Distance source to receiver		m	Distance source to receiver		m
Distance attenuation		dB(A)	Distance attenuation		dB(A)	Distance attenuation		dB(A)
Building screening		dB(A)	Building screening		dB(A)	Building screening		dB(A)
Façade reflection		dB(A)	Façade reflection		dB(A)	Façade reflection		dB(A)
Impact at ground façade		dB(A)	Impact at ground façade		dB(A)	Impact at ground façade		dB(A)
Impact inside open window		dB(A)	Impact inside open window		dB(A)	Impact inside open window		dB(A)
Impact at top floor façade		dB(A)	Impact at top floor façade		dB(A)	Impact at top floor façade		dB(A)
Impact inside open window		dB(A)	Impact inside open window		dB(A)	Impact inside open window		dB(A)

Dwellings due East			Dwellings due North		
Car door closure	58	dB(A) @ 1m	Car door closure	58	dB(A) @ 1m
Distance source to receiver	155		Distance source to receiver	130	
Distance attenuation		dB(A)	Distance attenuation		dB(A)
Building Screening		dB(A)	Building Screening		dB(A)
Façade reflection		dB(A)	Façade reflection		dB(A)
Impact at ground façade		dB(A)	Impact at ground façade		dB(A)
Impact inside open window		dB(A)	Impact inside open window		dB(A)
Car bypass		dB(A) @ 3m	Car bypass		dB(A) @ 3m
Distance source to receiver	145		Distance source to receiver	125	
Distance attenuation		dB(A)	Distance attenuation		dB(A)
Building screening		dB(A)	Building screening		dB(A)
Façade reflection		dB(A)	Façade reflection		dB(A)
Impact at ground façade		dB(A)	Impact at ground façade		dB(A)
Impact inside open window	18.3	dB(A)	Impact inside open window	19.6	dB(A)
Patrons dining	70	dB(A) @ 1m	Patrons dining	70	dB(A) @ 1m
Distance source to receiver	160		Distance source to receiver	135	
Distance attenuation		dB(A)	Distance attenuation		dB(A)
Building screening		dB(A)	Building screening		dB(A)
Façade reflection		dB(A)	Façade reflection		dB(A)
Impact at ground façade		dB(A)	Impact at ground façade		dB(A)
Impact inside open window		dB(A)	Impact inside open window		dB(A)
Goods Delivery	85	dB(A) @ 1m	Goods Delivery	85	dB(A) @ 1m
Distance source to receiver	155	m	Distance source to receiver	130	m
Distance attenuation	-43.8	dB(A)	Distance attenuation	-42.3	dB(A)
Building screening	0	dB(A)	Building screening	0	dB(A)
Façade reflection	2.5	dB(A)	Façade reflection	2.5	dB(A)
Impact at ground façade	43.7	dB(A)	Impact at ground façade		dB(A)
Impact inside open window	36.2	dB(A)	Impact inside open window	37.7	dB(A)
Waste Collection		dB(A) @ 1m	Waste Collection		dB(A)@1m
Distance source to receiver	145		Distance source to receiver	120	
Distance attenuation		dB(A)	Distance attenuation		dB(A)
Building screening		dB(A)	Building screening		dB(A)
Façade reflection		dB(A)	Façade reflection		dB(A)
Impact at ground façade		dB(A)	Impact at ground façade		dB(A)
Impact inside open window	39.8	dB(A)	Impact inside open window	41.4	dB(A)
A/C Plant	58	dB(A) @ 1m	A/C Plant	58	dB(A) @ 1m
Distance source to receiver	165		Distance source to receiver	140	
Distance attenuation		dB(A)	Distance attenuation		dB(A)
Building screening		dB(A)	Building screening		dB(A)
Façade reflection		dB(A)	Façade reflection		dB(A)
Impact at ground façade		dB(A)	Impact at ground façade		dB(A)
Impact inside open window		dB(A)	Impact inside open window		dB(A)