

Armidale Dumaresq Council 9 July 2012 Document No. 60011672_PAC Response

Armidale Regional Landfill

Planning Assessment Commission Response

Armidale Regional Landfill

Planning Assessment Commission Response

Prepared for

Armidale Dumaresq Council

Prepared by

AECOM Australia Pty Ltd Level 21, 420 George Street, Sydney NSW 2000, PO Box Q410, QVB Post Office NSW 1230, Australia T +61 2 8934 0000 F +61 2 8934 0001 www.aecom.com ABN 20 093 846 925

9 July 2012

60011672

AECOM in Australia and New Zealand is certified to the latest version of ISO9001 and ISO14001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document Planning Assessment Commission Response

Ref

Date 9 July 2012

Prepared by Danielle Phillips, Jamon Pool, Andrew Kielniacz, Michael Borman, John Stephens, Benjamin Hardaker

Reviewed by Catherine Brady

Revision History

Revision Revision Date	Povision Data	Details	Authorised	
	Revision Date		Name/Position	Signature
1	22-June-2012	Final	Michael Borman Project Director	pli form
2	9-July-2012	Section 2.4.3 Revised	Michael Borman Project Director	pli form

Table of Contents

Executive 1.0	Summary	าท		i 1
1.0	1.1	Backgrou	ind	1
	1.1	-	nental Guidelines: Solid Waste Landfills (NSW Environment Protection Authority,	'
	1.2	1996)	iental Guidennes. Sond Waste Landnis (NSW Environment Protection Autionty,	1
		1.2.1	Benchmark Techniques	1
		1.2.1	Environmental Goals for Water Pollution	1
	4.0			
	1.3	•	and Environmental Assessment Process	2
		1.3.1	Planning Assessment Framework	2
		1.3.2	Public Exhibition of the Environmental Assessment	2
		1.3.3	Determination Process	2
2.0	Issues	-		4
	2.1	-	/ of Issues	4
	2.2		for Groundwater Contamination by Leachate	4
		2.2.1	Proposed Leachate Barrier System	4
		2.2.2	The Nature of the Leachate	7
		2.2.3	Mechanics of the Leachate Management System	8
		2.2.4	Management of Stormwater on Site	10
		2.2.5	Flood Levels of the Unnamed Creek Which Flows to the Gara River	11
		2.2.6	Mitigation and Management in the Event of Failure	11
	2.3	Regional	Landfill Facility	13
	2.4	Strategic	Waste Limit – Two Cell Approval	14
		2.4.1	Environmental Approval	14
		2.4.2	Council's Resource Recovery Performance	14
		2.4.3	Economic Analysis of Approval Scenarios	14
		2.4.4	Alternative Long Term Solution	18
	2.5	Site Sele	-	18
		2.5.1	Introduction	18
		2.5.2	Preliminary Investigations	18
		2.5.3	Advisory Committees	18
		2.5.4	Selection of a Preferred Site	19
	2.6		ity and Amenity	20
	2.0	2.6.1	Biodiversity	20
		2.6.2	Visual	21
		2.6.3	Noise	21
		2.6.4	Other Amenity Issues	21
3.0	Conclusio		Other Amenity issues	21
5.0	Conclusio	// 1		21
Appendix	κA			
	Long Swa	amp Road	Landfill Environmental Monitoring Report	Α
۸				
Appendix				-
	Conceptu	al Design	Drawings	В
Appendix	C			
11		Commitm	ent	С
				-
Appendix				-
	Site Selec	ction Additi	onal Data	D
Appendix	ε			
		tion Adve	rtisements	Е

Executive Summary

Armidale Dumaresq Council (Council) proposes to develop the Armidale Regional Solid Waste (Putrescible) Landfill Facility off Waterfall Way in Armidale, NSW. The existing landfill at the Armidale Waste Management Facility on Long Swamp Road is fast approaching its final capacity.

The purpose of this report is to address issues raised during meetings convened by the Planning Assessment Commission (PAC) on 24 and 25 May 2012. This report has been prepared to provide additional information to the PAC to assist in its determination of the project in relation to:

- Potential for groundwater contamination by leachate
- Potential for surface water flows into Gara River
- A Regional Landfill Facility from a regional context
- Strategic Waste Limit two versus five cell approval
- Site selection process
- Biodiversity and Amenity Issues (Visual, odour, noise, litter and vermin)

The above concerns raised during the PAC meeting have been addressed as follows:

- Potential for groundwater contamination by leachate the proposed leachate management system has been designed using a precautionary approach, has been designed to meet the worst case of "poor hydrological conditions" and exceeds the requirements for design of a leachate barrier stipulated in the NSW Environmental Guidelines: Solid Waste Landfills 1996 Guidelines (Benchmark Technique No.1). The composite liner proposed is considered best practice and is adopted by regulatory authorities worldwide. Council proposes to install the barrier system in accordance with this benchmark technique and with a carefully monitored QA/QC procedure.
- Potential for surface water flows into Gara River surface water will be managed at the Site using a stormwater diversion system, a sedimentation basin and dry basin in addition to the leachate pond. In the unlikely event of emergency overflow from the leachate pond, all overflows will be fully contained in the downstream sedimentation basin, and then ultimately in the dry basin. The diversion system has been designed for the 1 in 100 year ARI peak flow event from the upslope catchments to divert 'clean' stormwater away from the Site. The sedimentation basin has been designed to fully contain the 5-day, 95th percentile rainfall depth for the Armidale area. Ultimately, the dry basin has been designed to contain the 1 in 100 year ARI 3 day duration rainfall event. The 100 year ARI, 3 day rainfall event is an extreme rainfall event and the potential risk of any off-site discharge would be extremely unlikely during the landfill operation. The proposed water management system is designed to a higher level than that accepted by the EPA during the EA process, where it is proposed to design and size the dry basin for a 1 in 100 ARI, 1 day duration rainfall event.
- A Regional Landfill Facility The Armidale Dumaresq Council area generates by far the largest waste quantity within the immediately surrounding areas including Guyra, Walcha and Uralla Councils. Whilst these Councils have not either confirmed or denied their participation in disposal of their waste at a regional facility, they have provided the commitment letters during the consultation process. Guyra Council has been depositing waste at the Armidale landfill since late 2002. Anticipated Council reforms over the next few years or decades, may in fact amalgamate regional and rural Councils. It would therefore seem logical, that if such amalgamation were to happen, Armidale would serve as a Regional facility and that smaller and less cost effective facilities are closed down.
- Strategic waste limit two cell versus five cell approval the Director General's Environmental Assessment Report recommended that approval be granted to construct and operate two of the proposed five cells. It was noted that it is 'not intended as an environmental limit, but a strategic waste limit that will ensure the Council continue to update its waste recovery planning in line with the NSW waste recovery targets'. Council do not agree with the Director General's Environmental Assessment Report's comment that if a five cell development was permitted, that there will be no driver to update its' waste recovery planning. The current landfill is operating to best Regional/Rural landfill practices, which was acknowledged in the Director General's Environmental Assessment report which stated that "Council's Recovery performance is better than the State Average". Councils waste diversion practices are already getting close

i

to achieving the 2014 WARR targets. Council has further increased their waste diversion activities since the submission of the EA and the inspection of their existing activities by the DoP's independent waste advisor, including the commencement of the domestic organics (garden and food wastes) service. This demonstrates Council's full commitment to maximising waste diversion and to meeting their intent of essentially operating the new landfill as a non-putrescible landfill.

Furthermore, a number of proposed conditions of consent require Council to design the landfill and ancillary infrastructure to accommodate outputs from five cells but with approval to only operate two cells subject to Council satisfactorily addressing Clause 123(1)(a)of State Environmental Planning Policy (Infrastructure) 2007.

The water and leachate management infrastructure supporting the two cells for the base case scenario would be built to final design size (i.e. sufficient capacity to accommodate containment and storage requirements for five landfill cells) in Year 1. The proposed staged approval of the landfill cells would mean that water and leachate management infrastructure to support two cells only would be constructed in Year 1, with further construction required in future years to augment/upgrade the infrastructure to support additional landfill cells as they are approved (two cell scenario).

Option 1 (i.e. the Proposal as submitted) has lower costs and a lower risk profile. This approach would be preferred to reduce the financial risk of future landfill cells not being approved, and hence the burden on rate payers and the uncertainty of a longer term waste solution for Council.

- Site selection process Council has maintained records of the site selection process including reports, correspondence with real estate agents, newspaper advertisements and minutes and resolutions of Council Meetings, which demonstrate that the site selection process was comprehensive and rigorous. It involved consideration by multiple consultants, state government departments, Council's advisory committees and by the elected Councillors. It is noted that the site selection work undertaken by Brian Mackney and Associates was "peer reviewed" by the NSW Department of Public Works (which subsequently changed its' name to NSW Department of Commerce during the review period).
- Biodiversity and amenity issues the proposal includes a biodiversity offset of approximately 61 hectares of land to account for approximately 20 hectares of vegetation being cleared due to the proposed landfill facility. The biodiversity area will be contained entirely within the Site extent to enable direct and intensive management of the offset and to minimise the disturbance and relocation distance for some older and hollow-bearing trees and associated habitats. The Biodiversity Offset Management Plan for the Site has been prepared in accordance with the recommendations of the DECCW (now EPA) principles for biodiversity offsetting.

Amenity impacts such as noise, odour and vermin will be managed through mitigation measures as outlined in the EA and appropriate management plans for construction and operation phases including the LEMP. Visual impacts will be mitigated through progressive landscaping and revegetation, with no visual impacts for the life of the operation.

	Benchmark Technique (Environmental Guidelines: Solid Waste Landfills)	Proposed in Environmental Assessment	Revised Proposal for this Submission
Leachate Dam	Benchmark Technique No. 2 - 25 year, 1 day storm event	100 year 1 day storm event (13.9ML)	100 year 3 day storm event (14.6ML)
Sedimentation Dam	Benchmark Technique No. 3 - 90 th Percentile 5-day rainfall	90 th Percentile 5-day rainfall (2.85ML)	95 th Percentile 5-day rainfall (5.25ML)
Dry Basin	Benchmark Technique No. 2 – 110% capacity bund of leachate dam capacity (110% x 13.9ML = 15.3ML)	19ML (minimum capacity in lieu of bund)	30ML(minimum capacity in lieu of bund)

Further summarising water management controls adopted for this proposal we confirm the following:

1.0 Introduction

1.1 Background

Armidale Dumaresq Council (Council) proposes to develop the Armidale Regional Solid Waste (Putrescible) Landfill Facility off Waterfall Way in Armidale, NSW. The existing landfill at the Armidale Waste Management Centre on Long Swamp Road is fast approaching its final capacity. No further options are available to extend or otherwise prolong the life of the landfill, mainly due to the lack of further available land area, suitable for landfilling at that site. Land has recently been acquired adjacent to the existing waste management facility at Long Swamp Road, however this was purchased to provide additional space for the expansion of the Resource Recovery Centre (second-hand shop), waste processing activities and stockpile areas. It has never been considered as land available for landfill extension. It is also noted that a significant landfill extension on the existing Long Swamp Road site has not been considered viable by Council owing to a range of significant constraints, which would preclude it from being a landfill under current site location guidelines. In addition it would not comply with the National Airports Safeguarding Framework, which specifies distance restrictions to manage risk of collisions between wildlife and aircraft at or near airports where that risk may be increased by the presence of wildlife-attracting land uses, such as a landfill. As such, the need exists to provide a long-term waste disposal solution for the region.

The purpose of this report is to address issues raised during meetings convened by the Planning Assessment Commission (PAC) on 24 and 25 May 2012. This report has been prepared to provide additional information to the PAC to assist in its determination of the project.

1.2 Environmental Guidelines: Solid Waste Landfills (NSW Environment Protection Authority, 1996)

1.2.1 Benchmark Techniques

The *Environmental Guidelines: Solid Waste Landfills* NSW Environment Protection Authority (EPA) *1996* (Landfill Guidelines) provides a framework for a consistent and environmentally responsible approach to managing landfills in NSW. The Landfill Guidelines set out benchmark techniques for the design, operation, monitoring and management for a landfill as well as specified Environmental Goals. These guidelines note that 'there is no impediment to rejecting some techniques in relation to a given facility. The occupier should select those techniques that are applicable to meeting the goals, identify those that are not, and justify the omissions or alternatives put forward'.

These guidelines have been used as the targets to meet in the design of the proposed Armidale Regional proposed Landfill, as they were specified in the Director-General's Requirements (DGRs) issued by the Director General of the then Department of Planning on the 20th November 2008 . These DGRs were issued specifically after consultation with other regulatory authorities during the planning focus meeting held to discuss the proposal and other consultation. During the Regulatory consultation period in which the DGRs were determined, the Commonwealth Department of Environment and Heritage was consulted for input as a result of the sites' proximity to the Gara River and Wild Oxley Rivers National Park. No further design guidelines were specified or recommended.

The benchmark techniques have been considered throughout the design of the proposed Armidale Regional Landfill. The draft Landfill Environmental Management Plan (LEMP) (AECOM, 2010) sets out the benchmark techniques and how the proposed design complies with, or exceeds the recommended benchmarks. The EPA has used these benchmark techniques as a point of reference when assessing Council's proposal for the Armidale Regional Landfill, which is reflected in the draft conditions of approval recommended by the EPA and the Department of Planning and Infrastructure (DP&I).

1.2.2 Environmental Goals for Water Pollution

Leachate is the liquid that percolates through landfills as a result of infiltration of rainwater and/or decomposition of the wastes. If not adequately controlled, ground and surface waters can be put at risk if contaminated by untreated leachate from landfill sites. Due to the location of the proposed landfill in proximity to the Gara River and in the catchment of the Oxley Wild Rivers National Park and World Heritage Area, the engineering design, monitoring programmes and management measures proposed for the Armidale Regional Landfill reflect the Environmental Goals set out in the Landfill Guidelines relating to water pollution including:

- **Preventing pollution of water by leachate** Leachate must be controlled within the landfill site, ensuring that neither groundwater nor surface water is polluted.
- **Detecting water pollution** Effective mechanisms must be developed for early detection of groundwater and surface water pollution; and
- **Remediating water pollution** Any detected groundwater or surface water pollution needs to be speedily remediated.

1.3 Planning and Environmental Assessment Process

1.3.1 Planning Assessment Framework

The proposed Armidale Regional Landfill is defined as a 'waste facility' under Schedule 1 of the *State Environmental Planning Policy (Major Development) 2005* (SEPP 2005) as it would have the capacity to receive greater than 650,000 tonnes of putrescible waste over the life of the landfill. The project was therefore declared to be a development to which Part 3A of the *Environmental Planning and Assessment Act 1979* (EP&A Act) applies and requires the approval of the Minister for Planning and Infrastructure.

An Environmental Assessment (EA) was prepared in accordance with the provisions of Part 3A of the EP&A Act and the *Environmental Planning and Assessment Regulation 2000* (EP&A Regulation), together with the DGRs issued by the Director General of the then Department of Planning on the 20th November 2008.

In October 2011, Part 3A of the EP&A Act was repealed, however under clause 2 of Schedule 6A of the EP&A Act, the project is a 'transitional Part 3A project' and therefore continues to be assessed under Part 3A of the Act.

1.3.2 Public Exhibition of the Environmental Assessment

Under Section 75H (3) of EP&A Act, the EA was required to be exhibited for a period of '*at least 30 days*'. Given the size of the EA and previous comments from the public suggesting the exhibition period be extended, the EA was placed on exhibition for a period of 60 days, from 3 June to 6 August 2010. During the exhibition period, the then Department of Planning website experienced technical difficulties with the electronic collection of submissions. In light of this issue, submissions were accepted by the Department for a further 30 days after the exhibition period closed. This gave a total consultation period of 90 days, well in excess of the standard 30 days required under the EP&A Act.

Comments raised by the public during the exhibition period were considered by Armidale Dumaresq Council and responses provided in a Submissions Report (dated 12 April 2011). Consultation with key stakeholders continued through and in some cases beyond the exhibition period. This included ongoing discussions with the then Department of Environment, Climate Change and Water (DECCW), Roads and Traffic Authority (RTA) as well as meetings with specific residents and community groups.

1.3.3 Determination Process

Following lodgement of the Submissions Report, the Director General of the DP&I prepared an Environmental Assessment Report which assessed the merits of the project with regard to the EP&A Act and the principles of ecologically sustainable development.

The Director General's assessment report concluded that the project was in the public interest and recommended that the Armidale Landfill Project be approved subject to conditions. Draft Conditions of Consent were prepared and were provided as Appendix A of the Director General's assessment report.

Under the EP&A Act the Minister for Planning and Infrastructure is the approval authority for Part 3A projects. However, as more than 25 submissions were received during the exhibition, the project is to be determined by the NSW PAC, to which the Minister has delegated the final assessment role. On 11 April 2012, the DP&I referred the Armidale Landfill Project application to the PAC for determination. The Commissioners presiding over the PAC for this project include Dr Neil Shepherd and Mr Gary West.

On 24 May 2012, the PAC convened a public meeting in Armidale and invited representations from the public. Nine parties addressed the PAC including:

- Mr Christian Quaife
- Mr Geoffrey Fox (President of the Gara Valley Environment Preservation Association)
- Mr Hans Hietbrink Mayor, Guyra Shire Council

- Mr Ron Piddington
- Mr Peter Metcalfe President of the Armidale Branch of the National Parks Association of NSW
- Mr David Laird
- Mr Peter Lloyd
- Mr Gorm Kirsch
- Mr Damien Coffey

On 25 May 2012 the PAC convened a meeting with Council to discuss the issues raised at the public meeting. The Commissioners also conducted an inspection of the proposed landfill site, accompanied by representatives from Council and its Consultant. Issues raised by the PAC, and responses to each, are presented in Section 2.0 of this report.

2.0 Issues

2.1 Summary of Issues

Issues were primarily those received during the exhibition period for the EA. In summary, the issues discussed during the PAC meeting on 25 May 2012 with Council included:

- Potential for groundwater contamination by leachate (Section 2.2)
- Potential for surface water flows into Gara River (Sections 2.2.4 and 2.2.5)
- A Regional Landfill Facility from a regional context (Section 2.3)
- Strategic Waste Limit two versus five cell approval (Section 2.4)
- Site selection process (Section 2.5)
- Biodiversity and Amenity Issues (Visual, odour, noise, litter and vermin) (Section 2.6)

2.2 Potential for Groundwater Contamination by Leachate

Concerns regarding leachate and water management raised during the submissions to the PAC are discussed below under the following headings.

- 1. The proposed leachate barrier system
- The barrier system's compliance and exceedence of the EPA's benchmark standards
- The barrier system's specification in relation to current practice and world standards
- Construction of the barrier system using a carefully regulated QA/QC system
- 2. The nature of the leachate
- The barrier system specification is based upon general municipal solid waste leachate
- Current practice of removing organics and green waste from the waste stream
- Nature of leachate currently produced
- 3. The mechanics of the leachate management system
- Base grade of landfill (i.e. sloping topography)
- Drainage layer
- Leachate collection pipes
- Leachate sump
- Leachate pond
- 4. Management of stormwater on Site
- Diversion system
- Stormwater dam
- Dry basin
- 5. Flood Levels of the creek discharging to the Gara River
- 6. Mitigation and management In the event of failure
- Overflow of dams
- Failure of leachate barrier system

2.2.1 Proposed Leachate Barrier System

Proposed Design - Compliance / Exceedance of Benchmark Standards

The leachate barrier system (liner) proposed for the Armidale Regional Landfill is a composite barrier system comprising of 900mm thick re-compacted clay with a permeability of 1×10^{-9} m/sec, overlaid by a flexible membrane liner (FML) of High Density Poly Ethylene (HDPE) construction, of a minimum 1.5mm thickness and with a permeability of 1×10^{-14} m/sec. A 300mm layer of gravel sandwiched geotextile will then be placed over the

HDPE layer, to facilitate the movement of leachate across the liner and prevent ponding of leachate against the liner.

The design proposed for the Armidale Regional Landfill has adopted a precautionary approach and has been designed to meet the worst case of "poor hydrological conditions".

The NSW Environmental Guidelines: Solid Waste Landfills 1996 (Guidelines, 1996) contains the benchmark technique for leachate barrier design (Benchmark Technique No.1) which has a primary environmental goal of "preventing pollution of water by leachate". It does this by first advising that if the natural underlying geology of the site is suitable, a liner may not even be required. In the event that a liner is required it specifies:

- "A re-compacted clay or modified soil liner at least 90 centimetres thick with an in situ co-efficient of
 permeability of less than 10⁻⁹ ms⁻¹. Successive layers should be of compatible material and each underlying
 layer should be scoured to prevent excessive permeability due to laminations. The sides should generally
 have a slope not exceeding a gradient of one vertical to three horizontal in order to allow suitable
 compaction of the barrier and to facilitate subsequent testing.
- If the landfill is located in an area of poor hydrological conditions or otherwise poses a significant potential threat to groundwaters or surface waters, the clay or modified soil liner should be overlaid with a flexible membrane liner (FML) of minimum co-efficient of permeability of 10-14 ms-1. The FML should have material properties that will ensure that it maintains this permeability for a period at least equivalent to the reactive life of the waste contained by the FML. The FML should have a minimum thickness of 1.5 millimetres, and be laid following procedures in an approved construction quality assurance program. All joins and repairs should be fully tested to ensure liner integrity is not breached at these locations, and the FML should be protected by an overlay of soil with low abrasive properties or synthetic non-woven geotextile of sufficient depth to protect the FML against load-induced damage."

The approved Construction Quality Assurance Program forms part of the EPA approvals process, and the Guidelines (1996) state that:

"All design, construction and operation activities must be carried out in accordance with a quality system acceptable to the EPA."

World Standards

Drawing on information from across its network of offices with waste management specialists in the United States, Canada and the European Union, AECOM has undertaken a current investigation of internationally adopted techniques. This investigation, performed after the PAC meeting of 25 May, confirmed that for the disposal of municipal solid waste, (without organics removal or pre-treatment) typically accepted design includes a composite liner system which is comprised of a low permeability barrier layer (clay of a given thickness and established minimum permeability) overlain by a FML. This style of composite liner is stipulated by regulatory authorities worldwide and is considered to be internationally adopted practice.

In the European Union, the standards adopted for "Non-Hazardous " landfills i.e. those taking municipal, commercial and industrial waste, but excluding hazardous waste, is that specified in the EU Directive (Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste) namely is a geological barrier, typically compacted clay, of up to 1,000mm thickness with a permeability $< 1 \times 10^{-9}$. Where the geological barrier does not naturally meet the above conditions, it can be completed artificially and reinforced by other means giving equivalent protection. The EU directive states that an artificially established geological barrier should be no less than 500mm thick and the typical reinforcement is FML or geomembrane such as HPDE.

In the United Kingdom, the reinforcement is a HDPE secondary liner laid across a geological barrier. Putrescible landfills proposed and built since 2002 in the UK have been built to this minimum standard, but there are also site-specific issues to consider such as aquifer classification and proximity to potable water supplies. The standard of the landfill liner design and construction is usually determined by undertaking a site specific hydrogeological and stability risk assessment.

In France, non-hazardous waste landfills are regulated by the ministerial decree dated 9 September 1997 (arrête ministeriel du 9 September 1997), modified by the ministerial decree dated 18 July 2007 (arrête ministeriel du 18 July 1997) to include just two additional requirements from the directive 1999/31/EC dated 26 April 1999.

However, the French regulation enforces stricter requirements regarding the permeability of the underlying site geology beneath the cells than the EU directive specifies. This regulation requires, from the top to bottom:

- 1,000mm thickness of material with permeability $< 1 \times 10^{-9}$ m/s; or
- 5,000mm thickness with material with permeability < 1x10⁻⁶ m/s; and
- Cells batters must have 1,000mm thickness of material with permeability < 1x10⁻⁹ m/s.

When the natural ground (sub-base) does not comply with these requirements, the sub-grade can be completed and reinforced by artificial material that will present the same equivalent required permeability. This reinforced sub-base must have a thickness of at least 1 m at the bottom of the cell, and at least 500mm along the cell batters up to 2,000mm above the cell bottom. A study must demonstrate that the permeability of the proposed sub-base presents equivalent permeability as the requirements mentioned above. . Generally, the design proposed for Armidale would comply with this regulation, as whilst the clay is thinner at 900mm, it is overlaid by HDPE.

In the United States and Canada, for the disposal of municipal solid waste (MSW) landfill best management practice requires a composite liner system which is comprised of a low permeability barrier layer (clay of a given thickness of generally up to 900mm and established minimum permeability) overlain by a FML.

The Resource Conservation and Recovery Act (1976): subtitle D requires 600mm of 1X10⁻⁹ m/sec compacted clay soil topped by a minimum 0.75mm FML. Different states within America have implemented 300mm to 900mm of clay plus a 1.5mm FML. Depending upon the availability of adequate clay material, a portion of the clay layer may be substituted with a geosynthetic clay layer (GCL) provided that the overall thickness/permeability of the clay barrier exceeds the requirements of the regulatory agency. The thickness of the clay varies from 600mm to one meter depending upon regional regulations.

The use of HDPE has become the standard material used for a FML. The thickness and surface texture of the HDPE are dependent upon factors related to slope stability, depth of waste mass, angle of side slopes, anticipated foundation settlement, projected settlement of waste mass, and so on. The key to the successful licensing of the final disposal cell is the ability of the certifying engineer to provide adequate QA/QC documentation that the liner system was installed in accordance with the design and meets the intent of the agency regulations.

Construction of Barrier System

In reviewing the NSW EPA's benchmark techniques, and the international requirements, it can be seen that the proposed liner design is conservative in its approach. It exceeds the NSW typical requirements and meets or exceeds internationally adopted practices. It is acknowledged there are potential issues associated with landfills of this design through liner failure due to operational and construction QA/QC challenges. With careful construction in accordance with an approved construction quality plan and awareness of operational issues, the liner will provide the best barrier available to protect soil and groundwater outside of the landfill's footprint.

Rowe (2009) considered the different factors impacting the long-term performance of leachate collection systems and geomembrane HPDE Liners for waste landfills. The paper identified that HDPE liners can have a potentially short service life, or potentially long service life with a number of key factors playing an influential role: type of geomembrane, configuration of liner systems and temperature history of the liner. In considering factors, the proposed design:

- Specifies the gravel drainage layer and separation layer recommended
- Minimises the potential for a saturated drainage zone by actively recirculating the leachate through the landfill
- Specifies the use of a minimum 1.5mm HDPE as the FML/geomembrane. The actual HDPE (thickness, texture and properties) are to be determined during the detailed design

Criticism of this style of landfill design have generally focused on a "dry tomb" style landfill, where the landfill waste is kept dry and isolated from water, with the intent of minimising the generation of leachate. This approach requires the minimisation of surface water and rainfall entering the landfill cell during operation, and the minimisation of infiltration when the landfill has been closed. There is a developing viewpoint that dry tomb landfills are not an ideal approach to landfill operation and management, because the majority of contaminants and leachate are effectively held in stasis. Lee states that "… keeping the waste dry would lead to a situation where no waste decomposition would occur, and therefore the wastes would be a threat to generate leachate, effectively forever …" (Lee & Associates, 2011).

The Armidale Landfill would not be operated as a dry tomb landfill. While it will have the required infrastructure, and will be operated to minimise infiltration of surface water and rainfall in order to minimise the generation of

leachate, leachate will be recirculated on an as needs basis throughout the waste mass. It should also be noted that the Armidale landfill will not be operated as a bioreactor. However leachate will be re-injected into the waste to assist with management of leachate across the site.

Leachate Pumping Systems (2004) stated that "Recirculation in Subtitle D landfills has become an increasingly accepted way of dealing with leachate". The company conducted a case study with the primary objective of contrasting the cost of trucking leachate offsite for treatment, and establishing an onsite recirculation system. In addition the company identified that "wetting of the biological material has a composting effect", and "leachate dispersal into the landfill biomass accelerates stabilisation of trash (sic) and will result in additional airspace recovery over time as the biological material decomposes". It was noted that "Recirculation also improves leachate quality ... and post-closure time to stabilisation is also decreased significantly".

Calabro et al (2010) found "...the first 30 months of monitoring of concentrated leachate recirculation show that leachate production did not increase significantly and that only a few quality parameters (i.e. COD, Nickel and Zinc) presented a moderate increase".

Potential impacts to underlying groundwaters may arise from leachate infiltration through a landfill's liner material, primarily where the liner has not been installed appropriately, or has since become compromised in some manner. Council proposes to install the barrier system in accordance with the benchmark technique and with a carefully monitored QA/QC procedure comprising:

- For the clay liner, moisture control, compaction and permeability testing of multiple thinner layers of clay, keying each of these thinner layers together; and
- For the HDPE liner, temperature monitored laying, welding, inspection, patching, pressure testing of welds.

This QA procedure has previously been used and approved by the EPA (and its proceeding authorities, for example DECCW) in both landfill design and remediation of old landfills, and is the current internationally adopted practice.

2.2.2 The Nature of the Leachate

Both local and worldwide practice and current landfill design techniques are based upon leachate derived from municipal solid waste landfills, which are generally acknowledged to accept unsorted household wastes, putrescible untreated wastes and often small amounts of potentially hazardous wastes. The liner materials used in contemporary landfills have been specified to withstand chemical degradation by the potentially hazardous substances found in the concentrations and quantities typical of municipal solid waste. There have been studies performed over the past decade that show potential degradation of lining materials, where large volumes and concentrations of hazardous materials such as BTEX (Benzene, Toluene, Xylene and Ethylbenzenes) and other volatile hydrocarbons have been disposed of into landfills, usually in industrial quantities. These compounds are found in everyday products such as glues, cleaning products, floor polish, paint, degreasers etc., but in very small quantities relative to the general residual waste stream.

Armidale Dumaresq Council is acknowledged to be following best if not leading practices in the collection and management of a rural city waste stream. Practices currently employed by Council include:

- Operation of an all year round chemical waste collection for containers holding hazardous household chemicals (rather than once or twice per year employed by other Councils). ADC is the only Council in the NIRW group (that includes Tamworth, Gunnedah, Narrabri, Moree and Inverell Councils) that operates a chemical waste collection service all year round. Chemicals collected by this Council for the year 2009/10 amounted to 50% of the NIRW Group collection contract
- Operation of an on-site 'tip shop' which removes reusable/resalable items from the general waste stream
- Operation of an e-waste separation facility, which facilitates manual separation of hazardous components of televisions, computer monitors and other electronic goods
- Operation of a penalty charge for unsorted waste for over 10 years. Council have found this to be a very effective tool in the encouragement of sorting at source and also provides Council with the necessary funds to operate a clean materials recycling facility to sort clean mixed waste on the disposers behalf
- Operation of a fortnightly service since 1 February 2012 for the collection of domestic organic waste (food and garden waste) via a 240L mobile garbage bin (mgb) (an additional 240L mgb available at a nominal charge for residents requiring a larger service). The continuation of the weekly garbage service reduces the likelihood of contamination of the other recycling collection services

- Investigations and negotiations are currently taking place so that a food waste collection service can be provided to commercial and industrial premises by Council's contractor Cleanaway

These combined practices greatly reduce the quantity of waste (and hence leachate) produced as well as remove potentially hazardous and non-hazardous contaminant and concentrations. This also re-enforces Council's stated objective to operate the landfill as a non-putrescible Solid Waste Landfill. Pre-treatment of the organic component also contributes to the benign nature of the leachate.

Current and historical leachate monitoring results for Council's existing Long Swamp Road Landfill show that the leachate generated from the Long Swamp road landfill is relatively benign and contains very low concentration or no hazardous substances that pose a threat to degradation of the liner materials. This reflects the nature of waste received with little or no industrial waste owing to the lack of a heavy manufacturing/ industrial sector in Armidale, with primarily light industry, agriculture, retail, hospitality and maintenance operations being performed.

Concentrated leachate from the base of the unlined section of the Long Swamp Road landfill (i.e. prior to being collected in the leachate dam) was sampled four times in 2000 (CodyHart Environmental Consultants). Slight traces of BTEX compounds were detected, however BTEX did not exceed the Australian 95th percentile protection limit for Australian freshwater aquatic ecosystems (ANZECC & ARMCANZ, 2000). Four heavy metals were detected at greater than the guideline 95th percentile protection limit. The predominant leachate constituents were total nitrogen and total phosphorus, which are compounds derived from plant and vegetable matter. This concentrated leachate moves slowly to a leachate dam, where it is diluted by rainwater. Samples taken from the leachate dam showed no BTEX compounds were detected as they had been volatilised and biologically removed. Heavy metals were below the 95th percentile protection guidelines for freshwater aquatic ecosystems, and total nitrogen and total phosphorus levels were also reduced.

Leachate monitoring is currently being performed in leachate dams and in leachate discharge pipes leading to the dams. The May 2012 Environmental monitoring event for the Long Swamp road landfill (Appendix A), shows that the leachate at this facility in all monitoring locations, contains extremely low concentrations of Iron, Magnesium and Zinc, which pose no chemical threat to either HDPE or clay. Likewise, the leachate at all locations exhibits levels of Nitrates, typical of putrescible waste leachate, which are also of little to no chemical threat to the barrier system. Historical leachate testing from 2000 at monitoring location LL1 (leachate discharging in a drain from the centre of the southern side of the old landfill towards the LS3 dam) shows Volatile Organic Compounds detected in consistently very low levels, sufficient to allow the DECCW to approve a reduction in monitoring parameters to just BTEX.

Monitoring for BTEX from 2001 onwards shows that none of these compounds have been detected in the leachate generated. BTEX have also been tested for but have not been detected at leachate monitoring point LL2 (the leachate dam for the more recent extension to the landfill). It is noted that these leachate monitoring results were taken from what is now considered an old landfill which over its lifespan accepted wastes before Council started adopting its current waste segregation and diversion practices.

As the new proposed landfill will be operating from commissioning under the Council's current (and constantly updated and improved waste diversion and treatment regime, it is envisaged that the leachate quality will be of lower contaminant concentrations than that of the existing landfill. The leachate dam for the more recent landfill extension (LL2) would contain leachate more typical of current waste collection, segregation and landfilling practices. The benign nature of this leachate both diminishes any potential for leachate to degrade the liner materials and in the event of any leakage to the environment, poses little risk of harm.

2.2.3 Mechanics of the Leachate Management System

Whilst the NSW Environmental Guidelines: Solid Waste Landfills specifies the benchmark techniques for design of the leachate collection and conveyance systems (LCCS), the mechanism to achieve this is not explained in great detail. Benchmark Technique No. 2 has the primary environmental goal of "preventing pollution of water by leachate". It does this by specifying the basic techniques for collection and containment of leachate.

Leakage from landfill liners in general, occurs where there is build-up of leachate against the wall or base liner and the leachate exerts head or pressure on the liner, trying to force a path through it. If a minor puncture has occurred, the leachate may flow through the puncture under pressure.

The benchmark technique discusses the use of a 300mm drainage layer of gravel of a certain specification to allow free drainage of leachate from beneath the mass of waste to stop perched pockets of leachate forming adjacent to the leachate barrier system. If perched pockets of leachate form, this could potentially lead to an increased pressure head of leachate (i.e. pressure of leachate) against the liner, trying to force its way through.

As the cells in the proposed landfill are proposed to be built on a slope rather than flat ground, with a typical 1% minimum base slope (specified by the Guidelines) leachate would drain by gravity above the leachate barrier system with no surface ponding. As an additional measure, the gravel contains a herringbone pattern of slotted leachate collection and conveyance pipes, which affords better flow of leachate down the hillside and towards the leachate collection sumps. The slotted pipes are specified so as to not collapse under the weight of a full height of waste in the landfill and the gravel layer also acts as a barrier between the waste and the HDPE liner to prevent waste 'punching' through the liner. A 300mm layer of gravel, overlying a geotextile layer, on top of the HDPE inner liner, provides robust puncture protection. Typical details on the flow of leachate and a schematic of the LCCS are shown in Appendix B.

The leachate sump has been designed to collect this leachate as it flows away from the waste through the LCCS. The leachate surface level within this sump is monitored and the leachate is pumped out into the leachate pond when the leachate reaches 300mm above the liner level in the lowest part of the cell. This system is designed therefore to prevent pressure of leachate against the liner and effectively drain the landfill, such that there should be no available leachate to penetrate the liner (under pressure) throughout the landfill cells.

Leachate Pond

The leachate pond presented in the EA has been designed to fully contain the predicted leachate generated from the landfill during its operational life with no spill occurring. A daily water balance model was generated using recorded climatic data including evaporation and rainfall records for Armidale township. The model incorporated varied rainfall conditions due to potential climatic change effects. Based on results of the modelling, a predicted pond storage capacity of 12ML is required to manage the potential excess leachate that would be generated during operation of the landfill with no spill occurring.

Benchmark Technique No. 2 requires "*If the leachate dam or tanks are open at the top, they should generally be capable of accepting a 1 in 25 year, one day-duration storm event without overflowing*". The leachate for this site is proposed to be stored in an open dam, with a fairly large surface area to promote evaporation during dry periods. Rather than being capable of withstanding a 1 in 25 year Average Recurrence Interval (ARI) 1 day (24 hour) duration rainfall event without overflowing (as per the Solid Waste Landfill Guidelines), taking a conservative approach, Council proposes that the dam be designed to contain a 1 in 100 ARI, 1 day duration rainfall event (equivalent to 150mm total rainfall over a 1 day period). The design allows for the leachate pond to accept a 1 in 100 year, 1 day duration storm event on top of the full operational level of the pond without spilling. This design, which is more conservative than the benchmark technique, is proposed in recognition of the Site being located close to the Gara River and within the catchment of the Oxley Wild Rivers National Park and World Heritage Area. This approach has been accepted by the EPA and reflected in the draft conditions of consent for the landfill (DP&I, 2012). Following the PAC meeting in Armidale in May 2012, Council commissioned AECOM to undertake further conceptual design for the dam to accommodate an even more conservative approach of a design rainfall event for a longer duration of 3 to 5 days. The 1 in100 year ARI, 3 day total rainfall depth is equivalent to 225mm over the 3 day period.

A review of the current BOM rainfall records for Armidale (1858 to present) was undertaken to assess actual daily recorded rainfall for the area. The highest recorded 3 day and 5 day event rainfall totals were 270mm and 274mm respectively which occurred in between the 25th to 29th August 1949. The next highest 3 day total rainfall event of 172mm was recorded in January 1964. For comparison purposes, the recent Armidale floods in November 2011 recorded 170mm between 24th to 27th November. Based on this assessment the 100 year ARI, 3 day rainfall event (equivalent to 225mm total rainfall) is a design flood event that has been exceeded only once in the 155 years of the Armidale rainfall record. Therefore the 100 year ARI, 3 day rainfall event is deemed appropriate as the design flood storage event for the leachate pond. This would cater for the pond at the maximum storage level of leachate (12ML capacity) plus an additional flood storage to contain this design rainfall event without spill occurring.

This design criteria is considered very conservative and addresses public concerns regarding the capacity of the pond and the potential for it to overflow in extreme rainfall events. Council is committed to ensuring that environmental risks are minimised, and has reconsidered the leachate pond design.

The leachate pond capacity (as presented in the EA) with a freeboard of 300mm to contain the 1 in 100 ARI, 1 day duration rainfall event gave a total storage capacity of 13.9ML. The pond will now have an increased freeboard of 400mm to contain the 100 year ARI, 3 day rainfall event producing a total storage capacity of 14.6ML.

In the unlikely event of overflow from the leachate pond, all overflows would be fully contained in the downstream sedimentation basin, and then ultimately in the dry basin (itself an additional control over and above the requirements of the Solid Waste Landfill Guidelines (1996)), and therefore minimise potential risk of leachate release to the downstream environment. For consistency, the design of the dry basin has also now been updated and has been designed to fully contain the 1 in100 year ARI, 3 day duration storm event from the upslope disturbed landfill area.

2.2.4 Management of Stormwater on Site

The stormwater management system on Site is comprised of the following main components:

- Diversion system
- Sedimentation basin
- Dry basin

Diversion System

The proposed landfill Site is located within the upper reaches of an existing valley with a total catchment area of approximately 275 hectares. Surface runoff from this catchment flows to the north (down-gradient) towards an existing ephemeral creek. It is noted that surface runoff from this catchment only occurs during rainfall events but would need to be diverted around the proposed landfill site. As a result, the landfill has been specifically sited in the upper reaches of this catchment to minimise diversion works. In this case, the landfill cells being on a hillside and as high in the runoff catchment as possible, assists with minimising the on flow of water which could potentially become contaminated by landfilling activities.

Diversion drains will be constructed around the perimeter of the Site to divert "clean" surface runoff water around the Site and will drain to the north and discharge into the downstream creek system. These diversion drains will be designed to convey the 1 in 100 year ARI peak flow event from the upslope catchments. The adopted 100 year ARI event is recommended in Australian Rainfall and Runoff (ARR) to divert or convey waterways associated with environmentally sensitive sites.

The diversion drains will incorporate erosion and sediment control works along the drain and at the outlet to the existing creek in accordance with Managing Urban Stormwater Soils and Construction – The Blue Book (Landcom, 2004).

Sedimentation Basin

A sedimentation basin is to be located downstream of the landfill to capture all water runoff (excluding any leachate and leachate contaminated water) from all disturbed areas of soil during operation, but not areas where water has run over or infiltrated waste. Collected water within the basin may contain potential contaminants such as sediment, oils, greases and litter from earthworks and maintenance activities. The stored stormwater will be treated to an approved level and subsequently released to the downstream waterway system in accordance with the proposed Water and Leachate Management Plan and the site Environmental Protection Licence.

The sedimentation basin, as presented in the EA, was designed with a capacity of 2,850m³ to contain dirty water runoff from the disturbed catchment from the 90th percentile 5-day rainfall event for the Armidale region in accordance with the Managing Urban Stormwater Soils and Construction (Blue Book) guidelines. In response to the PAC's request that Council further consider the adequacy of basin sizing in larger rainfall events, Council commissioned further assessment of the performance of the sedimentation basin to fully contain the 95th percentile 5-day rainfall. This adopted design criteria is recommended in the Blue Book guideline for environmental sensitive sites. The sedimentation basin (as presented in the EA) had a minimum capacity of 2,850m³, with the basin now having a total minimum capacity of 5,250m³ (based on the Blue Book requirements) which includes an additional one year sediment storage volume from the upslope disturbed areas.

In the unlikely event of a spill from the sedimentation basin, all overflows would be fully contained in the downstream dry basin therefore minimising potential risk of untreated stormwater release to the downstream environment.

Dry Basin

The dry basin is to be located in the north-eastern corner (at the most downstream area) of the Site. The objective of the dry basin is to collect and fully contain any potential overflows from the upslope sedimentation basin, including any (unlikely) emergency overflows from the upslope leachate pond. The inclusion of the dry basin

provides an extra and conservative protection measure to capture any overflows during high rainfall events and reduces the risk of any uncontrolled off-site releases during operation.

The dry basin, as presented in the EA, was designed with the capacity to contain all overflows up to the 1 in 100 year ARI, 1 day (24 hour) duration rainfall event from the sedimentation basin and leachate pond upslope catchments. This adopted design criteria, accepted by the EPA, was recommended to minimise potential risk of leachate or untreated stormwater release to the downstream environment. In response to the PAC's request that Council further consider the adequacy of the pond sizing in larger storm events, Council commissioned further assessment of the performance of the dry basin under more extreme storm events. As specified for the leachate pond, a design flood freeboard for a 1 in 100 year ARI 3 day duration rainfall event was also adopted for the dry basin. This conservative design criteria has been considered by Council to address public concerns regarding the capacity of the basin and the potential for it to overflow.

To contain the runoff from the upslope disturbed catchment from this design rainfall event, a minimum flood storage capacity of 30ML is required (compared to 19ML originally proposed for a 1 in 100 year 1 day event). The basin would be actively and effectively managed to ensure this storage volume is maintained during the landfill operation so that in the unlikely event there are overflows from the sedimentation basin or in the unlikely emergency scenario from the leachate pond, flows can be completely contained within the dry basin with no release of diluted leachate to the environment. The design of the dry basin also conservatively assumes that no pump-out is undertaken during the 3-day rainfall period.

2.2.5 Flood Levels of the Unnamed Creek Which Flows to the Gara River

The proposed landfill Site is located within the upper reaches of the catchment and is sited between the Gara River to the east and Commissioners Waters River to the west. Surface runoff from the Site flows to the north towards an ephemeral creek, which flows east and ultimately discharges into the Gara River, approximately 1km downstream of the Site.

The flood assessment undertaken for the project was carried out in accordance with the procedures outlined in ARR (2007) which is used as the guideline for the analysis and prediction of flood events in Australia for design purposes. ARR was used to predict the 1 in 100 year ARI storm event from the existing creek catchment at a point opposite the Site. The 1 in 100 year ARI peak flow of approximately 40m³/s was predicted for the creek adjacent to the north-eastern boundary of the Site.

The flood assessment results concluded that the predicted 1 in 100 year ARI creek flood level would extend to approximately 6 to 7m below the north-eastern boundary of the Site. As a result the landfill and the associated water management infrastructure (i.e. leachate pond, sedimentation basin and dry basin) are located well outside the extent of the predicted 1 in 100 year ARI creek floodplain. The creek flood waters also pose no risk of overflowing into the proposed leachate or stormwater storage systems.

It is noted that the Site access road would need to cross the creek floodplain and may therefore be affected by flooding during high rainfall events. Road creek crossings will incorporate suitably designed pipe culverts to allow flows up to the 1 in 100 year ARI to pass through and/or overtop the roadway in a safe manner. During flood events, waste transport to the Site could be postponed until such time that the flooding recedes and safe access to the Site is possible. Postponement of waste delivery is possible as waste could be held at the Long Swamp Road Waste Transfer Station where there is adequate capacity and safeguards to temporarily store the waste.

2.2.6 Mitigation and Management in the Event of Failure

Overflow of Dams

The leachate pond has been designed to accommodate the maximum storage level of leachate (12ML capacity) with a flood freeboard of 400mm to fully contain the 100 year ARI, 3 day rainfall without overflowing.

In the unlikely event of emergency overflow from the leachate pond, all overflows will be fully contained in the downstream sedimentation basin, and then ultimately in the dry basin. The inclusion of the dry basin, in lieu of DoPs draft approval consent of a bund of 110% capacity of the leachate dam, provides an extra protection measure to capture any overflows during high rainfall events and reduces the risk of uncontrolled off-site releases to the downstream environment during landfill operation. The dry basin has been sized to allow for containment of a breach of the leachate dam in a similar manner to the DOP draft approval bund would and therefore replace the bund, which is not a practical solution for a leachate dam. The dry basin has been designed to contain the 1 in 100 year ARI, 3 day duration storm event from the maximum upslope disturbed landfill area without spill occurring. The dry basin would be effectively managed to ensure this storage volume is maintained during the

landfill operation in the infrequent scenario event when an overflow is occurring from either the sedimentation basin or the leachate pond.

The system of capturing runoff from all disturbed areas of the landfill and the proposed contingency measures are considered very conservative and have been modelled to address public concerns regarding the capacity of the pond and the potential for it to overflow.

In the event of the leachate pond overtopping during a 1 in100 year ARI, 3 day duration storm event, diluted leachate would discharge into the dry basin. If the dry basin is also at maximum capacity storing stormwater drained from the catchment surrounding the landfill, in extreme rainfall events, further stormwater containing diluted leachate may ultimately be discharged from the dry basin. Discharged stormwater may travel to the unnamed creek and ultimately into the Gara River system. As discussed previously the current levels of total nitrogen recorded in the leachate at the Long swamp Rd landfill range between 41.8 mg/L and 162.0 mg/L. Should the leachate pond overflow, leachate would enter stormwater contained within the dry basin. Should the dry basin overflow the concentrations of total nitrogen in any overflow, after dilution with stormwater from the dry basin, would not exceed the 95 percent species protection level as specified in Table 3.4.1 of the ANZECC Guidelines (2000) for freshwater aquatic species.

Failure of Leachate Barrier System

Groundwater Monitoring

The number of groundwater monitoring bores chosen to assess a potential source of groundwater impact is selected using a number of factors, the predominant one being the level of 'risk' to the potentially receiving environment. In this instance a number of factors combine to reduce the risk to low levels. The landfill has been designed using a multiple barrier system approach including water management, leachate management/collection and treatment and also clay and HDPE liners. Should, upon failure of all of these controls, leachate migrate into the receiving environment, then the geology on which the Site sits is complex and not conducive to rapid or sustained contaminant migration. There is a potentially considerable depth of unsaturated zone beneath the landfill and the presence of the landfill, acting as an impermeable cap over the ground, effectively reduces rainfall infiltration and reduces the 'flushing' effect that might wash leachate downwards to the water table. Once leachate reaches the water table, the very low measured permeability of the rock means that contaminant migration would be extremely slow. Reduced existing groundwater quality is not unusual in areas where groundwater has a very high residence time and in agricultural areas where animal excreta can lead to ammoniacal and bacteriological contamination and agro-chemicals lead to nutrient and pesticide type contamination.

Therefore, the groundwater in this area could be considered to have a low sensitivity and limited capacity for contaminant migration. As a result Council considers that a low number of groundwater monitoring wells would be warranted in this instance. Once monitoring wells are installed baseline conditions will be established for existing groundwater quality prior to construction of the landfill and to enable effective monitoring following commissioning.

Remediation Options if in the Unlikely Event if Contamination is Detected During Monitoring

Ammonia contamination of groundwater is difficult to remediate and very difficult to remediate at great depth *insitu*. In the first instance should significant impacts be detected in groundwater then the following actions may apply:

- 1) Install further monitoring wells in the area where the impact was detected, to establish the extent of the issue, and down gradient of the impact to determine whether the contamination is migrating.
- 2) Once the impacts are known and if found to be significant in concentration and migration potential then there are a number of potential options groundwater and discharge to the landfills leachate treatment system. It is likely that groundwater volumes would be low and that this would not over-burden the system. Other in-situ technologies such as enhanced bioremediation could be trialled whilst the groundwater 'pump and treat' system was underway.

Statutory Obligations and Reporting Requirements with Respect to Contaminated Land

Should contamination of the groundwater occur there are a number of requirements to report contamination of the environment to the local authority and or the EPA.

12

Section 60 of the Contaminated Land Management Act 1997 (CLM) requires a 'person whose activities have contaminated land or a landowner whose land has been contaminated is required to notify the EPA when they become aware of the contamination. The requirements for reporting groundwater contamination comprise:

"For the purposes of s. 60 (3) of the CLM Act, notification of actual or foreseeable contamination of groundwater is required if:

- the contaminant has entered, or will foreseeably enter, groundwater

AND

- the concentration of the contaminant in the groundwater is, or will foreseeably be, above the concentration specified for that contaminant in Column 1 of Appendix A

AND

- the concentration of the contaminant in the groundwater is will foreseeably continue to remain above the specified concentration (EPA, 2009).

Should the above conditions be met, the Site would require reporting to the EPA and the EPA becomes responsible for regulating the site under the CLM Act, if necessary.

The Protection of the Environment Operations Act 1997 also compels a polluter to report 'pollution incidents' although this legislation is more tailored toward releases/spillages.

2.3 Regional Landfill Facility

This section of the response addresses the role of the proposed landfill being considered in a regional context.

The Armidale Dumaresq Council area generates by far the largest waste quantity within the immediately surrounding areas including Guyra, Walcha and Uralla Councils. Whilst these Councils have not either confirmed or denied their participation in disposal of waste at a regional facility, they have provided commitment letters during the consultation process, as provided in Appendix C.

Guyra Council has been depositing waste at the Armidale landfill since late 2002, without a formal contract but with an agreement to take Guyra Council's waste as required. Recently however Guyra Council have chosen to dispose of waste at a small rural landfill at Tingha. Council believes this to be a short term cost saving exercise and that in the long term, waste from Guyra Council will again be disposed of at the Armidale facility. This waste stream has typically been mixed municipal solid waste, not suitable for sorting and is disposed of directly to landfill.

Annual tonnages from 2005 received from Guyra Council, and more recently from Guyra Tomato Farm, are shown in Table 1.

Period	Guyra Council (tonne/annum)	Guyra Tomato Farm (tonne/annum)
2005/06	457.9	-
2006/07	465.9	-
2007/08	489.3	-
2008/09	486.3	-
2009/10	480.5	-
2010/11	511.2	677.2
2011/2012	279.4^	359.9*

Table 1 Municipal solid waste volumes fr	rom Guyra Council and Guyra Tomato Farm
--	---

^ July 2011 to January 2012 inclusive

* July 2011 to May 2012 inclusive

Anticipated Council reforms over the next few years or decades, may lead to the amalgamation of regional and rural Councils. In this instance, the proposed landfill would be ideally suited, if capacity is available, as the Region's facility.

2.4 Strategic Waste Limit – Two Cell Approval

2.4.1 Environmental Approval

The Director General's Environmental Assessment Report recommended that approval be granted to construct and operate two of the proposed five cells. In making the recommendation, it was noted that it is '*not intended as an environmental limit, but a strategic waste limit that will ensure the Council continue to update its waste recovery planning in line with the NSW waste recovery targets*' (Director General's Environmental Assessment Report 2012, page 3).

However, a number of proposed conditions of consent require Council to design the landfill and ancillary infrastructure to accommodate outputs from five cells, but with approval to only operate two cells subject to Council satisfactorily addressing Clause 123(1)(a) of SEPP (Infrastructure) 2007 which states:

"In determining a development application for development for the purpose of the construction, operation or maintenance of a landfill for the disposal of waste, including putrescible waste, the consent authority must take the following matters into consideration:

(a) whether there is a suitable level of recovery of waste, such as by using alternative waste treatment or the composting of food and garden waste, so that the amount of waste is minimised before it is placed in the landfill"

The design of the ancillary infrastructure to accommodate five cells but with approval for only two cells presents a significant cost impost to Council, particularly in the context of the elements of uncertainty that this imposes on Council, relating to applications for further modifications for landfill cells in the future and under future planning regimes.

2.4.2 Council's Resource Recovery Performance

The reasoning that the NSW Department of Planning has provided for the two cell proposed approval rather than 5 cells, lies mainly around the assumption that Council will have little initiative to improve its resource recovery performance, should a long term landfill solution be approved.

Council has demonstrated its commitment to resource recovery and the application of new technologies to direct waste away from landfill including:

- targets and timeframes for recovery of waste using alternative waste treatment (AWT)
- composting of food and garden waste to minimise waste to landfill.

Council do not agree with the Director General's Environmental Assessment Report comment that if a five cell development was permitted, that there will be no driver to update its waste recovery planning. The current landfill is operating to best Regional/Rural landfill practices, which was acknowledged in the Director General's Environmental Assessment report which stated that "Council's Recovery performance is better than the State Average". Council's waste diversion practices are already getting close to achieving the 2014 WARR targets. Council has further increased their waste diversion activities since the submission of the EA and the inspection of their existing activities by the DoP's independent waste advisor, including the commencement of the domestic organics (garden and food wastes) service. Examples of the practices Council are using are included within the section of this response dealing with minimisation of leachate quantity and contaminant concentration (Section 2.2.2). This demonstrates Council's full commitment to maximising waste diversion and to meeting their intent of essentially operating the new landfill as a non-putrescible landfill.

The new regional landfill would be operated to the same, if not better, standards to achieve the best outcome for the community and the environment.

2.4.3 Economic Analysis of Approval Scenarios

The design and associated costing presented in the EA and submissions report (base case) proposes that the first two landfill cells, water and leachate management infrastructure (i.e. barrier system, diversion drains, leachate and sedimentation ponds and dry basin) and ancillary works (access road, fencing, amenities etc.) are constructed at the commencement of the project. The water and leachate management infrastructure supporting

the two cells would be built to final design size (i.e. sufficient capacity to accommodate containment and storage requirements for five landfill cells) in Year 1. The proposed staged approval of the landfill cells would mean that water and leachate management infrastructure to support two cells only would be constructed in Year 1, with further construction required in future years to augment/upgrade the infrastructure to support additional landfill cells as they are approved (two cell scenario).

An economic analysis was undertaken to compare the present values of the costs of the options over a 60 year period. In summary of the above, the options were:

- Option 1: base case scenario where all infrastructure required for a five cell landfill is constructed in 2013 and construction of five cells undertaken progressively over a 60 year period
- Option 2: two cell scenario where infrastructure for two cells only is constructed in 2013 along with construction of two cells over a 20 year period. Further construction (such as expanded ponds, pumps and drains), would be subject to a new development application, associated EA and design. If this approval was approved, then construction of the expanded infrastructure is undertaken in 2033. An allowance for obtaining new approvals, based upon Council expenditure to date, appropriately indexed over time, has been included in the cost estimate in Table 2

The key inputs to the analysis were:

- Schedules of capital cost, shown in Table 2 below, which assumes cells are built every 10 years with the first cell being built in 2013 for both options
- The cost of future environmental approvals in the case of Option 2 is assumed to be \$2 million, and is included in the 2033 cost figures in Table 2
- Assumptions regarding inflation for capital works, operating costs and consumer prices, in order to express costs in real terms
- Assumptions with regard to the discount rate be used to discount all future costs to 2012

As shown in Table 2, the undiscounted costs show that Option 2 costs \$2.147 million more than Option 1. However, investment appraisal practice recognises that a cost of (say) \$1 million in (say) 30 years' time is less than the same cost now, because only \$184,250 would need to be invested now to be worth \$1 million in 25 years' time. Put another way, the present value of \$1 million that will be spent in 25 years' time is \$184,250. In the analysis that follows, all future costs are discounted to a base year. The present value of a cost that will occur in year 20 is given by the following formula:

Present value of cost occurring in year 20 = cost / (1 + discount)²⁰

This approach is standard in appraisal and has been applied consistently to all future streams of costs. The effect of discounting is to reduce the present value of the difference in cost between Option 1 and Option 2, because Option 2 incurs some of its costs further in the future, and which are therefore discounted more heavily than costs arising closer to the present time.

A further sensitivity test involved changing the assumption of a simple 15% contingency sum at all points in the project life. It is likely that costs in 20 years' time are subject to more uncertainty and therefore arguably this should be allowed for in the appraisal. One approach used in appraisal is to allow for optimism bias (OB) with respect to future costs with costs in the near term subject to a lower level of OB than costs at a later date. This approach has been adopted here as a sensitivity test by increasing the contingency factor over time. It is noted that this is a less sophisticated analysis than a quantitative risk assessment (QRA) type approach. However, a full QRA is arguably not required here because, as is shown below, there is no reasonable probability of cost outcomes which would alter the rankings of the options.

Table 2 Schedule of capital costs

	Option 1	Option 2
2013	\$9,571,746	\$8,684,153
2023	\$2,811,350	\$2,811,350
2033	\$2,811,350	\$5,845,618
2043	\$2,811,350	\$2,811,350
2053	\$2,811,350	\$2,811,350
Total (undiscounted)	\$20,817,146	\$22,963,821

The core assumptions for the analysis were as shown in Table 3.

Table 3 Assumptions for present value analysis

Factor	Assumption	Notes
Project life	60 years	This is longer than the normal 30 year project life: however, as the costs are known for the whole period this is preferable to the alternative of estimating a residual value at year 30
Discount rate	7% in real terms	This is a standard rate used in appraisals: a sensitivity test was undertaken using a 4% rate
Capital (capex) cost inflation	1 % over CPI inflation	Based on other current capital project cost analysis: a higher rate will favour immediate investment
Operating cost inflation	0.5% below CPI inflation	This was included for completeness but has no impact on the ranking of the options
CPI inflation	2.5 %	The actual rate is immaterial, as it is the relationship to capital cost inflation that affects option ranking

The outputs of the present value analysis and three sensitivity tests are shown in Table 4. This assumes a simple 15% contingency allowance in each year.

Table 4 Present value analysis – simple contingency analysis

Assumptions	Option 1	Option 2
Core assumptions	\$25,426,662	\$25,496,729
4% discount rate	\$35,124,335	\$36,010,864
Capex inflation 2.5% over CPI	\$26,751,062	\$27,171,709
4% discount rate and capex inflation 2.5% over CPI	\$37,796,692	\$39,331,234

This reveals that the present value of the costs of Option 1 is always slightly less expensive. Based on the assumptions used for the analysis the cost margin is very small, at most \$1.534 million, this being the difference between \$39.331 million and \$37.797 million in Table 4. As discussed above, the effect of discounting is to narrow the cost gap between Option 1 and Option 2 because Option 2 incurs some of its costs further into the future.

Table 5 shows the outcome of the additional sensitivity test, where allowance is made for additional OB in future costs, that is allowing for the likelihood that future costs will be under-estimated to a greater degree than costs in the immediate future. The sensitivity test uses an OB factor of 15% in 2013, with this factor increasing by 5% every 10 years.

Table 5	Present value analysis - increasing contingency optimum bias analysis
Table 5	Fresent value analysis - increasing contingency optimum bias analysis

Assumptions	Option 1	Option 2
Core assumptions	\$25,696,096	\$25,852,048
4% discount rate (sensitivity text)	\$35,695,785	\$36,738,367
Capex inflation 2.5% over CPI	\$27,140,679	\$27,677,508
4% discount rate and capex inflation 2.5% over CPI	\$38,662,275	\$40,407,924

The analysis summarised in both Table 4 and Table 5 show that Option 1 is superior to Option 2 on cost grounds for all of the assumptions made and for all of the sensitivity tests shown.

The above analysis shows that the rankings are most sensitive to the discount rate. Accordingly further analysis was undertaken to identify whether the rankings change at higher discount rates. This identified that Option 2 is marginally superior if the appraisal discount rate is increased to 8% and all other core assumptions hold. However, a higher rate of inflation of capital expenditure (capex) offsets the effect of a higher discount rate. Table 6 shows the values of capex inflation at which the present values of the cost streams are equal when using alternative discount rates. These are referred to as switch points: for any given discount rate, a lower capex inflation rate would make Option 2 the lower cost option, while a higher capex inflation rate would make Option 1 the lower cost option. It should be noted that the capex inflation rates shown here are the actual rates, not the differential between capex and CPI inflation rates. For the analysis the CPI rate is maintained at 2.5% per annum. It should also be noted that here the contingency allowance is retained at 15% at all times. An increasing contingency rate would reduce the switch value of capex inflation. For example, in the case of an 8% discount rate, the switch rate for the capex inflation rate would reduce from 4.10% to 3.69%.

Table 6 Switch points for discount rate and capex inflation

Discount rate	Annual rate of inflation of capex, below which Option 2 is the lower cost option	
8%	4.10%	
9%	5.07%	
10%	6.03%	
11%	6.99%	

Work for government on other major projects has indicated that capex inflation at a rate of 1% over the CPI inflation rate is reasonable, and consistent with discount rates in the range between 4% and 7%. Higher rates of capex inflation are possible, but in reality these are likely to move in line with CPI, taking a long term view of rate movements. Higher rates of CPI would tend to be associated with higher discount rates, but a combination of a high discount rate above 7.37% and a differential between capex and CPI inflation of 1% would make Option 2 the lower cost option.

It emerges therefore that the core assumptions describe a situation that is relatively close to a point at which one option would be preferred over the other. However, the future outcomes on capital costs are uncertain as is the possibility that permission for an additional three cells might not be forthcoming in 2033. The choice of options should therefore depend not only on the estimates of the present values of costs but on the degree of uncertainty associated with each option. When looked at in this way, Option 1 can be seen to represent the superior alternative as:

- Option 1 avoids cost escalation risks on the additional works required in 2033, which were analysed using an adjusted contingency (OB) factor
- Option 1 avoids the uncertainty surrounding future permissions for the remaining 3 cells, which is a potential risk under option 2.

Therefore, under reasonable assumptions Option 1 has lower costs but importantly offers a lower risk profile. Further, even if Option 1 were more expensive than Option 2 in the core appraisal, the fact that Option 1 buys the option of developing the additional three cells in the future would increase its true value. This real option value has not been calculated here because Option 1 is less expensive on the basis of reasonable assumptions.

2.4.4 Alternative Long Term Solution

It has been noted in the Public PAC submissions that Council has an alternative available, which is to long-haul waste to Tamworth for disposal at its existing landfill facility. It must be emphasised, that this is not a long term waste management alternative for Council, Council only has this agreement in place as a contingency for there being no other viable options established by the time that the Long Swamp facility is full. This agreement with Tamworth Council specifies a maximum of 2 years' disposal (30,000 tonnes). As such it does not replace Councils' proposed strategy of a long term five cell landfill.

2.5 Site Selection

2.5.1 Introduction

Various submissions to the PAC addressed the site selection process for the proposed Armidale Regional Landfill, as land on which the proposed landfill will be sited is currently owned by a former Councillor and one of the real estate agents commissioned by Council during the site selection process. Council has maintained records of the site selection process including reports, correspondence with real estate agents, newspaper advertisements and minutes and resolutions of Council Meetings, which demonstrate that the site selection process was comprehensive, rigorous and involved consideration by multiple consultants, state government departments, Council's advisory committees and by the elected Councillors. Council also has maintained records and minutes of meetings whereby the former Councillor had removed himself from proceedings, if and when the future landfill facility was discussed.

This section presents a summary of the key steps in the site selection process as well as the extensive consultation and investigation that was undertaken to identify the proposed Site on Waterfall Way.

2.5.2 Preliminary Investigations

The site selection process commenced in the mid-1990s and during initial investigations over 50 alternative sites were considered for the proposed landfill facility, including sites within and surrounding the Armidale-Dumaresq Local Government Area.

In 1996, a Preliminary Regional Landfill Siting Study prepared by Brian J Mackney & Associates Pty Ltd Further considered the proposed sites and eliminated a number from consideration. The report also identified key selection criteria to be applied to enable focus to be placed on areas of maximum potential.

Between 1996 and 1998, real estate agents were invited to identify appropriate sites that were available for purchase (refer to Appendix D). Advertisements were also placed in local and national newspapers calling for the public to identify suitable land for the regional landfill (refer to Appendix E). At least three real estate agents proposed several sites, which were considered as part of the site selection process, however other site options were also assessed in addition to those identified by the real estate agents. Seven sites were identified as being consistent with the recommended geological criteria and hence were noted as potentially suitable landfill sites.

In 2002, a Landfill Siting Study by the NSW Department of Public Works identified two additional sites. Based on the study, a property called "Ballantrae" (site 9) was recommended as the preferred site.

It is noted that the site selection work undertaken by Brian Mackney and Associates was "peer reviewed" by the NSW Department of Public Works (which subsequently changed its' name to NSW Department of Commerce during the review period).

2.5.3 Advisory Committees

In 1998, a Joint Councils Regional Landfill Advisory Committee was formed between (the former) Armidale City and Dumaresq Shire Councils, with support from Uralla Shire Council. The Committee considered and eventually decided against a number of landfill site options, based on the preliminary assessment studies conducted up to 1998.

The amalgamation of Armidale City and Dumaresq Shire Councils in 2001 resulted in the formation of Armidale Dumaresq Council and the disbanding of the Joint Councils Regional Landfill Advisory Committee.

In 2003, following objections and debate on the selection of Ballantrae as the preferred site, Council endorsed the formation of the Armidale Dumaresq Landfill Community Consultative Committee (ADLCCC). The Committee was formed to consider the issues relevant to the siting of a landfill as well as other waste issues. The Committee contributed to the development of selection criteria and weightings for the site evaluation process that were then used within a subsequent report titled *Regional Landfill Siting Study* prepared by Maunsell Australia in 2004 (refer to Section 2.7.5 of the report).

Membership of the ADLCCC comprised:

- 3 Council representatives
- 6 representatives (2 per site) from the 3 short listed landfill sites under investigation: sites 7, 8 and 9
- 1 independent chair
- 5 members of the public

Two site owners were nominated as representatives for short listed landfill sites: Mr Derry Crisp was appointed as a representative for site 7 (the current proposed site), however the other site owner (site 9) nominated for membership was not appointed to the committee due to inadequate awareness of waste management issues. Representatives for sites 8 and 9 were close neighbours of those sites.

Several members of the Gara Valley Environment Preservation Association (GVEPA) were members of the ADLCCC including:

- Mr David Laird representing site 7
- Mr Les Davis and Mr John Holthouse representing site 9
- Mr Dan Calvert (Mining Vale Road) which is the access road to site 9
- Ms J Grainger

All these persons were involved in the ADLCCC's activities including adopting of selection criteria, weightings and the final selection of the preferred site.

The potential conflict of interest or pecuniary interest associated with the appointment of Mr Crisp to the ADLCCC was raised by Mr Les Davis, President of the GVEPA, in a letter to Council's General Manager dated 28 April 2003. To quote from the General Manager's reply dated 30 April 2003: "*The issue of Mr Crisp's appointment and the question of conflict or pecuniary interest also concerned myself. However, upon enquiry with both ICAC and the Department of Local Government for advice, it would appear that he has the right to sit on a Community Advisory Committee, as it is only formulating recommendations for Council's decision. It was advised that Mr Crisp should declare his interest at the start of the meetings and he will be encouraged to do this." Mr Crisp's interest as an owner of part of the land involved in site 7 was declared and understood from the start of the process, similar to all others on the committee that had interest as owners or close neighbours of a site under consideration. Note that Mr Les Davis President of the GVEPA and a member of ADLCCC representing site 9, was a recent past owner of the proposed site 9 land and owned land in its immediate vicinity.*

2.5.4 Selection of a Preferred Site

Site evaluation included consideration of environmental impacts, proximity to sensitive receivers and the likely magnitude of impacts at each site. The principles outlined in the document Landfilling – EIS Guidelines (DUAP, 1996) were used to develop appropriate criteria and weightings for the assessment of the potential landfill sites identified from the preliminary investigations.

The NSW EPA Environmental Guidelines: Solid Waste Landfills (1996) adopts criteria outlined in the Landfilling – EIS Guidelines, for locating landfill facilities within appropriate areas. Areas of high environmental value to be avoided include:

- Areas reserved or dedicated in the National Parks and Wildlife Act 1974 (NP&W Act), such as:
 - National Parks
 - Nature reserves
 - Historic sites
 - Areas covered by a Conservation Agreement

- Other areas protected under this Act
- World Heritage Areas
- Wilderness Areas identified or declared under the Wilderness Act 1987
- Items included on the Register of National Estate
- Marine Reserves, Aquatic Reserves, Marine National Parks or Nature Reserves
- Sites within 250 m of any of the above areas

This guideline, which specifically notes World Heritage Areas and National Parks was referred to during the site selection process and the proposed site was not ruled out as it was located outside of these areas.

As part of the *Regional Landfill Siting Study* undertaken by (Maunsell (now AECOM) in 2004, Maunsell drafted a weighting system based on professional judgement, technical knowledge and extensive landfill experience. Maunsell presented the draft weightings to the ADLCCC to get local stakeholder input to the weighting process. The weightings were adjusted based on comments from the ADLCCC and the final weightings were agreed with Council and ADLCCC. The final weightings allowed for a more robust evaluation of the sites.

Based on the review of the process up to 2004, application of the selection criteria and weightings and a comparison to other sites evaluated, site 7 (Sherraloy, the proposed site) replaced the first preferred site, Ballantrae (site 9), as the preferred site. Site 7 was recommended to be the most suitable site for a future landfill due to the following advantages:

- The site was not included in any areas deemed sensitive or unsuitable by Environmental Guidelines
- The site was located within a preferable geological area
- Underlying metasediments should provide an adequate barrier to groundwater movement through the site
- Site topography and local geology appears to lend itself well to long term control and monitoring of leachate
- Views are generally protected from surrounding land towards the west, south and east by existing vegetation, with partially inhibited views towards the north
- Use as a landfill should not impact on surrounding land use provided the landfill is managed correctly and an adequate buffer distances are maintained
- Relatively low bush fire hazard exists as the area is largely clear of vegetation
- Haulage costs were amongst the lowest of the sites evaluated due to shorter distances to areas serviced (taking into account average haulage levels) and good quality road access

In 2004, Council and ADLCCC adopted a recommendation of site 7 as the preferred site for the proposed landfill. The ADLCCC was then disbanded, as its primary purpose was to conduct and conclude the site selection process. Site 7 was the subject site for the EA prepared by AECOM.

2.6 Biodiversity and Amenity

2.6.1 Biodiversity

The proposal includes a biodiversity offset of approximately 61 hectares of land to account for approximately 20 hectares of vegetation being cleared for the proposal. The biodiversity area will be contained entirely within the Site extent to enable direct and intensive management of the offset and to minimise the disturbance and relocation distance for some older and hollow-bearing trees and associated habitats. The offset is to comprise 40 hectares of stringybark woodland and 21 hectares of grassland covered under the Biodiversity Offset Management Plan for the Site, prepared in accordance with the recommendations of the DECCW (now EPA) principles for biodiversity offsetting.

The proposed compensatory offset area would surround the proposed landfill footprint and connect to the Travelling Stock Route. The development of a vegetation buffer along this corridor would improve the condition of vegetation at the Site through increased connectivity to the Gara Remnant Subregional Corridor. Rehabilitation of the site would also provide connectivity between remnant woodlands within the development footprint.

The implementation of these stringent controls, the potential eradication of introduced species from the site and the inclusion of approximately 61 hectares of offset compensatory habitat would provide adequate mitigation to

ensure there would be no net loss of biodiversity. With the proposed mitigation measures and Biodiversity Offset Management Plan, it is concluded that the proposal would have no long term significant impacts on biodiversity.

To mitigate ongoing impacts to biodiversity during operation of the landfill, a LEMP will include the following management sub plans:

- Native Fauna Management Plan
- Fire Management Plan
- Pest Management Plan
- Disease Monitoring Protocol

2.6.2 Visual

Visual impacts associated with operation of the proposed landfill facility would result from construction of the landfill, landfilling activities and rehabilitation of the Site. The final landform will sit naturally between two ridges minimising visual impacts to surrounding receivers. In addition, the proposed landfill is not visible from any neighbouring residences, with limited visibility from traffic passing along Waterfall Way for a length of approximately 500m. Progressive landscaping and revegetation of each completed landfill cell would mitigate visual impacts during operation.

2.6.3 Noise

Modelling was completed as part of the EA to establish noise impacts during both construction and operation of the landfill facility. An assessment based on the 'worst-case scenario' concluded that with the implementation of proposed mitigation measures, noise levels generated by the proposed landfill facility would generally comply with environmental criteria. Traffic generated by the development would increase traffic noise levels by less than 2dB (A) and would comply with road traffic noise criteria. A Construction Noise Management Plan would be implemented during the construction phase and would include a noise monitoring program, reasonable and feasible noise mitigation measures and a complaint management strategy. Appropriate noise mitigation measures as outlined in the EA such as equipment noise attenuation would be applied during operation of the landfill.

2.6.4 Other Amenity Issues

Other amenity issues associated with landfill facilities such as litter, odour and vermin will be managed in accordance with mitigations measures outlined in the EA and the LEMP. Based on current landfill operations these impacts are limited. Control measures to be applied at the proposed landfill would provide a high level of management with minimal residual impact.

3.0 Conclusion

Concerns raised during the PAC meeting on 25 May 2012 with Council have been addressed as follows:

- Potential for groundwater contamination by leachate the proposed leachate management system has been designed using a precautionary approach, has been designed to meet the worst case of "poor hydrological conditions" and exceeds the requirements for design of a leachate barrier stipulated in the NSW Environmental Guidelines: Solid Waste Landfills 1996 Guidelines (Benchmark Technique No.1). The composite liner proposed is considered best practice and is adopted by regulatory authorities worldwide. Council proposes to install the barrier system in accordance with this benchmark technique and with a carefully monitored QA/QC procedure.
- Potential for surface water flows into Gara River surface water will be managed at the Site using a stormwater diversion system, a sedimentation basin and dry basin in addition to the leachate pond. In the unlikely event of emergency overflow from the leachate pond, all overflows will be fully contained in the downstream sedimentation basin, and then ultimately in the dry basin. The diversion system has been designed for the 1 in 100 year ARI peak flow event from the upslope catchments to divert 'clean' stormwater away from the Site. The sedimentation basin has been designed to fully contain the 5-day, 95th percentile rainfall depth for the Armidale area. Ultimately, the dry basin has been designed to contain the 1 in 100 year ARI 3 day duration rainfall event. The 100 year ARI, 3 day rainfall event is an extreme rainfall event and the potential risk of any off-site discharge would be extremely unlikely during the landfill operation. The proposed

water management system is designed to a higher level than that accepted by the EPA during the EA process when it was proposed to design and size the dry basin for a 1 in 100 ARI, 1 day duration rainfall event.

- A Regional Landfill Facility The Armidale Dumaresq Council area generates by far the largest waste quantity within the immediately surrounding areas including Guyra, Walcha and Uralla Councils. Whilst these Councils have not either confirmed or denied their participation in disposal of their waste at a regional facility, they have provided the commitment letters during the consultation process. Guyra Council has been depositing waste at the Armidale landfill since late 2002. Anticipated Council reforms over the next few years or decades, may in fact amalgamate regional and rural Councils. It would therefore seem logical, that if such amalgamation were to happen, Armidale would serve as a Regional facility and that smaller and less cost effective facilities are closed down.
- Strategic waste limit two cell versus five cell approval the Director General's Environmental Assessment Report recommended that approval be granted to construct and operate two of the proposed five cells. It was noted that it is 'not intended as an environmental limit, but a strategic waste limit that will ensure the Council continue to update its waste recovery planning in line with the NSW waste recovery targets'. Council do not agree with the Director General's Environmental Assessment Report's comment that if a five cell development was permitted, that there will be no driver to update its' waste recovery planning. The current landfill is operating to best Regional/Rural landfill practices, which was acknowledged in the Director General's Environmental Assessment report which stated that "Council's Recovery performance is better than the State Average". Councils waste diversion practices are already getting close to achieving the 2014 WARR targets. Council has further increased their waste diversion activities since the submission of the EA and the inspection of their existing activities by the DoP's independent waste advisor, including the commencement of the domestic organics (garden and food wastes) service. This demonstrates Council's full commitment to maximising waste diversion and to meeting their intent of essentially operating the new landfill as a non-putrescible landfill.

Furthermore, a number of proposed conditions of consent require Council to design the landfill and ancillary infrastructure to accommodate outputs from five cells but with approval to only operate two cells subject to Council satisfactorily addressing Clause 123(1)(a)of State Environmental Planning Policy (Infrastructure) 2007.

The water and leachate management infrastructure supporting the two cells for the base case scenario would be built to final design size (i.e. sufficient capacity to accommodate containment and storage requirements for five landfill cells) in Year 1. The proposed staged approval of the landfill cells would mean that water and leachate management infrastructure to support two cells only would be constructed in Year 1, with further construction required in future years to augment/upgrade the infrastructure to support additional landfill cells as they are approved (two cell scenario).

Option 1 (i.e. the Proposal as submitted) has lower costs and a lower risk profile. This approach would be preferred to reduce the financial risk of future landfill cells not being approved, and hence the burden on rate payers and the uncertainty of a longer term waste solution for Council.

- Site selection process Council has maintained records of the site selection process including reports, correspondence with real estate agents, newspaper advertisements and minutes and resolutions of Council Meetings, which demonstrate that the site selection process was comprehensive and rigorous. It involved consideration by multiple consultants, state government departments, Council's advisory committees and by the elected Councillors. It is noted that the site selection work undertaken by Brian Mackney and Associates was "peer reviewed" by the NSW Department of Public Works (which subsequently changed its' name to NSW Department of Commerce during the review period).
- **Biodiversity and amenity issues** the proposal includes a biodiversity offset of approximately 61 hectares of land to account for approximately 20 hectares of vegetation being cleared due to the proposed landfill facility. The biodiversity area will be contained entirely within the Site extent to enable direct and intensive management of the offset and to minimise the disturbance and relocation distance for some older and hollow-bearing trees and associated habitats. The Biodiversity Offset Management Plan for the Site has been prepared in accordance with the recommendations of the DECCW (now EPA) principles for biodiversity offsetting.

Amenity impacts such as noise, odour and vermin will be managed through mitigation measures as outlined in the EA and appropriate management plans for construction and operation phases including the LEMP.

Further summarising water management controls adopted for this proposal we confirm the following:

	Benchmark Technique (Environmental Guidelines: Solid Waste Landfills)	Proposed in Environmental Assessment	Revised Proposal for this Submission
Leachate Dam	Benchmark Technique No. 2 - 25 year, 1 day storm event	100 year 1 day storm event (13.9ML)	100 year 3 day storm event (14.6ML)
Sedimentation Dam	Benchmark Technique No. 3 - 90 th Percentile 5-day rainfall	90 th Percentile 5-day rainfall (2.85ML)	95 th Percentile 5-day rainfall (5.25ML)
Dry Basin	Benchmark Technique No. 2 – 110% capacity bund of leachate dam capacity (110% x 13.9ML = 15.3ML)	19ML (minimum capacity in lieu of bund)	30ML(minimum capacity in lieu of bund)

The proposed landfill would operate under a strict management regime to ensure impacts to the environment are minimised.

Appendix A

Long Swamp Road Landfill Environmental Monitoring Report May 2012

Appendix A Long Swamp Road Landfill Historical Leachate Monitoring Results

Helping You Protect Your Environment

ENVIRONMENTAL MONITORING REPORT

LONG SWAMP ROAD LANDFILL

May 2012

for Armidale Dumaresq Council

CodyHart Consulting Pty Ltd ACN: 076 662 989 ABN: 23 809 060 895 Trading as CodyHart Environmental Groundwater and Landfill Environmental Monitoring Specialists

TABLE OF CONTENTS

1.	INTRODUCTION	. 1
2.	LANDFILL LOCATION	
3.	SAMPLING LOCATIONS	. 2
4.	AIM OF MONITORING	3
5.	METHANE MONITORING	
	5.1 SURFACE METHANE MONITORING RESULTS 5.2 BUILDING METHANE MONITORING RESULTS	3 5
6.		
8.	WATER MONITORING QUALITY ASSURANCE	
9.	WATER QUALITY RESULTS TO DATE	. 9
10.	CURRENT ENVIRONMENTAL MONITORING PROGRAM	.35
11.	WATER QUALITY COMPARISONS	.35
12.	COMMENTS ON WATER LEVELS AND WATER QUALITY	.38
13.	CONCLUSION	.40
14.	BIBLIOGRAPHY	.41

FIGURES

Figure 1:	Location of Long Swamp Road Landfill	1
Figure 2:	Sampling locations	2
Figure 3:	Groundwater flow direction Long Swamp Road Landfill	7

TABLES

Table 1: Surface methane detections to date – Long Swamp Road Landfill	
Table 2: Building methane detections to date – Long Swamp Road Landfill	5
Table 3: Field analytes, water level, nutrients, carbon – Monitoring well LW1	10
Table 4: Laboratory analytes – geochemical, metals, PAHs, phenols, VOCs – Monitoring well LW1	11
Table 5: Field analytes, water level, nutrients, carbon – Monitoring well LW2	12
Table 6: Laboratory analytes – geochemical, metals, VOCs – Monitoring well LW2	13
Table 7: Field analytes, water level, nutrients, carbon – Monitoring well LW3	
Table 8: Laboratory analytes – geochemical, metals, VOCs – Monitoring well LW3	15
Table 9: Field analytes, water level, nutrients, carbon – Monitoring well GWEX-01	
Table 10: Laboratory analytes – geochemical, metals, VOCs – Monitoring well GWEX-01	16
Table 11: Field analytes, water level, nutrients, carbon – Monitoring well GWEX-02	17
Table 12: Laboratory analytes – geochemical, metals, VOCs – Monitoring well GWEX-02	18
Table 13: Field analytes, water level, nutrients, carbon – Monitoring well GWEX-03	19
Table 14: Laboratory analytes – geochemical, metals, VOCs – Monitoring well GWEX-03	20
Table 15: Field analytes, water level, nutrients, carbon – Surface water sampling point LS1	21
Table 16: Laboratory analytes – suspended solids, geochemical, metals, VOCs – Surface water LS1	21
Table 17: Field analytes, water level, nutrients, carbon – Surface water sampling point LS2	22
Table 18: Laboratory analytes – suspended solids, geochemical, metals, VOCs – Surface water LS2	23
Table 19: Field analytes, water level, nutrients, carbon – Surface water sampling point LS3	24
Table 20: Laboratory analytes – suspended solids, geochemical and metals – Surface water LS3	25
Table 21: Field analytes, water level, nutrients, carbon – Surface water sampling point LS4	
Table 22: Laboratory analytes – suspended solids, geochemical, metals, VOCs – Surface water LS4	27

Table 23: Fie	ld analytes, water level, nutrients, carbon – Surface water sampling point LS5	
	boratory analytes – suspended solids, geochemical, metals, VOCs – Surface water LS5	
	ld analytes, physical, nutrients, carbon – Surface water sampling point SWEX-01	
Table 26: Lab	oratory analytes – suspended solids, geochemical, metals – Surface water SWEX-01	31
	ld analytes, water level, VOCs, nutrients – Leachate sampling point LL1	
	jor ions, metals, TOC, pesticides – Leachate LL1	
•	rbon compounds – Leachate LL1	
	cial samples re nutrient levels – LS6 10/05/00, Lmulch 17/05/00, LS7 15/08/00	
-	ld analytes, water level, BTEX, nutrients – Leachate sampling point LL2	
	loride, bromide, metals, pesticides, carbon compounds – Leachate LL2	
	ence required environmental monitoring - Long Swamp Road Landfill	
	vironmental health warning limits surface water - some Landfill analytes	

APPENDICES

Appendix A - Field Parameter Forms Appendix B - Chain of Custody Forms Appendix C - Laboratory Reports

Presented by: Barbara Hart Hydrogeologist & Environmental Scientist **Date:** 9 June 2012 **Report:** CodyHart 12.2043.2

DISCLAIMER

CodyHart Consulting Pty Ltd has taken due care in ensuring the accuracy and applicability of its monitoring work, and the content, interpretation and advice provided in this report for the client.

Due to the specific nature of the report, the complexity of monitoring issues, unknowns concerning the site to which it applies, and the state of knowledge at the time of work and writing, this report is provided in good faith but without any express or implied warranty as to its accuracy or completeness or currency for the full site, land, subsurface, air, water, and persons or biota that may be impacted.

Changes to circumstances or facts after certain information or material has been submitted may impact on the accuracy, completeness or currency of the information or material.

All access to, or use of, the information or material is at the user's risk and CodyHart Consulting Pty Ltd accepts no responsibility for the results of any actions taken on the basis of information or material provided, nor for its accuracy, completeness or currency for the user's intended purpose.

CodyHart Consulting Pty Ltd expressly disclaims all and any liability and responsibility to any person in respect of the consequences of anything done or omitted to be done by such person in reliance, whether wholly or partially, on the information or material provided pursuant to advice and or services to which this document refers.

Before relying on the information or material provided herein, users should independently verify its accuracy, currency, completeness and relevance for their purposes, and should obtain proper professional advice before making any business or other decisions subsequently.

CodyHart Consulting Pty Ltd reserves the right to alter, amend, discontinue, vary or otherwise change any information, material or service at any time without subsequent notification.

The Client may distribute this report to other parties but must do so in its entirety and with this disclaimer included.

1. INTRODUCTION

This report concerns the May 2012 round of environmental monitoring conducted at the Long Swamp Road Landfill for methane, groundwater (wells LW1-LW3, and wells GWEX-01 to GWEX-03), and leachate LS2-LS4, and surface water LS5 and SWEX-01, even though there was no flow at the SWEX-01 diversion drain.

2. LANDFILL LOCATION

The Long Swamp Road Landfill is to the southeast of Armidale's town centre. A satellite image of the site is shown on Figure 1.

Figure 1: Location of Long Swamp Road Landfill

Base map SIX NSW Land & Property Information 2012
3. SAMPLING LOCATIONS

Figure 2 shows the sampling locations for methane, groundwater, surface water and leachate.

Figure 2: Sampling locations

4. AIM OF MONITORING

The environmental assessment monitoring program aims to assess present environmental health risks due to methane emissions from surface areas and within buildings, and landfill leachate contamination of surface water and groundwater.

5. METHANE MONITORING

Quarterly surface monitoring and building monitoring for methane is being conducted at the Long Swamp Road Landfill as a precautionary measure against the environmental and occupational health and safety problems that may occur at landfills due to the methane component of landfill gas. Methane is a colourless, odourless gas that is flammable and explosive.

Benchmark Technique No. 17 for *Surface Gas Emission Monitoring* and Benchmark Technique No. 18 for *Gas Accumulation Monitoring* found in the NSW EPA (1996, p. 30) *Environmental Guidelines: Solid Waste Landfills* are followed. The surface methane monitoring is undertaken to demonstrate that the cover material is controlling the emission of landfill gas. Methane accumulation monitoring is undertaken in all recycling sheds, the gatehouse, the skip shed, and the transfer station bays to assure health and safety against asphyxiation and explosion.

CodyHart uses a Year 2010 model RKI EagleTM portable gas meter. Its methane recalibration date is shown on the display screen and CodyHart conducts the gas recalibration when required. The methane channel is zero calibrated in fresh air by CodyHart before the start of sampling at each site.

5.1 Surface methane monitoring results

Methane sampling was conducted on 9 May 2012. The maximum wind gust over five minutes measured at the landfill at that time was 1.50 m/s (5.4 km/hr), which is less than the 10 km/hr recommended by NSW EPA (1996). A protector was attached over the head of the gas inlet to protect the inlet from wind. Nil gas was detected except for that from the landfill extension passive extraction vents. Their internal emissions ranged from 0 ppm to +50,000 ppm, the lower explosive limit. Methane was 10,875 ppm on the ground outside Vent 4, the most upgradient vent. Council people were advised to place soil cover over this area to convert the methane to carbon dioxide. Historical results are provided in Table 1 and detection points are shown on Figure 2.

Date	Sampling location detects	ppm by vol	% CH ₄ by volume	% LEL (Lower
		in air	in air	Explosive Limit)
	Note:	500ppm	= 0.05%	= 1% LEL
		CH ₄ by	CH ₄ by	
		vol in air	vol in air	
10/02/00	no detects at any sampling location			
10/05/00	no detects at any sampling location			
15/08/00	M1 – metal dump pit	max 520;	0.052%	1.04%
		generally 5 to		
		310		
18/09/01	M2 metal dump pit – in depression (1m x 1m area)	10,200	1.02%	20.4%
06/12/01	M2 metal dump pit	10,190	1.019%	20.38%

 Table 1: Surface methane detections to date – Long Swamp Road Landfill
 Provide the state of the state

Table 1 continued:

		ppm	% CH ₄	% LEL
Date	Sampling location detects	by vol	by volume	(Lower
		in air	in air	Explosive Limit
	Note:	500ppm	= 0.05%	= 1% LEL
		CH ₄ by	CH ₄ by	
		vol in air	vol in air	
06/12/01	M3 face below compactor parking spot	4,950	0.495%	9.9%
06/12/01	M4 near fill area	3,250	0.325%	6.5%
06/12/01	M5 a few landfill fire fissures – no smoke	max 4,950	0.495%	9.9%
07/03/02	M6 metal dump pit	2,350	0.235%	4.7%
07/03/02	M7 metal dump pit	1,045	0.105%	2.1%
07/03/02	M8 upper western slope	4,750	0.475%	9.5%
07/03/02	M9 upper western slope	10,000	1.0%	20.0%
07/03/02	M10 upper western slope	3,780	0.378%	7.56%
07/03/02	M11 upper western slope	468	0.047%	0.94%
24/05/02	M12 metal dump pit	2,800	0.28%	5.6%
24/05/02	M7 metal dump pit	11,000	1.1%	22.0%
04/09/02	M9 upper western slope	2,050	0.205%	4.10%
04/09/02	M7 metal dump pit	9,850	0.985%	19.70%
08/12/02	M13 upper western slope	max 2,720	0.27%	5.44%
08/03/03	M1 (11,900ppm); M6 (10,750ppm) metal dump pit	max 11,900	1.19%	23.8%
08/03/03	M14 footings of equipment shed extension	max 7,650	0.765%	15.3%
12/06/03	M7 metal dump pit	5350	0.535%	10.7%
12/06/03	M12 metal dump pit	4485	0.448%	8.96%
06/09/03	Nil methane detected at sampling locations			
20/01/04	M15 covered section of old metal dump pit	8850	0.885%	17.7%
05/03/04	Nil methane detected at sampling locations			
28/05/04	M6 old metal dump pit area	2910	0.291%	5.82%
16/09/04	Nil methane detected at sampling locations			
28/11/04	Nil methane detected at sampling locations			
07/03/05	Nil methane detected at sampling locations		0.1550	0.54
17/06/05	M16, fissure southeast corner landfill outside fence	1750	0.175%	3.5%
16/09/05	Nil methane detected at sampling locations			
18/01/06	Nil methane detected at sampling locations			
20/03/06	Nil methane detected at sampling locations			
21/07/06	Nil methane detected at sampling locations			
15/09/06	Nil methane detected at sampling locations			
18/01/07	Nil methane detected at sampling locations			
18/04/07	Nil methane detected at sampling locations Between points M4 & M13 methane detected	2570	0.2570/	5 140/
27/07/07	· ·	2570	0.257%	5.14%
14/10/07	Nil methane detected at sampling locations Nil methane detected at sampling locations			
21/01/08	1 0			
12/04/08 22/06/08	Nil methane detected at sampling locations			
16/09/08	Nil methane detected at sampling locations Nil methane detected at sampling locations			
31/01/09	Nil methane detected at sampling locations			
16/04/09	Nil methane detected at sampling locations Nil methane detected at sampling locations			
05/07/09	M10 behind mulch piles on old landfill.	Max 10,750	1.075%	21.5%
22/10/09	Nil methane detected at sampling locations	IVIAX 10,750	1.07370	21.370
07/03/10	Nil methane detected at sampling locations			
02/05/10	Nil methane detected at sampling locations			
18/07/10	Nil methane detected at sampling locations			
14/10/10	Nil methane detected at sampling locations			
21/02/11	M17 base of bent post, northern side of road west of 2^{nd} hand shop	2,875	0.2875%	5.75%
26/06/11	Nil methane detected at sampling locations	2,075	0.207370	5.1370
17/08/11	Nil methane detected at sampling locations			

		ppm	% CH4	% LEL
Date	Sampling location detects	by vol	by volume	(Lower Explosive
		in air	in air	Limit)
	Note:	500ppm	= 0.05%	= 1% LEL
		CH ₄ by	CH ₄ by	
		vol in air	vol in air	
12/10/11	Nil methane detected at sampling locations. OHS note: 0			
	to +50,000 ppm at passive landfill gas vents.			
22/01/12	Nil methane detected at sampling locations. OHS note: 0			
	to +50,000 ppm at passive landfill gas vents.			
09/05/12	M18 around Vent 4 upper section landfill extension. OHS	10,875	1.088%	21.75%
	note: 0 to +50,000 ppm at passive landfill gas vents.			

Notes:

1. 100% LEL for methane (CH₄) = 5% CH₄ by volume in air (50,000 ppm by volume in air). Methane may explode in confined spaces or ignite in open spaces if ignited when CH₄ is 5% to 15% by volume in air. Oxygen levels should never fall below 18% by volume in air (180,000 ppm by volume in air) and carbon dioxide levels should not exceed 0.5% by volume in air (5000 ppm by volume in air) for an 8 hour working day (Gendebien *et al.*, 1992:282-284).

NSW EPA (1996) surface methane monitoring threshold value = 0.05% CH₄ by volume in air = 500 ppm by volume in air = 1% LEL.

3. NSW EPA (1996) methane accumulation threshold value in buildings = 1.25% CH₄ by volume in air = 12,500 ppm by volume in air = 25% LEL.

4. EPA NSW (1996:31) notification level for surface, subsurface and building methane monitoring is 1.25% methane by volume in air, that is, 12,500 ppm.

5.2 Building methane monitoring results

High and low level sections of all recycling sheds, the gatehouse, skip shed, and the transfer station bays were tested. Testing was also conducted around the outside of these buildings. All methane readings were zero (Table 2).

Low sections of the buildings were tested because traces of methane may be trapped amongst high proportions of carbon dioxide that is denser than air and therefore heavier. High sections of the buildings were tested because methane is less dense and therefore lighter than air. Enclosed areas under equipment and in cupboards, and external ducting areas such as water pipe inlets were also tested.

		ppm	% CH ₄	% LEL
Date	Sampling location	by vol	by volume	(Lower Explosive
		in air	in air	Limit)
	Note:	12,500ppm	= 1.25% =	25% LEL
		CH ₄ by	CH ₄ by	
		vol in air	vol in air	
10/02/00	Nil methane detected in both sheds.			
10/05/00	Nil methane detected in both sheds.			
10/08/00	Nil methane detected in both sheds.			
18/09/01	Nil methane detected in both sheds.			
06/12/01	Nil methane detected in both sheds.			
07/03/02	Nil methane detected in both sheds.			
24/05/02	Nil methane detected in both sheds.			
04/09/02	Nil methane detected in both sheds.			
08/12/02	Nil methane detected in both sheds.			
08/03/03	Nil methane detected in both sheds – but methane detected			
	in footings of extension to equipment shed (Table 1).			
12/06/03	Nil methane detected in both sheds.			
06/09/03	Nil methane detected in both sheds.			
20/01/04	Nil methane detected in both sheds and gatehouse.			
05/03/04	Nil methane detected in both sheds and gatehouse.			
28/05/04	Nil methane detected in both sheds and gatehouse.			

Table 2: Building methane detections to date – Long Swamp Road Landfill

Table 2 continued

		ppm	% CH4	% LEL
Date	Sampling location	by vol	by volume	(Lower
		in air	in air	Explosive
				Limit)
	Note:	12,500ppm		25% LEL
		CH ₄ by	CH ₄ by	
		vol in air	vol in air	ſ
16/09/04	Nil methane detected in both sheds and gatehouse.			
28/11/04	Nil methane detected in both sheds and gatehouse.			
07/03/05	Nil methane detected in both sheds and gatehouse.			
17/06/05	Nil methane detected in both sheds and gatehouse.			
16/09/05	Nil methane detected in both sheds and gatehouse.			
18/01/06	Nil methane detected in both sheds and gatehouse.			
20/03/06	Nil methane detected in both sheds and gatehouse.			
21/07/06	Nil methane detected in both sheds and gatehouse.			
15/09/06	Nil Methane detected in both sheds and gatehouse.			
18/01/07	Nil Methane detected in both sheds and gatehouse.			
18/04/07	Nil Methane detected in both sheds and gatehouse.			
27/07/07	Nil Methane detected in both sheds and gatehouse.			
14/10/07	Nil Methane detected in both sheds and gatehouse.			
21/01/08	Nil Methane detected in both sheds and gatehouse.			
12/04/08	Nil Methane detected in both sheds and gatehouse.			
22/06/08	Nil Methane detected in both sheds and gatehouse			
16/09/08	Nil methane detected – sheds, gatehouse, recycling facility			
31/01/09	Nil methane detected – sheds, gatehouse, recycling facility			
16/04/09	Nil methane detected – sheds, gatehouse, recycling facility			
05/07/09	Nil methane detected – sheds, gatehouse, recycling facility			
22/10/09	Nil methane detected – sheds, gatehouse, recycling facility			
07/03/10	Nil methane detected – sheds, gatehouse, recycling facility			
02/05/10	Nil methane detected – sheds, gatehouse, recycling facility			
18/07/10	Nil methane detected – sheds, gatehouse, recycling facility			
14/10/10	Nil methane detected – sheds, gatehouse, recycling facility			
21/02/11	Nil methane detected – sheds, gatehouse, recycling facility			
26/06/11	Nil methane detected – sheds, gatehouse, recycling facility			
17/08/11	Nil methane detected – sheds, gatehouse, recycling facility			
12/10/11	Nil methane detected – sheds, gatehouse, recycling facility			
22/01/12	Nil methane detected – sheds, gatehouse, recycling facility			
09/05/12	Nil methane detected – sheds, gatehouse, recycling facility			

Note: EPA NSW (1996:31) notification level for surface, subsurface and building methane monitoring is 1.25% methane by volume in air, that is, 12,500 ppm.

6. GROUNDWATER FLOW DIRECTION & VELOCITIES

Groundwater flow direction was estimated from water levels (WL) taken on the 29th August 2005 measured from the top of the PVC casings in wells on the old landfill site (LW1, LW2, LW3) and the landfill extension (GWEX-01, GWEX-02, GWEX-03). The water levels (WL) were converted to Reduced Levels (RL) relative to mean sea level.

The arrows on Figure 3 show that the general groundwater flow direction is southwards in sympathy with the topography, fanning out at the base of the landfill and the landfill extension. Note that the WLRLs for the dams are higher than the groundwater and as surface water and groundwater have some connectivity, the dam water affects the groundwater flow direction.

Figure 3: Groundwater flow direction Long Swamp Road Landfill

(CodyHart 2005)

Groundwater velocities were estimated in Year 2000 for the groundwater regimes adjacent to wells in the old section of the landfill:

- LW1 0.156827292 metres /day or 57.242 m/year
- LW2 0.025393044 metres /day or 9.268 m/year
- LW3 0.035550444 metres /day or 12.976 m/year

(CodyHart 2000)

7. WATER SAMPLING FIELD WORK

Sampling was conducted on 8 to 13 May 2012 at the following sampling points:

- Groundwater quality monitoring at LW1 to LW3, GWEX-01 to GWEX-03;
- Diluted leachate in dams LS2-LS4; and
- Surface water in the diversion drain (SWEX-01) and the farmer's dam LS5..

Sampling points are displayed on Figure 2.

The TPS field lab used by CodyHart Environmental to take field temperature, pH, electrical conductivity (EC), redox potential (Eh) and dissolved oxygen (DO) readings is calibrated daily so that sampling is conducted within 24 hours of field lab calibration.

For diluted leachate at LS2, LS3 and LS4 and surface water at LS5, the samples were collected with a beaker on the end of a two-metre extension pole from the dam edges. The sample at SWEX-01 was taken by kneeling down alongside the sampling point. Two field analyte samples were taken, and the values noted on each field parameter form (Appendix A). Sample bottles were filled in order from the most volatile analyte being sampled to the least volatile.

For groundwater sampling, the water level was measured at each well using an electronic dip meter and noted on the field parameter form (Appendix A). At each well, a decontaminated, stainless steel, bladder pump attached to ¹/₄ inch OD LDPE tubing for compressed air and ¹/₄ inch OD LDPE tubing for water, was used to pump groundwater to the surface. A set pump position, discharge/refill rate and psi, and purge volume are used each sampling round to suit each well's hydraulic characteristics. The aim is to minimise water level drawdown in a method called 'lowflow' groundwater sampling. Minimal drawdown means that the groundwater is less disturbed and samples are more likely to be representative of true groundwater quality. A flow-through cell is used to house field probes for measuring field analytes (EC/Temp, pH, Eh and DO) values (Appendix A). When purging was complete, sample containers were filled generally from the most volatile analyte to be sampled to the least. Total organic carbon (TOC) and metal samples were not filtered if the samples were clear (Appendix A).

After collection, the samples were immediately put on ice in a chilled esky. The samples were transported in an iced esky to reach the ALS laboratory well within holding times.

An anemometer, thermometer and compass were used to determine air temperature, wind speed and wind direction and their values were noted on each field parameter form (Appendix A).

8. WATER MONITORING QUALITY ASSURANCE

A number of techniques are used in an endeavour to assure a high quality of sampling and analyses.

- Sampling procedures documented by CodyHart Environmental were followed. These included tests of deionised water and field blanks to assure proper decontamination of equipment.
- Relative percentage differences (RPDs) of field analytes were reviewed. Dissolved Oxygen (DO) and redox potential (Eh) have the potential to vary more than other field

analytes when water is extracted from its normal environment. However, no exceedances occurred.

- > Calibration of the field lab was documented. A certificate is provided in Appendix B.
- Chain of custody forms were completed to document the lack of tampering with sample containers and for the ALS laboratory to advise of sample receipt. (Appendix B)
- Australian Laboratory Services (ALS), Stafford, Brisbane, conducted the majority of laboratory analyses. They are a global, Australian company who analyses a broad range of analytes and provides good service. In addition to the certificate of analysis and analytical results, ALS provide quality control reports for laboratory duplicates, method blank and laboratory control samples, matrix spikes, and an interpretive quality control report that summarises the quality assurance findings (Appendix C). There were no untoward quality control issues.
- CodyHart conducted laboratory analyses (yellow sheet, Appendix C) that are best conducted on fresh samples – using an APHA (1998) titration method for alkalinity and free CO₂.
- The CodyHart sampling team took duplicate samples (LWD) as replicate samples (one after the other) at well LW1 which were analysed for chloride, some metals, nitrogen compounds and total organic carbon (TOC). The values were within the ALS quality control duplicate criteria.

9. WATER QUALITY RESULTS TO DATE

All results to date are tabled on portrait tables which allow a quick comparison of each analyte's historical results by looking down each column. Appendix C has a copy of the detailed laboratory results for this monitoring round, which include the laboratory QC reports. The CodyHart laboratory results follow the QC reports.

Table 3: Field analytes, water level, nutrients, carbon – Monitoring well LW1	Table 3:	Field analytes.	water level.	nutrients.	carbon –	Monitoring	well LW1
---	----------	-----------------	--------------	------------	----------	------------	----------

Tuble 5.				, ,			,		/				3							
LW1		Fie	ld ana	lytes		Wate	r levels				Nutrie	nts					Car	bon		
	DO	EC	pН	Eh	Temp	D	RL	NO _x as N	NO2 as N	NO3 as N	TKN as N	NH ₃ as N	TotN	TotP	Free CO ₂	Alk	CO_2 + Alk	TIC	тос	тс
Measure	mg/I	µS/cm	1-14	Mv	°C	m	m		mg/L			mg/L	mg/L	mg/I	-	mg/I	mg/L	mg/I	mg/I	mg/I
	U				-			-	-				-	•	U	U	U	U	U	U
Reporting	0.01	1	0.01	1	0.1	0.01	0.01	0.01	0.01	0.01	0.1	0.01	0.1	0.01	1	1	1	1	1	1
Limit	0.70	2000	1 10	. 242	17 1	2.10	1021 (0	100	NUT	NT	720.0	NT	1140	NT		.1			0	
		3600		+343			1021.69	400	NT		739.0	NT	1140	NT		<1			9	
		3300 3403		+184 +404			1021.62 1021.40	312 331	<0.01 0.80	312 330	4.0 0.2	0.06 0.22	316 331	<0.01 <0.01		<1 <1			9 2	
		3520		+404			1021.40	336	0.80	330 336	0.2	0.22	337	< 0.01		<1 <1			<1	
		3380		+357			1021.51	333	0.002	333	0.7	0.64	334	0.09 NC		<1 <1			<1	
		3543		+403			1021.31		< 0.024	381	0.6	0.01	382	ne		<1			4	
		3580		+403 +356			1021.30	397	0.001	396	0.0 6.6	3.53	404			<1			2	
		3613		+404			1021.44	333	0.000	333	< 0.1	0.04	333			<1			25	
		3620		+319			1021.40	339	0.009	339	< 0.1	0.03	339			<1			6	
		3668		+381			1020.86	387	0.014	387	<0.1	0.07	387			<1			2	
		3850		+389			1020.88	268	0.027	268	<0.1	< 0.01	268		205	<1	56		5	
09/03/03		3683		+349			1020.84	440	0.016	440	< 0.1	0.03	440		238	<1	65	26	13	39
12/06/03		4068		+306			1020.80	379	0.017	379	< 0.1	0.09	379		240	<1	65	27	2	29
05/09/03	1.21	4020	4.18	+421	18.6	2.96	1020.83	386	< 0.001	386	< 0.1	0.04	386		205	<1	56	19	6	25
02/12/03	0.45	4083	4.08	+388	15.6	2.79	1021.00	374	0.022	374	< 0.1	0.02	374		232	<1	63	<1	8	8
05/03/04	0.39	3878	4.12	+321	19.7	2.52	1021.27	345	NC	NC	< 0.1	0.06	346		240	<1	65	<1	3	3
28/05/04	0.10	3960	4.12	+369	15.1	2.66	1021.13	317			< 0.1	< 0.01	317		246	<1	67	7	5	12
15/09/04	1.27	4090	3.91	+418	16.3	2.96	1020.83	459			< 0.1	0.05	459		235	<1	46	<1	3	3
28/11/04	0.94	3930	3.86	+368	20.5	2.78	1021.01	362			0.3	0.279	362		267	<1	53	26	<1	26
08/03/05		3750		+373			1021.13	320			< 0.1	0.089	320		220	<1	60	NC	8	NC
17/06/05	0.41	3835	4.22	+382	13.3	2.75	1021.04	374			< 0.1	0.016	374		211	<1	58		3	
29/08/05							1020.81													
14/09/05		3720		+289			1020.94	379			< 0.1	< 0.01	227		208	<1	57		<1	
25/11/05		3728		+255			1021.08	93.5			< 0.1	0.070	93.5		213	<1	58		12	
18/03/06		3358		+308			1021.24	322			< 0.1	0.072	322		221	<1	60		3	
13/09/06		3530		+408			1020.71	354			< 0.1	0.054	354		211	<1	58		3	
20/04/07		3348		+330			1020.99	309			< 0.1	0.113	309		233	<1	64		4	
14/10/07		3553		+375			1020.80	296			< 0.1	0.041	296		208	<1	57		4	
13/04/08		3650		+295			1021.14	295			< 0.1	0.050	295 725		220	<1	60		3	
15/09/08		3765		+304			1020.89	725			< 0.1	0.050	725		220	<1	60		2	
15/04/09		3500		+232 +258			1021.02	238			0.3	< 0.01	238		227 249	<1	62		2 4	
22/10/09 02/05/10		3708 3705		+258			1020.81 1020.96	228 278			<0.1 5.7	$0.08 \\ 0.05$	228 284		249 178	<1 <1	68 49		4 5	
02/05/10 15/10/10		3540		+327 +204			1020.98	278			<0.1	0.03	284 220		178	<1 <1	49 54		5 5	
24/06/11		3698		+204			1021.01	308			< 0.1	0.09	308		198	<1	44		5 11	
12/10/11		3530		+392			1021.20	291			0.5	0.03	292		155	<1	44		<1	
09/05/12		3745		+371			1021.38	276			0.3	0.05	276		164	<1	45		4	
07/03/12	0.71	57-5	1.04	1571	17.2	2.05	1021.70	270			0.5	0.00	270		104	~1	75		-	

Abbreviations: DO = Dissolved Oxygen; EC = Electrical Conductivity also called specific conductance; Ph = Ph; Eh = Redox Potential; Temp = Temperature; D = Depth to water from top of internal well PVC casing; RL = water level converted to Reduced Level relative to mean sea level (RL from top of PVC casing = 1023.79m; VOCs = Volatile Organic Compounds; NO_x = Nitrite + Nitrate; NO₂ = Nitrite; NO₃ = Nitrate; TKN = Total Kjeldahl Nitrogen (organic nitrogen and ammonia); NH₃ = Ammonia as a measure of ammonium ions; Tot N = Total Nitrogen; Tot P = Total Phosphorus; Free CO₂ = Free Carbon Dioxide; Alk = Alkalinity measured as mg/L CaCO₃ equivalent;.Unfiltered C of (CO₂ + Alk) = 12/44 CO₂ + 12/61 Alk; TIC = Total Inorganic Carbon; TOC = Total Organic Carbon; TC = Total Carbon; NT = Not tested; NC = Not continuing; Bold = not filtered.

						-		,			/	,	,	<u> </u>	,					
LW1								La	borato	ry ana	ılytes – g	eochem	ical and	d metal	\$					VOCs
	Ca	Mg	Na	K	so ₄	Cl	В	Br	Fe	Mn	As	Cd	Cr	Pb	Se	Zn	Hg	PAH	Phenols	
Measure	mg/L	-							mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		L	L	L	L	L	L	L												
Reporting	1	1	1	1	1	1	0.2	0.1	0.01	0.01	0.001	0.001	0.001	0.001	0.01	0.001	0.0001		0.1	Various
Limit				-														0.004		
09/02/00	65		649	3		405					0.002		< 0.001		< 0.01	NT	0.0025	NT	NT	nil detected
10/05/00	48		509	2		377					0.001		0.001			0.203	0.0005	<dl< th=""><th>< 0.1</th><th>nil detected</th></dl<>	< 0.1	nil detected
14/08/00	48		477	2		124					0.001		< 0.001			0.177	0.0035	<dl< th=""><th>< 0.1</th><th>nil detected</th></dl<>	< 0.1	nil detected
14/11/00		108		2			< 0.1				< 0.001		< 0.001		< 0.01		0.0021	<dl< th=""><th>< 0.1</th><th>nil detected</th></dl<>	< 0.1	nil detected
15/06/01	NC	NC	NC	NC	NC				0.03		NC	NC	NC	NC	NC	0.179	0.0007	NC	NC	discontinued
19/09/01						442			0.22							0.494	0.0004			
06/12/01						395			0.17							0.579	< 0.0001			
07/03/02						451			0.10							0.572	0.0009			
24/05/02						414			0.25							0.637	0.0007			
05/09/02						414			0.14							0.460	0.0013			
08/12/02						445			0.11							0.340	< 0.0001			
09/03/03 12/06/03						450 463			0.18 0.21							0.671 0.560	<0.0001 0.0002			
05/09/03						463			0.21							0.560				
03/09/03 02/12/03						440			0.09							0.187	$0.0018 \\ 0.0007$			
02/12/03 05/03/04						404			0.08							0.379	0.00078			
28/05/04						404			0.08							0.191	0.00078			
28/03/04 15/09/04						482			0.09							0.140	0.0003			
28/11/04						456			0.09							0.184	< 0.0024			
08/03/05						435			0.12							0.201	0.0006			
17/06/05						520			0.14							0.529	< 0.0000			
14/09/05						447			0.22							0.186	0.0020			
25/11/05						405			0.11							0.173	0.00020			
18/03/06						383			0.17							0.155	< 0.000 4			
13/09/06						444			0.18							0.138	0.0022			
20/04/07						419			0.25							0.130	0.0011			
14/10/07						398		110		0.72						0.130	0.0010			
13/04/08						413				0.71						0.136	< 0.0001			
15/09/08						490				0.76						0.218	0.0044			
15/04/09						420				0.68						0.230	0.0019			
22/10/09						416				0.789)					0.213	0.0019			
02/05/10						460				0.453						0.239	0.0015			
15/10/10						458				0.511						0.293	0.0014			
24/06/11						436				0.269						0.072	0.0098			
12/10/11					13	431				0.303						0.074	0.0015			
09/05/12						425				0.331						0.215	0.0011			

Table 4: Laboratory analytes – geochemical, metals, PAHs, phenols, VOCs – Monitoring well LW1

 $Abbreviations: Ca = Calcium; Mg = Magnesium; Na = Sodium; K = Potassium; SO_4 = Sulphate; Cl = Chloride; B = Boron; Br = Bromine; Fe = Iron; Mn = Manganese; As = Arsenic; Cd = Cadmium; Cr = Chromium; Pb = Lead; Se = Selenium; Zn = Zinc; Hg = Mercury; PAHs = Polynuclear Aromatic Hydrocarbons; NT = Not tested; VOCs = Volatile Organic Compounds; <DL = less than detection limit; Bold = not filtered.$

1 able of 1 lota analytes, which lotely numbered solution 1 is the lot 2	Table 5:	Field analytes,	water level,	nutrients, carbon	- Monitoring well LW2
--	----------	-----------------	--------------	-------------------	-----------------------

LW2			l analy	/			r levels				trients		0				Carb	on		
	DO	EC	pН	Eh	Temp	D	RL	NO _x as N	NO ₂ as N	-	TKN as N	-	TotN	TotP	Free CO ₂	Alk	CO ₂ + Alk		тос	тс
Measure	mg/L µ	uS/cm	1-14	Mv	°C	m	m	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L
	0.01	1	0.01	1	0.1	0.01	0.01	0.01	0.01	0.01	0.1	0.01	0.1	0.01	1	1	1	1	1	1
Limit 09/02/00	0.77	976	6.47	174	10.7	1 16	1002.90	0.02	NT	NT	0.5	NT	0.5	NT		177			6	
09/02/00	0.77				19.7		1002.90		NT	NT	0.5	NT	0.5	0.03		177			6	
14/08/00	0.40				12.0		1002.71		NT	NT	0.3	NT	0.5	0.05		169			3	
14/08/00	0.40		6.32		12.9		1002.44		NT	NT	0.4	NT	0.9	0.01		181			<1	
13/11/00 18/09/01	0.31				19.5		1002.33		< 0.001	< 0.01	0.9	0.65	0.9	0.19 NC		181			2	
08/03/02	0.32	948			21.4		1002.78		0.001	0.03	0.05		0.05	ne		173			41	
03/03/02 04/09/02	0.56	722			14.2		1002.38		< 0.003	0.05		0.34	0.4			183			1	
04/09/02 08/03/03	0.60	754	6.50		14.2		1002.04		< 0.001	0.00	0.8	0.41	0.5		129	173	69	54	10	64
05/09/03	0.00	734	6.35		14.6		1002.08		< 0.001	0.07	0.4	0.37	0.9		100	183	63	27	4	31
04/03/04	0.47	734			18.2		1002.40		NC	NC	1.5	0.28	1.6		120	244	81	44	5	49
15/09/04	0.66	732	6.47				1002.00		ne	ne	<0.1	0.20			120	213	77	62	4	66
08/03/05	0.38	700			17.8		1002.39	0.013			0.9	0.484			120	171	66	NC	3	NC
29/08/05	0.50	/00	0.12	152	17.0		1001.99	0.015			0.7	0.101	0.9		120	1,1	00	110	5	
14/09/05	0.42	644	6.58	+50	15.3		1002.08	< 0.01			2.1	0.431	2.1		106	211	70		<1	
19/03/06	0.61	741			17.5		1002.26				< 0.1	0.172			73	229	65		<1	
12/09/06	2.14	686			14.6		1002.04				0.3	0.204			88	283	80		1	
19/04/07	1.70	654	6.61				1002.00				0.3	0.242			94	187	62		3	
14/10/07	0.95	643			17.6		1002.14				0.4	0.236			60	192	54		1	
12/04/07	0.54	641			16.9		1002.54				0.9	0.574			79	200	61		3	
14/09/08	0.52	633			16.8		1002.54				1.1	0.520			88	193	62		2	
16/04/09	0.46	609			18.2		1003.10				0.4	0.370			103	190	65		2 5	
22/10/09	2.56	623			19.7		1003.19				0.3	0.130			88	190	61		3	
01/05/10	0.78	629	6.67	+22	16.9	4.71	1002.35	0.040			0.2	0.20	0.2		80	212	64		7	
14/10/10	0.72	606	6.74	+81	16.0	4.28	1002.78	0.120			< 0.1	0.04	0.1		63	174	51		10	
24/06/11	0.74	633	7.05	-8	16.5	4.26	1002.80	0.030			0.2	0.21	0.2		85	177	58		12	
11/10/11	0.71	591	6.70	+94	17.5	4.57	1002.49	0.050			< 0.1	0.02	< 0.1		91	143	53		<1	
13/05/12	0.40	600	6.68	+28	12.2	5.04	1002.02	0.020			0.3	0.16	0.3		88	233	70		<1	

Abbreviations: DO = Dissolved Oxygen; EC = Electrical Conductivity also called specific conductance; Ph = Ph; Eh = Redox Potential; Temp = Temperature; D = Depth to water from top of internal well PVC casing; RL = water level converted to Reduced Level relative to mean sea level (RL from top of PVC casing = 1007.06m); NO_x = Nitrite + Nitrate; NO₂ = Nitrite; NO₃ = Nitrate; TKN = Total Kjeldahl Nitrogen (organic nitrogen and ammonia); NH₃ = Ammonia as a measure of ammonium ions; Tot N = Total Nitrogen; Tot P = Total Phosphorus; Free CO₂ = Free carbon dioxide; Alk = Alkalinity measured as mg/L CaCO₃ equivalent; Unfiltered C of (CO₂ + Alk) = 12/44 CO₂ + 12/61 Alk; TIC = Total Inorganic Carbon; TOC = Total Organic Carbon; TC = Total Carbon; NT = Not tested; NC = Not continuing; Bold = not filtered.

LW2		1					Lab	orato	ry analyi	te – geod	chemica	al and m	etals					VOCs
	Ca	Mg	Na	K	so_4	Cl	B	Br	Fe	Mn	As	Cd	Cr	Pb	Se	Zn	Hg	
Measure	mg/L	mg/L	mg/L	mg/L	.mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting	1	1	1	1	1	1	0.2	0.1	0.01	0.01	0.001	0.001	0.001	0.001	0.01	0.001	0.0005	various
Limit																		
09/02/00	51	31	111	27	182	127	< 0.2	0.5	0.81	0.61	0.001	< 0.001	< 0.001	NT	$<\!0.01$	NT	< 0.0005	nil detected
09/05/00	60	34	100	29	245	106	$<\!0.2$	0.4	1.25	0.58	0.002	0.001	< 0.001	< 0.001	$<\!0.01$	0.069	< 0.0001	NT in error
14/08/00	56	31	91	37	270	38	$<\!\!0.2$	0.5	2.21	0.63	0.002	0.007	$<\!0.001$	< 0.001	$<\!0.01$	0.089	< 0.0005	nil detected
15/11/00	86	42	127	8	395	81	$<\!0.1$	0.4	3.66	0.87		< 0.001	$<\!0.001$	0.001	$<\!0.01$	0.164	< 0.0001	nil detected
18/09/01	NC	NC	NC	NC	NC	76		0.3	3.24	0.57	NC	NC	NC	NC	NC	0.487	NC	discontinued
08/03/02						65		0.3	3.99	0.52						0.203		
04/09/02						61		0.3	3.59	0.50						0.532		
08/03/03						58		0.3	2.68	0.43						0.884		
05/09/03						61		0.2	3.14	0.37						0.055		
04/03/04						54		0.2	3.43	0.40						0.056		
15/09/04						66		0.2	2.45	0.38						0.041		
08/03/05						59		0.3	2.50	0.32						0.053		
14/09/05						19		< 0.1	2.26	0.68						0.042		
19/03/06						62		0.3	0.92	0.36						0.042		
12/09/06 19/04/07						66 68		0.3 0.3	1.68 3.08	0.06 0.35						0.034 0.026		
19/04/07 14/10/07						68 61		0.3	3.08 2.50	0.35						0.026		
12/04/08						64			4.28	0.21						0.028		
12/04/08						58			4.28 3.57	0.24						0.007		
16/04/09						61			4.05	0.22						0.036		
22/10/09						58			< 0.05	0.197						0.073		
01/05/10						56			1.37	0.298						0.067		
14/10/10						57			< 0.05	0.096						0.095		
24/06/11						61			< 0.05	0.003						0.006		
11/10/11						60			< 0.05	0.017						0.092		
13/05/12						53			0.58	0.258						0.052		
										-								

Table 6: Laboratory analytes – geochemical, metals, VOCs – Monitoring well LW2

Abbreviations: Ca = Calcium; Mg = Magnesium; Na = Sodium; K = Potassium; SO₄ = Sulphate; Cl = Chloride; B = Boron; Br = Bromine; Fe = Iron; Mn = Manganese; As = Arsenic; Cd = Cadmium; Cr = Chromium; Pb = Lead; Se = Selenium; Zn = Zinc; Hg = Mercury; VOCs = Volatile Organic Compounds; NT = Not tested; Bold = not filtered.

Table 7:	Field analytes.	water level.	nutrients.	carbon -	- Monitoring well LW3
			,		

LW3		Field	d anal <u></u>	ytes		Water	·levels			Nu	trients						Carb	on		
	DO	EC	pН	Eh	Temp	D	RL	NO _x as N	NO2 as N	-	TKN as N	NH 3 as N	TotN	TotP	Free CO ₂	Alk	CO ₂ + Alk		тос	тс
Measure	mg/L	S/cm	1-14	Mv	°C	m	m	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting	0.01	1	0.01	1	0.1	0.01	0.01	0.01	0.01	0.01	0.1	0.01	0.1	0.01	1	1	1	1	1	1
Limit																				
09/02/00	0.37	1107	5.88	+98	22.0	12.88	996.53	0.02	NT	NT	1.5	NT	1.5	NT		158			15	
09/05/00	0.61	965	5.94	+83	17.7	12.74	996.67	< 0.01	NT	NT	1.3	NT	1.3	0.65		133			5	
14/08/00	0.44	1006	6.31	+91	11.6	12.69	996.72	< 0.01	NT	NT	1.0	NT	1.0	0.59		157			1	
15/11/00	0.28	969	6.24	+52	14.5	12.65	996.76	< 0.01	NT	NT	1.0	NT	1.0	0.65		174			1	
18/09/01	0.26	693	6.17	+57	18.7	12.69	996.72	< 0.01	< 0.001	< 0.01	0.75	0.75	0.75	NC		193			3	
07/03/02	5.82	641	6.33	+78	20.2	12.69	996.72	< 0.01	0.008	< 0.01	2.0	0.41	2.0			197			53	
05/09/02	1.22	441	6.21	+276	17.8	12.82	996.59	0.09	< 0.001	0.09	2.6	0.42	2.7			202			4	
08/03/03	0.36	489	6.44	+91		13.06	996.35	0.03	0.001	0.03	1.5	0.42	1.5		213	113	80	66	23	89
05/09/03	0.15	480	6.49	+50	17.0	13.17	996.24	< 0.01	< 0.001	$<\!0.01$	1.8	0.39	1.8		169	250	95	26	7	33
04/03/04	1.48	474	6.36	+222			996.25	0.08	NC	NC	2.2	0.37	2.3		199	288	111	55	51	106
16/09/04	0.50	456	6.20	+111	21.0	13.02	996.39	0.02			2.3	0.30	2.3		208	249	106	75	6	81
08/03/05	0.47	440	6.15	+27	22.9	13.00	996.41	0.014			2.9	0.761	2.9		182	227	94	NC	6	NC
29/08/05						12.93	996.48													
14/09/05	0.26	439	6.41	+33	18.1	12.83	996.58	0.018			0.6	0.344	0.7		188	261	103		<1	
19/03/06	0.93	436	6.24	+165	20.4	12.83	996.58	0.013			1.2	0.436	1.2		194	221	96		4	
12/09/06	0.68	444	5.99	+24	16.6	12.79	996.62	0.336			1.9	0.452	2.3		205	349	125		2	
19/04/07	1.27	454	6.67	+18	15.3	12.78	996.63	0.014			0.8	0.447	0.8		169	215	88		5	
14/10/07	0.92	474	6.44	+19	16.7	12.79	996.62	0.023			0.6	0.483	0.7		170	211	88		2	
12/04/08	0.50	413	6.28	-29	20.6	12.68	996.73	0.012			1.0	0.420	1.0		167	216	88		2	
14/09/08	0.25	467	6.33	-8	16.7	12.57	996.84	0.020			0.8	0.400	0.8		169	207	87		<1	
16/04/09	0.23	464	6.35	-25			996.93	0.020			0.4	0.400	0.5		205	207	97		5	
22/10/09	0.41	540	6.45	+8	17.6	12.42	996.99	$<\!0.01$			0.8	0.400	0.8		161	203	84		2	
01/05/10	6.84	469	6.43	+56	18.6	12.34	997.07	0.12			0.5	0.47	0.6		147	200	79		9	
	0.64	481	6.40	+31		12.21	997.20	0.02			0.7	0.34	0.7		161	242	92		8	
26/06/11	0.38	469	6.23	-8	18.8	12.04	997.37	< 0.01			0.6	0.41	0.6		185	210	92		15	
11/10/11	0.28	471	6.36	+41	19.2	11.82	997.59	0.01			0.9	0.42	0.9		169	197	85		<1	
09/05/12	0.32	485	6.28	-5	19.0	11.56	997.85	< 0.01			0.7	0.42	0.7		164	200	84		<1	

Abbreviations: DO = Dissolved Oxygen; EC = Electrical Conductivity also called specific conductance; Ph = Ph; Eh = Redox Potential; Temp = Temperature; D = Depth to water from top of internal well PVC casing; RL = water level converted to Reduced Level relative to mean sea level (RL from top of PVC casing = 1009.41m); NO_x = Nitrite + Nitrate; NO₂ = Nitrite; NO₃ = Nitrate; TKN = Total Kjeldahl Nitrogen (organic nitrogen and ammonia); NH₃ = Ammonia as a measure of ammonium ions; Tot N = Total Nitrogen; Tot P = Total Phosphorus; Free CO₂ = Free carbon dioxide; Alk = Alkalinity measured as mg/L CaCO₃ equivalent;. Unfiltered C of (CO₂ + Alk) = 12/44 CO₂ + 12/61 Alk; TIC = Total Inorganic Carbon; TC = Total Carbon; NT = Not tested; NC = Not continuing; Bold = unfiltered.

LW3							L	abora	tory an	alytes –	geochem	ical and	metals					VOCs
	Ca	Mg	Na	К	SO4	Cl	В	Br	Fe	Mn	As	Cd	Cr	Pb	Se	Zn	Hg	
Measure	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting	1	1	1	1	1	1	0.2	0.1	0.01	0.01	0.001	0.001	0.001	0.001	0.01	0.001	0.0005	various
Limit																		
09/02/00	49	29	132	43	314	78	$<\!0.2$	0.4	0.36	1.20	0.002	< 0.001	$<\!0.001$	NT	$<\!0.01$	NT	< 0.0005	nil detected
09/05/00	54	30	106	16	328	42	$<\!0.2$	0.2	2.72	1.54	< 0.001	0.017	$<\!0.001$	0.001	$<\!0.01$	0.082	< 0.0001	NT in error
14/08/00	59	32	113	17	307	41	$<\!0.2$	0.2	4.86	1.76	0.002	0.010	$<\!0.001$	< 0.001	$<\!0.01$	0.095	< 0.0005	nil detected
15/11/00	56	29	105	12	289		< 0.1	0.2		1.47	0.002	0.001	< 0.001	< 0.001	0.01	0.074	< 0.0001	nil detected
18/09/01	NC	NC	NC	NC	NC		NC	< 0.1	5.38	1.04	NC	NC	NC	NC	NC	0.195	NC	discontinued
07/03/02						16		0.1	2.23	0.95						0.099		
05/09/02						16		0.1	7.78	0.92						0.161		
08/03/03						24		< 0.1	4.98	0.79						0.523		
05/09/03						16		0.1	2.68	0.75						0.057		
04/03/04						15		< 0.1	4.69	0.75						0.050		
16/09/04						15		< 0.1	2.99	0.70						0.069		
08/03/05						23		< 0.1	5.20	0.64						0.076		
14/09/05						64		0.3	1.62	0.28						0.034		
19/03/06						12		< 0.1	5.35	0.66						0.028		
12/09/06						17			10.30	0.73						0.044		
19/04/07						21		0.1	3.68	0.57						0.038		
14/10/07 12/04/08						15 17			5.68	0.60						0.041 0.098		
12/04/08						16			5.66 2.60	0.61 0.58						0.098		
14/09/08						15			2.00 5.97	0.58						0.048		
22/10/09						17			2.96	0.583						0.100		
01/05/10						13			3.80	0.585						0.013		
14/10/10						17			1.62	0.595						0.121		
26/06/11						13			3.49	0.552						0.028		
20/00/11						18			2.48	0.591						0.022		
09/05/12						12			4.97	0.524						0.040		
										5.021								

Table 8: Laboratory analytes – geochemical, metals, VOCs – Monitoring well LW3

Abbreviations: Ca = Calcium; Mg = Magnesium; Na = Sodium; K = Potassium; SO_4 = Sulphate; Cl = Chloride; B = Boron; Br = Bromine; Fe = Iron; Mn = Manganese; As = Arsenic; Cd = Cadmium; Cr = Chromium; Pb = Lead; Se = Selenium; Zn = Zinc; Hg = Mercury; VOCs = Volatile Organic Compounds; NT = Not tested; Bold = unfiltered.

GWEX- 01		Fiel	d anal	ytes		Wate	er levels		Nutri	ents				C	arbon	
	DO	EC	pН	Eh	Temp	D	RL	NO_x as N	TKN as N	NH 3 as N	TotN	Free CO ₂	Alk	CO ₂ + Alk	тос	PAH yearly
Measure	mg/L	μS/cm	1-14	Mv	°C	m	m	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting Limit 29/08/05	0.01	1	0.01	1	0.1	0.01	0.01 1020.37	0.01	0.1	0.001	0.1	1	1	1	1	various
12/09/05 26/11/05	9.50 7.23		5.39 4.96		12.0	3.76	1020.23 1019.97	<0.01 0.104	0.2 0.3	$0.060 \\ 0.065$	0.2 0.4	136 160	8 8	39 45	<1 6	NT nil detected
19/03/06	7.42	506	4.74	+334	18.8	3.86	1020.13	0.039	< 0.1	0.059	< 0.1	161	5	45	4	nil detected
20/07/06 10/09/06	5.44 6.99	517	4.85 4.76	+286	16.7 15.0	4.46	1019.65 1019.53	0.285 0.694	0.2 0.6	0.057 0.060	0.5 1.2	179 169	3 5	49 47	4 3	NT NT
18/01/07 19/04/07	6.68 8.24	518 500			21.0 19.0		1019.61 1019.71	0.025 0.321	0.1 0.4	0.020 0.035	0.2 0.7	197 199	<1 3	54 55	2 5	nil detected NT
07/07/07 13/10/07	6.63 6.91		4.71 4.80		14.4 15.4		1019.61 1019.51	0.155 0.148	0.1 <0.1	0.029 0.027	0.3 0.1	167 144	<1 4	46 40	3 3	NT NT
13/04/08 15/09/08	6.01 5.02	615	4.86 4.59	+249	17.9	3.93	1019.91 1020.06 1019.69	0.081	<0.1 <0.1 0.5	0.065	<0.1 <0.1 0.5	169 183	82	48 50	3	nil detected NT
15/04/09	5.00	633	4.62	+230	17.2	3.98	1020.01	0.120	0.2	0.050	0.4	176	37	55	1 3	Phenanthrene 0.001
22/10/09 02/05/10	4.66 3.85		4.77 4.64		16.0 17.3		1019.82 1019.87	0.080 0.080	0.2 0.2	0.050 0.030	0.2 0.3	191 161	3 1	53 44	4 4	NT nil detected
15/10/10 24/06/11	3.71 3.37	632 639	4.63 4.77		15.0 16.3		1019.87 1020.03	0.72 0.12	<0.1 <0.1	0.04 0.02	0.7 0.1	197 153	1 1	54 42	4 11	NT nil detected
12/10/11	3.22	630	4.75	+580	14.2	3.82	1020.17	0.11	< 0.1	0.05	0.1	194	3	54	<1	NT
09/05/12	3.66	634	4.69	+300	16.6	3.38	1020.61	0.06	0.2	0.05	0.3	165	3	46	2	nil detected

Table 9: Field analytes, water level, nutrients, carbon – Monitoring well GWEX-01

Abbreviations: DO = Dissolved Oxygen; EC = Electrical Conductivity also called specific conductance; Ph = Ph; Eh = Redo x Potential; Temp = Temperature; D = Depth to water from top of internal well PVC casing; RL = water level converted to Reduced Level relative to mean sea level (RL from top of PVC casing = 1023.99m; NO_x = Nitrite + Nitrate; TKN = Total Kjeldahl Nitrogen (organic nitrogen and ammonia); NH₃ = Ammonia as a measure of ammonium ions; Tot N = Total Nitrogen; Free CO₂ = Free Carbon Dioxide; Alk = Al in an kalinity measured as mg/L CaCO₃ equivalent; Unfiltered C of (CO₂ + Alk) = 12/44 CO₂ + 12/61 Alk; TOC = Total Organic Carbon; PAH = Polynuclear aromatic hydrocarbons (includes Benzo(a) pyrene); NT = not tested; Bold = unfiltered. Note: PAH only required yearly.

GWEX-01						La	iborato	ry ana	lytes –	geoche	emical a	nd meta	ls					VOCs
	Ca	Mg	Na	K	so ₄	Cl	В	Br	Fe	Mn	As	Cd	Cr	Pb	Se	Zn	Hg	
Measure	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting Limit	1	1	1	1	1	1	0.2	0.1	0.01	0.01	0.001	0.001	0.001	0.001	0.01	0.001	0.0001	various
12/09/05	4	5	99	3	16	150	< 0.1	0.7	0.06	0.21	< 0.001	0.0006	< 0.001	< 0.001	< 0.01	0.092	0.0002	nil detecte
26/11/05	4	4	91	1	11	140	< 0.1	0.6	0.07	0.12	0.001	0.0009	< 0.001	< 0.001	< 0.01	0.058	< 0.0001	nil detecte
19/03/06	3	4	92	1	9	132	< 0.1	0.6	0.11	0.11	0.001	0.0005	0.001	0.003	< 0.01	0.074	< 0.0001	nil detecte
20/07/06	3	5	99	<1	9	154	< 0.1	0.7	0.10	0.08	< 0.001	0.0002	< 0.001	<0.001	<0.01	0.081	0.0005	nil detecte
10/09/06						142		0.7	0.62	0.08						0.068	0.0014	discontinu
18/01/07						143			0.32	0.05						0.041	0.0012	
19/04/07						148		0.6	0.50	0.05						0.047	0.0016	
07/07/07						144			0.09	0.05						0.032	0.0014	
13/10/07						152			0.09	0.06						0.039	0.0015	
13/04/08						189			< 0.05	0.07						0.053	0.0014	
15/09/08						162			0.52	0.06						0.186	0.0035	
15/04/09						167			1.06	0.06						0.145	0.0031	
22/10/09						207			0.25	0.060)					0.095	0.0030	
02/05/10						174			0.17	0.058						0.151	0.0036	
15/10/10						191			0.13	0.059						0.161	0.0022	
24/06/11						183			0.67	0.055						0.033	0.0043	
12/10/11						195			0.48	0.058						0.036	0.0039	
09/05/12						174			0.06	0.053	3					0.123	0.0025	

Table 10: Laboratory analytes – geochemical, metals, VOCs – Monitoring well GWEX-01

Abbreviations: $Ca = Calcium; Mg = Magnesium; Na = Sodium; K = Potassium; SO_4 = Sulphate; Cl = Chloride; B = Boron; Br = Bromine; Fe = Iron; Mn = Manganese; As = Arsenic; Cd = Cadmium; Cr = Chromium; Pb = Lead; Se = Selenium; Zn = Zinc; Hg = Mercury; VOCs = Volatile Organic Compounds; Bold = unfiltered.$

	-							-								
GWEX-02		Fie	ld and	alytes		Wate	er levels		Nutr	ients				Carbo	n	
	DO	EC	pН	Eh	Temp	D	RL	NO_x as N	TKN as N	NH 3 as N	TotN	Free CO ₂	Alk	CO ₂ + Alk	TOC	PAH vearly
Measure	mg/L	μS/cm	1-14	Mv	°C	m	m	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Limit	0.01	1	0.01	1	0.1	0.01	0.01	0.01	0.1	0.001	0.1	1	1	1	1	various
29/08/05							992.90									
12/09/05	1.29			+187	15.4	14.47	992.98	0.100	< 0.1	0.042	0.1	164	108	66	<1	NT
26/11/05	1.10	317			17.7	14.51		0.166	0.2	0.064	0.4	164	114	67	3	nil detected
19/03/06	0.94			+173	17.6		993.05	0.289	< 0.1	0.047	0.3	164	105	65	1	nil detected
20/07/06	0.90				16.0		992.97	0.541	< 0.1	0.057	0.5	183	103	70	<1	NT
10/09/06	0.94			+194	16.8		992.96	0.063	< 0.1	0.068	0.6	169	101	66	<1	NT
18/01/07	1.64			+174	24.8		992.83	0.151	0.1	0.025	0.3	161	100	64	<1	nil detected
19/04/07	0.84			+189	17.6	14.71		0.185	< 0.1	0.034	0.2	123	100	53	3	NT
07/07/07	0.94			+210	13.9	14.72	992.73	0.144	< 0.1	0.023	0.1	160	100	63	<1	NT
13/10/07	1.04			+174	15.8		992.65	0.172	< 0.1	0.021	0.2	157	104	63	<1	NT
20/01/08	0.87			+110	17.6		992.94	0.156	0.8	< 0.010	1.0	160	108	65	1	nil detected
13/04/08	1.09			+138	19.7		992.87	0.147	< 0.1	0.036	0.1	155	103	63	<1	NT
22/06/08	0.81			+151	16.3		992.78	0.144	< 0.1	0.041	0.1	150	96	60	<1	NT
15/09/08	0.70	341	5.94	+127	17.0	14.59	992.86	0.180	0.5	0.160	0.6	161	103	64	<1	NT
30/01/09	0.77	362		+147	18.3		992.79	0.120	< 0.1	$<\!0.010$	0.1	153	103	62	2	NT
15/04/09	0.97	344	6.02	+121	17.1	14.75	992.70	0.150	0.3	< 0.010	0.4	142	100	58	3	nil detected
04/07/09	0.76	351	6.03	+161	13.7	14.69	992.76	0.170	< 0.1	0.020	0.2	161	100	64	13	NT
22/10/09	0.77	358	6.03	+145	20.6	14.64	992.81	0.160	0.2	0.040	0.3	176	103	68	2	NT
07/03/10	0.83	335	6.00	+150	18.4	14.52	992.93	0.180	< 0.1	< 0.010	0.2	176	100	68	7	NT
02/05/10	0.85	355	6.06	+155	17.0	14.62	992.83	0.180	< 0.1	0.540	0.2	161	103	64	9	nil detected
15/07/10	1.17	355	6.07	+143	16.3	14.67	992.78	0.180	< 0.1	0.020	0.2	154	100	62	8	NT
14/10/10	0.89	350	6.11	+155	17.3	13.95	993.50	0.14	< 0.1	0.03	0.1	161	103	64	<1	NT
21/02/11	0.97	355	6.10	+182	21.3	13.43	994.02	0.16	< 0.1	0.04	0.2	147	100	60	<1	NT
24/06/11	1.15	355	6.36	+218	15.9	13.54	993.91	0.15	< 0.1	0.02	0.2	138	103	58	21	nil detected
17/08/11	0.93	355	5.91	+216	15.4	13.29	994.16	0.08	< 0.1	0.06	< 0.1	155	100	62	4	NT
12/10/11	1.11	343	6.07	+423	17.2	13.02	994.43	0.10	< 0.1	0.02	0.1	147	103	60	<1	NT
22/01/12	1.04	362	6.11	+171	18.8	12.25	995.20	0.08	< 0.1	0.03	< 0.1	155	103	63	1	NT
09/05/12	0.66	365	5.91	+130	17.7	12.39	995.06	0.12	< 0.1	0.03	0.1	161	103	64	3	nil detected

Table 11: Field analytes, water level, nutrients, carbon – Monitoring well GWEX-02

Abbreviations: DO = Dissolved Oxygen; EC = Electrical Conductivity also called specific conductance; Ph = Ph; Eh = Redox Potential; Temp = Temperature; D = Depth to water from top of internal well PVC casing; RL = water level converted to Reduced Level relative to mean sea level (RL from top of PVC casing = 1007.45m; NO_x = Nitrite + Nitrate; TKN = Total Kjeldahl Nitrogen (organic nitrogen and ammonia); NH₃ = Ammonia as a measure of ammonium ions; Tot N = Total Nitrogen; Free CO₂ = Free Carbon Dioxide; Alk = Alkalinity measured as mg/L CaCO₃ equivalent; Unfiltered C of (CO₂ + Alk) = 12/44 CO₂ + 12/61 Alk; TOC = Total Organic Carbon; PAH = Polynuclear aromatic hydrocarbons (includes Benzo(a) pyrene); NT = not tested; Bold = not filtered. Note: PAH only required yearly.

GWEX-02						1	abora	tory an	alytes -	– geocl	hemical	and met	als					VOCs
	Ca	Mg	Na	K	so ₄	Cl	В	Br	Fe	Mn	As	Cd	Cr	Pb	Se	Zn	Hg	
Measure	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting Limit	1	1	1	1	1	1	0.2	0.1	0.01	0.01	0.001	0.001	0.001	0.001	0.01	0.001	0.0001	various
12/09/05	24	12	30	3	22	29	< 0.1	0.2	< 0.05	0.01	< 0.001	0.0008	< 0.001	< 0.001	< 0.01	0.022	0.0002	nil detect
26/11/05	23	11	28	3	23	23	< 0.1	0.4	< 0.05	< 0.01	< 0.001	0.0002	< 0.001	< 0.001	< 0.01	0.005	0.0001	nil detect
19/03/06	24	12	29	3	22	27	< 0.1	0.2	< 0.05	0.01	< 0.001	<0.0001	< 0.001	0.001	< 0.01	0.007	0.0001	nil detect
20/07/06	22	12	30	3	22	29	< 0.1	0.2	< 0.05	<0.01	< 0.001	< 0.0001	< 0.001	<0.001	< 0.01	0.011	<0.0001	nil detect
10/09/06						28		0.2	< 0.05	0.01						0.007	0.0006	discontin
18/01/07						28			0.06	< 0.01						< 0.005	<0.0001	
19/04/07						32		0.2	< 0.05	0.01						0.015	0.0002	
07/07/07						28			< 0.05	< 0.01						0.008	< 0.0001	
13/10/07						28			< 0.05	< 0.01						0.006	<0.0001	
20/01/08						37			< 0.05	0.02						0.031	< 0.0001	
13/04/08						102			< 0.05	<0.01						0.099	< 0.0001	
22/06/08						30			< 0.05	0.02						0.117	< 0.0001	
15/09/08						28			< 0.05	<0.01						0.005	< 0.0001	
30/01/09						27			< 0.05	0.02						0.011	< 0.0001	
15/04/09						28			< 0.05	0.01						0.007	< 0.0001	
04/07/09						22			< 0.05	0.003						0.030	< 0.0001	
22/10/09						24			0.06	0.008						0.049	< 0.0001	
07/03/10						24			< 0.05	0.004						0.130	< 0.0001	
02/05/10						26			< 0.05	0.004						0.077	< 0.0001	
15/07/10						22			< 0.05	0.003						0.078	< 0.0001	
14/10/10						22			< 0.05	0.005						0.100	< 0.0001	
21/02/11						21			3.78	0.196						0.031	< 0.0001	
24/06/11						26			< 0.05	0.005						0.010	< 0.0001	
17/08/11						22			< 0.05	0.002						0.075	< 0.0001	
12/10/11						22			< 0.05	0.004						0.078	< 0.0001	
22/01/12						22			< 0.05	0.004						0.078	< 0.0001	
09/05/12						24				0.002							< 0.0001	

Table 12: Laboratory analytes – geochemical, metals, VOCs – Monitoring well GWEX-02

Abbreviations: Ca = Calcium; Mg = Magnesium; Na = Sodium; K = Potassium; $SO_4 = Sulphate$; Cl = Chloride; B = Boron; Br = Bromine; Fe = Iron; Mn = Manganese; As = Arsenic; Cd = Cadmium; Cr = Chromium; Pb = Lead; Se = Selenium; Zn = Zinc; Hg = Mercury; VOCs = Volatile Organic Compounds; Bold = unfiltered.

GWEX-03		Fiel	ld ana	lytes		Wate	r levels		Nutr	ients				Carb	on	
	DO	EC	pН	Eh	Temp	D	RL	NO _x as N	TKN as N	NH ₃ as N	TotN	Free CO ₂	Alk	CO ₂ + Alk	тос	PAH yearly
Measure	mg/L	µS/cm	1-14	Mv	°C	m	m	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting Limit	0.01	1	0.01	1	0.1	0.01	0.01	0.01	0.1	0.001	0.1	1	1	1	1	various
29/08/05						10.74	993.44									
13/09/05	1.04	794	6.43	+226		10.71		0.056	< 0.1	0.050	< 0.1	170	329	111	<1	NT
26/11/05	0.43	780		+154			993.47	0.112	0.2	0.083	0.3	182	334	115	3	nil detected
18/03/06	0.80	765	6.45	+147	18.9	10.43	993.75	0.141	< 0.1	0.043	0.1	161	292	101	<1	nil detected
20/07/06	0.61	800	6.52	+181	13.6	10.47	993.71	0.306	0.1	0.052	0.4	176	273	102	2	NT
12/09/06	1.86	780	7.10	+148	14.2	10.45	993.73	0.461	0.2	0.056	0.7	182	273	103	1	NT
18/01/07	0.45	815	6.68	+164	16.2	10.65	993.53	0.080	0.2	< 0.010	0.3	191	271	105	<1	nil detected
18/04/07	0.36	794	6.50	+266	16.8	10.76	993.42	0.102	< 0.1	0.015	0.1	183	273	104	5	NT
08/07/07	1.19	811	6.11	+166	10.8	10.82	993.36	0.128	< 0.1	0.017	0.1	173	283	103	1	NT
13/10/07	0.50	840	6.90	+162	16.6	10.88	993.30	0.172	< 0.1	0.027	0.2	142	272	92	<1	NT
21/01/08	0.71	805		+70	16.7	10.49	993.69	0.098	0.4	0.017	0.5	82	367	95	<1	nil detected
13/04/08	1.01	782					993.54	0.148	0.2	0.074	0.3	21	316	68	<1	NT
22/06/08	8.12	780		+112			993.57	0.132	< 0.1	0.072	0.1	53	221	58	<1	NT
15/09/08	1.48	751					993.66	0.170	0.5	0.160	0.6	22	267	59	<1	NT
30/01/09	2.11	785					993.49	0.080	0.6	0.030	0.7	<1	367	72	6	NT
16/04/09	1.52	696				10.77	993.41	0.170	0.2	0.040	0.4	65	267	70	4	nil detected
04/07/09	1.75	766					993.59	0.200	< 0.1	0.060	0.2	67	258	69	12	NT
22/10/09	3.25	868		+126		10.72		0.170	0.2	0.040	0.3	79	300	81	1	NT
07/03/10	0.69	818		+122			993.68	0.14	< 0.1	0.020	0.1	147	281	95	3	NT
01/05/10	0.61	854		+101			993.53	0.13	< 0.1	< 0.010	0.1	154	290	99	13	nil detected
15/07/10	0.53		6.63	+141			993.42	0.14	< 0.1	< 0.010	0.1	170	283	102	13	NT
14/10/10	0.60		6.72			10.13	994.05	0.23	< 0.1	0.03	0.2	154	317	104	6	NT
21/02/11	0.79		6.64	+118		9.69	994.49	0.14	< 0.1	0.04	0.2	150	301	100	<1	NT
24/06/11	1.19	733		+166		9.73	994.45	0.14	<0.1	0.01	0.1	170	243	94	22	nil detected
17/08/11	0.61	872		+214		9.53	994.65	0.06	<0.1	0.08	< 0.1	167	280	101	12	NT
12/10/11	1.19	826		+363		9.40	994.78	0.10	<0.1	< 0.01	0.1	120	277	87	<1	NT NT
22/01/12	1.26	826		+154		8.64	995.54	0.08	<0.1	0.02	< 0.1	179	258	100	<1	
09/05/12	0.98	914	0.38	+199	1/./	8.72	995.46	0.90	0.3	0.04	1.2	176	250	97	12	nil detected

Table 13: Field analytes, water level, nutrients, carbon – Monitoring well GWEX-03

Abbreviations: $DO = Dissolved Oxygen; EC = Electrical Conductivity also called specific conductance; Ph = Ph; Eh = Redox Potential; Temp = Temperature; D = Depth to water from top of internal well PVC casing; RL = water level converted to Reduced Level relative to mean sea level (RL from top of PVC casing = 1004.18m; NO_x = Nitrite + Nitrate; TKN = Total Kjeldahl Nitrogen (organic nitrogen and ammonia); NH₃ = Ammonia as a measure of ammonium ions; Tot N = Total Nitrogen; Free CO₂ = Free Carbon Dioxide; Alk = Alkalinity measured as mg/L CaCO₃ equivalent; Unfiltered C of <math>(CO_2 + Alk) = 12/44 CO_2 + 12/61 Alk; TOC = Total Organic Carbon; PAH = Polynuclear aromatic hydrocarbons (includes Benzo(a) pyrene); NT = not tested; Bold = not filtered. Note: PAH only required yearly.$

GWEX-03						L	aborat	ory an	alytes –	- geoch	nemical	and meta	ls					VOCs
	Ca	Mg	Na	K	so ₄	Cl	В	Br	Fe	Mn	As	Cd	Cr	Pb	Se	Zn	Hg	
Measure	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting Limit	1	1	1	1	1	1	0.2	0.1	0.01	0.01	0.001	0.001	0.001	0.001	0.01	0.001	0.0001	various
13/09/05	61	38	59	4	20	94	$<\!0.1$		< 0.05		< 0.001					0.017	0.0002	nil detected
26/11/05	56	36	54	3	19	93	< 0.1		< 0.05		< 0.001							nil detected
18/03/06	59 61	36 38	59 59	2 3	19 19	86	< 0.1		< 0.05			< 0.0001				0.034	< 0.0001	
20/07/06 12/09/06	01	38	39	3	19	101 95	< 0.1		<0.05 <0.05	0.02	<0.001	<0.0001	<0.001	<0.001	<0.01	<0.005		nil detected discontinue
12/09/00						95 97		1.0	<0.05								<0.0001	discontinue
18/04/07						108		0.4	<0.05	0.03							< 0.0001	
08/07/07						94			< 0.05	0.01							< 0.0001	
13/10/07						99			< 0.05	0.01						0.007	< 0.0001	
21/01/08						101			< 0.05							0.032	< 0.0001	
13/04/08						115				<0.01							<0.0001	
22/06/08						98				< 0.01							< 0.0001	
15/09/08						98 02				<0.01						0.010		
30/01/09 16/04/09						93 90			<0.05	< 0.01						<0.005 0.011	<0.0001 < 0.0001	
16/04/09 04/07/09						90 89				0.02						0.011	<0.0001	
22/10/09						89 92				0.003						0.012	< 0.0001	
07/03/10						102				0.004						0.012	<0.0001	
01/05/10						99				0.004						0.040	< 0.0001	
15/07/10						105				0.006						0.028	<0.0001	
14/10/10						98			< 0.05	0.005						0.047	<0.0001	
21/02/11						99			2.20	0.117						0.019	< 0.0001	
24/06/11						88			< 0.05	0.003						0.006	<0.0001	
17/08/11						94				0.002							< 0.0001	
12/10/11						97				0.004							< 0.0001	
22/01/12						84				0.004							< 0.0001	
09/05/12						111			<0.05	0.005						0.033	<0.0001	

Table 14: Laboratory analytes – geochemical, metals, VOCs – Monitoring well GWEX-03

Abbreviations: Ca = Calcium; Mg = Magnesium; Na = Sodium; K = Potassium; $SO_4 = Sulphate$; Cl = Chloride; B = Boron; Br = Bromine; Fe = Iron; Mn = Manganese; As = Arsenic; Cd = Cadmium; Cr = Chromium; Pb = Lead; Se = Selenium; Zn = Zinc; Hg = Mercury; VOCs = Volatile Organic Compounds; Bold = not filtered.

LS1		Fiel	ld anai	lytes		Water depth			N	utrient	s					10 9 16 2 12 10 8 1			
	DO	EC	pН	Eh	Temp	D		NO2 as N	-	TKN as N	-	TotN		Free CO ₂	Alk	-	TIC	тос	тс
Measure	mg/L	μS/cm	1-14	Mv	°C	m	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting Limit	0.01	1	0.01	1	0.1	0.01	0.01	0.01	0.01	0.1	0.01	0.1	0.01	1	1	1	1	1	1
13/02/98	NT	NT	5.97	NT	NT		NT	NT	< 0.01	NT	< 0.01	NT	NT		92			17	
24/02/98	NT	NT	6.25	NT	NT		NT	NT	$<\!0.01$		< 0.01	NT	NT		144				
16/03/98	NT	NT	6.22	NT	NT		NT	NT	< 0.01			NT	NT		208				
20/04/98	NT	NT	6.91	NT	NT		NT	NT	0.04	NT	0.52		NT		2				
18/05/98	NT	NT	5.64	NT	NT		NT	NT	0.10	NT	0.38	NT	NT		71			9	
09/02/00	8.01	307	9.01	+68	26.5	1.40	0.01	NT	NT	1.8	NT	1.8	0.05		71			17	
09/05/00	8.49	180	8.85	+92	16.9	1.02	0.01	NT	NT	0.9	NT	0.9	0.02		38			20	
15/08/00	12.64	256	8.61	+93	15.1	1.03	< 0.01	NT	NT	1.5	NT	1.5	0.51		58			20	
15/11/00	8.50	136	7.15	+105	15.6	1.00	0.03	NT	NT	1.3	NT	1.3	0.19		23			14	
18/09/01	9.02	274	7.54	+216	17.3	1.00	< 0.01	< 0.00	1 < 0.01	0.05	0.05	0.05	NC		20			12	
08/03/02	9.14	198	8.81	+240	24.7	0.45			1 < 0.01	1.4	0.09	1.4			32			18	
04/09/02	7.11	186	7.02	+258	19.8	0.40		< 0.00	0.03	4.5	2.98	4.5			32				
09/03/03	4.97	159	7.12	+223	21.1	0.90	0.02		3 0.01	1.1	0.10	1.1		6	27	,	10		37
06/09/03	15.29		10.14		17.6	0.60	< 0.01		2<0.01	2.0	0.11	2.0		<1	53		-		25
04/03/04	8.92			+124	24.0	0.70	< 0.01	NC	NC	3.2	NC	3.2		<1	59	12			18
16/09/04	11.23		7.26	+149	12.3	0.45	< 0.01			0.9		0.9			31		4	9	13
No longer	exists																		

Table 15: Field analytes, water level, nutrients, carbon – Surface water sampling point LS1

Abbreviations: DO = Dissolved Oxygen; $EC = Electrical Conductivity also called specific conductance; Ph = Ph; Eh = Redox Potential; Temp = Temperature; <math>D = Approximate depth of water at sampling point; NO_x = Nitrite + Nitrate; NO_2 = Nitrite; NO_3 = Nitrate; TKN = Total Kjeldahl Nitrogen (organic nitrogen and ammonia); NH₃ = Ammonia as a measure of ammonium ions; Tot N = Total Nitrogen; Tot P = Total Phosphorus; Free CO₂ = Free carbon dioxide; Alk = Alkalinity measured as mg/L CaCO₃ equivalent; Unfiltered C of (CO₂ + Alk) = 12/44 CO₂ + 12/61 Alk; TIC = Total Inorganic Carbon; TOC = Total Organic Carbon; NT = Not tested.$

Table 16: Laboratory analytes – suspended solids, geochemical, metals, VOCs – Surface water LS1

																				1
LS1								Labo	rator	y ana	lytes –	- geoche	mical ai	nd meta	ıls					VOCs
	SS	Ca	Mg	Na	K	SO4	Cl	В	Br	Fe	Mn	As	Cd	Cr	Pb	Se	Zn	Hg	Cu	
Measure	mg/L	mg/L	mg/L	mg/L	mg/L	. mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting Limit	1	1	1	1	1	1	1	0.2	0.1	0.01	0.01	0.001	0.001	0.001	0.001	0.01	0.001	0.0005	0.001	various
13/02/98	NT	15	NT	32	2	7	32	NT	NT	0.28	< 0.01	< 0.001	< 0.001	NT	< 0.01	NT	< 0.001	< 0.005	0.01	NT
24/02/98	NT	4	NT	50	3	8	40	NT	NT	0.43	< 0.01	< 0.001	< 0.001	NT	< 0.01	NT	0.010	< 0.005	< 0.01	NT
16/03/98	NT	4	NT	35	3	7	36	NT	NT	0.63	< 0.01	$<\!0.001$	$<\!0.001$	NT	< 0.01	NT	$<\!0.001$	< 0.005	< 0.01	NT
20/04/98	NT	4	NT	66	7	37	48	NT	NT	0.40	0.05	< 0.001	$<\!0.001$	NT	0.01	NT	0.003	< 0.005	< 0.01	NT
18/05/98	NT	4	NT	40	1	2	26	NT	NT	0.20	< 0.01	< 0.001	$<\!0.001$	NT	0.01	NT	0.008	$<\!0.005$	< 0.01	NT
09/02/00 09/05/00 15/08/00 15/11/00 18/09/01 08/03/02 04/09/02 09/03/03 06/09/03 04/03/04 16/09/04 No longer	6 6 17 9 13 15 9 4 <1 8 15 exists	14 9 NC	7 4 NC		6 4 NC		34 NC	<0.2 <0.2 <0.2 <0.1	0.1 0.2 <0.1 0.2 0.1 <0.1 <0.1 <0.1 0.3 0.2	0.35 2.07 0.75 0.47 0.56 1.85 0.97 0.32 0.44	0.01 0.19 0.03 0.01 <0.01 0.13 0.08	0.001 NC	<0.001 <0.001 <0.001 <0.001	<0.001 NC	NT <0.001 <0.001 0.001	<0.01 NC	NT 0.010 0.004 0.023 0.030 0.050 0.120 0.038 0.019 0.002 0.031	<0.0005 NC	NT NC	nil detected discontinued

Abbreviations: SS = Suspended solids; Ca = Calcium; Mg = Magnesium; Na = Sodium; K = Potassium; $SO_4 = Sulphate$; Cl = Chloride; B = Boron; Br = Bromine; Fe = Iron Mn = Manganese; As = Arsenic; Cd = Cadmium; Cr = Chromium; Pb = Lead; Se = Selenium; Zn = Zinc; Hg = Mercury; Cu = Copper; VOCs = Volatile Organic Compounds; NT = Not tested.

bot bc bt Term b No.	LS2			d analy			Water depth				utrien		v					bon		
Measure mg/L Stcm 1-14 Mv °C m mg/L mg/		DO	EC	pН	Eh	Temp	D		-				TotN	TotP		Alk	_	TIC	тос	TC
	Measure	mg/L	S/cm	1-14	Mv	°C	m						mg/L	mg/L		mg/L		mg/L	mg/L	mg/L
	Renorting	0.01	1	0.01	1	0.1	0.01	0.01	0.01	0.01	0.1	0.01	0.1	0.01	1	1	1	1	1	1
240298 NT	1 0		-		-					0.01			0.12		-	-	-	-	-	_
16/03/98 NT	13/02/98	NT	NT	8.02	NT	NT		NT	NT	$<\!0.01$	NT	$<\!0.01$	NT	NT		1			7	
2004/98 NT NT <t< th=""><th>24/02/98</th><th>NT</th><th>NT</th><th>7.56</th><th>NT</th><th>NT</th><th></th><th>NT</th><th>NT</th><th>$<\!0.01$</th><th>NT</th><th>$<\!0.01$</th><th>NT</th><th>NT</th><th></th><th>73</th><th></th><th></th><th>6</th><th></th></t<>	24/02/98	NT	NT	7.56	NT	NT		NT	NT	$<\!0.01$	NT	$<\!0.01$	NT	NT		73			6	
18/05/98 NT <	16/03/98	NT	NT	8.09	NT	NT		NT	NT	$<\!0.01$	NT	$<\!0.01$	NT	NT		129			9	
09/02/00 7.94 1143 8.60 +99 23.6 1.00 <0.01	20/04/98	NT	NT	6.54	NT	NT		NT	NT	0.51	NT	$<\!\!0.01$	NT	NT		1194			5	
99/05/00 8.17 1111 8.82 +19 16.0 L25 0.01 NT NT 1.5 0.02 2.05 33 15/08/00 11.10 1218 8.62 +27 10.0 1.20 0.08 NT 2.9 0.01 2.4 28 18/09/01 10.62 1100 8.83 +188 15.5 1.00 0.03 0.027 0.01 0.05 0.8 NC 233 243 58 05/09/02 8.26 1607 8.65 +237 1.00 0.03 0.027 0.01 0.11 1.5 243 58 05/09/02 8.45 1426 1.24 0.90 0.01 0.01 1.5 1.5 2.43 58 12/06/03 13.20 1425 8.45 13.21 1.20 0.92 0.20 2.77 6.0 1 209 41 56 42 98 15/06/03 13.43 1537 9.16 101<	18/05/98	NT	NT	7.20	NT	NT		NT	NT	< 0.01	NT	0.03	NT	NT		2			4	
15/08/00 11.10 1218 8.62 +27 100 1.50 <0.01 NT NT 2.9 NT 2.9 <0.01 242 28 15/11/00 9.13 1268 8.94 +39 17.5 1.20 0.08 NT NT 1.4 NT 1.5 0.08 NC 230 24 08/03/02 8.26 1607 8.65 +237 230 1.10 <0.01 <0.01 1.5 0.11 1.5 243 58 05/09/02 10.03 1833 8.96 +262 18.2 0.75 <0.01 0.01 4.9 2.77 6.0 1 209 41 56 42 98 12/06/03 13.20 1425 8.45 124 1.00 1.11 0.01 0.05 3.5 <1 300 60 45 46 91 05/03/04 8.48 1347 8.59 +180 0.11 0.02 4.5 4.5 <1 301 59 NC 34 NC 15/09/04 <	09/02/00	7.94	1143	8.60	+99	23.6	1.00	< 0.01	NT	NT	2.3	NT	2.3	0.02		206			13	
15/11/00 9.13 1268 8.94 +39 17.5 1.20 0.08 NT NT 1.4 NT 1.5 0.08 261 25 18090/01 10.62 1109 8.83 +188 15.5 1.00 0.03 0.027 <0.01 0.75 0.05 0.8 NC 230 230 24 08/03/02 1607 8.65 +237 23.0 1.10 <0.01 <0.001 1.01 1.5 243 58 05/09/02 10.33 1853 8.96 +262 18.2 0.75 <0.01 1.01 1.04 4.9 2.77 6.0 1 209 41 56 42 98 12/06/03 13.43 1593 8.82 +159 1.20 0.92 0.023 0.90 2.6 0.05 3.5 <1 300 60 45 46 91 05/03/04 8.48 1347 8.59 +180 0.11 0.92 0.22 5.2 5.1 363 71 73 32 105 <t< th=""><th>09/05/00</th><th>8.17</th><th>1111</th><th>8.82</th><th>+19</th><th>16.0</th><th>1.25</th><th>0.01</th><th>NT</th><th>NT</th><th>1.5</th><th>NT</th><th>1.5</th><th>0.02</th><th></th><th>205</th><th></th><th></th><th>33</th><th></th></t<>	09/05/00	8.17	1111	8.82	+19	16.0	1.25	0.01	NT	NT	1.5	NT	1.5	0.02		205			33	
18/09/01 10.62 1190 8.83 +188 15.5 1.00 0.03 0.027 <0.01 0.77 0.05 0.8 NC 230 24 08/03/02 8.26 1607 8.65 +237 23.0 1.10 <0.01 <0.01 1.0 1.15 0.11 1.5 243 58 05/09/02 10.03 1853 8.96 +262 18.2 0.75 <0.01 <0.01 1.0 1.1 0.01 1.0 1.1 0.01 1.0 1.1 0.01 1.0 1.1 0.01 1.0 1.1 0.01 1.0 1.1 0.01 1.0 1.1 0.01 1.0 1.1 0.01 1.0 1.1 0.01 1.0 1.1 0.01 1.0 1.1 0.01 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 <t< th=""><th>15/08/00</th><th>11.10</th><th>1218</th><th>8.62</th><th>+27</th><th>10.0</th><th>1.50</th><th>< 0.01</th><th>NT</th><th>NT</th><th>2.9</th><th>NT</th><th>2.9</th><th>$<\!0.01$</th><th></th><th>242</th><th></th><th></th><th>28</th><th></th></t<>	15/08/00	11.10	1218	8.62	+27	10.0	1.50	< 0.01	NT	NT	2.9	NT	2.9	$<\!0.01$		242			28	
08/03/02 8.26 1607 8.65 +237 23.0 1.10 <0.01	15/11/00	9.13	1268	8.94	+39	17.5	1.20					NT				261				
05/09/02 10.03 1853 8.96 +262 18.2 0.75 <0.01	18/09/01	10.62	1190	8.83	+188	15.5	1.00	0.03	0.027	< 0.01	0.77	0.05	0.8	NC		230			24	
08/03/03 5.93 1592 8.17 +117 24.3 1.00 1.11 0.071 1.04 4.9 2.77 6.0 1 209 41 56 42 98 06/09/03 13.43 1593 8.82 +159 13.20 0.92 0.023 0.90 2.6 0.05 3.5 <1 300 60 45 46 91 05/03/04 8.48 159 18.2 0.99 0.22 NC NC 6.5 NC 6.9 <1 473 93 79 47 126 15/09/04 11.87 1387 9.16 +101 15.2 0.60 <0.01 4.5 4.5 <1 301 59 NC 34 NC 13/09/05 12.24 12.36 8.92 +150 11.8 1.00 0.02 5.1 <1 233 50 50 26/11/05 12.33 1071 9.96 +111 25.7 1.40	08/03/02	8.26	1607	8.65	+237	23.0	1.10	< 0.01	< 0.001	< 0.01	1.5	0.11	1.5			243			58	
12/06/03 13.20 1425 8.45 +246 12.4 0.90 0.13 0.024 0.11 06/09/03 13.43 1593 8.82 +159 13.2 1.20 0.92 0.023 0.90 2.6 0.05 3.5 <1 300 60 45 46 91 05/03/04 8.48 1347 8.59 +180 0.01 1.5 1.5 <1 300 60 45 46 91 15/09/04 11.87 1387 9.16 +101 15.2 0.60 <0.01 1.5 1.5 <1 363 71 73 32 105 07/03/05 6.27 1417 8.66 +224 0.80 0.00 <0.02 4.1 4.1 <1 423 83 51 13/09/05 12.24 1236 8.92 +150 1.40 0.052 5.2 5.2 <1 276 54 422 13/09/05 12.24 123 807 9.03 7.7 3.7 <1 300 59 34	05/09/02	10.03	1853	8.96	+262	18.2	0.75	< 0.01	0.001	< 0.01	1.9	0.05	1.9			235				
06/09/03 13.43 1593 8.82 +159 13.2 1.20 0.92 0.023 0.90 2.6 0.05 3.5 <1	08/03/03			8.17	+117	24.3	1.00	1.11	0.071	1.04	4.9	2.77	6.0		1	209	41	56	42	98
05/03/04 8.48 1347 8.59 +180 0.1 0.99 0.42 NC NC 6.5 NC 6.9 <1	12/06/03	13.20	1425	8.45	+246	12.4	0.90	0.13												
15/09/04 11.87 1387 9.16 +101 15.2 0.60 <0.01 1.5 1.5 <1 363 71 73 32 105 07/03/05 6.27 1417 8.66 +224 20.8 0.90 <0.01 4.5 4.5 <1 301 59 NC 34 NC 17/06/05 10.68 1481 9.17 +113 9.5 1.00 0.02 4.1 4.1 <1 423 83 51 13/09/05 12.24 1236 8.92 +150 1.40 0.052 5.2 5.2 <1 276 54 42 18/03/06 9.84 971 8.65 +84 2.3 1.20 0.039 3.7 3.7 <1 300 59 34 20/07/06 12.97 1009 9.11 +107 1.8 0.50 0.305 3.6 4.0 <1 249 49 42 12/09/06 12.68 962 9.04 +109 10.8 0.75 0.860 4.2 5.1															<1	300				
07/03/05 6.27 1417 8.66 +224 20.8 0.90 <0.01 4.5 4.5 <1 301 59 NC 34 NC 17/06/05 10.68 1481 9.17 +113 9.5 1.00 0.02 4.1 4.1 <1 423 83 51 13/09/05 12.24 1236 8.92 +150 11.8 1.20 0.535 3.5 4.0 <1 253 50 50 26/11/05 12.33 1071 9.96 +111 25.7 1.40 0.052 5.2 5.2 <1 300 59 34 20/07/06 12.97 1009 9.11 +107 1.80 0.50 0.305 3.6 4.0 <1 249 49 42 12/09/06 12.68 962 9.04 +109 10.8 0.75 0.860 4.2 5.1 <1 239 47 30 18/01/07 8.22 1072 9.03 +113 2.54 1.20 <0.01 6.3 6.3 <1 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0.99</th> <th></th> <th>NC</th> <th>NC</th> <th></th> <th>NC</th> <th></th> <th></th> <th><1</th> <th>473</th> <th>93</th> <th></th> <th></th> <th></th>							0.99		NC	NC		NC			<1	473	93			
17/06/05 10.68 1481 9.17 +113 9.5 1.00 0.02 4.1 4.1 4.1 <1 423 83 51 13/09/05 12.24 1236 8.92 +150 11.8 1.20 0.535 3.5 4.0 <1 253 50 50 26/11/05 12.33 1071 9.96 +111 25.7 1.40 0.052 5.2 5.2 <1 276 54 42 18/03/06 9.84 971 8.65 +84 24.3 1.20 0.039 3.7 3.7 <1 300 59 34 20/07/06 12.97 1009 9.11 +107 1.8 0.50 0.305 3.6 4.0 <1 249 49 42 12/09/06 12.68 962 9.04 +109 10.8 0.75 0.860 4.2 5.1 <1 239 47 30 18/01/07 12.94 1124 8.94 +217 18.8 1.40 0.095 5.5 5.6 <1 367 </th <th></th>																				
13/09/05 12.24 1236 8.92 +150 11.8 1.20 0.535 3.5 4.0 <1 253 50 26/11/05 12.33 1071 9.96 +111 25.7 1.40 0.052 5.2 5.2 <1 276 54 42 18/03/06 9.84 971 8.65 +84 24.3 1.20 0.039 3.7 3.7 <1 300 59 34 20/07/06 12.97 1009 9.11 +107 10.8 0.50 0.305 3.6 4.0 <1 249 49 42 12/09/06 12.68 962 9.04 +109 18.0 0.75 0.860 4.2 5.1 <1 239 47 30 18/04/07 12.94 1124 8.94 +217 18.8 1.20 0.046 4.0 4.1 <1 338 66 40 14/10/07 7.07 1378 8.16 +176 18.8 1.25 0.272 6.0 6.2 <1 420 84 37<															<1			NC		NC
26/11/05 12.33 1071 9.96 +111 25.7 1.40 0.052 5.2 5.2 <1 276 54 42 18/03/06 9.84 971 8.65 +84 24.3 1.20 0.039 3.7 3.7 <1 300 59 34 20/07/06 12.97 1009 9.11 +107 10.8 0.50 0.305 3.6 4.0 <1 249 49 42 12/09/06 12.68 962 9.04 +109 10.8 0.75 0.860 4.2 5.1 <1 239 47 30 18/01/07 8.22 1072 9.03 +113 25.4 1.20 <0.01 6.3 6.3 <1 231 45 46 18/04/07 12.94 1124 8.94 +217 18.8 1.40 0.095 5.5 5.6 <1 367 72 41 08/07/07 11.38 1070 9.06 +61 7.8 1.20 0.046 4.0 4.1 <1 338 66 <th></th>																				
18/03/06 9.84 971 8.65 +84 24.3 1.20 0.039 3.7 3.7 3.7 <1 300 59 34 20/07/06 12.97 1009 9.11 +107 10.8 0.50 0.305 3.6 4.0 <1 249 49 42 12/09/06 12.68 962 9.04 +109 10.8 0.75 0.860 4.2 5.1 <1 239 47 30 18/01/07 8.22 1072 9.03 +113 25.4 1.20 <0.01 6.3 6.3 <1 231 45 46 18/04/07 12.94 1124 8.94 +217 18.8 1.40 0.095 5.5 5.6 <1 367 72 41 08/07/07 11.38 1070 9.06 +61 7.8 1.20 0.046 4.0 4.1 <1 338 66 40 14/10/07 7.07 1378 8.16 +176 18.8 1.25 0.272 6.0 6.2 <1 420 <th></th>																				
20/07/06 12.97 1009 9.11 +107 10.8 0.50 0.305 3.6 4.0 <1 249 49 42 12/09/06 12.68 962 9.04 +109 10.8 0.75 0.860 4.2 5.1 <1 239 47 30 18/01/07 8.22 1072 9.03 +113 25.4 1.20 <0.01 6.3 6.3 <1 231 45 46 18/01/07 12.94 1124 8.94 +217 18.8 1.40 0.095 5.5 5.6 <1 367 72 41 08/07/07 11.38 1070 9.06 +61 7.8 1.20 0.046 4.0 4.1 <1 338 66 40 14/10/07 7.07 1378 8.16 +176 18.8 1.25 0.272 6.0 6.2 <1 420 84 37 14/04/08 9.61 1393 9.02 +118.4 0.60 0.11 5.7 5.8 <1 440 87 41 <th></th>																				
12/09/06 12.68 962 9.04 +109 10.8 0.75 0.860 4.2 5.1 <1 239 47 30 18/01/07 8.22 1072 9.03 +113 25.4 1.20 <0.01 6.3 6.3 <1 231 45 46 18/04/07 12.94 1124 8.94 +217 18.8 1.40 0.095 5.5 5.6 <1 367 72 41 08/07/07 11.38 1070 9.06 +61 7.8 1.20 0.046 4.0 4.1 <1 338 66 40 14/10/07 7.07 1378 8.16 +176 18.8 1.25 0.272 6.0 6.2 <1 420 84 37 14/04/08 9.61 1393 9.03 +156 1.5 1.20 <0.01 6.8 6.8 <1 439 86 46 14/09/08 13.71 1398 9.02 -118 8.060 0.11 5.7 5.8 <1 440 87 41																				
18/01/07 8.22 1072 9.03 +113 25.4 1.20 <0.01 6.3 6.3 <1 231 45 46 18/04/07 12.94 1124 8.94 +217 18.8 1.40 0.095 5.5 5.6 <1 367 72 41 08/07/07 11.38 1070 9.06 +61 7.8 1.20 0.046 4.0 4.1 <1 338 66 40 14/10/07 7.07 1378 8.16 +176 18.8 1.25 0.272 6.0 6.2 <1 420 84 37 14/04/08 9.61 1393 9.03 +156 19.5 1.20 <0.01 6.8 6.8 <1 439 86 46 14/09/08 13.71 1398 9.02 -118 14.8 0.60 0.11 5.7 5.8 <1 440 87 41 15/04/09 10.66 1592 9.38 +100 0.00 0.70 0.01 4.8 4.8 480 94 6																				
18/04/07 12.94 1124 8.94 +217 18.8 1.40 0.095 5.5 5.6 <1 367 72 41 08/07/07 11.38 1070 9.06 +61 7.8 1.20 0.046 4.0 4.1 <1 338 66 40 14/10/07 7.07 1378 8.16 +176 18.8 1.25 0.272 6.0 6.2 <1 420 84 37 14/04/08 9.61 1393 9.03 +156 19.5 1.20 <0.01 6.8 6.8 <1 439 86 46 14/09/08 13.71 1398 9.02 -118 14.8 0.60 0.11 5.7 5.8 <1 440 87 41 15/04/09 10.66 1592 9.38 +100 0.00 0.70 0.01 4.8 4.8 <1 480 94 64 21/10/09 15.35 1733 9.53 +136 0.50 0.02 10.3 10.3 <1 613 121 85 </th <th></th>																				
08/07/07 11.38 1070 9.06 +61 7.8 1.20 0.046 4.0 4.1 <1 338 66 40 14/10/07 7.07 1378 8.16 +176 18.8 1.25 0.272 6.0 6.2 <1 420 84 37 14/04/08 9.61 1393 9.03 +156 19.5 1.20 <0.01 6.8 6.8 <1 439 86 46 14/09/08 13.71 1398 9.02 -118 14.8 0.60 0.11 5.7 5.8 <1 440 87 41 15/04/09 10.66 1592 9.38 +100 20.0 0.70 0.01 4.8 4.8 <1 480 94 64 21/10/09 15.35 1733 9.53 +136 25.1 0.45 0.05 7.4 7.5 <1 513 101 77 02/05/10 10.92 2172 8.69 +56 19.7 0.50 0.02 10.3 10.3 <1 613 121<																				
14/10/07 7.07 1378 8.16 +176 18.8 1.25 0.272 6.0 6.2 <1 420 84 37 14/04/08 9.61 1393 9.03 +156 19.5 1.20 <0.01 6.8 6.8 <1 439 86 46 14/09/08 13.71 1398 9.02 -118 14.8 0.60 0.11 5.7 5.8 <1 440 87 41 15/04/09 10.66 1592 9.38 +100 0.00 0.01 4.8 4.8 <1 480 94 64 21/10/09 15.35 1733 9.53 +136 25.1 0.45 0.05 7.4 7.5 <1 513 101 77 02/05/10 10.92 2172 8.69 +56 19.7 0.50 0.02 10.3 10.3 <1 613 121 85 14/10/10 11.44 2041 9.01 +1 14.8 0.80 0.11 10.1 10.2 <1 563 111 66<																				
14/04/08 9.61 1393 9.03 +156 19.5 1.20 <0.01 6.8 6.8 <1 439 86 46 14/09/08 13.71 1398 9.02 -118 14.8 0.60 0.11 5.7 5.8 <1 440 87 41 15/04/09 10.66 1592 9.38 +100 20.0 0.01 4.8 4.8 <1 480 94 64 21/10/09 15.35 1733 9.53 +136 25.1 0.45 0.05 7.4 7.5 <1 513 101 77 02/05/10 10.92 2172 8.69 +56 19.7 0.50 0.02 10.3 10.3 <1 613 121 85 14/10/10 11.44 2041 9.01 +1 14.8 0.80 0.11 10.1 10.2 <1 563 111 66 26/06/11 14.01 2710 8.58 +92 10.6 0.75 0.23 24.4 24.6 <1 440 87 12																				
14/09/08 13.71 1398 9.02 -118 14.8 0.60 0.11 5.7 5.8 <1																				
15/04/09 10.66 1592 9.38 +100 20.0 0.70 0.01 4.8 4.8 <1																				
21/10/09 15.35 1733 9.53 +136 25.1 0.45 0.05 7.4 7.5 <1																				
02/05/10 10.92 2172 8.69 +56 19.7 0.50 0.02 10.3 10.3 <1																				
14/10/10 11.44 2041 9.01 +1 14.8 0.80 0.11 10.1 10.2 <1																				
26/06/11 14.01 2710 8.58 +92 10.6 0.75 0.23 24.4 24.6 <1																				
11/10/11 13.05 2610 8.85 +56 17.1 0.70 0.43 19.5 19.9 <1 683 134 57																				
08/05/12 10.99 2/80 8.68 +55 16.8 0.45 0.22 17.0 17.2 <1 700 138 83																				
	08/05/12	10.99	2780	8.68	+55	16.8	0.45	0.22			17.0		17.2		<1	700	138		83	

Table 17: Field analytes, water level, nutrients, carbon – Surface water sampling point LS2

Abbreviations: DO = Dissolved Oxygen; $EC = Electrical Conductivity also called specific conductance; Ph = Ph; Eh = Redox Potential; Temp = Temperature; <math>D = Approximate depth of water at sampling point; NO_x = Nitrite + Nitrate; NO_2 = Nitrite; NO_3 = Nitrate; TKN = Total Kjeldahl Nitrogen (organic nitrogen and ammonia); NH₃ = Ammonia as a measure of ammonium ions; Tot N = Total Nitrogen; Tot P = Total Phosphorus; Free CO₂ = Free Carbon Dioxide; Alk = Alkalinity measured as mg/L CaCO₃ equivalent; Unfiltered C of (CO₂ + Alk) = 12/44 CO₂ + 12/61 Alk; TIC = Total Inorganic Carbon; TOC = Total Organic Carbon; TC = Total Carbon; NT = Not tested; NC = Not continuing; Bold = unfiltered.$

LS2								L	abora	atory a	nalytes –	- geochen	nical and	metals						VOCs
	SS	Ca	Mg	Na	К	SO4	Cl	В	Br	Fe	Mn	As	Cd	Cr	Pb	Se	Zn	Hg	Cu	
Measure	mg/L	mg/L	mg/L	mg/L	mg/L	. mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting Limit	1	1	1	1	1	1	1	0.2	0.1	0.01	0.01	0.001	0.001	0.001	0.001	0.01	0.001	0.0005	0.001	various
13/02/98	NT	10	NT	211	3	42	184	NT	NT	0.13	< 0.01	0.005	< 0.001	NT	< 0.01	NT	< 0.001	<0.005	0.01	NT
24/02/98	NT		NT		4	37					< 0.01	< 0.005		NT	< 0.01	NT		< 0.005	0.01	NT
16/03/98	NT		NT		5	35					< 0.01	0.005	< 0.001	NT	< 0.01				0.01	NT
20/04/98	NT		NT		3	28		NT		0.03	0.05	< 0.001	< 0.001	NT	< 0.01	NT			< 0.01	NT
18/05/98	NT	9		265		29					< 0.01	0.003	< 0.001	NT	0.01	NT		< 0.005	< 0.01	NT
09/02/00	15	28	35	127	40	64	199	< 0.2	1.7	< 0.01	0.05	0.002	< 0.001	< 0.001	NT	< 0.01	NT	< 0.0005	NC	nil detected
09/05/00	11	26		118	39	58	NC	$<\!0.2$		0.06	0.02	NC	0.001	NC	$<\!0.001$	NC	0.005			discontinued
15/08/00	4	NC	NC	NC	NC	NC		< 0.2		0.04	< 0.01		< 0.001		$<\!0.001$		0.009			
15/11/00	32							< 0.1		0.27	0.04		< 0.001		0.001		0.036			
18/09/01	7									0.04	0.03						0.010			
08/03/02	9									0.21							0.110			
05/09/02	9									0.07	< 0.01						0.014			
08/03/03	4									0.23	0.07 <0.01						0.030			
06/09/03 05/03/04	<2 10									0.04 0.02	<0.01 0.02						0.01			
05/03/04 15/09/04	5									0.02	0.02						0.00			
07/03/05	38									0.11	0.03 0.26						<0.02			
17/06/05	55									1.23	0.20						<0.00			
13/09/05	55									1.31	0.06						<0.00			
26/11/05	43									0.67	0.07						0.01			
18/03/06	15									0.20	0.12						0.01			
20/07/06	41									0.74	0.14						0.00			
12/09/06	42									1.40	0.13						0.01			
18/01/07	92									0.27	0.10						0.00			
18/04/07	32									< 0.05							<0.00			
08/07/07	10									0.35	0.06						0.02			
14/10/07	8									0.45	0.14						0.01			
14/04/08	59									0.23	0.14						0.02			
14/09/08	43									0.26	0.06						0.00			
15/04/09	58									0.13	0.08						<0.00			
21/10/09	112									0.22	0.053						<0.00			
02/05/10	65									0.18	0.184						<0.00			
14/10/10	64									0.09	0.092						<0.00			
26/06/11	29									0.55	0.148						<0.00			
11/10/11	35									0.10	0.095						<0.00			
08/05/12	29									0.16	0.069						<0.00	5		

Table 18: Laboratory analytes – suspended solids, geochemical, metals, VOCs – Surface water LS2

Abbreviations: SS = Suspended solids; Ca = Calcium; Mg = Magnesium; Na = Sodium; K = Potassium; $SO_4 = Sulphate$; Cl = Chloride; B = Boron; Br = Bromine; Fe = Iron; Mn = Manganese; As = Arsenic; Cd = Cadmium; Cr = Chromium; Pb = Lead; Se = Selenium; Zn = Zinc; Hg = Mercury; Cu = Copper; VOCs = Volatile Organic Compounds; NT = Not tested; NC = Not continuing; Bold = not filtered.

LS3		Field	l analy	vtes		Water depth			Nı	utrients						Car	bon		
	DO	EC	pН	Eh	Temp	D	NO _x	NO_2	NO ₃	TKN	NH ₃	TotN	TotP		Alk			тос	тс
	~						as N	as N	as N	as N	as N		~	CO ₂	~	+ Alk			
Measure	mg/L	μS/cm	1-14	Mv	°C	m	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting	0.01	1	0.01	1	0.1	0.01	0.01	0.01	0.01	0.1	0.01	0.1	0.01	1	1	1	1	1	1
Limit																			
13/02/98	NT	NT	8.04	NT	NT		NT	NT	0.96	NT	5.56	NT	NT		835			35	
24/02/98	NT	NT	6.01	NT	NT		NT	NT	0.95		13.46	NT	NT		851			39	
16/03/98	NT	NT	8.52	NT	NT		NT	NT	0.91		10.70	NT	NT		5			50	
20/04/98	NT	NT	8.45	NT	NT		NT	NT	0.63		8.45	NT	NT		1059			43	
18/05/98	NT	NT	5.91	NT	NT		NT	NT	0.31	NT	13.81	NT	NT		117			33	
09/02/00	10.10	2122	8.48	+103	23.7	1.50	0.81	*3.63	*<0.01	10.3	*6.52	11.1	0.06		541			20	
09/05/00	4.89	2102	8.33	+52	17.2	1.10	0.79	0.40	0.39	15.8	7.82	16.6	NT		548			67	
15/08/00	7.48	2000	8.29	+78	11.4	1.00	2.99	0.31	2.68	18.6	14.9	21.6	0.10		611			48	
14/11/00	13.36	2217	9.10	+7	17.0		1.42	0.216	1.20	15.58	5.0	17.0	0.28		630			66	
18/09/01	9.49	2672	8.29	+161	17.2	1.00	0.57	0.367	0.20	21.03	15.0	22.6			642			68	
08/03/02	13.01	2255	8.72	+211	24.4	1.00	1.43	0.554	0.88	7.5	1.07	8.9			400			96	
05/09/02	20.20	2356	9.19	+209	18.0	0.90	2.41	0.260	2.15	10.5	4.45	12.9			360			59	
08/03/03		1590				1.00	0.94	0.158	0.78	9.6	6.67	10.5		12	315	65	82	53	135
12/06/03		1749				0.60													
06/09/03	11.07			+147		1.00	2.21	0.076	2.13	9.9	6.14	12.1		<1	517	102	64	50	114
05/03/04		2185			18.9	0.95	1.49	NC	NC	17.3	11.4	18.8		<1	837	165	134	67	203
15/09/04		2039			16.1	0.50	3.48			9.5	2.89	13.0		<1	375	74	77	67	144
07/03/05		1470				0.85	0.393			9.6	2.48	10.0		<1	329	65	NC	41	NC
13/09/05	13.47			+176		0.75	5.89			11.6	6.97	17.5		<1	347	68		79	
18/03/06	11.91			+102		0.80	0.185			12.8	0.915	12.9		<1	327	64		68	
12/09/06	16.62		9.70	+70		1.00	0.695			17.1	2.04	17.8		<1	380	75		84	
18/04/07	22.88			+154		0.80	0.302			19.3	7.99	19.6		<1	473	93		81	
14/10/07	19.18		9.00		22.3	1.25	1.030			15.0	6.03	16.0		<1	428	83		90	
14/04/08	11.62			+120		0.90	0.210			9.0	3.67	9.2		<1	437	86		53	
14/09/08	13.09		8.79	-56		0.50	0.800			5.8	3.97	6.6		<1	420	83		41	
15/04/09	16.62					1.10	0.270			4.9	0.43	5.2		<1	267	53		56	
21/10/09	14.80			+166		0.55	0.460			5.2	1.32	5.6		<1	357	70		61	
02/05/10 14/10/10		1418 1532	9.19 8.87	-1		0.60	0.120 0.220			6.4 7.4	1.03 3.27	6.5 7.6		<1	340 367	67 72		65 47	
14/10/10 26/06/11			8.87 8.13	+95 -50		0.50 1.20	1.33				3.27 6.97			<1				47 59	
	13.68									11.2		12.5		15	719 377	146			
11/10/11 08/05/12	13.62 13.18		8.81 9.08	+69	16.9 17.8	0.75 0.70	1.00 0.07			7.1 8.9	2.03 0.62	8.1 9.0		<1	377 713	74 140		28 64	
00/05/12	15.18	1/33	9.08	+32	17.0	0.70	0.07			0.9	0.02	9.0		<1	/15	140		04	

Table 19:	Field analytes,	water level,	nutrients.	carbon – Surf	face water	sampling point LS3
			,	· · · · · · · · · · · · · · · · · · ·		

Abbreviations: DO = Dissolved Oxygen; EC = Electrical Conductivity also called specific conductance; Ph = Ph; Eh = Redox Potential; Temp = Temperature; D = Approximate depth of water at sampling point; NO_x = Nitrite + Nitrate; NO₂ = Nitrite; NO₃ = Nitrate; TKN = Total Kjeldahl Nitrogen (organic nitrogen and ammonia); NH₃ = Ammonia as a measure of ammonium ions; Tot N = Total Nitrogen; Tot P = Total Phosphorus; Free CO₂ = Free carbon dioxide; Alk = Alkalinity measured as mg/L CaCO₃ equivalent; Unfiltered C of (CO₂ + Alk) = 12/44 CO₂ + 12/61 Alk; TIC = Total Inorganic Carbon; TOC = Total Organic Carbon; NT = Not tested; * = Tested ~ fortnight later; NC = Not continuing; Bold = unfiltered.

LS3								Lab	orato	ry ana	lytes –	geoche	mical ar	nd meta	ıls					VOCs
	SS	Ca	Mg	Na	K	SO4	Cl	B	Br	Fe	Mn	As	Cd	Cr	Pb	Se	Zn	Hg	Cu	
Measure	mg/L	mg/L	mg/L	mg/L	mg/L	. mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting	1	1	1	1	1	1	1	0.2	0.1	0.01	0.01	0.001	0.001	0.001	0.001	0.01	0.001	0.0005	0.001	various
Limit																				
13/02/98	NT	35	NT	260	57	6	356	NT	NT	0.31	$<\!0.01$	0.002	$<\!\!0.001$	NT	< 0.01	NT	$<\!0.001$	< 0.005	0.02	NT
24/02/98	NT	35	NT	450	80	6	466	NT	NT	0.18	$<\!0.01$	$<\!0.001$	$<\!0.001$	NT	< 0.01	NT	0.030	< 0.005	0.01	NT
16/03/98	NT	43		90	63								$<\!\!0.001$		< 0.01			< 0.005	0.01	NT
20/04/98	NT	38	NT	693	86	3	613	NT	NT	0.62	0.01	$<\!0.001$	$<\!0.001$	NT	0.01	NT	0.008	< 0.005	$<\!0.01$	NT
18/05/98	NT	35	NT	255	46	2	447	NT	NT	0.26	0.10	< 0.001	< 0.001	NT	0.01	NT	0.011	< 0.005	0.01	NT
09/02/00	14	48	63	248	121	16	380	0.3	3.6	1.17	0.12	0.004	< 0.001	0.001	NT	< 0.01	NT	< 0.0005	NT	nil detected
09/05/00	21	62	56	186	119	19	NT	0.3		2.25	0.11				< 0.001	< 0.01	0.011	< 0.0001	0.05	discontinued
15/08/00	3	NT		NT		NT	NT	0.2		1.80	0.14	0.003	0.003	< 0.001	< 0.001	0.02	0.025	< 0.0005	NC	
14/11/00	43	47	66	226	121	82	NT	0.2	5.6	1.58	0.11	0.004	< 0.001	0.001	0.001	< 0.01	0.021	< 0.0001		
18/09/01	13	NC				NC	NC	NC	5.5	0.03	0.03	NC	NC	NC	NC	NC	0.014	NC		
08/03/02	41								5.4	0.28	0.03						0.044			
05/09/02	29								6.6	0.06	0.03						0.028			
08/03/03	9								3.2	0.99	0.20						0.033			
06/09/03	26								4.1	0.30	0.06						0.031			
05/03/04	24								2.9	0.06	0.14						0.019			
15/09/04	26								4.3	0.39	0.02						0.035			
07/03/05	42								4.9	0.69	0.13						0.016			
13/09/05	42								2.4	0.83	0.06						< 0.005			
18/03/06	92								3.1	0.67	0.11						< 0.005			
12/09/06	102								4.3	2.83	0.08						0.019			
18/04/07	68								1.9	0.06	<0.01						< 0.005			
14/10/07	113									0.47	0.11						0.018			
14/04/08	56									0.25	0.22						0.016			
14/09/08	30									0.23	0.11						< 0.005			
15/04/09	56									0.30	0.07						0.010			
21/10/09	48									0.30	0.060)					< 0.005			
02/05/10	56									0.34	0.205						< 0.005			
14/10/10	48									0.22	0.160						0.006			
26/06/11	46									0.65	0.118						0.009			
11/10/11	37									0.33	0.089						0.009			
08/05/12	71									0.24							< 0.005			
	/1									J T	0.1/1	•								

<i>Table 20:</i>	Laboratory	analytes –	suspended	solids, g	eochemical	and metals	s – Surface water LS3

Abbreviations: SS = Suspended solids; Ca = Calcium; Mg = Magnesium; Na = Sodium; K = Potassium; $SO_4 = Sulphate$; Cl = Chloride; B = Boron; Br = Bromine; Fe = Iron; Mn = Manganese; As = Arsenic; Cd = Cadmium; Cr = Chromium; Pb = Lead; Se = Selenium; Zn = Zinc; Hg = Mercury; Cu = Copper; VOCs = Volatile Organic Compounds; NT = Not tested; Bold = not filtered.

LS4		Fiel	ld ana	lytes		Water depth			Nu	trients						Car	bon		
	DO	EC	pН	Eh	Temp	D	NO _x as N	NO2 as N	NO3 as N	TKN as N	NH₃ as N	TotN	TotP	Free CO ₂	Alk	CO ₂ + Alk		тос	тс
Measure	mg/L	μS/cm	1-14	Mv	°C	m	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting Limit	0.01	1	0.01	1	0.1	0.01	0.01	0.01	0.01	0.1	0.01	0.1	0.01	1	1	1	1	1	1
13/02/98	NT	NT	7.33	NT	NT		NT	NT	1.05	NT	1.87	NT	NT		102			34	
24/02/98	NT	NT	8.39	NT	NT		NT	NT	1.46	NT	1.26	NT	NT		88			89	
16/03/98	NT	NT	8.37	NT	NT		NT	NT	0.89	NT	3.96		NT		97			70	
20/04/98	NT	NT	5.86	NT	NT		NT	NT	0.81	NT	5.28		NT		109			106	
18/05/98	NT	NT	5.52	NT	NT		NT	NT	1.29	NT	1.45	NT	NT		54			35	
09/02/00	12.61	2753	8.35	+111	20.0	0.45	1.29	*<0.01	*5.25	10.1	*13.1	11.4	0.18		628			59	
09/05/00	15.40	3100	8.52	+69	18.4	0.35	3.92	2.07	1.85	26.9	15.6	30.8	0.15		674			89	
15/08/00	16.36	1868	8.68	+96	14.7	0.35	5.30	0.58	4.72	15.9	12.9	21.2	0.14		452			55	
14/11/00	4.45	1298	8.34	+60	17.2	0.35	2.85	0.452	2.40	18.15	11.0	21.0	0.28		375			49	
18/09/01	15.33	2868		+167		0.40	0.68	0.375	0.30	13.62	8.0	14.3	NC		600			70	
08/03/02		1524		+187		0.10	0.01	0.013	< 0.01	5.2	0.08	5.2			287			77	
05/09/02				+223		0.25	1.61	0.213	1.40	6.9	0.29	8.5			327			49	
	13.78					0.20	1.57	0.244	1.33	4.0	0.40	5.6		<1	384		106	67	173
	13.38			+188		0.15	1.88	0.022	1.86	4.0	0.04	5.9		<1	427		38	38	76
	12.45					0.12	0.23	NC	NC	2.9	0.11	3.1		<1	431		70	55	125
	14.46			+115		0.30	1.13			2.6	0.49	3.8		<1	253		63	36	99
	24.37				24.6	0.23	0.011			3.2	0.198			<1	261		NC	31	NC
	19.95			+171		0.20	6.93			3.8		10.7		<1	367			<1	
	15.66				25.6	0.15	0.018			3.8	0.105			<1	265			42	
	17.44				15.8	0.15	1.33			4.6	0.295			<1	313			47	
	17.82			+140		0.12	0.154			4.4	0.256			<1	415			63	
	23.82		9.65		22.4	0.15	0.097			4.3	0.120			<1	378			66	
	15.42			+111		0.25	0.039			2.2	0.073			<1	345			25	
	16.61				15.5	0.20	< 0.010			3.0	0.160			<1	250			31	
15/04/09	10.62			+179		0.30	0.520			2.4	0.180			<1	277			30	
21/10/09				+180		0.15	0.220			3.1	0.550			<1	287			48	
02/05/10		1364		+105		0.15	0.03			3.1	0.500			7	240			40	
14/10/10	13.15		8.18		15.2	0.30	0.50			3.0	0.15	3.5		147		112		48	
26/06/11		1758		+253		0.25	3.52			15.1	13.1	18.6		38	567			65 27	
11/10/11		1332	7.83		17.5	0.35	2.98			4.5	1.84	7.5		29 20	394			37	
08/05/12	5.90	1764	7.29	+8/	17.1	0.30	0.02			2.5	0.25	2.5		29	303	68		41	

Table 21:	Field analytes.	water level, nutrients	, carbon – Surface	water sampling point LS4
		·····	,	

Abbreviations: DO = Dissolved Oxygen; $EC = Electrical Conductivity also called specific conductance; Ph = Ph; Eh = Redox Potential; Temp = Temperature; <math>D = Approximate depth of water at sampling point; NO_x = Nitrite + Nitrate; NO_2 = Nitrite; NO_3 = Nitrate; TKN = Total Kjeldahl Nitrogen (organic nitrogen and ammonia); NH₃ = Ammonia as a measure of ammonium ions; Tot N = Total Nitrogen; Tot P = Total Phosphorus; Free CO₂ = Free carbon dioxide; Alk = Alkalinity measured as mg/L CaCO₃ equivalent; Unfiltered C of (CO₂ + Alk) = 12/44 CO₂ + 12/61 Alk; TIC = Total Inorganic Carbon; TOC = Total Organic Carbon; TC = Total Carbon; NT = Not tested; TBT = To Be Tested; * = Tested ~ fortnight later; NC = Not continuing; Bold = unfiltered.$

LS4								Lab	orate	ory an	alytes –	geoche	mical ai	nd meta	als					VOCs
	SS	Ca	Mg	Na	K	SO4	Cl	В	Br	Fe	Mn	As	Cd	Cr	Pb	Se	Zn	Hg	Cu	
Measure	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
									L											
Reporting	1	1	1	1	1	1	1	0.2	0.1	0.01	0.01	0.001	0.001	0.001	0.001	0.01	0.001	0.0005	0.001	various
Limit 13/02/98	NT	38	NT	374	27	13	251	NТ	NT	0.32	<0.01	<0.001	< 0.001	NT	< 0.01	NT	0.003	< 0.005	0.01	NT
24/02/98	NT	45	NT	701									< 0.001	NT	< 0.01	NT		< 0.005	0.01	NT
16/03/98	NT		NT	340						0.72			< 0.001	NT	< 0.01	NT		< 0.005	0.01	NT
20/04/98	NT			2099						0.86			< 0.001		0.01	NT		< 0.005	0.01	NT
18/05/98	NT	36	NT	140			299						< 0.001	NT	0.01	NT		< 0.005	0.01	NT
		50		110	10		_,,,			5.14	0.02									
09/02/00	96	58	82	312		9				0.82			$<\!0.001$			$<\!0.01$		$<\!0.0005$	NC	nil detected
09/05/00	30	66	90	299	153	15	NT	0.3	5.6	0.27		0.005	0.001	0.001	< 0.001	0.01	0.017	< 0.0001		discontinued
15/08/00	28	NT	NT	NT		NT				0.26		0.002	< 0.001			0.02		< 0.0005		
14/11/00	46	49	35		65	14					0.49	0.002			0.004	$<\!0.01$		< 0.0001		
18/09/01	24	NC			0.20	NC	NC	NC	NC	NC	0.041	NC								
08/03/02	49										0.16						0.069			
05/09/02	57										0.07						0.095			
08/03/03	14										0.04						0.019			
06/09/03	16										0.03						0.018			
05/03/04	12										0.06						0.008			
15/09/04	14										0.05						0.021			
07/03/05	7										0.11						0.017			
13/09/05	29										0.02						< 0.005			
18/03/06	17										0.22						0.007			
12/09/06	26										0.11						0.007			
18/04/07	8								3.4		< 0.01						< 0.005			
14/10/07	14										0.06						0.009			
14/04/08	9										0.27						< 0.005			
14/09/08	17										0.35						0.011			
15/04/09	5										0.14						0.011			
21/10/09	15										0.224						0.012			
02/05/10	24										0.361						0.023			
14/10/10	6										0.255						0.007			
26/06/11	8										0.178						0.015			
11/10/11	9 9										0.189						0.022			
08/05/12	9									0.04	0.486						0.007			

Table 22: Laboratory analytes – suspended solids, geochemical, metals, VOCs – Surface water LS4

Abbreviations: SS = Suspended solids; Ca = Calcium; Mg = Magnesium; Na = Sodium; K = Potassium; $SO_4 = Sulphate$; Cl = Chloride; B = Boron; Br = Bromine; Fe = Iron; Mn = Manganese; As = Arsenic; Cd = Cadmium; Cr = Chromium; Pb = Lead; Se = Selenium; Zn = Zinc; Hg = Mercury; Cu = Copper; VOCs = Volatile Organic Compounds; NT = Not tested; Bold = not filtered.

Table 23: Field analytes, water level, nutrients, carbon – Surface water sampling point LS5

Abbreviations: DO = Dissolved Oxygen; EC = Electrical Conductivity also called specific conductance; Ph = Ph; Eh = Redox Potential; Temp = Temperature; D = Approximate depth of water at sampling point; NO_x = Nitrite + Nitrate; NO_2 = Nitrite; NO_3 = Nitrate; TKN = Total Kjeldahl Nitrogen (organic nitrogen and ammonia); NH_3 = Ammonia as a measure of ammonium ions; Tot N = Total Nitrogen; Tot P = Total Phosphorus; Free CO_2 = Free carbon dioxide; Alk = Alkalinity measured as mg/L CaCO₃ equivalent; Unfiltered C of (CO_2 + Alk) = 12/44 CO_2 + 12/61 Alk; TIC = Total Inorganic Carbon; TOC = Total Organic Carbon; TC = Total Carbon; NT = Not tested; NC = Not continuing; Bold = unfiltered.

								Lab	orator	y ana	lytes – g	geochen	ical an	d metal:	s					VOCs
	SS	Ca	Mg	Na	K	SO4	Cl	В	Br	Fe	Mn	As	Cd	Cr	Pb	Se	Zn	Hg	Cu	
Measure	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L							
Reporting Limit	1	1	1	1	1	1	1	0.2	0.1	0.01	0.01	0.001	0.001	0.001	0.001	0.01	0.001	0.0005	0.001	various
09/02/00	26	22	18	46	21	6	72	$<\!\!0.2$	0.7	1.00	0.40	0.002	< 0.001	< 0.001	NT	$<\!0.01$	NT	< 0.0005	NT	
09/05/00	29	17	16	39	22	8		$<\!\!0.2$		1.05		0.001				$<\!0.01$	0.012	< 0.0001		nil detected
15/08/00	41	NT	NT	NT	NT	NT		$<\!0.2$		0.63					< 0.001		0.006	< 0.0005		discontinued
15/11/00		NT			NT	NT		$<\!0.1$				< 0.001			0.002		0.020	< 0.0001		
18/09/01	10	NC		2.06	0.07	NC	NC	NC	NC	NC	0.035	NC	NC							
08/03/02	30									0.44	0.04						0.051			
04/09/02	36									0.81	0.05						0.020			
09/03/03	25									1.21	0.13						0.045			
06/09/03	10									0.11	$<\!0.01$						0.019			
04/03/04	19									0.08	0.02						0.001			
16/09/04	28									1.20	0.15						0.035			
07/03/05	7									1.88	0.22						< 0.005			
13/09/05	31								0.2	5.89	0.15						< 0.005			
19/03/06	10								0.3	0.85	0.08						< 0.005			
15/09/06	11								1.0	1.58	0.02						< 0.005			
19/04/07	22								1.4	< 0.05	<0.01						< 0.005			
14/10/07	32									1.78	0.14						0.006			
14/04/08	26									0.78	0.10						0.023			
15/09/08	14									3.43	0.11						0.009			
15/04/09	24									1.35	0.06						0.010			
21/10/09	20									0.85	0.056	5					0.008			
02/05/10	5									1.19	0.151						< 0.005			
14/10/10	15									1.47	0.226	i i					< 0.005			
26/06/11	17									0.97	0.052	2					0.010			
11/10/11	53									5.53	0.106	5					0.028			
08/05/12	23									1.47	0.051						0.008			

<i>Table 24:</i>	Laboratory	analytes –	suspended	solids, ge	ochemical,	metals,	VOCs -	- Surface w	vater LS5

Abbreviations: SS = Suspended solids; Ca = Calcium; Mg = Magnesium; Na = Sodium; K = Potassium; $SO_4 = Sulphate$; Cl = Chloride; B = Boron; Br = Bromine; Fe = Iron; Mn = Manganese; As = Arsenic; Cd = Cadmium; Cr = Chromium; Pb = Lead; Se = Selenium; Hg = Mercury; Zn = Zinc; Cu = Copper; VOCs = Volatile Organic Compounds; NT = Not tested; Bold = not filtered.

CHARTER A.													~	-		
SWEX-01		Fiel	ld anal <u>y</u>	ytes		Phy	vsical		Nuti	rients			Car	rbon		Phenols
	DO	EC	pН	Eh	Temp	D	VFR	NO _x as N	TKN as N	NH3 as N	TotN	Free CO ₂	Alk	CO ₂ + Alk	TOC	Total phenols
Measure	mg/L	μS/cm	1-14	Mv	°C	m	Kl/day	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting Limit	0.01	1	0.01	1	0.1	0.01		0.01	0.1	0.01	0.1	1	1	1	1	0.05
13/09/05	11.53	278	8.06	+300	15.1	0.01	14.40	< 0.01	0.5	NT	0.5	2	62	13	2	NT
26/11/05	6.72	256	8.39	+156	24.2	0.01	2.16	0.021	1.2	0.064	1.2	<1	79	16	11	0.10
18/03/06	8.64	320	8.30	+168	26.2	0.05	0.65	0.057	0.4	0.052	0.5	<1	111	22	8	< 0.05
20/07/06	12.46	245	8.65	+129	11.4	0.05	10.37	0.276	0.3	0.055	0.6	<1	70	14	5	< 0.05
10/09/06	10.23	234	8.55	+164	17.4	0.04	34.56	3.450	0.5	0.063	3.9	<1	86	17	6	< 0.05
18/01/07	no	water														
18/04/07	16.18	328	8.66	+206	21.7	0.20	Nil	0.127	0.7	0.047	0.8	<1	127	25	14	< 0.05
08/07/07	13.20	288	8.38	+120	7.6	0.06		0.020	0.2	0.044	0.2	<1	92	18	4	< 0.05
13/10/07	13.66	351	7.46	+116	16.1	0.15		< 0.010	0.2	0.033	0.2	9	123	27	6	< 0.05
21/01/08	8.63	277	7.81	+117	27.6	0.005	0.43	< 0.010	0.8	< 0.010	0.8	6	100	21	1	< 0.05
14/04/08	No															
21/06/08	11.85	293	8.43	+134	10.1	0.15	0.09	0.016	< 0.01	0.073	< 0.1	<1	87	17	14	< 0.05
15/09/08	9.10	253	7.78	+59	18.2	0.15	216.00	< 0.010	0.7	0.060	0.7	9	80	18	6	< 0.05
30/01/09	no	water														
15/04/09	7.53	597	7.31	+97	18.3	0.02	52.00	0.640	1.6	0.060	2.2	15	90	22	16	0.22
04/07/09	15.88	310	8.67	+116	9.7	0.20	1.08	0.020	0.3	0.020	0.3	<1	80	16	8	< 0.05
21/10/09	no	water														
07/03/10		water														
02/05/10	9.18	266	6.87	+145	15.9	0.06	Nil	0.030	1.2	0.060	1.2	15	50	14	9	0.39
15/07/10	9.50	308	7.09	+145	11.6	0.05	0.33	0.070	0.5	0.030	0.6	12	57	14	4	< 0.05
14/10/10	9.24	275	7.02	+95	19.1	0.03	6.48	0.230	0.4	0.15	0.6	15	97	23	10	< 0.05
21/02/11	no	flow														
	12.11	267	7.18	+192	7.8	0.05	7.2	0.25	0.3	0.04	0.6	15	54	15	9	< 0.05
	no	flow														
	no	flow														
08/05/12	5.77	220	6.52	+45	14.5	0.05	Nil	< 0.01	0.9	0.04	0.9	23	25	11	7	< 0.05

Table 25: Field analytes, physical, nutrients, carbon – Surface water sampling point SWEX-01

Abbreviations: DO = Dissolved Oxygen; EC = Electrical Conductivity also called specific conductance; Ph = Ph; Eh = Redox Potential; Temp = Temperature; <math>D = Approximate depth of water at sampling point; VFR = Volumetric Flow Rate; NO_x = Nitrite + Nitrate; TKN = Total Kjeldahl Nitrogen (organic nitrogen and ammonia); NH₃ = Ammonia as a measure of ammonium ions; Tot N = Total Nitrogen; Free CO₂ = Free carbon dioxide; Alk = Alkalinity measured as mg/L CaCO₃ equivalent; Unfiltered C of (CO₂ + Alk) = 12/44 CO₂ + 12/61 Alk; TOC = Total Organic Carbon, NT = not tested; ND = nil detected.

SWEX-01		Laboratory analytes – suspended solids, geochemical and metals													
	SS	Ca	Mg	Na	K	SO4	Cl	Br	Fe	Mn	Zn				
Measure	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L				
Reporting	1	1	1	1	1	1	1	0.1	0.01	0.01	0.001				
Limit								0.1		0.040					
13/09/05	14	10	0	10	~		10	<0.1	0.87	0.010	< 0.005				
26/11/05	83	18	9	18	6	11	12	0.2	1.84	0.060	0.008				
18/03/06	7	28	13	19	3	38	12	< 0.1	0.17	0.040	< 0.005				
20/07/06	11	19	9	15	2	24	17	<0.1	0.16	<0.010	< 0.005				
10/09/06	8	23	10	15	3	16	12	< 0.01	1.70	<0.010	0.018				
18/01/07	no	water	1.4	17	4	22	1.1	0.4	.0.07	.0.010	.0.007				
18/04/07	6	29 25	14 12	17	4	22	11 16	0.4	< 0.05	<0.010	< 0.005				
08/07/07	29	25		17	4	26			0.13	<0.010 0.040	0.081				
13/10/07 21/01/08	4 37	29 22	14 9	26	6	26	16		0.19	0.040	< 0.005				
21/01/08	No	flow	9	14	7	13	24		0.38	0.030	0.045				
14/04/08	10	110w 24	10	17	7	25	15		0.15	0.010	0.008				
21/06/08	23	24 22	8	17	7 7	25 16	15		0.15	0.010					
15/09/08 30/01/09	no	water	0	10	/	10	12		0.45	0.020	<0.005				
30/01/09 15/04/09	14	48	17	32	42	74	71		0.40	0.020	0.027				
15/04/09	14	23	8	15	12	20	20		0.40	0.020	0.027				
21/10/09	no	water	0	15	12	20	20		0.55	0.000	0.000				
07/03/10	no	water													
02/05/10	53	16	7	12	20	40	12		0.55	0.020	0.011				
15/07/10	14	24	8	12	20 14	36	25		0.33	0.020	0.001				
14/10/10	12	24	8	13	7	5	12		1.57	0.092	< 0.005				
	no flow		0	15	,	5	12		1.57	0.072	~0.005				
26/06/11	9	21	7	13	8	25	23		0.19	0.007	0.007				
	no flow		,	15	0	20	20			0.007	0.007				
	no flow														
08/05/12	90	15	5	11	7	47	11		6.07	0.480	0.015				
			5	11	7	47	11		6.07	0.480	0.01				

 Table 26: Laboratory analytes – suspended solids, geochemical, metals – Surface water SWEX-01

Abbreviations: SS = Suspended solids; Ca = Calcium; Mg = Magnesium; Na = Sodium; K = Potassium; $SO_4 = Sulphate$; Cl = Chloride; Br = Bromine; Fe = Iron; Mn = Manganese; bold = not filtered.

LL1		Fie	ld ana	lytes		Water depth	Volatile Organic Compounds (VOCs)	Nutrients						
	DO		рН	Eh	Temp	D		NO x as N	NO2 as N	as N	TKN as N	NH ₃ as N	TotN	
Measure	mg/L	S/cm	1-14	Mv	°C	m	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting Limit	0.01	1	0.01	1	0.1	0.01	0.005	0.01	0.01	0.01	0.1	0.01	0.1	0.01
09/02/00	0.10	3325	6.61	-84	18.8	0.15	carbon disulphide 0.030 mg/L; 0.005 mg/L chlorobenzene.	< 0.01	NT	NT	121	NT	121	34.30
09/05/00	0.15	4418	6.49	-147	22.0	0.10	methylethyl ketone (MEK) 0.170 mg/L; hexadiyne 0.005 mg/L; toluene 0.220 mg/L; ethylbenzene 0.015 mg/L; m&p-xylene 0.055 mg/L; cycloocotatetraene 0.013 mg/L; o- xylene 0.036mg/L; ethylemethyl benzene 0.020 mg/L; trimethyl benzene 0.130 mg/L; 1,2,4-trimethyl benzene 0.042 mg/L; ethyl hexanol 0.010 mg/L; butyl benzene 0.035 mg/L; eucalyptol 0.094 mg/L	0.10	<0.01	0.09	147	95.9	147	16.7
15/08/00	0.23	4048	6.85	-146	16.7	0.10	toluene 0.584 mg/L; ethylbenzene 0.027 mg/L; m&p-xylene 0.055 mg/L; cycloocotatetraene 0.051 mg/L; o-xylene 0.030mg/L; 1,2,4-trimethyl benzene 0.031 mg/L; p-isopropyltoluene 0.047 mg/L; eucalyptol 0.025 mg/L	0.01	0.01	<0.01	208	84.8	208	51.0
14/11/00	0.16	3448	7.01	-93	19.7	0.10	m,p-xylene 0.015 mg/L; 0-xylene 0.027 mg/L; ethylmethylbenzene 0.006 mg/L; 1,3,5- triethylbenzene 0.007 mg/L; 1,2,4- trimethylbenzene 0.009 mg/L; p- isopropyltoluene 0.012 mg/L; SVOCs tested for first time: 0.005 mg/L naphthalene, no other compounds including no organochlorine and organophosphorus pesticides	<0.01	<0.01	<0.01	NT	132	132	25.5
18/09/01 05/09/02 06/09/03 15/09/04 14/09/05 12/09/06 14/10/07 14/09/08 21/10/09 14/10/10 11/10/11	$\begin{array}{c} 1.63 \\ 1.25 \\ 2.24 \\ 1.63 \\ 4.33 \\ 1.02 \\ -0.08 \\ 4.05 \\ 4.60 \\ 4.63 \\ 7.84 \end{array}$	4023 3712 3780 3140 3155 2930	7.19 8.05 7.98	-49 -60 -132 -124 +139 +137 +105	14.1 14.2 14.6 15.3 14.8 10.4 21.3 11.1 18.3 15.3 20.2	0.10 0.10 0.15 0.02 0.05 0.02 0.01 fall fall	Only BTEX tested. Nil detected. Only BTEX tested. Nil detected.	$\begin{array}{c} 1.72\\ 0.23\\ 0.38\\ 0.06\\ 0.109\\ 1.12\\ 0.199\\ 14.1\\ 18.5\\ 0.91\\ 2.66\\ \end{array}$	0.002 <0.001 0.001	0.38	84.0 83.8 85.0 114.0 131 260 139 79.3 59.5 68.1 39.1	70.7 83.8 85.0 10.1 127 99.7 93.1 69.9 35.9 67.1 34.7	85.7 84.0 85.44 114 131 262 140 93.4 78.0 69.0 41.8	

1	able 27:	Field analytes,	water level,	VOCs, nutra	ients – Leachate	sampling point LL1

Abbreviations: DO = Dissolved Oxygen; $EC = Electrical Conductivity also called specific conductance; Ph = Ph; Eh = Redox Potential; Temp = Temperature; D = Approximate depth of water at sampling point; <math>NO_x = Nitrite + Nitrate; NO_2 = Nitrite; NO_3 = Nitrate; TKN = Total Kjeldahl Nitrogen (organic nitrogen and ammonia); NH₃ = Ammonia as a measure of ammonium ions; Tot N = Total Nitrogen; Tot P = Total Phosphorus; NT = Not tested.$

LL1									Lab	orato	ry anal	ytes – g	eochemi	cal and	metals				
	Ca	Mg	Na	K	SO	Cl	В	Br	Fe	Mn	As	Cd	Cr	Pb	Se	Zn	Hg	Cu	Organo-Pesticides
Measure	mg/ L	mg/L	mg/L	mg/L	. mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting Limit	1	1	1	1	1	1	0.2	0.1	0.01	0.01	0.001	0.001	0.001	0.001	0.01	0.001	0.0005	0.001	0.0005 to 0.02
09/02/00	106	58	203	136	5	365	0.4	5.4	161	0.40	0.011	0.008	0.003	0.077	< 0.01	NT	< 0.0005	NT	
09/05/00	245	89	257	200	43	440	0.7	6.1	181	4.65	0.048	0.004	0.014	0.012	0.03	4.56	$<\!0.0001$	NT	
15/08/00	252	80	230	146	9	382	0.5	8.0	153	3.22	0.025	0.006	< 0.001	0.009	0.04	2.09	< 0.0005	NT	
14/11/00	159	68	203	136	15	420	0.6	7.4	469	14.30	0.002	$<\!0.001$	0.001	0.001	< 0.01	0.360	$<\!0.0001$	NT	
18/09/01	NC	NC	NC	NC	NC	472	NC	8.6	16.0	1.17	NC	NC	NC	NC	NC	0.021	$<\!0.0001$	NC	nil detected
05/09/02						475		8.7	2.35	0.60						0.037	$<\!0.0001$		nil detected
06/09/03						474		8.3	11.0	0.60						0.033	$<\!0.0001$		nil detected
15/09/04						482		4.6	1.94	0.53						0.048	$<\!0.0001$		nil detected
14/09/05						556		5.6	23.6	0.62						0.025	< 0.0001		0.0006 Endrin aldehyde
12/09/06						506		7.8	8490	7.78						0.908	< 0.0001		nil detected
14/10/07						440			36.6	3.29						0.198	<0.0001		<lor< th=""></lor<>
14/09/08						390			3.16	1.55						0.030	< 0.0001		<lor< th=""></lor<>
21/10/09						415			0.61	0.58						0.010	< 0.0001		<lor< th=""></lor<>
14/10/10						298			1.20	1.34						0.007	< 0.0001		<lor< th=""></lor<>
11/10/11						302			1.71	0.267	7					0.011	< 0.0001		<lor< th=""></lor<>
I																			

 Table 28: Major ions, metals, TOC, pesticides – Leachate LL1

Abbreviations: Ca = Calcium; Mg = Magnesium; Na = Sodium; K = Potassium; $SO_4 = Sulphate$; Cl = Chloride; B = Boron; Br = Bromine; Fe = Iron; Mn = Manganese; As = Arsenic; Cd = Cadmium; Cr = Chromium; Pb = Lead; Se = Selenium; Zn = Zinc; Hg = Mercury;

Cu = Copper; NT = Not tested; bold = unfiltered.

Table 29: Carbon compounds – Leachate LL1

LL1			С	arbon		
	Free CO ₂	Alk	CO ₂ + Alk	TIC	тос	тс
Measure	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting Limit	1	1	1	1	1	1
09/02/00		1420			54	
09/05/00		2210			743	
15/08/00		1390			129	
14/11/00		1267			94	
18/09/01		1150			101	
05/09/02		1130			75	
06/09/03	226	1161	290	104	264	368
15/09/04	169	1550	351	261	64	325
14/09/05	167	1633	367	NC	192	NC
12/09/06	337	1207	329		131	
14/10/07	161	1204	281		109	
14/09/08	59	1000	213		45	
21/10/09	59	900	193		93	
14/10/10	88	1125	245		78	
11/10/11	73	833	184		50	

Abbreviations: Free CO_2 = Free Carbon Dioxide; Alk = Alkalinity measured as mg/L CaCO₃ equivalent; Unfiltered C of $(CO_2 + Alk) = 12/44 CO_2 + 12/61 Alk$; TIC = Total Inorganic Carbon; TOC = Total Organic Carbon; TC = Total Carbon; Bold = unfiltered.

Table 30:	Special sam	ples re nutrient	t levels – LS6	10/05/00,	Lmulch	17/05/00	, LS7 15/08/00
-----------	-------------	------------------	----------------	-----------	--------	----------	----------------

		Fie	eld an	alytes		Nutrients								
	DO	EC	pН	Eh	Temp		-	-	TKN as N	-	TotN	TotP		
Measure	mg/L	S/cm	1-14	Mv	°C	Mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		
Reporting Limit	0.01	1	0.01	1	0.1	0.01	0.01	0.01	0.1	0.01	0.1	0.01		
LS6	8.95	3565	7.62	+185	23.7	0.10	$<\!0.01$	0.09	10.1	0.28	10.2	0.75		
Deionised water	7.96	3	6.00	+242	20.0									
Lmulch LS7	1.76 4.34	4165 408	3.45 8.20			0.07 0.01	0.01 0.01	0.06 <0.01			196.0 3.3	143.0 0.90		
	1													

Table 31: Field analytes, water level, BTEX, nutrients – Leachate sampling point LL2

LL2		Fie	eld and	alytes		Gauge depth	Benzene, Toluene, Ethylbenzene, Xylene compounds (BTEX)	Nutrients					
	DO	EC	рН	Eh	Temp	GD	(test yearly)	NO _x as N	TKN as N	NH3 as N	TotN		
Measure	mg/L	S/cm	1-14	Mv	°C	m	mg/L	mg/L	mg/L	mg/L	mg/L		
Reporting Limit	0.01	1	0.01	1	0.1	0.01	various	0.01	0.1	0.01	0.1		
26/11/05	0.36	2642	8.44	-42	26.4	0.45	<lor< th=""><th>0.036</th><th>37.6</th><th>0.331</th><th>37.6</th></lor<>	0.036	37.6	0.331	37.6		
18/03/06	5.21	605	7.97	+113	24.0	1.50	NT	0.014	3.4	0.084	3.4		
18/01/07	2.61	1271		+122	23.9	1.50	<lor< th=""><th>< 0.010</th><th>3.8</th><th>0.034</th><th>3.8</th></lor<>	< 0.010	3.8	0.034	3.8		
08/07/07	2.12	2163	8.93	+80	7.4	1.50	NT	< 0.010	14.1	5.70	14.1		
	19.82	2041	8.35	+30	23.0	1.35	<lor< th=""><th>0.038</th><th>24.2</th><th>8.06</th><th>24.2</th></lor<>	0.038	24.2	8.06	24.2		
	13.08	2199		+116	10.8	1.55	<lor< th=""><th>0.152</th><th>16.2</th><th>12.4</th><th>16.3</th></lor<>	0.152	16.2	12.4	16.3		
	13.39	1907	9.04		26.1	1.20	<lor< th=""><th>0.510</th><th>12.2</th><th>2.49</th><th>12.7</th></lor<>	0.510	12.2	2.49	12.7		
04/07/09	8.62	3330	8.31	+52	8.3	1.30	NT	0.100	67.4	59.3	67.5		
07/03/10	6.45	3445	8.30		20.8	1.20	<lor< th=""><th>0.100</th><th>68.5</th><th>63.5</th><th>68.6</th></lor<>	0.100	68.5	63.5	68.6		
	15.04	2960		+86	12.5	1.30	NT	0.520	29.0	20.3	29.5		
	25.11	3780	8.49	+49	29.3	1.20	<lor< th=""><th>0.13</th><th>93.4</th><th>85.2</th><th>93.5</th></lor<>	0.13	93.4	85.2	93.5		
	23.03	4750		+127	11.7	1.00	NT	0.02	164.0	72.1	164.0		
22/01/12	15.00	4575	8.05	+40	23.7	1.00	NT	< 0.01	162.0	167.0	162.0		

Abbreviations: DO = Dissolved Oxygen; EC = Electrical Conductivity also called specific conductance;

Ph = Ph; Eh = Redox Potential; Temp = Temperature; GD = Approx depth at depth gauge; BTEX (test yearly);; NO_x = Nitrite + Nitrate; NO_2 = Nitrite; NO_3 = Nitrate; TKN = Total Kjeldahl Nitrogen (organic nitrogen + ammonia); NH_3 = Ammonia as a measure of ammonium ions; Tot N = Total Nitrogen; Tot P = Total Phosphorus; LOR = Level of reporting; NT = Not tested.

Table 32: Chloride, bromide, metals, pesticides, carbon compounds – Leachate LL2

LL2		Geo	ochemic	al and r	netals		Pesticides	Carbon				
	Cl	Br	Fe	Mn	Zn	Hg	Organo-pesticides (test yearly)	Free CO ₂	Alk	CO ₂ + Alk	тос	PAH (test yearly)
Measure	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Reporting Limit	1	0.1	0.01	0.01	0.001	0.0005	0.0005 to 0.02	1	1	1	1	various
26/11/05	163	0.6	5.26	4.79	0.069	< 0.0001	<lor< th=""><th><1</th><th>995</th><th>196</th><th>746</th><th>NT</th></lor<>	<1	995	196	746	NT
18/03/06	47	0.4	0.30	0.34	< 0.005	< 0.0001	<lor< th=""><th>21</th><th>245</th><th>54</th><th>22</th><th><lor< th=""></lor<></th></lor<>	21	245	54	22	<lor< th=""></lor<>
18/01/07	72	NC	0.47	0.30	0.006	<0.0001	<lor< th=""><th>29</th><th>305</th><th>68</th><th>35</th><th><lor< th=""></lor<></th></lor<>	29	305	68	35	<lor< th=""></lor<>
08/07/07	168		3.90	0.30	0.006	< 0.0001	NT	<1	1000	197	80	NT
20/01/08	241		0.61	0.11	0.012	< 0.0001	<lor< th=""><th><1</th><th>830</th><th>163</th><th>58</th><th><lor< th=""></lor<></th></lor<>	<1	830	163	58	<lor< th=""></lor<>
21/06/08	268		0.30	0.14	0.009	<0.0001	<lor< th=""><th><1</th><th>700</th><th>138</th><th>79</th><th><lor< th=""></lor<></th></lor<>	<1	700	138	79	<lor< th=""></lor<>
30/01/09	285		0.53	0.18	0.008	< 0.0001	<lor< th=""><th><1</th><th>600</th><th>118</th><th>86</th><th><lor< th=""></lor<></th></lor<>	<1	600	118	86	<lor< th=""></lor<>
04/07/09	368		2.52	0.456	0.014	<0.0001	NT	<1	1133	223	122	NT
07/03/10	487		0.96	0.182	< 0.005	< 0.0001	<lor< th=""><th><1</th><th>1000</th><th>197</th><th>98</th><th><lor< th=""></lor<></th></lor<>	<1	1000	197	98	<lor< th=""></lor<>
15/07/10	504		0.85	0.272	0.010	<0.0001	NT	<1	750	148	118	NT
21/02/11	515		0.49	0.345	0.014	<0.0001	<lor< th=""><th><1</th><th>1200</th><th>236</th><th>107</th><th><lor< th=""></lor<></th></lor<>	<1	1200	236	107	<lor< th=""></lor<>
17/08/11	538		2.68	0.247	0.026	<0.0001	NT	<1	1533	191	183	NT
22/01/12	453		1.92	0.266	<0.005	<0.0001	NT	88	1465	312	122	NT

Abbreviations: Cl = Chloride; Br = Bromine; Fe = Iron; Mn = Manganese; Zn = Zinc; Hg = Mercury; $Organo-pesticides = Organochlorine and Organophosphours pesticides (test yearly); Free <math>CO_2 =$ Free Carbon Dioxide; Alk = Alkalinity measured as mg/L CaCO₃ equivalent; Unfiltered C of $(CO_2 + Alk) = 12/44 CO_2 + 12/61 Alk$; TOC = Total Organic Carbon; PAH = Polynuclear aromatic hydrocarbons (includes Benzo(a) pyrene) (test yearly); NT = not tested; NC = not continuing; LOR = Level of reporting; Bold = unfiltered.

10. CURRENT ENVIRONMENTAL MONITORING PROGRAM

The following table lists the Long Swamp Road Landfill current analytes required by the landfill's Environment Protection Licence No. 5860 updated by OEH Armidale, and archived 31 March 2011. Some extra analytes for additional water quality review are being tested at CodyHart recommendation, for example, free carbon dioxide.

Groundwater	Surface Water (LS2-LS5)	Surface Water (SWEX- 01)	Leachate	Overflow events
Wells LW1-LW3,	Points LS2 – LS5	Point SWEX-01	Points LL1, LL2	Overflow points at dam
Wells LW1-LW3, GWEX-01 (six-mthly) GWEX-02, GWEX-03 (quarterly) In situ field analytes Temperature pH Redox potential Electrical Conductivity Dissolved Oxygen	 Fomis LS2 – LSS (six-monthly) In situ field analytes Temperature pH Redox potential Electrical Conductivity Dissolved Oxygen 	(quarterly after stormwater discharge) In situ field analytes Temperature pH Electrical Conductivity	<i>LL1</i> , <i>LL2</i> <i>LL1</i> annually, <i>LL2</i> six-monthly) In situ field analytes Temperature pH Redox potential Electrical Conductivity Dissolved Oxygen	LS2 (LSO1), dam LS3 (LSO2), at dam LL2 (LSO5); downstream (LSO3) and upstream (LSO4) if possibly affected by leachate overflow Laboratory pH Electrical Conductivity
Within 24 hours Alkalinity	Within 24 hours Alkalinity	Within 24 hours Alkalinity	Within 24 hours Alkalinity	Within 24 hours Alkalinity
Laboratory Chloride	Laboratory	Laboratory Chloride, Calcium, Magnesium, Potassium,	Laboratory Chloride	Chloride
Iron Manganese Zinc Mercury (not LW2, LW3)	Iron Manganese Zinc	Sodium Iron Manganese Zinc	Iron Manganese Zinc Mercury	Iron Manganese Zinc
Ammonia Nitrate + Nitrite (NO _x) TKN	Ammonia (LS3, LS4 only) Nitrate + Nitrite (NO _x) TKN	Ammonia Nitrate + Nitrite (NO _x) TKN	Ammonia Nitrate + Nitrite (NO _x) TKN	Ammonia Nitrate + Nitrite (NO _x) TKN
TOC	TOC	TOC	TOC	TOC
PAH (only GWEX-01 to GWEX-03; & only yearly.)	Suspended solids	Total Phenolics Suspended solids Field measurement Rough estimate of volumetric flow rate	BTEX (Benzene, toluene, ethylbenzene, xylene) (LL2 yearly) Organochlorine and organophosphate pesticides (LL2 yearly)	Suspended solids BTEX (Benzene, toluene, ethylbenzene, xylene) (rough estimate of volumetric flow rate)
			PAH (only LL2; only yearly.)	

Table 33: Licence required environmental monitoring - Long Swamp Road Landfill

11. WATER QUALITY COMPARISONS

Table 34 is given as an aid for reviewing environmental health risks.

Analyte	Reason for Inclusion	Aquatic 1	Human 2	Irrigation 3	Livestock 4
Temperature	Biodegradation of waste increases temperature. Temp + EC have successfully defined a leachate plume (Scrudato & Pagano, 1994).	>80%ile <20%ile	NR	NR	NR
рН	varies from acidic to alkaline as waste decomposition progresses (Andreottola & Cannas, 1992:72). But pH levels in groundwater are often naturally low.	6.5 to 8.0 (2000); 6.5 – 9.0 (1992)	6.5 to 8.5 (A)	>6 limits corrosion of pipes	NR
Electric Conductivity (EC)	a general indicator that summarises the general trend of major cation and anion concentrations.	≤30 - 350µS/cm (2000); ≤1500 µS/cm (1992)	≤1500µS/cm (A)	varies, e.g., ≤1,000µS/cm carrots	≥3582 µS/cm analyse for specific ions which may affect
Alkalinity	Measures acid-neutralising capacity, a solution's ability to buffer, that is stop pH changing. Often high in leachate, but some groundwaters can also have high alkalinity.	NR	NR	NR	NR
Boron	High mobility in clay. Good tracer. Found in leachate (Bagchi, 1994:52). Found in fireproofing agents, preservatives, antiseptics, glass, enamels, cosmetics, cements, carpets, soaps, powders and ointments. Some crops are intolerant to boron (ANZECC, 1992:5-13).	≤0.37 mg/L	≤0.3mg/L	≤0.5 mg/L (long term)	≤5mg/L
Bromine	Recently found to be a good leachate indicator (Baker, 1993a). Used in bleaches; dyes; pharmaceuticals; pesticides; solvents for waxes, greases and oils; additives for motor oil and fuels; and used in photograph development.	NR	NR	NR	NR
Ammonium ions	From decaying plants and animals. May be high in leachate (Hancock & Phillips, 1992:22). Toxic to fish (ANZECC, 1992:2-30).	≤0.18 mg/L as N for pH 9.0; ≤0.9 mg/L as N pH 8.0 ; ≤2.18 mg/L pH 7.0.	≤0.01 mg/L as N (1992) (A) ≤0.05 mg/L as NH ₄ (2004) (A)	Nitrogen ≤5 mg/L (long term; 25-125 mg/L (short term – up to 20 years)	NR
Iron and manganese	High iron concentrations affect plant growth and high manganese concentrations clog irrigation equipment and are toxic to plants (ANZECC, 1992:5-15,5-16).	Fe NR (2000), ≤1 mg/L (1992), Mn≤1.9mg/L	Fe 0.3 mg/L (A) Mn 0.5 mg/L	Fe & Mn 0.2 mg/L long term, 10 mg/L short term	not sufficiently toxic (2000); ≤17 mg/L for dairy cattle (1992)
Nitrate	From final stage of plant and animal decomposition or fertilisers. May be high in leachate (Canter, 1997:6). Toxic to infants and livestock (ANZECC, 1992:4-10,5- 23).	$\begin{array}{l} NO_x \leq \! 0.015 \\ mg/L; TN \\ \leq \! 0.25 mg/L \\ (2000); TN \\ \leq \! 0.1 \ to \ 0.75 \\ mg/L \ (1992) \end{array}$	$\leq 10 \text{ mg/L}$ as N (1992) $\leq 11.3 \text{ mg/L}$ as N (1996) $\leq 50 \text{ mg/L}$ as NO ₃ (2004)	As for ammonia	≤ 90 mg/L as N; Nitrite ≤9 mg/L as N
Phosphorus	Csuros (1994:228-229) explains that phosphorus occurs in animal, plant and mineral kingdoms. Its discharge to streams may stimulate growth of photosynthetic organisms especially if it is the nutrient whose low values are limiting the primary productivity of the water.	Total P ≤0.02 mg/L	NR	≤0.05 mg/L (long term to prevent clogging irrig equipment; ≤0.8-12 mg/L (short term)	
VOCs	Good indicators of man-made pollutants found in landfill leachate (USEPA, 1991:51075). Toxic and carcinogenic to animals and humans.	varies for different compounds	varies for different compounds	NR	NR
Arsenic	Found in cattle dip soils; toxic, possibly carcinogenic (Manahan, 1990:150), toxic to livestock in high concentrations (ANZECC, 1992:5-25)	$\leq 0.024 \text{ mg/L}$ (III) form; ≤ 0.05 aquaculture	≤0.007 mg/L	≤0.1 mg/L long term; ≤2 mg/L short term	0.5 to 5 mg/L tolerated

Table 34 continued:	
---------------------	--

Analyte	Reason for Inclusion	Aquatic 1	Human 2	Irrigation 3	Livestock 4
Cadmium	Causes high blood pressure, kidney damage, destroys testicular tissue and red blood cells, toxic to aquatic biota (Manahan, 1990:150), toxic and carcinogenic to livestock (ANZECC, 1992:5-26)	C	≤0.002 mg/L	≤0.01 mg/L long term; ≤0.05 mg/L short term	≤0.01 mg/L
Chromium	Cr ⁺⁶ is possibly carcinogenic and is toxic to humans (anaemia, kidney disease, nervous system) (Manahan, 1990:150), reduces crop yield (ANZECC, 1992:5-14).	≤0.001 mg/L for Cr ⁺⁶		≤0.1 mg/L long term; ≤1 mg/L short term	≤1 mg/L
Copper	Essential in small concentrations for plant growth and animals (ANZECC, 1992:5-15&5-27). Toxic to sensitive plants and animals and bioaccumulated.	0.0014 mg/L	<2 mg/L	≤0.2 mg/L long term; ≤5 mg/L short term	<0.4 mg/L sheep, <1 mg/L cattle; <5 mg/L pigs and poultry
Lead	Wildlife destruction (Manahan, 1990:151), reduces plant growth (ANZECC, 1992:5-16). Decreases human intelligence, growth (Csuros, 1994:210).	≤0.0034 mg/L	≤0.01 mg/L	≤2 mg/L long term; ≤5 mg/L short term	≤0.1 mg/L
Mercury	Very toxic to humans - numbness, deafness, loss of muscle control (Csuros, 1994:212); toxic to fish (ANZECC, 1992:2-38).	NR (2000); ≤0.0001 mg/L (1992)	≤0.001 mg/L	≤0.002 mg/L	≤0.002mg/L
Selenium	Toxic to cattle, fish and humans (Manahan, 1990:151) Used in electronics, glass, ceramics, pigments, rubber (Csuros, 1994:213).	≤0.005 mg/L	≤0.01 mg/L	≤0.02 mg/L long term; ≤0.05 mg/L short term	≤0.02 mg/L
Zinc	Found both naturally (weathering & erosion) and from anthropogenic sources (ANZECC, 1992:2-42). Zinc coating used to protect iron, steel and brass; used in dry batteries, construction materials, printing processes (Csuros, 1994:215). One of seven analytes with greatest percentage increase from 71 unlined landfills in North Carolina, USA (Borden and Yanoschak, 1990:269). Also found by CodyHart in landfill ponds and leachate.	≤0.008 mg/L	≤3 mg/L (A)	≤2 mg/L long term; ≤5 mg/L short term	≤20 mg/L
РАН	In old coal gasification plant coal tar waste deposited in landfill extension.	e.g., Naphthalene 0.016 mg/L	insufficient data	NR	as per human

1. from Tables 3.3.1, 3.3.2, 3.3.3 - Default trigger values for aquatic ecosystems in upland rivers of south-east Australia which are slightly-moderately disturbed and Tables 3.4.1 trigger values for toxicants 95% level of aquatic ecosystem protection in '*Australian and New Zealand Guidelines for Fresh and Marine Water Quality*', ANZECC & ARMCANZ 2000.

2. from 'Summary of Australian Drinking Water Guidelines' NHMRC & ARMCANZ 1996:26-32. (A) = aesthetic, no health guideline – same 2004 values http://www.mincos.gov.au/nwqms_docs.htm>.

3. from Tables 4.2.5, 4.2.10, 4.2.11, 4.2.14 and 4.2.15 'Australian and New Zealand Guidelines for Fresh and Marine Water Quality', ANZECC & ARMCANZ 2000.

4. from page 4.3-3 – 4.3-5 'Australian and New Zealand Guidelines for Fresh and Marine Water Quality', ANZECC & ARMCANZ 2000.

NR - No recommendation

(A) aesthetic guideline rather than an environmental health guideline

(1992) refers to the 1992 edition of the 'Australian and New Zealand Guidelines for Fresh and Marine Water Quality'.
12. COMMENTS ON WATER LEVELS AND WATER QUALITY

Groundwater

Wells LW1, LW2, LW3, the old landfill wells.

Well LW1, the upgradient well. This well continues to be contaminated with nitrite + nitrate (276 mg/L) due to the nearby old night soil trenches as found on historical photographs and discussed with a former employee. The mercury concentration is still of note at 0.0011mg/L.

Well LW2, the downgradient well just north of the eastern end of leachate dam LS3. There was no indication of leachate contamination.

Well LW3, the downgradient well adjacent to the southern section of the western fence. There was no indication of leachate contamination.

Wells GWEX-01, GWEX-02, GWEX-03, the wells for the landfill extension.

These wells are not contaminated by landfill leachate. Comments of note are as follows:

- **GWEX-01**, the well upgradient of the landfill extension. Mercury continues to relatively high in well GWEX-01 (0.0025 mg/L). However, the mercury may not be due to anthropogenic causes. It may be derived from the surrounding soil and rock. Mercury is a compound that can be found naturally in the environment. It can be found in metal form, as mercury salts or as organic mercury compounds.
- **GWEX-02**, the downgradient well on the eastern side of the landfill extension. The relative water level of well GWEX-02 continues to be lower (0.40 m lower) than in the topographically downgradient well, GWEX-03. The general groundwater flow direction under the new landfill extension is therefore towards GWEX-02. The water quality of this well has no contaminants of concern.
- **GWEX-03**, the downgradient well on the southern side of the landfill extension. Bentonite intruded into the well screen increasing the pH in earlier sampling rounds. This was countered by raising the pump position, and increasing the purge volume until the pH was that of preceding rounds. The pump position was lowered to its original position in the October 2011 sampling round, and the pH continued to be normal at 6.38 after 4L of sampling. So the bentonite effect seems to have completely dissipated. No analytes were of note.

Surface water

SWEX-01 - surface water discharge point for the eastern diversion drain landfill extension

There was no flow in the diversion drain, but the flow path downstream from a pool was still very moist. Due to the shallowness of the pool, the sampling beaker needed to be pressed into the pool to collect the sample. As a result the suspended solids were relatively high at 90 mg/L. The total nitrogen was a little high at 0.9 mg/L when compared to the ≤ 0.25 mg/L guidance limit for 90% protection of Australian freshwater aquatic ecosystems. However, the ammonium compounds and nitrate were within the guideline limits. Organic nitrogen was therefore in exceedance, but was likely due to decaying animal and plant matter upstream in the diversion drain.

LS5 - the farmer's dam on the property to the south of the landfill

The water quality in this dam is not pristine. It receives surface water runoff from the landfill site, the industrial area in Acacia Park and farmland to the west. Its electrical conductivity (EC) of 716 μ S/cm and within the range of EC results from Year 2000 onwards. Its total kjeldahl nitrogen (1.9 mg/L) and metals were of low concentration for this dam. These concentrations are all acceptable for stock drinking purposes, the dam's economic use.

Leachate

LS2 - holding dam in the south-east corner of the old landfill site

This dam can now be classified as a leachate dam. Its leachate indicator analyte concentrations have been gradually increasing since the landfill extension leachate has been pumped into it. Its electrical conductivity for the May 2012 round was its greatest to date at 2780 μ S/cm which is approximately half strength the more concentrated leachate found at LL1 in Year 2000. So there is still some rainwater dilution from rain over the leachate dams. Total nitrogen was 17.2 mg/L, which is notable, but not a high concentration.

LS3 – leachate dam in south-western corner of the old landfill site

The May 2012 electrical conductivity (1733 μ S/cm) was about midrange for this dam and indicates that the leachate in this dam is diluted by rainwater. Its total nitrogen concentration was 9.0 mg/L and therefore suitable for on-site irrigation over the landfill footprint. (The Australian and New Zealand total nitrogen guideline limit for long-term irrigation is 5 mg/L, and the short-term irrigation guideline is 25-125 mg/L.) Iron and manganese were at low concentrations, and zinc was not detected. The light green colour and high dissolved oxygen (13.18 mg/L) indicated that algae were improving the water quality.

LS4 - leachate dam on mid-western boundary of the old landfill site

This dam is shallow. Its metal concentrations were within the range of historical concentrations. Its nitrogen compound concentrations have returned to their lower concentrations of 2.5 mg/L.

LL1 – leachate discharging in a drain from the centre of the southern side of the old landfill towards the LS3 dam

This more concentrated leachate was not due for sampling this round. Until Year 2009, the LL1 sampling point had the most concentrated leachate sampled on the landfill site. There is more clay cover over the old section of the landfill, so there is only a trickle of leachate from a purpose built drain at the base of the old landfill. Its EC in September 2011 was 2,585 μ S/cm, total nitrogen was 34.7 mg/L, and no BTEX compounds or pesticides were detected.

LL2 – leachate dam for landfill extension

This more concentrated leachate was not due for sampling this round. LL2, the primary dam for the eastern landfill extension now has the greatest leachate concentrations due to the increased age of the waste in the landfill extension. For example, in January 2012 its electrical conductivity (EC) was 4575 μ S/cm and total nitrogen was 162 mg/L. Metal concentrations were still low and not indicative of landfill leachate contamination.

13. CONCLUSION

This report has detailed the results of Long Swamp Road Landfill environmental monitoring for May 2012. All historical results are tabled in this report for easy review.

No methane was detected inside or outside buildings.

Surface methane was detected emanating from the soil surrounding the uppermost vent, Vent 1 (Figure 2) on the landfill extension at 10,875 ppm. Council people were advised to cover the area with a thick layer of soil to convert the methane to carbon dioxide.

Although not required for methane monitoring, methane emitting from the passive gas extraction vents on the landfill extension is tested. Concentrations ranged from 0 ppm to +50,000 ppm. A reading of 50,000 ppm is the lower explosive limit and therefore an occupational health and safety danger. There should be no smoking and no naked flames.

All six groundwater monitoring wells (LW1 - LW3, GWEX-01 to GWEX-03), three leachate dams (LS2 – LS4) and two surface water sampling points (SWEX-01 and LS5) required sampling under the licence this May 2012 sampling round.

Notable water qualities were as follows:

- The nitrate due to night soil trenches nearby the upgradient monitoring well LW1 continues to dissipate but is still very high at 276 mg/L. There is no contamination in the other five wells. This means that none of the nitrate detected in well LW1 has travelled to the downgradient wells due to the extensive clays that underlie the Long Swamp Road Landfill site. The clays contain and attenuate the night soil leachate.
- The three leachate dams tested have very low concentrations for leachate and can be regarded as very weak fertiliser.
- The two surface water sampling points tested were of similar qualities to previous rounds and of no concern.

14. BIBLIOGRAPHY

Andreottola, G & Cannas, P 1992, 'Chemical and Biological Characteristics of Landfill Leachate; in *Landfilling of Waste: Leachate*, eds TH Christensen, R Cossu & R Stegman, Elsevier Applied Science, London and New York.

ANZECC 1992, Australian Water Quality Guidelines for Fresh and Marine Waters, ANZECC, Canberra, Australia.

ANZECC & ARMCANZ (Agriculture and Resource Management Council of Australia and New Zealand) 2000, *Australian ad New Zealand Guidelines for Fresh and Marine Water Quality 2000*, ANZECC and ARMCANZ, Canberra, Australia.

Baker, J 1993, Chief hydrogeologist, Waste Management Incorporated, Chicago, U.S.A. Personal communication.

Bagchi, A 1994, *Design, Construction and Monitoring of Landfills*, John Wiley & Sons, New York.

Borden, RC & Yanoschak, TM 1990, 'Ground and Surface Water Quality Impacts of North Carolina Sanitary Landfills' in *Water Resources Bulletin*, vol 26, no. 2, United States: American Water Resources Association.

Canter, LW, Knox, RC & Fairchild, DM 1988, *Ground Water Quality Protection*, Lewis Publishers, Boca Raton, Florida.

CodyHart 2005, *Extension Long Swamp Road Landfill Hydrogeological Assessment and Well Commissioning*, for Armidale Dumaresq Council, August 2005.

CodyHart 2000, *Long Swamp Road Landfill Hydrogeological Study*, for Armidale Dumaresq Council, February 2000.

Csuros, M 1994, *Environmental Sampling for Technicians*, Lewis Publishers, Boca Raton, Florida, U.S.A.

Faust RA 1993, Toxicity summary for phenanthrene, Risk Assessment Information System (RAIS), University of Tennessee, viewed 7 May 2009, http://rais.ornl.gov/tox/profiles/phenanthrene_c_V1.shtml,

Gendebien, A. *et al.* 1992, *Landfill gas - From Environment to Energy*, Final report to Directorate-General for Energy, Commission of the European Communities, Brussels.

Hart, BF, Tomlinson, R & Chaseling, J 2000, 'Using the Stabilization Plateau to Estimate Optimum Well Purge Volume', in *Ground Water Monitoring and Remediation*, Summer Vol. 20, No. 3: 113.

Hancock, S & Phillips, I 1992, 'Groundwater Protection and Attenuation Around Landfills', in *Waste Management and Environment*, October 1992, pp. 20-23.

Long Swamp Road Landfill Environmental Monitoring Report - May 2012

Manahan, SE 1990, *Environmental Chemistry*, 4th edn, Lewis Publishers, Boca Raton, Florida, U.S.A.

NHMRC (National Health and Medical Research Council) and ARMCANZ 1996, *Australian Drinking Water Guidelines – Summary*, NHMRC & ARMCANZ, Canberra, Australia, amended 2004 version same values, viewed 22 January 2006, .

NSW EPA 1996, *Environmental Guidelines: Solid Waste Landfills*, New South Wales Environment Protection Agency, Chatswood, NSW.

Scrudato, RJ and Pagano, JJ 1994, 'Landfill Leachates and Groundwater Contamination', in *Groundwater Contamination and Control*, edited by Uri Zoller, Marcel Dekker, Inc: New York.

US EPA (United States Environment Protection Agency) 1991, *Solid Waste Disposal Facility Criteria: Final Rule*, Federal Register, 40 CFR Parts 257 and 258, US EPA, Washington D.C., U.S.A.

APPENDIX A - Field Parameter Forms

	CodyH	lart Envir	onmenta	ſ										
<u>eroj</u> e	ct: A	rmidale D				FIELD PA					oring we		LW1	
		NFORM				<u> </u>			pe: T1250					_
Total	well d	epth (fro	m top a	f casing	g) (m)	12•8	(0 A	ir contr	roller: QE	D Micro	opurge M	lodel 40	0	
		oundwate				2.01	<u>3</u> p	osition	pump at:	7.25 m	(from top	o of PVC	C casing)	
WAT	ER CO	ing) (RL top of DLUMN	DEPTH		9m)	10.7	7	Disch	arge/refil	l rate (s	secs): 15/	20 psi:	30	
		oth to groundwa 4 L Date:		- //2_s	tart time	: 12:10	(24 hr c	lock) Cv	cle vol: ./(2 <i>0</i> . mI	. Pumo r	ate:20	O. mL/mir	n
0			/			IELD ANA								
Vol	DO (mg/I)	EC	pH	Eh	Temp	WL	Vol	DO	EC	pH	Eh	Temp	WL	
· (L)	(mg/L)	(µS/cm)	(STD)	(mV)	(°C)	(m)	(L) 005	(mg/L) 1.23	(µS/cm) 3400	(STD) 4-29	(mV) +301	(°C) 17:5	(m)	
							1.0	1 : 11 1 = 1 a	3450	4.12	+322	17:4		
							2.0	1.02	3680	4.05	363	17.3		
							2.0	0.07	3690	4-05	1366	1702		
		-					3.5	0.87	3700	4.04	+374	121		
							40	10° X 3	3700	4.04	+373	<u>]</u> [°]		
							4.05						2.07	
							7-9						~~~/	
											1	•		
					1	ues (samplin		0.01	3-110	11.01	12	1.710-		
Filter	brand _.	Not file	Has tered V	t_ Y			RPD			V	V	<u></u>		
		276	,		Total L	1								
EC SI		30 / 6	<u>νο</u> μοιο	111	54	MPLING	INFO	DATAT	TION					
		ed water			t 25°C				F				μs/cm at 25	ë℃
Beake	r materi	al: polypro	pylene	Samp	le compo	sited (Y/N):	<u></u>	Start	t sample:	12;	30	_ (2400 hr	clock)	
Weat	her: (5	min. max.	at ground	level at	LWI) Rain _/	nil	, Ten	np_ <u>24</u> -	8°C	- , Cloud	cover	nil	`
Wind a	lirection	200	, `	Wind Spe	ed <u>1.5</u>	TOm/s	Upwin	d Activit	ies <i>la</i>	end	fill .	~		
Samp	ole app	earance:	Odour _	_		Co	olour	cle	ar	T	urbidity _		•	_
Non-cor Detai		s of well cond	ition (see 'i	Field checks	') and equi	ipment (Y/N) :	<u>N</u> (lf yes, writ	e details and r	emedy or a	range reme	dy.)		
Purgi	ng and	sampling	proced	ures we	re those	detailed b	y Cody	yHart C	Consulting	; Pty Lt	d.			
Name:	Bar	bora	Har	t s	Signature:	B	Mar	t.	Date	. 91	5/12	. Time: .	13:00	,
Cody3 N	lart Con	sulting Pt 2.4 in 1 V/Cb6	y Etd bisil Mom	Du	plie N 50	ate as il gas i ,000 pp	spi en li nt	lit s andf V32	illy L	le. punc ppm	ls N4 i	ril side 1	9875A	Par -

GROUNDWATER FIELD PARAMETER FORM (Monitoring wells) Project: Armidale Dumaresq Council - Long Swamp Road Landfill SAMPLE POINT ID: LW2

PURGING INFORMATION

Pump type: bladder pump Tubing: LDPE

Total well depth (from top of casing) (m) 3 8 • 8 7 Air controller: QED Micropurge Model 400

Depth to groundwater (m) 4°/9 (from top of PVC casing) (RL top of internal casing = 1007.06 m)

4-19 +0-85-5. 04 Position pump at: 35.0 m from top of PVC casing

WATER COLUMN DEPTH (m) (well depth minus depth to groundwatter)

33 83 Discharge/refill rate (secs): 60/60, psi: 55 30/30 Purge voltine: 4 L Date: 13.1.4.1.12 Start time: 15:00 (24 hr clock) Cycle vol: 10.0. mL Pump rate: 1.0.0. mL/min

FIELD ANALYTE VALUES

Vol	DO	EC	pH	Eh	Тетр	WL	Vol	DO	EC	pH	Eh	Temp	WL
<u>(L)</u>	(mg/L)	(µS/em)	(STD)	(mV)	(°C)	(m)	<u>(L)</u>	(mg/L)	(µS/cm)	(STD)	(mV)	(°C)	<u>(m)</u>
				*******			0.5	10 FO	598	6067	+74	21	· · ·
		*******					100	0.7	201	657	+24	12.3	
			1				2.0	0.44	600	6.64	+34	1201	
					ļ		2.5	0-44	600	6.67	1.30	12.2	
		••••			<u> </u>		3.0	0-40	600	6-68	+28	12.2	1.1-
								0.34		968	tal.	17.7	4.6Z
							4.0	0-28		000	7.46	102-2	+0:85 5.47
		*******			1								5.47
													- 11
		***	.]		 						
1	l						1 H			1			
		***********					u-,,		1	, ,			
			Me	an of last	four val	ues (sampling	mean)	0940	600	6.6	+28	12.2	
Notes	Mean of last four values (sampling mean) OcHO 600 606 43 + 28 1202 RPD V V V V V												
Pump	brand	Cod DC Not file	ultas	t									
het	elost	DC		1									
Filter	eal	NOT THE					R	. 1		. 65	al	0.0.1	-
Tick (on meta	ls bottle:	Dissolv	ed 🗹	Total [Vem	emb		* 85	~ 7	Can	ng
EC st	andard	276	$Q_{\mu}S/c$	m				k	woken	r of	4		U
	-									•	•		
		ed water	San		ð.	AMPLING	INFU	KIVLAI			2.	1.0	μs/cm at 25°C
										-			
Beaker material: polypropylene Sample composited (Y/N): Start sample: 15,345 (2400 hr clock)													
Weat	Weather: (5 min. max. at ground level at LWZ) Rain Nil, Temp 10.8°C, Cloud cover NiL												
Wind direction <u>250</u> , Wind Speed <u>2.046</u> (SUpwind Activities <u>leachate dam</u> cloudy Sample appearance: Odour <u>Colour White</u> Turbidity <u>Trace</u>													
Samp	Sample appearance: Odour Colour Turbidity Trace												
Non-cor	iformances	s of well cond	ition (sec 'l	Field checks	') and equ	ipment (V/N) :		yes, write d	lctails and rcm	cdy or arrar	nge remedy.)	<u> </u>	
	Non-conformances of well condition (scc ' <i>Field checks'</i>) and equipment (V/N): <u>/</u> (If yes, write details and remedy or arrange remedy.) Details:												

Barbara Hart signature: BHart Date: 13/4/12 Time: 16:30

Purging and sampling procedures were those detailed by CodyHart Consulting Pty Ltd.

È.

ŧ.,

CodyHart Environmental

GROUNDWATER FIELD PARAMETER FORM (Monitoring wells)

<u>Proje</u>	Project: Armidale Dumaresq Council - Long Swamp Road Landfill SAMPLE POINT ID: LW3												
PUR	GING I	NFORM	IATION	N			Р	ump tyj	pe: bladde	r pump	Tubi	ng: LDl	PE
Total	well de	epth (fro	m top o	f casing	y) (m)	35•8							
		oundwate		- 1000 41		11.5	<u>6</u> P	osition j	pump at:	30.0 m	from top	p of PV(C casing
WAT	ER CO	DLUMN	DEPTH		(m)	24.3	<u>52</u> D	ischarg	e/refill ra	te (secs)	: 60/60	psi: 50	55
Purge	volume:	4 L Date:	<u>9.1.5</u>		art time	. 14:50					20121	7	
Û			•			TELD ANA					•		
Vol (L)	DO (mg/L)	EC (µS/cm)	pH (STD)	Eh (mV)	Temp (°C)	WL (m)	Vol (L)	DO (mg/L)	EC (µS/em)	pH (STD)	Eh (mV)	Temp (°C)	WL (m)
							0.5	0.56	479	6.32	Ó	19.8	/
*********							1.0	0= 54 0= A 8	482	6.30	0 0	1908	
							2.0	0.43	486	6-24	=24	1907	
							3.0	0.3	485	626	-5	1902	-
							3.5	0.29	484	6.30	-6	1807	
							400	Dexo		0-00		15-14	
		*					500						12087

	Mean of last four values (sampling mean) $0.324856.28-519.0$												
Notes		4					RPD		750	V	V	V	
		San	nole	Pro									
<i>Miz</i> Filter	als f	<u>Sav</u> OC Not filt	tered []									
		ls bottle:			Total [
EC st	andard	2760	<u>)</u> μS/c	m									
		,			SA	MPLING	INFO	RMAT	ION				
Pretest	of deionis	ed water	2010	<u>2</u> μS/cm a	t 25°C				F	ield blank	ес <u>4</u>	-17	µs/cm at 25°C
						sited (Y/N):							
Weat	her: (5	min. max.	at ground	l level at	LW3	3) Rain_	Nil	, Ten	np_20 e	ŜC.	_, Cloud	l cover	0%
Wind a	lirection	200	<i>o</i> , 1	Wind Spec	ed _ 0 =	77m/s	Upwin	d Activit	ies ,	pa	ddor	chs	
Wind direction 200°, Wind Speed 0=77 m/s Upwind Activities, paddocks Ught brown, Sample appearance: Odour Colour bacteria, Turbidity moderate Specs at first													
Non-conformances of well condition (see 'Field checks') and equipment (Y/N): M' (If yes, write details and remedy or arrange remedy.) Details:													
Purging and sampling procedures were those detailed by CodyHart Consulting Pty Ltd.													
Name:	Name: Barbara Hart Signature: BHart Date: 9/5/12 Time: 16:00												

.

GROUNDWATER FIELD PARAMETER FORM (Monitoring wells)

Proje	Project: Armidale Dumaresq Council - Long Swamp Road Landfill SAMPLE POINT ID: GWEX-01												
PUR	GING I	INFORM	IATIO	N			P	ump ty	pe: bladde	r Tub	ing: LDI	PE	
Total	well de	epth (fro	m top o	of casing	g) (m)	9•85	A	ir conti	roller: QE	D Micro	opurge M	iodel 4	00
Deptl	ı to gra	undwate	er (m)	-		3.38	- P						
(from top of PVC casing) (RL top of internal casing = 1023.99 m)													
	(well depth minus depth to groundwater)												
Purge	Purge volume: 4 L Date:												
Vol	Vol DO EC pH Eh Temp WL Vol DO EC pH Eh Temp WL												
<u>(L)</u>	(mg/L)	(µS/em)	(STD)	(mV)	(°C)	(m)	(L)	(mg/L)	μS/em)	рн (STD)	En (mV)	remp (°C)	(m)
							0-5	5.01	744	5012	225	18.2	
							100	352	60	4	288	160	
							2.0	3.49	64-1	472	191	16.8	
	3.0 308 635 4-70 +208 165												
	35 366 632 4:60 + 362 16-6												
	4.0 3.64 632 4.65+306 16.6 3.49												
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
•••••												· · · · · · · · · · · · · · · · · · ·	
			Me	an of last	four valı	ues (sampling R	mean) PD	3.66	634	4.69	+300	16.6	
Notes Pump		Co-d Not filt	yHar	t_				1	U U	\checkmark	\checkmark	V	
Filtere	d	Not filt	, ered 🔽	Í.					•				
Tick o		s bottle: I			Total								
EC sta	ndard _	276	<u>2</u> μS/c	m									
			0			MPLING	[NFO]	RMAT				A	
		d water							Fi	eld blank	ес <u>З.</u>	7	µs/cm at 25°C
Beaker	materia	l: polyproj	oylene	Sample	e compos	sited (Y/N): .	<u>N</u>	Start	sample:	11:	00	(2400 hr	clock)
Weatl	ner: (5 r	nin. max. a	it ground ø	level at	LW1) Rain	hil	_ , Tem	p 24.	5°C	_, Cloud	cover_	clock) <i>hil</i>
Wind d	irection_	200	, V	Vind Spee	d <u>/</u> •	50m/s	Upwind C	l Activiti	es l	and	fill	• . <u> </u>	
Samp	Wind direction <u>200</u> , Wind Speed <u>1.50m/s</u> Upwind Activities <u>landfill</u> Sample appearance: Odour <u>Colour at first, then</u> Turbidity <u>trace</u>												
Non-conformances of well condition (see 'Field checks') and equipment (Y/N): <u>M</u> (If yes, write details and remedy or arrange remedy.) Details:													
Purging and sampling procedures were those detailed by CodyHart Consulting Pty Ltd.													
Name: .	Name: Barbara Hart Signature: BHart Date: 9/5/12 Time: 11:30												

يجي

1997 - 1997 - 1999	GROUNDWATER FIELD PARAMETER FO	RM (Monitoring wells)	
Project:	Armidale Dumaresq Council - Long Swamp Road Landfill	SAMPLE POINT ID:	

1

PURGING INFORMATION

Total well depth (from top of casing) (m) 26 • 66 12.39

Depth to groundwater (m) (from top of PVC casing) (RL top of internal casing = 1007.45 m) WATER COLUMN DEPTH (m) (well depth minus depth to groundwater)

Pump type: bladder Tubing: LDPE

Air controller: QED Micropurge Model 400

Position pump at: 25.50m (from top of PVC casing)

Discharge/refill rate (secs): 15/15 psi: 40

(well dept	h minus dep volume:	th to groundwat	^{er)} 8/ 5	5 182,0	tant tim	a asho a	34 h1		1/	nO.	-	20	1. 1
	Purge volume: 4 L Date: 8.1.5.1.2 Start time: <u>9:40</u> (24 hr clock) Cycle vol: <u>100</u> mL Pump rate: <u>200</u> mL/min FIELD ANALYTE VALUES												
Vol (L)	DO (mg/L)	EC (µS/cm)	pH (STD)	Eh (mV)	Temp (°C)	WL (m)	Vol (L)	DO (mg/L)	EC (µS/cm)	pH (STD)	Eh (mV)	Temp (°C)	WL (m)

		0.5							
		000 1002	438 603	+123, 17.2					
	*****	105 0.90	395 604	+126 17.2					
		2.0 0077	380 6.02	+129 173					
		25 0.64	368 346	+129 17.6					
		3.000.00	365 5.94	4139 176					
	****	20000	364 3080	+130 11-7	17.30				
		90 063	-26L 233	+131 17ºK	12.39				

	of last four values (sampl	ng mean) (Cob) RPD	365 3.41	+130 1707					
Notes:	4	V							
Notes: Pump brand <u>Codyffart</u>									
Filtered Not filtered	n								
			`						
Tick on metals bottle: Dissolved	Total								
EC standard $\underline{2760}$ µS/cm									
	SAMPLIN	G INFORMATI	ION						
Pretest of deionised water 3.65μ S/cm at 25°C Field blank EC $3.87 - \mu$ S/cm at 25°C									
Beaker material: polypropylene	Sample composited (Y/N):N Start :	sample: 10:	00 (2400 hr	clock)				
Weather: (5 min. max. at ground le	vel at GMG(-O_) Rain	Nill Tom	10 n°C		Alia				
0	() Kani	<u>, ren</u>	<u> </u>	_, Cloud cover _	NUC.				
Wind direction, Win	nd Speed <u>1.07m/S</u>	Upwind Activitie	s_kach	ate dam	/				
Beaker material: polypropylene Weather: (5 min. max. at ground le Wind direction, Win Sample appearance: Odour		Colour cle	14/ Tu	urbidity	rce				
		<u>\</u>							

nces of well condition (see 'Field checks') and equipment (Y/N): 11 (If yes, write details and remedy or arrange remedy.) Details:

Purging and sampling procedures w	vere those detailed by CodyHart Consu	ilting Ptv Ltd.
Name: Barbara Hart		Date:

GROUNDWATER FIELD PARAMETER FORM (Monitoring wells) Project: Armidale Dumaresq Council - Long Swamp Road Landfill SAMPLE POINT ID: GWEX-03

PURGING INFORMATION

Total well depth (from top of casing) (m) $26 \cdot 68$

Depth to groundwater (m)

(from top of PVC casing) (RL top of internal casing = 1004.18 m) WATER COLUMN DEPTH (m)

Pump type: bladder Tubing: LDPE

Air controller: QED Micropurge Model 400

Position pump at: 25.50m (from top of PVC casing). Previously 24 m, pH now OK Discharge/refill rate (secs): 15/15 psi: 50

(well depth minus depth to groundwater) Purge volume: 4 L Date: 9.15.1.12. Start time: 13:40 (24 hr clock) Cycle vol: 100. mL Pump rate: 200 mL/min

181.72

17.96

FIELD ANALYTE VALUES W/T Vel DO FC

Vol	DO	EC	pH	Eh	Temp	WL	Vol	DO	EC	pН	Eh	Temp	WL
· (L)	(mg/L)	(µS/cm)	(STD)	(mV)	(°C)	(m)	(L)	(mg/L)	(µS/cm)	(ȘTD)	<u>(mV)</u>	(°C)	(m)
							0.5	2.16	977	6035	223	18.0	
							1.0	1:17	978	G.32	1217	1%9	
							105	0.04	073	635	215	1709	
							2.00	0.48	- 944	6.37	+206	17.9	
		*******					2.25	0.45	-943	6038	+204	17.8	
							2.0	0.9	425	6.38	+20	108	
							2">	1.01	000	6.36	+ 14	10	8.90
							$\mu \cdot v$	1.00	504	0.00	TIGH	<u>n je co</u>	5.70
													<i>i</i>
										ļ			
			Me	an of last	four val	ues (sampling	mean)	0.98	<u>q14</u>	6.38	1-199	17.7	
Notes	•	<i>A</i>				£	(PD	V	V	\checkmark	V	·	
Pump brand (solvaltant													
Pump brand <u>[boly Hard</u>													
	Pump brand												
		ls bottle:			Total [
EC st	andard	2760	μS/c	m									
		•			SA	MPLING	INFO	RMAT	TON				
Pretest	of deionis	ed water	2.10	uS/cm a						ield blank	FC 4	017	μs/cm at 25°C
							. 1						
						sited (Y/N):							
Weat	her: (5	min. max.	at ground	l level at	LWE) Rain	Nil	🟒 , Ten	np_20	-5°C	, Cloud	cover_	0%.
		200	>			nn. Ir				!	1. 6	,	- «
Wind	direction	200	<u> </u>	Wind Spe	ed <u>0</u> "	1º/m/s	Upwin	d Activit	ies/	pace	abch	1	
Samp	ole app	earance:	Odour _	~		Coi	lour	elea	~	T	urbidity _	. 4	race
Non-conformances of well condition (see 'Field checks') and equipment (Y/N): M (If yes, write details and remedy or arrange remedy.) Details:													
Purging and sampling procedures were those detailed by CodyHart Consulting Pty Ltd. Name: Barbara Hart Signature: BHAart Date: 9/5/12 Time: 14:30													
Name:	\mathcal{D}	wound	i 11	uri s	Signature	: <i>V</i> DVF	rasi	, 	Date	. 7/3	11d	. Time:	14:00

SURFACE WATER & LEACHATE FIELD PARAMETER FORM

Ø

1

Project: Armidale I	Dumaresq Council			SAMPLE POINT ID: 152					
			INFORMATI	ION					
Pretest of deionised water	<u>3-65</u> µS/cm at 2	5°C		Field blank EC $4 \circ 0 2$ µs/cm at 25°C					
DO mg/L	EC μs/cm	pH (STD)	Eh (mV)	Temp (°C)					
10.88	2810	_§.Ø2	<u>+58</u>	$-\frac{16}{4} \cdot \frac{9}{4}$ Beaker material: polypropylene					
_11.10	2750	_8·Z3	<u>+52</u>	$-\frac{16}{2} \cdot \frac{7}{2}$ Sample composited (Y/N):					
x 10.99	2780	8.68	+55	$\frac{16}{16} \cdot \frac{9}{7}$ Beaker material: polypropylene $\frac{16}{16} \cdot \frac{7}{7}$ Sample composited (Y/N):					
RPD /	V								
Sample date:	.5.112 s	tart sample: 🧾	4:00 0	400 hr clock)					
Weather: (5 min. max.	. at ground level at	S3) Rain_	Nil, Tem	p_24.7°C, Cloud cover_1° es_leachate dam LSZ green_Turbidity_trace_					
Wind direction 190	Wind Speed	2.82 in S	Upwind Activitie	es leachate dam LSZ					
	- Odeur	~ ~	in light	of dam wall					
Sample appearance:	. Udour	Co	nour <u>cere</u>	graen Iurbidity <u>Frace</u>					
		LOCATION	INFORMAT	ION					
Grab sample \mathcal{Z}	m out fro	m hida	the west	Ern end, south-eastern					
E	lea	chate po	nd of	Ern end, south-eastern old landfill					
DEPTH INFORMATION									
A. Estimated depth	of water (m)			0,45 m					
Non-conformances of samplin	g point (see 'Field checks')	and equipment (Y/N)	: <u>N</u> (If yes,	write details and remedy or arrange remedy.)					
Details:									
Sampling procedures	were those details	ed by CodyHart	Consulting Ptv	z T td					
Bangang procedures			Maat	Date: 8/5/12 Time: 14:30					
Sampler's name:	bara [70sh	Signature:	Tran	Date: $\frac{3}{3}/\frac{12}{12}$. Time: $\frac{7}{30}$					
Filtered Not fi	iltered			•					
Tick on metals bottle		otal							
EC standard									
	μο/ επ								
				、 、					
	đ			-					

SURFACE WATER & LEACHATE FIELD PARAMETER FORM SAMPLE POINT ID: LS3

Project: Armidale Dumaresq Council

	/		INFORMATI	•					
Pretest of deionised water 34	<u>25</u> μS/cm at 25%	C		Field blank EC $4 \cdot 0^2$	_ µs/cm at 25°C				
DO mg/L	EC µs/cm	pH (STD)	Eh (mV)	Temp (°C)					
13.13	1731 _	9.02	+ 54	$18 \cdot 2$ Beaker material:	polypropylene				
<u>13.23</u> 1	734 _	9.14	+50	$\underline{17} \cdot \underline{4}$ Sample composite	d (Y/N):				
X 13.18 1	733	9.08	+52	$\frac{18 \cdot 2}{17 \cdot 4}$ Beaker material: $\frac{17 \cdot 4}{17 \circ 8}$ Sample composite					
RPD V		\checkmark	V						
Sample date:	1.12 Sta	rt sample:	13:00 0	400 hr clock)					
Weather: (5 min. max. at gro	ound level at L	53) Rain_ Av (+2.3 w	Nil, Temj	p 24.7C, Cloud cover	1%				
Wind direction 190	_, Wind Speed	2.82m/s	_ Upwind Activitie	es_leachate dam	LSJ				
Sample appearance: Odo	Ir	C	olour light	p <u>24.7</u> , Cloud cover es <u>leachate dam</u> <u>green</u> Turbidity <u>fra</u>	ace				
			N INFORMAT						
Grab sample 2m from horthern edge of dam, ~ 2m east of irrigation pump shed,									
DEPTH INFORMATION									
A. Estimated depth of wa	ater (m)			<u>0</u> . <u>70</u> m	L				
<u></u>									
Non-conformances of sampling point Details:	(see 'Field checks') an	d equipment (Y/N)	: (If yes,	write details and remedy or arrange remedy	•••				
Sampling procedures were Sampler's name: Barbar				Ltd. Date: 8/5/12 Time	13:30				
Filtered Not filtered Tick on metals bottle: Diss	olved 🗌 Tota	al 🗹	χ.						
EC standard <u>2760</u>	ıS/cm								

SURFACE WATER & LEACHATE FIELD PARAMETER FORM umaresq Council SAMPLE POINT ID: $\angle S4$

Project: Armidale Dumaresq Council

SAMPLING INFORM	ATION								
Pretest of deionised water 3.65 µS/cm at 25°C	Field blank EC $\underline{\mu} \circ OZ$ µs/cm at 25°C								
DO mg/L EC μ s/cm pH (STD) Eh (m $-5 \cdot 98$ 1765 $-7 \cdot 23$ 192 $-5 \cdot 81$ 1762 $-7 \cdot 34$ $+81$ $\overline{\chi}$ 5.60 1764 $7 \cdot 29$ $+87$ RPD	Temp (°C) $17 \cdot 2$ Beaker material: polypropylene $17 \cdot 0$ Sample composited (Y/N): $.17$ $17 \cdot 1$								
Sample date:	2_ (2400 hr clock)								
Weather: (5 min. max. at ground level at $AS3$) Rain \underline{Nil} , Wind direction $\underline{100}$, Wind Speed $\underline{2 \cdot 82mfs}$ Upwind Act	ivities grassed edge of landfill								
Sample appearance: Odour Colour V, U	<u>tinge</u> Turbidity <u>trace</u>								
LOCATION INFORMATION Grab sample 2m from edge of dam, south-eastern corner									
DEPTH INFORMATION									
A. Estimated depth of water (m)	0,30 m								
	•								
Non-conformances of sampling point (see 'Field checks') and equipment (X/N) : (1) Details:	f yes, write details and remedy or arrange remedy.)								
Sampling procedures were those detailed by CodyHart Consulting Sampler's name: Basbara Hart Signature: BHHart metals + TOC Filtered Not filtered D Tick on metals bottle: Dissolved D Total D	Pty Ltd. Date: 8/5/12 Time: 12:30								
EC standard <u>2760</u> μS/cm									

.

SURFACE WATER & LEACHATE FIELD PARAMETER FORM Project: Armidale Dumaresq Council SAMPLE POINT ID: LS5

SAMPLING INFORMATION Field blank EC 4.02 µs/cm at 25°C EC μs/cm pH (STD) Eh (mV) DO mg/L Temp (°C) RPD· 1

 Sample date:
 $\dots \mathbb{V}$ $\dots \mathbb{V}$ LOCATION INFORMATION Grab sample from SE corner of dam with 3m extension pole, Few fresh cowding - but no visible cettle **DEPTH INFORMATION** 0 , 30.m A. Estimated depth of water (m) Non-conformances of sampling point (see 'Field checks') and equipment (Y/N) : _____ (If yes, write details and remedy or arrange remedy.) **Details:** Sampling procedures were those detailed by CodyHart Consulting Pty Ltd. Sampler's name: Barbara Hart Signature: BHHart Date: 8/5/12 Time: 15:00 Not filtered Filtered Tick on metals bottle: Dissolved 🗌 Total 📝 EC standard 2760 µS/cm

E CodyHart Consulting Pty Ltd

Form 1G S Project: Armidale Dun	URFACE WATER &	& LEACH	ATE FIELD		ER FORM PLE POINT ID: SWEX-0/
	SAN	IPLING IN	NFORMATI	ON	
Pretest of deionised water 3	4				ank EC <u>3.82 µs/cm at 25°C</u>
DO mg/L	EC μs/cm pH	[(STD)	Eh (mV)	Temp ('	°C)
5.37	217 6.	47 -	+41	14.7	Beaker material: polypropylene
-6.16	222 6.	56 +	- 49	14.2	Sample composited (Y/N):
N 5077	220 6.	52/ 1	+45	14.5	Beaker material: polypropylene Sample composited (Y/N):
RPD V	~	~	/	~	
Sample date:		nple: _//)); 30 (24)	00 hr clock)	
Weather: (5 min. max. at g	round level at CNEX-0	Z) Rain	Nil, Temp	19.90	<u>C</u> , Cloud cover <u>Nil</u> ,
Wind direction _200	, Wind Speed	<u>7 m/s</u> u	Jpwind Activities	slea	<u>C</u> , Cloud cover <u>Nil</u> , ethate dam Turbidity <u>Fra</u> ce
Sample appearance: Od	our	Colou	ur <u>clear</u> -		Turbidity frace
		l	with gra	or seeds	
	LOC	CATION II	NFORMATI	ON	
Grab sample in pond ivery moist)	, recently of apgradient	lilled l (north	by flou h) of h	-(path LZd	way still am.
<i>v</i>			ORMATIO		
A. Estimated depth of v	vater (m)				Ø . 05 m
Non-conformances of sampling poin Details:	nt (see 'Field checks') and equip	ment (Y/N):_	M (If yes, y	write details and re	medy or arrange remedy.)
Sampling procedures we					
Sampler's name:	Ara Hart Signature	- <u>/</u> D	Mart	Date:	5/12
Filtered Not filter					
Tick on metals bottle: Dis		/			
EC standard _2760					

APPENDIX B - Chain of Custody Forms and Calibration Certificate

CodyHart COC to Site & Calibration Certificate

Chain of Custody for sample containers - laboratory to site

CodyHart ordered sample containers from ALS laboratory, Stafford, Brisbane. When they were received they were stored in the locked and security monitored CodyHart office at Burleigh Heads, Queensland.

CodyHart labels were adhered to appropriate containers. The containers for each sampling point were placed into self sealing plastic bags, which were then labelled with the sampling point identity. The containers for each sampling point were then placed into CodyHart eskies and transported to the Long Swamp Road Landfill by CodyHart.

It is certified that the sample bottles were received in unbroken sealed containers from ALS, and that no tampering with the sample containers occurred when in CodyHart hands.

BiHart 09/05/12

Calibration certificate for field lab

A TPS 90-FL Series field lab is used by CodyHart to take field temperature, pH, electrical conductivity (EC), redox potential (Eh) and dissolved oxygen (DO) readings.

A yearly maintenance service is conducted by TPS Pty Ltd, Brisbane.

It is certified that the field lab was calibrated daily at Armidale so that sampling was conducted within 24 hours of field testing. The pH was recalibrated if any probe drift was noticed. The calibration process was documented and is available on request.

BiHart

13/05/12

CHAI	N OF CUS	TODY	TOL	AB																	(H		en solwer en e	· · · · · · · · · · · · · · · · · · ·
LIENT:	CodyHart Env	ironmenta	il	·			SAMP	LER:	B. Ha	art												Cody	Ha	ırt
DDRESS	/ OFFICE: 3/29 Tov	nship Drive	BURLEIGH	HEADS 422	20 (PO Box 1073 BURLEIGH HEADS 4220)		MOBII	LE:	042 7	77 51	20									د مناطق بردون مسلمان بردون مسلمان بر		Envi	ronmei	ntal
	MANAGER (PM):		rt				PHON													Monite	oring	& Man	agém	ven
	D: Armidale 24		C :11									dyhart.c	om.au						ł				E. S. S. S. S. S. Sancer Marine Sancer Marine	and the second
ITE: LC	ong Swamp Ro	ad Land		P.O. NO.:					CE TO:)													
	REQUIRED (Date):	91		QUOTE N	o.: BN-101-12 (Blanket quote)		ANAL	YSES F	REQUIR															—
ORICABOR	ATORXUSE ONLY AL (citale appropriate) Yes No N/A		COMME	NTS / SPE	CIAL HANDLING / STORAGE OR DISPOSAL:				Ŷ	(SN	ŵ					-	Q							
DOLER SE	AL (citole appropriate)						4		Mg Na K)	ICPI	CPM		(SM			(xON	n (TOC)							
		PLEASE	SCAN THIS	FORM U	N DAY OF ARRIVAL AND EMAIL				a M	er olved	iss IC		_ <u>_</u> _	± ŵ	L.	IKN	arboi			sa	sp	Vater tes)		
	EMPERATURE			···· ,			Water	C) afer	er ons (Wate Disse	Vate †g (D		Wate Total	Wate CPM:	Wate s N	ar Jen (/ater nic C	/ater otal)	/ater	ter sticid	ater I Soli	/) - (/ anal)		
	Yes No		•				ate V	ED045 - Water Chloride (PC)	NT-1 Water (Major cations Ca M	EG020F - Water Fe Mn Zn (Dissolved ICPMS)	- ²		EG020T - Water Fe Mn Zn (Total ICPMS)	DT -	EK055A - Water Ammonia as N	NT-5 Water Total Nitrogen (TKN N	5 - V Drgai	N - 5	EP080 - Water BTEX	W-12 - Water OC/OP Pesticides	EA025 - Water Suspended Solids	5 (SII) (16 :		1
ALS ID	MPLE INFORMATIC SAMPLE ID	N (note: S =	<u>Soil, W=Wat</u> DATE	<u>er)</u> Time	CONTAINER INFORMATION TYPE	No. bottles	ED040 - V Sulphate	D045	T-1 Major	G02(e Mn	G02(e Mn		6 Mn	G02(g (To	K055 mmo	T-5 otal N	P005 otal (P035 heno	P080	C/0	A025 uspe	P075 AHs		
	SAMPLEID		DATE	TIME		NO. DOUIES	шσ	шО	Ζ÷	шц	шш	┞──╀	<u> </u>		ШК	ΖF	чн	шс	шю	50	шs	ше		⊢
												\vdash		+										<u> </u>
					250mL Green; 60mL Red;		ļ		<u> </u>			,												L
	GWEX-02	w	8/5/12	10:00	125 mL Purple; 40 mL Purple; 100 mL Orange.	5		×			X	Ĺ			X	X	x					x		
													:											
									1			╞╌┼		1										
2			0/5/40	40-00	1 L Green; 60mL Red;	<u> </u>	x	x	x			+		+	x	x	x	x			x			
	SWEX-01	W	8/5/12	10:30	125 mL Purple; 40 mL Purple; 250mL Purple. 500 mL Green; 60mL Red;	5		^	^						^			~						┝
3	LS2	w	8/5/12	14:00	125 mL Purple; 40 mL Purple. 500 mL Green; 60mL Red;	4							X			X	X				X			<u> -</u>
<u> </u>	LS3	w	8/5/12	13:00	125 mL Purple; 40 mL Purple.	4	<u> </u>						X		X	X	x				. X			L
5	LS4	w	8/5/12	12:00	500 mL Green; 60mL Red; 125 mL Purple; 40 mL Purple.	4							x		x	X	x				х			
6	LS5	w	8/5/12	14:30	500 mL Green; 60mL Red; 125 mL Purple; 40 mL Purple.	4						1	x			X	x				х			1
																		۰.						
						1	 							1					·	L	·			·
							1	1	1				l		.I		_	En		Drich	000	ivisio		4
ELINQUIS					RECEIVED BY:								SHIPMENT					, w	۱۸	lork /	an o Trda	. Hv	J	
Barbara I		Date:	8/05/:		Name:	Date:			-			sport C		EX			0	Tr'				- 4 -	•	
	t Environmental	Time:	16:		Of: ALS Laboratory, Brisbane	Time:					Con'	Note N								12	123	516)	
Signatur	e:		В F Har	t	Signature:								2	3442	71		ļ	1				 	1	

*

CodyHart Consulting Pty Ltd trading as CodyHart Environmental

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order : EB1212516

Client Contact Address	E CODYHART CONSULTING PTY LT MS BARBARA HART P O BOX 1073 BURLEIGH HEADS QLD, AUSTRA 4220	Contact Address	 Environmental Division Brisbane Customer Services 32 Shand Street Stafford QLD Australia 4053
E-mail Telephone Facsimile	 pelican@codyhart.com.au +61 55205532 +61 07 55206531 	E-mail Telephone Facsimile	 Brisbane.Enviro.Services@alsglobal.com +61 7 3243 7222 +61 7 3243 7218
Project	: Armidale 243	Page	: 1 of 2
Order number C-O-C number Site	: : : Long Swamp Road Landfill	Quote number	: EB2012CODCON0249 (BN/101/12)
Sampler	: B.Hart	QC Level	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dates			
Date Samples Rec	eived : 09-MAY-2012	Issue Date	: 11-MAY-2012 12:38
Client Requested I	Due Date : 18-MAY-2012	Scheduled Reportin	ng Date : 18-MAY-2012
Delivery Det	ails		
Mode of Delivery		Temperature	2.8°C - Ice present
No. of coolers/boxe	es : 1 MEDIUM	No. of samples rece	P P

mode er Benrery	· Ourrici	romporataro	· 2.0 0 - 100 prosent
No. of coolers/boxes	: 1 MEDIUM	No. of samples received	: 6
Security Seal	: Intact.	No. of samples analysed	: 6

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.
- Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' suites) are referenced on COCs.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Matt Goodwin.
- Analytical work for this work order will be conducted at ALS Brisbane and ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Address 32 Shand Street Stafford QLD Australia 4053 PHONE +61-7-3243 7222 Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🐊

RIGHT SOLUTIONS RIGHT PARTNER

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

process neccessa tasks. Packages the determination tasks, that are inclu ff no sampling default to 15:00 date is provided,	ary for the execut may contain addit n of moisture couded in the package. time is provided, on the date of sa the sampling date processing purposes	the sampling time will mpling. If no sampling will be assumed by the	WATER - EA025H Suspended Solids (High Level)	WATER - ED041G Sulfate (Turbidimetric) as SO4 2 by Discrete Analyser	WATER - ED045G Chloride by Discrete Analyser	WATER - EG020F Dissolved Metals by ICPMS	WATER - EG020T Total Recoverable Metals by ICPMS	WATER - EG035F Dissolved Mercury by FIMS	WATER - EK055G Ammonia as N By Discrete Analyser	WATER - EP005 Total Organic Carbon (TOC)
EB1212516-001	08-MAY-2012 10:00	GWEX-02			✓	✓		✓	✓	✓
EB1212516-002	08-MAY-2012 10:30	SWEX-01	✓	✓	1		✓		✓	✓
EB1212516-003	08-MAY-2012 14:00	LS2	✓				✓			✓
EB1212516-004	08-MAY-2012 13:00	LS3	1				✓		✓	✓
EB1212516-005	08-MAY-2012 12:00	LS4	✓				✓		✓	✓
EB1212516-006	08-MAY-2012 14:30	LS5	1				1			✓
			crete Analyser	1 PAH only	lg, Na, K)					
Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - EP035G Total Phenol by Discrete Analyser	WATER - EP075 SIM PAH only SIM - PAH only	WATER - NT-01 Major Cations (Ca, Mg, Na, K)	WATER - NT-05 Total Nitrogen				
Laboratory sample		Client sample ID GWEX-02	WATER - EP035G Total Phenol by Disc	WATER - EP075 SIN	WATER - NT-01 Major Cations (Ca, N	WATER - NT-05				
Laboratory sample ID	date / time		WATER - EP035G Total Phenol by Disc		WATER - NT-01 Major Cations (Ca, M	-	_			
Laboratory sample ID EB1212516-001	date / time 08-MAY-2012 10:00	GWEX-02				1				
Laboratory sample ID EB1212516-001 EB1212516-002	date / time 08-MAY-2012 10:00 08-MAY-2012 10:30	GWEX-02 SWEX-01				√ √	-			
Laboratory sample ID EB1212516-001 EB1212516-002 EB1212516-003	date / time 08-MAY-2012 10:00 08-MAY-2012 10:30 08-MAY-2012 14:00	GWEX-02 SWEX-01 LS2				✓ ✓ ✓	-			

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

MS BARBARA HART

- *AU Certificate of Analysis NATA (COA)
- *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)
- *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
- A4 AU Sample Receipt Notification Environmental HT (SRN)
- A4 AU Tax Invoice (INV)
- Chain of Custody (CoC) (COC)
- EDI Format ENMRG (ENMRG)
- EDI Format XTab (XTAB)

Email Email Email Email Email Email Email pelican@codyhart.com.au pelican@codyhart.com.au pelican@codyhart.com.au pelican@codyhart.com.au pelican@codyhart.com.au pelican@codyhart.com.au pelican@codyhart.com.au

CHA	IN OF CUS	TODY	TO L	AB										BA	тс	H 2	2 01	f 2				A			Ster.
	CodyHart Env	ironmenta	n/				SAMP	_ER:	B. Ha	ırt												M	Codr	Ha	rt
DDRESS				HEADS 422	0 (PO Box 1073 BURLEIGH HEADS 4220)		MOBIL	.E:	042 7	77 51	20										And and a state of the state		Envi	ronmen	tal
OJECT	MANAGER (PM):	Barbara Ha	rt				PHON	E:												dillo in	Monit	oring	& Mar	agém	ent
	ID: Armidale 24				· ·							lyhart.co	m.au											a star a star Star a star a Star a star a	
TE: LO	ong Swamp Ro	ad Land	fill	P.O. NO.:			EMAIL	INVOI	CE TO:	(above)															-
SULTS	REQUIRED (Date):	**		QUOTE NO	o.: BN-101-12 (Blanket quote)		ANAL	YSES F	REQUIR	ED:	-	<u> </u>							<u>r – – – – – – – – – – – – – – – – – – –</u>		r				
ちゃちんて	ATORY USE ONLY		COMME	ENTS / SPE	CIAL HANDLING / STORAGE OR DISPOSAL:				Ŷ	(SM	ŝ						Ģ	ŷ							
	EAL (circle appropriate)						-		Mg Na	d CP	ICPMS)			(SM			ÔN	L) u					<u>ل</u> ر ا		
学会计说的对象 。15	Yes No N/A	PLEASE	SCAN THIS	FORM U	N DAY OF ARRIVAL AND EMAIL				Ca M	er solver	ater (Diss I			EGUZUT - Water Fe Mn Zn (Total ICPMS) ECOOT - Water	<u>(</u> 2)	Ъ	NT-5 Water Total Nitrogen (TKN NOx)	Carbo	۲	<u> </u>	des	olids	Wate		1
a statistic to	EMPERATURE						Water	PC)	ions	Vat (Diss	Wat Hg (I		141-1	Tota Ma	ICPA	as N	ter ogen	Wate anic 4	Wate Total	Wate	/ater estici	Nater ed Sc	iM) - 8 ana		
	Yes No AMPLE INFORMATIC	N (noto: S =	Soil W=Wa	her)	CONTAINER INFORMATION		to - V nate	15 - V ride (Va or cat	20F - In Zn	20F - In Zn		H		Total	55A - Ionia	i Wa I Nitre	05 - 0	35 - 3 Jols (- 8 ×	2 G - C	25 - \ pende	75 (S Is (1		
	SAMPLE INFORMATIC	MATRIX	DATE	Time	TYPE	No. bottles	ED040 - V Sulphate	ED045 - Water Chloride (PC)	NT-1 Water (Major cations (EG020F - Water Fe Mn Zn (Dissolved ICPMS)	EG020F - Wa Fe Mn Zn Hg (D 5 00 Fe C	Hg (Total ICPMS)	EK055A - Water Ammonia as N	NT-5 Total	EP005 - Water Total Organic Carbon (TOC)	EP035 - Water Phenols (Total)	EPO BTE	W-1: 0C/(EA025 - Water Suspended Solids	EP075 (SIM) - Water PAHs(16 analytes)		
1	LW1	w	9/5/12	12:30	250mL Green; 60mL Red; 125 mL Purple; 40 mL Purple.	4	·	X			x					x	x	x							
2	GWEX-01	w	9/5/12	11:00	250mL Green; 60mL Red; 125 mL Purple; 40 mL Purple; 100 mL Orange.	5		x			x					x	x	x					X		
-	GWEX-01		0/0/12	11.00	125 mL Fulple, 40 mL Fulple, 100 mL Grange.				1									×.,							
3	GWEX-03		9/5/12	14:00	250mL Green; 60mL Red;	5		x			x					X	x	x					X.		
٦	GWEA-03	W	9/0/12	14.00	125 mL Purple; 40 mL Purple; 100 mL Orange.	<u> </u>	1													-					
11			0/5/40	45.20	250mL Green; 60mL Red;	4		x		x						x	x	x							·
45	LW3	W	9/5/12	15:30	125 mL Purple; 40 mL Purple. 250mL Green; 60mL Red;			x		x					Ť	x	x	x					<u> </u>		
<u> </u>	LWD	w	9/5/12	NA	125 mL Purple; 40 mL Purple.	4		_^		Ê		· .											1		
																						<u> </u>			
				<u> </u>		-																			, ,
													-						+ .						`
						· · ·			-		-								┥		6	2rich	tal Di ane	-	2 m.
							-												+:		w	ork (Drder	J-	د
								-			· · · · · ·									E		19	Drder 127	46	,
																			Ţ	Ľ	D	1 4		τV	
ELINQU	ISHED BY:				RECEIVED BY:						METH	HOD OF S	HIPM	ENT				•	1						
arbara	Hart	Date:	11/05	/2012	Name: JUSTLN SMITH	Date: 10					Trans	port Co	: 7	TAME>	(l
odyHa	rt Environmental	Time:	16	:00	Of: ALS Laboratory, Brisbane	Time:	/	4.3	30		Con'	Note No	:												i
Signatu	ire:		В Ӻ На1	rt	Signature:	-		A						43	4427	2				Tele	phon	e:+6	81-7-32	43 722	22
ample	s were despatch	ed in Co	dyHart Es	ky/Eskies	s numbered: 16 + 2 small & 1 large PLEASE HOLD	CodyHart g	jel bri	ck										-							

.

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order : EB1212746

Client Contact Address	: MS B : P O E	THART CONSULTING PTY LTD ARBARA HART OX 1073 EIGH HEADS QLD, AUSTRALIA	Laboratory Contact Address	 Environmental Division Brisbane Customer Services 32 Shand Street Stafford QLD Australia 4053
E-mail Telephone Facsimile	: +61 5	n@codyhart.com.au 5205532 7 55206531	E-mail Telephone Facsimile	 Brisbane.Enviro.Services@alsglobal.com +61 7 3243 7222 +61 7 3243 7218
Project Order number	: Armid	ale 243	Page	: 1 of 2
C-O-C number Site	: : Lona	Swamp Road Landfill	Quote number	: EB2012CODCON0249 (BN/101/12)
Sampler	: B. Ha	•	QC Level	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dates				
Date Samples Rec	eived	11-MAY-2012	Issue Date	: 15-MAY-2012 13:10
Client Requested E	Due Date	: 22-MAY-2012	Scheduled Reporting	g Date 22-MAY-2012
Delivery Deta	ails			
Mode of Delivery		: Carrier	Temperature	6.6°C - Ice present

Mode of Delivery	Carrier	Temperature	÷ 6.6°C - Ice present
No. of coolers/boxes	: 1 MEDIUM	No. of samples received	: 5
Security Seal	: Intact.	No. of samples analysed	: 5

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.
- Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' suites) are referenced on COCs.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Matt Goodwin.
- Analytical work for this work order will be conducted at ALS Brisbane.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Address 32 Shand Street Stafford QLD Australia 4053 PHONE +61-7-3243 7222 Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

Environmental 为

RIGHT SOLUTIONS RIGHT PARTNER

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will

If no sampling default to 15:00 on the date of sampling. date is provided, the sampling date will be assumed by the laboratory for processing purposes and will be shown bracketed without a time component.

Matrix: WATER

, ,	processing purposes a time component.	s and will be shown	0045G Discrete /	20F als by I	EG035F Mercury by	55G By Dis	05 Carbon	75 SIM	-05 n
Matrix: WATER			pg –	 EG020F Metals b 	ס י	k - EK055G ia as N By	- EPO ganic	R - EP07 AH only	- NT roge
Laboratory sample ID	Client sampling date / time	Client sample ID	WATER Chloride	WATER Dissolve	WATER Dissolve	WATER - Ammonia	WATER Total Or	WATER SIM - P/	WATER Total Nitr
EB1212746-001	09-MAY-2012 15:00	LW1	✓	✓	✓	✓	✓		✓
EB1212746-002	09-MAY-2012 15:00	GWEX-01	✓	✓	1	1	✓	✓	✓
EB1212746-003	09-MAY-2012 15:00	GWEX-03	✓	✓	1	✓	✓	✓	✓
EB1212746-004	09-MAY-2012 15:00	LW3	1	✓		1	1		✓
EB1212746-005	09-MAY-2012 15:00	LWD	✓	✓		✓	✓		✓

Analyser

ICPMS

s N By Discrete Analyser

by FIMS

P075 SIM PAH only

ic Carbon (TOC)

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

Bottles Brisbane - Chain of Custody (CoC) (COC) Email bottles.brisbane@alsglobal.com **MS BARBARA HART** - *AU Certificate of Analysis - NATA (COA) Email pelican@codyhart.com.au - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) Email pelican@codyhart.com.au - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) Email pelican@codyhart.com.au - A4 - AU Sample Receipt Notification - Environmental HT (SRN) Email pelican@codyhart.com.au - A4 - AU Tax Invoice (INV) Email pelican@codyhart.com.au - Chain of Custody (CoC) (COC) Email pelican@codyhart.com.au - EDI Format - ENMRG (ENMRG) Email pelican@codyhart.com.au - EDI Format - XTab (XTAB) Email pelican@codyhart.com.au

			, <u>1</u>														<u>.</u>		e ja k							
CHAIN OF CU	STO	DY '	TO LA	AB										1	BA1	TCI	12	of	2				.			· .
LIENT: CodyHart E	nvironme	ental						SAMP	LER:	B. Ha	rt			·										Dody Envir	Ha	t
DDRESS / OFFICE: 3/29	ownship D	lrive, B	URLEIGH H	IEADS 422	0 (PO Box 1073 B	URLEIGH HEADS 4220)		MOBIL	.E:	042 7	77 51	20												Envໂ	олтеп	tal)
ROJECT MANAGER (PM):		a Hart						PHON	<u>E:</u>												I	lonite	oring	& Man	aûêm	ent
ROJECT ID: Armidale			* ,					EMAIL	REPO	RT TO:	pelica	n@coc	tyhart.cor	n.au												
TE: Long Swamp I	Road La	Indi		P.O. NO.:				EMAIL	INVOI	CE TO:	(above)			_				_								
SULTS REQUIRED (Date)				QUOTE NO	D.: BN-101-12	(Blanket quote)		ANAL	YSES R	EQUIR	ED:						_									
OR LABORATORY USE ONLY	×		COMME	NTS / SPE	CIAL HANDLING / S	STORAGE OR DISPOSAL:					ŝ								6							
OOLER SEAL (circle approprie	A CONTRACTOR OF A CONTRACTOR O						······································]		Mg Na K)	ed ICPMS)	(CPMS)			ŝ			§	Ĕ		EP080 - Water BTEX					
itact: Yes No I	VA PLE	EASE S	SCAN THIS	FORM O	N DAY OF A	RRIVAL AND EMAIL				БМ в	pev	5 1 2			Mn Zn (Total ICPMS) 201 - Water			ž	то с т			ş	2	(ater tes)		
AMPLE TEMPERATURE	<u> </u>							fe	ج ف	5	Vater Disso	Vater g (Di		Vater	Vater Vater	FK055A - Water	z	E S	ic Ca	stal)	ate	W-12 - Water OC/OP Pesticides	EA025 - Water Suspended Solids	EP075 (SIM) - Wate PAHs (16 analytes)		
HILLED: Yes No					·····			ED040 - Water Sulphate	ED045 - Water Chloride (PC)	IT-1 Water Major cation	EG020F - Wat	Υ-Υ Zn H					Ammonia as N	litrog	- W	s To W	3	Pee o	EA025 - Wate Suspended S	(SIN (16.	1	
SAMPLE INFORMA					<u></u>	NTAINER INFORMATION	T	04 di	045 Jorid	- je	3020 Mn	G020F - e Mn Zn		020	N N	FK055A	Out	2	P005 otal C	P035	7EX	C/0	A025 uspe	P075 AHs		
ALS ID SAMPLE ID	MAT	RIX	DATE	Time		JYPE	No. bottles	Шð	d D	ΣŽ	Щ. [®] .	<u>ы</u> 9 т	ماقتصا			e e 🗓	8	ΖĔ	Ξ¥	ᄪᄘ	Ξœ	50	யக	μc		
						and a second		ļ					_			-					<u> </u>		<u> </u>	-		·
															I.	1				L]					
a a stand was to an			an La materia												1	-				l	Em	iron	mont	al Div	vieior	-
		F			6.		T								71	ŵ.					\overline{N}	E	Brisba	ane		5
							1		-	İ			-							t	¥	W	ork C	ane Drder	2,	/ -
1 LW2	,	v	13/5/12	15:45	250mL Grant Cont		4		x	<u> </u>	x			-		-+	x	x	x		Л I=	.D,	17-	132	02	
	· · · · ·	*+	13/3/12	15.45	125 mL Purple		4			<u> </u>						-+	-+			ł	1 []	D	1 2 1	IJZ	UZ	-
		-+					+	 	 	ļ							-+			1 1-						-
								 	ļ	ļ									ļ	Į ∥∥						-
								_	.	ļ									ļ	1 III I						-
																					Tologi			-7-3243		_
																			[i elelvi	ione .	. +01	-7-0240		_
																				T	1	I	1	1		
		$\neg \uparrow$				••••••••••••••••••••••••••••••••••••••	1			<u> </u>									1	\mathbf{t}	1		1			
						····· <u></u>	+		<u> </u>					-+	-+-	\rightarrow					+	<u> </u>	+			
							1	L	L				l							1		I				
RELINQUISHED BY:					RECEIVED BY:		T	.9	1-1			METH	HOD OF S	HIPME	<u>NT</u>				1							
Barbara Hart	Date	9:	16/05		Name:	Hatt	Date:		15/1	and the second data		Trans	port Co	: T/	AMEX				1.							
CodyHart Environment	a/ Tim	e:	_18	00	Of: ALS La	boratory, Brisbane	Time:	[]	31	5		Con'	Note No	:												
Signature: BA	Part	1	B F Har	t	Signature:	fol -							134							0						
amples were despat			Hart Esk	y/Eskies	numbered:	8 + 3 Sm Please Hold A	all a	Ý IART	j li Eskii	an.	92 ALSI	- UNTII	Ody AN ES	Ha KY R	xt ETUP	g-é	<i>L</i>	61 JEST	ní Ní	hs						
				Cor	WHart Con	sulting Pty Ltd						_	_											> Page	. 4 4	

APPENDIX C - Laboratory Reports

Environmental Division

	CERTI	FICATE OF ANALYSIS	
Work Order	EB1212516	Page	: 1 of 6
Client	: CODYHART CONSULTING PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MS BARBARA HART	Contact	: Customer Services
Address	: P O BOX 1073	Address	: 32 Shand Street Stafford QLD Australia 4053
	BURLEIGH HEADS QLD, AUSTRALIA 4220		
E-mail	: pelican@codyhart.com.au	E-mail	: Brisbane.Enviro.Services@alsglobal.com
Telephone	+61 55205532	Telephone	+61 7 3243 7222
acsimile	: +61 07 55206531	Facsimile	: +61 7 3243 7218
Project	: Armidale 243	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 09-MAY-2012
Sampler	: B.Hart	Issue Date	: 21-MAY-2012
Site	: Long Swamp Road Landfill		
		No. of samples received	: 6
Quote number	: BN/101/12	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

Accredited for compliance with

ISO/IEC 17025.

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825 Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Andrew Epps	Metals Production Chemist	Brisbane Inorganics	
Jonathon Angell	Inorganic Coordinator	Brisbane Inorganics	
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics	
Matt Frost	Senior Organic Chemist	Brisbane Organics	
Sarah Millington	Senior Inorganic Chemist	Sydney Inorganics	

Address 32 Shand Street Stafford QLD Australia 4053 PHONE +61-7-3243 7222 Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Analytical Results

Sub-Matrix: WATER		Cli	ent sample ID	GWEX-02	SWEX-01	LS2	LS3	LS4
	C	lient sampli	ng date / time	08-MAY-2012 10:00	08-MAY-2012 10:30	08-MAY-2012 14:00	08-MAY-2012 13:00	08-MAY-2012 12:00
Compound	CAS Number	LOR	Unit	EB1212516-001	EB1212516-002	EB1212516-003	EB1212516-004	EB1212516-005
EA025: Suspended Solids								
Suspended Solids (SS)		5	mg/L		90	29	71	9
ED041G: Sulfate (Turbidimetric) as S	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L		47			
ED045G: Chloride Discrete analyser								
Chloride	16887-00-6	1	mg/L	24	11			
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L		15			
Magnesium	7439-95-4	1	mg/L		5			
Sodium	7440-23-5	1	mg/L		11			
Potassium	7440-09-7	1	mg/L		7			
EG020F: Dissolved Metals by ICP-MS	;							
Manganese	7439-96-5	0.001	mg/L	0.002				
Zinc	7440-66-6	0.005	mg/L	0.091				
Iron	7439-89-6	0.05	mg/L	<0.05				
EG020T: Total Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L		0.480	0.069	0.174	0.486
Zinc	7440-66-6	0.005	mg/L		0.015	<0.005	<0.005	0.007
Iron	7439-89-6	0.05	mg/L		6.07	0.16	0.24	0.64
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001				
EK055G: Ammonia as N by Discrete	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.03	0.04		0.62	0.25
EK059G: Nitrite plus Nitrate as N (NC	Dx) by Discrete Ana	alyser						
Nitrite + Nitrate as N		0.01	mg/L	0.12	<0.01	0.22	0.07	0.02
EK061G: Total Kjeldahl Nitrogen By I	Discrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	0.9	17.0	8.9	2.5
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete A	nalyser						
^ Total Nitrogen as N		0.1	mg/L	0.1	0.9	17.2	9.0	2.5
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	3	7	83	64	41
EP035G: Total Phenol by Discrete An	alyser							
Phenols (Total)		0.05	mg/L		<0.05			
EP075(SIM)B: Polynuclear Aromatic I	Hydrocarbons							
Naphthalene	91-20-3	1.0	µg/L	<1.0				
Acenaphthylene	208-96-8	1.0	µg/L	<1.0				

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	GWEX-02	SWEX-01	LS2	LS3	LS4
	Clie	ent sampli	ng date / time	08-MAY-2012 10:00	08-MAY-2012 10:30	08-MAY-2012 14:00	08-MAY-2012 13:00	08-MAY-2012 12:00
Compound	CAS Number	LOR	Unit	EB1212516-001	EB1212516-002	EB1212516-003	EB1212516-004	EB1212516-005
EP075(SIM)B: Polynuclear Aromatic Hyd	rocarbons - Conti	nued						
Acenaphthene	83-32-9	1.0	µg/L	<1.0				
Fluorene	86-73-7	1.0	µg/L	<1.0				
Phenanthrene	85-01-8	1.0	µg/L	<1.0				
Anthracene	120-12-7	1.0	µg/L	<1.0				
Fluoranthene	206-44-0	1.0	µg/L	<1.0				
Pyrene	129-00-0	1.0	µg/L	<1.0				
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0				
Chrysene	218-01-9	1.0	µg/L	<1.0				
Benzo(b)fluoranthene	205-99-2	1.0	µg/L	<1.0				
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0				
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5				
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0				
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0				
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0				
Sum of polycyclic aromatic hydrocarbons		0.5	µg/L	<0.5				
EP075(SIM)S: Phenolic Compound Surro	gates							
Phenol-d6	13127-88-3	0.1	%	39.4				
2-Chlorophenol-D4	93951-73-6	0.1	%	88.8				
2.4.6-Tribromophenol	118-79-6	0.1	%	93.4				
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.1	%	80.4				
Anthracene-d10	1719-06-8	0.1	%	105				
4-Terphenyl-d14	1718-51-0	0.1	%	113				

Analytical Results

Sub-Matrix: WATER	Client sample ID			LS5					
Client sampling date / time				08-MAY-2012 14:30					
Compound	CAS Number	LOR	Unit	EB1212516-006					
EA025: Suspended Solids	EA025: Suspended Solids								
Suspended Solids (SS)		5	mg/L	23					
EG020T: Total Metals by ICP-MS									
Manganese	7439-96-5	0.001	mg/L	0.051					
Zinc	7440-66-6	0.005	mg/L	0.008					
Iron	7439-89-6	0.05	mg/L	1.47					
EK059G: Nitrite plus Nitrate as N (NO)	x) by Discrete Ana	lyser							
Nitrite + Nitrate as N		0.01	mg/L	<0.01					
EK061G: Total Kjeldahl Nitrogen By Di	iscrete Analyser								
Total Kjeldahl Nitrogen as N		0.1	mg/L	1.9					
EK062G: Total Nitrogen as N (TKN + N	Ox) by Discrete Ar	nalyser							
[^] Total Nitrogen as N		0.1	mg/L	1.9					
EP005: Total Organic Carbon (TOC)									
Total Organic Carbon		1	mg/L	24					

Surrogate Control Limits

Sub-Matrix: WATER		Recovery Limits (%)			
Compound	CAS Number	Low	High		
EP075(SIM)S: Phenolic Compound Surrogates					
Phenol-d6	13127-88-3	10.0	71.9		
2-Chlorophenol-D4	93951-73-6	26.8	130.2		
2.4.6-Tribromophenol	118-79-6	19.3	180.8		
EP075(SIM)T: PAH Surrogates					
2-Fluorobiphenyl	321-60-8	13.9	146.1		
Anthracene-d10	1719-06-8	34.6	137.4		
4-Terphenyl-d14	1718-51-0	36.2	154.2		

Environmental Division

QUALITY CONTROL REPORT

Work Order	: EB1212516	Page	: 1 of 8
Client	: CODYHART CONSULTING PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MS BARBARA HART	Contact	: Customer Services
Address	: P O BOX 1073	Address	: 32 Shand Street Stafford QLD Australia 4053
	BURLEIGH HEADS QLD, AUSTRALIA 4220		
E-mail	: pelican@codyhart.com.au	E-mail	: Brisbane.Enviro.Services@alsglobal.com
Telephone	: +61 55205532	Telephone	: +61 7 3243 7222
Facsimile	: +61 07 55206531	Facsimile	: +61 7 3243 7218
Project	: Armidale 243	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	: Long Swamp Road Landfill		
C-O-C number	:	Date Samples Received	: 09-MAY-2012
Sampler	: B.Hart	Issue Date	: 21-MAY-2012
Order number	:		
		No. of samples received	: 6
Quote number	: BN/101/12	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories NATA Accredited Laboratory 825

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Accredited for compliance with ISO/IEC 17025.

Signatorias Position Accreditation Category

Signatories	POSITION	Accreditation Category	
Andrew Epps	Metals Production Chemist	Brisbane Inorganics	
Jonathon Angell	Inorganic Coordinator	Brisbane Inorganics	
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics	
Matt Frost	Senior Organic Chemist	Brisbane Organics	
Sarah Millington	Senior Inorganic Chemist	Sydney Inorganics	

Address 32 Shand Street Stafford QLD Australia 4053 PHONE +61-7-3243 7222 Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER		Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
A025: Suspended	Solids (QC Lot: 23004	38)							
EB1212470-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	7	7	0.0	No Limit
EB1212479-007	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	10	6	50.0	No Limit
A025: Suspended	Solids (QC Lot: 23004	(39)							
EB1212516-003	LS2	EA025H: Suspended Solids (SS)		5	mg/L	29	33	12.9	No Limit
D041G: Sulfate (Tu	urbidimetric) as SO4 2-	- by DA (QC Lot: 2303462)							
EB1212277-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<5	<5	0.0	No Limit
EB1212389-017	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	431	437	1.4	0% - 20%
D045G: Chloride D) iscrete analyser (QC I	Lot: 2300683)							
EB1212516-001	GWEX-02	ED045G: Chloride	16887-00-6	1	mg/L	24	24	0.0	0% - 20%
D045G: Chloride D) iscrete analyser (QC I	Lot: 2303461)							
EB1212277-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	59	61	2.7	0% - 20%
EB1212389-017	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	13	13	0.0	0% - 50%
D093F: Dissolved	Major Cations (QC Lot	t: 2303460)							
EB1212277-001 Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	16	16	0.0	0% - 50%	
	ED093F: Magnesium	7439-95-4	1	mg/L	17	17	0.0	0% - 50%	
	ED093F: Sodium	7440-23-5	1	mg/L	259	260	0.6	0% - 20%	
	ED093F: Potassium	7440-09-7	1	mg/L	74	74	0.0	0% - 20%	
EB1212389-017 Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	126	126	0.0	0% - 20%	
		ED093F: Magnesium	7439-95-4	1	mg/L	42	43	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	29	29	0.0	0% - 20%
	ED093F: Potassium	7440-09-7	1	mg/L	16	16	0.0	0% - 50%	
G020F: Dissolved	Metals by ICP-MS (QC	CLot: 2302500)							
B1212210-022	Anonymous	EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.338	0.338	0.0	0% - 20%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.016	0.015	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.36	0.32	13.4	No Limit
EB1212715-003	Anonymous	EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.06	0.10	48.7	No Limit
G020T: Total Meta	Is by ICP-MS (QC Lot:	2302551)							
B1212210-022	Anonymous	EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.324	0.326	0.4	0% - 20%
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.015	0.016	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	0.09	0.09	0.0	No Limit
EB1212334-008	Anonymous	EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.154	0.147	4.6	0% - 20%
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.006	0.005	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	0.22	0.18	20.6	No Limit
Page	: 4 of 8								
------------	-------------------------------								
Work Order	: EB1212516								
Client	: CODYHART CONSULTING PTY LTD								
Project	: Armidale 243								

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EG035F: Dissolved	Mercury by FIMS (QC Lot: 2	302499)							
EB1212210-021	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EK055G: Ammonia	as N by Discrete Analyser(QC Lot: 2308127)							
EB1212334-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.04	0.01	120	No Limit
EB1212334-011	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.02	0.02	0.0	No Limit
EK059G: Nitrite plu	s Nitrate as N (NOx) by Disc	crete Analyser (QC Lot: 2308126)							
EB1212334-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.01	0.01	0.0	No Limit
EB1212334-011	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.02	0.02	0.0	No Limit
EK061G: Total Kjeld	lahl Nitrogen By Discrete An	alyser (QC Lot: 2307222)							
EB1212621-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.2	0.2	0.0	No Limit
ES1211430-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	6.7	7.1	5.4	0% - 20%
EP005: Total Organi	c Carbon (TOC) (QC Lot: 23	04868)							
EB1212372-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	5	5	0.0	No Limit
EB1212516-001	GWEX-02	EP005: Total Organic Carbon		1	mg/L	3	4	0.0	No Limit
EP035G: Total Phen	ol by Discrete Analyser (QC	CLot: 2306652)							
EB1212036-001	Anonymous	EP035G: Phenols (Total)		0.05	mg/L	<0.05	<0.05	0.0	No Limit
ES1211105-003	Anonymous	EP035G: Phenols (Total)		0.05	mg/L	2.60	2.53	3.1	0% - 20%

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA025: Suspended Solids (QCLot: 2300438)									
EA025H: Suspended Solids (SS)		5	mg/L	<5	1000 mg/L	92.0	82	120	
EA025: Suspended Solids (QCLot: 2300439)									
EA025H: Suspended Solids (SS)		5	mg/L	<5	1000 mg/L	92.8	82	120	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	QCLot: 2303462)								
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	114	70	130	
ED045G: Chloride Discrete analyser (QCLot: 23006	83)								
ED045G: Chloride	16887-00-6	1	mg/L	<1	1000 mg/L	98.0	70	128	
ED045G: Chloride Discrete analyser (QCLot: 23034	.61)								
ED045G: Chloride	16887-00-6	1	mg/L	<1	1000 mg/L	97.5	70	128	
ED093F: Dissolved Major Cations (QCLot: 2303460									
ED093F: Calcium	7440-70-2	1	mg/L	<1					
ED093F: Magnesium	7439-95-4	1	mg/L	<1					
ED093F: Sodium	7440-23-5	1	mg/L	<1					
ED093F: Potassium	7440-09-7	1	mg/L	<1					
EG020F: Dissolved Metals by ICP-MS (QCLot: 2302	:500)								
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.100 mg/L	115	86	118	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.200 mg/L	108	87	119	
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.50 mg/L	117	84	122	
EG020T: Total Metals by ICP-MS (QCLot: 2302551)									
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.100 mg/L	106	88	123	
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.200 mg/L	93.4	81	123	
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.500 mg/L	109	83	129	
EG035F: Dissolved Mercury by FIMS (QCLot: 23024	499)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	88.6	84	116	
EK055G: Ammonia as N by Discrete Analyser (QCL	_ot: 2308127)								
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	72.0	70	120	
EK059G: Nitrite plus Nitrate as N (NOx) by Discret	e Analyser (QCLot: 2308	3126)							
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	83.2	70	124	
EK061G: Total Kjeldahl Nitrogen By Discrete Analy	ser (QCLot: 2307222)								
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10.0 mg/L	82.9	70	115	
EP005: Total Organic Carbon (TOC) (QCLot: 23048	68)								
EP005: Total Organic Carbon		1	mg/L	<1	5 mg/L	99.5	76	112	

Page	: 6 of 8
Work Order	: EB1212516
Client	: CODYHART CONSULTING PTY LTD
Project	: Armidale 243

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound C	AS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP035G: Total Phenol by Discrete Analyser (QCLot: 2306652)								
EP035G: Phenols (Total)		0.05	mg/L	<0.05	0.50 mg/L	82.8	62	120
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 23	301701)							
EP075(SIM): Naphthalene	91-20-3	1	µg/L	<1.0	10 µg/L	83.2	47	120
EP075(SIM): Acenaphthylene	208-96-8	1	µg/L	<1.0	10 µg/L	74.2	46	127
EP075(SIM): Acenaphthene	83-32-9	1	µg/L	<1.0	10 µg/L	81.4	50	123
EP075(SIM): Fluorene	86-73-7	1	µg/L	<1.0	10 µg/L	81.9	50	126
EP075(SIM): Phenanthrene	85-01-8	1	µg/L	<1.0	10 µg/L	64.3	49	115
EP075(SIM): Anthracene	120-12-7	1	µg/L	<1.0	10 µg/L	99.2	44	120
EP075(SIM): Fluoranthene	206-44-0	1	µg/L	<1.0	10 µg/L	93.1	46	122
EP075(SIM): Pyrene	129-00-0	1	µg/L	<1.0	10 µg/L	92.7	46	122
EP075(SIM): Benz(a)anthracene	56-55-3	1	µg/L	<1.0	10 µg/L	82.8	48	125
EP075(SIM): Chrysene	218-01-9	1	µg/L	<1.0	10 µg/L	105	43	119
EP075(SIM): Benzo(b)fluoranthene	205-99-2	1	µg/L	<1.0	10 µg/L	72.7	43	138
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	µg/L	<1.0	10 µg/L	105	38	132
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	10 µg/L	88.2	39	125
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	µg/L	<1.0	10 µg/L	69.9	40	137
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	µg/L	<1.0	10 µg/L	69.8	42	140
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	µg/L	<1.0	10 µg/L	65.2	37	136
EP075(SIM): Sum of polycyclic aromatic hydrocarbons		1	µg/L	<1.0				

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Matrix Spike (MS) Repor	t		
				Spike	Spike Recovery (%)	Recovery I	.imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED045G: Chloride D	iscrete analyser (QCLot: 23	03461)					
EB1212281-001	Anonymous	ED045G: Chloride	16887-00-6	400 mg/L	101	70	130
EG020F: Dissolved	Metals by ICP-MS (QCLot: 2	302500)					
EB1212649-055	Anonymous	EG020A-F: Manganese	7439-96-5	0.100 mg/L	104	70	130
		EG020A-F: Zinc	7440-66-6	0.200 mg/L	100	70	130
EG020T: Total Metal	Is by ICP-MS (QCLot: 23025	51)					
EB1212334-002 Anonymous	EG020A-T: Manganese	7439-96-5	1.000 mg/L	101	70	130	
		EG020A-T: Zinc	7440-66-6	1.000 mg/L	90.7	70	130
EG035F: Dissolved	Mercury by FIMS (QCLot: 23	302499)					
EB1212516-001	GWEX-02	EG035F: Mercury	7439-97-6	0.010 mg/L	87.0	70	130
EK055G: Ammonia	as N by Discrete Analyser(C	QCLot: 2308127)					
EB1212334-002	Anonymous	EK055G: Ammonia as N	7664-41-7	0.4 mg/L	126	70	130
EK059G: Nitrite plu	s Nitrate as N (NOx) by Disc	rete Analyser (QCLot: 2308126)					
EB1212334-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.4 mg/L	83.0	70	130
EK061G: Total Kjeld	lahl Nitrogen By Discrete An	alyser (QCLot: 2307222)					
EB1212621-003	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	85.3	70	130
EP035G: Total Phen	ol by Discrete Analyser (QC	:Lot: 2306652)					
EB1212036-001	Anonymous	EP035G: Phenols (Total)		0.42 mg/L	79.5	70	130

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	p-Matrix: WATER			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPDs (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
ED045G: Chloride D	iscrete analyser (QCLot	: 2303461)								
EB1212281-001	Anonymous	ED045G: Chloride	16887-00-6	400 mg/L	101		70	130		
EG020F: Dissolved I	Metals by ICP-MS (QCLo	ot: 2302500)								
EB1212649-055	Anonymous	EG020A-F: Manganese	7439-96-5	0.100 mg/L	104		70	130		
		EG020A-F: Zinc	7440-66-6	0.200 mg/L	100		70	130		
EG020T: Total Metal	s by ICP-MS (QCLot: 23	02551)								
EB1212334-002 Anonymous	EG020A-T: Manganese	7439-96-5	1.000 mg/L	101		70	130			
		EG020A-T: Zinc	7440-66-6	1.000 mg/L	90.7		70	130		

Page	: 8 of 8
Work Order	: EB1212516
Client	: CODYHART CONSULTING PTY LTD
Project	: Armidale 243

Sub-Matrix: WATER	Matrix: WATER				Matrix Spi	ike (MS) and Matrix S	pike Duplicate	(MSD) Repor	t	
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RP	Ds (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG035F: Dissolved N	lercury by FIMS (QCLot: 23024	99)								
EB1212516-001	GWEX-02	EG035F: Mercury	7439-97-6	0.010 mg/L	87.0		70	130		
EK055G: Ammonia a	s N by Discrete Analyser (QCL	ot: 2308127)								
EB1212334-002	Anonymous	EK055G: Ammonia as N	7664-41-7	0.4 mg/L	126		70	130		
EK059G: Nitrite plus	Nitrate as N (NOx) by Discrete	Analyser (QCLot: 2308126)								
EB1212334-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.4 mg/L	83.0		70	130		
EK061G: Total Kjelda	hl Nitrogen By Discrete Analys	er (QCLot: 2307222)								
EB1212621-003	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	85.3		70	130		
EP035G: Total Pheno	l by Discrete Analyser (QCLot	: 2306652)								
EB1212036-001	Anonymous	EP035G: Phenols (Total)		0.42 mg/L	79.5		70	130		

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: EB1212516	Page	: 1 of 8
Client	CODYHART CONSULTING PTY LTD	Laboratory	Environmental Division Brisbane
Contact	: MS BARBARA HART	Contact	: Customer Services
Address	: P O BOX 1073	Address	32 Shand Street Stafford QLD Australia 4053
	BURLEIGH HEADS QLD, AUSTRALIA 4220		
E-mail	: pelican@codyhart.com.au	E-mail	Erisbane.Enviro.Services@alsglobal.com
Telephone	+61 55205532	Telephone	: +61 7 3243 7222
Facsimile	: +61 07 55206531	Facsimile	: +61 7 3243 7218
Project	: Armidale 243	QC Level	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	Long Swamp Road Landfill		
C-O-C number	:	Date Samples Received	: 09-MAY-2012
Sampler	: B.Hart	Issue Date	: 21-MAY-2012
Order number	:		
		No. of samples received	: 6
Quote number	: BN/101/12	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 32 Shand Street Stafford QLD Australia 4053 PHONE +61-7-3243 7222 Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER					Evaluation:	× = Holding time	breach ; ✓ = Withir	holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA025: Suspended Solids								
Clear Plastic Bottle - Natural (EA025H) SWEX-01, LS3, LS5	LS2, LS4,	08-MAY-2012				11-MAY-2012	15-MAY-2012	~
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Clear Plastic Bottle - Natural (ED041G) SWEX-01		08-MAY-2012		05-JUN-2012		15-MAY-2012	05-JUN-2012	✓
ED045G: Chloride Discrete analyser								
Clear Plastic Bottle - Natural (ED045G) GWEX-02		08-MAY-2012		05-JUN-2012		14-MAY-2012	05-JUN-2012	✓
Clear Plastic Bottle - Natural (ED045G) SWEX-01		08-MAY-2012		05-JUN-2012		15-MAY-2012	05-JUN-2012	✓
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Natural (ED093F) SWEX-01		08-MAY-2012		15-MAY-2012		15-MAY-2012	15-MAY-2012	✓
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) GWEX-02		08-MAY-2012		04-NOV-2012		15-MAY-2012	04-NOV-2012	✓
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) SWEX-01, LS3, LS5	LS2, LS4,	08-MAY-2012	17-MAY-2012	04-NOV-2012	1	17-MAY-2012	04-NOV-2012	~
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) GWEX-02		08-MAY-2012		05-JUN-2012		15-MAY-2012	05-JUN-2012	✓
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G) GWEX-02, LS3,	SWEX-01, LS4	08-MAY-2012		05-JUN-2012		17-MAY-2012	05-JUN-2012	✓

Page	: 3 of 8
Work Order	: EB1212516
Client	: CODYHART CONSULTING PTY LTD
Project	: Armidale 243

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withir	n holding time
Method	Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A	nalyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) GWEX-02, LS2, LS4,	SWEX-01, LS3, LS5	08-MAY-2012		05-JUN-2012		17-MAY-2012	05-JUN-2012	~
EK061G: Total Kjeldahl Nitrogen By Discrete Analyse								
Clear Plastic Bottle - Sulfuric Acid (EK061G) GWEX-02, LS2, LS4,	SWEX-01, LS3, LS5	08-MAY-2012	16-MAY-2012	05-JUN-2012	~	16-MAY-2012	05-JUN-2012	~
EP005: Total Organic Carbon (TOC)								
Amber TOC Vial - Sulfuric Acid (EP005) GWEX-02, LS2, LS4,	SWEX-01, LS3, LS5	08-MAY-2012				15-MAY-2012	05-JUN-2012	~
EP035G: Total Phenol by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EP035G) SWEX-01		08-MAY-2012	16-MAY-2012	05-JUN-2012	1	16-MAY-2012	05-JUN-2012	~
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP075(SIM)) GWEX-02		08-MAY-2012	14-MAY-2012	15-MAY-2012	1	16-MAY-2012	23-JUN-2012	✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification	
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation		
aboratory Duplicates (DUP)								
Ammonia as N by Discrete analyser	EK055G	2	15	13.3	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Chloride by Discrete Analyser	ED045G	3	21	14.3	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Mercury by FIMS	EG035F	1	10	10.0	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	10	20.0	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Major Cations - Dissolved	ED093F	2	20	10.0	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Vitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	19	10.5	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.0	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Suspended Solids (High Level)	EA025H	3	25	12.0	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	15	13.3	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Metals by ICP-MS - Suite A	EG020A-T	2	20	10.0	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
otal Organic Carbon	EP005	2	20	10.0	10.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Phenol by Discrete Analyser	EP035G	2	20	10.0	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
_aboratory Control Samples (LCS)								
Ammonia as N by Discrete analyser	EK055G	1	15	6.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Chloride by Discrete Analyser	ED045G	4	21	19.0	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Mercury by FIMS	EG035F	1	10	10.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	10	10.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Vitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	5	20.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Suspended Solids (High Level)	EA025H	2	25	8.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	15	6.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Fotal Metals by ICP-MS - Suite A	EG020A-T	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Organic Carbon	EP005	2	20	10.0	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Phenol by Discrete Analyser	EP035G	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Aethod Blanks (MB)								
Ammonia as N by Discrete analyser	EK055G	1	15	6.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Chloride by Discrete Analyser	ED045G	2	21	9.5	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Mercury by FIMS	EG035F	1	10	10.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	10	10.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Major Cations - Dissolved	ED093F	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
AH/Phenols (GC/MS - SIM)	EP075(SIM)	1	5	20.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Suspended Solids (High Level)	EA025H	2	25	8.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	15	6.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Fotal Metals by ICP-MS - Suite A	EG020A-T	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Fotal Organic Carbon	EP005	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Phenol by Discrete Analyser	EP035G	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	

Page	: 5 of 8
Work Order	: EB1212516
Client	: CODYHART CONSULTING PTY LTD
Project	: Armidale 243

Matrix: WATER			Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification.				
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	15	6.7	5.0	✓	ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	1	20	5.0	5.0	✓	ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	10	10.0	5.0	✓	ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	10	10.0	5.0	✓	ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.3	5.0	✓	ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	15	6.7	5.0	✓	ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.0	5.0	✓	ALS QCS3 requirement
Total Phenol by Discrete Analyser	EP035G	1	20	5.0	5.0	✓	ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Suspended Solids (High Level)	EA025H	WATER	In-House, APHA 21st ed., 2540D A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	APHA 21st ed., 4500-SO4 Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chloride by Discrete Analyser	ED045G	WATER	APHA 21st ed., 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Dissolved	ED093F	WATER	Major Cations is determined based on APHA 21st ed., 3120; USEPA SW 846 - 6010 The ICPAES technique ionises the 0.45um filtered sample atoms emitting a characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
			Sodium Absorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2) Total Hardness is calculated based on APHA 21st ed., 2340 B. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ammonia as N by Discrete analyser	EK055G	WATER	APHA 21st ed., 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	APHA 21st ed., 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Analytical Methods	Method	Matrix	Method Descriptions
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	APHA 21st ed., 4500-Norg D. 25mL water samples are digested using a traditional Kjeldahl digestion followed by determination by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	APHA 21st ed., 4500-Norg / 4500-NO3 This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Organic Carbon	EP005	WATER	APHA 21st ed., 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Phenol by Discrete Analyser	EP035G	WATER	APHA 21st ed., 5530 B&D Steam distillable Phenols are reacted with 4-aminoantipyrine. The resultant colour intensity is measured by Seal. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	APHA 21st ed., 4500 Norg - D; APHA 21st ed., 4500 P - H. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Digestion for Total Recoverable Metals	EN25	WATER	USEPA SW846-3005 Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Phenols After Microdistillation	EP035D	WATER	APHA 21st ed., 5530 A, B&D pH adjusted Steam distillable Phenolic compounds. The resultant colour intensity is measured by Discrete Analyser.
Separatory Funnel Extraction of Liquids	ORG14	WATER	USEPA SW 846 - 3510B 500 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2). ALS default excludes sediment

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

CERTIFICATE OF ANALYSIS						
Work Order	EB1212746	Page	: 1 of 5			
Client	: CODYHART CONSULTING PTY LTD	Laboratory	: Environmental Division Brisbane			
Contact	: MS BARBARA HART	Contact	: Customer Services			
Address	: P O BOX 1073	Address	: 32 Shand Street Stafford QLD Australia 4053			
	BURLEIGH HEADS QLD, AUSTRALIA 4220					
E-mail	: pelican@codyhart.com.au	E-mail	: Brisbane.Enviro.Services@alsglobal.com			
Telephone	+61 55205532	Telephone	: +61 7 3243 7222			
Facsimile	: +61 07 55206531	Facsimile	: +61 7 3243 7218			
Project	: Armidale 243	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement			
Order number	:					
C-O-C number	:	Date Samples Received	: 11-MAY-2012			
Sampler	: B. Hart	Issue Date	: 22-MAY-2012			
Site	: Long Swamp Road Landfill					
		No. of samples received	: 5			
Quote number	: BN/101/12	No. of samples analysed	: 5			

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Address 32 Shand Street Stafford QLD Australia 4053 PHONE +61-7-3243 7222 Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	LW1	GWEX-01	GWEX-03	LW3	LWD
	C	lient sampli	ing date / time	09-MAY-2012 15:00				
Compound	CAS Number	LOR	Unit	EB1212746-001	EB1212746-002	EB1212746-003	EB1212746-004	EB1212746-005
ED045G: Chloride Discrete analyse	r							
Chloride	16887-00-6	1	mg/L	425	174	111	12	434
EG020F: Dissolved Metals by ICP-N	IS							
Manganese	7439-96-5	0.001	mg/L	0.331	0.053	0.005	0.524	0.309
Zinc	7440-66-6	0.005	mg/L	0.215	0.123	0.033	0.036	0.206
Iron	7439-89-6	0.05	mg/L	0.15	0.06	<0.05	4.97	0.18
EG035F: Dissolved Mercury by FIM	S							
Mercury	7439-97-6	0.0001	mg/L	0.0011	0.0025	<0.0001		
EK055G: Ammonia as N by Discrete	e Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.06	0.05	0.04	0.42	0.06
EK059G: Nitrite plus Nitrate as N (N	NOx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	276	0.06	0.90	<0.01	288
EK061G: Total Kjeldahl Nitrogen By	Discrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.3	0.2	0.3	0.7	<0.1
EK062G: Total Nitrogen as N (TKN ·	+ NOx) by Discrete A	nalyser						
Total Nitrogen as N		0.1	mg/L	276	0.3	1.2	0.7	288
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	4	2	12	<1	8
EP075(SIM)B: Polynuclear Aromatic	c Hydrocarbons							
Naphthalene	91-20-3	1.0	µg/L		<1.0	<1.0		
Acenaphthylene	208-96-8	1.0	µg/L		<1.0	<1.0		
Acenaphthene	83-32-9	1.0	µg/L		<1.0	<1.0		
Fluorene	86-73-7	1.0	µg/L		<1.0	<1.0		
Phenanthrene	85-01-8	1.0	µg/L		<1.0	<1.0		
Anthracene	120-12-7	1.0	µg/L		<1.0	<1.0		
Fluoranthene	206-44-0	1.0	µg/L		<1.0	<1.0		
Pyrene	129-00-0	1.0	µg/L		<1.0	<1.0		
Benz(a)anthracene	56-55-3	1.0	µg/L		<1.0	<1.0		
Chrysene	218-01-9	1.0	µg/L		<1.0	<1.0		
Benzo(b)fluoranthene	205-99-2	1.0	µg/L		<1.0	<1.0		
Benzo(k)fluoranthene	207-08-9	1.0	µg/L		<1.0	<1.0		
Benzo(a)pyrene	50-32-8	0.5	µg/L		<0.5	<0.5		
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L		<1.0	<1.0		
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L		<1.0	<1.0		
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L		<1.0	<1.0		
Sum of polycyclic aromatic hydrocarbo	ons	0.5	µg/L		<0.5	<0.5		

Analytical Results

Sub-Matrix: WATER		Cli	ent sample ID	LW1	GWEX-01	GWEX-03	LW3	LWD
	Cl	ient sampli	ing date / time	09-MAY-2012 15:00				
Compound	CAS Number	LOR	Unit	EB1212746-001	EB1212746-002	EB1212746-003	EB1212746-004	EB1212746-005
EP075(SIM)S: Phenolic Compound	Surrogates							
Phenol-d6	13127-88-3	0.1	%		42.0	40.5		
2-Chlorophenol-D4	93951-73-6	0.1	%		99.9	94.8		
2.4.6-Tribromophenol	118-79-6	0.1	%		78.7	75.8		
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.1	%		89.8	82.2		
Anthracene-d10	1719-06-8	0.1	%		80.1	92.0		
4-Terphenyl-d14	1718-51-0	0.1	%		107	101		

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10.0	71.9
2-Chlorophenol-D4	93951-73-6	26.8	130.2
2.4.6-Tribromophenol	118-79-6	19.3	180.8
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	13.9	146.1
Anthracene-d10	1719-06-8	34.6	137.4
4-Terphenyl-d14	1718-51-0	36.2	154.2

QUALITY CONTROL REPORT

Work Order	: EB1212746	Page	: 1 of 7
Client	: CODYHART CONSULTING PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MS BARBARA HART	Contact	: Customer Services
Address	: P O BOX 1073	Address	: 32 Shand Street Stafford QLD Australia 4053
	BURLEIGH HEADS QLD, AUSTRALIA 4220		
E-mail	: pelican@codyhart.com.au	E-mail	: Brisbane.Enviro.Services@alsglobal.com
Telephone	: +61 55205532	Telephone	: +61 7 3243 7222
Facsimile	: +61 07 55206531	Facsimile	: +61 7 3243 7218
Project	: Armidale 243	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	: Long Swamp Road Landfill		
C-O-C number	:	Date Samples Received	: 11-MAY-2012
Sampler	: B. Hart	Issue Date	: 22-MAY-2012
Order number	:		
		No. of samples received	: 5
Quote number	: BN/101/12	No. of samples analysed	: 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Jonathon Angell	Inorganic Coordinator	Brisbane Inorganics	
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics	
Matt Frost	Senior Organic Chemist	Brisbane Organics	

Address 32 Shand Street Stafford QLD Australia 4053 PHONE +61-7-3243 7222 Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Repor	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED045G: Chloride D	Discrete analyser (QC L	_ot: 2305475)							
EB1212657-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	301	308	2.3	0% - 20%
EB1212770-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L		118	# Not Determined	0% - 20%
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 2310398)							
EB1212574-001	Anonymous	EG020A-F: Manganese	7439-96-5	0.001	mg/L	1.31	1.29	1.6	0% - 20%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.51	0.50	0.0	0% - 50%
EB1212628-001	Anonymous	EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
	EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit	
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 2310668)							
EB1212617-001	Anonymous	EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.343	0.338	1.6	0% - 20%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.008	0.007	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	1.54	1.52	1.4	0% - 20%
EB1212657-001	Anonymous	EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.009	0.009	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.014	0.014	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.18	0.19	0.0	No Limit
EG035F: Dissolved	Mercury by FIMS (QC	Lot: 2310667)							
EB1212617-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EB1212657-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EK055G: Ammonia	as N by Discrete Analy	ser (QC Lot: 2313266)							
EB1212558-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.22	0.23	7.1	0% - 20%
EB1212559-006	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.02	0.02	0.0	No Limit
EK059G: Nitrite plu	is Nitrate as N (NOx) by	y Discrete Analyser (QC Lot: 2313265)							
EB1212558-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	47.2	44.4	6.2	0% - 20%
EB1212559-006	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.16	0.18	12.7	0% - 50%
EK061G: Total <u>Kjel</u> o	dahl Nitrogen By Discre	ete Analyser (QC Lot: 2312932)							
EB1212735-004	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	183	189	3.2	0% - 20%
EB1212752-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.4	0.4	0.0	No Limit
EP005: Total O <mark>rg</mark> an	ic Carbon (TOC) (QC L	.ot: 2310446)							
EB1212617-005	Anonymous	EP005: Total Organic Carbon		1	mg/L	18	19	7.7	0% - 50%
EB1212746-001	LW1	EP005: Total Organic Carbon		1	mg/L	4	8	75.6	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER						Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	Higl		
ED045G: Chloride Discrete analyser (QCLot: 230)5475)									
ED045G: Chloride	16887-00-6	1	mg/L	<1	1000 mg/L	92.9	70	128		
EG020F: Dissolved Metals by ICP-MS (QCLot: 23	310398)									
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.100 mg/L	96.0	86	118		
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.200 mg/L	97.7	87	119		
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.50 mg/L	96.7	84	122		
EG020F: Dissolved Metals by ICP-MS(QCLot: 23	310668)									
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.100 mg/L	106	86	118		
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.200 mg/L	105	87	119		
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.50 mg/L	104	84	122		
EG035F: Dissolved Mercury by FIMS (QCLot: 23	10667)									
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	99.3	84	116		
EK055G: Ammonia as N by Discrete Analyser (C	CLot: 2313266)									
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	97.6	70	120		
EK059G: Nitrite plus Nitrate as N (NOx) by Disc	rete Analyser (QCI of: 231	3265)						1		
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	93.6	70	124		
EK061G: Total Kjeldahl Nitrogen By Discrete Ana	alveor (OCI of: 2312932)									
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10.0 mg/L	87.4	70	115		
EP005: Total Organic Carbon (TOC) (QCLot: 231	0446)		5							
EP005: Total Organic Carbon		1	mg/L	<1	5 mg/L	97.3	76	112		
			ing/2		o mg/E	01.0	10			
EP075(SIM)B: Polynuclear Aromatic Hydrocarbo	91-20-3	1	ug/l	<1.0	10 µg/L	81.3	47	120		
EP075(SIM): Naphthalene EP075(SIM): Acenaphthylene	208-96-8	1	μg/L μg/L	<1.0	10 µg/L	84.2	46	120		
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	10 µg/L	82.5	50	127		
EP075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	10 µg/L	86.4	50	126		
EP075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	10 µg/L	87.0	49	115		
EP075(SIM): Anthracene	120-12-7	1	μg/L	<1.0	10 µg/L	87.1	44	120		
EP075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	10 µg/L	88.7	46	122		
EP075(SIM): Pyrene	129-00-0	1	μg/L	<1.0	10 µg/L	89.5	46	122		
EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	10 µg/L	92.9	48	125		
EP075(SIM): Chrysene	218-01-9	1	μg/L	<1.0	10 µg/L	84.6	43	119		
EP075(SIM): Benzo(b)fluoranthene	205-99-2	1	μg/L	<1.0	10 µg/L	106	43	138		
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	µg/L	<1.0	10 µg/L	85.0	38	132		
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	10 µg/L	91.4	39	125		

Page	5 of 7
Work Order	: EB1212746
Client	: CODYHART CONSULTING PTY LTD
Project	: Armidale 243

Sub-Matrix: WATER	o-Matrix: WATER				Laboratory Control Spike (LCS) Report						
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High			
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 2305126) - continued											
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	μg/L	<1.0	10 µg/L	96.6	40	137			
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	10 µg/L	97.8	42	140			
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	µg/L	<1.0	10 µg/L	98.7	37	136			
EP075(SIM): Sum of polycyclic aromatic hydrocarbons		1	µg/L	<1.0							

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER					Matrix Spike (MS) Report		
			-	Spike	Spike Recovery (%)	Recovery I	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED045G: Chloride D	iscrete analyser (QCLot: 2305475)					
EB1212770-002	Anonymous	ED045G: Chloride	16887-00-6	400 mg/L	# Not Determined	70	130
EG020F: Dissolved	Metals by ICP-MS (QCLot: 231039	18)					
EB1212574-002	Anonymous	EG020A-F: Manganese	7439-96-5	0.5 mg/L	94.2	70	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	94.6	70	130
EG020F: Dissolved	Metals by ICP-MS(QCLot: 231066	8)					
EB1212617-003	Anonymous	EG020A-F: Manganese	7439-96-5	0.100 mg/L	99.8	70	130
		EG020A-F: Zinc	7440-66-6	0.200 mg/L	104	70	130
EG035F: Dissolved	Mercury by FIMS (QCLot: 231066	7)					
EB1212617-003	Anonymous	EG035F: Mercury	7439-97-6	0.010 mg/L	102	70	130
EK055G: Ammonia	as N by Discrete Analyser(QCLot	:: 2313266)					
EB1212558-002	Anonymous	EK055G: Ammonia as N	7664-41-7	0.4 mg/L	# Not Determined	70	130
EK059G: Nitrite plu	s Nitrate as N (NOx) by Discrete A	Analyser (QCLot: 2313265)					
EB1212558-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.4 mg/L	103	70	130
EK061G: Total Kjelo	lahl Nitrogen By Discrete Analyse	r (QCLot: 2312932)					
EB1212752-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	94.5	70	130

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER					Matrix Spi	ke (MS) and Matrix S	Spike Duplicate	(MSD) Repor	t	
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RP	Ds (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
ED045G: Chloride D	iscrete analyser (QCLot	: 2305475)								
EB1212770-002	Anonymous	ED045G: Chloride	16887-00-6	400 mg/L	# Not Determined		70	130		
EG020F: Dissolved	Metals by ICP-MS (QCLo	ot: 2310398)								
	Anonymous	EG020A-F: Manganese	7439-96-5	0.5 mg/L	94.2		70	130		
		EG020A-F: Zinc	7440-66-6	1 mg/L	94.6		70	130		
EG020F: Dissolved	Metals by ICP-MS (QCLo	ot: 2310668)								
EB1212617-003	Anonymous	EG020A-F: Manganese	7439-96-5	0.100 mg/L	99.8		70	130		
		EG020A-F: Zinc	7440-66-6	0.200 mg/L	104		70	130		
EG035F: Dissolved	Mercury by FIMS (QCLo	t: 2310667)								
EB1212617-003	Anonymous	EG035F: Mercury	7439-97-6	0.010 mg/L	102		70	130		

Page	: 7 of 7
Work Order	: EB1212746
Client	: CODYHART CONSULTING PTY LTD
Project	: Armidale 243

Sub-Matrix: WATER				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report								
					Spike Rec	overy (%)	Recovery Limits (%)		RPL	Ds (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit		
EK055G: Ammonia as N by Discrete Analyser (QCLot: 2313266)												
EB1212558-002	Anonymous	EK055G: Ammonia as N	7664-41-7	0.4 mg/L	# Not Determined		70	130				
EK059G: Nitrite plu	s Nitrate as N (NOx) by Discrete	Analyser (QCLot: 2313265)										
EB1212558-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.4 mg/L	103		70	130				
EK061G: Total Kjeld	K061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 2312932)											
EB1212752-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	94.5		70	130				

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: EB1212746	Page	: 1 of 6
Client	CODYHART CONSULTING PTY LTD	Laboratory	Environmental Division Brisbane
Contact	: MS BARBARA HART	Contact	: Customer Services
Address	: P O BOX 1073	Address	: 32 Shand Street Stafford QLD Australia 4053
	BURLEIGH HEADS QLD, AUSTRALIA 4220		
E-mail	: pelican@codyhart.com.au	E-mail	Brisbane.Enviro.Services@alsglobal.com
Telephone	+61 55205532	Telephone	: +61 7 3243 7222
Facsimile	: +61 07 55206531	Facsimile	: +61 7 3243 7218
Project	: Armidale 243	QC Level	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	Long Swamp Road Landfill		
C-O-C number	:	Date Samples Received	: 11-MAY-2012
Sampler	: B. Hart	Issue Date	: 22-MAY-2012
Order number	:		
		No. of samples received	: 5
Quote number	: BN/101/12	No. of samples analysed	: 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 32 Shand Street Stafford QLD Australia 4053 PHONE +61-7-3243 7222 Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER					Evaluation	× = Holding time	breach ; 🗸 = Withir	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED045G: Chloride Discrete analyser								
Clear Plastic Bottle - Natural (ED045G) LW1, GWEX-03, LWD	GWEX-01, LW3,	09-MAY-2012		06-JUN-2012		16-MAY-2012	06-JUN-2012	✓
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) LW1, GWEX-03	GWEX-01,	09-MAY-2012		05-NOV-2012		18-MAY-2012	05-NOV-2012	✓
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) LW3,	LWD	09-MAY-2012		05-NOV-2012		21-MAY-2012	05-NOV-2012	✓
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) LW1, GWEX-03	GWEX-01,	09-MAY-2012		06-JUN-2012		21-MAY-2012	06-JUN-2012	~
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G) LW1, GWEX-03, LWD	GWEX-01, LW3,	09-MAY-2012		06-JUN-2012		22-MAY-2012	06-JUN-2012	✓
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete An	alyser						1	
Clear Plastic Bottle - Sulfuric Acid (EK059G) LW1, GWEX-03, LWD	GWEX-01, LW3,	09-MAY-2012		06-JUN-2012		22-MAY-2012	06-JUN-2012	~
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK061G) LW1, GWEX-03, LWD	GWEX-01, LW3,	09-MAY-2012	21-MAY-2012	06-JUN-2012	1	21-MAY-2012	06-JUN-2012	~
EP005: Total Organic Carbon (TOC)								
Amber VOC Vial - Sulfuric Acid (EP005) LW1, GWEX-03, LWD	GWEX-01, LW3,	09-MAY-2012				18-MAY-2012	06-JUN-2012	~

Page	: 3 of 6
Work Order	: EB1212746
Client	: CODYHART CONSULTING PTY LTD
Project	: Armidale 243

Evaluation: × = Holding time breach ; ✓ = Within holding time									
Method		Sample Date	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons									
Amber Glass Bottle - Unpreserved (EP075(SIM)) GWEX-01,	GWEX-03	09-MAY-2012	16-MAY-2012	16-MAY-2012	1	17-MAY-2012	25-JUN-2012	~	

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)					-		
Ammonia as N by Discrete analyser	EK055G	2	18	11.1	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	2	20	10.0	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	2	20	10.0	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	4	40	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Organic Carbon	EP005	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
aboratory Control Samples (LCS)							
Ammonia as N by Discrete analyser	EK055G	1	18	5.6	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	2	20	10.0	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	40	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	8	12.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Organic Carbon	EP005	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
lethod Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	18	5.6	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	40	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Vitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	8	12.5	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Organic Carbon	EP005	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	18	5.6	5.0	✓	ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	1	20	5.0	5.0	1	ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	1	20	5.0	5.0	1	ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	40	5.0	5.0	1	ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.0	5.0	1	ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0	1	ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Chloride by Discrete Analyser	ED045G	WATER	APHA 21st ed., 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ammonia as N by Discrete analyser	EK055G	WATER	APHA 21st ed., 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	APHA 21st ed., 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	APHA 21st ed., 4500-Norg D. 25mL water samples are digested using a traditional Kjeldahl digestion followed by determination by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	APHA 21st ed., 4500-Norg / 4500-NO3 This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Organic Carbon	EP005	WATER	APHA 21st ed., 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	APHA 21st ed., 4500 Norg - D; APHA 21st ed., 4500 P - H. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Separatory Funnel Extraction of Liquids	ORG14	WATER	USEPA SW 846 - 3510B 500 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2). ALS default excludes sediment which may be resident in the container.

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Duplicate (DUP) RPDs							
ED045G: Chloride Discrete analyser	EB1212770-001	Anonymous	Chloride	16887-00-6	Not Determined		Analyte not determined in allocated original sample.
ED045G: Chloride Discrete analyser	EB1212770-001	Anonymous	Chloride	16887-00-6	Not Determined		RPD exceeds LOR based limits
Matrix Spike (MS) Recoveries							
ED045G: Chloride Discrete analyser	EB1212770-002	Anonymous	Chloride	16887-00-6	Not Determined		Background level of analyte not determined in original.
EK055G: Ammonia as N by Discrete Analyser	EB1212558-002	Anonymous	Ammonia as N	7664-41-7	Not Determined		MS recovery not determined, background level greater than or equal to 4x spike level.

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Laboratory Control outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

	CERT	IFICATE OF ANALYSIS	
Work Order	EB1213202	Page	: 1 of 3
Client	: CODYHART CONSULTING PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MS BARBARA HART	Contact	: Customer Services
Address	: P O BOX 1073	Address	: 32 Shand Street Stafford QLD Australia 4053
	BURLEIGH HEADS QLD, AUSTRALIA 4220		
E-mail	: pelican@codyhart.com.au	E-mail	: Brisbane.Enviro.Services@alsglobal.com
Telephone	+61 55205532	Telephone	: +61 7 3243 7222
acsimile	: +61 07 55206531	Facsimile	: +61 7 3243 7218
Project	: Armidale 243	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 17-MAY-2012
Sampler	: B.Hart	Issue Date	: 25-MAY-2012
Site	: Long Swamp Road Landfill		
		No. of samples received	: 1
Quote number	: BN/101/12	No. of samples analysed	: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825	Signatories
--------------------------------	-------------

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

	Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics		
ISO/IEC 17025.	Signatories	Position	Accreditation Category		
Accredited for compliance with	carried out in compliance with procedures specified in 21 CFR Part 11.				

Address 32 Shand Street Stafford QLD Australia 4053 PHONE +61-7-3243 7222 Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Analytical Results

Sub-Matrix: WATER		Cli	ent sample ID	LW2			
	CI	ient sampli	ng date / time	13-MAY-2012 15:45			
Compound	CAS Number	LOR	Unit	EB1213202-001			
ED045G: Chloride Discrete analyser							
Chloride	16887-00-6	1	mg/L	53			
EG020F: Dissolved Metals by ICP-MS							
Manganese	7439-96-5	0.001	mg/L	0.258			
Zinc	7440-66-6	0.005	mg/L	0.052			
Iron	7439-89-6	0.05	mg/L	0.58			
EK055G: Ammonia as N by Discrete A	Analyser						
Ammonia as N	7664-41-7	0.01	mg/L	0.16			
EK059G: Nitrite plus Nitrate as N (NC)x) by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	0.02			
EK061G: Total Kjeldahl Nitrogen By D	Discrete Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.3			
EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser							
[^] Total Nitrogen as N		0.1	mg/L	0.3			
EP005: Total Organic Carbon (TOC)							
Total Organic Carbon		1	mg/L	<1			

QUALITY CONTROL REPORT

Work Order	: EB1213202	Page	: 1 of 5
Client	: CODYHART CONSULTING PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MS BARBARA HART	Contact	: Customer Services
Address	: P O BOX 1073	Address	: 32 Shand Street Stafford QLD Australia 4053
	BURLEIGH HEADS QLD, AUSTRALIA 4220		
E-mail	: pelican@codyhart.com.au	E-mail	: Brisbane.Enviro.Services@alsglobal.com
Telephone	: +61 55205532	Telephone	: +61 7 3243 7222
Facsimile	: +61 07 55206531	Facsimile	: +61 7 3243 7218
Project	: Armidale 243	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	: Long Swamp Road Landfill		
C-O-C number	:	Date Samples Received	: 17-MAY-2012
Sampler	: B.Hart	Issue Date	: 25-MAY-2012
Order number	:		
		No. of samples received	:1
Quote number	: BN/101/12	No. of samples analysed	: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics

Address 32 Shand Street Stafford QLD Australia 4053 PHONE +61-7-3243 7222 Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED045G: Chloride D	iscrete analyser (QC Lot: 23	12174)							
EB1213062-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	242	242	0.0	0% - 20%
EG020F: Dissolved I	Metals by ICP-MS (QC Lot: 2	2314765)							
EB1212984-008	Anonymous	EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.003	0.003	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.173	0.172	0.0	0% - 20%
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.27	0.29	8.4	No Limit
EK055G: Ammonia a	s N by Discrete Analyser(C	QC Lot: 2318606)							
EB1212940-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.46	0.47	0.0	0% - 20%
EB1212940-002	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.47	0.47	0.0	0% - 20%
EK059G: Nitrite plus	s Nitrate as N (NOx) by Disc	rete Analyser (QC Lot: 2318605)							
EB1212940-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.01	0.01	0.0	No Limit
EB1212940-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.02	<0.01	0.0	No Limit
EK061G: Total Kjeld	ahl Nitrogen By Discrete An	alyser (QC Lot: 2319086)							
EB1213113-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.5	0.4	0.0	No Limit
EB1213329-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	<0.1	0.0	No Limit
EP005: Total Organi	c Carbon (TOC) (QC Lot: 23	15817)							
EB1213037-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	248	253	1.8	0% - 20%
EB1213200-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	113	116	2.4	0% - 20%

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
ED045G: Chloride Discrete analyser (QCLot: 2312174)							
ED045G: Chloride	16887-00-6	1	mg/L	<1	1000 mg/L	99.5	70	128
EG020F: Dissolved Metals by ICP-MS (QCLot: 231476	5)							
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.100 mg/L	110	86	118
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.200 mg/L	103	87	119
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.50 mg/L	110	84	122
EK055G: Ammonia as N by Discrete Analyser (QCLot	: 2318606)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	101	70	120
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A	nalyser (QCLot: 231	8605)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	98.0	70	124
EK061G: Total Kjeldahl Nitrogen By Discrete Analyse	(QCLot: 2319086)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10.0 mg/L	79.3	70	115
EP005: Total Organic Carbon (TOC) (QCLot: 2315817)								
EP005: Total Organic Carbon		1	mg/L	<1	5 mg/L	96.9	76	112

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Γ		Matrix Spike (MS) Report	1	
				Spike	Spike Recovery (%)	Recovery I	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED045G: Chloride D	Discrete analyser (QCLot: 2312	174)					
EB1213062-002	Anonymous	ED045G: Chloride	16887-00-6	400 mg/L	104	70	130
EG020F: Dissolved	Metals by ICP-MS (QCLot: 231	4765)					
EB1213056-002	Anonymous	EG020A-F: Manganese	7439-96-5	0.100 mg/L	# Not Determined	70	130
		EG020A-F: Zinc	7440-66-6	0.200 mg/L	123	70	130
EK055G: Ammonia	as N by Discrete Analyser (QC	:Lot: 2318606)					
EB1212940-002	Anonymous	EK055G: Ammonia as N	7664-41-7	0.4 mg/L	111	70	130
EK059G: Nitrite plu	is Nitrate as N (NOx) by Discre	te Analyser (QCLot: 2318605)					
EB1212940-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.4 mg/L	104	70	130
EK061G: Total Kjeld	dahl Nitrogen By Discrete Analy	yser (QCLot: 2319086)					
EB1213130-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	88.9	70	130

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER					Matrix Spi	ke (MS) and Matrix S	pike Duplicate	(MSD) Report	t	
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPI	Ds (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
ED045G: Chloride D	iscrete analyser (QCLo	t: 2312174)								
EB1213062-002	Anonymous	ED045G: Chloride	16887-00-6	400 mg/L	104		70	130		
EG020F: Dissolved	Metals by ICP-MS (QCL	ot: 2314765)								
EB1213056-002	Anonymous	EG020A-F: Manganese	7439-96-5	0.100 mg/L	# Not Determined		70	130		
		EG020A-F: Zinc	7440-66-6	0.200 mg/L	123		70	130		
EK055G: Ammonia a	as N by Discrete Analys	er (QCLot: 2318606)								
EB1212940-002	Anonymous	EK055G: Ammonia as N	7664-41-7	0.4 mg/L	111		70	130		
EK059G: Nitrite plus	s Nitrate as N (NOx) by	Discrete Analyser (QCLot: 2318605)								
EB1212940-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.4 mg/L	104		70	130		
EK061G: Total Kjeld	ahl Nitrogen By Discret	e Analyser (QCLot: 2319086)								
EB1213130-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	88.9		70	130		

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: EB1213202	Page	: 1 of 5
Client	CODYHART CONSULTING PTY LTD	Laboratory	Environmental Division Brisbane
Contact	: MS BARBARA HART	Contact	: Customer Services
Address	: P O BOX 1073	Address	: 32 Shand Street Stafford QLD Australia 4053
	BURLEIGH HEADS QLD, AUSTRALIA 4220		
E-mail	: pelican@codyhart.com.au	E-mail	Brisbane.Enviro.Services@alsglobal.com
Telephone	+61 55205532	Telephone	: +61 7 3243 7222
Facsimile	: +61 07 55206531	Facsimile	: +61 7 3243 7218
Project	: Armidale 243	QC Level	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	Long Swamp Road Landfill		
C-O-C number	:	Date Samples Received	: 17-MAY-2012
Sampler	: B.Hart	Issue Date	: 25-MAY-2012
Order number	:		
		No. of samples received	:1
Quote number	: BN/101/12	No. of samples analysed	:1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 32 Shand Street Stafford QLD Australia 4053 PHONE +61-7-3243 7222 Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER				Evaluation:	× = Holding time	breach ; ✓ = Withir	holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED045G: Chloride Discrete analyser							
Clear Plastic Bottle - Natural (ED045G) LW2	13-MAY-2012		10-JUN-2012		19-MAY-2012	10-JUN-2012	1
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) LW2	13-MAY-2012		09-NOV-2012		22-MAY-2012	09-NOV-2012	✓
EK055G: Ammonia as N by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK055G) LW2	13-MAY-2012		10-JUN-2012		24-MAY-2012	10-JUN-2012	~
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) LW2	13-MAY-2012		10-JUN-2012		24-MAY-2012	10-JUN-2012	1
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G) LW2	13-MAY-2012	23-MAY-2012	10-JUN-2012	1	25-MAY-2012	10-JUN-2012	✓
EP005: Total Organic Carbon (TOC)							
Amber TOC Vial - Sulfuric Acid (EP005) LW2	13-MAY-2012				22-MAY-2012	10-JUN-2012	✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency i	not within specification ; \checkmark = Quality Control frequency within specificat
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
_aboratory Duplicates (DUP)							
Ammonia as N by Discrete analyser	EK055G	2	17	11.8	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	1	4	25.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	8	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
itrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	12	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Organic Carbon	EP005	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
aboratory Control Samples (LCS)							
mmonia as N by Discrete analyser	EK055G	1	17	5.9	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
hloride by Discrete Analyser	ED045G	2	4	50.0	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
issolved Metals by ICP-MS - Suite A	EG020A-F	1	8	12.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
itrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	12	8.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Organic Carbon	EP005	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
lethod Blanks (MB)							
mmonia as N by Discrete analyser	EK055G	1	17	5.9	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
hloride by Discrete Analyser	ED045G	1	4	25.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
issolved Metals by ICP-MS - Suite A	EG020A-F	1	8	12.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
itrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	12	8.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Organic Carbon	EP005	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
latrix Spikes (MS)							
mmonia as N by Discrete analyser	EK055G	1	17	5.9	5.0	✓	ALS QCS3 requirement
hloride by Discrete Analyser	ED045G	1	4	25.0	5.0	✓	ALS QCS3 requirement
issolved Metals by ICP-MS - Suite A	EG020A-F	1	8	12.5	5.0	✓	ALS QCS3 requirement
itrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	12	8.3	5.0	✓	ALS QCS3 requirement
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	13	7.7	5.0	1	ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Chloride by Discrete Analyser	ED045G	WATER	APHA 21st ed., 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Ammonia as N by Discrete analyser	EK055G	WATER	APHA 21st ed., 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	APHA 21st ed., 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	APHA 21st ed., 4500-Norg D. 25mL water samples are digested using a traditional Kjeldahl digestion followed by determination by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	APHA 21st ed., 4500-Norg / 4500-NO3 This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Organic Carbon	EP005	WATER	APHA 21st ed., 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	APHA 21st ed., 4500 Norg - D; APHA 21st ed., 4500 P - H. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data		Limits	Comment
Matrix Spike (MS) Recoveries								
EG020F: Dissolved Metals by ICP-MS	EB1213056-002	Anonymous	Manganese	7439-96-5	Not			MS recovery not determined, background
					Determine	d		level greater than or equal to 4x spike
								level.

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

CodyHart Envíronmental Analyses

Due to holding time problems if sent to a NATA registered laboratory, CodyHart conducts laboratory analyses for alkalinity and free CO_2 on-site or on the evening of the sampling day. The analyses are more accurate when conducted on fresh samples. Alkalinity has always been regarded as a 'field analyte' in the literature.

- For alkalinity, CodyHart uses titration and/or colour change, on site or on the evening of sampling, to endpoint pH 4.5 as detailed in APHA (1998) section 2320, which is the NSW EPA approved method. The colour change method adopted uses a mixed indicator alkalinity (Bromocresol Green Methyl Red) indicator solution (APHA 1992, 2-25, 2-27) which in combination with titration changes the sample colour from blue to wild moss green at approximately pH 4.5.
- High concentrations of free CO₂ indicate that landfill gas may be permeating groundwater. The APHA 4500-CO₂ C titration method is used as detailed in *Standard Methods for the Examination of Water and Wastewater*, 18th edition 1992:4-17, and/or a phenolphthalein indicator colour method which in combination with titration changes the sample colour from clear to mid-pink (APHA 1992, 2-25, 2-27) at pH 8.3.

A round of comparative testing at a number of landfill sites in June 2008, including Long Swamp Road Landfill, indicated that alkalinity lab results versus field results had an RPD of <20%. In most cases the alkalinity field results were greater. It was decided that the colour change method was the most efficient, but was inappropriate for deeply coloured samples. (Most groundwater and surface water samples are clear or slightly cloudy white.) For free CO_2 , the colour change method was the most efficient.

Results 09/05/12 to 13/05/12

	LW1	LW2	LW3	LS2	LS3	LS4	LS5	LL1
Free CO ₂ (mg/L) (titration & colour change)	164	88	164	<1	<1	29	3	NT
Alkalinity (mg/L) (titration & colour change)	<1	233	200	700	713	303	156	NT

Historical sampling points

Landfill extension

	GWEX-01	GWEX-02	GWEX-03	SWEX-01	LL2
Free CO ₂ (mg/L) (titration & colour change)	165	161	176	23	NT
Alkalinity (mg/L) (titration & colour change)	3	103	250	25	NT

NT = Not tested

Appendix B

Conceptual Design Drawings

Appendix B Conceptual Design Drawings

DESIGNER:

AECOM Australia Pty Ltd A.B.N. 20 093 846 925

CLIENT:

ARMIDALE LANDFILL **DESIGN AND WATER MANAGEMENT DRAWINGS**

LOCALITY PLAN

Thi	s drawi	ng is co	onfiden	tial and shall only be used for the purposes of this project.					SIGN AND DRAFTING OF	SCALES:	CLIENT:	CONTRACTOR:	DESIGNER:
						THE	AECOM QUALITY ASSU	RANCE SYSTEM T	0 ISO 9001-2000				
						DESIGNED	AK	CHECKED			DALE DUMARESQ COUL		
D	A JC	23.12	12.09	UPDATED CONCEPT DESIGN	JP					0 100 200 250m			
C	TT	16.06	6.08	FINAL ISSUE	AK	DRAWN	TT / AC	CHECKED	PM				
В	TT	15.05	15.08	FINAL FOR REPORT BONDARY REVISED	AK	APPROVED	JP	DATE	16.06.08	1:10000 (A3) 1:5000 (A1)	Building the Future		
A	TT	05.05)5.08	FINAL FOR REPORT	AK	┣────				-			RPEQ No.
No	BY	DAT	ATE	DESCRIPTION	APPD	1							AECOM Australia Pty Ltd A.I

DRAWING LIST

DRAWING No.

20017605-CI-100 20017605-CI-101 20017605-CI-102 20017605-CI-103 20017605-CI-110 20017605-CI-111 20017605-CI-112 20017605-CI-113 20017605-CI-114 20017605-CI-120 20017605-CI-121 20017605-CI-130

NOTES:

- DRAWING TITLE
- DRAWING LIST AND LOCALITY PLAN SITE LAYOUT PLAN
- LANDFILL FOOTPRINT
- LANDFILL SECTIONS
- STAGE 1 WATER MANAGEMENT PLAN
- STAGE 2 WATER MANAGEMENT PLAN
- STAGE 3 WATER MANAGEMENT PLAN
- STAGE 4 WATER MANAGEMENT PLAN STAGE 5 WATER MANAGEMENT PLAN
- TYPICAL DRAIN DETAILS AND SECTIONS
- TYPICAL DETAILS
- LEACHATE POND, SEDIMENTATION BASIN AND DRY BASIN SECTIONS

1. CO-ORDINATES ARE TO MAP GRID OF AUSTRALIAIN 1994 ON M.G.A. LEVELS ARE IN METRES WITH RESPECT TO THE AUSTRALIAN HEIGHT DATUM (AHD).
 ALL DIMENSIONS ARE IN MILLIMETRES UNO.

	ARMIDALE LANDFILL				
OM	DRAWING LIST AND LOCALITY PLAN				
A.B.N. 20 093 846 925	DETAILED CONCEPT	DRAWING NO: 20017605-CI-100	^{rev:}		

REFERENCE POINTS

POINT	EASTING	NORTHING
1	383333	6620325
2	383409	6620260
3	383334	6619705
4	383706	6619693
5	383995	6618872
5A	383837	6618829
6	383339	6618603
7A	383068	6618713
8	383047	6618634
9	382792	6618672

Thi	drawin	g is confid I	ential and shall only be used for the purposes of this project. I	1	THIS PRO	NG OF THIS TITLE BLOCK O DIECT HAVE BEEN PREPAR	ED AND CHECKED	IN ACCORDANCE WITH	SCALES:	CLIENT:	CONTRACTOR:	DESIGNER:
⊢					DESIGNED	E AECOM QUALITY ASSUR	CHECKED	0 ISO 9001-2000	-	THE DUMARESQ COM		A
D	A JC	23.12.09	UPDATED CONCEPT DESIGN	JP	I				0, 40 80 120 160 200m	Same Same		AECO
C	TT	16.06.08	FINAL ISSUE	AK	DRAWN	TT / AC	CHECKED	PM	1:8000 (A3) 1:4000 (A1)			
В	TT	15.05.08	FINAL FOR REPORT BONDARY REVISED	AK	APPROVED	JP JP	DATE	16.06.08	1:4000 (AS)	Building the Fulure		
A	TT	05.05.08	FINAL FOR REPORT	AK		1		1	-			RPEQ No.
Nç	BY	DATE	DESCRIPTION	APPD								AECOM Australia Pty Ltd A.B

	N	
IN		
SIN		
TE		
-		
1		
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	r	
	ARMIDALE LANDFILL	
MC	SITE LAYOUT PLAN	
A.B.N. 20 093 846 925	DETAILED CONCEPT 20017605-CI-101	REV: D

PROPOSED PROPERTY BOUNDARY PROPOSED LEACHATE POND PROPOSED SEDIMENTATION POND PROPOSED DRY BASIN PROPOSED LANDFILL FOOTPRINT PROPOSED PERIMETER ACCESS ROAD CONTOUR LINE

<u>LEGEND</u>

ARMIDALE LANDFILL					
ОМ	LANDFILL FOOTPRINT				
A.B.N. 20 093 846 925	DETAILED CONCEPT	DRAWING NO: 20017605-CI-102	REV:		

	ARMIDALE LANDFILL				
юM	LANDFILL SECTIONS				
o. I A.B.N. 20 093 846 925	DETAILED CONCEPT	DRAWING NO: 20017605-CI-103	REV:		

	F
—€.—	f
	l
	l
	ł
	f
	ł
+ + + + + + + + + + + +	f
	,
· · · · · · · · · · · · · · · · · · ·	f
	f

<u>LEGEND</u>

-	PROPOSED PROPERTY BOUNDARY
-	PROPOSED CLEAN WATER DIVERSION DRAIN
-	PROPOSED DIRTY WATER DRAIN
-	LEACHATE PUMP OUT PIPELINE
•	LEACHATE REINJECTION LINE
	PROPOSED LEACHATE POND
	PROPOSED SEDIMENTATION POND
	PROPOSED DRY BASIN
+ +	FUTURE LANDFILL
	ACTIVE LANDFILL AREA
	FINAL CAPPED AND NOT FULLY VEGETATED LANDFILL AREA
]	FINAL CAPPED AND FULLY VEGETATED LANDFILL AREA
-	PROPOSED PERIMETER ACCESS ROAD
-	CONTOUR LINE
•	
A	RMIDALE LANDFILL

STAGE 1 WATER MANAGEMENT PLAN

20017605-CI-110 DETAILED CONCEPT

STAGE 2 WATER MANAGEMENT PLAN

RAWING NO: 20017605-CI-111

<u> </u>	F
	F
—←-	F
<u> </u>	L
••••	L
	F
	F
	f
$\begin{array}{c} + & + & + & + \\ + & + & + & + \\ + & + &$	F
	,
	۴
	۴
	F

<u>LEGEND</u>

PROPOSED PROPERTY BOUNDARY PROPOSED CLEAN WATER DIVERSION DRAIN PROPOSED DIRTY WATER DRAIN LEACHATE PUMP OUT PIPELINE LEACHATE REINJECTION LINE PROPOSED LEACHATE POND PROPOSED SEDIMENTATION POND PROPOSED DRY BASIN FUTURE LANDFILL ACTIVE LANDFILL AREA FINAL CAPPED AND NOT FULLY VEGETATED LANDFILL AREA FINAL CAPPED AND FULLY VEGETATED LANDFILL AREA PROPOSED PERIMETER ACCESS ROAD CONTOUR LINE

ARMIDALE LANDFILL STAGE 3 WATER MANAGEMENT PLAN

20017605-CI-112 DETAILED CONCEPT

ARMIDALE LANDFILL STAGE 5 WATER MANAGEMENT PLAN

20017605-CI-114 DETAILED CONCEPT

E

<u>LEGEND</u>

PROPOSED PROPERTY BOUNDARY PROPOSED CLEAN WATER DIVERSION DRAIN PROPOSED DIRTY WATER DRAIN LEACHATE PUMP OUT PIPELINE LEACHATE REINJECTION LINE PROPOSED LEACHATE POND PROPOSED SEDIMENTATION POND PROPOSED DRY BASIN FUTURE LANDFILL ACTIVE LANDFILL AREA FINAL CAPPED AND NOT FULLY VEGETATED LANDFILL AREA FINAL CAPPED AND FULLY VEGETATED LANDFILL AREA PROPOSED PERIMETER ACCESS ROAD CONTOUR LINE

	ARMIDA	LE LANDFILL	
юM	TYPICAL DETAILS		
o. A.B.N. 20 093 846 925	DETAILED CONCEPT	DRAWING NO: 20017605-CI-121	REV:

Appendix C

Letters of Commitment

Appendix C Letters of Commitment

Armidale Dumaresq Council

Address correspondence to the General Manager

135 Rusden Street PO Box 75A **ARMIDALE NSW 2350**

Date	26 August 2009	Your Ref	Our Ref	CM:BA:A05/2410-2	
------	----------------	----------	---------	------------------	--

The General Manager Guyra Shire Council PO Box 207 GUYRA NSW 2365

Dear Mr Cushway

REGIONAL LANDFILL

In light of the recent decision to disband NESAC, and in order to ensure that the statements made in the Environmental Assessment regarding a "Regional Landfill" are correct, I would be obliged if you could confirm Guyra Shire Council's continued commitment to participation in the new Regional Landfill whether it be in the short term or the long term.

Should you require further information with regards to this matter I can be contacted by telephoning 6770 3849.

Yours sincerely

Colin Maciver Utilities Manager Armidale Dumaresq Council

www.armidale.nsw.gov.au council@armidale.nsw.gov.au

Our ref:

Your ref: CM:BA:A05/2410-2

ADC - Received 7 0 SEP 2009

Civic Centre 158 Bradley Street (PO Box 207) GUYRA NSW 2365

8th September, 2009

General Manager Armidale Dumaresq Council PO Box 75A ARMIDALE NSW 2350

Dear Mr Burns

Re: Guyra Council's use of the proposed regional landfill in Armidale.

I refer to the recent letter from your Utilities Manage in which he asked Council to confirm its support for the establishment of a regional landfill in the Armidale area. As you will be aware Council's contractors have been transporting the bulk of the waste generated in the Guyra, Black Mountain and the Ben Lomond areas to the existing Armidale Waste Facility for several years. It is anticipated that this method of waste disposal will continue until such time as there is a more environmentally sustainable, cost effective method of disposal available in the area.

As you will be aware the NSW State and the Australian Federal Governments have been encouraging the community generally and councils in particular to reduce the waste being generated and deposited to landfills by recycling and reuse wherever possible. Accordingly Guyra Council, like most other councils, are seeking every opportunity to reduce its waste and in an effort to achieve this objective are prepared to investigate and if affordable embrace innovative, proven technology to achieve these ends.

Should you require any additional information please contact Council's Director of Development and Environmental Services, Mr Bob Furze, on (02) 6770 7109 during business hours or (02) 67791246 after hours.

Yours sincerely

FOR- DAVID CUSHWAY GENERAL MANAGER

Armidale Dumaresq Council

Address correspondence to the General Manager

135 Rusden Street PO Box 75A **ARMIDALE NSW 2350**

Date 26 August 2009

Your Ref

Our Ref (

CM:BA:A05/2410-2

The General Manager Uralla Shire Council PO Box 106 URALLA NSW 2358

Dear Mr O'Connor

REGIONAL LANDFILL

In light of the recent decision to disband NESAC, and in order to ensure that the statements made in the Environmental Assessment regarding a "Regional Landfill" are correct, I would be obliged if you could confirm Uralla Shire Council's continued commitment to participation in the new Regional Landfill whether it be in the short term or the long term.

Should you require further information with regards to this matter I can be contacted by telephoning 6770 3849.

Yours sincerely

Colin Maciver Utilities Manager Armidale Dumaresq Council

www.armidale.nsw.gov.au council@armidale.nsw.gov.au

Council Chambers and Administration Centre: 32 SALISBURY STREET, PO BOX 106, URALLA NSW 2358

Tel: (02) 6778 4606 Fax: (02) 6778 5073 Email: council@uralla.nsw.gov.au Web: www.uralla.nsw.gov.au ABN: 55 868 272 018

URALLA

In reply, please quote: TOC : CC U09/6615 Your Ref: AO5/2410-2

6 October 2009

Mr C Maciver Utilities Manager Armidale Dumaresq Council PO Box 75A ARMIDALE NSW 2350

Dear Mr Maciver,

Regional Landfill

Your letter of 20 August 2009 is acknowledged. The Uralla Shire Council has maintained a watching brief on the Regional Landfill project with delegates, Cr M Pearce and Cr R Filmer, on the Armidale Dumaresq Council's Waste Management Committee.

The Uralla Landfill site is currently operating an active 675 square metre cell. The original estimated life for this cell was for two years. This year the cell was estimated, at 30 June 2009, as having a further year to operate giving it a three year life. The landfill site has a further 4,825 square metres available for disposal cells. The estimated life of the current and future cells, at 30 June 2009, was estimated to be 19 years.

Since the estimates at 30 June 2009 a detailed evaluation of the effect of our increased recycling program and the capacity of the current active area has re-evaluated the life of the existing area. The estimated life of the active area is now six years. Therefore the Uralla Shire Council has a six year horizon to develop alternate strategies:-

- Continue to develop disposed cells on the 4,825 square metre site
- Develop the recycling and transfer operation for delivery of baled non-recyclable material to a Regional Landfill site.

Armidale Dumaresq Council

Address correspondence to the General Manager

135 Rusden Street PO Box 75A **ARMIDALE NSW 2350**

Date 26 August 2009

Your Ref

Our Ref (

CM:BA:A05/2410-2

The General Manager Walcha Council PO Box 2 WALCHA NSW 2354

Dear Mr O'Hara

REGIONAL LANDFILL

In light of the recent decision to disband NESAC, and in order to ensure that the statements made in the Environmental Assessment regarding a "Regional Landfill" are correct, I would be obliged if you could confirm Walcha Council's continued commitment to participation in the new Regional Landfill whether it be in the short term or the long term.

Should you require further information with regards to this matter I can be contacted by telephoning 6770 3849.

Yours sincerely

Colin Maciver Utilities Manager Armidale Dumaresq Council

www.armidale.nsw.gov.au council@armidale.nsw.gov.au

ADC - Received

WALCHA COUNCIL

ABN 24 780 320 847

2W Hamilton Street PO Box 2 WALCHA NSW 2354

 Telephone:
 02 6774 2500

 Rates & Admin:
 02 6774 2500

 Engineering:
 02 6774 2515

 Fax:
 02 6777 1181

 Email:
 council@walcha.nsw.gov.au

 Website:
 www.walcha.nsw.gov.au

8 September 2009

General Manager Armidale Dumaresq Council PO Box 75A ARMIDALE 2350

Attention: Mr Colin Maciver

Dear Col

<u>Regional Landfill</u> <u>Your Reference:</u> CM:BA:A05/2410-2

I refer to your letter of 26 August 2009. Walcha Council is still committed to participation in the new Regional Landfill.

Yours faithfully

JACK O'HARA GENERAL MANAGER

WHEN REPLYING PLEASE QUOTE WO/2009/00852 WHEN MAKING ENQUIRIES ASK FOR STEVE MCCOY

CIM:A05/2410

25 August 2006

Mr Andrew Johnson General Manager Guyra Shire Council PO Box 207 GUYRA NSW 2365

Dear Mr Johnson

NEW LANDFILL FOR ARMIDALE REGION

You will be aware that Armidale Dumaresq Council are working through the process to develop a new landfill for this Council and for the possible future needs of the other neighbouring Councils in the NESAC group.

The time has come in the preparation of the Environmental Assessment for the new landfill project where we need to get some form of commitment from the other Councils as to their likelihood of being a user of the new landfill sometime in the future.

The issue was discussed at the meeting of the Armidale Dumaresq Council Waste Management Committee held on 4 July 2006 with the following recommendation made to Council and subsequently adopted by Council at the meeting held 24 July 2006.

- That Walcha Shire Council and other NESAC Councils be included in the Environmental Assessment (EA) Consultation matters.
- That Walcha Shire Council and other NESAC Councils be invited to submit an Expression of Interest to potentially participate in the New Regional Landfill.

I would be obliged if you could arrange for this matter to be considered by your Council at its earliest convenience and I look forward to receiving your reply in due course.

Yours sincerely

Our ref: CIM:A05/2410 Your ref:

Civic Centre 158 Bradley Street (PO Box 207) GUYRA NSW 2365

CONTRACTOR AND ALL THE ELECTRON WITH THE ADDRESS OF THE SECOND REPORTS

TOP OF THE RANGE

ADC - Registered

14 September, 2006

1 8 SEP 2006

USING AUDION

Utilities Manager Armidale Dumaresq Council PO Box 75A ARMIDALE NSW 2350

Dear Mr Maciver,

RE: USE OF ARMIDALE'S PROPOSED LANDFILL

I refer to your recent letter in which you asked for a commitment by Council on the use of Armidale's proposed new landfill. As you will be aware Council has been disposing of most of the waste currently being generated in the Guyra, Llangothlin, Ben Lomond and Black Mountain areas at the Armidale Landfill for some time and does not envisage this situation changing in the foreseeable future.

Council considers that the greatest opportunity for minimising the cost of waste disposal is in a large centralised facility, which provides the necessary economies of scale. Accordingly, Council supports the establishment of a landfill servicing the region in the Armidale area. Should you have any questions regarding the above please contact Council's Director of Development and Environmental Services on (02) 6779 1577, during business hours or (02) 6779 1246 after hours.

Yours sincerely, ANDREW JOHNSON GENERAL MANAGER

CIM:A05/2410

25 August 2006

Mr Robert Fulcher General Manager Uralla Shire Council PO Box 106 URALLA NSW 2358

Dear Mr Fulcher

NEW LANDFILL FOR ARMIDALE REGION

You will be aware that Armidale Dumaresq Council are working through the process to develop a new landfill for this Council and for the possible future needs of the other neighbouring Councils in the NESAC group.

The time has come in the preparation of the Environmental Assessment for the new landfill project where we need to get some form of commitment from the other Councils as to their likelihood of being a user of the new landfill sometime in the future.

The issue was discussed at the meeting of the Armidale Dumaresq Council Waste Management Committee held on 4 July 2006 with the following recommendation made to Council and subsequently adopted by Council at the meeting held 24 July 2006.

- That Walcha Shire Council and other NESAC Councils be included in the Environmental Assessment (EA) Consultation matters.
- That Walcha Shire Council and other NESAC Councils be invited to submit an Expression of Interest to potentially participate in the New Regional Landfill.

I would be obliged if you could arrange for this matter to be considered by your Council at its earliest convenience and I look forward to receiving your reply in due course.

Yours sincerely

ADC - Registered 2 7 SEP 2005

URALLA SHIRE COUNCIL 32 SALISBURY STREET, URALLA PO BOX 106 URALLA NSW 2358 ABN 55 868 272 018

In reply, please quote: P-9/1

26 September 2006

Mr C Macaiver Utilities Manager Armidale Dumaresq Council PO Box 75a ARMIDALE 2350

Dear Mr Maciver

New Landfill for Armidale Region

Reference is made to your letter dated 25 August 2006 concerning the above matter.

Council considered this matter at its meeting held on 25 September 2006 and resolved:

"That Council agree to submit an expression of interest to participate in the new regional landfill in the Armidale Dumaresq Council."

Council would therefore be grateful if you could consider our expression of interest in the project, and advise Council on the manner in which to best progress this matter.

If you require any further information concerning this matter please do not hesitate in contacting Council staff on 6778 4606.

Yours faithfully

Craig Diss MANAGER OF PLANNING

URALLA SHIRE COUNCIL 32 Salisbury Street, Uralla PO Box 106 Uralla NSW 2358

ABN 55 868 272 018

ADC - Registered

1 3 OCT 2006

11 October 2006

Mr Colin Maciver Utilities Manager Armidale Dumaresq Council PO Box 75A ARMIDALE NSW 2350

Dear Mr Maciver

re: New Landfill for Armidale Region (Your Ref. CIM:A05/2410)

Thank you for your letter of the 25th August 2006 concerning the new Landfill for the Armidale region.

Your letter was considered by Council at its meeting held on the 25th September 2006. Council resolved to agree to submit an expression of interest to participate in the new regional landfill in the Armidale-Dumaresq area.

Council looks forward to participating in the environmental assessment consultation issues and the Armidale-Dumaresq Council Waste Management Committee. It would be appreciated if you could advise me when and if it would be appropriate for Council staff members to become involved in working with you on this environmental assessment process.

Yours faithfully

Robert Uulcher GENERAL MANAGER

CIM:A05/2410

25 August 2006

Mr Jack O'Hara General Manager Walcha Shire Council PO Box 2 WALCHA NSW 2354

Dear Mr O'Hara

NEW LANDFILL FOR ARMIDALE REGION

You will be aware that Armidale Dumaresq Council are working through the process to develop a new landfill for this Council and for the possible future needs of the other neighbouring Councils in the NESAC group.

The time has come in the preparation of the Environmental Assessment for the new landfill project where we need to get some form of commitment from the other Councils as to their likelihood of being a user of the new landfill sometime in the future.

The issue was discussed at the meeting of the Armidale Dumaresq Council Waste Management Committee held on 4 July 2006 with the following recommendation made to Council and subsequently adopted by Council at the meeting held 24 July 2006.

- That Walcha Shire Council and other NESAC Councils be included in the Environmental Assessment (EA) Consultation matters.
- That Walcha Shire Council and other NESAC Councils be invited to submit an Expression of Interest to potentially participate in the New Regional Landfill.

I would be obliged if you could arrange for this matter to be considered by your Council at its earliest convenience and I look forward to receiving your reply in due course.

Yours sincerely

CIM:BA:A05/2410

31 October 2006

Mr. J O'Hara General Manager Walcha Shire Council PO Box 2 WALCHA NSW 2354

Dear Mr O'Hara

NEW LANDFILL FOR ARMIDALE REGION

I refer to my letter dated 25 August 2006 regarding a request to your Council, to confirm its interest in the new landfill for the Armidale region.

I would appreciate your response to this letter at your earliest convenience so that I can report the responses of all NESAC Councils to our next Waste Management Committee Meeting scheduled for mid November 2006.

Yours sincerely

Colin Maciver Utilities Manager Tel 02 6770 3549 e-mail – cmaciver@armidale.nsw.gov.au

Colin Maciver

From:Colin MaciverSent:Thursday, 27 March 2008 11:54 AMTo:Jack O'HaraSubject:New Landfill for Armidale RegionAttachments:O 2006 5520 O Hara J-New landfill for Armidale Region(2).DOC; O 2006 4403 To
Walcha SC requesting EOI for participation in new landfill.DOC

Hi Jack.

Attached are copies of two letters regarding future participation by Walcha Council in the proposed Armidale Regional landfill.

This commitment (or non-commitment) by other Councils is required to be included in the Environmental Assessment for the project as it is to be assessed by the Dept of Planning as a regional landfill.

Finalisation of the Preliminary Environmental Assessment is imminent so I would appreciate your response to my letter at your earliest convenience.

Regards

Colin Maciver Utilities Services Manager, New England Strategic Alliance of Councils Tel 02 67 703 849 Fax 02 6772 9275 Mob 0427 410 723 e-mail cmaciver@armidale.nsw.gov.au

WALCHA COUNCIL

ABN 24 780 320 847

7 May 2008

Colin Maciver Utilities Manager Armidale Dumaresq Council PO Box 75A Armidale NSW 2350
 Telephone:
 02 6774 2500

 Rates & Admin:
 02 6774 2500

 Engineering:
 02 6774 2515

 Fax:
 02 6777 1181

 Email: council@walcha.nsw.gov.au
 Website: www.walcha.nsw.gov.au

Dear Colin

NEW LANDFILL FOR ARMIDALE REGION

Walcha Council would like to be included in the Environmental Assessment (EA) Consultation matters and we formally submit an expression of interest to participate in the new Regional Landfill.

Please accept my apologies for the lateness of this reply.

Yours faithfully

VACK O'HARA GENERAL MANAGER

WHEN REPLYING PLEASE QUOTE WO/08/521 WHEN MAKING ENQUIRIES PLEASE ASK FOR Liz Hobbs

Colin Maciver

From: Sent: To: Subject: Attachments:	Colin Maciver Thursday, 26 March 2009 4:59 PM Jack O'Hara; Steve McCoy I 2008 09650 Request Walcha Council be ~ Assessment Consultation matters for New Landfill in Armidale Region.PDF I 2008 09650 Request Walcha Council be ~ Assessment Consultation matters for New Landfill in Armidale Region.PDF
Follow Up Flag:	Follow up
Flag Status:	Flagged

Gents,

in light of Walcha's withdrawal from NESAC and our current finalisation of the EA for the proposed new landfill, our consultant Maunsell AECOM has asked us to get written confirmation of Walcha's continued inclusion in the project as per the attached letter.

I look forward to receiving your response at your earliest convenience.

Regards

Colin Maciver Utilities Services Manager, New England Strategic Alliance of Councils Tel 02 67 703 849 Fax 02 6772 9275 Mob 0427 410 723 e-mail <u>cmaciver@armidale.nsw.gov.au</u>

WALCHA COUNCIL

ABN 24 780 320 847

2W Hamilton Street PO Box 2 WALCHA NSW 2354

 Telephone:
 02 6774 2500

 Rates & Admin:
 02 6774 2500

 Engineering:
 02 6774 2515

 Fax:
 02 6777 1181

 Email: council@walcha.nsw.gov.au
 Website: www.walcha.nsw.gov.au

7 May 2008

Colin Maciver Utilities Manager Armidale Dumaresq Council PO Box 75A Armidale NSW 2350

Dear Colin

NEW LANDFILL FOR ARMIDALE REGION

Walcha Council would like to be included in the Environmental Assessment (EA) Consultation matters and we formally submit an expression of interest to participate in the new Regional Landfill.

Please accept my apologies for the lateness of this reply.

Yours faithfully

VACK O'HARA GENERAL MANAGER

WALCHA COUNCIL

ABN 24 780 320 847

ADC - Registered 3 1 MAR 2009

2W Hamilton Street PO Box 2 WALCHA NSW 2354

 Telephone:
 02 6774 2500

 Rates & Admin:
 02 6774 2500

 Engineering:
 02 6774 2515

 Fax:
 02 6777 1181

 Email:
 council@walcha.nsw.gov.au

 Website:
 www.walcha.nsw.gov.au

27 March 2009

General Manager Armidale Dumaresq Council PO Box 75A ARMIDALE 2350

Attention: Mr Colin Maciver

Dear Colin

Reaffirmation of Interest in New Regional Landfill

I refer to your email dated 26 March 2009 seeking Council's reaffirmation of its interest in the regional landfill proposed for Armidale. Council's withdrawal from NESAC in no way changes our ongoing interest in being involved in the EA consultation and the potential use of the new landfill.

Yours faithfully

IACK O'HARA GENERAL MANAGER

WHEN REPLYING PLEASE QUOTE WO/2009/00359 WHEN MAKING ENQUIRIES ASK FOR STEVE MCCOY

Appendix D

Site Selection Additional Data

Appendix D Site Selection Additional Data

	and a strategy of the second se	č. 4		
]	Elders L ACN 004 045 121	imi	ed	
	ELDERLIST		SYDNEY	DNNELL STREET (N.S.W. 2000 HONE (02) 2386666
a A	PROPERTY REPORT		Refere 5/11/ FOR SALE ARALUEN	ence 013042 Ros <i>É</i> 197
	Area	:	73 Hectares (180 Acres)	340 ^{- 16}
			73 Ha UNRESTRICTED	FREEHOLD
C	Location .	5	12 km north of ARMIDALE	· ·
	Services Available	:	240 volt power, STD teleph markets Armidale and Guyra	
	Schools	:	Primary at Armidale ¹⁰ Secondary at Armidale	- Bus available - Bus available
	ŝ.		The road to the property i A daily air service is ava	
	Description of Country	;	Undulating to gently rolli granite with some traprock creating a parklike appear area of the property has b	Selectively cleared ance. A considerable
	Rainfall	:	The average rainfall is 8	00 mm.
	Water	:	Watered by 6 dams, some ne	ω.
Ċ	Pasture Type and Fertilisation	:	Extensive pasture improvem 9cwt/acre super 1986/91.	ent since 1986.
	Estimated Carrying Capacity	:	Approx. 3 D.S.E. per acre.	
	Paddocks	:	No of paddocks 5 of which	5 are watered.
	Fencing	:	Boundary part netted, part boundary new. All internal	
	Main Dwelling	:	Delightfully renovated wea bedrooms, lounge, kitchen verandahs with bullnose ir attractive home.	dining. Extensive
	Improvements Shearing She Machinery Sh Grain Silo		2 stand electric - grinder Iron Not included in sale.	excluded.

Elders Limited

Sheep Yards Good Cattle Yards Good

Additional : Araluen is a well improved and presented property Details & with "nothing to spend". Situated in an ideal Comments location just a few minutes north of Armidale it is ideal for the person wanting the benefits of rural living running a handy number of sheep or cattle and yet within very easy commuting distance of Armidale

Outgoings : Council Rates : \$ 464

Price : \$280,000

For further information and inspection, please contact : ELDERS REAL ESTATE ARMIDALE OFFICE BUNDARRA ROAD ARMIDALE NSW 2350 TELEPHONE 067 727500

A/H : BS BREMNER

TELEPHONE 067 525871

All care has been taken in compiling these particulars from information supplied by the Vendor. The company acts as agent only for the vendor and does not accept responsibility for any errors, omissions or misdescriptions.

and a star of the second s Second second br>Second second			i Airde a i T	
Elder	Elders Limited	1	an o harna R	т. 2
רי זיבפי ז	CT.		4 O'CONNELL S SYDNEY N.S.W TELEPHONE (02	2000
ELDERLI PROPERT	Y REPORT	FOR SALE BELLBROOK	Reference 013 5/11/97	807 GAR

A ALAN PRICE

Water

Fertilisation

Area : 481 Hectares (1,188 Acres) 481 Ha UNRESTRICTED FREEHOLD : 23 km north west of ARMIDALE Location Services 240 volt power, STD telephone, mail 3 X weekly, : Armidale offers excellent schooling facilities, Available TAFE and University. Weekly stock sales and abattoir at Guyra. Schools . Primary at Armidale - Bus available Secondary at Armidale - Bus available The road to the property is a part sealed road. A daily air service is available. Description : Undulating to gentle rolling hill country rising of Country to plateau tops. Approx 40% basalt, balance good traprock soils. Lightly timbered with Stringybark, Red Gum and Yellow Box. A well sheltered property. Rainfall : The average rainfall is 800 mm.

GARAY LOWREY

Well watered by 2km frontage to Toms Gully plus . 16 dams. Pasture : Aerially seeded with White and sub clover, Type and Ryegrass and Cocksfoot. 11 cwt/ac of super over

Livestock Sheep - 1240 Merino wethers, 760 Merino ewes, 240 . Currently lambs & hoggets. Cattle - 45 cows & calves to 12 Carried months, 38 yearlings.

Estimated Has consistently been in the order of 3 D.S.E. Carrying per acre for a number of years. Capacity

Paddocks : No of paddocks 15 of which 15 are watered.

last 16 years.

Fencing Boundary netted, internal hingejoint or plain 2 wire. All fencing is generally of a very high standard.

	Elders Limit	ed	
	Main : Dwelling	Modern 4 bedroom, concrete block home. Large lounge/dining room, family room, study, excellent kitchen, 1.5 bathrooms. Double garage. An immaculate home set in large garden.	
¢	Improvements : Shearing Shed Machinery Shed Hay Shed Grain Silo Workshops Sheep Yards Cattle Yards Other Imp 1 Other Imp 2 Additional Details & Comments	Very large 3 stand electric. Cover for 1200. 4 bay with attached single quarters. Part of the machinery shed. 2 elevated silos Part of hayshed Adjoining woolshed. Good sown timber - all facilities. Excellent dog kennels (6), meat house and garden sheds. Bellbrook is a well presented property which has been successful managed and run by the present owners for the past 26 years. It is convenient to Armidale with its many educational, cultural and	
	Price :	sporting facilities. \$891,000	:
		her information and inspection, please contact : ELDERS REAL ESTATE ARMIDALE OFFICE BUNDARRA ROAD ARMIDALE NGW 2350 TELEPHONE 067 727500	
, T	A/H : BS BREMNER	TELEPHONE 067 525871	
()	All care has been t	aken in compiling these particulars from	

All care has been taken in compiling these particulars from information supplied by the Vendor. The company acts as agent only for the vendor and does not accept responsibility for any errors, omissions or misdescriptions.

	Q.,				
			a di Sana	· · ·	
					ಿ ಕ್ರಮ್ಮ ಮೊದಲಿಗಳು
			1 1		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
-	Elders Elders		nited	6 226 AC	*
	ELDERLIST		52	4 O'CONNELL SYDNEY N.S. TELEPHONE (Ø	W. 2000
	PROPERTY REPORT		FOR SALE BINDAREE	Reference 01 19/11/97	B943 A/C SUTTHERLAND HUGH - RICHARD
	Area	:	495 Hectares (1,223	Acres)	x 3
			495 Ha Freeho.	ld	
3	Location	:	31 km south of Armic § 16 km east of Uralla	dale and a	· 9
	Services Available	I	Saleyards, Power	15. e 2435	E exe
	Schools	:	Primary at Uralla Area at Uralla Secondary at Uralla	— B)	(s available us available us available
			The road to the prop A daily air service	perty is a sea is available.	aled road.
	Description of Country	•	Gently undulating so timbers. Cleared exc of the property can or farmed.	cept for shade	& shelter, 85%
	Rainfall	•	The average rainfall	is 800 mm.	
t,	Water	•	සි wells equipped wit pump below mill at t	h windmills, he house.	9 dams, electric
	Pasture Type and Fertilisation	1	Since 1985 6 to 7 hu cropping fertiliser.	ndred weight	of super and
	Crop and/or Cultivation	:	Black butt oats.		,
	Livestock Currently Carried	•	Merino sheep and agi	sted cattle	
	Estimated Carrying Capacity	:	3 DSE		
	Paddocks	:	No of paddocks 10 of	which 10 are	watered.
	Fencing	•	Fences generally in	good order.	

rit.

Main : Weatherboard & iron roof home with 3 bedrooms, Dwelling bathroom, 2 toilets, sitting room, wood heater, kitchen with electric stove.

신영화 영상품이

Improvements : Shearing Shed 2 stand with Buzacott motor Machinery Shed Attached to woolshed Hay Shed : Grain Silo 2 x 2000 bushel Sheep Yards Steel Cattle Yards Timber Other Imp 1 Detached garage & 2 vehicle sheds

Additional Details & Comments Comments Bindaree is located east of the township of Uralla in some of the best fine wool growing areas of New England. Conveniently accessed from both Armidale and Uralla - school bus at the gate. Bindaree is gently undulating with oat crops used as part of the renovation of pastures. Very easily managed Bindaree comes with an excellent reputation.

Outgoings : Council Rates : \$2916

Price : \$700,000

For further information and inspection, please contact : ELDERS REAL ESTATE WALCHA OFFICE 32W FITZROY STREET WALCHA NSW 2354 TELEPHONE 067 772011

A/H : F SPILSBURY

TELEPHONE

All care has been taken in compiling these particulars from information supplied by the Vendor. The company acts as agent only for the vendor and does not accept responsibility for any errors, omissions or misdescriptions.

4 O'CONNELL STREET SYDNEY N.S.W. 2000 TELEPHONE (02) 2386666

	ELDERLIST PROPERTY REPORT		Reference 019045
			3/ 3/98 FOR SALE GOOYONG
	Area	:	187 Hectares (462 Acres)
			187 Ha FREEHOLD
1	Location	•	20 km north east of ARMIDALE
	Services Available	:	Saleyards, University, Private and Public Schools.
	Schools	:	Primary at Armidale - Bus available Secondary at Armidale - Bus available
			The road to the property is a sealed road. A daily air service is available.
	Description of Country	•	Undulating trap soils. Predominantly stringybark timbers. Some gum and box.
	Rainfall	:	The average rainfall is 800 mm.
	Water	;	Single frontage to Gara River. Water to home supplied from River.
5	Dasture Type and Fertilisation	:	Native pastures.
	Livestock Currently Carried	:	60 head dry cattle.
	Estimated Carrying Capacity	:	80 head cattle.
	Paddocks	:	No of paddocks 4 of which 4 are watered.
	Fencing	:	BOUNDARY - Mixture of netting and hingejoint - good order. INTERNAL - Hingejoint.
	Main		Weatherboard inco woof (bodycore)

Elders Limited

ACN 004 045 121

Main : Weatherboard iron roof, 4 bedrooms, lounge, Dwelling dining room, kitchen breakfast room, electric O.P. hot water. Sunroom, bathroom, laundry. Established gardens, 2 ant bed tennis courts.

	Elders Limi	ted	
/	Other : Dwellings	Nil.	
	Improvements : Workshops Cattle Yards Other Imp 1 Other Imp 2	25 x 25 steel frame Steel, loading ramp Double garage, stee storage shed 25' x	
• ~ ~	Additional : Details & Comments	road. The Gara Rive generous surplus of large older style H plenty of space. Th are a delight with master bedroom. Two opportunity for ent trap country ideal running breeders fo	im from Armidale by sealed in is a great feature with water. The residence is a some with high ceilings and be gardens surrounding the home views of the river from the tennis courts provide the ertaining. Gooyong is clean for fine wool production or r beef production. Gooyong of tranquility and peace.
	Outgoings :	Council Rates	: \$1064
	Price :	\$460,000	
•	For furt	ner information and	inspection, please contact : ELDERS REAL ESTATE ARMIDALE OFFICE BUNDARRA ROAD ARMIDALE NSW 2350 TELEPHONE 067 727500
,1	9/H : F SPILSBURY	-	TELEPHONE 067 727500
	information supplied	i by the Vendor. The loes not accept resp	ese particulars from company acts as agent only onsibility for any errors,

omissions or misdescriptions.

	1			
-7	Ċ	7/	10	XA
	-	11		

Elders Limited

5

.

.

2

4 O'CONNELL STREET SYDNEY N.S.W. 2000 TELEPHONE (02) 2386666

Reference 018992

22/ 1/98

<u>,</u>,;;;

e vi e va M

FOR SALE JARRAH

RUGROS PAINER

a ship problem is a post of the first of

Area

85 Ha Torrens Title

25 km north of ARMIDALE and

85 Hectares (210 Acres)

16 km south of GUYRA

Saleyards, University.

Location

ELDERLIST

PROPERTY REPORT

Services Available

Schools

Water

Livestock

Currently Carried Primary at Guyra - Bus available Area at Guyra - Bus available Secondary at Armidale - Bus available

The road to the property is a part sealed road. A daily air service is available.

And Deep

Description : Undulating to hilly. All basalt soils. of Country Stringybark and Black Sally.

Rainfall : The average rainfall is 900 mm.

Permanent creeks and springs.

Pasture : Clovers, Ryes, Fescue, Rice Grass and Natives. Type and 3cmt in last 7 years with Molybdenum. Fertilisation

: 60 steers.

Estimated : 60 steers. Carrying

5

Capacity

Paddocks : No of paddocks 3 of which 3 are watered.

Fencing : Boundary fence is hingejoint and netting.

Improvements

Cattle Yards New steel - loading ramp.

Details & attractively presented - neat and tidy with Comments plenty of shade and shelter. Jarrah is ideal for the weekend farmer or to build a home and commute to Armidale. There are excellent views and homesites. Jarrah is particularly well located in a good rainfall area.

Price : \$210,000

For	further	information	and	inspection, please contact : ELDERS REAL ESTATE ARMIDALE OFFICE BUNDARRA ROAD ARMIDALE NSW 2350	
				NSW 2350	
				TELEPHONE 067 727500	

TELEPHONE 067 727500

;

A/H : F SPILSBURY

All care has been taken in compiling these particulars from information supplied by the Vendor. The company acts as agent only for the vendor and does not accept responsibility for any errors,

omissions or misdescriptions.

4 O'CONNELL STREET SYDNEY N.S.W. 2000 TELEPHONE (02) 2386666

.....

Reference Ø17757 19/ 3/98 *

FOR SALE "Parkdale"

ર પ્રો

	Area	:	219 Hectares (541 Acres)
			219 Ha Unrestricted Freehold
	Location	•	32 km north of Armidale and 12 km south of Guyra
	Services Available		Rural Power, STD telephone, Saleyards at Guyra and Armidale. Airport at Armidale, services to Sydney and Brisbane.
	Schools	:	Primary at B.Mount/Guyra - Bus available Secondary at Guyra/Armidale - Bus available -
			The road to the property is a sealed road. A daily air service is available.
	Description of Country		Level to gently undulating, a litle hillier in places. All basalt soils, mostly red, a little black. Timbered with Black Sally, White Gum and Peppermint. Selectively cleared leaving a good coverage of shade and shelter.
	Rainfall	:	The average rainfall is 940 mm.
(Water	L	Extremely well watered by Boorolong Creek plus tributaries, 10 dams, mostly spring fed.
	Pasture Type and Fertilisation	÷	Mostly native grasses with a few small areas of improved species. Only limited super
	Livestock Currently Carried	:	Agisted cattle with some sheep.
	Estimated Carrying Capacity	:	1600 DSE or 3DSE per acre.
	Paddocks	:	No of paddocks 12 of which 12 are watered.
	Fencing	£	Boundary hingejoint and plain wire, internal the same. All fencing in very fair to good condition

ELDERLIST PROPERTY REPORT

Section 3.

Elders Limited ACN 004 045 121

مر برا ا^ر م

ŝ

ACN 004	e rs Limit 245 121	
	10	*
Main Dwelling	•	Brick veneer and tile home built 1976. Three bedrooms, lounge with wood heater, family room, kitchen/dining, electric store. Double garage.
Other Dwellings	:	Older style 3 bedroom home = currently rented.
Improvements		* 350
Shearing	y Shed	2 stand electric timber and iron. As new steel 2 bay. Old timber and iron.
Sheep Ya Cattle Y	rds	At woolshed 2 sets, timber construction, good order
Additional Details & Jomments	:	"Parkdale" is located in the popular Black Mountain area ideal for commuting to Armidale and close to Guyra. "Parkdale" would respond dramatically to a superphosphate and pasture programme that would make the property an excellent fattening property for prime lamb or vealer or steer fattening.
Outgoings		Council Rates : \$ 800
Price	:	\$400,000
For	r furth	ner information and inspection, please contact : ELDERS REAL ESTATE ARMIDALE OFFICE BUNDARRA ROAD
		ARMIDALE NSW 2350
		TELEPHONE 067 727500

All care has been taken in compiling these particulars from information supplied by the Vendor. The company acts as agent only for the vendor and does not accept responsibility for any errors, omissions or misdescriptions.

Elders Limited ACN 004 045 121

> 4 O'CONNELL STREET SYDNEY N.S.W. 2000 TELEPHONE (02) 2386666

Reference 016948 5/11/97

RIGHARD CROFT

FOR SALE "Pinaroo"

Area

¥ 478 Hectares (1,181 Acres)

478 Ha Crown Lease

28 km north west of Armidale Ξ.

Services Available

Schools

Location

ELDERLIST

PROPERTY REPORT

S.t.d. telephone. Rural power available, : approximately \$6,000 to connect. School bus approx. 6 kms away. Saleyards at Armidale.

Primary at Armidale - Bus available - Bus available Secondary at Armidale

> The road to the property is a part sealed road. A daily air service is available.

Description Plateau tops to mostly very hilly, to steep country. Timbered with stringybark, gum and box. of Country Most of the useful country has been cleared with some requiring regrowth treatment. Some 250/300 acres is heavily timbered. Around 150 acres would be arable, some of which has been farmed.

Rainfall 1 The average rainfall is 1060 mm.

> 13 dams, 2 spring-fed creeks. ÷ .

Native grasses and clovers. A lot of the open Pasture : country has been fairly regularly supered in Type and Fertilisation recent years.

Estimated 2/2,500 D.S.E. :

Carrying Capacity

Water

Paddocks No of paddocks 13 of which 13 are watered. :

Boundary fencing is netted, in fair to good Fencing . condition, some new. Internal fencing is plain and hingejoint in fair to good condition.

Main Old 3 bedroom cottage, which has been partially : Dwelling renovated.

Improvements 3-stand. Solid old shed. Shearing Shed

Elders Limited

Sheep Yards Cattle Yards	
Additional : Details & Comments	"Pinaroo" is a semi-developed property with good opportunity to pasture improve the open country, which would respond well, with its high rainfall.
Price :	\$250,000 \$ 290,000
Terms :	10% deposit, balance on completion
Possession :	On completion
For furt	her information and inspection, please contact : ELDERS REAL ESTATE ARMIDALE OFFICE BUNDARRA ROAD ARMIDALE NSW 2350 TELEPHONE 067 727500

1:2

A/H : BS BREMNER

Č,

TELEPHONE 067 525871

All care has been taken in compiling these particulars from information supplied by the Vendor. The company acts as agent only for the vendor and does not accept responsibility for any errors, omissions or misdescriptions.

			aria. Filipera					
		·	ing nation of the set	14 B. -	2			
].]	Elders L ACN 004 045 121	× _imit	ed	•	2	£ 4 0 0 7		·
	ELDERLIST					LL STREET .S.W. 2000 (02) 2386		8
	PROPERTY REPORT		FOR SALE "Prosper"		Reference 5/11/97	017413 Alc Faeo	Hiscox	
	Area	1	135 Hectares	(333 A	cres)			
			122 Ha 13 Ha	Freeho Crown _g l				
(Location	:	13 km north	east of	Armidale			
	Services Available	ı	Rural power, Armidale	STD te	lephone. W	eekly fat	sales at	5
	Schools	;	Primary at Secondary at			- Bus avai - Bus avai		
			The road to A daily air				ad.	
	Description of Country	I	Ranging from flats throug mix of grani basalt. Arou timbered are	h to und te and t nd 40% a	dula <mark>ting t</mark> trap soils arable. We	o hillier , with a l ll cleared	country. ittle	. A
	Rainfall	I	The average	rainfal	l is 800	៣៣.		
Ċ	Water	i	Give & take Creek, sprin Dam pipeline property and	g-fed F to Arm	ern Gully, idale pass	4 dams. T	he Malpa	35
	Pasture Type and Fertilisation	:	Native grass the hills, w				upered (סי
	Crop and/or Cultivation	:	Periodic cro grown. The f					
	Estimated Carrying Capacity	:	500 ewes and	100 wet	thers.			
	Paddocks	:	No of paddoc	ks 8 of	which 8 a	re watered	•	
	Fencing	:	Boundary par excellent co and plain wi	ndition	. Internal			

	Elders Lin ACN 004 045 121	mit	ed			
	Main Dwelling	ł	Solid old weatherbo verandahs on 3 side weatherboard part h	s. 5 bedrooms.	Much of the	
		ed	2- stand electric Very old slab build Adjoining woolshed Small old timber se	*	ng ramp.	
	Additional Details & Comments	:	"Prosper" is a choi proximity to Armida		rty with close	
r^{2}	Outgoings	:	Council Rates	: \$1400		ķ
Ŀ	Price	:	\$450,000	* .	12	1
	Terms	:	10% deposit, balanc	e on completio	חו	
	Possession	:	On completion		10 10	
	For fur	rtl	er information and	inspection, pl ELDERS REAL E ARMIDALE OFFI BUNDARRA ROAL ARMIDALE NSW 2350 TELEPHONE 067	ESTATE ICE)	2) 27 21
	A/H : BE BREMNER			TELEPHONE 067	525871	

All care has been taken in compiling these particulars from information supplied by the Vendor. The company acts as agent only for the vendor and does not accept responsibility for any errors, omissions or misdescriptions.

.

	4					(,
		ه. نو مدرئ ز:	alle gel transitione and Alle gel transitione and			
	Elders L ACN 004 045 121	imite	ed.			
				4 O'CONNELL SYDNEY N.S TELEPHONE (.w. 2000	*
	ELDERLIST PROPERTY REPORT		FOR SALE "Spring Creek"	Reference Ø 5/11/97	16791 Mc EUAN FLEMME	
	Area	:	166 Hectares (410 Ad	cres)		
			166 Ha Freeho	ld		
C.	Location	:	40 km west of Armida 33 km north west of			
	Services Available	:	Rural power, STD te Armidale.	lephone. Sal	eyards at 👘	
	Schools	:	Primary at Armida Secondary at Armida		Bus available Bus available	×
			The road to the prop A daily air service			
	Description of Country		Mostly gently undula side of Brown's Moun with gum, apple, ye Mostly cleared with Some country has be available.	ntain. Grani llow box and the balance	te soils. Timbered S stringybark. S being semi open.	
	Rainfall	:	The average rainfal	l is 750 mm	۹.	
Ç	Water	:	4 dams, spring-fed.			
	Pasture Type and Fertilisation	•	Native grasses.			
	Estimated Carrying Capacity	:	Maximum 1.5 DSE in	a good seasc	on.	
	Paddocks	:	No of paddocks 5 of	which 5 are	e watered.	
	Fencing		Boundary is part ne Internal fencing is netting, only in fa	<pre>mostly pla:</pre>	in wire, some	
	Main Dwelling		Stylish 3 bedroom w timber kitchen and study, 2 verandahs,	family room.	. Dining room,	

	Tolores -		
, del	Elders L ACN 004 045 121	ITIMEO	5
	Additional Details & Comments	which could be	is a pretty hobby farm block, substantially increased in ity, if required
	Outgoings	: Council Rates	: \$ 527
	Price	: \$240,000	
	ē	1947	and inspection, please contact : ELDERS REAL ESTATE ARMIDALE OFFICE BUNDARRA ROAD ARMIDALE NSW 2350 . TELEPHONE 067 727500
	A/H : BS BREMNER		TELEPHONE 067 525871

All care has been taken in compiling these particulars from information supplied by the Vendor. The company acts as agent only for the vendor and does not accept responsibility for any errors, omissions or misdescriptions.

, ÷ * ³ e da ser e de la composición de la comp a a su sina a ass 1 **Elders** Limited ACN 004 045 121 4 D'CONNELL STREET SYDNEY N.S.W. 2000 TELEPHONE (02) 2386666 ELDERLIST Reference 018965 PROPERTY REPORT 2/12/97 FOR SALE BOB - JACQI McCARTHY WARRAGUL : 403 Hectares (995 Acres) Area 403 Ha Torrens Title 👔 12 km north of Armidale Location Town water, close to Armidale Saleyards. Services Available Schools Armidale 😁 Bus available 🔹 Primary at Armidale — Bus available Area at 🛲 Bus avaílable Secondary at Armidale The road to the property is a sealed road. A daily air service is available. Half of the property is alluvial flats, with the Description of Country balance being fine granite. Good belts of shade timber. The timbers on the property are Box, Stingybark, Peppermint, and Red Gum. : The average rainfall is 800 mm. Rainfall Filbuster Creek and Puddledock Creek - permanent. Water Unly one paddock not watered by creeks - also 3 dams. Reticulated water to yards and sheds . Half sown with improved species - natural Pasture grasses. Fertiliser used over the last 11 years. Type and Fertilisation Half of total area could be cropped with lucerne, Crop and/or Cultivation corn, summer crops - oats. 120 cows and 2000 ewes and wethers. Livestock Currently. Carried Estimated 3000 DSE Carrying Capacity : No of paddocks 14 of which 14 are watered. Paddocks Boundary mostly netted - some ringlock. Internal Fencing . fences are all ringlock.

• ;

Laderas Elde	rs Limit 45 121	ed
Other Dwellings	E	Single bedroom cottage - all services.
	y Shed lo s rds	Steel shed - 2 stand steel - 4 sides enclosed steel 5,000 bales - raised grating floor 25 tonne Part of shed Steel Steel - loading ramp and crush
Additional ([Details & "Comments	:	Warragul Park is unique being on a sealed road close to Armidale. Town water connected. The property has a balance of 182 hectares of rich creek flats rising to higher soft granite country. Well sheltered, fenced into 14 paddocks. Extremely versatile country being able to produce crops such as lucerne, summer and winter crops. Ideal for cattle breeding and fallowing or fine wool productions.
Outgoings	:	Council Rates : \$2540
Price	:	\$925,000
Terms	:	Cash on Completion
i+ 0 i	r furti	ner information and inspection, please contact : ELDERS REAL ESTATE ARMIDALE OFFICE BUNDARRA ROAD ARMIDALE NSW 2350 TELEPHONE 067 727500
A/H:F SPIL		

All care has been taken in compiling these particulars from information supplied by the Vendor. The company acts as agent only for the vendor and does not accept responsibility for any errors, omissions or misdescriptions.

i

FIRST NATIONAL R	Real Estate, Auctioneers Stock & Station, Business FAL ESTATE Property Management
	184 The Mall, Beardy Street Armidale 2350 Correspondence: PO Box 246, Armidale 2350 Facsimile: (02) 6772 9402 Telephone: (02) 6772 1277
22nd April, 1998	DATE REC'D 2.3 APR 1998 FILE 1'9. 30/1068 RETEND TO MP. 20.85
Mark Painter Manager - Waste Services Armidale City Council 135 Rusden Street ARMIDALE NSW 2350	ADDITION NRM ADDITION ADDITION ADDITION ADDITION ADDITION ADDITION ADDITION ADDITION ADDITIONAL ADDITION ADDITIONAL ADDITION ADDITICAL
Dear Mark,	COPIES MADE

Hutchinson Sewell & Assoc. PtyLtd

A.C.N. 000 543 868

Further to our conversation yesterday, I unfortunately have only been able to find one property that suits your criteria.

This property is located on the Eastern side of Armidale near Metz. It is approximately 450 acres with limited neighbours (3 or 4), no creeks and perhaps the best thing is that the road that adjoins this property is constantly used by Boral trucks.

Should you wish to discuss it with me further, give me a call.

H.S.A.

Regards,

oll.

STEVE SEWELL

Hutchinson Sewell & Assoc. PtyLtd A.C.N. 000 543 868 Real Estate, Auctioneers Stock & Station, Business Property Management

184 The Mall, Beardy Street Armidale 2350 *Correspondence:* PO Box 246, Armidale 2350 Facsimile: (02) 6772 9402 **Telephone: (02) 6772 12**77

22nd April, 1998

Mark Painter Manager - Waste Services Armidale City Council 135 Rusden Street ARMIDALE NSW 2350

Dear Mark,

Further to our conversation yesterday, I unfortunately have only been able to find one property that suits your criteria.

This property is located on the Eastern side of Armidale near Metz. It is approximately 450 acres with limited neighbours (3 or 4), no creeks and perhaps the best thing is that the road that adjoins this property is constantly used by Boral trucks.

Should you wish to discuss it with me further, give me a call.

Regards,

cer.

STEVE SEWELL

Derry Cinfr Shorraloy MSF 2003 GAMA MD AMM. 2350.

30-APR-98 THU 16:26	DALGETY ARNIDALE	FAX NO. 067727082	P. 01
Westarmers Dalgety	Facs	imile	Wesfarmers Dalgety
To: MARK	PAINTER	Acc.	
Fax No.: 02-67	72 9275 No. Pag	es (including cover sbeet): 6 Date:	30/4/98
From: <u>DER</u> Fax No.: <u>02-67</u>	24 CRISP Location 72 7082 Phone N	n: <u>Armidale</u> No.: 02 6772 8188	
Subject:	PROPARTY DI	RTAILS	
• <i>(</i>].	HANNOFORD	S paras	
2	PART TIURNO	N 277AC V 396AC	
(3)	TIURNTON 2	77 ACRINS SURVINYINS WITH EAS RIGHT	BLOCK EMENT & OPWMY

۱

Pur 30/4 fr

Wesfarmers Dalgety Limited, ACN 008 743 217.

Please call us if you do not receive every page. Also please contact us immediately if this facsimile is not addressed to your company. It may contain confidential information for the use of the addressee only and if you pass on this facsimile or its contents to anyone else, the intended addressee may have a claim against you.

from the

GENERAL MANAGER

То:	Director of Building and Environmental	Services	
Subject:	Regional Waste Facility		
Date:	10 June 1998	File No:	S-1/7

On 9 June 1998, Richard Croft rang me. He owns a property 28 kilometres from Armidale in the Mt Duval area in Dumaresq Shire. The property is owned by B R Randle, R Croft and C Croft. He is interested in discussing with Council a proposal that all or part of this property be leased or purchased for a Joint Waste Facility.

Would you please arrange to identify this property and inspect it to see if it is suitable for further discussions with Mr Croft.

R G Fulcher

18/06/1998 14:25

+61-67-785073

√cc: Mr C Barrass

Would you please contact Dumaresq Shire Council and obtain the details of this property so that it can be located on a topographical map.

Rivish Puval Lots 92 221 OF 755819 forish Evmanth Lot 125 OF 755823 Area: 474.7 Hechres Area: Lots are actually old portion numbers. 30-APR-98 THU 16:27

Wesfarmers
Dalgety
FOR SALE
FARM
HANNAFORD

LONG SWAMP ROAD

ARNIDALE

Date : 14/08/97 Reference: 004315 ARMIDALE

<u>Area</u>

: 103.0000Ha (254.5182Ac)

Location : The property is situated approximately 14kms South East of Armidale on the Long Swamp Road.

Zoning : RURAL

Services : Rural Power and Phone available. 1.3Km to school bus serving Armidale schools. Hail 3 times per week. Domestic air services at Armidale. Saleyards at Armidale. Abattoirs at Guyra, Inverell and Tamworth.

<u>Country</u> : Gently undulating, selectively cleared leaving good shade and shelter. Hostly Stringybark timber. Improved pastures of Clovers and Rye with a balance of native grasses.

Soil Types . Fine Granite and loamy trap soil.

Fencing : Boundary all netting in good condition. Subdivided into 3 main paddocks and 3 holding paddocks, fencing in good condition.

Water : Watered by one large dam and numerous small dams plus springs.

Rainfall . The average rainfall is 800 mm.

Improvements : No home. One set of timber sheep yards in fair condition.

Carrying . Estimated 750 DSE

12

Price \$160,000

Capacity

<u>Remarks</u> A property situated close to Armidale City facilities and well suited to sheep or cattle

Wesfarmers Dalgety Limited, A.C.N. 008 743 217

82 6 8 ⁴ 82

P. 02

and the set of the set

s e

• • • • • • • • • • •

enterprises.

For more information or inspection, please contact,

		DERI	RY	CRIS	P
<u>Office</u> <u>Fax</u>	1 1	067 067		8188 7082	
<u>A/H</u> Hobile	1 1	067 015		3782 3419	

OR

Contact the listing branch, WESFARMERS DALGETY 162 MILLER ST ARMIDALE NS 2350 067 728188

The Vendors and/or their Agents do not give any warranty as to errors or omissions, if any in these particulars which they believe to be accurate when compiled. Prospective purchasers should satisfy themselves by inspection or otherwise as to the accuracy of the particulars.

Wesfarmers Dalgety Limited, A.C.N. 008 743 217

.

Appendix E

Site Selection Advertisements

Appendix E Site Selection Advertisements

AT ALSO METATION TO LET THE THE Locked Bag Armidale NSW 2350 Ph: 02 6772 2418 Fax: 02 6772 5697 **Enrolment enquiries:** 1 800 625 654 -Email: plcarm@northnet.com.au-

Kilda Holei at 4pm Sunday. Entertainment will continue all weekend. • The Express in conjunction with the Armidale Jazz Club has three double

Wicklow Hr To win, py be one of

the first three callers through to The Express Office after passes to jazz festival events 10am today on 6772-9944.

and Wang Dang Doodle and

Paul Andrews Trio at the

The group completely redefines the possibilities of acoustic music and the limits of an all female trio.

The group has been performing for morin places as diverse as Melbourne pubs, : and the Edinburgh Festival.

· Blue House will appear at the UNE Bistro from 8.30pm Wednesday.

Hotel, 9pm-midnight 1 - 1 - 1 - Linedancing with · Soft Option, Ex-Services ; Rockers; Uralla Club, 8pm* Mardi Gras . Karaoke, Armidale Bo-, . Harley's Nighter wling Club, 7pm* England Hotel, 11pm . Honky Tonk linedancers, . Nightclub, Planet Drummond School Hail, 9pm and the second sec

intensive

in the m

By UI

Profes.

NEW

 \mathcal{O}

We :

Armidale City Council

PURCHASE OF MOTOR VEHICLES Council invites Ouotations for:

Algae In Malpas Dam

WAJERWISE Malpas Dam currently has no detectable blue-green algae. The water storage is continuing to be monitored twice weekly. Only a few Golden-Brown algae have been recorded on Malpas Dam in the past week. Algae activity at present is very low. Algae will be monitored very closely in the coming weeks, and significant changes reported as we move towards the summer season. Green algae: None have been recorded. Golden-brown algae: A few have been recorded. Other Storages the state of the second second Gara and Puddledock Dams are both clear of detectable blue-green algae. Water Storage All dams remain near full or 100% capacity, 20.5mm of rain was recorded in the catchment this week and Malpas Dam is at 100% capacity. Water Consumption

ARMIDALE BEING WATERWISE

This week the Community used 51 ML of water, which was 9ML below the target of 65ML set last week. 47mm of rain was recorded in the City during the week.

- Total water consumption for the same week last year was 50ML.
- · Average water consumption for the same week during the last 3 years was
- 61ML
- The target for the coming week is 60ML.

Recreational Use of Dumaresg Dam

Durnaresq Dam remains open for recreational purposes.

BUILDING THE FUTURE FORUM

The Mayors of Armidale and Dumaresq wish to remind those organisations mentioned last week in relation to the Building the Future Forum, to return their submissions to the address below by Friday, 17 October 1997. This is to ensure your place at this important forum.

For further details, please contact Mrs Cynthia Mulholland on 6770 3522.

CLOSURE OF PEDESTRIAN LANE ADJACENT TO TATTERSALL'S HOTEL

The pedestrian lane between the Common wealth Bank and the Tattersall's Hotel will be closed from 1.00pm Saturday, 11 October 1997 and all day Sunday, 12 October. 1997, to allow for erection of a protective hearding in chanection with the re-roofing of the Hotel. The fane will also be closed from 1.00pm Saturday, 18 October 1997 and 1 1. C. I. D. C. I. 1007 . V. P. J.

Purchase: No of Vehicles Vehicle Description ACC Reference No 1 Three/Four Tonne Cab/Chassis 85/1221 P de l 4x2 One Tonne Cab/Chassis 85/1217 Dual Cab Three Tonne Tip Truck 85/1220 4x4 One Tonne Table Top 85/1216 Outfront Mower 85/1222 11 4x2 One Tonne Table Top 85/1218

SALE OF MOTOR VEHICLES

Sale Only (Armidale City Council Reference Number 85/1215)

	Vehic	le Details	Plant No	Registration N
	1987	Mitsubishi FM515F8 tonne tipper	1215	OLY 271
	1995	Ford Courier Cab/Chassis	1275	TUH-877 ·
	1990	Mazda 3 tonne tipper	1520	RGO-220
	1995	Mazda B2600 1 tonne table top	4052	TUH-877
	1988	Case International 385 tractor	1507	OZD-254
S	1995	Ford Falcon Utility	1087	TUH-071

Specification and Quotation Forms may be obtained by contacting Margaret Schumacher on 6770 3556. Please quote Armidale City Council Reference Number.

Quotations must be placed in the Tender Box at Council's Civic Administration Building by 2.30pm Wednesday, 29 October 1997.

MANAGEMENT PLAN AMENDMENTS

At its meeting on Monday, 22 September 1997, Council resolved to place on public exhibition, the Draft Amendments to the 1997/2000 Management Plan. The Amendments relate to proposed fees at the Aquatic Centre, and amendments to Home Building Insurance proposals, and will be on public display in the foyer of the Civic Administration Building until Monday, 10 November 1997. Submissions can be made in writing to the General Manager at the address below. If no submissions are received, the amendments will be adopted.

ARMIDALE BIKE PLAN - COMMUNITY SURVEY

If you would like to have your say on the future planning for the provision of cycling facilities in Annidale, now is your chance. The survey will provide valuable information in the development of the Armidale Bike Plan.

If you would like to assist by completing a survey, forms are available at the front counter of the Civic Administration Building in Rusden Street. Alternatively, contact

NOTICE OF DRAFT AMENDMENT TO POLICY PE34 POLICY FOR MALL MARKET OPERATORS MALL MARKETS OPERATIONS GUIDELINES

The Operations Guidelines have been in operation since 27 April 1994, and following a request from the Market Operators, draft amendments were prepared and have been approved by Police Citizens Youth Club (PCYC) and have been presented to Council's CBD Committee. As a consequence, the draft amendments have been included in the Guidelines and the document is now placed on public exhibition for one month with closure on Monday, 10 November 1997 at 10.00am.

Interested members of the public are invited to peruse the document on display in the foyer of the Civic Administration Building, and make any submissions in writing to the undersigned. Should you have any further enquiries please contact Mr Bill Fisher on 6770 3570. The last state and a substate

REGIONAL LANDFILL ESTABLISHMENT

Armidale, Dumaresq and Uralla Councils are still working closely together to find a new regional tip site. The Mayors of the three Councils have called for a report from officers by the end of November, which is to identify a preferred site.

Any landowners who wish their land to be considered can contact officers of any one of the three Councils.

A Preliminary Landfill Siting Study has also been prepared, and people should make themselves aware of its recommendations. It indicates the types of issues involved, and can assist people in determining if their land is worthy of consideration. More information is available from Peter Ainsworth on 6770 3588.

17-16年後年時時間時間的時間

ENVIRONMENTAL MANAGEMENT PLAN

Armidale City Council's Draft Environmental Management Plan has been on public exhibition for two months, ending Friday 3 October 1997. The Plan addresses issues such as urban diversity, energy conservation, pollution control, waste management, biodiversity and transport, and the second seco

The Plan is an important strategic initiative for the City, however very minimal comment has been received from our Community. Residents are urged to become aware of the Draft Environmental Management Plans recommendations and forward comments to Council.

Comments will now be received by Council up until Friday 24 October, 1997. More information is available by contacting Peter Ainsworth on 6770 3588. the 👘 🖓 🖓 and the state of the second W D Perry A midala City Council

Armidale City Council

ARMIDALE BEING WATERWISE

Algae in Malpas Dam

Malpas Dam currently has no detectable blue-green algae. The water storage is continuing to be monitored twice weekly. Only a few Golden-Brown algae have been recorded on Malpas Dam in

the past week. Algae activity at present is very low. Algae will be monitored very closely in the coming weeks, and significant changes reported as water temperatures are beginning to rise.

Green algae: None have been recorded.

Golden-brown algae: A few have been recorded.

Other Storages

Gara and Puddledock Dams are both clear of detectable blue-green algae,

Water Storage

All dams remain near full or 100% capacity, 14mm of rain was recorded in the catchment this week and Malpas Dam is at 100% capacity.

Water Consumption

This week the Community used 63ML of water, which was 3ML above the target of 60ML set last week. 9mm of rain was recorded in the City during the week.

- Total water consumption for the same week last year was 54ML.
- Average water consumption for the same week during the last 3 years was 78ML.
- The target for the coming week is 65ML.

Recreational Use of Dumaresq Dam

Dumaresq Dam remains open for recreational purposes.

CALENDAR OF EVENTS - The Week Ahead

-2 Nov Packsaddle Fundraiser Selling Exhibition - NERAM. Contact 6772 5255.

- 25 Strathlea Nursing Home Fete 11am. Contact Lyn Mitchell 6772 3627.
- 25 Race Meeting Armidale. Contact John Cannon 6772 9355.
- 25-26 Lismore Christadelphians Bible Addresses and Meeting Armidale Town Hall. 25/10 - 3pm - 6pm; 26/10 - 9.30am - 4pm.
- 25-26 PLC 110 Year Anniversary Reunion. Contact Mrs J Sholl 6772 2418.
- 26 Armidale Symphony Orchestra Concert Lazenby Hall. Contact Dr Bruce Menzies, 145 Faulkner St.
- 26 Markets in the Mall. Contact PCYC 6772 1023.
- 30 Armidale & District Cancer Action Group Luncheon and Guest Speakers. Ex-Services Club, 12.30pm. Contact Poh Woodland 6772 7025.

FREE INTERNET ACCESS!

The Town Library is offering free access to the Internet for members of the community. For information and booking times, please contact the Library on 6772 4711.

VAJERWISE

ARMIDALE BIKE PLAN - COMMUNITY SURVEY

If you would like to have your say on the future planning for the provision of cycling facilities in Armidale, now is your chance. The survey will provide valuable information in the development of the Armidale Bike Plan.

If you would like to assist by completing a survey, forms are available at the front counter of the Civic Administration Building in Rusden Street. Alternatively, contact Mr Michael King on 67703545 and he will forward a copy, or copies to you. Surveys will be received up until 5.00pm Friday, 31 October 1997.

REGIONAL LANDFILL ESTABLISHMENT

Armidale, Dumaresq and Uralla Councils are still working closely together to find a new regional tip site. The Mayors of the three Councils have called for a report from officers by the end of November which is to identify a preferred site.

Any landowners who wish their land to be considered can contact officers of any one of the three Councils.

A Preliminary Landfill Siting Study has also been prepared, and people should make themselves aware of its recommendations. It indicates the types of issues involved, and can assist people in determining if their land is worthy of consideration. More information is available from Peter Ainsworth on 6770 3588.

BUILDING THE FUTURE FORUM

The Building the Future Forum will be held at the Armidale Town Hall on Saturday, 29 November 1997, commencing at 2.00pm. Mr Ian Kiernan, lone around the world yachtsman, 1994 Australian of the Year and motivator behind the Clean Up Australia campaign, will be Guest Speaker at the Forum.

For further details on the Building the Future Forum, please contact Mrs Cynthia Mulholland on 6770 3522.

NOTICE OF DRAFT AMENDMENT TO POLICY PE34 POLICY FOR MALL MARKET OPERATORS MALL MARKETS OPERATIONS GUIDELINES

The Operations Guidelines have been in operation since 27 April 1994, and following a request from the Market Operators, Draft Amendments were prepared and have been approved by Police Citizens Youth Club (PCYC) and have been presented to Council's CBD Committee. As a consequence, the Draft Amendments have been included in the Guidelines and the document is now placed on public exhibition for one month with closure on Monday, 10 November 1997 at 10.00am.

Interested members of the public are invited to peruse the document on display in the foyer of the Civic Administration Building, and make any submissions in writing to the undersigned.

Should you have any further enquiries please contact Mr Bill Fisher on 6770 3570.

SPONSORSHIP OPPORTUNITY 1998 NEW ENGLAND HERITAGE AND URBAN DESIGN AWARDS

In October 1998, Armidale City Council will once again be hosting the New England Heritage and Urban Design Awards. Award nominations will be sought in June 1998 and the Awards will be presented at a special presentation dinner.

Council is offering sponsorship opportunities for interested companies and individuals to be associated with these prestigious Awards and their promotion.

Sponsorship of these Awards will provide your organisation with an excellent opportunity to raise its profile in the New England region, with extensive promotion set to commence in early 1998.

We are seeking Expressions of Interest for Sponsorship of these Awards. If you have any queries regarding sponsorship, please contact Mr Chris Berry on 6770 3569 or Ms Debra Lane on 6770 3574. Expressions of Interest may be sent to the address below.

ARMIDALE CITY RECYCLING SERVICE

Materials should be placed at the kerbside on the same day as your household garbage collection, and please ensure that recyclables are placed in separate containers for the following two groups of materials:

- Paper and Cardboard, or
- · Glass, aluminium, steel cans, plastic milk bottles and PET.

Materials should be presented in the approved recyclable collection container, or a similar container which is solid, rigid, not too heavy and has external handles.

CBD COMMITTEE - COMMUNITY REPRESENTATIVES

The role of the CBD Committee is to advise Armidale City Council on planning and related issues in the Central Business District, and to provide a "co-ordination" forum for discussion and community input on CBD matters.

The Committee meets monthly in the Civic Administration Building.

Applications in writing are invited for Community membership of the above Committee until September 1999. Interested persons should contact Ms Debra Lane on 6770 3574 in the first instance to obtain a copy of the Terms of Reference.

Applications close on Friday, 31 October 1997, at the address below.

General Manager
Telephone: 6770 3600
Facsimile: 6772 9275

FOR ACC NEWS - 2/4/98 AND 9/4/98

REGIONAL LANDFILL ESTABLISHMENT

Armidale, Dumaresq and Uralla Councils are still working closely together to find a new regional tip site. Previous attempts to locate a suitable site have been unsuccessful, as available land which has been investigated has proven unsuitable.

Any landowners who wish their land to be considered can contact officers of any of the three Councils.

A Preliminary Landfill Siting Study has been prepared, and interested people should make themselves aware of its recommendations. It indicates the types of issues involved, and can assist people in determining if their land is worthy of consideration.

More information is available from Mark Painter on 6770 3571.

o:\word\health\waste\newtip\1998\accn2503.doc

Timber industry welcomes new

TENNING Timbers (Aust) P/L has bill through parliament. TENNING Timbers (Aust) P/L has bill through parliament. This heat hough the Parliament. This heat islation delivers ecologically transactions of new technology and the creation of the forest Policy statement and the NSW forest Policy statement and the NSW forest Policy which is a new technology and the creation of new jobs, is aid general manager (Phil/Sly the is a tribute to both the Carl forests, played an integral part in getting the the state of the proversities of the state of the state of the state of the state of the forests, played an integral part in getting the Endet of the state of the state of the FROM PAGE 1 together.

FROM PAGE

FROM PAGE I together. They all spoke of needing to do see thing before the reunion is serving to the said they all spoke of needing to do serving a bit (location is wanted. Is ran away when it wanted is a bit (location is wanted in 15 to try indi) find my parents but T kept getting and hey'd take me. They are the said "Armidale has good my parents but T kept getting family is up here by the said they are
need more information about the importance of har will, according to Bill Darwen, the Public Trustee of 1 Almost 3,500 telephone calls were received o 1800 number sect up specifically for the Good Will campaign which a simed ; to mise' awareness o importance of having in professionally drafted will. State Mr. Darweng said jubile it is particularly imp to make sorkreview as will good marriage or divory when entering into a de facto or same sex relationship. Ticket to Tide and enjoy THE NEW. look. State. Government internet portal Ticket to tide and enjoy -THE NEW look. State Government internet portal easy access to over. 1100 links to information and see making it one of Australia's most useful web sites. Information Technology Minister Kim Yeadon.¹ - "ABS figures" show that 1.245,000 householk Australia had access to the internet from.home. The Government is electronically delivering the services tha large community wants at www.naw.gov.au, " Mr Ye said. "Using the NSW Government's web site you can our your Countylink train travel, consider holiday destin and accommodation, check out the 1999 Sydney Fe program and book, tickets, and wonder what's on a Sydney Opera House and then book on impulse, all w leaving your home."

New tourism awards

INCW LOUITISIN AWAITOS THE Big Sky Vcountry Regional Tourism Organiss will host its inauguird Awards for Excellence will highlight the Regional/Awards for Excellence will highlight showcase the best-tourism product the region has to and celebrate the region's, rich and vibrant tourism indu-st. Operators interested: in participating in the reg awards; are invited ho, attend the special 'inform seminars, being, held in Armidale and Tamworth December 15. db

10 6 U Live and LOCAI Sunday turn on FM 92.1 Sunday. Country 9am - 12 noon

J Ky Fingers to the value of \$50, ture frame Ph; 6772 6411 EXPRESS 30/11/49 Hair Service hair care products by Delorenzo Valued at \$50m Ph: 6772 9833 basket of Ros rtoiletries by Trelivings' re Valued at \$50 Ph: 6772-6787 Bequilie, del -44

