Traffic Assessment

TRANSPORT STUDY

PROPOSED COAL MINE DEVELOPMENT

ANVIL HILL PROJECT

May - July 2006

UMWELT (AUSTRALIA) PTY LIMITED
(Client)

CONTENTS

1. I NTRODUCTION
1.1-TheProject
1.2-Task Description
1.3-TPK \& Associates Representative
1.4-References
2. ROAD NETWORK
2.1-Site Location
2.2-Existing Road Network
2.3-Traffic Flow
3. TRANSPORTPROPOSALS
3.1-Rail Transportation
3.2-Road Transportation
4. 3 - Nominated Transport Route
5. ASSESSMENT OF THE TRANSPORT ROUTE
4.1-Description
4.2-AssessedConcerns
6. 3 - Identified Solutions
7. ROUTE\& \& NTERSECTION CAPACITY
5.1-Route Capacity
5.2-1ntersections
8. 3-Accident History
9. SUMMATION

1. I NTRODUCTION

1.1. - The Project

TPK \& Associates (TPK) was invited by Umwelt (Australia) Pty Limited to join a project team undertaking evaluation of the proposed Anvil Hill coal mine project (the project) on behalf of Centennial Hunter Pty Limited (Centennial).

The site is located some 20 kilometres (km) west of Muswellbrook on the south side of Wybong Road. Figure 1 shows the site location relative to the surrounding area.

1.2. - Task Description

The transport study by TPK was to evaluate the impact of potential traffic generation from the project on the surrounding road network and determine appropriate transport improvements and strategies as seen necessary.

The road assessment and report by TPK will determine: -

- Suitability of the road network to service all road user needs in terms of road safety and traffic management.
- Appropriate traffic management to ensure the impact of additional traffic is minimised.
- Appropriate road safety and traffic management guidelines and standards to be addressed by the proposal.

This assessment report is intended to provide information for the Environmental Assessment (EA) documentation for the project.

1.3. - Project Representative

Mr. Terry Keating, Director, TPK \& Associates Pty Ltd undertook the evaluation and preparation of the report. He has over 39 years experience in the road safety and traffic management profession, including the assessment of traffic generating developments.

1.4. - References

The assessment and report have been provided as an outcome of reference to:

- Muswellbrook Shire Council Transport Strategy
- RTA Guide to Traffic Generating Developments
- Austroads Part 5 Intersections at Grade
- Austroads Part 2 Roadway Capacity

FIGURE 1.1
Locality Plan

2. ROAD NETWORK

2.1 - Site Location

The proposed mine is located in a rural environment generally referred to as Wybong; some 20km to the west of Muswellbrook Township on the southern side of Wybong Road (refer to Figure 2)

2.2 - Existing Road Network

Site access is proposed to be via Wybong Road, a local road that facilitates a transport link between Muswellbrook and Sandy Hollow to the west. The existing road network is depicted in Figure 2.

Wybong Road intersects with the Golden Highway (SH27) to the west of Anvil Hill Project site at Sandy Hollow. The Golden Highway is part of the major transport link between Dubbo and Newcastle and passes through Denman en route to intersecting with the New England Highway to the south of Singleton.

Wybong Road intersects Kayuga Road on the outskirts of Muswellbrook. Kayuga Road crosses the Hunter River over a single lane bridge prior to affording options to turn left or right to move through the Muswellbrook local road network to the New England Highway.

New England Highway is the major transport route between Newcastle and Muswellbrook, passing through Singleton.

The road network around the project site has been reviewed; an area map and an audit summation are provided in Appendix A of this report.

2.3 - Traffic Flow

RTA provides traffic flow data in their publication Traffic Volume Data 2004; examination of that data disclosed the following relevant to this assessment:

- Annual Average Daily Traffic (AADT) for New England Highway of 16253 vehicles per day (vpd) south of Sydney Street at Muswellbrook
- AADT for Golden Highway of 2343vpd just north of Denman
- AADT for Denman Road (MR 219) of 8860vpd, west of New England Highway at Muswellbrook

Legend
\square Projact Application Araa - - Proposad Road

TPK also arranged for:

- An Average Daily Traffic (ADT) hourly volume traffic count on Wybong Road, 1 to 2km east of The Golden Highway
- An Intersection count in the peak periods for Wybong and Kayuga Roads
- An Intersection count in the peak periods for Denman Road and Bengalla Link Road
- An intersection count in the peak periods for Denman Road and Thomas Mitchell Drive

The TPK traffic survey data collected for this project is provided in Appendix B of this report.

It should be noted that RTA AADT is derived from field data and formulae to adjust volumes for seasonal factors; ADT is derived from a smaller field sample and not adjusted for seasonal factors.

3. TRANSPORT PROPOSALS

3.1. - Rail Transportation

The project includes construction of a rail loop onto the site from the Muswellbrook - Merriwa rail line; this rail service will provide transport services for coal removed from the site.

There are no proposals to haul any mined product from the site by road.

3.2. - Road Transportation

The project will present an increase in traffic demand once operational from the following traffic generators

- Staff (227 shift employees, 13 day employees)
- Visitors (Average 20 visitors per day)
- Service and Delivery (Average 10 heavy vehicles per day)

The quantum and impact of trips generated in the typical peak period will be examined in Sections 4 and 5 of this report.

Typical employment catchment areas in this general locality have been previously researched by Coakes Consulting (1999). Upper Hunter Mining Industry and Employee Survey Report on behalf of Coal Operations Australia Limited. It suggests the following residential catchments would be applicable for this project:

Muswellbrook (48\%)
Denman (8\%)
Scone (12\%)
Singleton (14\%)
Aberdeen (6\%)
Cessnock (1\%)
Maitland (2\%)
Newcastle (1\%)
Other (8\%)
TOTAL (100\%)

3.3. - Nominated Transport Route

Given the residency findings of Section 3.2 the staff and visitor/delivery origin destination trips will focus to the key routes:

- SH9, New England Highway
- MR209, Denman Road

Muswellbrook Shire Council has advised TPK that beyond those two key routes the following strategies will control the acceptable trip paths of traffic generated by the project:

1. Wybong Road east of Roxburgh Road should be considered as non existent in assessing traffic impact associated with this project as the road will be removed from service at some stage.
2. Access to/from Wybong Road is to be "directed" to use the planned extension of Bengalla Link Road as a link between Denman Road and Wybong Road, thereby minimising impact on the local road network.
3. There are to be initiatives in place to protect local roads such as Mangoola and Roxburgh Roads from significant traffic increase as a result of traffic generated by this project.

The key intersection for converge of potential trips will be Denman and Bengalla Link Roads, Muswellbrook. All approaches to the existing intersection are shown in the photos below.

Based on the personnel and catchments stated in Section 3.2 TPK has determined the highest potential peak demand at the Denman/Bengalla Link Roads intersection, due to the Anvil Hill Project based on:

- Employees restricted to using the nominated route Bengalla Link Road to Wybong Road to the mine site.
- 2 shifts per day with all day-employees arriving at the same time as the day shift employees commence.
- Arrival and departure mine shift traffic trips will not coincide at this intersection.
- 90% of traffic to/from the mine on Muswellbrook approach; 10% to/from Denman approach.
- Approximately 25% of total shift employees are working at any one shift. This is based on data from existing mining operations that utilise 12 hour shift rosters.
- Approximately 30% of day employees leave work at the same time as the employees that have just finished day shift.
- A conservative level of car sharing has been adopted resulting in a high car usage rate of between 80% and 85%.
- Half of all heavy vehicle movement arrivals coincide with the day shift change. It is likely that heavy vehicle movements would be distributed more evenly over the day.
- Half of all visitor arrivals coincide with the day shift change. It is likely that visitor movements would be distributed more evenly over the day.
- No adjustment in daily employee levels for annual leave, training, or sick leave.

The resulting peak morning and evening traffic flows as a result of the Anvil Hill Project are listed in Table 1 below.

Table 1: Peak Anvil Hill Project Traffic Movements
Peak Anvil Hill Project AM Movements (0630-0730 hrs)

				Movements in Worst Case Hour		
Activity	Total Employees	Number on Site per Day	Sharing Adjustment	Arrivals	Departures	Total
Shift Employees\#	227	118	0.825	49	49	98
Day Employees*	13	13	0.825	11	0	11
Visitors		20		10	0	10
Heavy Vehicles		10		5	1	6
Total	240	161		75	50	125

Peak Anvil Hill Project PM Movements (1830-1930 hrs)

				Movements in Worst Case Hour		
Activity	Total Employees	Number on Site per day	Sharing Adjustment	Arrivals	Departures	Total
Shift Employees\#	227	118	0.825	49	49	98
Day Employees*	13	13	0.825	0	4	4
Visitors		20		0	1	1
Heavy Vehicles		10		1	2	3
Total	240	161		50	56	106

Notes:
\# Shift Employees include all Open Cut and CPP employees including Shift Coordinators

* Day Employees include all employees within central administration such as the General Manager, senior managers, and administration staff

In addition, allowance has been made for the projected Mount Pleasant mine employee numbers as outlined in the Mt Pleasant Mine Environmental Impact Statement Volume 1 (ERM Mitchell McCotter 1997). Using similar assumptions as listed above for the Anvil Hill Project, the projected peak morning and evening traffic flows for Mount Pleasant are listed in Table 2 on the following page.

Table 2: Peak Mount Pleasant Mine Traffic Movements

Peak Mount Pleasant Mine AM Movements (0630-0730hrs)			Movements in Worst Case Hour				
					Total		
Activity	Total Employees	Number on Site per day	Sharing Adjustment	Arrivals	Departures	Th	0.825
Shift Employees\#	350	176	73	73	146		
Day Employees*	30	25	0.825	21	0	21	
Visitors		20		10	0	10	
Heavy Vehicles		10		5	1	6	
Total	380	199		109	74	183	

Peak Mount Pleasant Mine PM Movements (1830-1930hrs)						
			Movements in Worst Case Hour			
Activity	Total Employees	Number on Site per day	Sharing Adjustment	Arrivals	Departures	Total
Shift Employees\#	350	176	0.825	73	73	146
Day Employees*	30	25	0.825	0	8	8
Visitors		20		0	1	1
Heavy Vehicles		10		1	2	3
Total	380	199		74	84	158

The Mt Pleasant Mine Environmental Impact Statement Volume 1 (ERM Mitchell McCotter 1997) distributed the potential traffic generations assuming access to catchments via routes other than Bengalla Link Road. They indicated that the Table 2 totals are then split into the following route proportions as outlined:

- 3% of the traffic will travel west via Wybong Rd
- 66% of the traffic will travel south via Bengalla Link Rd. Once this traffic reaches the Denman Rd intersection, 63% will travel east along Denman Rd towards Muswellbrook and 3% will travel west along Denman Rd towards Denman.

Figure 3 on the following page summarises these traffic generation and distributions at the key intersections either end of Bengalla Link Road.

Figure 3 shows the typical inbound and outbound highest peak hour trips (Cars/HV).

FIGURE 3 - POTENTIAL DISTRIBUTION OF ADDITIONAL TRAFFIC GENERATIONS

ROUTE

4.1 - Route Description

The route for site traffic is described to be:

- Travel towards Muswellbrook via established main roads
- Transit Denman Road (MR 209) or Thomas Mitchell Drive to the Bengalla Link Road intersection
- Transit Bengalla Link Road to Wybong Road
- Transit Wybong Road to Anvil Hill Access Road
- Transit the reverse of the above description for exiting trips

4.2. - Relevant Issues

TPK have assessed the following as key traffic matters to be addressed following road network assessment audits:

- Consideration to be given to route capacity.
- Key intersections on the nominated route require assessment with regard to capacity
- Wybong Road between the intersection with Bengalla Link Road (extended) and Anvil Hill Mine Access to be upgraded to meet standard requirements.
- The Anvil Hill Access Road and Wybong Road intersection to be constructed at a point that provides adequate sight distance.

4.3. - Identified Solutions

TPK have identified the following in respect of the items listed in 4.2 above:

- Route and Intersection capacity to be analysed in detail in Section 5 of this report
- Wybong Road to be upgraded as a joint venture between Muswellbrook Shire Council and Centennial.

Centennial Coal will be required to enhance the road environment relative to the increase in traffic and potential increased traffic interaction. This could include provision of improved road surface, centreline marking and enhanced road safety areas such as school bus bays.

Appendix A is a summation of the key findings of the roads assessment audits including Wybong Road; the section shaded (green) is most relevant to this project assessment.

TPK submit that the following issues currently require attention for this section of Wybong Road to meet the appropriate local road standards regardless of this project:

* Provide and maintain trafficable shoulders/clear zones. Currently vegetation restricts or covers basic traffic facilities such as guide posts and signs but of more concern it hides exposed bridge abutments. There are limited opportunities to confidently move off the sealed carriageway.
* Safe intersection sight distance for all accesses through control of foliage and improved road geometry.
* Provision of standard warning signs (and protection if warranted) for hazards such as bridge abutments and culverts.

Centennial Coal proposes to upgrade Wybong Road as follows:

* Upgrade Wybong Road sealed carriageway to ensure a minimum carriageway width of 6.5 m over the section between the Bengalla Link Road (extended) and the mine access road intersection.
* Provide roadmarked centreline and raised reflective pavement markers (RPM) to required standards.
* Enhance curve advisory and hazard signposting to improve awareness for drivers unfamiliar with the road environment.
* Upgrade locations subject to activity by vulnerable road users such as school children to enhance road safety. The only site identified during site inspection was the school bus pick up/set down operation near Castlerock Road; confirmation of current sites would need to be obtained at the Wybong Road detail design stage.
- The location of the new access road as proposed has been confirmed by detail survey with respect to safe intersection sight distance (SISD); an optimum centreline point for the access road has been identified that achieves sight distance for the prevailing road environment within tolerances of road design guide best practice; 273m SISD will be available to the left and 244 m to the right.

5. ROUTEANDINTERSECTION CAPACITY

5.1 - Route Capacity

Austroads Part 2 Table 3.9 provides Maximum AADT figures for Various Levels of Service (LoS see page 12) and Types of Terrain for two lane Two Way rural roads. The key routes to experience any potential impact from traffic generated by this project's traffic will be:

- Denman Road

Current AADT in Muswellbrook is around 9000vpd on the urban arterial section of this route and diminishing to less than 4000vpd on the rural two lane road section towards the Bengalla Link Road intersection.

Total intersection demand for controlled sites such as The New England Highway and Denman Road does not exceed 1100vph.

Austroads states a maximum AADT of 7900 vpd for LoS C in two lane rural roads whilst in the urban road environment the focus is more on hourly volume lane capacity where 1800vph, one way is stated as an indicative capacity for interrupted flow.

The total daily traffic increase in Muswellbrook will not exceed 310vpd due to this project and TPK submit that the daily increase is not significant for AADT nor will the hourly rate impact spread over the various approaches of controlled intersections reduce intersection capacity. Consequently, TPK submit that there will be no measurable change in the roadway capacity.

- Bengalla Link Road

Bengalla Link Road currently caters for less than 1500vpd and is to ultimately have a broader network role once extended to Wybong Road; Austroads states the maximum AADT for LoS C is 7900 vpd . Given the daily increase from this project is expected to be around 300 to 340 vpd TPK submit such daily volumes will not have an adverse impact on present or ultimate route capacity.

- Wybong Road

ADT measured at the Golden Highway end of the route indicates combined volumes of around 300vpd. Extrapolating the Muswellbrook end from Kayuga Road peak hour intersection counts the average ADT is seen to be around 1000vpd.
Significant road strategies, under planning by Muswellbrook Council, will impact on Wybong Road east of Roxburgh Road. However westerly towards the proposed access for this project it is realistic to expect an ADT around 500vpd and an hourly peak flow of 50vph for existing traffic. In terms of route capacity the mine traffic increase is not significant.

5.2. - Intersections

Denman and Bengalla Link Roads

The traffic critical intersection for potential impact from this project is seen to be Denman and Bengalla Link Roads. TPK has arranged peak hour intersection counts to obtain existing traffic flows. Utilising the potential traffic distributions set out in Figure 3 of this report TPK has completed a series of intersection models based on the existing geometric layout.

TPK have modelled ten scenarios for this intersection and outcomes are provided on the following pages as Tables 3 to 12; the scenarios are:

3 Existing traffic AM Peak
4. Existing traffic AM Peak with Anvil Hill inbound shift traffic added
5. Existing traffic AM Peak with Anvil Hill \& Mt Pleasant inbound shift traffic added
6. Existing traffic AM Peak with Anvil Hill outbound shift traffic added
7. Existing traffic AM Peak with Anvil Hill \& Mt Pleasant outbound shift traffic added
8. Existing traffic PM Peak
9. Existing traffic PM Peak with Anvil Hill inbound shift traffic added
10. Existing traffic PM Peak with Anvil Hill \& Mt Pleasant inbound shift traffic added
11. Existing traffic PM Peak with Anvil Hill outbound shift traffic added
12. Existing traffic PM Peak with Anvil Hill \& Mt Pleasant outbound shift traffic added

TPK utilise the intersection-modeling program SIDRA to review intersection performance. The outcomes of the model include key indicators:

- Approach Level of Service
- Approach Average Delay
- Approach 95\% Back of Queue
- Approach Degree of Saturation

The term Level of Service (LoS) is one output parameter of the SIDRA model and provides an insight into "operating conditions" of the intersection and each approach. The output range is indicated in the range LoS A to LoS F where A indicates good operating conditions reducing to F where other forms of control should be considered.

Table of Abbreviations used in SIDRA Movement Summary
Some of the column headers are explained below to assist in interpretation; those not listed are self explanatory or measures of performance requiring detailed interpretation.
Mov No = Movement Number given to each movement
Dem Flow (veh/hr) = Actual volumes adjusted SIDRA for relativity in the model
Turn = Direction, either Through (T), Left (L) or Right (R)
\%HV = Percent of Heavy Vehicles in the flow
Level of Service $=$ See page 12

Table 3 - Movement Summary

DENMAN and BENGALLA LINK ROADS, MUSWELLBROOK. EXISTING TRAFFIC AM PEAK
Give-way
Vehicle Movements

Mov No	Turn	Dem Flow (veh/ h)	\% HV	Deg of Satn (v/ c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
DENMAN ROAD FROM M'BROOK										
5	T	94	25.8	0.056	0.0	LOS A	0	0.00	0.00	80.0
6	R	118	9.3	0.096	11.9	LOS B	4	0.24	0.68	57.7
Appro	ach	211	16.6	0.096	6.7	LOS A	4	0.13	0.38	65.9
BENGALLA LI NK ROAD										
7	L	25	16.0	0.033	12.6	LOS B	1	0.23	0.67	57.6
9	R	1	0.0	0.002	14.2	LOS B	0	0.47	0.66	54.5
Appro	ach	26	15.4	0.033	12.6	LOS B	1	0.24	0.67	57.5
DENMAN ROAD										
10	L	7	0.0	0.063	10.9	LOS B	0	0.00	0.73	58.9
11	T	112	6.3	0.063	0.0	LOS A	0	0.00	0.00	80.0
Appro	ach	118	5.9	0.063	0.6	LOS A		0.00	0.04	78.4
All Ve	icles	355	13.0	0.096	5.1	Not Applicable	4	0.10	0.29	68.8

TPK submit intersection performance is satisfactory

Table 4 - Movement Summary

DENMAN \& BENGALLA LINK ROADS MUSWELLBROOK - EXISTING TRAFFIC AM PEAK WITH AH INBOUND SHIFT ADDED

Give-way
Vehicle Movements

$\begin{gathered} \text { Mov } \\ \text { No } \end{gathered}$	Turn		\% HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
DENMAN ROAD FROM M'BROOK										
5	T	112	6.3	0.059	0.0	LOS A	0	0.00	0.00	80.0
6	R	188	7.9	0.152	11.9	LOS B	6	0.25	0.68	57.6
Appro	ach	300	7.3	0.152	7.5	LOS A	6	0.16	0.43	64.4
BENGALLA LI NK ROAD										
7	L	25	16.0	0.033	12.6	LOS B	1	0.23	0.67	57.6
9	R	1	0.0	0.002	15.2	LOS C	0	0.52	0.68	53.4
Appro	ach	26	15.4	0.033	12.7	LOS B	1	0.24	0.67	57.4
DENMAN ROAD										
10	L	7	0.0	0.059	10.9	LOS B	0	0.00	0.73	58.9
11	T	94	25.8	0.059	0.0	LOS A	0	0.00	0.00	80.0
Approach		100	24.0	0.059	0.8	LOS A		0.00	0.05	78.1
All Vehicles		426	11.7	0.152	6.2	$\begin{gathered} \text { Not } \\ \text { Applicable } \end{gathered}$	6	0.13	0.36	66.7

TPK submit that the intersection performance is satisfactory for this scenario.

Table 5 - Movement Summary

DENMAN \& BENGALLA LINK ROADS MUSWELLBROOK - EXISTING TRAFFIC AM PEAK WITH AH and Mt.P INBOUND SHIFTS ADDED

Give-way
Vehicle Movements

$\begin{gathered} \text { Mov } \\ \text { No } \end{gathered}$	Turn	Dem Flow (veh/h)	\% HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
DENMAN ROAD FROM M'BROOK										
5	T	112	6.3	0.059	0.0	LOS A	0	0.00	0.00	80.0
6	R	262	6.9	0.210	11.9	LOS B	9	0.27	0.68	57.5
Appro	ach	373	6.7	0.210	8.4	LOS A	9	0.19	0.48	62.9
BENGALLA LI NK ROAD										
7	L	25	16.0	0.033	12.6	LOS B	1	0.24	0.67	57.6
9	R	1	0.0	0.002	16.4	LOS C	0	0.55	0.70	52.0
Appro	ach	26	15.4	0.033	12.7	LOS B	1	0.25	0.67	57.3
DENMAN ROAD										
10	L	15	0.0	0.064	10.9	LOS B	0	0.00	0.73	58.9
11	T	94	25.8	0.064	0.0	LOS A	0	0.00	0.00	80.0
Approach		108	22.2	0.064	1.5	LOS A		0.00	0.10	76.3
All Vehicles		507	10.5	0.210	7.1	Not Applicable	9	0.15	0.41	65.0

TPK submit that the intersection performance is satisfactory for this scenario.

Table 6 - Movement Summary

DENMAN \& BENGALLA LINK ROADS MUSWELLBROOK - EXISTING TRAFFIC AM PEAK WITH AH OUTBOUND SHIFT ADDED

Give-way
Vehicle Movements

$\begin{gathered} \text { Mov } \\ \text { No } \end{gathered}$	Turn		\% HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
DENMAN ROAD FROM M'BROOK										
5	T	112	6.3	0.059	0.0	LOS A	0	0.00	0.00	80.0
6	R	118	9.3	0.096	11.9	LOS B	4	0.24	0.68	57.7
Appro	ach	229	7.9	0.096	6.1	LOS A	4	0.12	0.35	66.8
BENGALLA LI NK ROAD										
7	L	74	6.8	0.086	11.9	LOS B	2	0.23	0.68	57.6
9	R	6	0.0	0.011	14.3	LOS B	0	0.48	0.72	54.4
Appro	ach	79	6.3	0.086	12.1	LOS B	2	0.25	0.68	57.3
DENMAN ROAD										
10	L	7	0.0	0.059	10.9	LOS B	0	0.00	0.73	58.9
11	T	94	25.8	0.059	0.0	LOS A	0	0.00	0.00	80.0
Approach		100	24.0	0.059	0.8	LOS A		0.00	0.05	78.1
All Vehicles		408	11.5	0.096	6.0	$\begin{gathered} \text { Not } \\ \text { Applicable } \end{gathered}$	4	0.12	0.34	67.1

TPK submit that the intersection performance is satisfactory for this scenario.

Table 7 - Movement Summary

DENMAN \& BENGALLA LINK ROADS MUSWELLBROOK - EXISTING TRAFFIC AM PEAK WITH AH and Mt. P OUTBOUND SHIFT ADDED

Give-way
Vehicle Movements

$\begin{gathered} \text { Mov } \\ \text { No } \end{gathered}$	Turn	Dem Flow (veh/h)	\% HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
DENMAN ROAD FROM M'BROOK										
5	T	112	6.3	0.059	0.0	LOS A	0	0.00	0.00	80.0
6	R	118	9.3	0.096	11.9	LOS B	4	0.24	0.68	57.7
Appro	ach	229	7.9	0.096	6.1	LOS A	4	0.12	0.35	66.8
BENGALLA LI NK ROAD										
7	L	123	4.9	0.142	11.8	LOS B	4	0.23	0.68	57.6
9	R	8	0.0	0.015	14.4	LOS B	0	0.48	0.73	54.3
Appro	ach	131	4.6	0.141	12.0	LOS B	4	0.25	0.68	57.4
DENMAN ROAD										
10	L	7	0.0	0.059	10.9	LOS B	0	0.00	0.73	58.9
11	T	94	25.8	0.059	0.0	LOS A	0	0.00	0.00	80.0
Approach		100	24.0	0.059	0.8	LOS A		0.00	0.05	78.1
All Vehicles		460	10.4	0.142	6.6	$\begin{gathered} \text { Not } \\ \text { Applicable } \end{gathered}$	4	0.13	0.38	65.8

TPK submit that the intersection performance is satisfactory for this scenario.

Table 8 - Movement Summary

DENMAN and BENGALLA ROADS, MUSWELLBROOK. EXISTING TRAFFIC PM PEAK Give-way

Vehicle Movements

Mov No	Turn	Dem Flow (veh/ h)	\% HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
DENMAN ROAD FROM M'BROOK										
5	T	158	10.1	0.086	0.0	LOS A	0	0.00	0.00	80.0
6	R	12	36.4	0.012	14.1	LOS B	1	0.29	0.67	57.4
Appro	ach	169	11.8	0.086	0.9	LOS A	1	0.02	0.04	78.0
BENGALLA LI NK ROAD										
7	L	55	20.0	0.076	13.0	LOS B	2	0.28	0.69	57.3
9	R	1	0.0	0.002	13.9	LOS B	0	0.46	0.66	54.9
Appro	ach	56	19.6	0.076	13.0	LOS B	2	0.28	0.69	57.3
DENMAN ROAD										
10	L	3	0.0	0.075	10.9	LOS B	0	0.00	0.73	58.9
11	T	126	19.8	0.075	0.0	LOS A	0	0.00	0.00	80.0
Appro	ach	129	19.4	0.075	0.3	LOS A		0.00	0.02	79.4
All Ve	icles	354	15.8	0.086	2.6	Not Applicable	2	0.05	0.14	74.3

TPK submit that the intersection performance is satisfactory for this scenario.

Table 9 - Movement Summary

DENMAN \& BENGALLA LINK ROADS MUSWELLBROOK - EXISTING TRAFFIC PM PEAK WITH AH INBOUND SHIFT ADDED

Give-way

Vehicle Movements

Mov No	Turn	Dem Flow (veh/ h)	\% HV	Deg of Satn (v / c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
DENMAN ROAD FROM M'BROOK										
5	T	157	4.5	0.082	0.0	LOS A	0	0.00	0.00	80.0
6	R	57	5.3	0.044	11.6	LOS B	2	0.20	0.67	57.9
Approa	ach	213	4.7	0.082	3.1	LOS A	2	0.05	0.18	72.7
BENGALLA LI NK ROAD										
7	L	58	6.9	0.068	11.8	LOS B	2	0.20	0.67	57.8
9	R	1	0.0	0.002	13.7	LOS B	0	0.44	0.66	55.2
Approa	ach	59	6.8	0.068	11.8	LOS B	2	0.20	0.67	57.7
DENMAN ROAD										
10	L	5	0.0	0.051	10.9	LOS B	0	0.00	0.73	58.9
11	T	88	9.1	0.050	0.0	LOS A	0	0.00	0.00	80.0
Approa	ach	93	8.6	0.050	0.6	LOS A		0.00	0.04	78.5
All Veh	icles	365	6.0	0.082	3.9	Not Applicable	2	0.06	0.22	71.1

TPK submit that the intersection performance is satisfactory for this scenario.

Table 10 - Movement Summary

DENMAN \& BENGALLA LINK ROADS MUSWELLBROOK - EXISTING TRAFFIC PM PEAK WITH AH and Mt.P INBOUND SHIFT ADDED

Give-way
Vehicle Movements

$\begin{gathered} \text { Mov } \\ \text { No } \end{gathered}$	Turn		\% HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
DENMAN ROAD FROM M'BROOK										
5	T	157	4.5	0.082	0.0	LOS A	0	0.00	0.00	80.0
6	R	107	3.7	0.081	11.5	LOS B	3	0.21	0.68	57.9
Appro	ach	263	4.2	0.082	4.7	LOS A	3	0.08	0.27	69.3
BENGALLA LI NK ROAD										
7	L	58	6.9	0.068	11.8	LOS B	2	0.20	0.67	57.8
9	R	1	0.0	0.002	14.3	LOS B	0	0.48	0.66	54.5
Appro	ach	59	6.8	0.068	11.8	LOS B	2	0.20	0.67	57.7
DENMAN ROAD										
10	L	6	0.0	0.051	10.9	LOS B	0	0.00	0.73	58.9
11	T	88	9.1	0.051	0.0	LOS A	0	0.00	0.00	80.0
Approach		94	8.5	0.051	0.7	LOS A		0.00	0.05	78.2
All Vehicles		416	5.5	0.082	4.8	Applicable	3	0.08	0.28	69.2

TPK submit that the intersection performance is satisfactory for this scenario.

Table 11 - Movement Summary

DENMAN \& BENGALLA LINK ROADS MUSWELLBROOK - EXISTING TRAFFIC PM PEAK WITH AH OUTBOUND SHIFT ADDED

Give-way
Vehicle Movements

$\begin{gathered} \text { Mov } \\ \text { No } \end{gathered}$	Turn		\% HV	Deg of Satn (v / c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
DENMAN ROAD FROM M'BROOK										
5	T	157	4.5	0.082	0.0	LOS A	0	0.00	0.00	80.0
6	R	9	22.2	0.008	12.7	LOS B	0	0.21	0.66	57.8
Appro	ach	165	5.5	0.082	0.7	LOS A	0	0.01	0.04	78.4
BENGALLA LI NK ROAD										
7	L	114	5.3	0.130	11.7	LOS B	4	0.20	0.68	57.7
9	R	6	0.0	0.010	13.2	LOS B	0	0.41	0.69	55.8
Appro	ach	119	5.0	0.130	11.8	LOS B	4	0.21	0.68	57.6
denman road										
10	L	1	0.0	0.048	10.9	LOS B	0	0.00	0.73	58.9
11	T	88	9.1	0.048	0.0	LOS A	0	0.00	0.00	80.0
Approach		89	9.0	0.048	0.1	LOS A		0.00	0.01	79.7
All Vel	hicles	373	6.2	0.130	4.1	Applicable	4	0.07	0.23	70.7

TPK submit that the intersection performance is satisfactory for this scenario.

Table 12 - Movement Summary

DENMAN \& BENGALLA LINK ROADS MUSWELLBROOK - EXISTING TRAFFIC PM PEAK WITH AH and Mt.P OUTBOUND SHIFT ADDED

Give-way
Vehicle Movements

$\begin{gathered} \text { Mov } \\ \text { No } \end{gathered}$	Turn		\% HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
DENMAN ROAD FROM M'BROOK										
5	T	157	4.5	0.082	0.0	LOS A	0	0.00	0.00	80.0
6	R	9	22.2	0.008	12.7	LOS B	0	0.21	0.66	57.8
Appro	ach	165	5.5	0.082	0.7	LOS A	0	0.01	0.04	78.4
BENGALLA LI NK ROAD										
7	L	169	4.1	0.192	11.7	LOS B	6	0.21	0.68	57.7
9	R	8	0.0	0.013	13.2	LOS B	0	0.41	0.70	55.8
Appro	ach	177	4.0	0.192	11.7	LOS B	6	0.22	0.68	57.6
DENMAN ROAD										
10	L	1	0.0	0.048	10.9	LOS B	0	0.00	0.73	58.9
11	T	88	9.1	0.048	0.0	LOS A	0	0.00	0.00	80.0
Approach		89	9.0	0.048	0.1	LOS A		0.00	0.01	79.7
All Vehicles		431	5.6	0.192	5.1	Applicable	6	0.10	0.29	68.6

TPK submit that the intersection performance is satisfactory for this scenario.

Wybong Road and Anvil Hill Access Road

Austroads Part 5, Intersections at Grade, Figure 5.23a provides warrants for various geometric rural intersection layouts with a key element being the volume turning right into the side road.

The potential traffic generation distributions adopted for this report maintain minimal right turn into the mine Access Road from Wybong Road will eventuate. The major traffic movements for mine traffic will be left into and right out of the mine Access Road.

Austroads Figure 5.23 a could provide argument for provision of only a simple Type A Rural TIntersection. TPK submit that in view of the potential for some heavy vehicle mine traffic flow that the provision of a Type B rural layout, with a left turn auxiliary lane would be preferable in the interests of road safety. The Type B layout provides preferable overtaking on the near side width for traffic passing traffic turning right into the site and the left turn into the site will be the main inward movement.

TPK have modeled the suggested layout based on typical existing peak hourly flows on Wybong Road and the higher volume inbound and outbound mine shifts traffic coinciding at this intersection See Figure 4); this is the worst case scenario see Table 13 for the SIDRA output. It should be noted:

- The trips to/from Sandy Hollow are included as unaccounted trips as there is no expectation for traffic on those movements; they were included for sensitivity of the model.
- Type B geometric parameters adopted in the model were for a 100 kph speed limit, 3.25 m lanes and a 1950vph saturation flow was adopted.

FIGURE 4 - POTENTIAL MAXIMUM PEAK

Table 13 - Movement Summary

WYBONG ROAD \& ANVIL HILL MINE ACCESS ROAD - POTENTIAL PEAK HOUR - ARRIVAL \& DEPARTURE SHIFTS COINCIDE

Give-way
Vehicle Movements

TPK submit that the proposed intersection geometry will manage potential traffic generations from Anvil Hill Mine and have minimum impact on Wybong road.

Denman Road and Thomas Mitchell Drive

TPK has modelled the subject intersection using recent intersection counts for the existing scenarios and additional traffic flows shown in Figure 4.

TPK have modelled 6 scenarios for this intersection and outcomes are provided on the following pages as Tables 14 to 19; the scenarios are:

14 Existing traffic AM Peak
15 Existing traffic AM Peak with Anvil Hill \& Mt Pleasant inbound shift traffic added
16 Existing traffic AM Peak with Anvil Hill \& Mt Pleasant outbound shift traffic added
17 Existing traffic PM Peak
18 Existing traffic PM Peak with Anvil Hill \& Mt Pleasant inbound shift traffic added
19 Existing traffic PM Peak with Anvil Hill \& Mt Pleasant outbound shift traffic added

FIGURE 4 - POTENTIAL DISTRIBUTION OF ADDITIONAL TRAFFIC GENERATIONS

Table 14 - Movement Summary

DENMAN RD \& THOMAS MITCHELL DRV, MUSWELLBROOK - AM PEAK, EXISTING TRAFFIC Give-way

Vehicle Movements

Mov No	Turn	Dem Flow (veh/ h)	\% HV	Deg of Satn (v/ c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
THOMAS MITCHELL DRV										
1	L	75	16.0	0.106	14.4	LOS B	4	0.45	0.77	55.5
3	R	124	17.7	0.378	24.1	LOS C	19	0.70	0.98	45.6
Appro	ach	199	17.1	0.378	20.4	LOS C	19	0.60	0.90	48.9
DENMAN RD FROM M'BROOK										
4	L	376	6.9	0.212	11.3	LOS B	0	0.00	0.73	58.9
5	T	161	7.5	0.087	0.0	LOS A	0	0.00	0.00	80.0
Appro	ach	536	7.1	0.212	7.9	LOS A		0.00	0.51	64.1
DENMAND ROAD										
11	T	92	4.4	0.048	0.0	LOS A	0	0.00	0.00	80.0
12	R	60	5.0	0.074	13.9	LOS B	3	0.51	0.79	55.3
Appro	ach	151	4.6	0.074	5.5	LOS A	3	0.20	0.31	68.1
All Ve	hicles	886	8.9	0.378	10.3	Not Applicable	19	0.17	0.56	60.5

TPK submit that the intersection performance is satisfactory for this scenario.

Table 15 - Movement Summary

DENMAN RD \& THOMAS MITCHELL DRV, MUSWELLBROOK - AM PEAK, EXISTING TRAFFIC WITH AH AND Mt P AM INWARD SHIFT ADDED

Give-way
Vehicle Movements

$\begin{gathered} \text { Mov } \\ \text { No } \end{gathered}$	Turn	Dem Flow (veh/h)	\% HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
THOMAS MITCHELL DRV										
1	L	106	15.0	0.176	15.6	LOS C	7	0.53	0.85	53.9
3	R	124	17.7	0.481	30.7	LOS D	25	0.80	1.04	40.5
Appro	ach	231	16.5	0.480	23.7	Los C	25	0.68	0.95	45.8
DENMAN RD FROM M'BROOK										
4	L	376	6.9	0.212	11.3	LOS B	0	0.00	0.73	58.9
5	T	284	5.3	0.151	0.0	LOS A	0	0.00	0.00	80.0
Appro	ach	659	6.2	0.212	6.5	LOS A		0.00	0.42	66.6
DENMAND ROAD										
11	T	92	4.4	0.048	0.0	LOS A	0	0.00	0.00	80.0
12	R	60	5.0	0.086	14.8	LOS B	3	0.56	0.84	54.2
Approach		151	4.6	0.086	5.9	LOS A	3	0.22	0.33	67.4
All Vehicles		1041	8.3	0.481	10.2	Not Applicable	25	0.18	0.52	60.6

TPK submit that the impact of both potential mine traffic inward peaks has minimal impact on intersection performance.

The worst approach movement (RT from Thomas Mitchell Drive) only incurred a 6.6 second increase in average delay and a 6 m (I vehicle) increase in 95% back of queue.

Table 16 - Movement Summary

DENMAN RD \& THOMAS MITCHELL DRV, MUSWELLBROOK - AM PEAK EXISTING TRAFFIC WITH AH AND Mt P AM OUTWARD SHIFT ADDED

Give-way
Vehicle Movements

$\begin{gathered} \text { Mov } \\ \text { No } \end{gathered}$	Turn	Dem Flow (veh/h)	\% HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
THOMAS MITCHELL DRV										
1	L	75	16.0	0.106	14.4	LOS B	4	0.45	0.77	55.5
3	R	124	17.7	0.458	29.1	LOS D	23	0.78	1.03	41.7
Appro	ach	199	17.1	0.457	23.6	Los C	23	0.66	0.93	46.0
DENMAN RD FROM M'BROOK										
4	L	376	6.9	0.212	11.3	LOS B	0	0.00	0.73	58.9
5	T	161	7.5	0.087	0.0	LOS A	0	0.00	0.00	80.0
Appro	ach	536	7.1	0.212	7.9	LOS A		0.00	0.51	64.1
DENMAND ROAD										
11	T	168	2.4	0.087	0.0	LOS A	0	0.00	0.00	80.0
12	R	81	6.2	0.101	14.1	LOS B	4	0.52	0.81	55.2
Approach		249	3.6	0.101	4.6	LOS A	4	0.17	0.26	69.9
All Vehicles		984	8.2	0.458	10.2	Not Applicable	23	0.18	0.53	60.6

TPK submit that the impact of both potential mine traffic outward peaks has minimal impact on intersection performance.

The worst approach movement (RT from Thomas Mitchell Drive) only incurred a 5 second increase in average delay and a 4 m (less than I vehicle) increase in 95% back of queue.

Table 17 - Movement Summary

DENMAN RD \& THOMAS MITCHELL DRV, MUSWELLBROOK - PM PEAK EXISTING TRAFFIC Give-way

Vehicle Movements

Mov No	Turn	Dem Flow (veh/ h)	\% HV	Deg of Satn (v/ c)	Aver Delay (sec)	Level of Service	$\begin{gathered} 95 \% \\ \text { Back } \\ \text { of } \\ \text { Queue } \\ (\mathrm{m}) \end{gathered}$	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
THOMAS MI TCHELL DRV										
1	L	52	13.7	0.057	12.8	LOS B	2	0.30	0.69	57.2
3	R	304	6.6	0.657	24.0	LOS C	51	0.76	1.13	45.1
Appro	ach	355	7.6	0.657	22.4	LOS C	51	0.69	1.06	46.5
DENMAN RD FROM M'BROOK										
4	L	98	24.5	0.062	12.4	LOS B	0	0.00	0.73	58.9
5	T	118	11.0	0.065	0.0	LOS A	0	0.00	0.00	80.0
Appro	ach	216	17.1	0.065	5.6	LOS A		0.00	0.33	68.9
DENMAND ROAD										
11	T	175	5.2	0.075	0.3	LOS A	4	0.07	0.00	78.2
12	R	46	39.1	0.075	15.2	LOS C	4	0.40	0.72	56.4
Appro	ach	220	12.3	0.075	3.4	LOS A	4	0.14	0.15	72.5
All Ve	hicles	791	11.5	0.657	12.5	Not Applicable	51	0.35	0.61	57.4

TPK submit that the intersection performance is satisfactory for this scenario.

Table 18 - Movement Summary

DENMAN RD \& THOMAS MITCHELL DRV, MUSWELLBROOK - PM PEAK EXISTING TRAFFIC WITH AH \& Mt P INWARD SHIFT ADDED

Give-way
Vehicle Movements

$\begin{gathered} \text { Mov } \\ \text { No } \end{gathered}$	Turn	$\begin{aligned} & \text { Dem } \\ & \text { Flow } \\ & \text { (veh/h) } \end{aligned}$	\% HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
THOMAS MITCHELL DRV										
1	L	74	12.3	0.087	13.2	LOS B	3	0.37	0.72	56.8
3	R	304	6.6	0.743	29.4	LOS D	63	0.82	1.23	41.0
Appro	ach	377	7.7	0.743	26.2	LOS D	63	0.73	1.13	43.3
DENMAN RD FROM M'BROOK										
4	L	98	24.5	0.062	12.4	LOS B	0	0.00	0.73	58.9
5	T	194	6.7	0.104	0.0	LOS A	0	0.00	0.00	80.0
Appro	ach	292	12.7	0.104	4.2	LOS A		0.00	0.25	71.5
DENMAND ROAD										
11	T	175	5.2	0.079	0.4	LOS A	4	0.07	0.00	78.4
12	R	46	39.1	0.079	15.9	LOS C	4	0.45	0.75	55.5
Appro	ach	220	12.3	0.079	3.6	LOS A	4	0.15	0.16	72.2
All Veh	hicles	889	10.5	0.743	13.4	Not Applicable	63	0.35	0.60	56.3

TPK submit that the impact of both potential mine traffic inward peaks has minimal impact on intersection performance.

The worst approach movement (RT from Thomas Mitchell Drive) only incurred a 5.4 second increase in average delay and a 12m (2 vehicles) increase in 95% back of queue.

Table 19 - Movement Summary

DENMAN RD \& THOMAS MITCHELL DRV, MUSWELLBROOK - PM PEAK EXISTING TRAFFIC WITH AH \& Mt P OUTWARD SHIFT ADDED

Give-way
Vehicle Movements

$\begin{gathered} \text { Mov } \\ \text { No } \end{gathered}$	Turn	$\begin{aligned} & \text { Dem } \\ & \text { Flow } \\ & \text { (veh/ } \mathrm{h}) \end{aligned}$	\% HV	Deg of Satn (v / c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
THOMAS MITCHELL DRV										
1	L	52	13.7	0.057	12.8	LOS B	2	0.30	0.69	57.2
3	R	304	6.6	0.794	33.6	LOS D	72	0.86	1.31	38.3
Appro	ach	355	7.6	0.793	30.6	LOS D	72	0.78	1.22	40.2
DENMAN RD FROM M'BROOK										
4	L	98	24.5	0.062	12.4	LOS B	0	0.00	0.73	58.9
5	T	118	11.0	0.065	0.0	LOS A	0	0.00	0.00	80.0
Appro	ach	216	17.1	0.065	5.6	LOS A		0.00	0.33	68.9
DENMAND ROAD										
11	T	262	3.4	0.109	0.3	LOS A	6	0.08	0.00	78.0
12	R	71	30.0	0.109	14.4	LOS B	6	0.40	0.72	56.6
Approach		332	9.0	0.109	3.3	LOS A	6	0.15	0.15	72.4
All Vehicles		903	10.4	0.794	14.6	Applicable	72	0.36	0.62	54.7

TPK submit that the impact of both potential mine traffic outward peaks has minimal impact on intersection performance.

The worst approach movement (RT from Thomas Mitchell Drive) only incurred a 9.6 second increase in average delay and a 21m (around 3 vehicles) increase in 95\% back of queue.

The mine traffic on their own do not create and adverse impact however council should not the performance of Thomas Mitchell Drive, right turn in terms of long term strategic planning as consideration of seagull channelisation may arise from additional growth in the Industrial Estate

Wybong Road and Bengalla Link Road

The project team in discussion with Muswellbrook Council agreed to evaluate roundabout and TJunction geometric layouts for this future intersection; TPK had raised concern with a roundabout layout in rural higher speed road environment prevailing at this location.

TPK has modelled the subject (future) intersection for the am and pm peak, using volumes determined from project assessment; the volumes are shown in Figure 5.

TPK, in the absence of approved intersection designs and built form has used best practice geometric parameters for the scenarios modelled. For the T-Intersection geometric layout (Figure 6) the priority for traffic was assigned to Bengalla Link Road-Wybong Rd to/from the west.

The SIDRA Movement Summaries are shown on the following pages, Tables 20 to 23

Table 20 - Movement Summary

BENGALLA LINK \& WYBONG ROADS (FUTURE INTRSECTION), M'BROOK - POTENTIAL AM PEAK, T-INTERSECTION

Give-way
Vehicle Movements

$\begin{gathered} \text { Mov } \\ \text { No } \end{gathered}$	Turn		\% HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
BENGALLA LI NK ROAD										
2	T	79	6.3	0.042	0.0	LOS A	0	0.00	0.00	100.0
3	R	76	3.9	0.056	13.1	LOS B	2	0.15	0.70	68.2
Appro	ach	155	5.2	0.056	6.4	LOS A	2	0.07	0.34	81.6
WYBONG RD FROM Mt P MI NE										
4	L	52	1.9	0.052	13.0	LOS B	2	0.14	0.70	68.1
6	R	2	0.0	0.003	14.3	LOS B	0	0.37	0.66	66.2
Appro	ach	54	1.9	0.052	13.0	LOS B	2	0.15	0.70	68.1
WYBONG RD FROM AH MI NE										
7	L	3	0.0	0.002	12.6	LOS B	0	0.00	0.75	69.1
8	T	54	1.9	0.028	0.0	LOS A	0	0.00	0.00	100.0
Approach		57	1.8	0.028	0.7	LOS A		0.00	0.04	97.8
All Vehicles		266	3.8	0.056	6.5	Applicable	2	0.07	0.35	81.3

TPK submit that the intersection performance is satisfactory for this scenario.

Table 21 - Movement Summary

BENGALLA LINK \& WYBONG ROADS (FUTURE INTRSECTION), M'BROOK - POTENTIAL PM PEAK, T-INTERSECTION

Give-way
Vehicle Movements

$\begin{gathered} \text { Mov } \\ \text { No } \end{gathered}$	Turn	$\begin{aligned} & \text { Dem } \\ & \text { Flow } \\ & (\text { veh/h }) \end{aligned}$	\% HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
BENGALLA LI NK ROAD										
2	T	53	1.9	0.028	0.0	LOS A	0	0.00	0.00	100.0
3	R	52	1.9	0.038	12.9	LOS B	1	0.15	0.70	68.2
Appro	ach	105	1.9	0.038	6.4	LOS A	1	0.08	0.34	81.4
WYBONG RD FROM Mt P MINE										
4	L	58	1.7	0.059	13.0	LOS B	2	0.15	0.70	68.1
6	R	3	0.0	0.004	13.9	LOS B	0	0.32	0.67	66.9
Appro	ach	61	1.6	0.059	13.0	LOS B	2	0.16	0.70	68.0
WYBONG RD FROM AH MINE										
7	L	2	0.0	0.001	12.6	LOS B	0	0.00	0.75	69.1
8	T	61	3.3	0.032	0.0	LOS A	0	0.00	0.00	100.0
Approach		63	3.2	0.032	0.4	LOS A		0.00	0.02	98.6
All Vehicles		229	2.2	0.059	6.5	Not Applicable	2	0.08	0.35	81.2

TPK submit that the intersection performance is satisfactory for this scenario.

Table 22 - Movement Summary

BENGALLA LINK \& WYBONG ROADS (FUTURE INTERSECTION) M'BROOK - AM PEAK, ROUNDABOUT CONTROL

Roundabout
Vehicle Movements

Mov No	Turn	Dem Flow (veh/ h)	\% HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
BENGALLA LI NK RD										
1	T	79	5.2	0.097	14.9	LOS B	3	0.02	0.70	66.3
1	R	76	5.2	0.097	14.9	LOS B	3	0.02	0.70	66.3
Approa	ch	155	5.2	0.097	14.9	LOS B	3	0.02	0.70	66.3
WYBONG RD FROM Mt P MI NE										
4	L	52	1.9	0.036	12.3	LOS B	1	0.02	0.66	69.3
4	R	2	1.9	0.036	12.3	LOS B	1	0.02	0.66	69.3
Approa	ch	54	1.9	0.036	12.3	LOS B	1	0.02	0.66	69.3
WYBONG RD FROM AH MI NE										
7	L	54	1.8	0.048	12.3	LOS B	2	0.16	0.62	68.2
7	T	3	1.8	0.048	12.3	LOS B	2	0.16	0.62	68.2
Approa	ch	57	1.8	0.048	12.3	LOS B	2	0.16	0.62	68.2
All Veh	icles	266	3.8	0.097	13.8	LOS B	3	0.05	0.67	67.2

TPK submit that the intersection performance is satisfactory for this scenario.

It is interesting to note that the intersection performance for the modelled traffic volumes operated with less delay and better level of service under a Type B - Intersection geometric layout.

Table 23 - Movement Summary

BENGALLA LINK \& WYBONG ROADS (FUTURE INTERSECTION) M'BROOK - PM PEAK, ROUNDABOUT CONTROL

Roundabout
Vehicle Movements

Mov No	Turn	Dem Flow (veh/ h)	\% HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95\% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
BENGALLA LI NK RD										
1	T	53	1.9	0.068	14.7	LOS B	2	0.02	0.69	66.2
1	R	52	1.9	0.068	14.7	LOS B	2	0.02	0.69	66.2
Approa	ch	105	1.9	0.068	14.7	LOS B	2	0.02	0.69	66.2
WYBONG RD FROM Mt P MINE										
4	L	58	1.6	0.040	12.3	LOS B	1	0.02	0.66	69.2
4	R	3	1.6	0.040	12.3	LOS B	1	0.02	0.66	69.2
Approa	ch	61	1.6	0.040	12.3	LOS B	1	0.02	0.66	69.2
WYBONG RD FROM AH MI NE										
7	L	61	3.2	0.052	12.3	LOS B	2	0.13	0.62	68.5
7	T	2	3.2	0.052	12.3	LOS B	2	0.13	0.62	68.5
Approa	ch	63	3.2	0.052	12.3	LOS B	2	0.13	0.62	68.5
All Veh	icles	229	2.2	0.068	13.4	LOS B	2	0.05	0.67	67.6

TPK submit that the intersection performance is satisfactory for this scenario.

It is interesting to note that the intersection performance for the modelled traffic volumes operated with less delay and better level of service under a Type B - Intersection geometric layout.

Other intersections TPK reviewed as part of this project assessment were:

- Denman Road and New England Highway, Muswellbrook
- Denman Road and Jerry's Plain Road (Golden Highway)

Denman Road and New England Highway

TPK observed peak period operation of the traffic signal control at this intersection and suggest the current LoS does not exceed LoS C. TPK submit that the maximum overall intersection increase in traffic demand will be around 150vph and given it will be spread across various movements concluded that there would be no impact on the current LoS of this intersection; no SIDRA model was undertaken for this intersection.

The increased volumes from this project on the through traffic (less than 100vph) will not increase volumes to a level that will reduce current level of service. TPK submit that this project will have minimal impact on this intersection.

Denman and Jerry's Plain Roads

AADT's on these roads do not exceed 3000vpd and minimal increase in traffic generated from this project is expected to this intersection generated from this project.

The intersection is basically a rural Type B and as can be seen from the photos below the Jerry's Plain Road approach has adequate sight distance available.

4. DENMAN RD LOOKING TOWARDS MUSWELLBROOK

5. DENMAN RD LOOKING TOWARDS DENMAN

TPK submit that this project will have no impact on this intersection.

5.3- Accident History

The RTA provided details of reported accident data for the following locations:

1. Wybong Road between Golden Highway and Kayuga Road
2. Denman Road between Golden Highway and New England Highway

That data is provided in Appendix C of this report; examination by TPK has disclosed:

1. Only 4 reported accidents over 5 years had occurred along the section of Wybong Road relevant to where this project has potential impact.
2. No accidents had been reported at the intersection of Denman Road and Bengalla Link Road.

TPK submit that given the road improvements proposed in conjunction with this project, and the adequate road and intersection capacity expected to be available to the increased traffic, then the past accident trends of the main traffic routes have not disclosed evidence of road conditions that require review of the measures proposed.

6. SUMMATION

The assessment by TPK \& Associates has concluded that:

1. The traffic generated by the project will not have an adverse impact on road network or intersection capacity.
2. The inclusion in the mine's business strategy of employment conditions on transport routes will ensure that the impacts on Mangoola and Roxburgh Roads are minimised.
3. The road improvements, discussed as part of this study will provide improved road safety for existing community traffic flow and any additional traffic generated by this project.

APPENDIX A

 TRAFFIC ASSESSMENT AUDITS
ANVIL HILL PROJECT

ROAD NETWORK INSPECTION/EVALUATION - SUMMATION
Date
Various December 2005 to February 2006
Inspected by
T Keating, TPK \& Associates
Audit Inspection points along Wybong Road are depicted in Figure 5.

DISTANCE	$\begin{aligned} & \hline \text { AUDIT } \\ & \text { POINT } \end{aligned}$	IDENTIFICATION \& COMMENT	PHOTO
0.0	1	Start of preliminary inspection on Wybong Road at SH 27 . Top photograph shows The Golden Highway at the Wybong road intersection, Sandy Hollow.	
0.8	2	Causeway, road to date around 6-7m of seal, grassed shoulders and guide posts 100kph speed limit road environment	
1.7	3	Centreline guidance by use of RPM's Adjoining photograph is typical view of unmarked road section of Wybong Road. Wybong is an average width of 6.5 m .	
2.24	4	Culvert	
2.5	5	Comment, guide posts appear to be at standard spacing	
2.7	6	Upgrade in Wybong Road	
3.3	7	Crest in Wybong road	
3.6	8	Start of winding section; advisory 5565kph plus CAM's	
4.78	9	Reddy Creek Road on the right; this route also provides connection to SH 27	
5.4	10	RPM centreline continues; 75kph curve \& seal around 6 m maximum after Reddy Creek Rd intersection	
7.3	11	Undulating; 6-7m seal	

TPK \& ASSOCIATES - PROPOSED COAL MINE, ANVIL HILL - TRANSPORT STUDY

7.95	12	Crest in Wybong Road	
8.35	13	Causeway	
8.75	14	Land Environment changes from bush land to open plain	
9.5	15	Yarraman Road on the left; note Wybong Road seal is $5-6 \mathrm{~m}$ around this section	
9.7	16	Wybong Creek Bridge	
10.3	17	RPM centreline continues	
11.02	18	Anvil Access on the right; 6-7m seal; SISD is OK \& RPM centreline continues (Not project site access)	
12.75	19	Scattered Development	
13.00	20	Transmission Line	
13.5	21	Wybong PO Road. Area is undulating 75/85kph curves. Note at this time in the trip 2 opposing vehicles \& 1 overtook in the travel direction	
16.59	22	Eastern boundary of Amaroo Homestead	
16.72	23	Proposed Project Access Intersection to Wybong Road Looking towards Muswellbrook; SISD available is $\mathbf{2 4 4 m}$. Looking towards Sandy Hollow; SISD available is $\mathbf{2 7 3 m}$.	
17.97	24	Ridgelands Road on the left; first sighting of School Bus signage. End of Black Jack Mountain Landscape Catchment Area. Winding section of Wybong Road	
18.1	25	Castlerock Road on the left. Adjoining photograph shows School Bus Stop off street bay on north east corner of intersection.	
18.48	26	Limvardy Road on the right	

TPK \& ASSOCIATES - PROPOSED COAL MINE, ANVIL HILL - TRANSPORT STUDY

18.88	27	Mangoola Road on the right RPM centreline continues, 6-7m seal Photograph shows poor SISD looking from Mangoola Road towards Muswellbrook	21222
19.4	28	Spring Creek Bridge Adjoining photograph is typical of road maintenance required for traffic facilities, clear zone and sight distance to roadside hazards such as bridge abutments	
20.5	29	Road environment continues in terms of traffic facilities and road maintenance; varied carriageway road surface conditions	
21.29	30	Sandy Creek Bridge	
24.2	31	Roxburgh Road on the right. This is the intended area for the new Bengalla Road (from Denman road to join to Wybong Road. Existing SISD is poor	
25.5	32	Commencement of roadmarked centreline \& higher standard road surface	
26.0	33	Crest in Wybong road provides view to mines and Muswellbrook \& following is a long straight stretch of road.	
27.05	34	Blasting Signage	
28.45	35	Skippens Lane on the left	
28.75	36	Mine Works on the right; standard guide posts	
30.43	37	Overton Road on the right	
31.39	38	Logues Lane on the left; Rosebrook Creek Bridge adjoins the intersection	
32.1	39	Edge of urban area	
32.45	40	Dip in road	
32.78	41	Change of Speed Limit from 100 to 80	
33.55	42	Kayuga Road T-junction	
34.3	43	Centre Kayuga Bridge; inbound traffic has priority	

34.4	44	Aberdeen Street T-junction off the bridge; bridge exit traffic is the non continuous leg and has right of way	
Approx. 35.1	45	New England Highway intersection. Auxiliary lanes provided; sight distance appears OK	

Commentary on other existing road assessments is provided on the following page.

TPK also assessed other local roads:

1. Mangoola Road between Denman (The Golden Highway) and Wybong (Wybong Road)
2. Roxburgh Road between Mangoola Road and Wybong Road

Mangoola Road traverses rural road environment however the road environment is not conducive to increased traffic demand without significant road improvements including:

- Upgrade of three railway level crossings
- Upgrade of road environment for best practice traffic facilities
- Roadworks to provide intersection, crest and curve sight distances
- Roadworks to provide appropriate sealed surface in terms of width and condition, some sections of seal are only 3 m wide
- Roadworks to provide minimum clear zones

Roxburgh Road traverses rural road environment however the road environment is not conducive to increased traffic demand without significant road improvements including:

- Upgrade of road environment for best practice traffic facilities
- Roadworks to provide intersection, crest and curve sight distances
- Roadworks to provide appropriate sealed surface in terms of width and condition
- Roadworks to provide minimum clear zones

The following photographs provide sample views of issues raised

Mangoola Road departing The Golden Highway

Roxburgh Rd looking right at Mangoola Rd

Umwelt

Legend
\square Proposed Disturbance Area Railway Line r-」 Project Application Aran (1) Audit Point

- Road

APPENDIX B

TRAFFIC SURVEY DATA

Wybong Road North of the Golden Highway, Sandy Hollow

Northbound

Day	Wed	Thu	Fri	Sat	Sun	Mon	Tue		
Time	07-Dec-05	08-Dec-05	09-Dec-05	10-Dec-05	11-Dec-05	12-Dec-05	13-Dec-05	Ave.	Ave
00:00	0	0	0	0	1	0	0	0	0
01:00	2	1	0	1	0	0	1	1	1
02:00	0	0	1	0	0	1	0	0	0
03:00	0	1	0	0	0	0	0	0	0
04:00	1	2	0	1	0	2	1	1	1
05:00	10	9	7	2	1	5	7	8	6
06:00	8	10	6	0	0	12	10	9	7
07:00	13	16	10	3	2	10	12	12	9
08:00	15	19	22	15	9	24	14	19	17
09:00	19	14	10	12	7	18	19	16	14
10:00	15	16	14	10	10	8	11	13	12
11:00	10	12	7	7	13	11	8	10	10
12:00	11	12	13	4	6	11	9	11	9
13:00	12	17	8	4	9	11	9	11	10
14:00	8	6	7	9	5	15	6	8	8
15:00	5	8	15	6	5	12	8	10	8
16:00	7	10	11	5	12	8	6	8	8
17:00	8	8	12	5	9	10	11	10	9
18:00	9	8	8	13	7	5	9	8	8
19:00	5	8	5	3	6	7	1	5	5
20:00	2	1	2	4	1	5	1	2	2
21:00	2	2	4	2	1	0	2	2	2
22:00	1	3	1	1	0	0	1	1	1
23:00	1	0	1	1	0	1	0	1	1
Total	164	183	164	108	104	176	146	167	149

Average Week Day

Summary		
	from . to	
AM Peak	8:00 AM 9:00 AM	24
PM Peak	1:00 PM $\quad 2: 00 \mathrm{PM}$	17
	Week Day Average	167
	Weekend Day Average	106
	7 Day Average	149

APPENDIX C

ACCIDENT DATA

Variables Used in Crash Output	
Abbreviation	Description
YQTR	reporting year and quarter
ACCRYR	reporting year
ACCNO	accident number
ACCDEG3	degree of accident
ACDATE	date
ACCDAY	day
ACTIME	time
ACCST	street
ACSTTYP	street type
ACCDIST	distance
ACCDIRN	direction
ACCIDOB	identifying object
ACIDTYP	identifying object type
ACCTOWN	town or place
ACCSFCND	surface condition
ACCWTHR	weather
ACCNATLT	natural lighting
DCA	DCA
DCASUP	DCA supplement
ACCKILL	number killed
ACCINJ	number injured
ACCFAST	speeding involvement
ACCTIRED	fatigue involvement
TUTYPEG	traffic unit group
TUST	street of travel
TUDIRN	direction of travel
TUMAN	manoeuvre
TUAGE	age of controller

Definitions for Coding Accidents - DCA Codes

This code is recorded for the first impact according to the table below.
Note : The key vehicle is represented by the dark arrow: \longrightarrow and is recorded as the first vehicle in the accident.

Manoeuvres Of This Traffic Unit ${ }^{M}$

$$
\leqslant \text { EuMAN } \gg \text { Length } 2
$$

The manoeuvre of this traffic unit immediately prine to its involvement in the accident.

Stationary

01 Stationary in traffic
02 Parked at kerbside / roadside
03 Parked at kerbside / roadside loading or depositing goods / passengers
04 Double parked
05 Broken down in traffic / previous accident
06 Parked or stationary on footpath
07 Parked elsewhere (off road)

Moving along carriageway

10 Proceeding along lane (on either straight or curved carriageway)
11 Parking (forward) or pulling out from kerb
12 Veering to right to change to a lane moving in the same direction
13 Veering to left to change to a lane moving in the same direction
14 Merging with traffic in same direction
15 Pulling out into opposite stream of traffic
16 Travelling on incorrect side of carriageway (including wrong way on onc-way street)
17 Cutting back after overtaking

Turning or reversing

20 Tuming right out of own lane
21 Turning left out of own lane
22 Waiting to turn right
23 Waiting to tum left
24 Performing U-turn
25 Entering carriageway from driveway (forward or unspecified)
26 Entering carriageway from driveway (reversing)
27 Moving along footpath
29 Performing other / unspecified forward manoeuvre

30 Reversing in lane (other than parking)
31 Parking (reversing)
39 Performing other / unspecified reversing manoeuvre

Pedestrians

40 Pedestrian walking across carriageway
41 Pedestrian running across carriageway (see also 54)
42 Pedestrian standing still on carriageway
43 Pedestrian lying / sitting on carriageway
44 Pedestrian working on carriageway
45 Pedestrian working on vehicle on carriageway
46 Pedestrian playing on carriageway
47 Pedestrian in / on toy vehicle on carriageway
48 Pedestrian moving along edge of c'way with traffic (sec also 55)
49 Pedestrian moving along edge of c'way against traffic (see also 56)
50 Pedestrian stepping off / onto kert
51 Pedestrian stepping off / onto traffic island or modian strip
52 Pedestrian on footpath or elsewhere completely off carriageway
53 Pedestrian on skateboard / roller skates or blades
54 Pedestrian jogging (see also 41)
55 Pedestrian moving with truffic but not along edge of carriageway (see also 48)
56 Pedestrian moving against traffic but not along cige of c'way (see also 49)
59 Pedestrian performing other / unspecified manoeuvre
60 Train or aeroplane manoeuvre (tram excluded)

The manoeuvre immediately prior to involvement in the accident is the manoeuve coded. Code 05 'Broken down in traffic' includes vehicles which were involved in a previous accident. Code 11 'Pulling out from kerb or parking (forward)' ind code 31 'Parking (reversing)' include vehicles cither entering or leaving parking.

