

Penrith City Council Stormwater Report

Prepared for Andrew Wild

171562 Stormwater Report

Taylor Thomson Whitting (NSW) Pty Ltd, Consulting Engineers | ABN 81 113 578 377 48 Chandos Street, St Leonards NSW 2065 | +612 9439 7288 | ttw.com.au

Structural Civil Traffic Facade

Consulting Engineers

Contents

1.0	Executive Summary		
2.0	Site		
	2.1	Current Site	4
3.0	Prop		
	3.1	Onsite Stormwater Detention (OSD)	4
	3.2	Stormwater Quality Assessment	5
	3.3	Hydraulics	5
4.0	Draii	5	
	4.1	Hydrology	5
	4.2	Hydraulics	8
	4.3	Onsite Stormwater Detention (OSD)	8
5.0	Con	clusion	8
	Apper	ndix A	A
	Apper	ndix B	В

1.0 Executive Summary

This report has been prepared on behalf of **Andrew Wild** for the development at 40 Christie Street, St Marys.

The purpose of this report is to provide engineering assessment of the proposed stormwater modification for the new construction to meet Council's Development Control Plan (DCP).

The proposed works include the construction of a new weigh bridge within vehicle loading area, as well as the addition of new car parking areas. The additional parking works include new pavement, kerbing, and stormwater.

2.0 Site

2.1 Current Site

Currently, located on the site is a steel frame factory with chemical waste storage and treatment facilities.

There are two vehicle areas on site. Area A is for staff and visitor parking, whereas area B is for staff parking and vehicle loading/service area.

The site can be seen in figure 2.

Figure 1 -Site Extent

3.0 Council Requirements

3.1 Onsite Stormwater Detention (OSD)

The additional parking area will increase the hard stand surfaces, leading to an increasing stormwater runoff. As per the requirements of the DCP, runoff from the site must not be increased, therefore OSD is required.

In addition, the following items from council's DCP are relevant:

a) Adequate stormwater systems shall be designed and constructed to ensure that, for all rainwater events up to and including the 1:100 Average Recurrence Interval (ARI) event, new developments and redevelopments do not increase stormwater peak flows in any downstream areas.

- b) On-site stormwater detention systems must release water after any rainfall event to maximise future capacity and, therefore, cannot include rainwater tanks, water retention basins or dams.
- c) Detention storage is to be located at a level that is above the 1:5 ARI flood level.
- d) On-site detention systems are to be designed using a catchment wide approach. Advice should be sought from Council's Engineering Services Unit in this regard.
- e) On-site stormwater detention mechanisms should have a maintenance program in place.
- f) On-site stormwater detention mechanisms should be placed on the title of the relevant allotment/property to ensure their retention and maintenance.

3.2 Stormwater Quality Assessment Requirements

Stormwater quality treatment is required prior to discharge.

The site currently has pollution control mechanism in place, which included a stormwater shut off valve to prevent contaminants leaving the site.

3.3 Hydraulics

The following council DCP requirements are included in the stormwater design.

- a) Any new piped drainage system shall be designed to control minor stormwater flows under normal operating conditions for an ARI of 5 years.
- b) Any new drainage system shall be designed to control major stormwater flows under normal operating conditions for an ARI of 100 years.

Included in **Appendix C** is a DRAINS model output.

4.0 Drainage Design

The following items outline the drainage design approach undertaken.

4.1 Hydrology

This design complies with Australian Rainfall and Runoff (ARR) 2016 procedures.

The rainfall intensities shown in **figure 2 and figure 3** have been sourced from the Bureau of Meteorology website.

Location

Label: 40 Christie St

Latitude: -33.747776 [Nearest grid cell: 33.7375 (S)]
Longitude:150.770796 [Nearest grid cell: 150.7625 (E)]

IFD Design Rainfall Depth (mm)

Rainfall depth for Durations, Exceedance per Year (EY), and Annual Exceedance Probabilities (AEP). FAO for New ARR probability terminology

Issued: 08 August 2017

		Annu	ıal Exceed	ance Prob	ability (A	EP)			
Duration	63.2%	50%#	20%*	10%	5%	2%	1%		
1 min	1.99	2.28	3.18	3.81	4.44	5.29	5.95		
2 min	3.26	3.67	5.01	5.96	6.90	8.20	9.24		
3 min	4.53	5.12	7.02	8.35	9.69	11.5	13.0		
4 min	5.70	6.46	8.92	10.6	12.4	14.7	16.6		
5 min	6.76	7.68	10.7	12.7	14.8	17.6	19.8		
10 min	10.7	12.3	17.3	20.7	24.2	28.8	32.4		
15 min	13.4	15.4	21.6	26.0	30.3	36.1	40.€		
30 min	18.2	20.7	29.0	34.8	40.5	48.2	54.2		
1 hour	23.1	26.2	36.1	43.1	50.0	59.6	67.1		
2 hour	28.9	32.4	44.0	52.2	60.6	72.4	81.8		
3 hour	33.0	36.9	49.8	59.1	68.7	82.1	92.9		
6 hour	42.3	47.3	63.8	75.9	88.5	106	120		
12 hour	55.6	62.6	85.7	103	120	145	164		
24 hour	73.4	83.7	118	143	168	202	229		
48 hour	94.1	109	157	193	229	275	310		
72 hour	106	123	180	221	263	315	354		
96 hour	113	131	193	237	283	337	378		
120 hour	117	137	200	245	293	348	390		
144 hour	121	140	203	249	297	352	395		
168 hour	123	142	204	250	298	353	395		

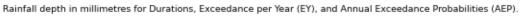
Note:

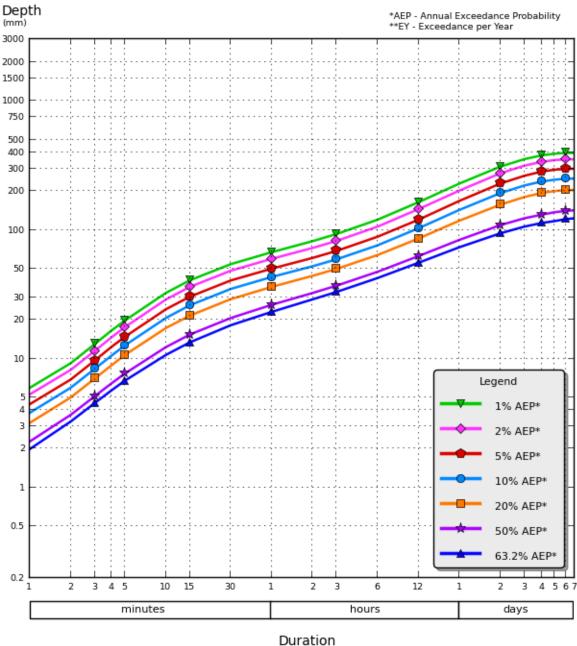
The 50% AEP IFD **does not** correspond to the 2 year Average Recurrence Interval (ARI) IFD. Rather it corresponds to the 1.44 ARI.

This page was created at 11:03 on Tuesday 08 August 2017 (AEST)

⊕ <u>Coovright</u> Commonwealth of Australia 2017, Bureau of Meteorology (ABN 92 637 533 532) | <u>Disclaimer</u> | <u>Privacy</u> | <u>Accessbility</u>

Figure 2- Intensity Frequency Duration Table (BOM)


^{*} The 20% AEP IFD **does not** correspond to the 5 year Average Recurrence Interval (ARI) IFD. Rather it corresponds to the 4.48 ARI.


Requested coordinate Latitude: -33.7478 Longitude: 150.7708

Nearest grid cell Latitude: 33.7375 (S) Longitude: 150.7625 (E)

IFD Design Rainfall Depth (mm)

Issued: 08 August 2017

©Copyright Commonwealth of Australia 2016, Bureau of Meteorology (ABN 92 637 533 532)

Figure 3: Design Rainfall Intensity Chart (BOM)

4.2 Hydraulics

The stormwater pipes have been modelled using DRAINs software in accordance with the City of Penrith's requirements. The requirements include that the pipes are designed. So that 1% AEP post development storm flows are attemcated to the pre-development 20% AEP storm flow water.

Included in **Appendix C** is a DRAINS model output.

4.3 Onsite Stormwater Detention (OSD)

Additional runoff is attenuated by using oversized pipes with flow control.

As per following tables:

Partial site analysis:

Area A	Pre(L/s)	Post(L/s)	Post with OSD(L/s)
Q100yr:	4	5	5
Q50yr:	4	4	4
Q20yr:	3	4	4
Q5yr:	2	3	3
Area B	Pre(L/s)	Post(L/s)	Post with OSD(L/s)
Q100yr:	16	17	13
Q50yr:	14	15	12
Q20yr:	12	12	10
Q5yr:	9	9	7

Area A & B	Pre(L/s)	Post(L/s)	Post with OSD(L/s)
Q100yr:	20	22	18
Q50yr:	18	19	16
Q20yr:	15	16	14
Q5yr:	11	12	10

Complete site analysis (basic catchment analysis):

ARI	PRE-DEVELOPMET ENTIRE AREA (L/s)	POST-DEVELOPMET ENTIRE AREA WITHOUT OSD (L/s)	POST-DEVELOPMET ENTIRE AREA WITH OSD (L/s)
Q100yr:	494	509	486
Q50yr:	439	453	430
Q20yr:	369	381	359
Q5yr:	264	272	253

Figure 4: Detention summary

As shown in the above, the post development flow are higher compared to the pre-development flow, therefore OSD is required.

It is proposed to provide OSD within the pits and pipes.

The approximate additional volume provided is 5 m³. Flow discharge will be by orifice control.

	Volume (m³)
Pipe 1	0.5
Pipe 2	1
Pipe 3	1.3
Total	2.8

Figure 5: Each proposed pipe detention summary

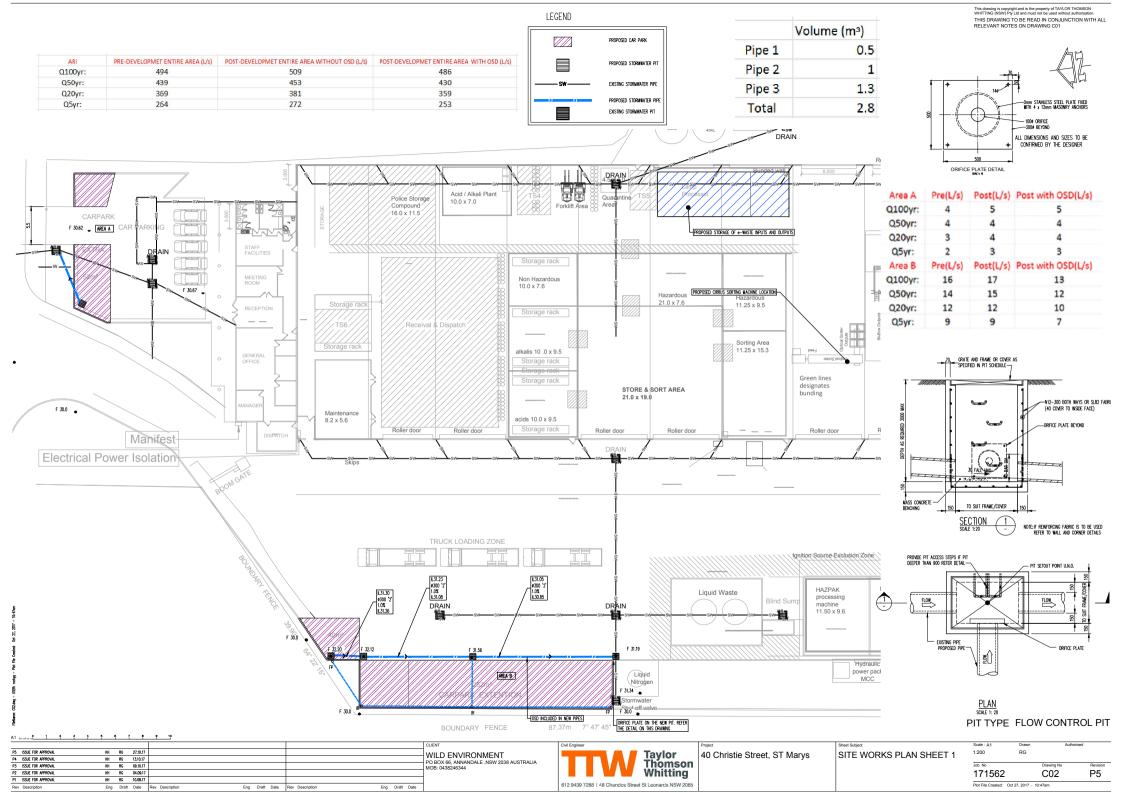
5.0 Conclusion

In addition, OSD will be provided and flows with attenuated to suit Council requirements.

There is a valve to prevent spill.

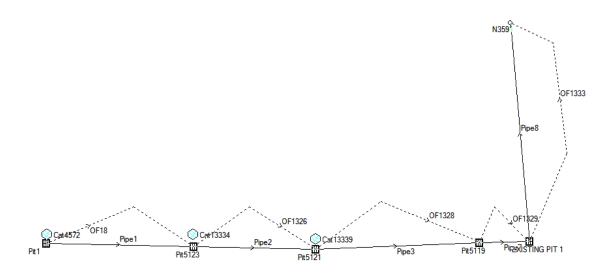
Prepared by TAYLOR THOMSON WHITTING (NSW) PTY LTD

Kelvin Holey

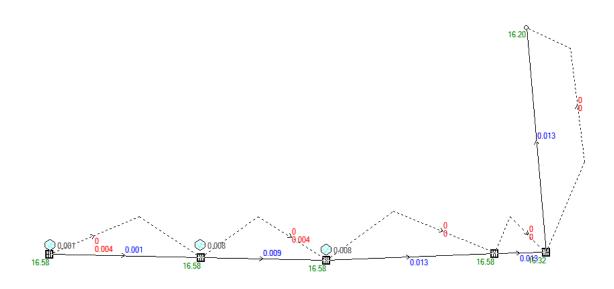

26 29

Chartered Civil & Environmental Engineer

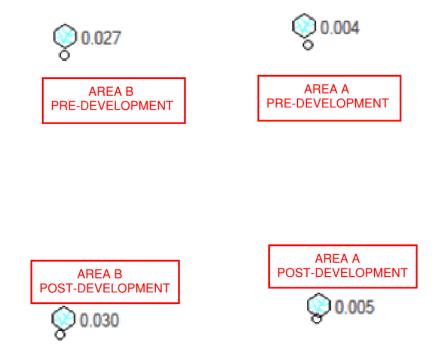
H:\2017\171562\Stormwater\20170720 City of Sydney Stormwater Report.docx

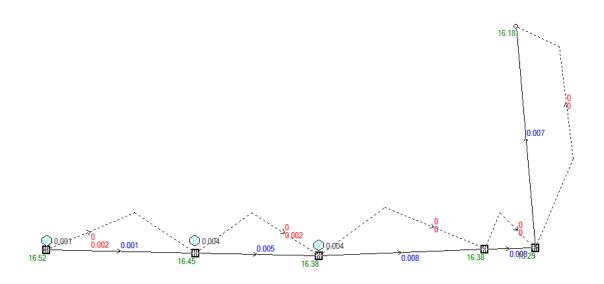

Appendix A

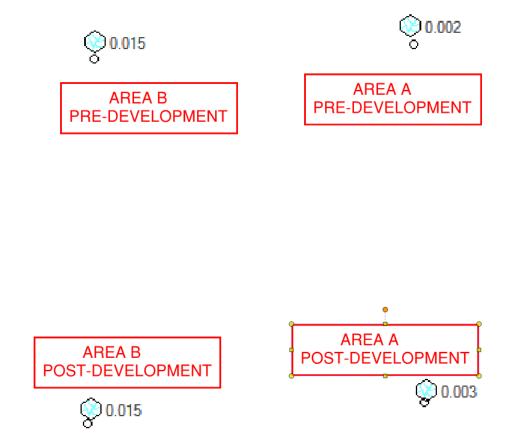
Proposed Stormwater Plan



Appendix B


DRAINs model data


DRAINs model summary


1% AEP storm applied to proposed car park (Area B with OSD)

1% AEP storm applied to pre-development and post development areas

20% AEP storm applied to proposed car park (Area B with OSD)

20% AEP storm applied to pre-development and post development areas