Milad Investments No. 1 Pty Ltd c/- studiointernationale Pty Ltd 8-16 Soudan Lane Paddington, NSW 2021

Climate Change and Sea Level Rise MP06_0034 Preferred Project Report Department of Planning issue no.10 Proposed Tourist and Commercial Development Goodnight Island and Greenwell Point

GEOTECHNICAL

PROJECT MANAGEMENT

P0601331JC15_v1 June 2009

1. Introduction

Martens & Associates Pty Ltd (Martens) were briefed to respond to key issue number 10, in the Department of Planning (DoP) report (dated 17 December, 2008) for the proposed Tourist and Commercial Development at Goodnight Island and Greenwell Point. This report will form part of the Preferred Project Report (PPR).

DoP requested additional information in relation to sea level rise and climate change on Goodnight Island and 76 & 84 Greenwell Point Rd. The following is a summary of the DoP request:

'The impacts of climate change on the marine and terrestrial ecosystems affected by the proposal have not been considered. The location of the site renders the proposal susceptible to the impacts of rising sea levels as a result of climate change, however these impacts and the impacts of rising sea levels on the EEC's which fringe the Island have not been addressed.

The DECC's Floodplain Risk Guideline, (2007) and the CSIRO projections for sea level rise along the NSW coast provide a reference for consideration of this issue. Consultation with the Coastal Branch of the DECC should be undertaken for this project. This assessment may need to include sensitivity analyses of various scenarios...evidence that climate change has been factored into the design of built assets is to be provided in the revised plans and documentation.'

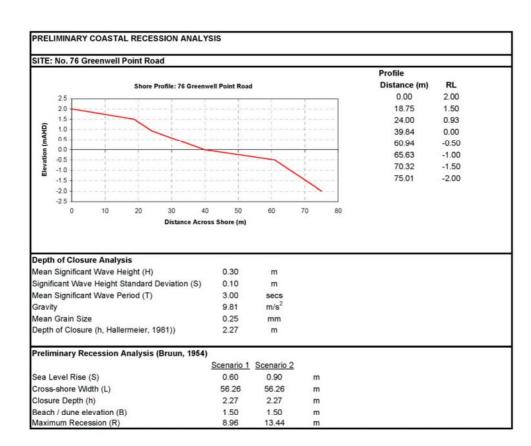
In light of discussions with Doug Lord (NSW DECC) the objectives of this report are tailored to consider the impacts of climate change on the built aspects of the proposal. Subsequently, our response is provided in the following sections.

2. Climate Change Discussion:

Reference to the IPCC projections on sea level change suggest that for 95 percentile maxima, median projected sea level rise ranges between 0.2 and 0.6m, with an upper limit of 0.79 m by 2100. Reference to DECC's Floodplain Risk Management Guideline (2007) suggests that sea level along the Australian coast is expected to rise by 0.18 - 0.91m by 2100. Considering the design life of the project is 100 years, sea level rises of 0.6m and 0.9m were used for sensitivity analysis of the development to climate change.

3. Impacts of Sea Level Rise on Proposed Development:

Table 1 provides details of the proposed development levels, and documents possible impacts of sea level rise.



Element	ltem	76 Greenwell Point Road	84 Greenwell Point Road	Goodnight Island		
Inundation of Structures	Minimum Ground Level (mAHD)	1.45	3.2	8.0		
	Comment	All openings to structures are located above the flood planning level (FPL) of 4.3 mAHD which is nominated for the 1% AEP flood height of 3.2m, + 0.5 m free board and 0.6 m allowance for sea level rise based on discussions with WMA Water. All built elements below the FPL will be water proofed and 'tanked'. Flooding and sea level rise will not affect structures.				
Mean High Water Spring Tide	Existing	0.64	0.64	0.64		
(MHWS, mAHD)	With 0.6 m SL Rise	1.24	1.24	1.24		
	With 0.9 m SL Rise	1.54	1.54	1.54		
	Comment	median and maximu structures will be signi All basements will b ingress does not occu groundwater table.	e located above the um sea level rise scen ficantly higher than an be 'tanked' to ensure ur in response to any p Changes to the ons will not affect the	arios. Openings to by future MHWS level, that groundwater possible future rises in the tidal plan and		
Coastal Erosion ¹	Recession @ 0.6 m SL Rise (m)	8.96	10.02	na		
Coastal Erosion ¹	Recession @ 0.6 m SL Rise (m) Recession @ 0.9 m SL Rise (m)	8.96 13.44	10.02 15.02			

Table 1: Summary of sea level change impact assessment on development proposal.

¹ Preliminary conservative estimate based on the Bruun rule. See Figures 1 and 2 for details.

Martens & Associates Pty	Ltd ABN 85 070 240 890	Environment Water Wastewater Geotechnical Civil Management			
Drawn:	JSF		Drawing No:		
Approved:	DMM	Preliminary Coastal Recession Analysis: 76 Greenwell Point Rd	FIGURE 1		
Date:	22 / 06 / 2009				
Scale:	N/A		Job No: P0601331		

SITE:	No. 84	Green	well P	oint Ro	ad								
											Profile		
		Shore Profile: 84 Greenwell Point Road									Distance (m) RL 2.00	
	2.5						1				0.00		
	2.0										7.10	1.50	
õ	1.0		-				1				18.40	1.00	
HAH	0.5			1							22.40	0.50	
- u	0.0			-	-	-	-		-	_	29.00	0.00	
atio	-0.5										41.00	-0.50	
Elevation (mAHD)	-1.0										56.00	-1.00	
	-1.5								-	10.00	70.00	-1.50	
	-2.0										75.00	-2.00	
	-2.5 L	1		20	30	40	50	60	70	80			
				20		40 Across Sh				00			
Depti	h of Clo	osure A				and the second				80			
			nalysi	s		Across Sh		m		80			
Mean	Signifi	osure An cant Wa	nalysi ve He	is ight (H)		Across Sh	ore (m)			80			
Mean Signif	Signifi ficant W	osure An cant Wa /ave Hei	nalysi ve He ght St	is ight (H) andard	Distance	Across Sh ((S) (ore (m)	m		80			
Mean Signif Mean	Signifi ficant W Signifi	osure An cant Wa	nalysi ve He ght St	is ight (H) andard	Distance	Across Sh ((S) ()	ore (m) 0.30 0.10	m		60			
Mean Signif Mean Gravil	Signifi ficant W Signifi	osure An cant Wa /ave Hei cant Wa	nalysi ve He ght St	is ight (H) andard	Distance	Across Sh ((S) (0.30 0.10 3.00	m m secs		60			
Mean Signif Mean Gravil Mean	i Signifi ficant W Signifi ty Grain	osure An cant Wa /ave Hei cant Wa	nalysi ve He ght St ve Pe	i s ight (H) andard riod (T)	Distance	(S) (0.30 0.10 3.00 9.81	m m secs m/s ²		80			
Mean Signif Mean Gravit Mean Depth	Signifi ficant W Signifi ty Grain of Clo	osure An cant Wa /ave Hei cant Wa Size Size sure (h,	nalysi ve He ght St ve Pe Haller	i s ight (H) andard riod (T) meler, 1	Distance	Across Sh ((S) (; ; ; ; ; ; ; ; ; ; ; ; ;	0.30 0.10 3.00 9.81 0.25 2.27	m m secs m/s ² mm m		80			
Mean Signif Mean Gravit Mean Depth Prelir	Signifi ficant W Signifi ty Grain of Clo minary	osure Ai cant Wa /ave Hei cant Wa Size sure (h, Recess	nalysi ve He ght St ve Pe Haller	i s ight (H) andard riod (T) meler, 1	Distance Deviation (981))	Across Sh ((S) (954) <u>Sce</u>	0.30 0.10 3.00 9.81 0.25 2.27 mario 1	m secs m/s ² mm m		00			
Mean Signif Mean Gravif Mean Depth Prelir Sea L	Significant W Significant W Significant Grain of Clo minary Level Ri	osure Ai cant Wa /ave Hei cant Wa Size sure (h, Recess ise (S)	nalysi ve He ght St ve Pe Haller ion A	i s ight (H) andard riod (T) meler, 1	Distance Deviation (981))	((S) ((954) <u>Sce</u> ()	0.30 0.10 3.00 9.81 0.25 2.27 <u>mario 1</u> 0.60	m secs m/s ² mm m <u>Scenario 2</u> 0.90		00			
Mean Signif Mean Gravil Mean Depth Prelir Sea L Cross	Signific ficant W Signific ty Grain of Clo minary evel Ri s-shore	osure An cant Wa /ave Hei cant Wa Size sure (h, Recess ise (S) Width (L	nalysi ve He ght St ve Pe Haller ion A	i s ight (H) andard riod (T) meler, 1	Distance Deviation (981))	Across Sh ((S) (C) (S) (C) (S) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	0.30 0.10 3.00 9.81 0.25 2.27 <u>mario 1</u> 0.60 2.90	m msecs m/s ² mm m <u>Scenario 2</u> 0.90 62.90	mm	00			
Mean Signif Mean Gravit Mean Depth Prelir Sea L Cross Closu	Signific ficant W Signific ty Grain of Clo minary Level Ri S-shore ore Dep	osure An cant Wa /ave Hei cant Wa Size sure (h, Recess ise (S) Width (L th (h)	nalysi ve He ght St ve Pel Haller ion A	is ight (H) andard riod (T) meler, 1 nalysis	Distance Deviation (981))	Across Sh ((S) (C) (S) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	0.30 0.10 3.00 9.81 0.25 2.27 <u>mario 1</u> 0.60 2.90 2.27	m secs m/s ² mm m <u>Scenario 2</u> 0.90 62.90 2.27	m	00			
Mean Signif Mean Gravit Mean Depth Prelir Sea L Cross Closu Beact	Significant W Signific ty Grain S Grain S Grain S Grain S Grain S Grain S Close minary Level Ri S-shore tre Dep h / dune	osure An cant Wa /ave Hei cant Wa Size sure (h, Recess ise (S) Width (L	nalysi ve He ght St ve Pe ion A ion A	is ight (H) andard riod (T) meler, 1 nalysis	Distance Deviation (981))	((S) (((S) ((954) <u>Sce</u> (6	0.30 0.10 3.00 9.81 0.25 2.27 <u>mario 1</u> 0.60 2.90	m msecs m/s ² mm m <u>Scenario 2</u> 0.90 62.90	mm				

Martens & Associates Pty	Ltd ABN 85 070 240 890	Environment Water Wastewater Geotechnical Civil Management			
Drawn:	JSF		Drawing No:		
Approved:	DMM	Preliminary Coastal Recession Analysis: 84 Greenwell Point Rd	FIGURE 2		
Date:	22 / 06 / 2009				
Scale:	N/A		Job No: P0601331		