

The Glades Estate Lots 1 & 2 DP 725785 Pacific Highway, Moonee

Environmental Assessment

for Rothwell Boys Pty Ltd

November 2007

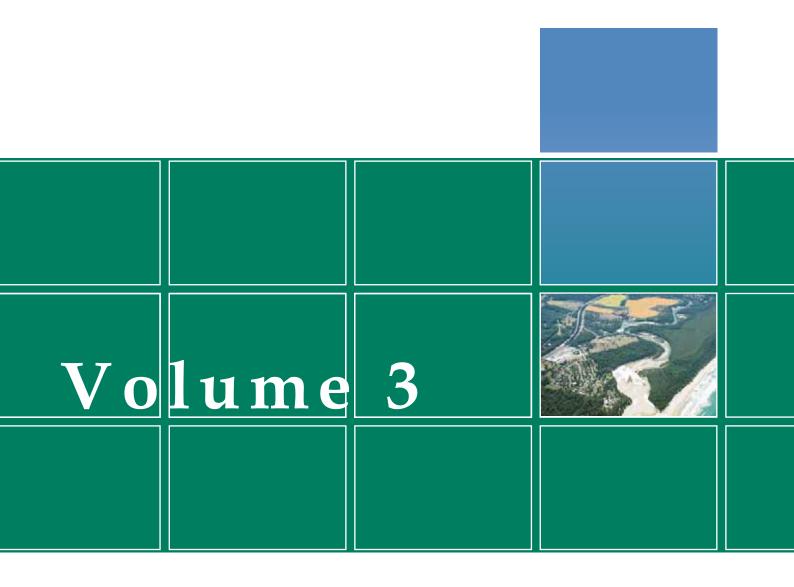
0037659

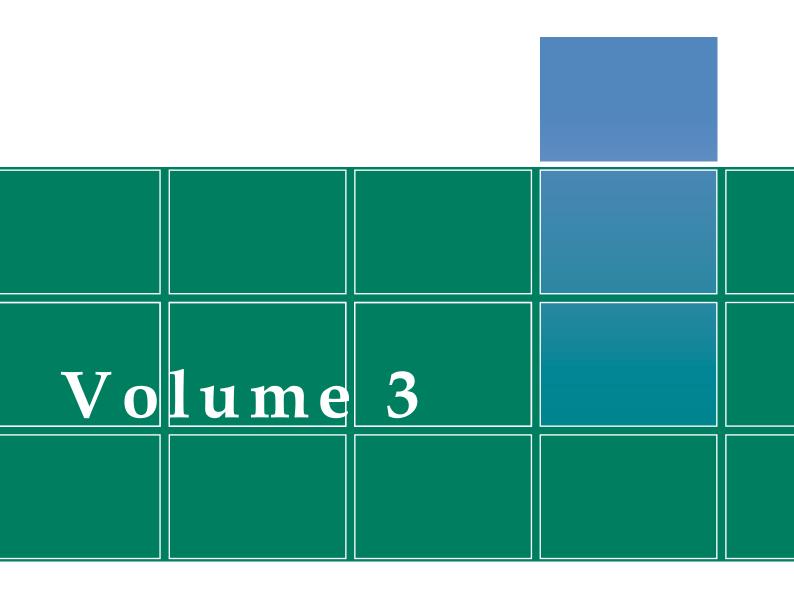
www.erm.com

Project Manager:	Carolyn Maginnity
Signed:	Magnity
Date:	16 November 2007
Partner:	Steve O'Connor
	S. Ölan
Date:	16 November 2007

Environmental Resources Management Australia Pty Ltd Quality System

The Glades Estate Lots 1 & 2 DP 725785 Pacific Highway, Moonee


Environmental Assessment


for Rothwell Boys Pty Ltd

November 2007

Project No. 0037659

This report has been prepared in accordance with the scope of services described in the contract or agreement between Environmental Resources Management Australia Pty Ltd ABN 12 002 773 248 (ERM) and the Client. The report relies upon data, surveys, measurements and results taken at or under the particular times and conditions specified herein. Any findings, conclusions or recommendations only apply to the aforementioned circumstances and no greater reliance should be assumed or drawn by the Client. Furthermore, the report has been prepared solely for use by the Client and ERM accepts no responsibility for its use by other parties.

Geotechnical Assessment

RESOURCE DESIGN & MANAGEMENT **PROPOSED SUBDIVISION AT NORTH MOONEE BEACH** Pacific Highway, Moonee Beach NSW GEOTECHNICAL ASSESSMENT

CH1173/1-AM 16 December 2005

CH1173/1-AM 16 December 2005

Resource Design & Management Suite 34, Jetty Village, 361 Harbour Drive COFFS HARBOUR NSW 2450

Attention: Mr Ken Maguire

Dear Sir,

RE: PROPOSED SUBDIVISION AT NORTH MOONEE BEACH

Coffey Geosciences Pty Ltd (Coffey) is pleased to present our report on the geotechnical assessment at the above site.

We draw your attention to the attached sheet entitled "Important Information About Your Coffey Report" which should be read in conjunction with this report.

We trust that this report meets with your requirements. If you require further information please contact the undersigned in our Coffs Harbour office.

For and on behalf of

COFFEY GEOSCIENCES PTY LTD

DAVID BARKER Senior Geotechnical Engineer

Distribution:	Original held by:	Coffey Geosciences Pty Ltd
	1 сору	Coffey Geosciences Pty Ltd (Coffs Harbour Library)
	3 copies	Resource Design & Management

Unit 1, 18 Hurley Drive Coffs Harbour NSW 2450 Australia PO Box 704 Coffs Harbour NSW 2450 Australia Telephone +61 2 6651 3213 Facsimile +61 2 6651 5194 Email coffs@coffey.com.au

TABLE OF CONTENTS

1. INTRODUCTION	1
1.1 Information on Previous Work	1
2. SITE DESCRIPTION & PROPOSED DEVELOPMENT	1
3. SCOPE OF WORK	2
3.1 Fieldwork	2
	•
4. SUB-SURFACE CONDITIONS	2
4.1 Stratigraphy	2
4.2 Groundwater	3
	2
5. DISCUSSION OF GEOTECHNICAL FACTORS FOR DEVELOPMENT	3
5.1 General	3
5.2 Road Construction	4
5.3 Footings and Founding Conditions	4
5.4 Excavation Conditions	5
5.5 Land Capability	3
6. ACID SULFATE SOILS	6
6.1 Formation and Potential Impacts	6
6.2 Risk Maps and Results of Testing	6
6.3 Further Assessment	8
7. WATER LEVEL INFORMATION	8
	U

IMPORTANT INFORMATION ABOUT YOUR COFFEY REPORT

TABLE OF CONTENTS (continued)

Figures

1 Site Plan

Appendices

- A Engineering Logs
- B Laboratory Test Results
- C Acid Sulfate Management Plan
- D Water Level Plots

1. INTRODUCTION

Coffey Geosciences Pty Ltd has conducted an assessment of geotechnical and grondwater levels for a proposed subdivision development to be located on Lot 1 and Lot 2 DP725785 on the Pacific Highway at North Moonee Beach.

Information relating to the site has been presented previously in relation to some of these issues. This report collates that information, and presents recommendations and information on the following:

- Information from previous reports and letters provided, including surface and subsurface conditions, excavation conditions, and comments on suitability of the site for residential development;
- Comments on general land capability with respect to site filling and drainage and the likely associated effects on groundwater quality;
- Comments on acid sulfate soils and a management plan;
- Groundwater level information to date.

1.1 Information on Previous Work

Coffey has previously carried out a geotechnical investigation, preliminary acid sulfate soils assessment, and collected water level data at the site, from which the following reports and letters were issued;

- CH1173/1-AC dated 8 March 2004 this letter presented the results of a geotechnical assessment and preliminary recommendations for the proposed residential subdivision development. The letter provided general comments on road construction, footings and founding conditions, excavation conditions and acid sulfate soils.
- CH1173/1-AD dated 24 March 2004 this facsimile provided comments on the suitability of the site for residential development with respect to geotechnical engineering aspects. A recommendation was also made that a more detailed geotechnical investigation should be carried out prior to final design and construction of the proposed subdivision.
- CH1173/1-AF dated 7 April 2004 this letter provided similar information as CH1173/1-AC and CH1173/1-AD which are discussed above.
- CH1173/1-AH dated 31 May 2004 this facsimile advised the client that well loggers which had been installed at the above site to record water level data had been vandalised and irreversibly damaged.
- CH1173/1-AI dated 3 December 2004 this report provided similar information as CH1173/1-AC and CH1173/1- AD which are discussed above.

These reports and letters should be read in conjunction with this report.

2. SITE DESCRIPTION & PROPOSED DEVELOPMENT

The site is located on the eastern side of the Pacific Highway across from the intersection of the Pacific Highway and Bucca Road, and is in an area of low density rural development.

The site is located in an area of gently to moderately undulating topography and flatter low lying alluvial plains associated with Moonee Creek. Site slopes are generally even grades of about 5° to 10°, with lower lying areas observed to be relatively flat.

3. SCOPE OF WORK

3.1 Fieldwork

Field work for the geotechnical assessment was carried out on 2 March 2004 and 5 April 2004 and consisted of:

- Nine test pits to depths of about 2m;
- Six boreholes to depths between 4.3m and 5m, and;
- Installation of groundwater wells in each borehole.

The nine test pits (TP1 to TP9) were excavated using a 4WD backhoe to depths of about 2m or prior refusal. Samples obtained during test pitting were taken to Coffey's Coffs Harbour laboratory for the preliminary acid sulfate soils assessment.

The six boreholes (BH1 to BH6) were drilled using an MD200 4WD mounted drilling rig equipped with continuous spiral flight augers.

The groundwater wells were installed into the boreholes (BH1 to BH6) to the depths drilled. The lower 2m section of the well was screened with slotted 80mm PVC. Solid (unslotted) 80mm PVC was used to case the well to the ground surface. Coarse sand was placed within the well annulus to a level between 1m and 2m below the ground surface, followed by an annular seal of granular bentonite pellets to about 0.1m below ground surface and then backfilled with drilling cuttings.

The test pits and boreholes were excavated or drilled in the full time presence of a Geotechnical Engineer or Engineering Geologist from Coffey who located the pits and boreholes, took samples, and produced engineering logs of the pits and boreholes. The engineering logs of the pits and boreholes are attached, together with explanation sheets defining the terms and symbols used in their preparation. The test pit and borehole locations are shown on Figure 1.

4. SUB-SURFACE CONDITIONS

4.1 Stratigraphy

The 1:250,000 Geological Map of Dorrigo/Coffs Harbour indicates the site to be on the boundary of the Coramba Beds comprising mudstone, siltstone and greywacke with minor intervals of volcanic rocks and Quaternary Alluvium.

The subsurface conditions observed in the test pits and boreholes are summarised below:

- Topsoil: sands and clays, fine to coarse grained sand, low to medium plasticity fines, dark brown to depths of between 0.1m and 0.3m;
- Alluvial Soil: Sandy Clay and Sand, medium plasticity clay, fine to medium grained sand, brown and grey/orange to depths between 0.5 and 1.3m in test pits TP6, TP8 & TP9, and beyond the depth of investigation of 5m in boreholes BH1, BH2 and BH6;
- Residual Soil: Clay and Sandy Clay, high plasticity, red/orange-brown and grey/red, sand is fine to medium grained to depths beyond 1.8m and 2m in the test pits, and beyond the depth of investigation of 5m in boreholes BH3 to BH5;

• Extremely to Highly Weathered Claystone: Clayey Gravel, fine to coarse grained, grey/orange, medium plasticity fines, to beyond the depth of investigation of 1m and 1.7m in TP4 and TP7.

The subsurface conditions can be separated into two geological zones as follows:

- **Zone 1** Topsoil overlying residual soils and weathered rock.
- **Zone 2** Topsoil overlying alluvial soils of variable depth, with residual soils underlying the alluvial soils in some test pits.

The Zone 1 subsurface conditions, in which TP1 to TP5 and TP7 were excavated can be summarised as comprising sand and clay topsoil and colluvial soils, overlying very stiff to hard, high plasticity residual clay, grading to Extremely Weathered Claystone in TP4, TP5 and TP7. Near backhoe refusal was encountered in TP4 and TP7 at depths of 1.7m and 1m respectively.

The Zone 2 subsurface conditions, in which TP6, TP8, TP9 and BH1 to BH6 were excavated and drilled can be summarised as comprising sand and clay topsoil, overlying stiff to very stiff sandy clay alluvial soils in TP6 and TP9, and moist to wet and wet loose sands and stiff to very stiff clays in TP8 and BH1 to BH6, overlying stiff to very stiff residual clay in all test pits and BH3 to BH5 to beyond the limit of investigation.

Further details of the materials intersected by the test pits and boreholes are given on the engineering logs presented in Appendix A, with explanation sheets defining the terms and symbols used in their preparation. The Zone 1 and Zone 2 areas are shown on Figure 1.

4.2 Groundwater

Water inflow was observed in TP6, TP8 and TP9 at about 0.5m, 0.7m and 0.4m depth respectively. Water levels in the boreholes during drilling was observed in BH1, BH2, BH4, BH5 and BH6 at about 3.8m, 1.8m, 2m, 2.4m and 4.95 respectively. It should be noted that groundwater conditions can change depending on rainfall, temperature and other factors

5. DISCUSSION OF GEOTECHNICAL FACTORS FOR DEVELOPMENT

5.1 General

Based on the results of the geotechnical investigations carried out to date, the site is considered to be generally suitable for a residential subdivision development in terms of geotechnical issues. A more detailed geotechnical assessment to address site specific issues is recommended prior to final subdivision design and construction. Details of the recommended scope of this further work can be provided once additional information relating to the proposed development is available.

5.2 Land Capability

Based on the results of the geotechnical investigations carried out to date, the site is considered to be generally suitable for a residential subdivision development. The following section provides comments on the two geological zones.

The soils in the Zone 1 area generally comprise topsoil overlying residual clays. These areas are considered to be generally suitable for a residential subdivision development. Appropriate site preparation should be carried out, including stripping of all unsuitable or deleterious materials such as topsoil and colluvial soils.

The lower lying Zone 2 area is also considered to be suitable for the proposed development, but additional

considerations to construction and operation of the development will be required. These are detailed below:

- Appropriate site preparation is carried out, including striping of all unsuitable or deleterious materials such as topsoil and colluvial soil;
- The area is filled to design levels using suitable fill materials to or above the flood level criteria;
- Industry accepted practices with respect to sedimentation and erosion control should be adopted during and after construction. Fill materials used should not be of a dispersive nature;
- Ideally, fill materials should not be acid sulfate soils, or if they are considered to be acid sulfate soils, they must be appropriately treated prior to re-use as fill;
- Fill materials should comply with relevant NSW EPA and NEPM environmental guidelines with respect to contamination and an assessment may be required if fill materials are imported
- Adequate drainage during and after construction is used, such that during periods of high rainfall no
 ponding of water occurs. Periods of relatively high groundwater have been experienced in the lower
 areas, and consideration of the effects of this in relation to the engineering design and construction
 must be made
- The soils on the site area are generally clayey, therefore infiltration to the groundwater table is likely to be low.

5.3 Road Construction

Based on the anticipated subsurface conditions, subgrade soils exposed during road construction are anticipated to consist of clay residual soils in Zone 1 areas over much of the site, with some clay and sand alluvial and colluvial soils in Zone 2 areas. It is presumed that some site filling will be required in lower areas of the site to achieve design subgrade levels.

Design CBR values recommended for preliminary pavement design are expected to be as follows:

- 3% to 5% for clay residual soils;
- 3% for clay alluvial soils, with possibly the need for thicker pavement and/or geofabric in areas of poor or wet subgrade soils;

Subgrade moisture conditions can change depending on rainfall, temperature and other factors. In general, it is recommended that subsoil drainage is required along the high side of all roads aligned across site slopes and on both sides of roads aligned down slopes. Additional drainage requirements may be required in low lying Zone 2 areas or areas identified during a more detailed geotechnical assessment.

Additional assessment of subgrade CBR will be required for pavement thickness design once the subdivision layout is finalised.

5.4 Footings and Founding Conditions

Based on our preliminary site assessment, we anticipate that most of the proposed residential allotments will be located in areas of residual soils and weathered rock. High level footings designed in accordance with AS2870-1996 are likely to be suitable for residential dwellings. Assessment of the site classification for the lots will be required once the subdivision layout is finalised.

High level footings are likely to be suitable for developments located in the Zone 2 areas of the site, though this area is likely to be variable in nature. Some fill may also be placed over the Zone 2 areas. Suitable

footings will be dependent on the strength properties of clay soils and the density profile for sand soils where encountered. Use of piles to support footings or ground modification (i.e. additional compaction) may be required in some areas. Filling in Zone 2 areas will affect the recommended founding conditions for buildings. Further assessment will be required once the subdivision layout is finalised.

5.5 Excavation Conditions

Where excavation is required, it is anticipated that soil strength materials could be excavated by conventional dozer blade or backhoe bucket. Refusal may be encountered on weathered rock in Zone 1 areas, though this will depend on the location and depth of the excavation.

Excavation below the depths of backhoe refusal may be possible by the use of larger and more powerful excavators or bull dozers. Heavy ripping may be required in deeper excavations. The use of hydraulic rock hammers may be required in areas of stronger or shallower rock.

Excavations may experience water inflow, particularly in the Zone 2 areas.

5.6 Site Preparation

The following general comments and recommendations are provided for site preparation beneath structures and pavements:

- Following excavation to design level, the exposed subgrade materials should be proof rolled to identify any wet, excessively deflecting or other deleterious material. Any such areas should be over-excavated and backfilled with a clean select material. All topsoil should be stripped and stockpiled for re-use as landscaping materials only.
- Approved fill beneath roads should be placed in layers not exceeding 300mm loose thickness and be compacted to a minimum dry density ratio of 95% Standard Compaction. Clay fill should be placed and maintained at 60% to 90% of Standard OMC.
- The top 300mm of natural subgrade or subgrade fill below pavements should be compacted to a minimum dry density ratio of 100% Standard Compaction.
- All pavement materials should be placed and maintained at 60% to 90% of Standard OMC.
- Approved fill beneath structures should be placed in layers not exceeding 300mm loose thickness and be compacted to a minimum dry density ratio of 98% Standard Compaction. Clay fill should be placed and maintained at 60% to 90% of Standard OMC. All filling beneath structures should be carried out under Level 1 construction monitoring and testing as defined in AS3798-1996. To enable the fill to be classed as controlled fill, earthworks must be carried out in accordance with Level 1 as defined in AS3798-1996.
- Earthworks should be carried out in accordance with the recommendations outlined in AS3798-1996, 'Guidelines for Earthworks for Commercial and Residential Developments'.

The above scope would generally apply in Zone 2, except that it may be prudent to reduce the extent of excavation to the root affected zone. Depending on site conditions at the time of construction, site preparation in Zone 2 might comprise stripping of the root affected zone with a smooth bladed bucket on a tracked excavator working from outside the stripping area. Placement of a geofabric and/or geogrid underlying a 0.5m working platform of granular fill may also be required.

6. ACID SULFATE SOILS

6.1 Formation and Potential Impacts

Acid Sulfate Soils (ASS) are soils which contain significant concentrations of pyrite which, when exposed to oxygen, in the presence of sufficient moisture, oxidises, resulting in the generation of sulfuric acid. Unoxidised pyritic soils are referred to as potential ASS (PASS). When the soils are exposed, the oxidation of pyrite occurs and sulfuric acids are generated, the soils are said to be actual ASS (AASS).

Pyritic soils typically form in waterlogged, saline sediments rich in iron and sulfate. Typical environments for the formation of these soils include tidal flats, salt marshes and mangrove swamps below about RL 5m AHD. They can also form as bottom sediments in coastal rives and creeks.

Pyritic soils of concern on low lying NSW and coastal lands have mostly formed in the Holocene period, (i.e. 10,000 years ago to present day) predominantly in the 7,000 years since the last rise in sea level. It is generally considered that pyritic soils which formed prior to the Holocene period would already have oxidised and leached during periods of low sea level which occurred during ice ages, exposing pyritic coastal sediments to oxygen.

Disturbance or poorly managed development and use of acid sulfate soils can generate significant amounts of sulfuric acid, which can lower soil and water pH to extreme levels (generally <4) and produce acid and salts, resulting in high salinity.

The low pH, high salinity soils can reduce or altogether preclude vegetation growth and can produce aggressive soil conditions which may be detrimental to concrete and steel components of structures, foundations, pipelines and other engineering works.

Generation of the acid conditions often releases aluminium, iron and other naturally occurring elements from the otherwise stable soil matrices. High concentrations of such elements, coupled with low pH and alterations to salinity can be detrimental to aquatic life. In severe cases, affected waters flowing off-site can have detrimental effect on aquatic ecosystems.

6.2 Risk Maps and Results of Testing

The 1:250,000 scale Moonee Beach acid sulfate soils risk map indicates that the majority of areas to be developed are not within areas with known acid sulfate soils, which agrees with our assessment that much of the site is underlain by residual soils and weathered rock (Zone 1) which are formed in a different manner to that described above and on this basis have acid generating potential if at all.

Areas within gullies and lower lying areas (Zone 2) of about 2m to 4m elevation to AHD were indicated to have a low probability of the presence of acid sulfate soils within 1m to 3m below the ground surface.

Only limited sampling and testing was carried out during previous assessments on the site, therefore limited information is available on the extent of the acid sulfate affected soils, or the amount of lime required to neutralise any acid sulfate soils. The previous testing involved twelve screening tests and four POCAS tests, on samples taken to a maximum depth of 1.6m. The tests results are summarised below in Tables 1 and 2. The laboratory test sheets are presented in Appendix B.

Sample Number	Depth	Actual pH	Potential pH
		(Soil in Water)	(H ₂ O ₂ Oxidation)
TP6	0.1-0.3	5.4	5.0
TP6	0.4-0.6	4.6	4.8
TP6	0.7-0.9	4.9	5.2
TP6	1.2-1.4	4.8	6.1
TP8	0.1-0.3	4.8	6.2
TP8	0.4-0.6	3.8	6.0
TP8	0.7-0.9	3.8	6.3
TP8	1.2-1.4	4.3	5.8
TP9	1.5-1.6	4.8	5.8
TP9	0.1-0.3	5.4	3.7
TP9	0.4-0.6	5.8	6.3
TP9	0.8-0.9	6.1	6.9

 TABLE 1:
 SUMMARY OF ACID SULFATE SCREENING TESTS

The following points are noted from Table 1:

- Soil in water produced pH>4 for the samples tested, except for samples TP8 0.4-0.6 and 0.7-0.9 which had a pH of 3.8. Soil pH<4 in this test is an indication of actual acid sulfate soil.
- H₂O₂ oxidation produced pH>5 in all of the samples tested. Soil pH<3 in this test is an indication of
 potential acid sulfate soil.

Sample Number and Depth	S _{POS} (%)	Action Criteria Value	TPA (mole/tonne)	Action Criteria Value	Liming Ratio* kg/m³
TP8 0.4-0.6	0.018	0.03	11	18	4.5
TP8 0.7-0.9	0.038	0.03	12	18	6.3
TP8 1.2-1.4	0.013	0.03	9	18	5.3
TP9 0.1-0.3	0.011	0.03	12	18	2.4

TABLE 2: SUMMARY OF POCAS TESTS

Note: * - liming ratios include a factor of safety of 1.5.

Action criteria have been adopted from those presented in ASSMAC (1998) Acid Sulfate Soil Guidelines for excavations greater than 1000 tonnes of soil. S_{POS} in one of the four samples analysed exceeded the action criteria values in Table 4.4 of the ASSMAC Guidelines.

Based on the results of testing carried out so far, the liming rate for treatment of acid sulfate soils is expected to be about 6kg of lime per cubic metre of acid sulfate soil disturbed. This liming rate will need to be further assessed when further testing has been carried out. A preliminary acid sulfate soil management plan is presented in Appendix C.

6.3 Further Assessment

It will be necessary to carry out further sampling and testing of the soils in the Zone 2 area to assess the extent of the affected soils and the liming ratios. The areas affected by acid sulfate soils are likely to be relatively small and the scale and amount of treatment required is anticipated to be relatively minor. We would anticipate that treatment may comprise mixing disturbed soils with a reasonably small amount of lime if required. After testing of the soils an acid sulfate soil management plan including liming ratios, will need to be developed prior to construction.

The area requiring testing covers approximately 5.5ha. The Acid Sulfate Soil Management Advisory Committee (ASSMAC) guidelines suggest for sites above 4ha, that two boreholes be drilled per hectare. Therefore, for this site twelve boreholes are required to comply with the ASSMAC guidelines. The boreholes should extend to 1m below the depth of excavation, and samples taken every 0.5m. The samples should be kept chilled during fieldwork and transport to a laboratory NATA registered for POCAS or CRS testing.

At this stage it is unknown how deep excavations are likely to be, and it is therefore considered impractical to develop a scope of work beyond the general recommendations provided above.

7. WATER LEVEL INFORMATION

Six groundwater wells (BH1 to BH6) were installed in the Zone 2 area on 5 April 2004. Loggers were installed in these boreholes to record water level every three hours over a twelve month period. These loggers were found to be vandalised or removed from the site on the 27 May 2004. Water levels were measured on the 6 April 2004 and 27 May 2004.

The client decided not to replace the loggers, and instead water levels have been measured by direct measurement on a regular basis from May 2005 to date to assess trends in groundwater levels at the site. This monitoring will continue until twelve months of data has been collected.

The data collected to date has been plotted for each groundwater well, and these plots are presented in Appendix D.

From the plots it can be seen that the water level in BH1 to BH3 and BH6 generally have higher water levels than BH4 and BH5. The highest and lowest measured water levels for each borehole are summarised below in Table 3.

Borehole	Highest Measured Water Level		Lowest Measured Water Level	
	Date	Water Level (mAHD)	Date	Water Level (mAHD)
BH1	1-12-05	3.46	13-07-05	2.65
BH2	1-12-05	2.88	13-07-05	2.05
BH3	16-06-05	3.1	13-07-05 & 1-12-05	2.5
BH4	1-12-05	2.79	13-07-05	1.65
BH5	21-20-05 & 1-12-05	2.7	13-07-05	1.8
BH6	28-06-05 & 21-10-05	3.55	13-07-05	2.85

TABLE 3: SUMMARY OF WATER LEVEL DATA

For and on behalf of

COFFEY GEOSCIENCES PTY LTD

ć

DAVID BARKER Senior Geotechnical Engineer

Information

Important information about your **Coffey** Report

As a client of Coffey you should know that site subsurface conditions cause more construction problems than any other factor. These notes have been prepared by Coffey to help you interpret and understand the limitations of your report.

Your report is based on project specific criteria

Your report has been developed on the basis of your unique project specific requirements as understood by Coffey and applies only to the site investigated. Project criteria typically include the general nature of the project; its size and configuration; the location of any structures on the site; other site improvements; the presence of underground utilities; and the additional risk imposed by scope-of-service limitations imposed by the client. Your report should not be used if there are any changes to the project without first asking Coffey to assess how factors that changed subsequent to the date of the report affect the report's recommendations. Coffey cannot accept responsibility for problems that may occur due to changed factors if they are not consulted.

Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of the subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult Coffey to be advised how time may have impacted on the project.

Interpretation of factual data

Site assessment identifies actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from literature and external data source review, sampling and subsequent laboratory testing are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how qualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, owners should retain the services of Coffey through the development stage, to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

EQ

Your report will only give preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until proiect implementation has commenced and therefore your report recommendations can only be regarded as preliminary. Only Coffey, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project develops. If another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Coffey cannot be held responsible for such misinterpretation.

Your report is prepared for specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Coffey before passing your report on to another party who may not be familiar with the background and the purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.

Interpretation by other design professionals

Costly problems can occur when other design professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain Coffey to work with other project design professionals who are affected by the report. Have Coffey explain the report implications to design professionals affected by them and then review plans and specifications produced to see how they have incorporated the report findings.

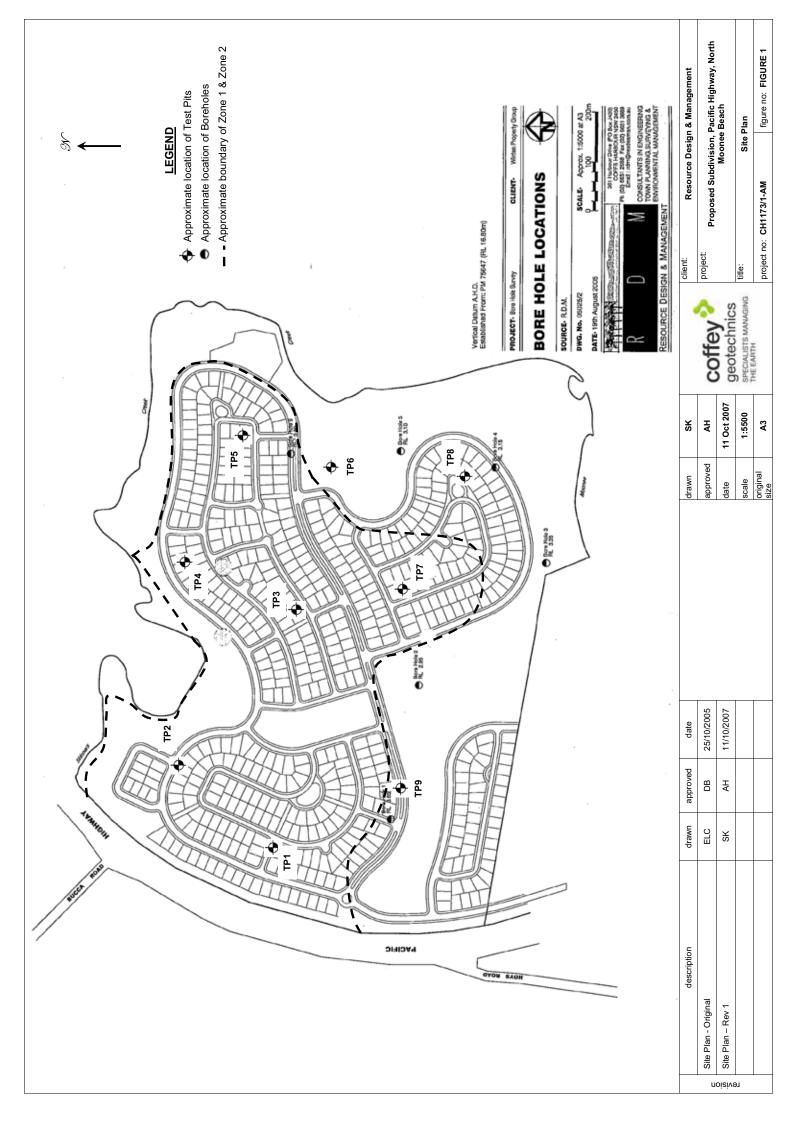
Data should not be separated from the report*

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way.

Logs, figures, drawings etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel) and laboratory evaluation of field samples. These logs etc. should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

Geoenvironmental concerns are not at issue

Your report is not likely to relate any findings, conclusions, or recommendations about the potential for hazardous materials existing at the site unless specifically required to do so by the client. Specialist equipment, techniques, and personnel are used to perform a geoenvironmental assessment. Contamination can create major health, safety and environmental risks. If you have no information about the potential for your site to be contaminated or create an environmental hazard, you are advised to contact Coffey for information relating to geoenvironmental issues.


Rely on Coffey for additional assistance

Coffey is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to a project, from design to construction. It is common that not all approaches will be necessarily dealt with in your site assessment report due to concepts proposed at that time. As the project progresses through design toward construction, speak with Coffey to develop alternative approaches to problems that may be of genuine benefit both in time and cost.

Responsibility

Reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than the design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. To help prevent this problem, a number of clauses have been developed for use in reports and other contracts, documents. Responsibility clauses do not transfer appropriate liabilities from Coffey to other parties but are included to identify where Coffey's responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Coffey closely and do not hesitate to ask any questions you may have.

* For further information on this aspect reference should be made to "Guidelines for the Provision of Geotechnical Information in Construction Contracts" published by the Institution of Engineers Australia, National Headquarters, Canberra, 1987.

APPENDIX A

ENGINEERING LOGS

Soil Description

Explanation Sheet

DEFINITION:

In engineering terms soil includes every type of uncemented or partially cemented inorganic or organic material found in the ground. In practice, if the material can be remoulded or disintegrated by hand in its field condition or in water it is described as a soil.

Other materials are described using rock description terms.

CLASSIFICATION SYMBOL & SOIL NAME

Soils are described in accordance with the Unified Soil Classification (USC) as shown in the table on the following page.

PARTICLE SIZE DESCRIPTIVE TERMS

NAME	SUBDIVISION	SIZE
Boulders		>200mm
Cobbles		63mm to 200mm
Gravel	coarse	20mm to 63mm
	medium	6mm to 20mm
	fine	2.36mm to 6mm
Sand	coarse	600µm to 2.36mm
	medium	200µm to 600µm
	fine	75μm to 200μm

MOISTURE CONDITION

Form No. GEO5.7. Issue 3. Rev.2.

- Looks and feels dry. Cohesive and cemented soils Dry are hard, friable or powdery. Uncemented granular soils run freely through hands.
- Moist Soil feels cool and darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
- Wet As for moist but with free water forming on hands when handled.

CONSISTENCY OF COHESIVE SOILS

	UNDRAINED	
TERM	STRENGTH	FIELD GUIDE
	su (kPa)	
Very Soft	<12	A finger can be pushed well into the soil with little effort.
Soft	12 - 25	A finger can be pushed into the soil to about 25mm depth.
Firm	25 - 50	The soil can be indented about 5mm with the thumb, but not penetrated.
Stiff	50 - 100	The surface of the soil can be indented with the thumb, but not penetrated.
Very Stiff	100 - 200	The surface of the soil can be marked, but not indented with thumb pressure.
Hard	>200	The surface of the soil can be marked only with the thumbnail.
Friable	-	Crumbles or powders when scraped by thumb nail.

DENSITY OF GRANULAR SOILS

TERM	DENSITY INDEX (%)
Very Loose	Less than 15
Loose	15 - 35
Medium Dense	35 - 65
Dense	65 - 85
Very Dense	Greater than 85

MINOR COMPONENTS

TERM	ASSESSMENT GUIDE	PROPORTION OF MINOR COMPONENT IN:	
		Coarse grained	Fine grained
Trace of	Presence just detectable by feel or eye, but soil properties little or no different to general properties of primary component.	<5%	<15%
With some	Presence easily detected by feel or eye, soil properties little different to general properties of primary component.	5% - 12%	15% - 30%

SOIL STRUCTURE -

ZONING		CEMENTING	
Layers	Continuous across exposure or sample	Weakly cemented	Easily broken up by hand in air or water
Lenses	Discontinuous layers of lenticular shape	Moderately cemented	Effort is required to break up the soil by hand in air or water
Pockets	Irregular inclusions of differential material		

GEOLOGICAL ORIGIN

WEATHERED IN PLACE SOILS

Extremely weathered material	Structure and fabric of parent rock visible
Residual soil	Structure and fabric of parent rock not visible
TRANSPORTED SOIL	_S
Aeolian soil	Deposited by wind
Alluvial soil	Deposited by stream and rivers
Colluvial soil	Deposited on slopes (transported downslope by gravity)
Fill	Man made deposit. Fill may be significantly more variable between tested locations than naturally occurring soils.
Lacustrine soil	Deposited by lakes
Marine soil	Deposited in ocean basins, bays, beaches and estuaries

Explanation Sheet

SOIL CLASSIFICATION INCLUDING IDENTIFICATION AND DESCRIPTION

MLL below). MLL below). WIL Detown) GC CLAYEY Wilde chan 20% of unaterial less than 20% of unaterial less th			T		ATION PROCEDURES		USC	PRIMARY NAME
Here Caranter Sign Sign Sign Sign Sign Sign Sign Sign	T	(E	xcluding part	icles larger than 60mm	n and basing fractions on e	stimated mass)		
And International Predominantic presentantic all intermediate sizes missing. SW SAND SAND Wore than 50% of material less than all intermediate sizes missing. SP SAND Predominantly one size or a range of sizes with some intermediate sizes missing. SP SAND Non-plastic fines (for identification procedures see ML below). SM SILTY SA Plastic fines (for identification procedures see ML below). SM SILTY SA Plastic fines (for identification procedures see ML below). SC CLAVE Plastic fines (for identification procedures see ML below). SV SAND Plastic fines (for identification procedures see ML below). SUBPRIMIE SUBPRIMIE Plastic fines (for identification procedures see ML below). SUBPRIMIE SUBPRIMIE Medium to high None Medium CLAVE Medium to high None Medium CLAVE Medium to high None None ML Medium to high None Low to medium CLAVE Medium to high None None Medium OU Medium to high None None	rger		barse han	EAN VELS the or ines)			GW	GRAVEL
And Construction Sand Some intermediate sizes and substantial amounts of all intermediate sizes missing. SW SAND Woose than 50% of material less than all intermediate sizes missing. Show of material less than some intermediate sizes missing. Sb Some some intermediate sizes missing. Sb Some some intermediate sizes missing. Non-plastic fines (for identification procedures see ML below). Non-plastic fines (for identification procedures see ML below). Sc Clayers clayer None than 50% of material less missing. Non-plastic fines (for identification procedures see ML below). Some substantic fines (for identification procedures see ML below). Some substantic fines (for identification procedures see traction is substantial end than 50% of material less missing. Some substantic fines (for identification procedures see ML below). None to Low Quick to slow None ML substantial to the substantial end to the	m is la		ELS If of co arger t nm	CL GRA (Litt			GP	GRAVEL
Like CRAINED SOILS SAND Worke than 50% of material less missing. SW SAND Orgone than 50% of material less missing. SP SAND Predominantly one size or a range of sizes with some intermediate sizes missing. SP SAND Non-plastic fines (for identification procedures see ML below). SM SILTY SA Plastic fines (for identification procedures see ML below). SILTY SA Plastic fines (for identification procedures see ML below). SC CLAYEY Plastic fines (for identification procedures see ML below). SULTY SA Plastic fines (for identification procedures see ML below). SULTY SA None to Low Quick to slow None Medium to high None Medium to slow None to Low Quick to slow None Medium to high None Medium CLAY Medium to high None Low to medium SILT Medium to high None Low to medium Medium Medium to high None Low to medium MH High None High CH	ILS n 63m	d eye)	GRAV han ha on is la 2.0m	ELS INES fable t of s)		entification procedures see	GM	SILTY GRAVEL
LINE GRAINED SOILS Decider, i Decider, i Decider, i IDENTIFICATION PROCEDURES ON FRACTIONS <0.2mm	AINED SO Il less tha 075mm	the nake	More th fracti	GRAVI WITH F (Apprec) amoun fines		ication procedures see CL	GC	CLAYEY GRAVEL
Line Gramming Medium to high Declow). IDENTIFICATION PROCEDURES ON FRACTIONS <0.2mm	ut the sr	oarse than	EAN NDS tle or ines)			SW	SAND	
Line Gramming Medium to high Declow). IDENTIFICATION PROCEDURES ON FRACTIONS <0.2mm		icle vis	DS If of co naller nm	CLI SAL			SP	SAND
Line Grammer IDENTIFICATION PROCEDURES ON FRACTIONS <0.2mm IDENTIFICATION PROCEDURES ON FRACTIONS <0.2mm IDENTIFICATION PROCEDURES ON FRACTIONS <0.2mm Output IDENTIFICATION PROCEDURES ON FRACTIONS <0.2mm IDENTIFICATION PROCEDURES ON FRACTIONS <0.2mm Output IDENTIFICATION PROCEDURES ON FRACTIONS <0.2mm IDENTIFICATION PROCEDURES ON FRACTIONS <0.2mm Output IDENTIFICATION PROCEDURES ON FRACTIONS <0.2mm IDENTIFICATION PROCEDURES ON FRACTIONS <0.2mm ML Summer of the signed time of the signed tim		t part	SAN Jan ha n is sr 2.0n)S H IS iable t of		entification procedures see	SM	SILTY SAND
High None High CH CLAY Bigh Medium to high None Low to medium OH ORGANIC		e smalles	More th fractic	SANI WIT FINE FINE Apprec amoun fine		ication procedures see CL	SC	CLAYEY SAND
High None High CH CLAY Bigh Medium to high None Low to medium OH ORGANIC			IDENTIFIC	ATION PROCEDURES ON FE	RACTIONS <0.2mm			
High None High CH CLAY Bigh Medium to high None Low to medium OH ORGANIC	_	out		DRY STRENGTH	DILATANCY	TOUGHNESS		
High None High CH CLAY Medium to high None Low to medium OH ORGANIC	ess tha 75mm	le is ab	CLAYS nit less 50	None to Low	Quick to slow	None	ML	SILT
High None High CH CLAY Medium to high None Low to medium OH ORGANIC	0 SOILS terial ian 0.0	partic	TS AND Juid lin than	Medium to high	None	Medium	CL	CLAY
High None High CH CLAY Medium to high None Low to medium OH ORGANIC	RAINEI of ma aller t <u>f</u>	175mm	SIL ⁻	Low to medium	Slow to very slow	Low	OL	ORGANIC SILT
풍 그 뜴 Medium to high None Low to medium OH ORGANIC	F More thai 63mm	(A 0.0	AYS nit un 50	Low to medium	Slow to none	Low to medium	мн	SILT
풍 등 Medium to high None Low to medium OH ORGANIC			S & CL quid lir ter the	High	None	High	СН	CLAY
HCHLY OPCANIC SOILS Pandily identified by calour, adour, spanny feel and frequently by fibraus			SILT Lic grea	Medium to high	None	Low to medium	ОН	ORGANIC CLAY
texture PEAT	IIGHLY O	RGANI	C SOILS		colour, odour, spongy fee	el and frequently by fibrous	Pt	PEAT

COMMON DEFECTS IN SOIL

TERM	DEFINITION	DIAGRAM
PARTING	A surface or crack across which the soil has little or no tensile strength. Parallel or sub parallel to layering (eg bedding). May be open or closed.	
ΤΝΙΟ	A surface or crack across which the soil has little or no tensile strength but which is not parallel or sub parallel to layering. May be open or closed. The term 'fissure' may be used for irregular joints <0.2m in length	
SHEARED ZONE	Zone in clayey soil with roughly parallel near planar, curved or undulating boundaries containing closely spaced, smooth or slickensided, curved intersecting joints which divide the mass into lenticular or wedge shaped blocks.	
SHEARED SURFACE	A near planar curved or undulating, smooth, polished or slickensided surface in clayey soil. The polished or slickensided surface indicates that movement (in many cases very little) has occurred along the defect.	

TERM	DEFINITION	DIAGRAM
SOFTENED ZONE	A zone in clayey soil, usually adjacent to a defect in which the soil has a higher moisture content than elsewhere.	and the second second
TUBE	Tubular cavity. May occur singly or as one of a large number of separate or inter-connected tubes. Walls often coated with clay or strengthened by denser packing of grains. May contain organic matter.	
TUBE CAST	Roughly cylindrical elongated body of soil different from the soil mass in which it occurs. In some cases the soil which makes up the tube cast is cemented.	
INFILLED SEAM	Sheet or wall like body of soil substance or mass with roughly planer to irregular near parallel boundaries which cuts through a soil mass. Formed by infilling of open joints.	<u> </u>

20258 / 07-01

Rock Description

DEFINITIONS Substance Defect Mass	Ef Di Ai m In	ffective iscont ny boe ore su engir	ibstance, defect and mass are defined a: ely homogeneous material, may be isotro inuity or break in the continuity of a subst dy of material which is not effectively hom ubstances with one or more defects. heering terms rock substance is any natu rated or remoulded by hand in air or in w	pic or anisotropic ance or substand logeneous. It car rally occurring ag	ces. I consi Igrega	te of mine	rals and organi	ic material which cannot be
BUBSTANCE	Si	imple	PTIVE TERMS: rock names are used rather than precise cal classification.	Term			TRENGTH TEI Point Load Index, I _S 50 (MPa)	RMS Field Guide to Strength
PARTICLE SIZE Coarse graine Medium graine Fine grained	- G d 0. ed 0. 0. Te	irain s .6mm .2mm .6mm	ize terms for sandstone are: to 2mm	Very	Low	VL	Less than 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.
Well developed	ped La pi d La ea	ayerin ropert ayerin asily p	g or fabric distinct. Rock breaks more barallel to layering or fabic.	Low		L	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diamete may be broken by hand. Sharp edges of core may be friable and break during handling.
	reviat		WEATHERING PRODUCTS Definition Soil derived from the weathering of rock the mass structure and substance fabri are no longer evident; there is a large		um	М	0.3 to 1	Readily scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.
Extremely Weathered	xw		change in volume but the soil has not been significantly transported. Material is weathered to such an extent that it has soil properties, ie, it either disintegrates or can be remoulded, in water. Fabric of original rock still visible			н	1 to 3	A piece of core 150mm long by 50mm diameter can not be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Distinctly Weathered	DW		Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, may be decreased due to deposition of weathering products in pores.	or	High emely 1		3 to 10 More than 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer. Specimen requires many blows with geological pick to break
Slightly Weathered	SW		Rock is slightly discoloured but shows little or no change of strength from fresh rock.	Notes: 1. In	aniso			through intact material; rock rings under hammer. de to strength applies to the
Fresh			Rock shows no sign of decomposition of staining. hemical changes were caused by hot lociated with igneous rocks the terms	or ro 2. Th te st 3. Th ar	ckš m ne tern rm. Th rength ne unc nisotroj	ay break n extreme ne term is makes it onfined c pic rocks	readily parallel ly low is not us used in AS172 clear that it is a ompressive stra which do not fa	isotropy. High strength anisotropi to the planar anisotropy. ed as a rock substance strength 6-1993 but the field guide to a soil in engineering terms. ength to isotropic rocks and all parallel to the planar anisotrop int load index. The ratio may vary

Rock Description Explanation Sheet

COMMON I	DEFECTS IN ROCK MAS	SES			ge	eological terms.
Term	Definition	Diagram	Мар	Graphic	DEFECT S	HAPE TERMS
Parting	A surface or crack across		Symbol	Log (Note 1)	Planar	The defect does not vary in orientation
Faring	which the rock has little or no tensile strength.				Curved	The defect has a gradual change in orientation
	Parallel or sub parallel to layering (eg bedding) or a planar anisotropy in the		20 Beddin	9	Undulating	The defect has a wavy surface
	rock substance (eg, cleavage). May be open		20 Cleavag	ge (Note 2)	Stepped	The defect has one or more well defined steps
Joint	or closed. A surface or crack across				lrregular	The defect has many sharp changes in orientation
	which the rock has little or no tensile strength but which is not parallel or sub parallel to layering or planar anisotropy in the rock substance. May be open or closed.		60	(Note 2)		nt of defect shape is partly the scale of observation.
Sheared Zone	Zone of rock substance with roughly parallel				ROUGHNE	SS TERMS
(Note 3)	near planar, curved or undulating boundaries				Slickensided	Grooved or striated surface; usually polished
	cut by closely spaced joints, sheared surfaces	ii hu	25	11	Polished	Shiny smooth surface
	or other defects. Some of the defects are usually		30 1		Smooth	Smooth to touch; few or no surface irregularities
	curved and intersect to divide the mass into lenticular or wedge shaped blocks.			î.î	Rough	Many small surfaxce irregularities (amplitude generally less than 1mm); feels like fine to coarse sand paper
Sheared Surface (Note 3)	A near planar, curved or undulating surface which is usually smooth, polished or slickensided.		40	12/22	Very rough	Many large surface irregularities (amplitude generally more than 1mm); feels like, or coarser than, very coarse
Crushed Seam (Note 3)	Seam with roughly parallel almost planar boundaries, composed of disoriented, usually angular fragments of the host rock substance which may be more weathered than the host rock. The seam has soil properties.		50		COATING 1 Clean Stained	sand paper
Infilled Seam	Seam of soil substance usually with distinct roughly parallel bounda-				Veneer	A visible coating of soil or mineral too thin to measure; may be patchy
	ries formed by the migration of soil into an open cavity or joint. Infilled seams less than 1mm thick may be described as veneer or coating on joint surface.				Coating	A visible coating up to 1mm thick . Thicker soil material is described using appropriate defect terms (eg, infilled seam). Thicker rock strength material is usually described as a vein
Extremely Weathered Seam	Seam of soil substance, often with gradational boundaries. Formed by weathering of the rock substance in places.		32 THITTE	and the second se	BLOCK SH	APE TERMS
		` Seam		1~1	Blocky	Approximately
	ehole logs show the true dip o	f defects and f	íace sketches a	nd	Tabular	equidimensional Thickness much less than
2. Par	tions the apparent dip. tings and joints are not usually sidered significant.	r shown on the	graphic log un	less	Columnar	length or width Height much greater than
	ared zones, sheared surfaces a	nd crushed sea	ms are faults i	'n		cross section
	· · · · · · · · · · · · · · · · · · ·	• . • •		· · ·		

20257 / 07-01

			-	Excava	ition No.	TP1
Engineering le	og - Excavat	ion		Sheet	Job No.:	1 of 1 CH1173/1
				Date st		1 of 1 <u>CH1173/1</u> 3.2.2004 d: 3.2.2004 DJB
Principal:				Date co	ompleted	:: 3.2.2004
Project: PRC	POSED DEVELO	PMENT		Logged	l by:	DJB
	ER TO FIGURE 1			Checke		U
· ·	4WD BACKHOE	Pit Orientation: Easting:	m		R.L.	. Surface: Not Measured
	2m long 0.45m wide	Northing:	m		datu	um:
excavation information		substance		X	6	
po uta	graphic log symbol symbol	material soil type: plasticity or particle characteristics colour, secondary and minor components.		consistency/ density index	100 × pocket 200 × penetro- 400 meter	structure and additional observations
Ha None Observed	CL CH CH CH CH CH CH CH CH CH CH	TOPSOIL: Silty Clayey Sand, fine to coarse grained, dark brown, low plasticity fines Sandy CLAY: medium plasticity, pale brown, sais fine to coarse grained CLAY: high plasticity, orange-pale brown, trace sand fine to medium grained End TP1 at 2m depth due to limit of required investigation. Test pit TP1 terminated at 2m	and / M		× × ×	TOPSOIL RESIDUAL SOIL - - - - - - - - -
Sketch method N natural exposure X existing excavation BH backhoe bucket B bulldozer blade R ripper E excavator	support S shoring N nil penetration 1 2 3 4 no resistance ranging to ranging to ranging to water water water level on date shown	U ₅₀ undisturbed sample 50mm diameter U ₆₃ undisturbed sample 63mm diameter D disturbed sample V vane shear (kPa) Bs bulk sample E environmental sample R refusal V v	/ moist	n d classifica		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense

											Ī	Excava	ition N	0.	TP2		
E	ngi	ine	er	ing lo	bg	- E>	ca	vat	ion			Sheet Office 、	Job No		of 1 CH1 1	173/1	Coffey B
Clie	ent:			WIN	TEN	N PRO	OPE	RTY	GROUP			Date st	arted:		3.2.2	004	<u> </u>
Prir	ncipa	l:									I	Date co	omplet	ed:	3.2.2	004	Ĩ
Pro	ject:			PRC	PO	SED	DEV	ELO	PMENT		I	_oggec	l by:		DJB		2
Tes	st pit	locat	ion:	REF	ER	TO F	IGU	RE 1			(Checke	ed by:				U
equi	ipmen	nt type	e and	model:	4WD	BACKH	OE		Pit Orientation: East	ting: m			R	L. S	urface:	Not Meas	sured
	avatio				2m loi	ng 0.4	45m wi			hing: m			d	atum	:		
ex				ormation			mat		ubstance			~ ×	ş t				
method	5 penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle characte colour, secondary and minor compor	eristics, nents.	moisture condition	consistency/ density index	¹⁰⁰ A pocket ²⁰⁰ A penetro-			structure a onal obser	
BH			None Observed			0.5 1.0 1.5 2.0 3.0 3.5 		CL CH	TOPSOIL: Sandy Silty Clay, low plasticity brown, sand is fine to coarse grained Sandy CLAY: medium plasticity, brown, s fine to coarse grained CLAY: high plasticity, red-orange-brown, sand fine to medium grained Colour change grey/red. End TP2 at 1.9m depth due to limit of requinvestigation. Test pit TP2 terminated at 1.9m	isand is	M	VSt		T C	OPSOIL OLLUVIAI ĒSIDŪAL	L/RESIDUA SOIL	<u>L SOIL</u>
	thed	h				4.0				eleccifi							index
Me N X BH B R E	thod	exist back	ing ex hoe b ozer b r		S pe	ater water I	n no resista anging to efusal evel e showr nflow)	notes, samples, tests U _{s0} undisturbed sample 50mm diameter U ₆₃ undisturbed sample 63mm diameter D disturbed sample V vane shear (kPa) Bs bulk sample E environmental sample R refusal	soil des based or system D dr M m W we Wp pla	cription n unified e y oist				consister VS S F VSt H Fb VL L MD D VD	ncy/density very so soft firm stiff very sti hard friable very loo loose mediun dense very de	ft ff ose n dense

											I	Excava	tior	ו No).	TP3			
Ε	ing	jin	ee	ring l	og	- Ex	kca	vat	on			Sheet Office 、	loh	No		of 1 CH117	3/1	Coffey m	
CI	ient:			WIN	ITEI	N PR	OPE	RTY	GROUP			Date st				3.2.200			
Pr	incip	al:									[Date co	omp	olete	d:	3.2.200	04	Ŧ	
Pr	oject			PRO	DPO	SED	DEV	ELO	PMENT		I	_oggec	l by	:		DJB		Q	
Τe	est pi	t loc	ation	REF	ER	TO F	IGU	RE 1			(Checke	ed b	oy:				U	
eq	uipme	ent ty	pe an	d model:	4WD	BACKH	OE		Pit Orientation: Easting:	m				R.I	L. S	urface: N	Not Measu	red	
-			mensi	ions: ormation	2m lo	ng 0.	45m wi		Northing: ubstance	: m				da	tum	:			
Γ	stration			notes samples,			graphic log	classification symbol	material		ture ition	consistency/ density index	pocket	penetro- meter			ucture and al observa		
method	12		water	tests, etc	RL	depth metres	grap	class symb	soil type: plasticity or particle characteristic colour, secondary and minor components	CS, 3.	moisture condition	cons dens		(Pa 000000000000000000000000000000000000					
Ha			None Observed			0.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 - 4.0		CL CH	TOPSOIL: Silty Clayey Sand, fine to coarse grained, dark brown, low plasticity fines Sandy CLAY: medium plasticity, pale brown, s is fine to coarse grained CLAY: high plasticity, red/orange/brown Colour change grey/red. Colour change grey/red. Gradual Colour change to pale grey-mottled ch End TP3 at 2m depth due to limit of required investigation. Test pit TP3 terminated at 2m	/	M	- VSt - H		× ×	R	OPSOIL ESIDUAL SO	DIL	-	
		na				upport shoring	N	nil	U ₅₀ undisturbed sample 50mm diameter	classific soil desc based on	cription				Т	consistency VS S	//density in very soft soft	dex	
	Н	natural exposure existing excavation backhoe bucket bulldozer blade ripper excavator water ▼ water level							xcavation pucket blade						ased on unified classification S soft ystem F firm St stiff voisture VSt very o dry H hard 1 moist Fb friab / wet VL very /p plastic limit L loose				

											E	xcava	itior	n No).	TP4	
E	nai	ine	er	ing lo	ba	- E>	ca	vati	on			heet				of 1	
	ent:								GROUP			Office . Date st			:	<u>CH1173/1</u> 3.2.2004	Coffey
	ncipa	l:										ate co			d:	3.2.2004	Ť
	ject:			PRO	PO	SED		FI O	PMENT			ogged	•			DJB	Ō
	st pit	locat	ion			TO F						hecke				202	ð
	•					BACKH			Pit Orientation: Easting:	m	0	HECKE	u D		L. Si	urface: Not Measure	
	avatio				2m lo		45m w	ide	3	m					tum:		
ex		tion	info	ormation	1		mat	erial s	ubstance								
method	penetration	support	water	notes samples, tests, etc		depth	graphic log	classification symbol	material soil type: plasticity or particle characteristics,	moisture	ondition	consistency/ density index	k	a penetro- meter		structure and additional observat	tions
BH	123	3 0 N	×		RL	metres			colour, secondary and minor components. TOPSOIL: Sandy Silty Clay, low plasticity, dark brown, sand is fine to coarse grained	N			100	900	т	DPSOIL	
			rved			0. <u>5</u>		CL CH	Sandy CLAY: medium plasticity, pale brown, sand is fine to medium grained CLAY: high plasticity, orange-brown	M>\	Np	VSt		×	R	ESIDUAL SOIL	
			None Observed						Change to grey/red.					×			
			No			1. <u>0</u> –			Colour change to grey mottled orange								
						1.5			CLAYSTONE: pale grey mottled orange, highly weathered	_						GHLY WEATHERED LAYSTONE	
						2. <u>0</u>			End TP4 at 1.7m depth due to near backhoe refusa Test pit TP4 terminated at 1.7m	al.							-
						2. <u>5</u>											
						3. <u>0</u>											
						25											
						3. <u>5</u> –											
						4.0											
S	(ketch	1															
me N X BH B R E	X existing excavation BH backhoe bucket B bulldozer blade R ripper E excavator water ▼ water to the second				shoring enetratio 2 3 4 rater water l - on data - water i	N nil U _{so} undisturbed sample 50mm diameter U _{so} soil descr nn D disturbed sample soil descr no resistance ranging to refusal V vane shear (kPa) R refusal D dry M New R refusal Identified W W No resistance refusal No M R refusal M moisture W W V V No W W R refusal M Wp plas W W W U Upper W Upper Upper Upper Upper<				ture dry moist					consistency/density indensity VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium de D dense VD very dense	ense	

											E	Excava	tion No	• TP	5	
Ε	ng	ine	er	ring lo	bg [,]	- E>	ca	vat	ion			Sheet Office 、	Job No.	1 of 1 : CH	1173/1	Coffey B
Cl	ent:			WIN	TEN	I PRO	OPE	RTY	GROUP		[Date st	arted:	3.2.	2004	Ð
Pr	incipa	al:									[Date co	omplete	ed: 3.2.	2004	É
Pr	oject:			PRC	POS	SED	DEV	ELO	PMENT		L	_oggec	l by:	DJE	8	2
Te	st pit	loca	tion:	REF	ER	TO F	IGUI	RE 1			(Checke	ed by:			U
eq	uipmer	nt typ	e and	model:	4WD E	BACKH	OE		Pit Orientation: Eastir	ng: m			R.	L. Surface:	Not Meas	sured
	cavatio				2m lon	ig 0.4	45m wi		North	ing: m			da	tum:		
e			Info	ormation			mat		ubstance			_ ×	6			
method	2 penetration	15	water	notes samples, tests, etc	RL r	depth netres	graphic log	classification symbol	material soil type: plasticity or particle character colour, secondary and minor compone	istics, ents.	moisture condition	consistency/ density index	100 pocket 200 penetro- 400 meter		structure a litional obser	
Ha		N	None Observed			0. <u>5</u> 1. <u>0</u> 1. <u>0</u> 2. <u>0</u> 2. <u>5</u> 3. <u>0</u> 3. <u>5</u> 4.0		CL CH	Silty Sandy CLAY: medium plasticity, pale sand is fine to coarse grainedCLAY: high plasticity, red-orange-brown Colour change to grey/red Colour change grey mottled orange Grading to extremely weathered claystone. End TP5 at 2.1m depth due to limit of requir investigation. Test pit TP5 terminated at 2.1m	brown, ^	D M	VSt	×		AL SOIL, root	affected to
X X B	ethod	natu	ing ex		S	pport shoring		nil	notes, samples, tests U ₅₀ undisturbed sample 50mm diameter U ₅₃ undisturbed sample 63mm diameter		cription			consis VS S F	tency/density very so soft	
	1	existing excavation backhoe bucket bulldozer blade ripper excavator water water water inflow water outflow						khoe bucket dozer blade er avator							firm stiff very sti hard friable very loo loose mediun dense very de	ose n dense

											E	Excava	tion	No.	TP6
Ε	ngi	ine	er	ing lo	bg	- Ex	kca	vat	ion			Sheet Office J	ob I	No.:	1 of 1 <u>CH1173/1</u> 3.2.2004 d: 3.2.2004 DJB
Cli	ent:			WIN	TEN	N PR	OPE	RTY	GROUP		[Date sta	arte	d:	3.2.2004
Pri	ncipal	l:									[Date co	mpl	etec	i: 3.2.2004 📕
Pro	oject:			PRC	PO	SED	DEV	ELO	PMENT		L	ogged	by:		DJB 🤶
Те	st pit l	locat	ion:	REF	ER	TO F	IGU	RE 1			(Checke	d by	/:	U
				model: 4	1WD	BACKH	IOE		Pit Orientation: Eastin	ıg: m	1			R.L	. Surface: Not Measured
exc	avatio	n dim	ensio	ons: 2	2m loi	ng 0.	45m w	de	Northi	ng: m	1			datı	ım:
ex	1	tion	info	ormation			mat		ubstance					4	
	penetration			notes			log	cation	material		e E	ency/ index	pocket	erreur	structure and
method	1 2 3	support	water	samples, tests, etc	RL	depth metres	graphic log	classification symbol	soil type: plasticity or particle characteri colour, secondary and minor compone	ents.	moisture condition	consistency/ density index	6 00 8 00 8 00 8 00 8 00 8 00 8 00 8 00	Pa	additional observations
ВН		N		D	-	-		C	TOPSOIL: Clayey Sand, low plasticity, dark		M	C+//C+			
						0.5		CL	Sandy CLAY: medium plasticity, brown, sat fine to medium grained		M>Wp	51/V51			
				D		-		СН	Sandy CLAY: high plasticity, grey/red, sand to medium grained	I is fine		VSt			RESIDUAL SOIL
				D		1.0								×	
						-			Colour change to grye mottled red and oran	ae					-
				D		-				90					
						1.5									-
						-									
						2.0			End TP6 at 2m depth due to limit of required	<u></u>					
									investigation. Test pit TP6 terminated at 2m	-					
						2. <u>5</u>									-
						-									
						3.0									
															-
						3.5									
															-
						-									
\vdash						4.0									
	Sketch	ו													
5															
D.															
5															
-															
m N	ethod	natur	alexr	osure		ipport shoring	N	nil	notes, samples, tests U ₅₀ undisturbed sample 50mm diameter		cation sy scription	mbols a	nd		consistency/density index VS very soft
X B	ł		ng ex	cavation		enetratio			U ₆₃ undisturbed sample 63mm diameter D disturbed sample		on unified	classifica	tion		S soft F firm
B		bulldo	ozer k			234	no resista ranging te	ince	V vane shear (kPa) Bs bulk sample	moistu	re				St stiff VSt very stiff
		exca			wa	ater	refusal		E environmental sample R refusal	D d	lry noist				H hard Fb friable
0.0.0					_	water	level e showr	ı		W w Wp p	vet Iastic limi	t			VL very loose L loose
						water				W _L lie	quid limit				MD medium dense D dense
						water	outflow								VD very dense

											E	Excava	tior	n No) .	TP7	
E	ngi	ine	er	ing lo	bg	- E>	ca	vati	on			Sheet Office J	Job	No.		of 1 CH1173/1	Coffey
Clie	ent:			WIN	TEN	N PRO	OPE	RTY	GROUP		[Date st	arte	ed:		3.2.2004	9
Prir	ncipa	I:									[Date co	omp	lete	ed:	3.2.2004	Ţ
Pro	ject:			PRC	PO	SED	DEV	'ELO	PMENT		L	_ogged	l by	:		DJB	2
Tes	st pit	locat	ion:	REF	ER	TO F	IGU	RE 1			(Checke	ed b	y:			U
equ	ipmen	nt type	e and	model:	4WD I	BACKH	OE		Pit Orientation: Easting:	m				R.	L. Sı	urface: Not Measured	i
-	avatio			ons: prmation	2m loi	ng 0.4	45m wi		Northing: ubstance	m				da	tum:		
												ex /	at l	r r			
method	5 penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle characteristics colour, secondary and minor components.	; ,	moisture condition	consistency/ density index	k	300 benetro- 400 meter		structure and additional observation	ons
Ha		N	None Observed			0.5 1.0 1.5 2.0 3.0 3.5		GC	Gravelly Sandy CLAY: medium plasticity, pale brown, sand is fine to coarse grained, gravel is fi medium grained CLAY: high plasticity, red Clayey GRAVEL: fine to coarse grained, grey/orange, medium plasticity fines Grading to highly weathered claystone End TP7 at 1m depth due to near backhoe refus. Test pit TP7 terminated at 1m	J	<u>D</u> M	VSt/H		×	RI (E)	OLLUVIAL SOIL ESIDUAL SOIL XTREMEMLY WEATHER LAYSTONE	·
me	thod	natul		posure		4.0 4.0	N	nil	U ₅₀ undisturbed sample 50mm diameter so	oil desc	ription	/mbols a				consistency/density index VS very soft S soft	- - -
X BH B R E		existing excavation backhoe bucket bulldozer blade ripper excavator water water level on date shown water inflow water outflow						0	U ₆₃ undisturbed sample 63mm diameter ba D disturbed sample sy V vane shear (kPa)	ystem noisture dry 1 mc V we Vp pla						S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium den D dense VD very dense	se

												Exc	cavat	tion N	lo.	TP8		
Er	ngi	ne	er	ing l	og	- Ex	cca	vat	ion			She Offi		ob N		1 of 1 CH1173/1	Coffey m	
Clie	Client: WINTEN PROPERTY GROUP														:	3.2.2004	Ð	
Prin	rincipal:														ted:	ed: 3.2.2004		
Pro	ject:		PRC	PC	SED	DEV		Log	gged	by:		DJB	2					
Tes	t pit l	locati	on:	REF	ER	TO F	IGU	RE 1				Che	ecke	d by:			U	
equi	pmen	t type	and	model:	4WD	BACKH	OE		Pit Orientation:	Easting:	m			F	R.L.	Surface: Not Mea	sured	
	excavation dimensions: 2m long 0.45m wide Northing: m excavation information material substance													C	datur	n:		
ex	excavation information								Substance				×	± 6				
method	penetration	support	water	notes samples, tests, etc		depth	graphic log	classification symbol	material	characteristics,	moisture	ondition	density index	A penetro-	a	structure a additional obse		
н Н	123	3 00 N	\$		RL	metres	<u>م</u>	0 N	colour, secondary and mino TOPSOIL: sand, fine to medium	•	2 N		סנ	200 300 300		TOPSOIL		
				D		-	13113	SP	some low plasticity fines	rey mottled	-†-v	v	L					
			ł	D		0. <u>5</u>			orange, some low plasticity fines Changing to a sand/clayey sand.									
			►	D					Some test pit collapse								-	
			ŀ	D		1. <u>0</u>			Some test pit collapse.									
																	-	
				D		1.5		СН	Sandy CLAY: high plasticity, gre medium grained	/, sand is fine to		1 \	/St			RESIDUAL SOIL?		
			ŀ	D		-		СН	CLAY: high plasticity, grey/red, a	trace of sand fine	-						-	
						2.0			grained End TP9 at 1.9m depth due to lim	it of required					++			
						-			investigation. Test pit TP8 terminated at 1.9m									
						2.5											-	
						2.5												
																	-	
						3. <u>0</u>												
						-											-	
						3.5												
						-											-	
						4.0												
	ketcł	ו																
5																		
5.																		
-0/11																		
5																		
2																		
					_													
Ν	hod			osure		u pport shoring	N	nil	notes, samples, tests U ₅₀ undisturbed sample 50mm	diameter soil d	escrip					consistency/density VS very so		
X BH B	X existing excavation BH backhoe bucket penetration								U ₆₃ undisturbed sample 63mm D disturbed sample	l on uni m	fied clas	ssifica	tion		S soft F firm			
o R	B bulldozer blade 1 2 3 4							ince	V vane shear (kPa) Bs bulk sample E environmental sample	ture					St stiff VSt very st H hard	liff		
E E	E excavator water								E environmental sample R refusal	D M W	dry moist wet					Fb friable	iose	
	· water level 00 on date shown 00											wet VL very loose plastic limit L loose liquid limit MD medium dens						
						 water i water of 										D dense VD very de		
								_										

											E	xcava	ition	No.	ТР9	A	
Ε	Engineering log - Excavation														1 of 1		
_	Client: WINTEN PROPERTY GROUP													lo.: l:	1 of 1 <u>CH1173/1</u> 3.2.2004 d: 3.2.2004 DJB		
Pri	Principal:												omple	eted	: 3.2.2004		
Pro	Project: PROPOSED DEVELOPMENT Test pit location: REFER TO FIGURE 1														DJB	Q	
Te														:	Ç)	
equ	equipment type and model: 4WD BACKHOE Pit Orientation: Easting: m													R.L.	Surface: Not Measured		
	avatio			ons: 2 ormation	2m lo	ong 0	45m w		Northing:	m				datu	m:		
H	-											/×e	b t				
method	5 penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.	i,	moisture condition	consistency/ density index	100 × pocket	a	structure and additional observations	s	
BH		N		D	-	-	$\left \left\{\right \right\}$		TOPSOIL: Sandy Silty Clay, low plasticity, dark brown, sand is fine to medium grained		М				TOPSOIL	_	
						0.5		СН	Sandy CLAY: low plasticity, brown, sand is fine to medium grained	to –	M>Wp	VSt					
				D		-		СН	Sandy CLAY: high plasticity, grey/orange-brown sand is fine to medium grained	ī, — -					RESIDUAL SOIL		
				D		1.0										_	
						-											
						1.5										-	
						-										_	
						2.0	/////		End TP9 at 1.8m depth due to limit of required investigation.								
									Test pit TP9 terminated at 1.8m								
						2.5										_	
																_	
						3.0										-	
						-										-	
						3.5										_	
						-										_	
						4.0										_	
	Sketcl	h															
20.																	
2.12																	
00.																	
5																	
2																	
	ath				-				nates comulas tests	00-10	atie	mb - I -	nd		oppointer - day - the to d		
M N X	ethod			posure ccavation		upport shoring	N	nil	U ₅₀ undisturbed sample 50mm diameter so	oil desc	ription	mbols a			consistency/density index VS very soft S soft		
	BH backhoe bucket penetrat							ance	D disturbed sample sy V vane shear (kPa)	ystem					F firm St stiff		
R		rippe exca	er vator		refusal refusa				E environmental sample D		'				VSt very stiff H hard		
2.0.0						vater water	evel e show	1	R refusal M W W	/ we	pist et				Fb friable VL very loose L loose		
						– wateri		•	Ŵ		stic limit uid limit				MD medium dense D dense		
j					-	water	outflow								VD very dense		

											Borehole	e No.	BH1		
Engineering Log - Piezo								me	eter		Sheet Office Jo	ob No ·	1 of 1 : CH1173/1		
Client: WINTEN PROPER										IP	Date sta		CH1173/1 5.4.2004 d: 5.4.2004 AGG/ELC		
Pri	Principal:										Date co	mplete	d: 5.4.2004		
Pro	ject:			PRC	POS	SEL	D DEVE	LOF	PMEN	Τ		Logged	by:	AGG/ELC	
Bo	rehol	le Lo	ocati	on: REF	ER	то	FIGURI	E 1				Checkee	d by:	Ŭ	
drill	mode	el & I	noun	ting:MD200				Ea	sting:	slope:	-90°		R.L	Surface:	
	e dian illinc			ation				-	rthing: aterial	bearin substance	g:		dat	um:	
method	penetration ,	-		notes samples, tests, etc				ohic log	classification symbol	material soil type: plasticity or particle	characteristics	moisture condition	consistency/ density index	structure and additional observations	
	12	3			wel deta		depth RL metres	gra		colour, secondary and mino	r components.		cor der		
ADV			;				-		СН	SANDY CLAY:brown, high plasti	-	M		_	
							_		СН	CLAY: grey, high plasticity, some	sand.		St-VSt		
							_								
							<u></u>								
							-								
						///	-		СН	CLAY: grey to pale brown, high p sand.	lasticity, some	D			
							<u>2</u>								
							-								
							_								
							3						_		
							_		СН	CLAY: grey to brown , high plasti	city, some sand.	. M			
							_								
							4							Water level at time of drilling abo	
														3.8m	
							_								
							-								
					H		5			Borehole terminated at 5m					
							-								
							-								
							6								
							-								
							-								
							7								
							 -								
							_								
							-								
method support AS auger screwing* AD auger drilling* RR roller/tricone W washbore CT cable tool HA hand auger DT diatube B blank bit V V bit T T Cbit *bit shown by suffix ✓ e.g. ADT					ter 10/1/	ig N n tion no resistance ranging to refusal /98 water lev	9	U ₅₀ D N Nc V P Bs R	amples, tests undisturbed sample 50mm diameter disturbed sample standard penetration test (SPT) SPT - sample recovered SPT with solid cone vane shear (kPa) pressure meter bulk sample refusal	soil descript	fied classificat		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose		
					wate	er inflow		E PID WS PZ	environmental sample PID measurement water sample piezometer	Wp plustio W _L liquid li			MD medium dense D dense VD very dense		

E	ng	giı	ne	er	ring L	.00	3 -	Pi	ezo	me	eter			She Offi		b No.:	1 of 1 CH1173/1		
_	ent								PER			IP			e sta		CH1173/1 5.4.2004 d: 5.4.2004 AGG/ELC		
Pri	Principal:															nplete	ed: 5.4.2004		
Pro	ojec	:t:			PRC	PO	SE	D D	DEVE	LOF	PMEN	Т		Log	iged I	by:	AGG/ELC		
Boi	reh	ole	Loc	atic	on: REF	ER	тс) Fl	GURI	E 1				Che	ecked	l by:	Ŭ		
drill	l mo	del	& m	ount	ing:MD200					Ea	sting:	slope	-90°			R.L	Surface:		
	e dia									-	rthing:	bearir	ng:			dat	um:		
dr	1	-	nfc	rma	ation					m		substance							
method		penetration	support	water	notes samples, tests, etc	w	ell		depth		classification symbol	material soil type: plasticity or particle			moisture condition	consistency/ density index	structure and additional observations		
	1	23	S	3		det	tails	RL	metres	5	ට ගි 2 CH	colour, secondary and mine SANDY CLAY:grey/orange/red,	•		E Ö D-M	ੱ ਚੱ St-VSt			
ADV											СН	CLAY: grey/red, medium to high sand.			W	- VSt	Water level at time of drilling about 1.8m		
									4 								Drill rate decrease		
						ŀŀ	_	-	5	<i>[]]]</i>	1	Borehole terminated at 5m		_					
PIEZOMETER CH1173-1.GPJ COFFEY.GDT 12.16.05									- 6 - 7 - - 7 - - 8										
AS D Rev.0 AS D R W CT A T A B V CT A T A B V CT A T A B V CT A T B V T A T B V T A T A CT A T A CT A CT A CT A CT A	AD auger drilling* RR roller/tricone W washbore CT cable tool HA hand auger DT diatube B blank bit V V bit T T C bit *bit shown by suffix				auger drilling* roller/tricone washbore cable tool hand auger diatube blank bit V bit TC bit suffix					e	notes, s U ₅₀ D N N* Nc V P Bs R E BS R E PID WS PZ	samples, tests undisturbed sample 50mm diameter disturbed sample standard penetration test (SPT) SPT - sample recovered SPT with solid cone vane shear (kPa) pressure meter bulk sample refusal environmental sample PID measurement water sample piezometer	classification soil descripti based on unifi system moisture D dry M moist W wet Wp plastic I WL liquid lir	ion ied clas			consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense		

BH2 Borehole No.

															ehole	No.	ВНЗ	
E	ng	jin	e	er	ing L	.og	-	Piez	or	ne	ter			She Offic		b No.:	1 of 1 CH1173/1	offey
Clie	ent:				WIN	TEN	I PI	ROPE	RT	Y G	ROU	P		Date	e star	ted:	5.4.2004	9
Prir	ncipa	al:												Date	e com	npleted	t: 5.4.2004	Ĩ
Pro	ject	:			PRC	PO	SE	D DE	'EL	OP	MEN	Τ		Log	ged b	y:	AGG/ELC	2
Bor	eho	ole L	.00	atio	n: REF	ER	то	FIGU	RE	1				Che	cked	by:		U
drill	mod	del &	mo	untir	ng:MD200					Eas	sting:	slope:	-90°			R.L	. Surface:	
	e diar			ma	tion				-		thing:	bearin substance	g:			dati	um:	
method	penetration		ť	water	notes samples, tests, etc	we	:11	de	oth	graphic log	classification symbol	material	characteristics,		moisture condition	consistency/ density index	structure ar additional obser	
	12	. 3	รั C	Š		deta	ails	RL me	res	<u>5</u>	ີວ໌ດີ SP	colour, secondary and mino SAND: fine to medium grained, bl	•		E 8 M	5 5	TOPSOIL	
ADV									-	$\rangle \rangle$	SP	content about 50%. SAND: fine to medium grained, gr		-1				
				-							SP SP	SAND: dark brown, indurated sar SAND: fine to medium grained, but		-	w			
												, and the mountingramou, b						
																		-
									-		СН	CLAY: high plasticity, grey/brown			М	St	RESIDUAL?	
									ľ			CLAT. High plasticity, groy/brown			101	01	REGIDURE	
									2									-
						=			ł									
						Ē			-									
						E			3									-
						E												
						E			ľ									
						E			₄									
						E			╧									-
							<u>. </u>		ľ	////		Borehole terminated at 4.3m						
									5									-
									-									
									6									
									_									
									_									
]									
									4									-
]									
									-									
	Щ								8									
met AS AD RR W CT HA DT B V T *bit : e.g.	show	/n by	aug rolle was cab har diat blan V b TC	er dr er/tric shboi ile too id au cube nk bit it bit ix	re ol ıger	C pei 1 wa wa	2 3 ter 10/ on o wat	ng M	o level		notes, s U₅₀ D N N N V P Bs R E PID WS PZ	amples, tests undisturbed sample 50mm diameter disturbed sample standard penetration test (SPT) SPT - sample recovered SPT with solid cone vane shear (kPa) pressure meter bulk sample refusal environmental sample PID measurement water sample piezometer	classification soil descripti based on unifi system D dry M moist W wet Wp plastic li W_ liquid lin	on ed class			consistency/density i VS very soi S soft F firm St stiff VSt very stil H hard Fb friable VL very loc L loose MD medium D dense VD very det	ît îf ise i dense

																Borehole	e No.	BH4
E	ng	jin	e	er	ing L											Sheet Office Jo	b No.:	1 of 1 <u>CH1173/1</u> 5.4.2004 d: 5.4.2004 AGG/ELC
Clie	ent:				WIN	ΤE	N F	RC	OPER	ΤΥ	GRO	Uł	2		[Date sta	rted:	5.4.2004
Pri	ncip	al:													[Date con	nplete	d: 5.4.2004
Pro	oject	::			PRC	PC	SE	Đ	DEVE	LOI	PME	N	-		L	_ogged b	oy:	AGG/ELC
Bo	reho	ole L	_OC	atio	n: REF	ER	ТС) F	IGURI	E 1					(Checked		<u> </u>
				ountir	ng:MD200						asting:		slope		0°			Surface:
	e dia: illin			rma	tion					-	orthing: ateria		bearii ubstance	ig:			dal	um:
method	L Denetration		support	water	notes samples, tests, etc		/ell tails	RL	depth metres	graphic log	classification	syillou	material soil type: plasticity or particl colour, secondary and min	e characte or compor	eristics, nents.	moisture condition	consistency/ density index	structure and additional observations
ADV		_	С						_	<u>]]</u>]) сн	I	CLAYEY SAND: fine to medium brown.	grained, d	lark	М		
4									-		SP SP	ľ	SAND: fine to medium grained, I SAND: fine to medium grained, I		nge	 M-W	-	ALLUVIAL
									<u>1</u> -		SP		SAND: fine to medium grained, p	ale brown		- W		
											СН		CLAY: high plasticity, grey, som grained sand.	e fine to m	iedium	М	St	RESIDUAL?
									-									Water level at time of drilling abo 2m.
									- - 3									
									-									
								- - - - -	4									
								· -	-			+	Borehole terminated at 4.4m					
									5									
									_									
									_									
									6									
									-									
									-									
									7_									
									-									
									-									
me AS AD RR W CT HA DT B V T		/n by	aug roll wa cat har dia bla V t TC	ger dr er/tric shboi ble too nd au tube nk bit bit bit	re ol ger		23 vater 10 - on	n atior 4 n ra n n ra n n ra n n ra n ra n ra	N n n o resistance anging to efusal 8 water lev e shown nflow putflow	e	notes U₅₀ D N N* Nc V P Bs R E PID WS	, sa	mples, tests undisturbed sample 50mm diameter disturbed sample standard penetration test (SPT) SPT - sample recovered SPT with solid cone vane shear (kPa) pressure meter bulk sample refusal environmental sample PID measurement water sample	soil d based syster D M W Wp		classificatio		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

_				-	_			_						Borehol	e No.	BH5
		in	ee	eri	ng L									Office J		: CH1173/1
Clie					WIN	ΤE	N F	PRO	PER	TY	GROL	IP		Date sta		5.4.2004
Prin	•													Date co	•	d: 5.4.2004
Pro	-										PMEN	T		Logged		AGG/ELC
_					: REF	ER) FI	GUR				000	Checke	,	
ariii hole				ntin	g:MD200						asting: orthing:	slope: bearin	-90°			L. Surface: tum:
	lling			nat	ion			-		1		substance	9.			
method	benetration		support water		notes samples, tests, etc		vell tails	RL	depth metres		classification symbol	material soil type: plasticity or particle colour, secondary and mino		moisture condition	consistency/ density index	structure and additional observations
ADV									-		CL	SANDY CLAY: low plasticity, blac	k/dark brown.	W	S-F	TOPSOIL
1									- - 1_ -		CL	SANDY CLAY: medium plasticity, yellow/orange/red/grey.		M	-	
									- - 2 - -		СН	CLAY: grey, high plasticity.		D	H	Increase torque
									<u>3</u> - - - 4_ -			Colour change to red/purple.				
									- - 5		СН	SANDY CLAY: high plastcity, gre		M	VSt-H	
									-			Borehole terminated at 5m				
									- - - - - 7 - 7	-						
									-	1						
									-							
metl AS AD RR W CT HA DT B V T *bits e.g.	hod	n by :	auge roller wash cable hand diatu blank V bit TC b	r dril /trico bore too aug be c bit	one e		2 3 vater 10 - va	ration 4 no ration ration ration ration ration ration ration ration	vesistanc nging to fusal water lev shown	e	notes, : U₅0 N N Nc V P Bs R E PID WS PZ	samples, tests undisturbed sample 50mm diameter disturbed sample standard penetration test (SPT) SPT - sample recovered SPT with solid cone vane shear (kPa) pressure meter bulk sample refusal environmental sample PID measurement water sample piezometer	classification soil descripti based on unifi system D dry M moist W wet Wp plastic I W _L liquid lir	on ed classificat		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

Ε	ing	giı	ne	er	ing L	.00] -	Pi	ezo	me	eter			Sheet Office Jo	b No.:	1 of 1 CH1173/1
_	ient										ROU	IP		Date sta		1 of 1 CH1173/1 5.4.2004 d: 5.4.2004 AGG/ELC
Pr	incip	oal:												Date cor	npleted	i: 5.4.2004
Pr	ojec	:t:			PRC	PC	SE	D L	DEVE	LOF	PMEN	T		Logged I	by:	AGG/ELC
Bo	oreh	ole	Lo	catio	n: REF	ER	тс) Fl	GURI	E 1				Checked	l by:	C
dri	ll mo	del	& m	ounti	ng:MD200					Ea	sting:	slope:	-90°		R.L.	. Surface:
	le dia										rthing:	bearing	:		datu	ım:
d	-	-	nfc	orma	ation					ma		substance			×	
		penetration	t		notes samples,					<u>bol</u>	classification symbol	material		e u	consistency/ density index	structure and additional observations
method			support	water	tests, etc		ell		depth		lassifi ymbo	soil type: plasticity or particle		moisture condition	onsist ensity	
		23	S	3		det	tails Y//	RL	metres	5))	CH	colour, secondary and minor SANDY CLAY:high plasticity, grey		с з М	σŏ	TOPSOIL
ADV									-		СН	SANDY CLAY: high plasticity, brow				
									_							
									-		СН	CLAY: high plasticity, grey.		· _	VSt-H	
									-							
									-							
									2	V//						
									-							
									_			Colour change to brown/grey.				
									3			Colour change to grey/brown/yello	w			
									_							
									-							
									4							
									_			Some fine gravel.				
									-							
									_							
						ŀF		-	5_	[]]]	1	Borehole terminated at 5m				
									_	1						
									-							
									6							
									<u> </u>	1						
									_							
									-							
									7							
									_							
									-							
1																
	ethod						uppo		8	└───	notes, s	samples, tests	classification		d	consistency/density index
AS AD)		au	iger d	crewing* rilling*	C	cas	ing	N n	nil	U ₅₀ D	undisturbed sample 50mm diameter disturbed sample	soil description based on unifie		on	VS very soft S soft
RF W			wa	ller/tri ashbc	re	1	enetr 2 3	4	resistance		N N* Nc	standard penetration test (SPT) SPT - sample recovered SPT with solid cone	system			F firm St stiff
CT HA	4		ha	ble to ind au	uger		<u> </u>	rar	resistance riging to fusal		NC V P	vane shear (kPa) pressure meter	moisture D dry			VSt very stiff H hard
DT B	Ē		bl	atube ank b					water lev	/el	Bs R	bulk sample refusal	M moist W wet			Fb friable VL very loose
V T			т	bit C bit		_			shown		E PID	environmental sample PID measurement	Wp plastic li W _L liquid lim			L loose MD medium dense
RF W CT HA DT B V T *bi e.g	it sho].	wn b	y su Al					iter inf iter ou			WS PZ	water sample piezometer				D dense VD very dense

BH6

Borehole No.

APPENDIX B

LABORATORY TEST RESULTS

CH 1173/1

Winton Property Group Proposed Development Moonee Beach

Potential Acid Sulfate Soils

TEST PIT No.	DEPTH (m)	pH	result
		Actual	Potential
6	0.1-0.3	5.4	5.0
6	0.4-0.6	4.6	4.8
6	0.7-0.9	4.9	5.2
6	1.2-1.4	4.8	6.1
8	0.1-0.3	4.8	6.2
8	0.4-0.6	3.8	6.0
8	0.7-0.9	3.8	6.3
8	1.2-1.4	4.3	5.8
8	1.5-1.6	4.8	5.8
9	0.1-0.3	5.4	3.7
9	0.4-0.6	5.8	6.3
9	0.8-0.9	6.1	6.9

(Sampled 3/3/03)

ш
PER'
-
X
SOI
0
S
ш
5
5
5
-
$\overline{\Box}$
I OF ACID
<u>L.</u>
0
-
Z
0
-
3
Z
Ζ.
5
-

5

CERTIFICATE OF ANALYSIS

Analysis By: Bio-Track Pty Ltd ABN 91 056 237 275

781 Mt. Glorious Road Highvale, Brisbane, Australia, 4520 Ph. 07 32897179 Px. 07 32897155

24 APRIL 2004 Page 1 of 1 Report Pages.	MR JOHN MORRISON C/O COFFEY GEOSCIENCES PTY LTD	PD BOX 704 COFFS MARBOUR NSN 2450	CH 1173/1 YOUR PROJECT/JOB REFERENCE CH 1173/1	no record NUMBER OF SAMPLES 4 SAMPLE TYPE:SOIL SAMPLE FOR ACID SULFATE STUDY	SAMPLES LABELLED - INTACT - BAGGED - CHILLED IN INSULATED PACKAGING ** SAMPLES DISPOSED ON 1/7/2004	26 MARCH 2004 LAB REF. LR2634.623	METHODOLOGY: As ber SPOCAS (DNR DASSIT Jume 2003) for 2850 um fraction. S Ca & Me by ICP: ELAY (H) for x60% clave and in the section and the section of the
D DATE OF REPORT						DATE RECEIVED	METHODOLOGY: As per
<u> </u>		· r -	~~	20	ے۔		

vulue: as per shucas (WK WASSI) vume ∠uus) for 400 um fraction, S,Ca & Mg by ICP; CLAY (H) for >40% clay, (M) for 5-40% clay or (L) for <5% clay (approximate estimation only) LIME1 rates calculated to neutralise TPA (or TAA if >TPA)+ aS RAS, LIME2 rates calculated from TAA+aS POS+ aS RAS - carbonate buffer (aCa A + aMg A)/fineness factor (1.51.5). UB. Lime rates assume 97% lime neutralisation and Bulk Density = 1.6 g/cc but D0 NOT include any safety factors. Suggested factor=1.5-1.8 [Reported as oven dry (85'C) mass] RB. Lime rates assume 97% lime neutralisation and Bulk Density = 1.6 g/cc but D0 NOT include any safety factors. Suggested factor=1.5-1.8 [Reported as oven dry (85'C) mass] Equivalent Sulphur (%S eq)= sTAA (%S) + S POS (%S) where sTAA (%S)=TAA/624. a-S RAS (Residual Acid Soluble Sulphur) as S in oxidised 4 M HCL extract - S POS Equivalent Sulphur (%S eq)= sTAA (%S) + S POS (%S) where sTAA (%S)=TAA/624. a-S RAS (Residual Acid Soluble Sulphur) as S in oxidised 4 M HCL extract - S POS CBN POS = moles carbonate alkalinity released by oxidation assuming (Ca POS - Ca KCL) + (Mg POS - Mg KCL) is due to carbonate solution. This buffers TPA.

CBN POS a-S RAS m/t m/t 0 1 1 0 0 1 0 0 0 0
CBN 11/1
Mg P Mg/kg 50 15 120 440
Mg KCl mg/kg 50 15 115 485
Ca P mg/kg 40 20 20 430
ca kcl mg/kg 40 15 25 520
XS eq 0.06 0.08 0.03 0.03
LIME2 kg/m3 3.0 4.2 3.5 1.6
LIME1 kg/m3 2.1 2.2 2.9 1.0
POS ACID m/t 11 24 8 7
s Pos % 0.018 0.038 0.013 0.013
s P 2.025 0.025 0.019 0.013
s KCl % 0.006 0.006 0.006 0.002
TSA m/t 0 0 0
TPA 11 12 12 12
1AA 17A 25 26 35 35
SHIFT 0.6 0.2 1.2 0.7
ът 5.26 5.55 5.95
PH KCL 4.74 4.37 4.37 5.21
CLAY See See See See See See See See See See
1.D. DEPTH m TP 8 0.4-0.6 TP 8 0.7-0.9 TP 8 1.2-1.4 TP 9 0.1-0.3

For and behalf of Bio-Track Pty Ltd

CH1173/1-AM 16 December 2005

APPENDIX C

ACID SULFATE SOIL MANAGEMENT PLAN

PRELIMINARY ACID SULFATE SOILS MANAGEMENT PLAN

Further Assessment

It will be necessary to carry out further sampling and testing of the soils in the Zone 2 area to assess the extent of the affected soils and the liming ratios. The areas affected by acid sulfate soils are likely to be relatively small and the scale and amount of treatment required is anticipated to be relatively minor. We would anticipate that treatment may comprise mixing disturbed soils with a reasonably small amount of lime if required. After testing of the soils an acid sulfate soil management plan including liming ratios, will need to be developed prior to construction.

The area requiring testing covers approximately 5.5ha. The Acid Sulfate Soil Management Advisory Committee (ASSMAC) guidelines suggest for sites above 4ha, that two boreholes be drilled per hectare. Therefore, for this site twelve boreholes are required to comply with the ASSMAC guidelines. The boreholes should extend to 1m below the depth of excavation, and samples taken every 0.5m. The samples should be kept chilled during fieldwork and transport to a laboratory NATA registered for POCAS or CRS testing.

At this stage it is unknown how deep excavations are likely to be, and it is therefore considered impractical to develop a scope of work beyond the general recommendations provided above.

General Management

ASS stockpile / treatment areas must be completely surrounded by bunds designed to be of sufficient capacity to accommodate a critical storm event. Bunds may be constructed of imported or on-site material and should be of sufficiently low permeability to ensure that uncontrolled loss of water to the surrounding area does not occur. This could generally be achieved by use of clay soils. The bund should be compacted by rolling with a padfoot roller to bind the material into a cohesive earth fill rather than a loose or granular material. A minimum of 95% Standard Compaction should be achieved in all earth bunds constructed for environmental protection. Bunded areas should be graded to allow water within the bunded area to flow to a sump area, where the water may be assessed and treated as necessary.

Excavated Potential Acid Sulfate Soils (PASS) should be spread within the bunded area in layers of workable depth (typically not more than 0.3m loose thickness) and be thoroughly mixed with lime through use of a rotary hoe, pulvi-mixer or some similar mechanical process nominated by the contractor to achieve a thorough mix. The liming should be confined to areas of manageable size. Liming areas should remain bunded to allow collection of all leachate and stormwater runoff until test results indicate acceptable levels of neutralisation have been achieved.

Liming Ratios

Further investigations are required to assess liming ratios and expected extent of affected soils.

Good quality fine agricultural lime should be used. In calculating liming ratios a factor of safety of 1.5 should be allowed above the theoretical requirement to take into account the rate of lime reactivity and the possibility of inhomogeneous mixing.

The time required for applied lime to neutralise ASS is widely variable and depends on the specific properties of the neutralised soil, although the lime will begin to neutralise the acid soils from the time of application. Monitoring of the neutralisation rates of the ASS to be removed should be undertaken to provide an indication of the rate of neutralisation and to confirm that the process is working effectively.

Management of Leachate and Excavation Water

Groundwater samples should be obtained to assess background groundwater quality prior to excavation of

PASS at the site. Results of this testing should be forwarded to the ASS Consultant for the project, as a review of recommended groundwater monitoring during construction may be required.

All water runoff from bunded areas is to be collected, monitored and then neutralised prior to release. Water pumped out during dewatering should be monitored on a regular basis during the dewatering period. It is suggested that water pH be checked several times throughout the day. If pH levels are found to become consistently lower over several tests, and the pH value approaches the minimum allowable pH of 6.5, all water should be contained and treated prior to release. Once an acceptable water quality is achieved, the treated water may be released.

The method of neutralisation is either to add lime as a slurry to the collected leachate / excavation water (depending on the salinity of the water to be treated) or to use a mechanical lime spreader to spread lime over an area close to the inlet point of the collection area. The addition of lime will be undertaken in conjunction with field testing to avoid achieving excessively high pH levels. The quality of the water to be finally discharged must meet appropriate guidelines for release.

Monitoring Program

Materials Treated in Bunded Areas

Field testing of the pH of lime treated materials will be required to assess whether pH values are being held at greater than 4. The pH testing should be supplemented with a minimum of two standard ASS laboratory tests from the excavated soil. Testing will be required to produce Total Potential Acidity (TPA) results of zero or indicating a small amount of excess lime.

Delivery dockets for the agricultural lime should be kept with other site records to demonstrate that adequate neutralising agent was used on site.

Excavation Monitoring

Natural soils exposed in the walls and floor of all excavations during dewatering should be checked a number of times for the generation of acid conditions, using an approved field pH screening test. Lime should be added to the exposed surface of the soils if values of pH<4 occur. Any water collected in the excavation should also be checked for indications of acid production. Water pumped out during dewatering should be monitored at regular intervals for indications of acid production. Contingency measures should be put in place in accordance with this plan if water pH values of less than pH 6.5 occur.

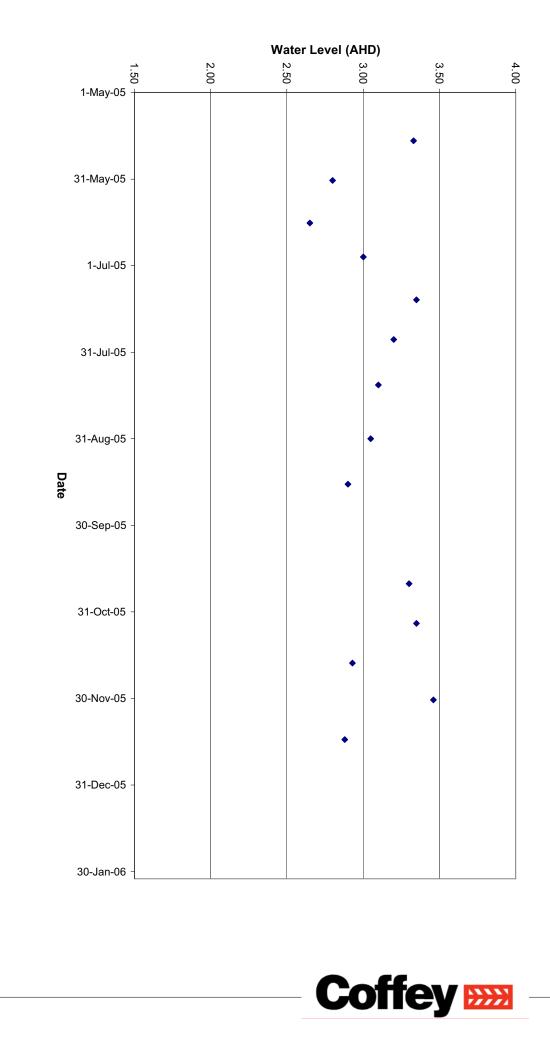
The period of dewatering should be minimised by excavating soils above the water table initially and dewatering only for the excavation of the deeper soils. Soils exposed within the excavation, including those above the water table, shall be maintained in a wet condition by frequent irrigation to restrict oxygen entry into the soil within the excavation.

Contingency Measures

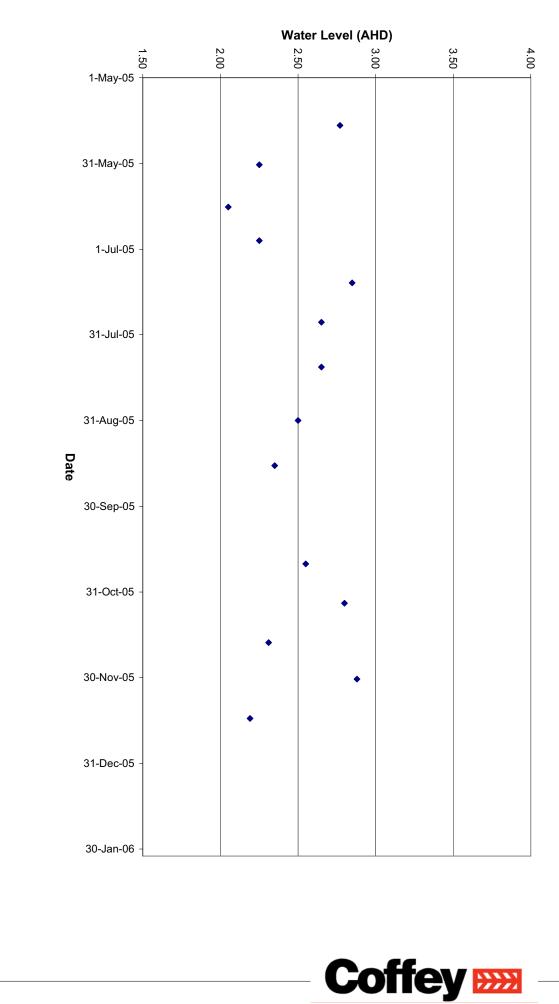
Soil acidity in disturbed materials should be monitored. Should the field pH tests and the laboratory tests show that the soil acidity has not achieved the minimum required standard, then the material must be reworked and additional lime treatment carried out until it is verified that the soil meets the required standard.

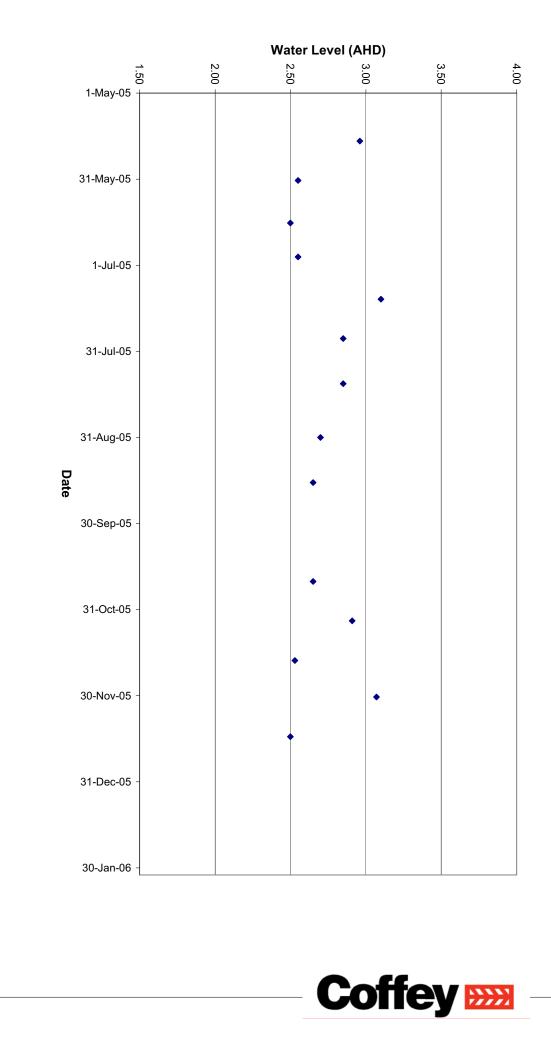
If monitoring of the collected water at the point of discharge indicates the pH is below acceptable discharge limits then discharge must immediately cease and further treatment be carried out. Hydrated lime may only be applied in the presence of the ASS Consultant who shall ensure that it is added in small increments so as not to cause unduly high water pH levels, (i.e. above 8.5). The hydrated lime shall be stored in a covered and bunded area to prevent accidental release to waters.

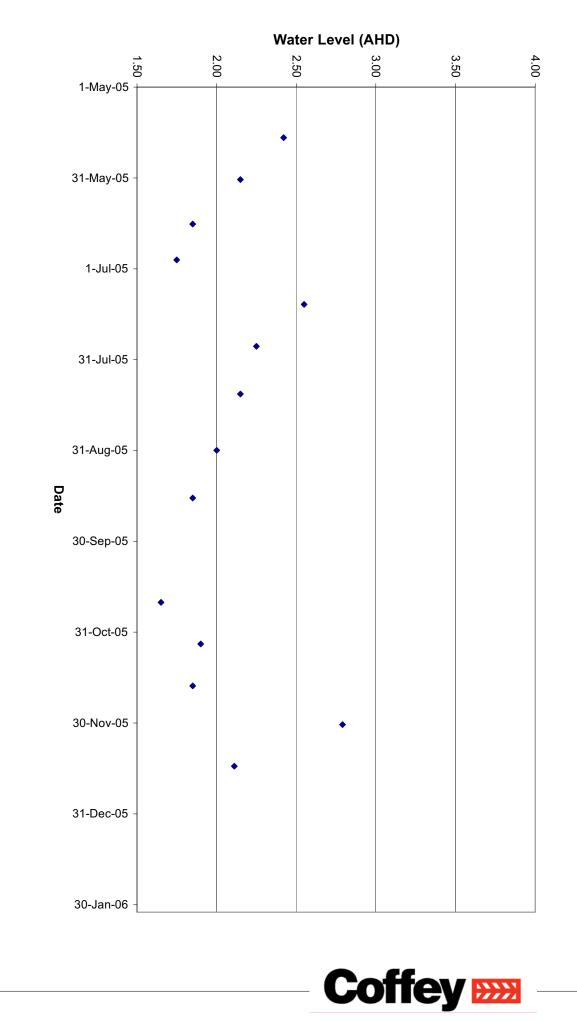
In the event that pH measurement of exposed soils in excavations does not meet required levels, lime shall be spread over the affected area and the pH levels further monitored. Sufficient lime is to be stored in a dry location on-site to permit the immediate implementation of the above contingency measures.

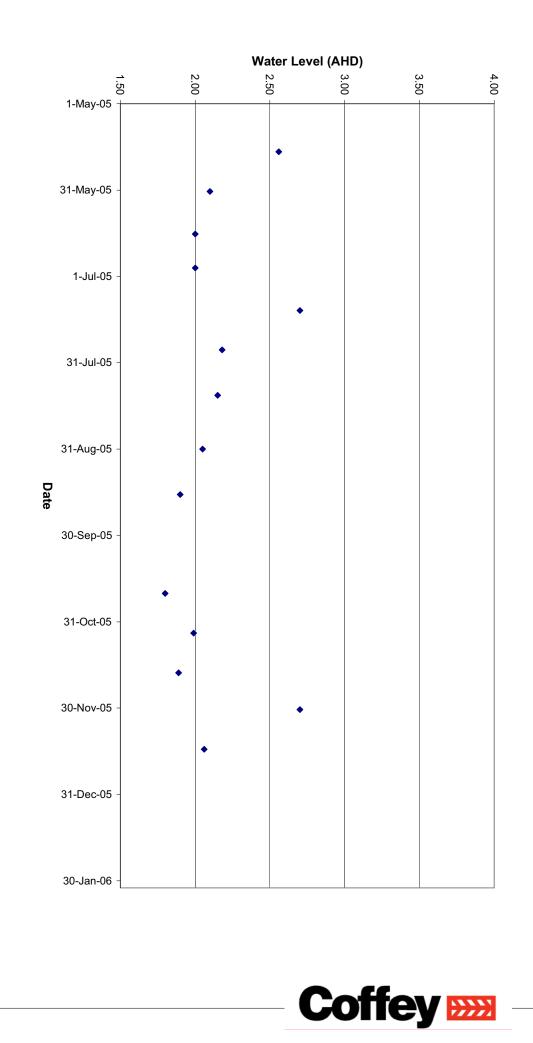

CH1173/1-AM 16 December 2005

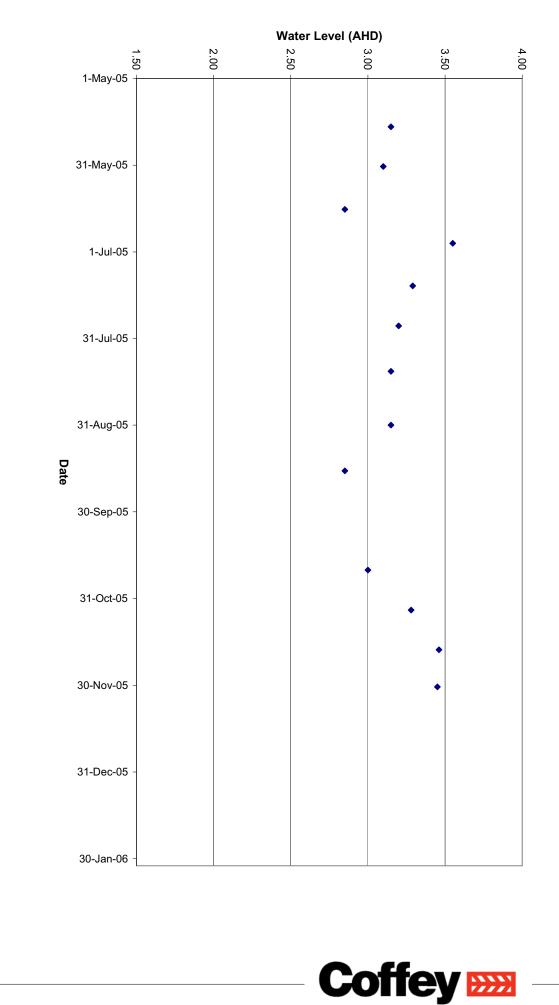
APPENDIX D

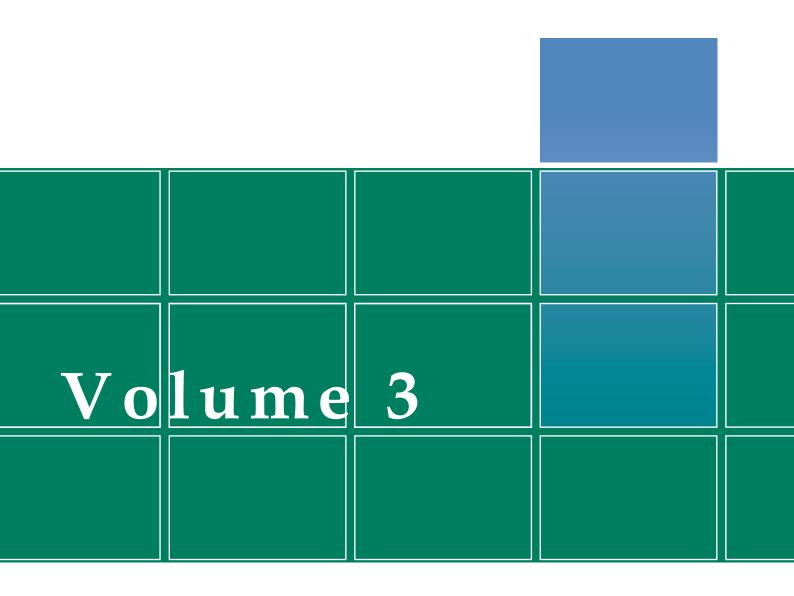

WATER LEVEL PLOTS


Scale NTS	Date 16/12/05	Approved	Drawn ELC	Coffey Geoscien
				Coffey Geosciences Pty Ltd ACN 058 335 516
PLOT FOR BH1	PACIFIC HIGHWAY, NORTH MOONEE BEACH	PROPOSED SUBDIVISION	RESOURCE DESIGN & MANAGEMENT	Geotechnical I Resources I Environmental I Technical I
Job no: CH1173/1		BH1	Drawing no:	Technical I Project Management


Scale NTS	Date 16/12/05	Approved	Drawn	Coffey Geosciences Pty Ltd ACN 056 335 516
PLOT FOR BH2	PACIFIC HIGHWAY, NORTH MOONEE BEACH	PROPOSED SUBDIVISION	RESOURCE DESIGN & MANAGEMENT	Geotechnical I Resources I Environmental I Technical I P
Job no: CH1173/1		BH2	Drawing no:	echnical I Project Management


Scale	Date 16/12/05	Approved	Drawn	Coffey Geosciences Pty Ltd ACN 086 335 516
	PACIFI		RE	Pty Ltd ACN 056 335 516
PLOT FOR BH3	PACIFIC HIGHWAY, NORTH MOONEE BEACH	PROPOSED SUBDIVISION	RESOURCE DESIGN & MANAGEMENT	Geotechnical I Resources I Environmental I Technical I
Job no: CH1173/1		BH3	Drawing no:	Technical I Project Management


Scale NTS	Date 16/12/05	Approved	Drawn	Coffey Geosciences Pty Ltd ACN 050 335 516
	PACIFIC	I	RES	Pty Ltd ACN 056 335 516
PLOT FOR BH4	PACIFIC HIGHWAY, NORTH MOONEE BEACH	PROPOSED SUBDIVISION	RESOURCE DESIGN & MANAGEMENT	Geotechnical I Resources I Environmental I Technical I Project Management
Job no: CH1173/1		BH4	Drawing no:	mical Project Management



Scale	Date	Approved	Drawn	Coffey Geo
NTS	16/12/05		ELC	sciences P
	PACIFIC		RES	Coffey Geosciences Pty Ltd ACN 055 335 516
PLOT FOR BH5	PACIFIC HIGHWAY, NORTH MOONEE BEACH	PROPOSED SUBDIVISION	RESOURCE DESIGN & MANAGEMENT	Geotechnical I Resources I Environmental I Technical I
Job no: CH1173/1		BH5	Drawing no:	Technical I Project Management

Coffey Geosciences Pty Ltd Approved Drawn Scale Date 16/12/05 NTS ELC ACN 056 335 516 PACIFIC HIGHWAY, NORTH MOONEE BEACH **RESOURCE DESIGN & MANAGEMENT** PROPOSED SUBDIVISION Geotechnical I Resources I Environmental I Technical I Project Management PLOT FOR BH6 Job no: Drawing no: CH1173/1 BH6

Acid Sulfate Soils Assessment

ACID SULFATE SOILS ASSESSMENT FOR RESIDENTIAL SUBDIVISION

Lot 1 DP725785 Pacific Highway, Moonee Beach NSW

Resource Design & Management Pty Ltd

GEOTCOFH01173AB-AA 17 July 2007

17 July 2007

Resource Design & Management Pty Ltd Suite 34 Jetty Village Shopping Centre Coffs Harbour NSW 2450

Attention: Ken Maguire

Dear Sir

RE: Acid Sulfate Soils Assessment for Residential Subdivision

Coffey Geotechnics Pty Ltd is pleased to present our report on the acid sulfate soil assessment for the above site.

We draw your attention to the attached sheet entitled "Important Information About Your Coffey Report" which should be read in conjunction with this report.

We trust that this report meets with your requirements. If you require further information please contact the undersigned in our Coffs Harbour office.

For and on behalf of Coffey Geotechnics Pty Ltd

lice filme

Alicia Zillman Associate Environmental Engineer

Distribution:	Original held by:	Coffey Geotechnics Pty Ltd
	1 Сору	Coffey (Coffs Harbour library)
	3 Copies	Resource Design & Management Pty Ltd

CONTENTS

1	INTRODUCTION	1
1.1	General	1
1.2	Background Information	1
2	FORMATION OF ACID SULFATE SOILS	2
3	SCOPE OF WORK	2
4	SITE LOCATION AND ATTRIBUTES	3
4.1	Location and Description	3
4.2	Proposed Excavations and Site Disturbance	3
4.3	Acid Sulfate Risk Map & Site Elevation	3
5	FIELDWORK	3
6	SUBSURFACE CONDITIONS	4
7	SAMPLING AND LABORATORY TESTING	5
8	CONCLUSION AND RECOMMENDATIONS	7
9	LIMITATIONS	7

Important Information About Your Coffey Report

Figures

- Figure 1: Plan Showing Site Location on Lot 1
- Figure 2: Site Plan Showing Investigation Locations

Appendices

Appendix A: Engineering Logs Appendix B: Laboratory Test Result Sheets

1 INTRODUCTION

1.1 General

Coffey Geotechnics Pty Ltd (Coffey) has conducted an acid sulfate soils assessment for a proposed residential subdivision to be located at Lot 1 DP725785 (Lot 1) Pacific Highway, Moonee Beach NSW. The work was commissioned by Ken Maguire of Resource Design Management Pty Ltd (RDM).

The aim of the investigation was to assess the presence or absence of Acid Sulfate Soils (ASS) along an approximately 600m section of road within Stage 1 of the proposed subdivision, and provide an Acid Sulfate Soil Management Plan (ASSMP), if necessary.

The whole of Lot 1 is proposed to become a residential subdivision, which is proposed to be developed in stages. The site is located along a 600m section of road within the Stage 1 area. Previous reports identified two different 'zones' with different subsurface conditions. Zone 1 comprised residual soils and weathered siltstone materials. Zone 2 comprised alluvial and fill soils overlying residual soils. The previous investigation indicated that Zone 2 soils may contain acid sulfate soils. Within the Stage 1 area, Zone 2 soils will be disturbed along the 600m section of road to approximately 0.6m depth.

Coffey have previously carried out work on the site, which was reported in numerous letters, facsimiles and reports. Further information on the previous work is presented in Section 1.2 below.

This report presents the results of the acid sulfate soil assessment.

1.2 Background Information

Coffey has previously carried out a geotechnical investigation, preliminary acid sulfate soils assessment, and collected water level data at the site, from which the following reports and letters were issued;

- CH1173/1-AC dated 8 March 2004 this letter presented the results of a geotechnical assessment and preliminary recommendations for the proposed residential subdivision development. The letter provided general comments on road construction, footings and founding conditions, excavation conditions and acid sulfate soils.
- CH1173/1-AD dated 24 March 2004 this facsimile provided comments on the suitability of the site for residential development with respect to geotechnical engineering aspects. A recommendation was also made that a more detailed geotechnical investigation should be carried out prior to final design and construction of the proposed subdivision.
- CH1173/1-AF dated 7 April 2004 this letter provided similar information as CH1173/1-AC and CH1173/1-AD which are discussed above.
- CH1173/1-AH dated 31 May 2004 this facsimile advised the client that data loggers which had been installed at the above site to record water level data had been vandalised and irreversibly damaged.
- CH1173/1-AI dated 3 December 2004 this report provided similar information as CH1173/1-AC and CH1173/1- AD which are discussed above.
- CH1173/1-AM dated 16 December 2005 This report collated the information presented in the above letter and reports, and presented recommendations and information on:

- Previous reports and letters provided, including surface and subsurface conditions, excavation conditions, and comments on suitability of the site for residential development;
- General land capability with respect to site filling and drainage and the likely associated effects on groundwater quality;
- Acid sulfate soils and a preliminary management plan. From this previous investigation, one test pit (TP9) was located within the site for the current investigation. The results of the testing on samples from this test pit are discussed in Section 7 below;
- o Groundwater levels to date.
- CH1173/1-AN dated 26 June 2006 This letter provided the results of groundwater monitoring on the site over a one year period.

2 FORMATION OF ACID SULFATE SOILS

Acid Sulfate Soils (ASS) are soils which contain significant concentrations of pyrite which, when exposed to oxygen, in the presence of sufficient moisture, oxidises, resulting in the generation of sulfuric acid. Unoxidised pyritic soils are referred to as potential ASS (PASS). When the soils are exposed, the oxidation of pyrite occurs and sulfuric acids are generated, and the soils are said to be actual ASS (AASS).

Pyritic soils typically form in waterlogged, saline sediments rich in iron and sulfate. Typical environments for the formation of these soils include tidal flats, salt marshes and mangrove swamps below about RL 5m AHD. They can also form as bottom sediments in coastal rivers and creeks.

Pyritic soils of concern on low lying NSW and coastal lands have mostly formed in the Holocene period, (i.e. 10,000 years ago to present day) predominantly in the 7,000 years since the last rise in sea level. It is generally considered that pyritic soils which formed prior to the Holocene period would already have oxidised and leached during periods of low sea level which occurred during ice ages, exposing pyritic coastal sediments to oxygen.

Disturbance or poorly managed development and use of acid sulfate soils can generate significant amounts of sulfuric acid, which can lower soil and water pH to extreme levels (generally <4) and produce acid and salts, resulting in high salinity.

The low pH, high salinity soils can reduce or altogether preclude vegetation growth and can produce aggressive soil conditions which may be detrimental to concrete and steel components of structures, foundations, pipelines and other engineering works.

Generation of the acid conditions often releases aluminium, iron and other naturally occurring elements from the otherwise stable soil matrices. High concentrations of such elements, coupled with low pH and alterations to salinity can be detrimental to aquatic life. In severe cases, affected waters flowing off-site can have detrimental effect on aquatic ecosystems.

3 SCOPE OF WORK

The following scope of work was carried out:

• Review of relevant information contained in the previous reports;

- Fieldwork, comprising the excavation of five test pits (TP101 to TP105) and collection of soil samples for subsequent laboratory testing;
- Laboratory testing of eight selected soil samples for Chromium Reducible Sulfur (CRS), Total Actual Acidity (TAA), Total Sulfidic Acidity (TSA) and Total Potential Acidity (TPA) to assess the presence or absence of ASS;
- Data interpretation and reporting of results.

Further information on each stage of work is presented in the sections below.

4 SITE LOCATION AND ATTRIBUTES

4.1 Location and Description

The site is located on a portion of Lot 1 DP725785 (Lot 1). The whole of Lot 1 is proposed to become a residential subdivision, which is proposed to be developed in stages. The study site is located along a 600m section of road within the Stage 1 area. Previous reports identified two different 'zones' with different subsurface conditions on Lot 1. Zone 1 comprised residual soils and weathered siltstone materials and Zone 2 comprised alluvial and fill soils overlying residual soils. The previous investigation identified that Zone 2 soils may contain acid sulfate soils. Within the Stage 1 area, Zone 2 soils will be disturbed along the 600m section of road to approximately 0.6m depth.

For the purposes of this report, the site covers an area approximately 600m long by about 30m wide. The site is located on the western side of Lot 1, and is indicated on Figure 1.

The site is located within a generally level alluvial floodplain area, at the base of a south facing hill with surface slopes of approximately 5° to 10° . At the time of the investigation, the site was vegetated with grasses and scattered trees. Water was ponded in several lower lying areas, and the surface soils were generally wet across the site. No structures were observed on the site at the time of the investigation.

4.2 Proposed Excavations and Site Disturbance

It is understood that the development will involve excavations to about 0.6m depth for services and utilities and road construction. At this stage, it is not known what volumes of soil will be removed, and we have assumed greater than 1000 tonnes of soil will be excavated or disturbed.

The timing of the works is not known, but it is assumed works will be started within the next 12 months, should relevant approvals be granted for the development.

4.3 Acid Sulfate Risk Map & Site Elevation

The 1:25,000 Acid Sulfate Risk Map of Moonee Beach indicates that the site is in an area of low probability of ASS between 1m and 3m below ground surface (Class Ap2) and greater then 3m below ground surface (Class Ap4).

5 FIELDWORK

Fieldwork was carried out on 27 June 2007 and comprised excavation of five test pits (TP101 to TP105) to depths of about 2.0m. The test pits were excavated using a backhoe equipped with a 450mm bucket.

Soil samples were collected from each test pit at 0.5m intervals and placed into plastic zip-lock sample bags. Samples were stored in chilled insulated containers during field work and then transported to a contract laboratory.

Fieldwork was carried out in the full-time presence of a Scientist from Coffey, who nominated the location of the test pits, collected samples and logged the subsurface conditions encountered in the test pits. Figure 1 shows the investigation locations. Engineering Logs are presented in Appendix A, with explanation sheets defining the terms and symbols used in their preparation.

6 SUBSURFACE CONDITIONS

The 1:250,000 geological map for Coffs Harbour / Dorrigo (which covers the Moonee Beach area) indicates the site is on the boundary between the Coramba Beds comprising greywacke, slate and siliceous argillite and Quaternary Alluvium comprising of sands, silts, clays and gravels.

The subsurface conditions interpreted from the test pits is summarised in Table 1 below.

l lait			Depth to Base of Unit (m)				
Unit	Material Description	TP101	TP102	TP103	TP104	TP105	
1	Fill: Gravelly Clay, low plasticity, orange-grey.	-	0.15	-	-	-	
2	Topsoil: Silty Clay, low plasticity, dark brown.	0.3	0.3	0.2	0.2	0.15	
3	Estuarine / Alluvial Soil: Silty Clay, low to medium plasticity, grey.	1.3	1.25	1.75	0.9	0.6	
4	Residual Soil: Silty Gravelly Clay and Gravelly Clay, low to medium plasticity, grey, with some orange- brown mottling, gravel is fine to coarse grained.	>2.0	>2.0	>2.0	1.7	>2.0	
5	Extremely Weathered Siltstone: Clayey Gravel, fine to coarse grained, white with orange mottle, clay is low plasticity.	-	-	-	>2.0	-	

 Table 1:
 Summary of Stratigraphy Observed in Test Pits

Generally groundwater was observed to be at the surface in most test pit locations.

It should be noted that groundwater inflows and levels may vary depending on a number of factors including rainfall, temperature, infiltration rates and geological conditions.

7 SAMPLING AND LABORATORY TESTING

Samples were collected in each test pit at 0.5m intervals. Samples selected for the acid sulfate soil assessment were sent to a contract NATA accredited laboratory and tested for Total Potential Acidity (TPA), Total Actual Acidity (TAA), Total Sulfidic Acidity (TSA) and Chromium Reducible Sulfur (CRS). Samples were selected on the basis of location and soil type.

The results of the testing are summarised below in Table 2 and presented on the laboratory result sheets presented in Appendix B.

Unit	Location & Depth (m)	Texture	Reduced Inorganic Sulfur (%Scr)	Action Criteria For %Scr	Titratible Potential Acidity (TPA) Mole H⁺/Tonne	Action Criteria For TPA Mole H [*] /Tonne
Unit 3 - Estuarine/Alluvial Soil	TP101 0.4- 0.5	Fine	<0.005	0.03	13	18
Unit 4 – Residual Soil	TP101 1.4- 1.5	Coarse	<0.005	0.03	24	18
Unit 3 - Estuarine/Alluvial Soil	TP102 0.4- 0.5	Fine	<0.005	0.03	11	18
Unit 3 - Estuarine/Alluvial Soil	TP102 0.9- 1.0	Fine	0.008	0.03	12	18
Unit 3 - Estuarine/Alluvial Soil	TP103 0.9- 1.0	Fine	<0.005	0.03	10	18
Unit 3 - Estuarine/Alluvial Soil	TP103 1.4- 1.5	Fine	<0.005	0.03	13	18
Unit 3 - Estuarine/Alluvial Soil	TP104 0.4- 0.5	Fine	<0.005	0.03	б	18
Unit 3 - Estuarine/Alluvial Soil	TP105 0.4- 0.5	Fine	0.012	0.03	61	18

Summary of CRS, TAA & TPA Testing

Table 2:

Note: Values in shaded and bold exceed adopted action criteria;

Coffey Geotechnics GEOTCOFH01173AB-AA 17 July 2007

ശ

Action criteria adopted are based on disturbance of more than 1000 tonnes of acid sulfate soils.

TPA concentrations exceeded the adopted action criteria in samples TP101 1.4-1.5m and TP105 0.4-0.5m.

One test pit (TP9) from the previous investigation reported in CH1173/1-AM, was tested using the field screening test and POCAS. The results of this testing indicated that S_{POS} and TPA were below the action criteria.

Comments on the results are provided in the Section 8.

8 CONCLUSION AND RECOMMENDATIONS

The results of the testing indicate that the soils at the site are unlikely to have pyritic sulfur, but may contain organic sulfur. This is supported by the low Scr results and the relatively high TAA and TPA results in the testing. These results suggest that the soils are unlikely to be ASS.

On this basis it is recommended that the soils are not ASS, but are acidic soils. Therefore, it is recommended that Council is consulted to determine if a management plan for acidic soils is required. Acidic soils are unlikely to cause significant harm to the environment, as the production of acid is slow and is unlikely to leach from the soils in significant quantities in their natural state. Should the soils be disturbed and be washed into waterways then acidification of the water can occur. Acidic soils can have a negative effect on vegetation growth, especially vegetation that is not native to Australia, and concrete footings can also be corroded by acidic soils.

Generally, two options for dealing with acidic soils may be considered. These include implementation of a sediment control plan which would prevent acidic soils from entering waterways, or treatment of the acidic soils with lime. The decision as to which option to adopt would depend on the need to implement a sediment control plan for the development, and/or the volumes of materials that may be excavated and treated with lime.

The acidic soils could be treated with lime to increase the pH. A bulk density of 1.6t/m³ has been assumed for the residual soils. Using the Total Actual Acidity (TAA) results, the liming ratio requirements were assessed to be 7kg/m³ of soil for acidic soils excavated.

Good quality fine agricultural lime should be used to treat the excavated soils. In calculating the liming ratios, a factor of safety of 1.5 has been allowed (as recommended in the ASSMAC guidelines) above the theoretical requirement to take into account the rate of lime reactivity and the possibility of inhomogeneous mixing.

In addition, it is recommended that the alluvial/colluvial and residual soils be considered as having a severe exposure classification in respect to aggressivity to buried structural elements. The recommendations indicated in AS2159-1995, with respect to concrete piles (Table 6.1 of that document) should be adopted for foundations at the site.

9 LIMITATIONS

The findings contained in this report are the result of discrete/specific methodologies used in accordance with normal practices and standards. To the best of our knowledge, they represent a reasonable interpretation of the general condition of the site. Under no circumstances, however, can it be considered that these findings represent the actual state of the site at all points.

This report does not address issues relating to potentially hazardous building materials or services which may be present on the site.

For and on behalf of Coffey Geotechnics Pty Ltd

alice Filme

Alicia Zillman Associate Environmental Engineer

Important information about your Coffey Report

As a client of Coffey you should know that site subsurface conditions cause more construction problems than any other factor. These notes have been prepared by Coffey to help you interpret and understand the limitations of your report.

Your report is based on project specific criteria

Your report has been developed on the basis of your unique project specific requirements as understood by Coffey and applies only to the site investigated. Project criteria typically include the general nature of the project; its size and configuration; the location of any structures on the site; other site improvements; the presence of underground utilities; and the additional risk imposed by scope-of-service limitations imposed by the client. Your report should not be used if there are any changes to the project without first asking Coffey to assess how factors that changed subsequent to the date of the report affect the report's recommendations. Coffey cannot accept responsibility for problems that may occur due to changed factors if they are not consulted.

Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult Coffey to be advised how time may have impacted on the project.

Interpretation of factual data

Site assessment identifies actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from literature and external data source review, sampling and subsequent laboratory testing are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how qualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, owners should retain the services of Coffey through the development stage, to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

Your report will only give

preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced and therefore your report recommendations can only be regarded as preliminary. Only Coffey, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project develops. If another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Coffey cannot be held responsible for such misinterpretation.

Your report is prepared for specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Coffey before passing your report on to another party who may not be familiar with the background and the purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.

Important information about your Coffey Report

Interpretation by other design professionals

Costly problems can occur when other design professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain Coffey to work with other project design professionals who are affected by the report. Have Coffey explain the report implications to design professionals affected by them and then review plans and specifications produced to see how they incorporate the report findings.

Data should not be separated from the report*

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way.

Logs, figures, drawings, etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel) and laboratory evaluation of field samples. These logs etc. should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

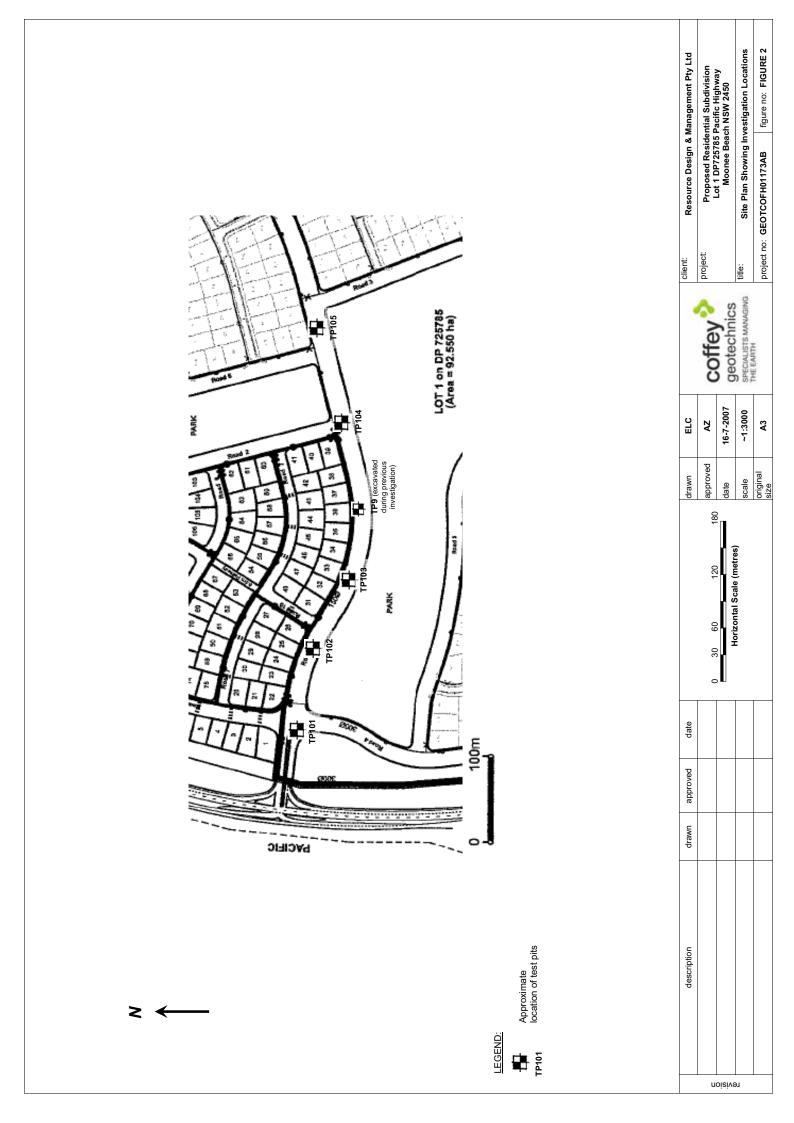
Geoenvironmental concerns are not at issue

Your report is not likely to relate any findings, conclusions, or recommendations about the potential for hazardous materials existing at the site unless specifically required to do so by the client. Specialist equipment, techniques, and personnel are used to perform a geoenvironmental assessment.

Contamination can create major health, safety and environmental risks. If you have no information about the potential for your site to be contaminated or create an environmental hazard, you are advised to contact Coffey for information relating to geoenvironmental issues.

Rely on Coffey for additional assistance


Coffey is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to a project, from design to construction. It is common that not all approaches will be necessarily dealt with in your site assessment report due to concepts proposed at that time. As the project progresses through design towards construction, speak with Coffey to develop alternative approaches to problems that may be of genuine benefit both in time and cost.


Responsibility

Reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than the design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from Coffey to other parties but are included to identify where Coffey's responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Coffey closely and do not hesitate to ask any questions you may have.

* For further information on this aspect reference should be made to "Guidelines for the Provision of Geotechnical information in Construction Contracts" published by the Institution of Engineers Australia, National headquarters, Canberra, 1987.

Figures

Appendix A

Engineering Logs

Soil Description Explanation Sheet (1 of 2)

DEFINITION:

In engineering terms soil includes every type of uncemented or partially cemented inorganic or organic material found in the ground. In practice, if the material can be remoulded or disintegrated by hand in its field condition or in water it is described as a soil. Other materials are described using rock description terms.

CLASSIFICATION SYMBOL & SOIL NAME

Soils are described in accordance with the Unified Soil Classification (UCS) as shown in the table on Sheet 2.

PARTICLE SIZE DESCRIPTIVE TERMS

NAME	SUBDIVISION	SIZE
Boulders		>200 mm
Cobbles		63 mm to 200 mm
Gravel	coarse	20 mm to 63 mm
	medium	6 mm to 20 mm
	fine	2.36 mm to 6 mm
Sand	coarse	600 µm to 2.36 mm
	medium	200 µm to 600 µm
	fine	75 µm to 200 µm

MOISTURE CONDITION

- Dry Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented granular soils run freely through hands.
- Moist Soil feels cool and darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
- Wet As for moist but with free water forming on hands when handled.

CONSISTENCY OF COHESIVE SOILS

TERM	UNDRAINED STRENGTH S _U (kPa)	FIELD GUIDE
Very Soft	<12	A finger can be pushed well into the soil with little effort.
Soft	12 - 25	A finger can be pushed into the soil to about 25mm depth.
Firm	25 - 50	The soil can be indented about 5mm with the thumb, but not penetrated.
Stiff	50 - 100	The surface of the soil can be indented with the thumb, but not penetrated.
Very Stiff	100 - 200	The surface of the soil can be marked, but not indented with thumb pressure.
Hard	>200	The surface of the soil can be marked only with the thumbnail.
Friable	_	Crumbles or powders when scraped by thumbnail.

DENSITY OF GRANULAR SOILS

TERM	DENSITY INDEX (%)
Very loose	Less than 15
Loose	15 - 35
Medium Dense	35 - 65
Dense	65 - 85
Very Dense	Greater than 85

MINOR COMPONENTS

TERM	ASSESSMENT GUIDE	PROPORTION OF MINOR COMPONENT IN:
Trace of	Presence just detectable by feel or eye, but soil properties little or no different to general properties of primary component.	Coarse grained soils: <5% Fine grained soils: <15%
With some	Presence easily detected by feel or eye, soil properties little different to general properties of primary component.	Coarse grained soils: 5 - 12% Fine grained soils: 15 - 30%

SOIL STRUCTURE

	ZONING	CE	MENTING
Layers	Continuous across exposure or sample.	Weakly cemented	Easily broken up by hand in air or water.
Lenses	Discontinuous layers of lenticular shape.	Moderately cemented	Effort is required to break up the soil by hand in air or water.
Pockets	Irregular inclusions of different material.		

GEOLOGICAL WEATHERED Extremely weathered material	- ORIGIN IN PLACE SOILS Structure and fabric of parent rock visible.
Residual soil	Structure and fabric of parent rock not visible.
TRANSPORTE	
TRANSPORTE	DSOILS
Aeolian soil	Deposited by wind.
Alluvial soil	Deposited by streams and rivers.
Colluvial soil	Deposited on slopes (transported downslope by gravity).
Fill	Man made deposit. Fill may be significantly more variable between tested locations than naturally occurring soils.
Lacustrine soil	Deposited by lakes.
Marine soil	Deposited in ocean basins, bays, beaches and estuaries.

coffey **>**

Soil Description Explanation Sheet (2 of 2)

							ION AND DES	
(Exclu	Iding				ON PROCEDURE and basing fractions		USC	PRIMARY NAME
Ø		oarse 2.0 mm	CLEAN GRAVELS (Little or no fines)		range in grain size a ints of all intermediat		GW	GRAVEL
3 mm i		GRAVELS an half of co larger than	GRACI GRACI		ominantly one size or more intermediate siz		GP	GRAVEL
SOILS than 6 m	eye)	GRAVELS More than half of coarse ction is larger than 2.0 m	GRAVELS WITH FINES (Appreciable amount of fines)	Non- proce	plastic fines (for identedures see ML below)	tification)	GM	SILTY GRAVEL
RAIINED rials less 0.075 m	ie naked	GRAVELS More than half of coarse fraction is larger than 2.0 mm	GRAN WITH (Appre amc of fli		ic fines (for identificat CL below)	ion procedures	GC	CLAYEY GRAVEL
COARSE GRAIINED SOILS More than 50% of materials less than 63 mm is larger than 0.075 mm	0.075 mm particle is about the smallest particle visible to the naked eye)	arse 2.0 mm	CLEAN SANDS (Little or no fines)	Wide amou	range in grain sizes a ints of all intermediat	and substantial e sizes missing	SW	SAND
an 50% lar	ticle visi	SANDS In half of co maller than 2		Predo with s	ominantly one size or some intermediate siz	a range of sizes zes missing.	SP	SAND
More th	llest par	SANDS More than half of coarse fraction is smaller than 2.0 mm	SANDS WITH FINES (Appreciable amount of fines)		plastic fines (for idented under the set of		SM	SILTY SAND
	the sma	More	SA WITH (Appr am of f		ic fines (for identificat CL below).	ion procedures	SC	CLAYEY SAND
	out		IDENTIFICAT	ION PI	ROCEDURES ON FR	ACTIONS <0.2 mm.		
uan Lan	s ab	(0	DRY STREN	GTH	DILATANCY	TOUGHNESS		
ILS less th 75 mr	rticle i	CLAYS limit an 50	None to Low	/	Quick to slow	None	ML	SILT
aterial	nm pa	SILTS & CLAYS Liquid limit less than 50	Medium to H	ligh	None	Medium	CL	CLAY
FINE GRAINED SOILS tn 50% of material less i is smaller than 0.075 r	0.075 1	<u>ہ</u> م	Low to medi	um	Slow to very slow	Low	OL	ORGANIC SILT
FINE (an 50% i is sm	A A	LAYS mit an 50	Low to medi	um	Slow to very slow	Low to medium	MH	SILT
FINE GRAINED SOILS More than 50% of material less than 63 mm is smaller than 0.075 mm		SILTS & CLAYS Liquid limit greater than 50	High		None	High	СН	CLAY
ž		SILI Li grea	Medium to H	ligh	None	Low to medium	ОН	ORGANIC CLAY
HIGHLY SOILS	Y OF	RGANIC	Readily ident frequently by		y colour, odour, spon Is texture.	gy feel and	Pt	PEAT
• Low p	lastio	city – Liqu	uid Limit W _L les	s than	35%. • Modium plasti	city – W _L between 35%	% and 50%.	
C	ON	IMON	DEFECTS I	N SO	IL			
					DIAGO			

SOIL CLASSIFICATION INCLUDING IDENTIFICATION AND DESCRIPTION

TERM	DEFINITION	DIAGRAM	TERM	DEFINITION	DIAGRAM
PARTING	A surface or crack across which the soil has little or no tensile strength. Parallel or sub parallel to layering (eg bedding). May be open or closed.		SOFTENED ZONE	A zone in clayey soil, usually adjacent to a defect in which the soil has a higher moisture content than elsewhere.	MIN COLOMAN
JOINT	A surface or crack across which the soil has little or no tensile strength but which is not parallel or sub parallel to layering. May be open or closed. The term 'fissure' may be used for irregular joints <0.2 m in length.		TUBE	Tubular cavity. May occur singly or as one of a large number of separate or inter-connected tubes. Walls often coated with clay or strengthened by denser packing of grains. May contain organic matter	
SHEARED ZONE	Zone in clayey soil with roughly parallel near planar, curved or undulating boundaries containing closely spaced, smooth or slickensided, curved intersecting joints which divide the mass into lenticular or wedge shaped blocks.		TUBE CAST	Roughly cylindrical elongated body of soil different from the soil mass in which it occurs. In some cases the soil which makes up the tube cast is cemented.	
SHEARED SURFACE	A near planar curved or undulating, smooth, polished or slickensided surface in clayey soil. The polished or slickensided surface indicates that movement (in many cases very little) has occurred along the defect.		INFILLED SEAM	Sheet or wall like body of soil substance or mass with roughly planar to irregular near parallel boundaries which cuts through a soil mass. Formed by infilling of open joints.	

Rock Description Explanation Sheet (1 of 2)

DEFINITIONS	R R	ock substance, defect and mass are defined as follow	/s:			
Rock Substan	di	engineering terms roch substance is any naturally occ sintegrated or remoulded by hand in air or water. Oth mogenous material, may be isotropic or anisotropic.				
Defect		scontinuity or break in the continuity of a substance of	or substances.			
Mass		ny body of material which is not effectively homogeneous ore substances with one or more defects.	s. It can consist of	two or m	ore substances	without defects, or one or
SUBSTANCE	DES	CRIPTIVE TERMS:	ROCK	SUBST	ANCE STRE	NGTH TERMS
ROCK NAME		mple rock names are used rather than precise eological classification.	Term	Abbrev- iation	Point Load Index, I _S 50 (MPa)	Field Guide
PARTICLE SIZE Coarse grained Medium grained Fine grained	d M ed M	rain size terms for sandstone are: ainly 0.6mm to 2mm ainly 0.2mm to 0.6mm ainly 0.06mm (just visible) to 0.2mm	Very Lov	/ VL	Less than 0.1	Material crumbles under firm blows with sharp end of pick, can be peeled with a knife;
FABRIC		erms for layering of penetrative fabric (eg. bedding, eavage etc.) are:				pieces up to 30mm thick can be broken by finger pressure.
Massive	N	o layering or penetrative fabric.	1		0.1 to 0.0	
Indistinct	La	yering or fabric just visible. Little effect on properties.	Low	L	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm
Distinct		wering or fabric is easily visible. Rock breaks more sily parallel to layering of fabric.				show with firm bows of a pick point; has a dull sound under hammer. Pieces of core 150mm long by 50mm
Term Abb	revia					diameter may be broken by hand. Sharp edges of core may be friable and break
Residual Soil	RS	Soil derived from the weathering of rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.	Medium	м	0.3 to 1.0	during handling. Readily scored with a knife; a piece of core 150mm long by 50mm diameter can be
Extremely Weathered Material	xw	Material is weathered to such an extent that it has soil properties, ie, it either disintegrates or can be remoulded in water. Original rock fabric still visible.	High	н	1 to 3	broken by hand with difficulty A piece of core 150mm long
Highly Weathered Rock	нw	Rock strength is changed by weathering. The whole of the rock substance is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Some minerals are decomposed	-			by 50mm can not be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
		to clay minerals. Porosity may be increased by leaching or may be decreased due to the deposition of minerals in pores.	Very Hig	h VH	3 to 10	Hand specimen breaks after more than one blow of a pick; rock rings under
Moderately Weathered Rock	MW	The whole of the rock substance is discoloured, usually by iron staining or bleaching, to the extent that the colour of the fresh rock is no longer recognisable.	Extreme	y EH	More than 10	hammer. Specimen requires many
Slightly Weathered Rock	sw	Rock substance affected by weathering to the extent that partial staining or partial discolouration of the rock substance (usually by limonite) has taken place. The colour and texture of the fresh rock is recognisable; strength properties are essentially those of the	High Notes on	Bock Si	ubstance Stre	blows with geological pick to break; rock rings under hammer.
		fresh rock substance.	1. In anisot	opic rocks	s the field guide to	o strength applies to the strength
Fresh Rock	FR	Rock substance unaffected by weathering.	break rea	dily parall	el to the planar ar	
substance weat	ts the hering	term "Distinctly Weathered" (DW) to cover the range of conditions between XW and SW. For projects where it is	term. Wh makes it engineer	ile the terr clear that ng terms.	n is used in AS17 materials in that s	d as a rock substance strength 26-1993, the field guide therein strength range are soils in
advantage in ma given in AS1726 2. Where physical associated with	aking s i. and c igneo	ate between HW and MW or it is judged that there is no such a distinction. DW may be used with the definition hemical changes were caused by hot gasses and liquids us rocks, the term "altered" may be substituted for he abbreviations XA, HA, MA, SA and DA.	anisotrop 10 to 25 different	oic rocks w times the p	which fall across the count load index (boint load index (b. Lower strength	th for isotropic rocks (and ne planar anisotropy) is typically Is50). The ratio may vary for rocks often have lower ratios

Rock Description Explanation Sheet (2 of 2)

ROCK MA		Diagram	Map Symbol	Graphic Log (Note 1)	DEFECT SHAPE Planar	TERMS The defect does not vary in
Term	Definition					orientation
Parting	A surface or crack across which the rock has little or no tensile strength.		20	M	Curved	The defect has a gradual change in orientation
	Parallel or sub parallel to layering (eg bedding) or a planar anisotropy in the rock substance (eg, cleavage).	/	20 Beddi 20 Cleava	· · · · · · · · · · · · · · · · · · ·	Undulating	The defect has a wavy surface
	May be open or closed.			 (NOLE 2) 	Stepped	The defect has one or more well defined steps
Joint	A surface or crack across which the rock has little or no tensile strength.				Irregular	The defect has many sharp changes of orientation
	but which is not parallel or sub parallel to layering or planar anisotropy in the rock substance.		×60	(Note 2)		sment of defect shape is partly by the scale of the observation
	May be open or closed.			(10/02)	ROUGHNESS Slickensided	TERMS Grooved or striated surface usually polished
Sheared Zone (Note 3)	Zone of rock substance with roughly parallel near planar, curved or				Polished	Shiny smooth surface
(undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of	A	35	ill.	Smooth	Smooth to touch. Few or ne surface irregularities
	the defects are usually curved and intersect to divide the mass into lenticular or wedge shaped blocks.			[*]	Rough	Many small surface irregularitie (amplitude generally less than 1mm). Feels like fine to coarse sand paper.
Sheared Surface (Note 3)	A near planar, curved or undulating surface which is usually smooth, polished or slickensided.		40 7	10,665	Very Rough	Many large surface irregularities (amplitude generally more than 1mm). Feels like, or coarser than ver coarse sand paper.
Crushed Seam	Seam with roughly parallel almost				COATING TER Clean	MS No visible coating
(Note 3)	planar boundaries, composed of disoriented, usually angular fragments of the host rock	AN AN	50	Jor	Stained	No visible coating but surfaces are discoloured
	substance which may be more weathered than the host rock. The seam has soil properties.		~~		Veneer	A visible coating of soil or mineral, too thin to measure may be patchy
Infilled Seam	Seam of soil substance usually with distinct roughly parallel boundaries formed by the migration of soil into an open cavity or joint, infilled seams less than 1mm thick may be described as veneer or coating on listic surface.		ALL .	55	Coating	A visible coating up to 1mn thick. Thicker soil material is usually described using appropriate defect terms (eg infilled seam). Thicker rock strength material is usually described as a vein.
Extremely	joint surface. Seam of soil substance, often with				BLOCK SHAPI Blocky	
Weathered Seam	gradational boundaries. Formad by weathering of the rock substance in place.	#5705VC7588	a 32	5	Tabular	Thickness much less than length or width
	piavo.	Seam			Columnar	Height much greate than cross section

1. Usually borehole logs show the true dip of defects and face sketches and sections the apparent dip.

^{2.} Partings and joints are not usually shown on the graphic log unless considered significant.

^{3.} Sheared zones, sheared surfaces and crushed seams are faults in geological terms.

C	;0	f	f	ey	2	ç	geo	ote	chnics	-	Excava	tion No.	TP101
Ε	ng	in	e	ering	j L	-00	J -	Ex	cavation		Sheet Project	No:	1 of 1 GEOTCOFH01173AB
Clie	ent:			Reso	ouro	ce De	esigi	n & M	lanagement Pty Ltd		Date st	arted:	27.6.2007
Prir	ncipal:										Date co	omplete	d: 27.6.2007
Pro	ject:			Prop	ose	ed Su	ubdi	visio	n, Pacific Hwy, Moonee Beach		Logged	l by:	VS
Tes	st pit lo	cat	ion:	REF	ER	TO F	IGU	RE 1			Checke	ed by:	
equ	ipment	type	e and	l model: E	Backh	oe			Pit Orientation: Easting: m			R.L	. Surface:
	avation				2m lor	ng 0	45m w		Northing: m			dat	um:
ex	cavat	ion	info	ormation			mat	erial s	ubstance				
method	5 penetration	support	water	notes samples, tests, etc	RL I	depth metres	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	consistency/ density index	100 A pocket 200 A penetro- 400 meter	structure and additional observations
вн		N	•			-		CL	TOPSOIL: Silty Clay, low plasticity, dark brown, high in organic material	W	VS		TOPSOIL _
				D		0. <u>5</u> - - 1. <u>0</u>		CL	Silty CLAY: low to medium plasticity, grey	М	S	* *	ESTUARINE/ALLUVIAL SOIL
				D		1. <u>5</u>		CL	Gravelly Silty CLAY:low plasticity, grey, gravel is angular and fine to medium grained.		St/VSt		

End of test pit at 2m due to limit of required investigation Test pit TP101 terminated at 2m

-

-

2.0

2.<u>5</u>

3.<u>0</u>

3.<u>5</u>

4.0

D

TESTPIT TPLOGS1173AB.GPJ COFFEY.GDT 17.07.07

Sketch

method N X BH B R E classification symbols and support notes, samples, tests consistency/density index very soft soft soil description based on unified classification S shoring N nil undisturbed sample 50mm diameter VS natural exposure U₅₀ S F existing excavation undisturbed sample 63mm diameter U₆₃ Form GEO 5.2 Issue 3 Rev.2 backhoe bucket D V disturbed sample system firm penetration 1 2 3 4 bulldozer blade vane shear (kPa) St stiff • no resistance ranging to refusal ripper excavator very stiff hard Bs VSt bulk sample moisture environmental sample E R D Н dry refusal М moist Fb friable water VL water level on date shown W wet very loose V Wp plastic limit L MD loose w liquid limit medium dense water inflow D VD dense water outflow very dense

coffey	geotechnics	
COLLEY	geoteenniee	

Client:

Resource Design & Management Pty Ltd

Principal:

Proposed Subdivision. Pacific Hwv. Moonee Beach

equi	pment	type	and	model: I	Backh	noe			Pit Orientation:	Easting:	m			R.L	Surface:
exca	vation	dim	ensio	ons: 2	2m lo	ng 0.	45m wi	de		Northing:	m			dat	um:
ex	cavati	on	info	rmation			mat	erial s	ubstance						
method	c benetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	materia soil type: plasticity or parti colour, secondary and m	cle characteristics, nor components.		moisture condition	consistency/ density index	100 A pocket 200 D penetro- 400 meter	structure and additional observations
В		N				-		CL	FILL:Silty Gravelly Clay, low p and orange brown, high in orga fine to coarse grained	asticity, dark brow nic material, grave	n el is	W			
				D	-	0. <u>5</u>		CL	Silty CLAY: medium plasticity,	grey		W	S	×	ESTUARINE/ ALLUVIAL SOIL
						-								×	
				D	-	1.0									
			-	D	-	1. <u>5</u>		CL	Gravelly CLAY: low plasticity, orange/white mottling, gravel is medium grained	grey with angular and fine	— — to		St/VSt		
				D		2.0									
	20 000 000			D					End of test pit at 2m due to lim investigation Test pit TP102 terminated at 2						
						2. <u>5</u>									
						3. <u>0</u>									
						3. <u>5</u>									

Sketch

TESTPIT TPLOGS1173AB.GPJ COFFEY.GDT 17.07.07

				÷					
- 1	method		support	notes,	samples, tests	clas	sification symbols and	consisten	cy/density index
- 1	Ν	natural exposure	S shoring N nil	U ₅₀	undisturbed sample 50mm diameter	soil	description	VS	very soft
- 1	Х	existing excavation		U ₆₃	undisturbed sample 63mm diameter	base	ed on unified classification	S	soft
Ņ	BH	backhoe bucket	penetration	D	disturbed sample	syste	em	F	firm
Rev.:	В	bulldozer blade	1 2 3 4	V	vane shear (kPa)			St	stiff
e	R	ripper	no resistance ranging to	Bs	bulk sample	mois	sture	VSt	very stiff
ne	E	excavator	refusal	E	environmental sample	D	dry	н	hard
ŝ			water	R	refusal	М	moist	Fb	friable
5.2 Issue			water level			W	wet	VL	very loose
GEO			on date shown			Wp	plastic limit	L	loose
Ю						WL	liquid limit	MD	medium dense
Ξ			water inflow					D	dense
Form			water outflow					VD	very dense

TP102

27.6.2007

27.6.2007

GEOTCOFH01173AB

1 of 1

Excavation No.

Sheet

Project No:

Date started:

Date completed:

echnics

3.<u>0</u>

3.<u>5</u>

4.0

Client:

Resource Design & Management Pty Ltd

Principal:

Pro	oject:			Prop	oos	ed Sı	ubdi	visio	n, Pacific Hwy, Moo	onee Beach		L	ogged	by:		VS
Te	st pit lo	ocat	ion:	REF	ER	TO F	IGU	RE 1				C	Checke	ed by	:	
equ	iipment	type	e and	l model:	Backh	10e			Pit Orientation:	Easting:	m				R.L.	. Surface:
	avation			ons: 2 ormation	2m loi	ng 0.	45m w		ubstance	Northing:	m				datu	ım:
method	1 2 3	support		notes samples, tests, etc	RL	depth metres	aphic log	classification symbol	mater soil type: plasticity or par colour, secondary and	rticle characteristics,		moisture condition	consistency/ density index	¹⁰⁰ × pocket	'a	structure and additional observations
BH		N	•	D	-	0. <u>5</u> 		CL	TOPSOIL:Silty Clay, low plas Silty CLAY: medium plasticit Gravelly CLAY: low plasticity	y, grey		M	St/VSt	**		TOPSOIL ESTUARINE/ALLUVIAL SOIL
				D		2.0 	4//4/		orange/white mottling, gravel medium grained End of test pit at 2m due to li investigation Test pit TP103 terminated at	mit of required	°					

Excavation No.

Sheet

Project No:

Date started:

Date completed:

TP103

27.6.2007

27.6.2007

GEOTCOFH01173AB

-

1 of 1

TESTPIT TPLOGS1173AB.GPJ COFFEY.GDT 17.07.07

Sketch

method N support S shoring classification symbols and notes, samples, tests consistency/density index soil description based on unified classification N nil undisturbed sample 50mm diameter vs natural exposure U₅₀ very soft X BH B R E existing excavation U₆₃ undisturbed sample 63mm diameter soft S F backhoe bucket D V disturbed sample system firm Form GEO 5.2 Issue 3 Rev.2 penetration bulldozer blade vane shear (kPa) St stiff no resistance ranging to very stiff hard VSt ripper excavator Bs bulk sample moisture environmental sample E R D dry н refusal М moist Fb friable water water level on date shown W wet VL very loose Wp plastic limit L loose MD w liquid limit medium dense water inflow dense very dense D VD 4 water outflow

coffey	geotechnics
--------	-------------

Client:

Resource Design & Management Pty Ltd

Principal:

Гез	t pit l	oca	tion:	RE	FER	TO F	IGU	RE 1				C	Checke	ed by:	
equi	pmen	t typ	e and	d model:	Back	hoe			Pit Orientation:	Easting:	m			R.L	Surface:
exca	avatio	n din	nensi	ons:	2m lo	ong 0.	45m wi	ide		Northing:	m			dat	um:
ex	cava	tion	infe	ormatio	า		mat	erial s	ubstance						
method	5 penetration	support	water	notes samples tests, et	c	depth metres	graphic log	classification symbol	mater soil type: plasticity or pa colour, secondary and	rticle characteristics, minor components.		moisture condition	consistency/ density index	100 A pocket 200 A penetro- 400 meter	structure and additional observations
НШ		N						CL	TOPSOIL:Silty Clay, low place	sticity, dark brown		W			TOPSOIL
				D		0. <u>5</u>		CL	Silty CLAY: medium plastici	y, grey	F	М			ESTUARINE/ALLUVIAL SOIL
				D	_	1. <u>0</u> 		CL	Gravelly CLAY: low plasticit orange/white mottling, grave medium grained	7, grey with I is angular and fine t	 0				RESIDUAL SOIL
				D		1. <u>5</u> - -		GC	Clayey GRAVEL:fine to coa	rse grained, angular.					EXTREMELY WEATHERED
				D		2.0 2.5 3.0 3.5 ⁻			white/ orange brown mottling End of test pit at 2m due to I investigation Test pit TP104 terminated at	imit of required					SILTSTONE

Sketch

	method		support	notes,	samples, tests	clas	sification symbols and	consister	cy/density index
	Ν	natural exposure	S shoring N nil	U ₅₀	undisturbed sample 50mm diameter	soil	description	VS	very soft
	Х	existing excavation		U ₆₃	undisturbed sample 63mm diameter	base	ed on unified classification	S	soft
Ņ	BH	backhoe bucket	penetration	D	disturbed sample	syst	em	F	firm
Re	В	bulldozer blade	1234	V	vane shear (kPa)			St	stiff
3	R	ripper	no resistance ranging to	Bs	bulk sample	moi	sture	VSt	very stiff
ene en e	E	excavator	refusal	E	environmental sample	D	dry	н	hard
š			water	R	refusal	M	moist	Fb	friable
5.2			 water level 			W	wet	VL	very loose
			on date shown			Wp	plastic limit	L	loose
GEO			•			WL	liquid limit	MD	medium dense
ΞĘ			water inflow					D	dense
Ē			- water outflow					VD	very dense

1 of 1 GEOTCOFH01173AB Project No: 27.6.2007 Date started: 27.6.2007 Date completed:

TP104

Excavation No.

Sheet

coffey 🔶 ge	otechnics
-------------	-----------

Client:

Resource Design & Management Pty Ltd

Principal: Project:

Proposed Subdivision, Pacific Hwy, Moonee Beach

REFER TO FIGURE 1 Test pit location:

equip	oment	type	and	model: E	Backh	noe			Pit Orientation:	Easting:	m			R.	L. Surface:
excavation dimensions: 2m long 0				ng 0.4	45m wi			Northing:	m			da	tum:		
exc		ion	info	ormation			mat		ubstance						
	5 penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle colour, secondary and minor	components.		moisture condition	consistency/ density index	100 A pocket 200 A penetro- 300 meter	
ВН	00000	N				-	$\left \left\{ \right \right\}$	CL	TOPSOIL:Silty Clay, low plasticity	, dark brown					TOPSOIL
				D		0.5		CL	Silty CLAY: low plasticity, grey <-B>Silty CLAY: medium plastic	ity, grey with					ESTUARINE / ALLUVIAL SOIL
				D	-	- 1. <u>0</u> -			orange/white mottling						
				D		- 1. <u>5</u> -									-
				D	-	2.0									
				D		2.0 2.5 3.0 3.5	/////		End of test pit at 2m due to limit of investigation Test pit TP105 terminated at 2m	required					-

Sketch

ſ	method		support	notes,	samples, tests	clas	sification symbols and	cons	istency/	/density index
	N	natural exposure	S shoring N nil	U ₅₀	undisturbed sample 50mm diameter	soil	description	VS		very soft
	х	existing excavation		U ₆₃	undisturbed sample 63mm diameter	base	d on unified classification	S		soft
2	BH	backhoe bucket	penetration	D	disturbed sample	syste	em	F		firm
Rev.	В	bulldozer blade	1234	V	vane shear (kPa)			St		stiff
Э	R	ripper	no resistance ranging to	Bs	bulk sample	mois	sture	VSt		very stiff
ne	E	excavator	refusal	E	environmental sample	D	dry	н		hard
Issue			water	R	refusal	М	moist	Fb		friable
5.2			water level			W	wet	VL		very loose
õ			- on date shown			Wp	plastic limit	L		loose
GEO						WL	liquid limit	MD		medium dense
			water inflow					D		dense
Form			- water outflow					VD		very dense

Sheet 1 of 1 GEOTCOFH01173AB 27.6.2007 27.6.2007

TP105

Logged by:

Checked by:

Project No: Date started: Date completed: vs

Excavation No.

TPLOGS	
TESTPIT	

Appendix B

Laboratory Test Result Sheets

RESULTS OF ACID SULPHATE SOIL ANALYSIS (Page 1 of 1)

8 samples supplied by Coffey on 28th June, 2007 - Lab. Job No. E7531

1173AB	
173	
è	
T COFHO	
GEOT (
GEO	
ect:	
Proj	
<u>n</u>	
ج	
лап.	
oleman.	
Ō	
mm	
byΕ	
ed I	
uest	
requ	
/sis	
رlan	

Sulphur Sulphur Sulphur Sulphur Sulphur (% chromium reducible S) 22B <			EAL		Lab. Bulk	Reduced Inorganic	Reduced Inorganic		Titratable Actual		<u> </u>	Titratable Potential Titratable Sulphidic	Titratable Sulphidic	NET ACIDITY
(m) code t_{tode} tode t_{tode} (copH.6.5) pH_{ss} <	Sample Site		lab	Texture	Density	Sulphur	Sulphur	TAA	Acidity (TAA)		ΡA	Acidity (TPA)	Acidity (TSA)	Chromium Suite
(note 7) (mote 7) (mote 7) (mote 7) (mote 7) (mote 7) (mote 1) (mote 1)		£	code		tonne DW/m ³		(Scr)	pH _{kel}	mole H ⁺ /tonne		H _m A	mole H ⁺ /tonne	mole H ⁺ /tonne	mole H ⁺ /tonne
22B $a-22B$ $a-22B$ $a-23F$ $23F$ 236 234 236				(note 7)		(%Scr) (note 2)	mole H ⁺ /tonne		(to pH 6.5)			(to pH 6.5)		(based on %Scrs)
0.4-0.5 <i>E7331/1</i> Fine 1.6 <0.005	Method No.					22B	a- 22B	23A	23F	23B	-	23G	23H	note 5
0.4-0.5 $E7331/3$ Fine 1.6 <0.005 0 5.82 2 5.70 5.70 13 11 1.4-1.5 $E7331/3$ Fine 1.6 <0.005 0 6.60 0 5.82 2.4					,									
1.4-1.5 $E7531/2$ Coarse1.6 <0.005 0 6.60 0 5.96 5.55 24 24 0.4-0.5 $E7531/3$ Fine1.8 <0.005 0 6.20 2 5.69 5.62 11 9 0.4-0.5 $E731/3$ Fine1.40.008 5 5.64 2 6.02 5.81 12 11 0.9-1.0 $E731/3$ Fine 1.4 0.008 5 5.64 2 6.02 5.81 12 11 0.9-1.0 $E731/5$ Fine 1.4 0.008 5 5.64 2 6.02 5.81 12 11 0.9-1.0 $E731/6$ Fine 1.4 0.008 5 5.64 2 6.02 5.81 12 11 0.9-1.0 $E731/6$ Fine 1.4 0.008 0 6.19 1 6.27 5.82 10 9 9 0.4-0.5 $E731/6$ Fine 1.4 0.012 7 4.58 27 4.96 4.62 61 3 0.4-0.5 $E731/8$ Fine 1.4 0.012 7 4.58 27 4.96 4.62 61 34	BH101	0.4-0.5	E7531/1		1.6	<0.005	0	5.82	2		.70	13	11	2.0
0.4-0.5 <i>E731/3</i> Fine 1.8 <0.005	BH101	1.4-1.5	E7531/2	-	1.6	<0.005	0	6.60	0		.55	24	24	0.0
0.9-1.0 <i>E731/4</i> Fine 1.4 0.008 5 5.64 2 6.02 5.81 12 11 0.9-1.0 <i>E731/6</i> Fine 1.5 <0.005	BH102	0.4-0.5	E7531/3		1.8	<0.005	0	6.20	2		.62	11	6	1.5
0.9-1.0 <i>E7331/5</i> Fine 1.5 <0.005	BH102	0.9-1.0	E7531/4		1.4	0.008	ß	5.64	2		.81	12	11	6.5
0.9-1.0 <i>E7331/5</i> Fine 1.5 <0.005														
1.4-1.5 <i>E7531/6</i> Fine 1.4 <0.005	BH103	0.9-1.0	E7531/5	Fine	1.5	<0.005	0	6.19	-	6.27 5	.82	10	6	1.0
0.4-0.5 <i>E7531/7</i> Fine 1.5 <0.005	BH103	1.4-1.5	E7531/6	Fine	1.4	<0.005	0	6.12	2		.94	13	11	1.5
0.4-0.5 E7531/8 Fine 1.4 0.012 7 4.58 27 4.96 4.62 61 34	BH104	0.4-0.5	E7531/7	Fine	1.5	<0.005	0	5.91	2		.21	റ	8	1.5
Refer Note 6 & 7	BH105	0.4-0.5	E7531/8	Fine	1.4	0.012	7	4.58	27		.62	61	34	34.5
														Refer Note 6 & 7

1 - All analysis is Dry Weight (DW) - samples dried and ground immediately upon arrival (unless supplied dried and ground)

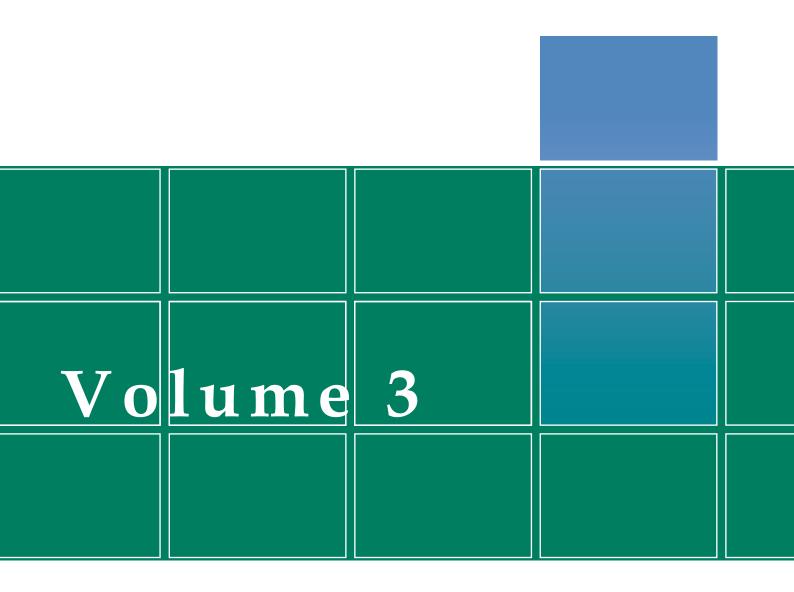
2 - Samples analysed by SPOCAS method 23 (ie Suspension Peroxide Oxidation Combined Acidity & Sulphate) and 'Chromium Reducible Sulphur' technique (Scr - Method 22B)

3 - Methods from Ahern, CR, McElnea AE , Sullivan LA (2004). Acid Sulfate Soils Laboratory Methods Guidelines. QLD DNRME.

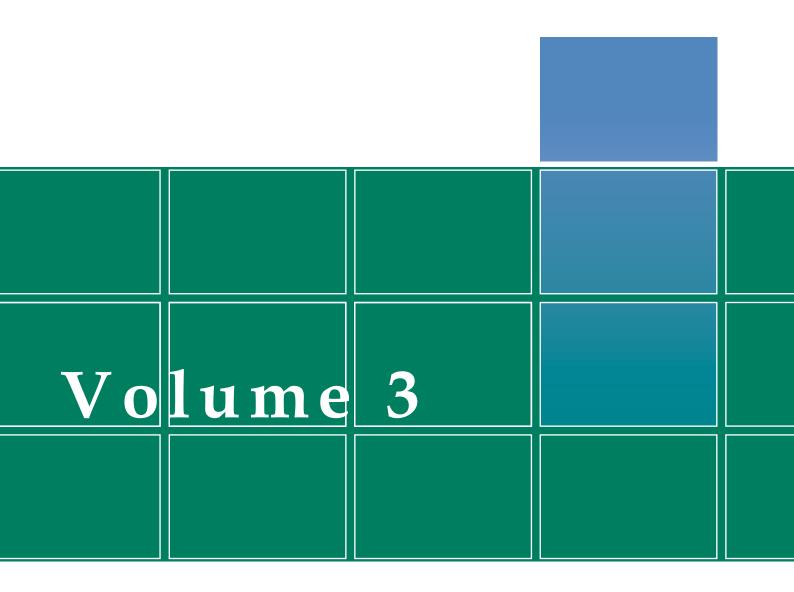
4 - Bulk density was determined immediately on arrival to laboratory (insitu bulk density is preferred)

ABA Equation: Net Acidity = Potential Sulfidic Acidity (ie. Scrs or Sox) + Actual Acidity + Retained Acidity - measured ANC/FF
 The neutralising requirement does not include a safety margin for complete neutralisation (a factor of 1.5 is often recommended)

7 - For Texture: coarse = sands to loamy sands; medium = sandy loams to light clays; fine = medium to heavy clays and sity clays


8 - Neutralisation Calculation for neutralisation of actual and potential acidity (ie. sum of calculation based on Crs and TAA)

Denotes not requested or required
 TAA is NATA certified but other SPOCAS is validated but awaiting full NATA certification


(Classification of potential acid subhate material if: coarse Scr20.03%S or 1 9mole H⁺/t; medium Scr20.06%S or 37mole H+/t; fine Scr20.1%S or 62mole H+/t)

* Projects that disturb >1000 tonnes of ASS soils with ≥0.03% S, a detailed management plan may be required.

LIME CALCULATION TPA Only	ka caco _• /m³	(includes 1.5 safety Factor)	note 5	1.6	2.8	1.4	1.3	1.1	1.3	1.0	6.4	(Note: Use either Liming Rate, NOT sum of both)
LIME CALCULATION CRS Suite	ka CaCO ₃ /m ³	(includes 1.5	note 5	0.2	0.0	0.2	0.7	0.1	0.2	0.2	3.6	(Note: Use either Liming
NET ACIDITY TPA Only	mole H ⁺ /tonne	(based on TPA)	note 5	13.0	23.5	10.5	12.0	9.5	12.5	0.6	61.0	Refer Note 6 & 7

Stormwater Assessment

Hydraulic Assessment

Shaping the Future

THE GLADES, MOONEE BEACH

HYDRAULIC ASSESSMENT

April 2007 Job No. LJ8596_02/R2

Auspacific Engineers

Cardno Lawson Treloar Pty Ltd

ABN 55 001 882 873 Ground Floor, 9 Gardner Close Milton Queensland 4064 PO Box 388 Toowong Queensland 4066 Australia **Telephone: 07 3310 2455** Facsimile: 07 3369 9722 International: +61 7 3310 2455 cltqld@cardno.com.au www.cardno.com.au

Document (Control						
Varaian	Data	Autho	or	Reviewe	er	Approve	d
Version	Date	Name	Initials	Name	Initials	Name	Initials
LJ8596_02/R2	04/04/07	K. Quinn		J. McArthur		J. McArthur	

"© 2007 Cardno (Qld) Pty Ltd All Rights Reserved. Copyright in the whole and every part of this document belongs to Cardno (Qld) Pty Ltd and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person without the prior written consent of Cardno (Qld) Pty Ltd."

TABLE OF CONTENTS

1.	INTRODUCTION	. 1
2.	SITE CHARACTERISTICS	. 2
3.	HYDRAULICS	. 3
	3.1 Previous Studies	. 3
	3.2 Hydraulic Approach	. 3
	3.3 Hydraulic Results	.4
4.	CONCLUSIONS	. 6
5.	QUALIFICATIONS	. 7
6.	REFERENCES	. 8

LIST OF TABLES

Table 1	Adopted Mannings n values	3
---------	---------------------------	---

LIST OF FIGURES

Figure 1	Site Location and MIKE11 Model Layout
Figure 2	MIKE11 Model Layout (Site)
Figure 3	1% AEP Flood Event Inundation Extent (Existing)
Figure 4	Site Flood Risk Precincts

REFERENCE DRAWING

Auspacific Engineers drawing number 04-1600 P1-B

APPENDICES

APPENDIX A Detailed MIKE11 Results

1. INTRODUCTION

This report has been prepared by Cardno Lawson Treloar Pty Ltd (CLT), specialist hydrologic and hydraulic consultants, to assess flooding associated with the proposed residential subdivision, known as the "The Glades", at Moonee Beach, Coffs Harbour. The investigation has been carried out for Auspacific Engineers, the civil engineers for the project, acting on behalf of The Rothwell Boys Pty Ltd.

This report presents the details of the hydraulic modelling of the existing and developed site including proposed road crossings and outlines the impacts of the development on flooding in the area. The report addresses Coffs Harbour City Council's requirements for a flood study for a proposed development outlined in the *Floodplain Development and Management Policy and the requirements of the Moonee Development Control Plan.*

This report supersedes our previous report of October 2005 (Cardno Lawson Treloar Report #J8596/R1). Since this earlier report there has been a revised development extent and layout which included a revision of the location of an internal road crossing and hence further modelling has been undertaken. The proposed development extent and layout is shown on Auspacific Engineers drawing number 04-1600 P1 dated November 2006.

2. SITE CHARACTERISTICS

The proposed 523 lot residential development covers an area of approximately 96 ha. The site is located on Lots 1 and 2 DP 725785 within the Coffs Harbour Local Government Area. The site is bounded to the north by Skinners Creek and to the west by the Pacific Highway. Moonee Creek forms the eastern boundary of the site. Figure 1 shows the location of the site. The attached reference drawing from Auspacific Engineers (04-1600 P1) shows the development layout.

The site is currently undeveloped with scattered trees over the majority of the area. Some stands of trees are located along the banks of the creeks and through the centre section of the site.

There are two high points within the site, the first adjacent to the Pacific Highway and the second in the centre of the site. The ground falls in all directions from these high points towards Skinners Creek, Moonee Creek and the drainage path in the southern part of the site. Existing ground levels range between 2 mAHD and 16 mAHD.

Moonee Creek discharges to the ocean approximately 2 km downstream of the southern site boundary.

3. HYDRAULICS

3.1 **Previous Studies**

Several flood studies have been carried out in the area around the site. The most recent was the *Moonee Creek Flood Study* prepared for Coffs Harbour City Council by Paterson Consultants in June 1998. A MIKE11 model of Moonee Creek and its tributaries was established to determine peak water surface levels throughout the catchment. Inflow hydrographs were derived from RORB models of the major Moonee Creek catchments. The MIKE11 model was calibrated to recorded flood levels in Moonee Creek and several of its tributaries from a storm event in November 1996. It was found that the model was generally predicting within 0.1 m of the recorded flood levels, and was therefore considered to be acceptable.

An earlier study by Gutteridge Haskins & Davies completed in April 1994 examined flooding associated with the proposed "Heritage Park" development which is located on the western side of the Pacific Highway, to the north of the site of the "The Glades". This study utilised several HEC2 models to size culvert structures within the development and to assess the impacts of the proposed development on flood levels.

3.2 Hydraulic Approach

The MIKE11 model of Moonee Creek constructed by Paterson Consultants was supplied by Coffs Harbour City Council. The model was updated from version 3.2 to version 1999b. Figure 1 shows the extent of the full Moonee Creek MIKE11 model.

Model cross sections in the area of the site were checked and additional cross sections added to more accurately model the proposed development. Figure 2 shows the modelled cross sections and MIKE11 branch names in the vicinity of the site. Additional cross sections were created from the detailed survey of the site carried out by RDM, with information also sourced from 2 m contours of the area provided by Coffs Harbour City Council.

The bridge crossing of the Pacific Highway over Skinners Creek was not included in the original MIKE11 model. The bridge was added to the updated model, using the details of the structure included in the Gutteridge Haskins & Davies (1994) HEC2 models. The details of the culverts under the Pacific Highway for the southern drainage path were also updated based on survey information provided by RDM.

The hydraulic roughness of each creek was maintained as originally modelled by Paterson Consultants, since the model had been calibrated to the November 1996 flood event. Adopted Mannings n values in the southern drainage path ("Bucca" MIKE11 branch) and the reaches of Skinners Creek and Moonee Creek adjacent to the site are listed in Table 1.

MIKE 11 Branch	Mannings n
Bucca	0.06
Moonee	0.1
Skinners	0.08

The catchment hydrology was not reassessed as part of the current study. The Paterson Consultants MIKE11 model adopted ultimate land uses for the catchment as allowed under the Development Control Plan current at the time. Paterson Consultants found that ultimate land uses only increased peak catchment flows by approximately 1% over the

existing land uses at that time. For the current study, a range of durations from 2 hours to 12 hours has been modelled for each flood event.

Downstream boundary conditions in the model were updated from the previous modelling based on the procedure outlined in the previous Department of Infrastructure, Planning and Natural Resources' (DIPNR) *Floodplain Management Guideline No.* 5 – Ocean Boundary Conditions (2004). This guideline recommends that the 1% AEP flood event is modelled by considering an envelope of the 1% AEP flood event flows with a normal tidal cycle and a high tide with a smaller flood event. This method will identify areas where flooding will occur primarily from backwater from elevated ocean levels.

For the current study, three simulations were considered to form the envelope curve for the 1% AEP event, namely:

- 1% AEP flood event flows with normal tides (0.6 mAHD)
- 5% AEP flood event flows with 5% AEP tide (2.3 mAHD)
- 20% AEP flood event flows with 1% AEP tide (2.6 mAHD)

In all cases, the tidal cycle was adjusted for each storm duration modelled so that the peak of the tidal cycle would correspond with the peak flood levels.

It should be noted that although greenhouse effects on ocean water levels are predicted to be in the range of a 0.03 to 0.25m rise by 2040, no specific allowance has been included in the tide levels outlined above. As outlined in *Guideline No* 5 - Ocean *Boundary Conditions* this is because elevated ocean levels recommended in the Guideline are already conservative and a freeboard of up to 0.5m is generally applied to flood level estimates.

The 5% AEP flood event and 20% AEP flood event were also analysed with normal tidal cycles to assess the impact of the development on smaller flood events.

The development was modelled by assuming all parts of the development would be filled above the 1% AEP flood level. This was achieved by extending the model cross section vertically at the development extent.

The Road 4 crossing (refer Reference Drawing) of the Bucca MIKE11 branch was modelled by including a culvert structure in the model. The culverts were sized to ensure no adverse upstream impacts at the Pacific Highway and with 1% AEP flood immunity assumed for Road 4.

Details of the modelled culvert arrangement are provided below:

- Four 1050 mm diameter RCPs
- Length 20 m (assumed local road with 8 m pavement and 4 m shoulders)
- Upstream and downstream invert level 3 mAHD
- Minimum road level 4.65 mAHD (assuming approximately 600 mm cover).

3.3 Hydraulic Results

Peak flood levels, flows and velocities for the enveloped 1% AEP flood event and the 5% and 20% AEP flood events are presented in Appendix A. These show that the development has no significant impact on flood levels within Moonee Creek or Skinners Creek. Flood levels in the Bucca MIKE11 branch are increased by up to 108 mm due to

filling, and by 90 mm directly upstream of the proposed road crossing (Road 4). These impacts are contained within the site boundary and do not cause impacts on upstream or downstream properties.

Figure 3 shows the 1% AEP flood event inundation extent in the vicinity of the site. Only the existing inundation extent has been shown, due to the insignificant impacts of the development on flood levels. Figure 3 also shows water surface level contours in the area of the site.

It was found that the 1% AEP flood flows with normal tides produced the highest flood levels for the majority of the site. Downstream of Bucca 1270 and Moonee 6580 peak flood levels result from the high tailwater scenario (ie 20% AEP flood flows with 1% AEP tailwater).

Figure 4 shows the Flood Risk Precincts in the area of the site. As outlined in Coffs Harbour City Council's *Potentially Flood Prone Land Information Sheet*, the High Flood Risk is the area of land subject to high hydraulic hazard in the 1% AEP flood event and the Medium Flood Risk is land subject to low hydraulic hazard in the 1% AEP flood event. The hydraulic hazard was defined using the provisional hazard categories defined in the NSW Government (2001) *Floodplain Management Manual*. The development is located outside of the High Flood Risk precinct. Some minor filling would be required in the Medium Flood Risk precinct.

The development complies with the requirements for filling within 1% AEP flood level as outlined in Council's *Moonee Development Control Plan* 2004.

The modelling also indicates that if the access road into the Estate is set at a minimum level of RL 4.65mAHD, the access will have a flood immunity in excess of the 1% AEP flood event.

4. CONCLUSIONS

Based on the results of the MIKE11 modelling, the proposed "The Glades" development at Moonee Beach has been assessed to have no adverse impacts on flooding of adjacent properties. The development also has no detrimental impacts on the culvert or bridge structures under the Pacific Highway.

Areas of localised filling are required on the eastern and southern sides of the development. These are in areas classified as Medium Flood Risk and will not lead to any significant impacts on existing flood levels.

To avoid adverse impacts on flood levels at the Pacific Highway, the proposed Road 4 crossing of the southern drainage path should be comprised of four 1050 mm diameter culverts or equivalent.

5. QUALIFICATIONS

This report has been prepared by Cardno Lawson Treloar (CLT) specifically for Auspacific Engineers and specifically to provide advice on pre- and post- development flooding characteristics associated with the development of Lots 1 and 2 DP 725785, Moonee Beach.

Our analysis and overall approach has been specifically catered for the particular requirements of this project, and may not be applicable beyond this scope. For this reason any other third parties are not authorised to utilise this report without further input and advice from Cardno Lawson Treloar.

The report is based on the following information prepared by others:

- Detailed survey of the site provided by RDM;
- 2m aerial photogrammetry contours provided by Coffs Harbour City Council;
- Proposed development layout provided by Auspacific Engineers (Drawing Number: 04-1600 P1 dated November 2006);
- Topographic maps sourced from Department of Lands;
- MIKE11 model data and streamflow estimates by Paterson Consultants, prepared for Coffs Harbour City Council; and
- HEC2 model data by Gutteridge Haskins & Davies.

The accuracy of this report is dependent on the accuracy of this information.

6. **REFERENCES**

Coffs Harbour City Council 2004, Moonee Development Control Plan

Coffs Harbour City Council October 2002, Potentially Flood Prone Land Information Sheet

Coffs Harbour City Council undated, *Floodplain Development and Management Policy*, Subdivision and Contracts – Associated Policies

Coffs Harbour City Council 2003, Subdivision Development Control Plan

DHI Software 1999, MIKE11 A Modelling System for Rivers and Channels User Guide

Gutteridge Haskins & Davey 1994, *Moonee Creek Flood Study Report*, prepared for Newcastle Permanent Building Society

Institution of Engineers Australia 1998, Australian Rainfall and Runoff, A guide to flood estimation

NSW Government 2001, *Floodplain Management Manual: the management of flood liable land*, NSW Government

Paterson Consultants 1998, *Moonee Creek Flood Study, Final Report*, prepared for Coffs Harbour City Council

FIGURES

- Figure 1 Site Location and MIKE11 Model Layout
- Figure 2 MIKE11 Model Layout (Site)
- Figure 3 1% AEP Flood Event Inundation Extent (Existing)
- Figure 4 Site Flood Risk Precincts