

Our Ref: 17322

27 May 2019

Department of Planning & Environment GPO Box 39 SYDNEY NSW 2001

Attention: Mr Bruce Zhang

Dear Bruce,

# RE: CHESTER HILL MATERIALS RECYCLING FACILITY MP 06\_0052 MOD 3 RESPONSE TO CANTERBURY BANKSTOWN COUNCIL ADDITIONAL SUBMISSION

The Transport Planning Partnership (TTPP) prepares this letter in response to additional (May 2019) comments made by Canterbury Bankstown Council (CBC) in relation to the above development application.

The additional comments from CBC and TTPP's response to each item are presented in Table 1 below.

**Table 1: Response to Council's Comments** 

| Council's May 2019 Comments                                                                                                                                                                                                                                                                                              | TTPP's Response                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Whilst the applicant has provided a summary results of SIDRA modelling, a detailed SIDRA Output and Movement Summary is missing for all three nearby intersections (Miller-Hume Hwy, Miller Rd- Site access, and Miller Rd- Christina Rd).                                                                            | Detailed Movement Summary output from SIDRA for all three assessed intersections are provided in Attachment One of this letter.                                                                                                                                                                                     |
| Council seeks confirmation on whether the existing and the proposed peak period trip generation takes considerations of all existing users at 191 Miller Road.                                                                                                                                                           | The traffic assessment included traffic generation surveys (as reported in TTPP's DA traffic assessment report) of the existing site access capturing all existing uses. Surveyed traffic volumes have been carried across into the future case SIDRA models.                                                       |
| <ul> <li>2. There is a discrepancy in traffic volumes, for example:</li> <li>Figure 2.2 it shows that 7 vehicles are entering during the AM peak in 2017.</li> <li>Figure 4.3 shows 5 vehicles entering during the AM peak in 2027. The growth factors do not appear to have been used.</li> </ul>                       | The discrepancy is due to a typo in the figures where the right turn entering volume has been incorrectly shown. Notwithstanding this, all traffic volumes for all movements at all intersections for all scenarios including the future case scenarios have been entered correctly into the relevant SIDRA models. |
| Figure 4.4 it shows the post development traffic generation as 86 vehicles are entering and 44 vehicles are exiting the site during the AM peak and 40 vehicles are entering and 89 vehicles are exiting during the PM peak.  In other words 130 vehicles and 129 vehicles are generated during the AM and PM peak hour. | TTPP confirms the volumes reported in Figure 4.4 are correct. They are higher than the traffic generation discussed in Section 4.1 of the DA traffic report due the inclusion of passenger car unit (PCU) factors to better account for the effects of heavy vehicles in our SIDRA models.                          |



| Council's May 2019 Comments                                                                                                                                                                                                                                 | TTPP's Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                             | In developing the SIDRA models, TTPP has adopted PCU factors of 1, 3 and 5 for staff vehicles, 12.5m heavy rigid vehicles and 19m articulated vehicles respectively. The PCU factors in our opinion are very conservative. In this regard, it is noted the US Highway Capacity Manual (HCM) recommended a PCU factor of 2.0 for trucks as per the extract from HCM below.  Step 2: Adjust Flow Rates for Heavy Vehicles  The flow rate for each movement may be adjusted to account for vehicle                            |
|                                                                                                                                                                                                                                                             | stream characteristics by using factors given in Exhibit 22-11.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                             | Vehicle TypePassenger Car Equivalent, $E_T$ Passenger car1.0Heavy vehicle2.0                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                             | The calculation to incorporate these values is given in Equation 22-9 and Equation 22-10.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                             | $v_{t,pce} = rac{v_t}{f_{HV}}$ $f_{HV} = rac{1}{1 + P_T(E_T - 1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                             | where $v_{i,poc} = \text{demand flow rate for movement } i \text{ (pc/h)},$                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                             | $v_i = \text{demand flow rate for movement } i \text{ (veh/h)},$                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                             | $f_{HV}$ = heavy-vehicle adjustment factor,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                             | $P_T$ = proportion of demand volume that consists of heavy vehicles, and                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                             | $E_T$ = passenger car equivalent for heavy vehicles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                             | Effectively, in TTPP's assessment a heavy rigid vehicle has three times the impact of a passenger vehicle. Similarly, a 19m articulated vehicles have five times the impact of a passenger vehicle.                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                             | The morning peak volumes in Figure 4.4 have been calculated as follow:                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                             | <ul> <li>staff vehicles 40 vph (x1 PCU) = 40 pcu/hr</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                             | heavy rigid trucks 16 vph (x3 PCU) = 48 pcu/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                             | articulated vehicles 6 vph (x5 PCU) = 30 pcu/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                             | total traffic generation 62 vph = 118 pcu/hr     with a taffic 3 years 10 grays from                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                             | <ul> <li>existing site traffic 9 vph = 12 pcu/hr</li> <li>total intersection traffic 71 vph = 130 puc/hr</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                             | The evening peak volumes have calculated in a similar                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                             | manner.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3. Confirm the calculation undertaken includes a gross weight of the nominated trucks. If so, the number of truck movements proposed could be higher than what is currently being proposed.  Please advise a tentative timeframe to receive ESA calculation | A review of the gate receipts for loads received and leaving the facility in preceding years found that trucks carrying waste to the facility carried on average 12.5 tonnes of waste each. Based on a proposed maximum capacity of 910 tonnes per day for the facility, this translates to 73 trucks per day or 146 trucks movements (two-way) per day or 15 movements (two-way) per hour based on a 10-hour working day.                                                                                                 |
|                                                                                                                                                                                                                                                             | It is noted that the DA traffic report assumes 16 truck movements (two-way) per hour which is higher than the above estimate. This is what has been modelled in SIDRA. In addition, as noted above a PCU factor of 3.0 has been assumed which is conservative given that the HCM recommended a factor of 2.0 for all trucks. Similarly for product delivery vehicles, the review found that trucks carried an average 30 tonnes of product. This translates to 30 trucks per day or 61 truck movements (two-way) per hour. |



| Council's May 2019 Comments                                                                                                                                                                                                                                                                                                                                                                                                                  | TTPP's Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                              | The DA traffic report and the underlying SIDRA modelling also assumes 6 truck movements (two-way) per hour together with a PCU of 5.0 which is conservative.  On this basis, the SIDRA modelling undertaken as part of the DA traffic assessment remains valid and will continue to provide robust assessment of the future operation of the assessed intersections. As such, the SIDRA models and its intersection performance detailed in the DA traffic report do not require any amendments.  ESA calculation will be undertaken by another consultant and will be provided under a separate cover.                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>Gurney Road and Miller Road north of Christina Road have a 3T load limit and these roads must not be used by trucks.</li> <li>Miller Road south of the site has traffic devices which has been designed for vehicles up to 12.5 metre long.</li> <li>The 12.5 m HRV may travel south to the Hume Hwy using Miller Rd, but the 19 m AV should access the State road network via northbound on Miller Rd and Christina Rd.</li> </ul> | This could be addressed by way of a consent condition requiring a traffic management plan to be prepared prior to occupation of the proposed development. The traffic management plan is to be distributed to all service providers and their drivers accessing the site. Drivers are required to abide by the rules and conditions contained in the traffic management plan when accessing the site. The traffic management plan will include a condition reflecting Council's intended truck routes for the site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5. In considering applicant's submission, Council notes TIA has not responded to a vehicular conflict at the entry of the site between the outgoing trucks and the vehicles intending to access staff car park.                                                                                                                                                                                                                              | This situation also occurs under existing arrangements. It is understood that this arrangement operates without any issues including when the subject site was previously operating at full capacity. It is further noted that a weigh bridge will continue to be provided for outgoing trucks just before the staff car park access. As such, outgoing trucks will be stopped at the weigh bridge and/or travel at a low speed as it approaches the staff car park access point as it leaves the weigh bridge. In addition, as vehicles enter the staff car park, they would do so at a slow speed as they turn in from Miller Street. Therefore, both the trucks and staff vehicles would proceed at a slow speed. The vehicles will be able to stop and yield to the opposing vehicles when and as required. In addition, a review of the aerial imagery of the area in question does not appear to suggest there is any sight distance issues. As such, this situation could continue to be self managed without any issues. |

We trust the above is to your satisfaction. Should you have any queries regarding the above or require further information, please do not hesitate to contact the undersigned on 8437 7800.

Yours sincerely,



Michael Lee Director



# Attachment One

Detailed SIDRA Output

### Site: 101 [EX\_AM\_Miller Road\_Hume Highway]

Miller Road\_Hume Highway

Signals - Fixed Time Coordinated Cycle Time = 150 seconds (User-Given Phase Times)

| Move      | ment Pe                       | erformance               | - Vehic          | les                 |                         |                     |                             |                           |                 |                                   |                          |
|-----------|-------------------------------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov                     | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| East: I   | East: Hume Highway (East Arm) |                          |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 5         | T1                            | 1444                     | 6.9              | 0.492               | 5.8                     | LOS A               | 17.9                        | 132.5                     | 0.38            | 0.35                              | 62.4                     |
| 6         | R2                            | 452                      | 5.1              | 0.652               | 44.7                    | LOS D               | 11.7                        | 85.2                      | 0.98            | 0.82                              | 30.2                     |
| Appro     | ach                           | 1896                     | 6.4              | 0.652               | 15.1                    | LOS B               | 17.9                        | 132.5                     | 0.52            | 0.46                              | 51.6                     |
| North:    | Miller Ro                     | oad                      |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 7         | L2                            | 416                      | 13.4             | 0.612               | 45.9                    | LOS D               | 18.4                        | 143.8                     | 0.83            | 0.81                              | 28.5                     |
| 9         | R2                            | 95                       | 13.3             | 0.612               | 69.2                    | LOS E               | 11.6                        | 90.5                      | 0.98            | 0.82                              | 24.3                     |
| Appro     | ach                           | 511                      | 13.4             | 0.612               | 50.2                    | LOS D               | 18.4                        | 143.8                     | 0.86            | 0.81                              | 27.5                     |
| West:     | Hume Hi                       | ghway (West              | Arm)             |                     |                         |                     |                             |                           |                 |                                   |                          |
| 10        | L2                            | 68                       | 10.8             | 0.470               | 24.9                    | LOS B               | 17.7                        | 131.4                     | 0.50            | 0.49                              | 43.5                     |
| 11        | T1                            | 1552                     | 6.1              | 0.470               | 18.3                    | LOS B               | 18.0                        | 132.9                     | 0.50            | 0.46                              | 50.5                     |
| Appro     | ach                           | 1620                     | 6.3              | 0.470               | 18.6                    | LOS B               | 18.0                        | 132.9                     | 0.50            | 0.46                              | 50.2                     |
| All Vel   | nicles                        | 4026                     | 7.3              | 0.652               | 21.0                    | LOS B               | 18.4                        | 143.8                     | 0.56            | 0.51                              | 46.7                     |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | Movement Performance - Pedestrians |                |                  |       |                            |          |                 |                        |  |  |  |  |  |
|-----------|------------------------------------|----------------|------------------|-------|----------------------------|----------|-----------------|------------------------|--|--|--|--|--|
| Mov<br>ID | Description                        | Demand<br>Flow | Average<br>Delay |       | Average Back<br>Pedestrian | Distance | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |  |  |
|           |                                    | ped/h          | sec              |       | ped                        | m        |                 | per ped                |  |  |  |  |  |
| P2        | East Full Crossing                 | 53             | 69.3             | LOS F | 0.2                        | 0.2      | 0.96            | 0.96                   |  |  |  |  |  |
| P3        | North Full Crossing                | 53             | 69.3             | LOS F | 0.2                        | 0.2      | 0.96            | 0.96                   |  |  |  |  |  |
| All Pe    | destrians                          | 105            | 69.3             | LOS F |                            |          | 0.96            | 0.96                   |  |  |  |  |  |

V Site: 102 [EX\_AM\_Miller Road\_Site Access]

Miller Road\_Site Access Giveway / Yield (Two-Way)

| Move    | ment Pe                        | rformance     | - Vehic | les   |         |          |          |          |        |           |         |
|---------|--------------------------------|---------------|---------|-------|---------|----------|----------|----------|--------|-----------|---------|
| Mov     | OD                             | Demand        |         | Deg.  | Average | Level of | 95% Back |          | Prop.  | Effective | Average |
| ID      | Mov                            | Total         | HV      | Satn  | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
| Cauth   | . Millan Da                    | veh/h         | %       | v/c   | sec     |          | veh      | m        |        | per veh   | km/h    |
|         | South: Miller Road (South Arm) |               |         |       |         |          |          |          |        |           |         |
| 2       | T1                             | 518           | 6.3     | 0.288 | 0.1     | LOS A    | 0.2      | 1.3      | 0.04   | 0.01      | 59.6    |
| 3       | R2                             | 12            | 0.0     | 0.288 | 9.0     | LOS A    | 0.2      | 1.3      | 0.04   | 0.01      | 30.5    |
| Appro   | ach                            | 529           | 6.2     | 0.288 | 0.3     | NA       | 0.2      | 1.3      | 0.04   | 0.01      | 58.1    |
| East:   | Site Acces                     | SS            |         |       |         |          |          |          |        |           |         |
| 4       | L2                             | 11            | 0.0     | 0.015 | 2.3     | LOS A    | 0.1      | 0.4      | 0.52   | 0.39      | 28.7    |
| 6       | R2                             | 1             | 0.0     | 0.015 | 8.4     | LOS A    | 0.1      | 0.4      | 0.52   | 0.39      | 25.2    |
| Appro   | ach                            | 12            | 0.0     | 0.015 | 2.8     | LOS A    | 0.1      | 0.4      | 0.52   | 0.39      | 28.4    |
| North:  | Miller Ro                      | ad (North Ari | m)      |       |         |          |          |          |        |           |         |
| 7       | L2                             | 2             | 0.0     | 0.302 | 5.6     | LOS A    | 0.0      | 0.0      | 0.00   | 0.00      | 57.8    |
| 8       | T1                             | 544           | 12.0    | 0.302 | 0.0     | LOS A    | 0.0      | 0.0      | 0.00   | 0.00      | 59.9    |
| Appro   | ach                            | 546           | 11.9    | 0.302 | 0.0     | NA       | 0.0      | 0.0      | 0.00   | 0.00      | 59.9    |
| All Vel | hicles                         | 1087          | 9.0     | 0.302 | 0.2     | NA       | 0.2      | 1.3      | 0.03   | 0.01      | 58.2    |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Processed: Thursday, 30 November 2017 11:40:39 AM
Project: X:\17322 Builders Recycling Operations Pty Ltd, Chester Hill\07 Modelling Files\17322 - SIDRA Model 171130.sip7

# Site: 103 [EX\_AM\_Miller Road\_Waldron Road\_Christina Road]

Miller Road\_Waldron Road\_Christina Road Roundabout

|           |             | rformance                |                 |                     |                         |                     | 050/ 5                      |                           |                 | - cc .:                           |                          |
|-----------|-------------|--------------------------|-----------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov   | Demand<br>Total<br>veh/h | Hows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South     | : Miller Ro | ad (South A              |                 |                     |                         |                     |                             |                           |                 |                                   |                          |
| 1         | L2          | 226                      | 10.2            | 0.339               | 8.4                     | LOS A               | 1.9                         | 14.3                      | 0.74            | 0.86                              | 50.0                     |
| 2         | T1          | 240                      | 3.1             | 0.354               | 7.6                     | LOS A               | 2.1                         | 15.4                      | 0.74            | 0.77                              | 51.3                     |
| 3         | R2          | 49                       | 4.3             | 0.354               | 12.1                    | LOS A               | 2.1                         | 15.4                      | 0.74            | 0.77                              | 51.1                     |
| 3u        | U           | 1                        | 0.0             | 0.354               | 14.0                    | LOS A               | 2.1                         | 15.4                      | 0.74            | 0.77                              | 50.3                     |
| Appro     | ach         | 517                      | 6.3             | 0.354               | 8.4                     | LOS A               | 2.1                         | 15.4                      | 0.74            | 0.81                              | 50.7                     |
| East: '   | Waldron F   | Road                     |                 |                     |                         |                     |                             |                           |                 |                                   |                          |
| 4         | L2          | 83                       | 5.1             | 0.255               | 9.4                     | LOS A               | 1.2                         | 8.4                       | 0.65            | 0.81                              | 49.5                     |
| 5         | T1          | 593                      | 1.8             | 0.689               | 10.6                    | LOS A               | 6.8                         | 48.4                      | 0.83            | 0.98                              | 51.6                     |
| 6         | R2          | 60                       | 0.0             | 0.689               | 15.0                    | LOS B               | 6.8                         | 48.4                      | 0.84            | 0.99                              | 51.5                     |
| 6u        | U           | 5                        | 0.0             | 0.689               | 17.1                    | LOS B               | 6.8                         | 48.4                      | 0.84            | 0.99                              | 52.4                     |
| Appro     | ach         | 741                      | 2.0             | 0.689               | 10.8                    | LOS A               | 6.8                         | 48.4                      | 0.81            | 0.96                              | 51.4                     |
| North:    | Miller Ro   | ad (North Ar             | m)              |                     |                         |                     |                             |                           |                 |                                   |                          |
| 7         | L2          | 117                      | 2.7             | 0.273               | 9.7                     | LOS A               | 1.4                         | 9.9                       | 0.78            | 0.89                              | 51.0                     |
| 8         | T1          | 247                      | 3.8             | 0.490               | 10.0                    | LOS A               | 3.4                         | 25.2                      | 0.85            | 0.98                              | 49.7                     |
| 9         | R2          | 95                       | 8.9             | 0.490               | 14.7                    | LOS B               | 3.4                         | 25.2                      | 0.86            | 0.99                              | 51.0                     |
| 9u        | U           | 1                        | 0.0             | 0.490               | 16.4                    | LOS B               | 3.4                         | 25.2                      | 0.86            | 0.99                              | 52.3                     |
| Appro     | ach         | 460                      | 4.6             | 0.490               | 10.9                    | LOS A               | 3.4                         | 25.2                      | 0.84            | 0.96                              | 50.4                     |
| West:     | Christina   | Road                     |                 |                     |                         |                     |                             |                           |                 |                                   |                          |
| 10        | L2          | 114                      | 2.8             | 0.412               | 7.2                     | LOS A               | 2.2                         | 15.8                      | 0.61            | 0.72                              | 52.5                     |
| 11        | T1          | 733                      | 3.3             | 0.811               | 10.1                    | LOS A               | 10.7                        | 80.5                      | 0.81            | 0.89                              | 51.5                     |
| 12        | R2          | 216                      | 22.9            | 0.811               | 16.1                    | LOS B               | 10.7                        | 80.5                      | 0.86            | 0.95                              | 45.9                     |
| 12u       | U           | 4                        | 25.0            | 0.811               | 18.3                    | LOS B               | 10.7                        | 80.5                      | 0.86            | 0.95                              | 50.8                     |
| Appro     | ach         | 1066                     | 7.3             | 0.811               | 11.0                    | LOS A               | 10.7                        | 80.5                      | 0.80            | 0.89                              | 50.6                     |
| All Ve    | hicles      | 2784                     | 5.3             | 0.811               | 10.5                    | LOS A               | 10.7                        | 80.5                      | 0.80            | 0.90                              | 50.8                     |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Processed: Thursday, 30 November 2017 2:15:27 PM Project: X:\17322 Builders Recycling Operations Pty Ltd, Chester Hill\07 Modelling Files\17322 - SIDRA Model 171130.sip7

### Site: 101 [EX\_PM\_Miller Road\_Hume Highway]

Miller Road\_Hume Highway

Signals - Fixed Time Coordinated Cycle Time = 110 seconds (User-Given Phase Times)

| Move      | Movement Performance - Vehicles |                          |                  |                     |                         |                     |                               |                           |                 |                                   |                          |  |  |
|-----------|---------------------------------|--------------------------|------------------|---------------------|-------------------------|---------------------|-------------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|--|--|
| Mov<br>ID | OD<br>Mov                       | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back o<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |  |  |
| East:     | East: Hume Highway (East Arm)   |                          |                  |                     |                         |                     |                               |                           |                 |                                   |                          |  |  |
| 5         | T1                              | 1874                     | 5.1              | 0.875               | 9.2                     | LOS A               | 20.8                          | 151.8                     | 0.34            | 0.37                              | 58.8                     |  |  |
| 6         | R2                              | 456                      | 8.5              | 1.001               | 102.0                   | LOS F               | 17.6                          | 132.6                     | 1.00            | 1.12                              | 18.1                     |  |  |
| Appro     | ach                             | 2329                     | 5.7              | 1.001               | 27.3                    | LOS B               | 20.8                          | 151.8                     | 0.47            | 0.52                              | 43.3                     |  |  |
| North:    | Miller Ro                       | ad                       |                  |                     |                         |                     |                               |                           |                 |                                   |                          |  |  |
| 7         | L2                              | 521                      | 7.3              | 0.769               | 42.4                    | LOS C               | 19.4                          | 144.3                     | 0.91            | 0.87                              | 30.1                     |  |  |
| 9         | R2                              | 165                      | 10.2             | 0.769               | 53.7                    | LOS D               | 14.7                          | 111.2                     | 1.00            | 0.89                              | 28.2                     |  |  |
| Appro     | ach                             | 686                      | 8.0              | 0.769               | 45.1                    | LOS D               | 19.4                          | 144.3                     | 0.93            | 0.87                              | 29.6                     |  |  |
| West:     | Hume Hi                         | ghway (West              | Arm)             |                     |                         |                     |                               |                           |                 |                                   |                          |  |  |
| 10        | L2                              | 46                       | 6.8              | 0.672               | 26.1                    | LOS B               | 26.3                          | 189.1                     | 0.78            | 0.72                              | 43.4                     |  |  |
| 11        | T1                              | 2015                     | 3.0              | 0.672               | 19.7                    | LOS B               | 26.5                          | 190.5                     | 0.78            | 0.71                              | 49.6                     |  |  |
| Appro     | ach                             | 2061                     | 3.1              | 0.672               | 19.8                    | LOS B               | 26.5                          | 190.5                     | 0.78            | 0.71                              | 49.5                     |  |  |
| All Vel   | hicles                          | 5077                     | 5.0              | 1.001               | 26.7                    | LOS B               | 26.5                          | 190.5                     | 0.66            | 0.65                              | 43.3                     |  |  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | Movement Performance - Pedestrians     |                         |                         |       |                                   |                           |                 |                                   |  |  |  |  |  |
|-----------|----------------------------------------|-------------------------|-------------------------|-------|-----------------------------------|---------------------------|-----------------|-----------------------------------|--|--|--|--|--|
| Mov<br>ID | Description                            | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Back<br>Pedestrian<br>ped | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per ped |  |  |  |  |  |
| P2<br>P3  | East Full Crossing North Full Crossing | 53<br>53                | 49.3<br>49.3            | LOS E | 0.2                               | 0.2                       | 0.95<br>0.95    | 0.95<br>0.95                      |  |  |  |  |  |
|           | edestrians                             | 105                     | 49.3                    | LOSE  | 0.2                               | 0.2                       | 0.95            | 0.95                              |  |  |  |  |  |

V Site: 102 [EX\_PM\_Miller Road\_Site Access]

Miller Road\_Site Access Giveway / Yield (Two-Way)

| Move                           | ment Pe    | rformance     | - Vehic | les   |         |          |          |          |        |           |         |
|--------------------------------|------------|---------------|---------|-------|---------|----------|----------|----------|--------|-----------|---------|
| Mov                            | OD         | Demand        | Flows   | Deg.  | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
| ID                             | Mov        | Total         | HV      | Satn  | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|                                |            | veh/h         | %       | v/c   | sec     |          | veh      | m        |        | per veh   | km/h    |
| South: Miller Road (South Arm) |            |               |         |       |         |          |          |          |        |           |         |
| 2                              | T1         | 547           | 5.8     | 0.293 | 0.0     | LOS A    | 0.0      | 0.2      | 0.00   | 0.00      | 59.9    |
| 3                              | R2         | 1             | 0.0     | 0.293 | 11.1    | LOS A    | 0.0      | 0.2      | 0.00   | 0.00      | 30.6    |
| Appro                          | ach        | 548           | 5.8     | 0.293 | 0.0     | NA       | 0.0      | 0.2      | 0.00   | 0.00      | 59.8    |
| East: \$                       | Site Acces | ss            |         |       |         |          |          |          |        |           |         |
| 4                              | L2         | 8             | 0.0     | 0.022 | 3.6     | LOS A    | 0.1      | 0.5      | 0.67   | 0.61      | 28.0    |
| 6                              | R2         | 3             | 0.0     | 0.022 | 12.7    | LOS A    | 0.1      | 0.5      | 0.67   | 0.61      | 24.5    |
| Appro                          | ach        | 12            | 0.0     | 0.022 | 6.1     | LOS A    | 0.1      | 0.5      | 0.67   | 0.61      | 27.1    |
| North:                         | Miller Ro  | ad (North Arr | n)      |       |         |          |          |          |        |           |         |
| 7                              | L2         | 1             | 0.0     | 0.392 | 5.6     | LOS A    | 0.0      | 0.0      | 0.00   | 0.00      | 57.8    |
| 8                              | T1         | 738           | 5.1     | 0.392 | 0.0     | LOS A    | 0.0      | 0.0      | 0.00   | 0.00      | 59.9    |
| Appro                          | ach        | 739           | 5.1     | 0.392 | 0.0     | NA       | 0.0      | 0.0      | 0.00   | 0.00      | 59.9    |
| All Vel                        | nicles     | 1299          | 5.3     | 0.392 | 0.1     | NA       | 0.1      | 0.5      | 0.01   | 0.01      | 59.1    |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Processed: Thursday, 30 November 2017 11:40:41 AM
Project: X:\17322 Builders Recycling Operations Pty Ltd, Chester Hill\07 Modelling Files\17322 - SIDRA Model 171130.sip7

# Site: 103 [EX\_PM\_Miller Road\_Waldron Road\_Christina Road]

Miller Road\_Waldron Road\_Christina Road Roundabout

| Mov     | OD        | Demand       | Flows_ | Deg.  | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|---------|-----------|--------------|--------|-------|---------|----------|----------|----------|--------|-----------|---------|
| ID      | Mov       | Total        | HV     | Satn  | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
| 0 11    |           | veh/h        | . %    | v/c   | sec     |          | veh      | m        |        | per veh   | km/h    |
|         |           | ad (South A  | ,      |       |         |          |          |          |        |           |         |
| 1       | L2        | 301          | 8.0    | 0.422 | 8.3     | LOS A    | 2.5      | 19.0     | 0.79   | 0.92      | 50.2    |
| 2       | T1        | 212          | 3.5    | 0.436 | 9.1     | LOS A    | 2.5      | 18.4     | 0.79   | 0.93      | 50.7    |
| 3       | R2        | 55           | 7.7    | 0.436 | 13.7    | LOS A    | 2.5      | 18.4     | 0.79   | 0.93      | 50.4    |
| 3u      | U         | 2            | 0.0    | 0.436 | 15.4    | LOS B    | 2.5      | 18.4     | 0.79   | 0.93      | 49.6    |
| Appro   | ach       | 569          | 6.3    | 0.436 | 9.1     | LOSA     | 2.5      | 19.0     | 0.79   | 0.92      | 50.4    |
| East: ' | Waldron F | Road         |        |       |         |          |          |          |        |           |         |
| 4       | L2        | 92           | 4.6    | 0.584 | 11.3    | LOS A    | 4.5      | 31.7     | 0.82   | 0.98      | 48.0    |
| 5       | T1        | 824          | 1.4    | 0.730 | 12.3    | LOS A    | 7.7      | 54.6     | 0.88   | 1.06      | 50.4    |
| 6       | R2        | 55           | 1.9    | 0.730 | 17.5    | LOS B    | 7.7      | 54.6     | 0.91   | 1.11      | 49.8    |
| 6u      | U         | 11           | 10.0   | 0.730 | 19.9    | LOS B    | 7.7      | 54.6     | 0.91   | 1.11      | 50.3    |
| Appro   | ach       | 981          | 1.8    | 0.730 | 12.6    | LOSA     | 7.7      | 54.6     | 0.87   | 1.06      | 50.2    |
| North:  | Miller Ro | ad (North Ar | m)     |       |         |          |          |          |        |           |         |
| 7       | L2        | 72           | 1.5    | 0.231 | 9.9     | LOS A    | 1.2      | 8.3      | 0.78   | 0.88      | 50.9    |
| 8       | T1        | 221          | 2.4    | 0.415 | 9.6     | LOS A    | 2.7      | 19.5     | 0.84   | 0.95      | 50.1    |
| 9       | R2        | 81           | 6.5    | 0.415 | 14.1    | LOS A    | 2.7      | 19.5     | 0.85   | 0.96      | 51.4    |
| 9u      | U         | 11           | 0.0    | 0.415 | 15.9    | LOS B    | 2.7      | 19.5     | 0.85   | 0.96      | 52.6    |
| Appro   | ach       | 375          | 3.1    | 0.415 | 10.7    | LOS A    | 2.7      | 19.5     | 0.83   | 0.94      | 50.6    |
| West:   | Christina | Road         |        |       |         |          |          |          |        |           |         |
| 10      | L2        | 92           | 5.7    | 0.441 | 7.4     | LOS A    | 2.3      | 16.3     | 0.61   | 0.71      | 52.4    |
| 11      | T1        | 601          | 2.5    | 0.869 | 10.9    | LOS A    | 13.0     | 94.2     | 0.79   | 0.91      | 50.5    |
| 12      | R2        | 417          | 6.6    | 0.869 | 17.2    | LOS B    | 13.0     | 94.2     | 0.87   | 1.00      | 46.1    |
| 12u     | U         | 5            | 0.0    | 0.869 | 19.1    | LOS B    | 13.0     | 94.2     | 0.87   | 1.00      | 49.8    |
| Appro   | ach       | 1115         | 4.2    | 0.869 | 13.0    | LOS A    | 13.0     | 94.2     | 0.80   | 0.93      | 49.1    |
| All Ve  | hicles    | 3040         | 3.7    | 0.869 | 11.9    | LOS A    | 13.0     | 94.2     | 0.83   | 0.97      | 49.9    |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Processed: Thursday, 30 November 2017 2:23:34 PM Project: X:\17322 Builders Recycling Operations Pty Ltd, Chester Hill\07 Modelling Files\17322 - SIDRA Model 171130.sip7

### Site: 101 [FU\_AM\_Miller Road\_Hume Highway]

Miller Road\_Hume Highway

Signals - Fixed Time Coordinated Cycle Time = 150 seconds (User-Given Phase Times)

| Move      | Movement Performance - Vehicles |                          |                  |                     |                         |                     |                             |                           |                 |                                   |                          |  |  |
|-----------|---------------------------------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|--|--|
| Mov<br>ID | OD<br>Mov                       | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |  |  |
| East: I   | East: Hume Highway (East Arm)   |                          |                  |                     |                         |                     |                             |                           |                 |                                   |                          |  |  |
| 5         | T1                              | 1686                     | 5.9              | 0.784               | 6.5                     | LOS A               | 23.2                        | 170.8                     | 0.42            | 0.39                              | 61.7                     |  |  |
| 6         | R2                              | 533                      | 4.3              | 0.765               | 48.6                    | LOS D               | 14.6                        | 105.8                     | 1.00            | 0.87                              | 28.9                     |  |  |
| Appro     | ach                             | 2219                     | 5.5              | 0.784               | 16.6                    | LOS B               | 23.2                        | 170.8                     | 0.56            | 0.50                              | 50.4                     |  |  |
| North:    | Miller Roa                      | ad                       |                  |                     |                         |                     |                             |                           |                 |                                   |                          |  |  |
| 7         | L2                              | 464                      | 12.0             | 0.704               | 47.3                    | LOS D               | 20.6                        | 158.9                     | 0.85            | 0.82                              | 28.1                     |  |  |
| 9         | R2                              | 107                      | 11.8             | 0.704               | 71.2                    | LOS F               | 14.0                        | 108.0                     | 1.00            | 0.85                              | 24.0                     |  |  |
| Appro     | ach                             | 572                      | 12.0             | 0.704               | 51.8                    | LOS D               | 20.6                        | 158.9                     | 0.88            | 0.83                              | 27.2                     |  |  |
| West:     | Hume Hig                        | hway (West               | t Arm)           |                     |                         |                     |                             |                           |                 |                                   |                          |  |  |
| 10        | L2                              | 74                       | 10.0             | 0.504               | 25.3                    | LOS B               | 19.8                        | 145.8                     | 0.52            | 0.50                              | 43.3                     |  |  |
| 11        | T1                              | 1668                     | 5.7              | 0.504               | 18.8                    | LOS B               | 20.1                        | 147.5                     | 0.52            | 0.48                              | 50.2                     |  |  |
| Appro     | ach                             | 1742                     | 5.9              | 0.504               | 19.1                    | LOS B               | 20.1                        | 147.5                     | 0.52            | 0.48                              | 49.9                     |  |  |
| All Vel   | hicles                          | 4533                     | 6.5              | 0.784               | 22.0                    | LOS B               | 23.2                        | 170.8                     | 0.59            | 0.54                              | 46.1                     |  |  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | ement Performance - Pec | lestrians      |                  |       |                            |          |                 |                        |
|-----------|-------------------------|----------------|------------------|-------|----------------------------|----------|-----------------|------------------------|
| Mov<br>ID | Description             | Demand<br>Flow | Average<br>Delay |       | Average Back<br>Pedestrian | Distance | Prop.<br>Queued | Effective<br>Stop Rate |
|           |                         | ped/h          | sec              |       | ped                        | m        |                 | per ped                |
| P2        | East Full Crossing      | 53             | 69.3             | LOS F | 0.2                        | 0.2      | 0.96            | 0.96                   |
| P3        | North Full Crossing     | 53             | 69.3             | LOS F | 0.2                        | 0.2      | 0.96            | 0.96                   |
| All Pe    | destrians               | 105            | 69.3             | LOS F |                            |          | 0.96            | 0.96                   |

V Site: 102 [FU\_AM\_Miller Road\_Site Access]

Miller Road\_Site Access Giveway / Yield (Two-Way)

| Move      | ment Pe     | rformance                | - Vehic          | les                 |                         |                     |                             |                           |                 |                                   |                          |
|-----------|-------------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov   | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South     | : Miller Ro | ad (South A              | rm)              |                     |                         |                     |                             |                           |                 |                                   |                          |
| 2         | T1          | 572                      | 5.7              | 0.317               | 0.2                     | LOS A               | 0.2                         | 1.6                       | 0.04            | 0.01                              | 59.5                     |
| 3         | R2          | 12                       | 0.0              | 0.317               | 9.8                     | LOS A               | 0.2                         | 1.6                       | 0.04            | 0.01                              | 30.5                     |
| Appro     | ach         | 583                      | 5.6              | 0.317               | 0.4                     | NA                  | 0.2                         | 1.6                       | 0.04            | 0.01                              | 58.2                     |
| East:     | Site Acces  | ss                       |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 4         | L2          | 11                       | 0.0              | 0.016               | 2.7                     | LOS A               | 0.1                         | 0.4                       | 0.55            | 0.44                              | 28.6                     |
| 6         | R2          | 1                        | 0.0              | 0.016               | 10.5                    | LOS A               | 0.1                         | 0.4                       | 0.55            | 0.44                              | 25.1                     |
| Appro     | ach         | 12                       | 0.0              | 0.016               | 3.4                     | LOS A               | 0.1                         | 0.4                       | 0.55            | 0.44                              | 28.3                     |
| North:    | Miller Ro   | ad (North Ar             | m)               |                     |                         |                     |                             |                           |                 |                                   |                          |
| 7         | L2          | 2                        | 0.0              | 0.337               | 5.6                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.00                              | 57.8                     |
| 8         | T1          | 612                      | 10.7             | 0.337               | 0.0                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.00                              | 59.9                     |
| Appro     | ach         | 614                      | 10.6             | 0.337               | 0.0                     | NA                  | 0.0                         | 0.0                       | 0.00            | 0.00                              | 59.9                     |
| All Vel   | hicles      | 1208                     | 8.1              | 0.337               | 0.2                     | NA                  | 0.2                         | 1.6                       | 0.03            | 0.01                              | 58.3                     |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Processed: Thursday, 30 November 2017 11:40:43 AM
Project: X:\17322 Builders Recycling Operations Pty Ltd, Chester Hill\07 Modelling Files\17322 - SIDRA Model 171130.sip7

# Site: 103 [FU\_AM\_Miller Road\_Waldron Road\_Christina Road]

Miller Road\_Waldron Road\_Christina Road Roundabout

| Move      | ement Pe    | rformance                | - Vehic          | les                 |                         |                     |                             |                           |                 |                                   |                          |
|-----------|-------------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov   | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South     | : Miller Ro | ad (South A              | ırm)             |                     |                         |                     |                             |                           |                 |                                   |                          |
| 1         | L2          | 248                      | 9.3              | 0.408               | 9.6                     | LOS A               | 2.5                         | 19.1                      | 0.80            | 0.92                              | 49.0                     |
| 2         | T1          | 265                      | 2.8              | 0.426               | 8.6                     | LOS A               | 2.9                         | 20.7                      | 0.81            | 0.87                              | 50.9                     |
| 3         | R2          | 55                       | 3.8              | 0.426               | 13.1                    | LOS A               | 2.9                         | 20.7                      | 0.81            | 0.87                              | 50.7                     |
| 3u        | U           | 1                        | 0.0              | 0.426               | 15.0                    | LOS B               | 2.9                         | 20.7                      | 0.81            | 0.87                              | 49.8                     |
| Appro     | ach         | 569                      | 5.7              | 0.426               | 9.5                     | LOS A               | 2.9                         | 20.7                      | 0.81            | 0.90                              | 50.0                     |
| East:     | Waldron F   | Road                     |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 4         | L2          | 91                       | 4.7              | 0.298               | 10.0                    | LOS A               | 1.4                         | 10.2                      | 0.70            | 0.84                              | 48.9                     |
| 5         | T1          | 651                      | 1.6              | 0.805               | 14.4                    | LOS A               | 10.5                        | 74.4                      | 0.94            | 1.17                              | 49.0                     |
| 6         | R2          | 66                       | 0.0              | 0.805               | 19.2                    | LOS B               | 10.5                        | 74.4                      | 0.96            | 1.19                              | 48.7                     |
| 6u        | U           | 6                        | 0.0              | 0.805               | 21.3                    | LOS B               | 10.5                        | 74.4                      | 0.96            | 1.19                              | 49.5                     |
| Appro     | ach         | 814                      | 1.8              | 0.805               | 14.4                    | LOS A               | 10.5                        | 74.4                      | 0.91            | 1.13                              | 49.0                     |
| North     | : Miller Ro | ad (North Ar             | m)               |                     |                         |                     |                             |                           |                 |                                   |                          |
| 7         | L2          | 134                      | 2.4              | 0.354               | 11.1                    | LOS A               | 2.0                         | 14.0                      | 0.84            | 0.94                              | 50.0                     |
| 8         | T1          | 283                      | 3.3              | 0.635               | 13.2                    | LOS A               | 5.4                         | 39.0                      | 0.94            | 1.08                              | 47.2                     |
| 9         | R2          | 107                      | 7.8              | 0.635               | 18.0                    | LOS B               | 5.4                         | 39.0                      | 0.95            | 1.09                              | 48.9                     |
| 9u        | U           | 1                        | 0.0              | 0.635               | 19.7                    | LOS B               | 5.4                         | 39.0                      | 0.95            | 1.09                              | 50.0                     |
| Appro     | ach         | 525                      | 4.0              | 0.635               | 13.7                    | LOS A               | 5.4                         | 39.0                      | 0.92            | 1.05                              | 48.4                     |
| West:     | Christina   | Road                     |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 10        | L2          | 125                      | 2.5              | 0.466               | 8.1                     | LOS A               | 2.8                         | 19.8                      | 0.67            | 0.78                              | 52.2                     |
| 11        | T1          | 803                      | 3.0              | 0.918               | 16.0                    | LOS B               | 19.0                        | 142.0                     | 0.92            | 1.14                              | 47.6                     |
| 12        | R2          | 233                      | 21.3             | 0.918               | 23.6                    | LOS B               | 19.0                        | 142.0                     | 1.00            | 1.24                              | 41.4                     |
| 12u       | U           | 4                        | 25.0             | 0.918               | 25.8                    | LOS B               | 19.0                        | 142.0                     | 1.00            | 1.24                              | 46.1                     |
| Appro     | ach         | 1165                     | 6.7              | 0.918               | 16.7                    | LOS B               | 19.0                        | 142.0                     | 0.91            | 1.12                              | 46.9                     |
| All Ve    | hicles      | 3074                     | 4.8              | 0.918               | 14.2                    | LOS A               | 19.0                        | 142.0                     | 0.89            | 1.07                              | 48.2                     |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Processed: Thursday, 30 November 2017 2:15:14 PM Project: X:\17322 Builders Recycling Operations Pty Ltd, Chester Hill\07 Modelling Files\17322 - SIDRA Model 171130.sip7

### Site: 101 [FU\_PM\_Miller Road\_Hume Highway]

Miller Road\_Hume Highway

Signals - Fixed Time Coordinated Cycle Time = 110 seconds (User-Given Phase Times)

| Move      | ment Pe    | rformance                | - Vehic          | les                 |                         |                     |                             |                           |                 |                                   |                          |
|-----------|------------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov  | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| East: I   | Hume Hig   | hway (East <i>P</i>      | ۸rm)             |                     |                         |                     |                             |                           |                 |                                   |                          |
| 5         | T1         | 2069                     | 4.6              | 0.939               | 22.0                    | LOS B               | 33.9                        | 246.5                     | 0.37            | 0.49                              | 48.0                     |
| 6         | R2         | 501                      | 7.8              | 0.791               | 58.8                    | LOS E               | 13.9                        | 104.0                     | 1.00            | 0.89                              | 25.9                     |
| Appro     | ach        | 2571                     | 5.2              | 0.939               | 29.2                    | LOS C               | 33.9                        | 246.5                     | 0.49            | 0.57                              | 42.3                     |
| North:    | Miller Roa | ad                       |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 7         | L2         | 562                      | 6.4              | 0.858               | 48.3                    | LOS D               | 24.4                        | 180.0                     | 0.91            | 0.92                              | 28.2                     |
| 9         | R2         | 179                      | 9.4              | 0.858               | 61.7                    | LOS E               | 16.3                        | 122.5                     | 1.00            | 0.96                              | 26.2                     |
| Appro     | ach        | 741                      | 7.1              | 0.858               | 51.6                    | LOS D               | 24.4                        | 180.0                     | 0.93            | 0.93                              | 27.7                     |
| West:     | Hume Hig   | hway (West               | Arm)             |                     |                         |                     |                             |                           |                 |                                   |                          |
| 10        | L2         | 52                       | 6.1              | 0.795               | 30.6                    | LOS C               | 34.0                        | 244.1                     | 0.89            | 0.82                              | 40.7                     |
| 11        | T1         | 2268                     | 2.7              | 0.795               | 24.1                    | LOS B               | 34.3                        | 245.5                     | 0.89            | 0.82                              | 46.6                     |
| Appro     | ach        | 2320                     | 2.8              | 0.795               | 24.3                    | LOS B               | 34.3                        | 245.5                     | 0.89            | 0.82                              | 46.4                     |
| All Vel   | hicles     | 5632                     | 4.4              | 0.939               | 30.1                    | LOS C               | 34.3                        | 246.5                     | 0.72            | 0.72                              | 41.5                     |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | ement Performance - Pec                | lestrians               |                         |       |                                   |                           |                 |                                   |
|-----------|----------------------------------------|-------------------------|-------------------------|-------|-----------------------------------|---------------------------|-----------------|-----------------------------------|
| Mov<br>ID | Description                            | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Back<br>Pedestrian<br>ped | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per ped |
| P2<br>P3  | East Full Crossing North Full Crossing | 53<br>53                | 49.3<br>49.3            | LOS E | 0.2                               | 0.2                       | 0.95<br>0.95    | 0.95<br>0.95                      |
|           | edestrians                             | 105                     | 49.3                    | LOSE  | 0.2                               | 0.2                       | 0.95            | 0.95                              |

V Site: 102 [FU\_PM\_Miller Road\_Site Access]

Miller Road\_Site Access Giveway / Yield (Two-Way)

| Move      | ment Pe     | erformance                 | - Vehic          | les                 |                         |                     |                             |                           |                 |                                   |                          |
|-----------|-------------|----------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov   | Demand  <br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South:    | : Miller Ro | oad (South Ar              |                  | .,.                 |                         |                     |                             |                           |                 |                                   |                          |
| 2         | T1          | 568                        | 5.6              | 0.304               | 0.0                     | LOS A               | 0.0                         | 0.2                       | 0.01            | 0.00                              | 59.9                     |
| 3         | R2          | 1                          | 0.0              | 0.304               | 13.4                    | LOS A               | 0.0                         | 0.2                       | 0.01            | 0.00                              | 30.6                     |
| Appro     | ach         | 569                        | 5.5              | 0.304               | 0.1                     | NA                  | 0.0                         | 0.2                       | 0.01            | 0.00                              | 59.8                     |
| East: \$  | Site Acce   | SS                         |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 4         | L2          | 8                          | 0.0              | 0.029               | 5.0                     | LOS A               | 0.1                         | 0.7                       | 0.75            | 0.72                              | 27.5                     |
| 6         | R2          | 3                          | 0.0              | 0.029               | 17.7                    | LOS B               | 0.1                         | 0.7                       | 0.75            | 0.72                              | 24.1                     |
| Appro     | ach         | 12                         | 0.0              | 0.029               | 8.5                     | LOS A               | 0.1                         | 0.7                       | 0.75            | 0.72                              | 26.6                     |
| North:    | Miller Ro   | ad (North Arr              | n)               |                     |                         |                     |                             |                           |                 |                                   |                          |
| 7         | L2          | 1                          | 0.0              | 0.456               | 5.6                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.00                              | 57.8                     |
| 8         | T1          | 864                        | 4.4              | 0.456               | 0.0                     | LOSA                | 0.0                         | 0.0                       | 0.00            | 0.00                              | 59.9                     |
| Appro     | ach         | 865                        | 4.4              | 0.456               | 0.0                     | NA                  | 0.0                         | 0.0                       | 0.00            | 0.00                              | 59.8                     |
| All Vel   | hicles      | 1446                       | 4.8              | 0.456               | 0.1                     | NA                  | 0.1                         | 0.7                       | 0.01            | 0.01                              | 59.1                     |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Processed: Thursday, 30 November 2017 11:40:45 AM
Project: X:\17322 Builders Recycling Operations Pty Ltd, Chester Hill\07 Modelling Files\17322 - SIDRA Model 171130.sip7

# Site: 103 [FU\_PM\_Miller Road\_Waldron Road\_Christina Road]

Miller Road\_Waldron Road\_Christina Road Roundabout

| Move      | ment Pe   | erformance        | - Veh <u>ic</u> | les          |                  |                     |                      |                      | _               |                        |                  |
|-----------|-----------|-------------------|-----------------|--------------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov<br>ID | OD<br>Mov | Demand  <br>Total | Flows<br>HV     | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|           |           | veh/h             | %               | v/c          | sec              |                     | veh                  | m                    |                 | per veh                | km/h             |
|           |           | oad (South Ar     |                 |              |                  |                     |                      |                      |                 |                        |                  |
| 1         | L2        | 312               | 7.8             | 0.519        | 10.1             | LOS A               | 3.5                  | 26.2                 | 0.88            | 1.00                   | 48.7             |
| 2         | T1        | 220               | 3.3             | 0.552        | 11.6             | LOS A               | 3.6                  | 26.1                 | 0.88            | 1.01                   | 48.7             |
| 3         | R2        | 57                | 7.4             | 0.552        | 16.2             | LOS B               | 3.6                  | 26.1                 | 0.88            | 1.01                   | 48.3             |
| 3u        | U         | 2                 | 0.0             | 0.552        | 17.9             | LOS B               | 3.6                  | 26.1                 | 0.88            | 1.01                   | 47.0             |
| Appro     |           | 591               | 6.1             | 0.552        | 11.3             | LOS A               | 3.6                  | 26.2                 | 0.88            | 1.00                   | 48.6             |
|           | Waldron I |                   |                 |              |                  |                     |                      |                      |                 |                        |                  |
| 4         | L2        | 109               | 3.8             | 0.733        | 15.3             | LOS B               | 7.2                  | 51.1                 | 0.92            | 1.12                   | 45.1             |
| 5         | T1        | 986               | 1.2             | 0.916        | 22.1             | LOS B               | 17.5                 | 124.2                | 0.97            | 1.37                   | 44.5             |
| 6         | R2        | 65                | 1.6             | 0.916        | 30.6             | LOS C               | 17.5                 | 124.2                | 1.00            | 1.51                   | 42.4             |
| 6u        | U         | 13                | 8.3             | 0.916        | 33.1             | LOS C               | 17.5                 | 124.2                | 1.00            | 1.51                   | 42.8             |
| Appro     |           | 1174              | 1.5             | 0.916        | 22.1             | LOS B               | 17.5                 | 124.2                | 0.97            | 1.35                   | 44.4             |
| North     |           | oad (North Arr    | ,               |              |                  |                     |                      |                      |                 |                        |                  |
| 7         | L2        | 80                | 1.3             | 0.275        | 10.3             | LOS A               | 1.4                  | 10.2                 | 0.81            | 0.90                   | 50.6             |
| 8         | T1        | 247               | 2.1             | 0.495        | 10.8             | LOS A               | 3.6                  | 25.5                 | 0.88            | 0.99                   | 49.2             |
| 9         | R2        | 91                | 5.8             | 0.495        | 15.4             | LOS B               | 3.6                  | 25.5                 | 0.90            | 1.01                   | 50.5             |
| 9u        | U         | 1                 | 0.0             | 0.495        | 17.3             | LOS B               | 3.6                  | 25.5                 | 0.90            | 1.01                   | 51.6             |
| Appro     | ach       | 419               | 2.8             | 0.495        | 11.7             | LOS A               | 3.6                  | 25.5                 | 0.87            | 0.98                   | 49.8             |
| West:     | Christina | Road              |                 |              |                  |                     |                      |                      |                 |                        |                  |
| 10        | L2        | 95                | 5.6             | 0.469        | 7.9              | LOS A               | 2.6                  | 18.5                 | 0.64            | 0.75                   | 52.2             |
| 11        | T1        | 624               | 2.4             | 0.924        | 14.6             | LOS B               | 18.2                 | 132.1                | 0.85            | 1.05                   | 48.2             |
| 12        | R2        | 433               | 6.3             | 0.924        | 22.3             | LOS B               | 18.2                 | 132.1                | 0.95            | 1.19                   | 42.8             |
| 12u       | U         | 5                 | 0.0             | 0.924        | 24.2             | LOS B               | 18.2                 | 132.1                | 0.95            | 1.19                   | 46.7             |
| Appro     | ach       | 1157              | 4.1             | 0.924        | 17.0             | LOS B               | 18.2                 | 132.1                | 0.87            | 1.08                   | 46.6             |
| All Ve    | hicles    | 3340              | 3.4             | 0.924        | 17.1             | LOS B               | 18.2                 | 132.1                | 0.91            | 1.15                   | 46.4             |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Processed: Thursday, 30 November 2017 2:23:35 PM Project: X:\17322 Builders Recycling Operations Pty Ltd, Chester Hill\07 Modelling Files\17322 - SIDRA Model 171130.sip7

### Site: 101 [DV\_AM\_Miller Road\_Hume Highway]

Miller Road\_Hume Highway

Signals - Fixed Time Coordinated Cycle Time = 150 seconds (User-Given Phase Times)

| Move      | ment Pe   | rformance                | - Vehic          | les                 |                         |                     |                             |                           |                 |                                   |                          |
|-----------|-----------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| East: I   | Hume Hig  | hway (East A             | Arm)             |                     |                         |                     |                             |                           |                 |                                   |                          |
| 5         | T1        | 1686                     | 5.9              | 0.784               | 6.5                     | LOS A               | 23.2                        | 170.8                     | 0.42            | 0.39                              | 61.7                     |
| 6         | R2        | 567                      | 4.1              | 0.813               | 53.1                    | LOS D               | 16.0                        | 116.2                     | 1.00            | 0.90                              | 27.6                     |
| Appro     | ach       | 2254                     | 5.4              | 0.813               | 18.2                    | LOS B               | 23.2                        | 170.8                     | 0.57            | 0.52                              | 49.1                     |
| North:    | Miller Ro | ad                       |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 7         | L2        | 474                      | 11.8             | 0.721               | 47.7                    | LOS D               | 21.0                        | 161.9                     | 0.85            | 0.83                              | 28.0                     |
| 9         | R2        | 109                      | 11.5             | 0.721               | 71.8                    | LOS F               | 14.5                        | 111.7                     | 1.00            | 0.85                              | 23.9                     |
| Appro     | ach       | 583                      | 11.7             | 0.721               | 52.2                    | LOS D               | 21.0                        | 161.9                     | 0.88            | 0.83                              | 27.1                     |
| West:     | Hume Hig  | ghway (West              | Arm)             |                     |                         |                     |                             |                           |                 |                                   |                          |
| 10        | L2        | 82                       | 9.0              | 0.507               | 25.3                    | LOS B               | 19.9                        | 146.7                     | 0.52            | 0.51                              | 43.4                     |
| 11        | T1        | 1668                     | 5.7              | 0.507               | 18.8                    | LOS B               | 20.3                        | 148.7                     | 0.52            | 0.48                              | 50.1                     |
| Appro     | ach       | 1751                     | 5.8              | 0.507               | 19.1                    | LOS B               | 20.3                        | 148.7                     | 0.52            | 0.48                              | 49.8                     |
| All Vel   | hicles    | 4587                     | 6.4              | 0.813               | 22.9                    | LOS B               | 23.2                        | 170.8                     | 0.59            | 0.54                              | 45.4                     |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | ement Performance - Peo | destrians               |                         |       |                                   |                             |                 |                                   |
|-----------|-------------------------|-------------------------|-------------------------|-------|-----------------------------------|-----------------------------|-----------------|-----------------------------------|
| Mov<br>ID | Description             | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Bacl<br>Pedestrian<br>ped | k of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per ped |
| P2        | East Full Crossing      | 53                      | 69.3                    | LOS F | 0.2                               | 0.2                         | 0.96            | 0.96                              |
| P3        | North Full Crossing     | 53                      | 69.3                    | LOS F | 0.2                               | 0.2                         | 0.96            | 0.96                              |
| All Pe    | edestrians              | 105                     | 69.3                    | LOS F |                                   |                             | 0.96            | 0.96                              |

V Site: 102 [DV\_AM\_Miller Road\_Site Access]

Miller Road\_Site Access Giveway / Yield (Two-Way)

| Move    | ment Pe     | rformance    | - Vehic | les   |         |          |          |          |        |           |         |
|---------|-------------|--------------|---------|-------|---------|----------|----------|----------|--------|-----------|---------|
| Mov     | OD          | Demand       |         | Deg.  | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
| ID      | Mov         | Total        | HV      | Satn  | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |             | veh/h        | %       | v/c   | sec     |          | veh      | m        |        | per veh   | km/h    |
| South   | : Miller Ro | ad (South A  | rm)     |       |         |          |          |          |        |           |         |
| 2       | T1          | 572          | 5.7     | 0.367 | 0.9     | LOS A    | 1.1      | 8.3      | 0.19   | 0.06      | 57.9    |
| 3       | R2          | 53           | 0.0     | 0.367 | 10.6    | LOS A    | 1.1      | 8.3      | 0.19   | 0.06      | 30.2    |
| Appro   | ach         | 624          | 5.2     | 0.367 | 1.8     | NA       | 1.1      | 8.3      | 0.19   | 0.06      | 52.8    |
| East:   | Site Acces  | ss           |         |       |         |          |          |          |        |           |         |
| 4       | L2          | 32           | 0.0     | 0.115 | 2.9     | LOS A    | 0.4      | 2.6      | 0.67   | 0.66      | 27.9    |
| 6       | R2          | 21           | 0.0     | 0.115 | 12.4    | LOS A    | 0.4      | 2.6      | 0.67   | 0.66      | 24.4    |
| Appro   | ach         | 53           | 0.0     | 0.115 | 6.7     | LOS A    | 0.4      | 2.6      | 0.67   | 0.66      | 26.6    |
| North:  | Miller Roa  | ad (North Ar | m)      |       |         |          |          |          |        |           |         |
| 7       | L2          | 43           | 0.0     | 0.359 | 5.6     | LOS A    | 0.0      | 0.0      | 0.00   | 0.04      | 57.4    |
| 8       | T1          | 612          | 10.7    | 0.359 | 0.0     | LOS A    | 0.0      | 0.0      | 0.00   | 0.04      | 59.4    |
| Appro   | ach         | 655          | 10.0    | 0.359 | 0.4     | NA       | 0.0      | 0.0      | 0.00   | 0.04      | 59.3    |
| All Vel | hicles      | 1332         | 7.4     | 0.367 | 1.3     | NA       | 1.1      | 8.3      | 0.11   | 0.07      | 53.3    |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Processed: Thursday, 30 November 2017 11:40:46 AM
Project: X:\17322 Builders Recycling Operations Pty Ltd, Chester Hill\07 Modelling Files\17322 - SIDRA Model 171130.sip7

# Site: 103 [DV\_AM\_Miller Road\_Waldron Road\_Christina Road]

Miller Road\_Waldron Road\_Christina Road Roundabout

| Move   | ment Pe     | rformance             | - Vehic  | les   |         | _        |          |          |        |           |         |
|--------|-------------|-----------------------|----------|-------|---------|----------|----------|----------|--------|-----------|---------|
| Mov    | OD          | Demand                |          | Deg.  | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
| ID     | Mov         | Total                 | HV       | Satn  | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
| South  | · Millor Da | veh/h<br>oad (South A | %<br>rm) | v/c   | sec     |          | veh      | m        |        | per veh   | km/h    |
|        | L2          | 259                   | 8.9      | 0.426 | 9.8     | LOS A    | 2.7      | 20.4     | 0.81   | 0.94      | 48.9    |
| 1      |             |                       |          |       |         |          |          |          |        |           |         |
| 2      | T1          | 276                   | 2.7      | 0.442 | 8.8     | LOSA     | 3.1      | 22.1     | 0.82   | 0.90      | 50.8    |
| 3      | R2          | 55                    | 3.8      | 0.442 | 13.3    | LOSA     | 3.1      | 22.1     | 0.82   | 0.90      | 50.6    |
| 3u     | U           | 1                     | 0.0      | 0.442 | 15.2    | LOS B    | 3.1      | 22.1     | 0.82   | 0.90      | 49.7    |
| Appro  | ach         | 591                   | 5.5      | 0.442 | 9.7     | LOS A    | 3.1      | 22.1     | 0.82   | 0.91      | 49.9    |
| East:  | Waldron F   | Road                  |          |       |         |          |          |          |        |           |         |
| 4      | L2          | 95                    | 4.4      | 0.306 | 10.3    | LOS A    | 1.5      | 10.5     | 0.71   | 0.84      | 48.7    |
| 5      | T1          | 651                   | 1.6      | 0.827 | 15.9    | LOS B    | 11.4     | 80.9     | 0.96   | 1.21      | 48.1    |
| 6      | R2          | 66                    | 0.0      | 0.827 | 20.7    | LOS B    | 11.4     | 80.9     | 0.98   | 1.24      | 47.7    |
| 6u     | U           | 6                     | 0.0      | 0.827 | 22.8    | LOS B    | 11.4     | 80.9     | 0.98   | 1.24      | 48.5    |
| Appro  | ach         | 818                   | 1.8      | 0.827 | 15.7    | LOS B    | 11.4     | 80.9     | 0.93   | 1.17      | 48.1    |
| North: | Miller Ro   | ad (North Ar          | m)       |       |         |          |          |          |        |           |         |
| 7      | L2          | 134                   | 2.4      | 0.372 | 11.5    | LOS A    | 2.1      | 15.0     | 0.85   | 0.95      | 49.8    |
| 8      | T1          | 303                   | 3.1      | 0.668 | 14.1    | LOS A    | 5.9      | 42.7     | 0.95   | 1.10      | 46.6    |
| 9      | R2          | 107                   | 7.8      | 0.668 | 19.0    | LOS B    | 5.9      | 42.7     | 0.96   | 1.11      | 48.3    |
| 9u     | U           | 1                     | 0.0      | 0.668 | 20.7    | LOS B    | 5.9      | 42.7     | 0.96   | 1.11      | 49.4    |
| Appro  | ach         | 545                   | 3.9      | 0.668 | 14.4    | LOS A    | 5.9      | 42.7     | 0.93   | 1.07      | 47.8    |
| West:  | Christina   | Road                  |          |       |         |          |          |          |        |           |         |
| 10     | L2          | 125                   | 2.5      | 0.477 | 8.3     | LOS A    | 2.9      | 20.8     | 0.68   | 0.79      | 52.1    |
| 11     | T1          | 803                   | 3.0      | 0.939 | 18.6    | LOS B    | 22.0     | 164.5    | 0.93   | 1.22      | 46.1    |
| 12     | R2          | 249                   | 19.8     | 0.939 | 26.9    | LOS B    | 22.0     | 164.5    | 1.00   | 1.35      | 39.7    |
| 12u    | U           | 4                     | 25.0     | 0.939 | 29.2    | LOS C    | 22.0     | 164.5    | 1.00   | 1.35      | 44.3    |
| Appro  | ach         | 1182                  | 6.6      | 0.939 | 19.3    | LOS B    | 22.0     | 164.5    | 0.92   | 1.20      | 45.4    |
| All Ve | hicles      | 3136                  | 4.7      | 0.939 | 15.7    | LOS B    | 22.0     | 164.5    | 0.90   | 1.12      | 47.2    |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Processed: Thursday, 30 November 2017 2:14:56 PM Project: X:\17322 Builders Recycling Operations Pty Ltd, Chester Hill\07 Modelling Files\17322 - SIDRA Model 171130.sip7

### Site: 101 [DV\_PM\_Miller Road\_Hume Highway]

Miller Road\_Hume Highway

Signals - Fixed Time Coordinated Cycle Time = 110 seconds (User-Given Phase Times)

| Move      | ment Pe   | rformance                | - Vehic          | les                 |                         |                     |                               |                           |                 |                                   |                          |
|-----------|-----------|--------------------------|------------------|---------------------|-------------------------|---------------------|-------------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back o<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| East: I   | Hume Hig  | hway (East A             | rm)              |                     |                         |                     |                               |                           |                 |                                   |                          |
| 5         | T1        | 2069                     | 4.6              | 0.939               | 22.0                    | LOS B               | 33.9                          | 246.5                     | 0.37            | 0.49                              | 48.0                     |
| 6         | R2        | 517                      | 7.5              | 0.815               | 60.0                    | LOS E               | 14.6                          | 109.0                     | 1.00            | 0.90                              | 25.6                     |
| Appro     | ach       | 2586                     | 5.2              | 0.939               | 29.6                    | LOS C               | 33.9                          | 246.5                     | 0.50            | 0.57                              | 42.0                     |
| North:    | Miller Ro | ad                       |                  |                     |                         |                     |                               |                           |                 |                                   |                          |
| 7         | L2        | 614                      | 6.2              | 0.929               | 63.5                    | LOS E               | 31.6                          | 233.3                     | 0.93            | 1.01                              | 24.3                     |
| 9         | R2        | 192                      | 8.8              | 0.929               | 73.6                    | LOS F               | 20.0                          | 149.3                     | 1.00            | 1.04                              | 23.7                     |
| Appro     | ach       | 805                      | 6.8              | 0.929               | 65.9                    | LOS E               | 31.6                          | 233.3                     | 0.95            | 1.01                              | 24.1                     |
| West:     | Hume Hig  | ghway (West              | Arm)             |                     |                         |                     |                               |                           |                 |                                   |                          |
| 10        | L2        | 57                       | 5.6              | 0.797               | 30.8                    | LOS C               | 34.2                          | 245.5                     | 0.89            | 0.83                              | 40.6                     |
| 11        | T1        | 2268                     | 2.7              | 0.797               | 24.3                    | LOS B               | 34.5                          | 247.1                     | 0.89            | 0.82                              | 46.5                     |
| Appro     | ach       | 2325                     | 2.8              | 0.797               | 24.4                    | LOS B               | 34.5                          | 247.1                     | 0.89            | 0.82                              | 46.3                     |
| All Vel   | hicles    | 5717                     | 4.4              | 0.939               | 32.6                    | LOS C               | 34.5                          | 247.1                     | 0.72            | 0.74                              | 40.1                     |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Movement Performance - Pedestrians |                     |                |      |       |     |     |                 |                        |  |  |  |
|------------------------------------|---------------------|----------------|------|-------|-----|-----|-----------------|------------------------|--|--|--|
| Mov<br>ID                          | Description         | Demand<br>Flow |      |       |     |     | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |
|                                    |                     | ped/h          | sec  |       | ped | m   |                 | per ped                |  |  |  |
| P2                                 | East Full Crossing  | 53             | 49.3 | LOS E | 0.2 | 0.2 | 0.95            | 0.95                   |  |  |  |
| P3                                 | North Full Crossing | 53             | 49.3 | LOS E | 0.2 | 0.2 | 0.95            | 0.95                   |  |  |  |
| All Pe                             | edestrians          | 105            | 49.3 | LOS E |     |     | 0.95            | 0.95                   |  |  |  |

V Site: 102 [DV\_PM\_Miller Road\_Site Access]

Miller Road\_Site Access Giveway / Yield (Two-Way)

| Movement Performance - Vehicles |           |               |       |       |         |          |          |          |        |           |         |
|---------------------------------|-----------|---------------|-------|-------|---------|----------|----------|----------|--------|-----------|---------|
| Mov                             | OD        | Demand        | Flows | Deg.  | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
| ID                              | Mov       | Total         | HV    | Satn  | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|                                 |           | veh/h         | %     | v/c   | sec     |          | veh      | m        |        | per veh   | km/h    |
| South: Miller Road (South Arm)  |           |               |       |       |         |          |          |          |        |           |         |
| 2                               | T1        | 568           | 5.6   | 0.340 | 8.0     | LOS A    | 0.7      | 5.4      | 0.12   | 0.03      | 58.4    |
| 3                               | R2        | 22            | 0.0   | 0.340 | 14.0    | LOS A    | 0.7      | 5.4      | 0.12   | 0.03      | 30.3    |
| Appro                           | ach       | 591           | 5.3   | 0.340 | 1.3     | NA       | 0.7      | 5.4      | 0.12   | 0.03      | 55.9    |
| East: Site Access               |           |               |       |       |         |          |          |          |        |           |         |
| 4                               | L2        | 51            | 0.0   | 0.312 | 7.2     | LOS A    | 1.2      | 8.1      | 0.84   | 0.96      | 26.3    |
| 6                               | R2        | 44            | 0.0   | 0.312 | 22.6    | LOS B    | 1.2      | 8.1      | 0.84   | 0.96      | 22.9    |
| Appro                           | ach       | 95            | 0.0   | 0.312 | 14.4    | LOS A    | 1.2      | 8.1      | 0.84   | 0.96      | 24.8    |
| North:                          | Miller Ro | ad (North Arr | n)    |       |         |          |          |          |        |           |         |
| 7                               | L2        | 20            | 0.0   | 0.467 | 5.6     | LOS A    | 0.0      | 0.0      | 0.00   | 0.01      | 57.7    |
| 8                               | T1        | 864           | 4.4   | 0.467 | 0.0     | LOS A    | 0.0      | 0.0      | 0.00   | 0.01      | 59.7    |
| Approach                        |           | 884           | 4.3   | 0.467 | 0.2     | NA       | 0.0      | 0.0      | 0.00   | 0.01      | 59.6    |
| All Vehicles                    |           | 1569          | 4.4   | 0.467 | 1.5     | NA       | 1.2      | 8.1      | 0.10   | 0.08      | 53.2    |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Processed: Thursday, 30 November 2017 11:40:48 AM
Project: X:\17322 Builders Recycling Operations Pty Ltd, Chester Hill\07 Modelling Files\17322 - SIDRA Model 171130.sip7

# Site: 103 [DV\_PM\_Miller Road\_Waldron Road\_Christina Road]

Miller Road\_Waldron Road\_Christina Road Roundabout

| Move      | ement Pe                       | rformance                | - Vehic          | les                 |                         |                     |                             |                           |                 |                                   |                          |
|-----------|--------------------------------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov                      | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South     | South: Miller Road (South Arm) |                          |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 1         | L2                             | 334                      | 7.3              | 0.555               | 10.6                    | LOS A               | 3.9                         | 29.1                      | 0.89            | 1.01                              | 48.3                     |
| 2         | T1                             | 238                      | 3.1              | 0.592               | 12.2                    | LOS A               | 4.0                         | 29.1                      | 0.89            | 1.03                              | 48.2                     |
| 3         | R2                             | 59                       | 7.1              | 0.592               | 16.8                    | LOS B               | 4.0                         | 29.1                      | 0.89            | 1.03                              | 47.9                     |
| 3u        | U                              | 2                        | 0.0              | 0.592               | 18.6                    | LOS B               | 4.0                         | 29.1                      | 0.89            | 1.03                              | 46.4                     |
| Appro     | ach                            | 633                      | 5.7              | 0.592               | 11.8                    | LOS A               | 4.0                         | 29.1                      | 0.89            | 1.02                              | 48.2                     |
| East:     | Waldron R                      | Road                     |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 4         | L2                             | 109                      | 3.8              | 0.757               | 16.7                    | LOS B               | 7.7                         | 54.7                      | 0.93            | 1.16                              | 44.2                     |
| 5         | T1                             | 986                      | 1.2              | 0.946               | 26.8                    | LOS B               | 21.1                        | 149.2                     | 0.98            | 1.48                              | 42.2                     |
| 6         | R2                             | 65                       | 1.6              | 0.946               | 37.2                    | LOS C               | 21.1                        | 149.2                     | 1.00            | 1.67                              | 39.4                     |
| 6u        | U                              | 13                       | 8.3              | 0.946               | 39.7                    | LOS C               | 21.1                        | 149.2                     | 1.00            | 1.67                              | 39.8                     |
| Appro     | ach                            | 1174                     | 1.5              | 0.946               | 26.6                    | LOS B               | 21.1                        | 149.2                     | 0.97            | 1.46                              | 42.1                     |
| North     | : Miller Ro                    | ad (North Arr            | n)               |                     |                         |                     |                             |                           |                 |                                   |                          |
| 7         | L2                             | 80                       | 1.3              | 0.302               | 10.5                    | LOS A               | 1.6                         | 11.4                      | 0.83            | 0.91                              | 50.5                     |
| 8         | T1                             | 268                      | 5.9              | 0.542               | 11.7                    | LOS A               | 4.1                         | 29.9                      | 0.90            | 1.01                              | 48.5                     |
| 9         | R2                             | 91                       | 5.8              | 0.542               | 16.3                    | LOS B               | 4.1                         | 29.9                      | 0.92            | 1.04                              | 49.9                     |
| 9u        | U                              | 1                        | 0.0              | 0.542               | 18.1                    | LOS B               | 4.1                         | 29.9                      | 0.92            | 1.04                              | 51.0                     |
| Appro     | Approach 4                     |                          | 5.0              | 0.542               | 12.4                    | LOS A               | 4.1                         | 29.9                      | 0.89            | 1.00                              | 49.2                     |
| West:     | Christina                      | Road                     |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 10        | L2                             | 95                       | 5.6              | 0.483               | 8.3                     | LOS A               | 2.7                         | 19.7                      | 0.66            | 0.78                              | 52.1                     |
| 11        | T1                             | 624                      | 2.4              | 0.951               | 18.1                    | LOS B               | 22.5                        | 163.0                     | 0.88            | 1.17                              | 46.1                     |
| 12        | R2                             | 443                      | 6.2              | 0.951               | 27.5                    | LOS B               | 22.5                        | 163.0                     | 0.99            | 1.36                              | 39.8                     |
| 12u       | U                              | 5                        | 0.0              | 0.951               | 29.3                    | LOS C               | 22.5                        | 163.0                     | 0.99            | 1.36                              | 43.8                     |
| Appro     | ach                            | 1167                     | 4.1              | 0.951               | 20.9                    | LOS B               | 22.5                        | 163.0                     | 0.91            | 1.21                              | 44.2                     |
| All Ve    | hicles                         | 3414                     | 3.6              | 0.951               | 20.1                    | LOS B               | 22.5                        | 163.0                     | 0.92            | 1.23                              | 44.6                     |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Processed: Thursday, 30 November 2017 2:23:36 PM Project: X:\17322 Builders Recycling Operations Pty Ltd, Chester Hill\07 Modelling Files\17322 - SIDRA Model 171130.sip7