DM & RD DOSSOR Proposed Residential Subdivision 1 Survey Street, Lennox Head NSW ENVIRONMENTAL SITE ASSESSMENT

NR1059/3-AE 11 September 2006

NR1059/3-AE ELC 11 September 2006

SAKE Development Pty Ltd Suite 11, 340 Darling Street BALMAIN NSW 2041

Attention: Ms Sarah Kelly

Dear Madam,

RE: ENVIRONMENTAL SITE ASSESSMENT AT 1 SURVEY STREET, LENNOX HEAD NSW

Coffey Geosciences Pty Ltd is pleased to present our site contamination assessment for the above site.

We draw your attention to the attached sheet entitled "Important Information About Your Coffey Environmental Site Assessment" which should be read in conjunction with this report.

We trust that this report meets with your requirements. If you require further information please contact the undersigned in our Coffs Harbour office.

For and on behalf of

COFFEY GEOSCIENCES PTY LTD

DAVID BARKER Senior Geotechnical Engineer

Distribution:	Original held by	Coffey Geosciences Pty Ltd
	1 copy	Coffey Geosciences Pty Ltd Library (Coffs Harbour office)
	1 copy	Coffey Geosciences Pty Ltd Library (Northern Rivers office)
	2 copies	SAKE Development Pty Ltd

Unit 1, 18 Hurley Drive Coffs Harbour NSW 2450 Australia PO Box 704 Coffs Harbour NSW 2450 Australia Telephone +61 2 **6651 3213** Facsimile +61 2 6651 5194 Email coffs@coffey.com.au

Coffey with

1. INTRODUCTION	1
1.1 General	1
1.2 Scope of Work	1
2. SITE LANDUSE AND DESCRIPTION	1
2.1 Site Location and Landuse	1
2.2 Local Geology, Hydrogeology, and Groundwater Use	2
3. SITE HISTORY AND OBSERVATIONS	2
3.1 Summary of Site History	3
4. AREAS OF ENVIRONMENTAL CONCERN & CHEMICALS OF CONCERN	6
5. ASSESSMENT CRITERIA	6
6. PHASE 1 ASSESSMENT	7
6.1 Field investigations	7
6.1.1 Soil Sampling	8
6.1.2 Field Quality Control Procedures 6.2 Phase 1 Laboratory Analytical Programme	8 8
6.3 Results of Phase 1 Field and Laboratory Investigations	8
6.3.1 Subsurface Conditions	
6.3.2 Soil Contamination	8
6.4 Conclusions and Recommendations after Phase 1 Assessment	15
7. PHASE 2 ASSESSMENT	15
7.1 Sampling and Analysis Plan	15
7.2 Field Investigations	16
7.3 Soil Sampling and Analysis Results	16

7.3.1 Subsurface Conditions
7.3.2 Quality Assurance/Quality Control (QA/QC) and Data Usability
7.3.3 Laboratory Results

8. CONCLUSIONS

9. LIMITATIONS

Important Information About Your Coffey Environmental Site Assessment

Figures

Figure 1	Site Plan Showing Sample Locations for Phase 1 Assessment
Figure 2	Grid Sample Locations for Phase 2 Assessment
Figure 3	Site Plan Showing Area Requiring Remediation

Appendices

- А Site History Assessment Documentation
- В Laboratory Test Result Sheets for Phase 1 Assessment
- С Laboratory Test Result Sheets for Phase 2 Assessment

20

20

1.1 General

Coffey Geosciences Pty Ltd (Coffey) was commissioned by Mr David Dossor to carry out an Environmental Site Assessment (ESA) at 1 Survey Street (Lot 2 DP622475), Lennox Head NSW. The work was carried out in accordance with the relevant sections of our proposal NR1059/3-AA, dated 2 June 2006. This report presents the results of the ESA.

The site is approximately 9.9ha in area and is proposed to be developed for a residential subdivision. We understand that the ESA was required by the Director General of the Department of Planning under *Section* 75F of the Environmental Planning and Assessment Act 1979.

The objective of the ESA was to assess the potential for contamination to exist on the site from previous and current uses, and to provide recommendations on the need for remediation if required.

1.2 Scope of Work

To meet the above objective, the following scope of work was carried out:

- A site history and desk study to identify potential Areas of Environmental Concern (AECs) and Chemicals of Concern (COCs) including a review of previous site ownership, Council records, aerial photographs, published geological maps, Department of Natural Resources groundwater bore data, and Department of Environment and Conservation (DEC) records for listing of the site.
- Collecting soil samples from 29 locations. The samples were collected from within the upper 0.2m of the soil profile;
- Laboratory analysis of soil samples for a suite of chemicals of concern including Heavy Metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc, and mercury), Organochlorine and Organophosphorous Pesticides (OCP/OPP), Total Petroleum Hydrocarbons (TPH), Benzene, Toluene, Ethyl-benzene and Xylene (BTEX) and Poly-Aromatic Hydrocarbons (PAH);
- Grid sampling around G1, which was identified as having elevated concentrations of zinc in the initial sampling above. Sampling comprised the collection of 4 samples at 5m from G1, 8 samples at 10m to 14m from G1, and 16 samples at 20m to 28m from G1;
- Analysis of the samples near G1 for 8 heavy metals (arsenic, cadmium, chromium, copper, lead, nickel, mercury and zinc), and TCLP of 8 heavy metals;
- Preparation of this report summarising the site history, results of fieldwork, presentation and interpretation of analytical results and findings, comparing chemical concentrations to applicable guidelines, and making recommendations on the need for further investigation and / or remediation and management.

2. SITE LANDUSE AND DESCRIPTION

2.1 Site Location and Landuse

The site is located at 1 Survey Street, Lennox Head NSW and is approximately 9.9ha in size. The site is identified as Lot 2 DP622475, Local Government Area of Ballina, County of Rous, and Parish of Ballina.

The site is currently used for cattle grazing, and is generally vacant.

2.2 Local Geology, Hydrogeology, and Groundwater Use

The geology map for Tweed Heads indicates that the site locality is underlain by either Lismore basalt, or Quaternary Alluvium comprising of sands, silts, clays and gravels. Previous investigations on the site by Coffey in 1999 and 2002 indicate that the site is underlain by residual basalt soils and basalt.

A search of the NSW Department of Natural Resources groundwater bore data found nine groundwater bores within a 1.5km radius of the site. Table 1 below gives a summary of the groundwater bore data, and the data is presented in Appendix A.

Bore Number	Use	Total Depth (m)	Standing Water Level (m)	Water Bearing Zones (m)	Inferred Gradient and Approximate Distance from Site Boundary
GW305989	Domestic Stock	19.0	7.0	18 to 30	Down-gradient 350m
GW043033	Stock	2.4	-	-	Up-gradient 1km
GW043032	Stock	2.4	-	1.8 to 2.4	Up-gradient 750m
GW305380	Monitoring Bore	11.0	3.3	3.3 to 5.5	Up-gradient 1km
GW303566	Domestic	6.0	-	-	Down-gradient 650m
GW303574	Domestic	-	-	-	Down-gradient 650m
GW303540	Domestic	5.6	1.9	-	Down-gradient 750m
GW305518	Domestic	4.0	-	-	Down-gradient 800m
GW305574	Domestic	6.0	2.5	-	Down-gradient 650m

 TABLE 1:
 SUMMARY OF GROUNDWATER BORE DATA

3. SITE HISTORY AND OBSERVATIONS

Information on the site history was obtained from:

- A site walk over by an experienced geotechnician to observe site conditions;
- A historical land title search to review previous landowners and possible past uses of the site;
- Review of aerial photographs;
- A search of NSW DEC records;
- A review of Ballina Shire Council records;
- WorkCover Dangerous Goods Licenses;
- Interviews with available personnel familiar with the history of the site; and
- Collation of the above.

The site history information is presented in Appendix A and a summary is provided below.

3.1 Summary of Site History

Titles Search

The site is formed of one lot which was previously three separate lots, namely Lot 8 DP237480 (Lot 8) & Portion 56 (Portion 56) Parish Ballina (which became Lot 1 DP 587685 (Lot 1)) and Lot 61 DP242183 (Lot 61). Lot 8 and Lot 61 were Crown Land until 1911, and Portion 56 was Crown Land until 1902.

Each lot was granted to The Commercial Banking Company of Sydney Limited, and passed on to Edward Henderson, a farmer, in the same year.

In 1972, Lot 8 and Portion 56 became Lot 1, and in 1982 Lot 1 and Lot 62 became the current lot (Lot 2 DP622475).

Until 1972, all three lots had very similar ownership; Edward Henderson (a farmer) until 1954, then Joseph Henderson (farmer), Edward Henderson (picture operator) and Laura Henderson (spinster) until 1962. From 1962 to 1972, all three lots were owned by Jack Easter, a farmer. In 1972, Lot 61 passed over to Cyril Skimmings, an accountant, who owned that lot until 1979. Michael and Wendy Mazzer, bought Lot 61 in 1979, and owned it until 1982.

In 1972, Lot 8 and Portion 56 became Lot 1, and Lot 1 was owned by Stanley Dorbon, a clerk, until 1979. In 1979 Lot 1 became owned by John Gunn, a panel beater, and Alana Gunn. In 1981, Ruth and David Dossor bought Lot 1.

In 1982 all three lots became Lot 2 DP622475, which was owned by David and Ruth Dossor and Michael and Wendy Mazzer. Later in 1982, David and Ruth Dossor became the sole owners, and have remained the site owners until today.

Aerial Photographs

Aerial photographs from 1947 to 2004 were viewed. A summary description of the photographs is presented in Table 2 below.

1			
2			

TABLE 2:	SUMMARY OF AERIAL PHOTOGRAPHS
	JUNIMATT OF ALTIAL THOTOGRAPHS

Date	Description
1947	Site is cleared, with no structures, and appears to be vegetated with grasses.
1958	Site is cleared, with no structures, and appears to be vegetated with grasses.
1967	Site is cleared, with no structures, and appears to be vegetated with long grasses and scattered trees. Nearby development appears to comprise of a few residential buildings.
1979	No structures visible, still generally cleared, but with more trees apparent than in 1967. Sea Breeze Parade and Survey Street have been partially constructed. There appear to be more residences in the surrounding land than in 1967.
1987	No structures visible. It appears to have been cleared since 1979. Sea Breeze Parade and Survey Street are constructed. The land to the north and west of the site appears to have been developed into residential subdivisions, with many more residences apparent.
1997	Site is cleared, with no structures. Surrounding land on northern, western and south-western sides has been developed into residential subdivisions.
2004	Site is cleared with no structures. There are a few scattered trees over the site, and a tree border on the eastern side. The site has been mowed or slashed. Surrounding land appears to be used for residential purposes.

Interviews

An interview with the site manager, Mr Ian Watson, was carried out on 6 June 2006. Mr Watson indicated he had been managing the site for about 15 years, and had been in the Lennox Head area since 1975. The site has been used for cattle grazing as far back as he could remember. A small shed was constructed in the northern corner of the site, which is used to store mower fuel, and other tools for site maintenance. He stated that they had planted about 6,500 native trees in the area whilst he had been managing the site. He indicated that the surrounding land had been used as farmland, and in the last 20 to 30 years the western side had become residential. Mr Watson did not think there had been any orchard areas in the surrounding land. No wastes are stored on the site, however a council storm-water drain, from Survey Street, runs out onto the site, which has left an approximately 5m long erosion gully which contains some road side rubbish. Mr Watson indicated that he cleaned the rubbish out of the erosion gully relatively frequently.

An interview with the site owner, Mr David Dossor, was carried out on 6 June 2006. Mr Dossor indicated that he and his wife bought the site in 1978. They built a house on a part of the lot which is not part of this investigation. He said they built a small shed on the northern corner of the site, which has a concrete floor, and is used to store a tractor and other site maintenance items. Mr Dossor indicated that no developments had occurred on the site, other than it was mowed every so often.

The site was used for cattle grazing, and he thinks in the past it may have been use to run dairy cattle. The surrounding land is residential on the western side, and farmland on the eastern side. He stated that the site is a valley and a remnant of the original residential subdivision on the western side. He indicated that the council storm-water drain from Survey Street runs onto the site, which has caused a large erosion gully which fills up with rubbish from the road runoff. In times of high rainfall, the storm-water and rubbish runs into the

WorkCover Dangerous Goods Records

A search of the Stored Chemical Information Database and microfiche records held by WorkCover did not locate any records pertaining to the site.

NSW EPA records

There are no EPA notices for the site under the Environmentally Hazardous Chemicals Act (1985) or the Contaminated Land Management Act (1997).

Council Records

Council records for the site were viewed at Ballina Shire Council on 14 June 2006. The records contained information on Lot Number 40, including house plans, inspectors certificates, termite control certificates, building permits, buildings specifications and building applications. The plans indicated that the house was owned or being built by Mr David Dossor. It is thought that these have been incorrectly filed, and relate to a property that Mr Dossor built on a lot on Survey Street. There was no evidence to suggest that the house was built on Lot 2 DP622475. There appeared to be no references to when the site was used for cattle grazing.

Site Observations

The site is located on the eastern side of Survey Street, Lennox Head NSW. The site is bounded by existing residential developments on the northern, southern and western sides, and farmland on the eastern side.

Topographically, the site lies in a broad, north-south trending valley, open to the south and bounded on the east west and north sides by low ridges. Hill slopes are generally moderate, varying from 18° to 22° on the upper slopes and 12° to 15° on the lower slopes. The base of the valley is occupied by a broad, gently sloping area with slope angles of typically around 3° to 5°. A small creek runs along the base of the valley, draining to the south.

The site is currently used to graze cattle and is predominately open paddock. A small shed is located on the northern corner of the site, and is approximately 7m by 10m in size, constructed of steel with a concrete floor. The shed is used to store a tractor, drums of oil and pesticides, and paint cans. No stains or spillage s were observed. All items were stored on the concrete floor or on shelves. Thick lantana was noted to be growing on the eastern side of the shed.

Two small areas of woodland were present on the southern side of the site, and on an eastern corner. Localised areas of rock outcrop were noted along the bed of the creek and scattered basalt cobbles were noted on the upper slopes of the ridges.

The gently sloping area between the base of the lower slopes and the creek were noted to be very wet and boggy, with widespread surface water and groundwater seepage.

Localised soil erosion was noted on the western side of the site where a stormwater drain from Survey Street discharges onto the ground. The erosion gully had reached a depth of approximately 2m at the time of the investigation. On the northern-central part of the site, there was a shallow erosion depression where a sewage pump station is located.

4. AREAS OF ENVIRONMENTAL CONCERN & CHEMICALS OF CONCERN

The site history indicates there is a low risk that the site has been exposed to contamination from current or past uses. On this basis it is considered that the shed located to the north of the site is the main Area of Environmental Concern (AEC). Samples were located to target the shed, and the remainder of the site was checked using a broad grid based sampling pattern.

The NSW EPA (1995) Sampling Design Guidelines recommends that when sampling for large sites (over 5ha) subdivision of the site should occur. In order to characterise a 9.9ha site at least 110 samples would be required over two separate 5ha areas. The site history did not reveal widespread contaminating activities occurring in the past and given that a Phase 1 investigation was being carried out, the number of sampling locations was reduced. The existing shed was targeted as an area of environmental concern with the remainder of the site sampled on an approximate 70m grid (refer Figure 1).

Soil samples were tested from a suite of common contaminants listed below:

- Heavy Metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc, and mercury);
- Organochlorine Pesticides (OCPs);
- Total Petroleum Hydrocarbons (TPH);
- Benzene, Toluene, Ethyl-benzene, Xylene (BTEX);
- Poly-Aromatic Hydrocarbons (PAH).

5. ASSESSMENT CRITERIA

For assessing contamination levels in soil in urban settings, the NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (2^{nd} edition) (SAS) and the National Environment Protection (Assessment of Contamination) Measure (NEPM); (Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater) present health based investigation levels for different landuses (e.g. industrial/commercial, residential, recreational etc.) as well as phytotoxicity based investigation levels. Since the site is to be redeveloped for standard residential use, we have adopted the human health guidelines from Column 1 – Residential with gardens and accessible soil (home grown produce contributing less than 10% fruit and vegetable intake; no poultry), including children's day car centres, preschools and primary schools, or townhouses or villas) – (NEHF A).

Should the soils be removed from the site, a waste classification would be necessary. In order to assess the waste classification for the soils, the results of soil analyses were compared with criteria in the NSW DEC (2004) Environmental Guidelines: Assessment, Classification & Management of Liquid and Non-Liquid Wastes.

The NSW DEC (2004) guidelines provide acceptable contaminant concentrations for liquid and non liquid wastes that are to be disposed of to landfill. These concentrations are divided into the categories inert, solid, and industrial based on total contaminant concentrations and on leachable concentrations using the toxicity characterisation leachability procedure (TCLP). For this assessment we have adopted the criteria for inert waste.

Table 3 below summarises the adopted criteria for this assessment.

The NEPC (1999) National Environment Protection (Assessment of Site Contamination) Measure, Schedule B

(7a) Guideline on Health-Based Investigation Levels, also indicates that the relevance of localised elevated values must be considered and should not be obscured by consideration of only the arithmetic mean of the results. The results must also meet the following criteria:

- The standard deviation of the results must be less than 50% of the human health remediation criteria;
- No single value exceeds 250% of the adopted criteria.

	ADOPTED CRITERIA							
CONTAMINANT	RESIDENTIAL (NEHF A) ⁽¹⁾ (mg/kg)	PHYTOTOXICITY ⁽²⁾	INERT WASTE (mg/kg)					
	(iiig/kg)	(mg/kg)	SCC ⁽³⁾	TCLP ⁽³⁾				
Heavy Metals			·					
Arsenic	100	20	500	0.5				
Cadmium	20	3	100	0.1				
Chromium (VI)	100	1	1,900	0.5				
Copper	1,000	100	-	-				
Lead	300	600	1,500	0.5				
Nickel	600	60	1,050	0.2				
Mercury	15	1	50	0.02				
Zinc	7,000	200	-	-				
Notes:			•	1				
, ,	Guidelines for the NSW Site Auditor So		,					

TABLE 3: SUMMARY OF ADOPTED CRITERIA FOR SOIL

 NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme – Column 5 Provisional Phytotoxicity Based Investigation Levels

3. NSW DEC (2004) Assessment, Classification & Management of Liquid & Non-Liquid Wastes – Inert Waste Criteria Table A4

6. PHASE 1 ASSESSMENT

6.1 Field investigations

The fieldwork was carried out on the 9 and 12 June 2006 by an experienced Senior Geotechnician from Coffey Northern Rivers office.

A 70m square grid was used, giving 22 systematic sampling locations. Around the small shed on the northern portion of the site, sampling was carried out at seven locations spread between the northern, southern and western sides. Two samples were collected from each location at 0.0m to 0.2m depth.

6.1.1 Soil Sampling

Samples were collected using hand tools. Sampling equipment was decontaminated between sampling locations and a clean pair of latex gloves was used to collect each sample. The soil was placed into clean 250mL glass jars, which were sealed with Teflon lined caps, labelled and placed directly into ice-cooled chests. Duplicate samples were collected for headspace screening tests. The approximate sampling locations are shown on Figure 1.

6.1.2 Field Quality Control Procedures

The field quality control consisted of collection of duplicate soil samples, Dup 1, Dup 3, and Dup 2 from locations A2, H1 and S1.

Samples were transported in ice-cooled chests to MGT Environmental Consulting Laboratory in Melbourne VIC which is NATA accredited for the analysis performed, under chain of custody conditions. A copy of the chain of custody is included in Appendix B.

The sampling equipment was decontaminated between locations using a phosphate free detergent and then rinsed in water. One equipment wash blank was collected.

6.2 Phase 1 Laboratory Analytical Programme

Original laboratory sheets and analytical procedures for the chemical analysis are included in Appendix B. The following analysis schedule was performed:

- 29 soil samples were analysed for heavy metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury);
- 29 soil samples were analysed for OCP/OPP;
- 15 soil samples were analysed for TPH;
- 15 soil samples were analysed for BTEX, and;
- 15 soil samples were analysed for PAH.

6.3 Results of Phase 1 Field and Laboratory Investigations

6.3.1 Subsurface Conditions

Topsoil was encountered at all locations. The topsoil consisted of silty clay, high plasticity, dark grey, dark brown and red-brown, which had a friable consistency.

No unusual odours were noted during sampling of site soils.

6.3.2 Soil Contamination

6.3.2.1 Quality Assurance/Quality Control

The QA/QC results indicate that the laboratory data is generally useable and adequately represents concentrations of contaminants at the sampling locations with the following comments. Table 4 below compares the primary and duplicate sample results. The relative percentage differences (RPD) were within control limits.

The laboratory conducted internal quality control using laboratory duplicates, spikes and method blanks. The

results are shown with laboratory report sheets in Appendix B. Analytical methods used for the laboratory testing are also indicated on the laboratory report sheets. The results of laboratory quality control testing are considered to be within acceptable limits.

The field and laboratory methods are considered appropriate and the data obtained is considered to reasonably represent the concentrations at the sampling points at the time of sampling.

It should be noted that the guideline concentration for aromatic hydrocarbons is below the laboratory limit of reporting (LOR). The concentrations for TPH $C_6 - C_9$ and $C_{10} - C_{36}$ fractions were below the LOR and the assessment criteria, PID readings were negligible and no odours were noted during fieldwork. It is therefore considered unlikely that aromatic hydrocarbons are present at concentrations that would pose a risk to human health and the environment.

TABLE 4: COMPARISON OF DUPLICATE SAMPLE RESULTS Heavy Metals, TPH, BTEX, PAH, OCP and OPP (All results in mg/kg)

Sample No. Depth (m) Analyte OTAL PETROLEUM HYDROCARBONS C6 - C9 Fraction C10 - C14 Fraction C15 - C28 Fraction C29 - C36 Fraction BTEX Benzene Toluene Ethylbenzene Xylene YCYCLIC AROMATIC HYDROCARBO	A2 0.0-0.2 <20 <50 <100 <100 <100 <0.05 <0.05 <0.05 <0.05	DUP1 0.0-0.2 <20 <50 <100 <100 <100 <0.05	ND ND ND ND	S1 0.0-0.2 <20 <50 <100 <100	DUP2 0.0-0.2 <20 <50 <100 <100	ND ND ND	H1 0.0-0.2	DUP3 0.0-0.2	
Analyte OTAL PETROLEUM HYDROCARBONS C6 - C9 Fraction C10 - C14 Fraction C15 - C28 Fraction C29 - C36 Fraction BTEX Benzene Toluene Ethylbenzene Xylene YCYCLIC AROMATIC HYDROCARBO	<pre><20 <50 <100 <100 <100 <0.05 <0.05 <0.05</pre>	<0.05<20<50<100<100<0.05	ND ND ND	<20 <50 <100	<20 <50 <100	ND	-		
OTAL PETROLEUM HYDROCARBONS C6 - C9 Fraction C10 - C14 Fraction C15 - C28 Fraction C29 - C36 Fraction BTEX Benzene Toluene Ethylbenzene Xylene YCYCLIC AROMATIC HYDROCARBO	<20 <50 <100 <100 <0.05 <0.05 <0.05	<50 <100 <100 <0.05 <0.05	ND ND ND	<50 <100	<50 <100	ND	-	-	
C6 - C9 Fraction C10 - C14 Fraction C15 - C28 Fraction C29 - C36 Fraction BTEX Benzene Toluene Ethylbenzene Xylene YCYCLIC AROMATIC HYDROCARBO	<20 <50 <100 <100 <0.05 <0.05 <0.05	<50 <100 <100 <0.05 <0.05	ND ND ND	<50 <100	<50 <100	ND	-	-	
C10 - C14 Fraction C15 - C28 Fraction C29 - C36 Fraction BTEX Benzene Toluene Ethylbenzene Xylene YCYCLIC AROMATIC HYDROCARBO	<50 <100 <100 <0.05 <0.05 <0.05	<50 <100 <100 <0.05 <0.05	ND ND ND	<50 <100	<50 <100	ND	-	-	-
C15 - C28 Fraction C29 - C36 Fraction BTEX Benzene Toluene Ethylbenzene Xylene YCYCLIC AROMATIC HYDROCARBO	<100 <100 <0.05 <0.05 <0.05	<100 <100 <0.05 <0.05	ND ND	<100	<100		-		
C29 - C36 Fraction BTEX Benzene Toluene Ethylbenzene Xylene YCYCLIC AROMATIC HYDROCARBO	<100 <0.05 <0.05 <0.05	<100 <0.05 <0.05	ND					-	-
BTEX Benzene Toluene Ethylbenzene Xylene YCYCLIC AROMATIC HYDROCARBO	<0.05 <0.05 <0.05	<0.05 <0.05		<100	<100		-	-	-
Benzene Toluene Ethylbenzene Xylene YCYCLIC AROMATIC HYDROCARBO	<0.05 <0.05	<0.05	ND		\$100	ND	-	-	-
Benzene Toluene Ethylbenzene Xylene YCYCLIC AROMATIC HYDROCARBO	<0.05 <0.05	<0.05	ND						
Toluene Ethylbenzene Xylene YCYCLIC AROMATIC HYDROCARBO	<0.05 <0.05	<0.05		<0.05	<0.05	ND			-
Ethylbenzene Xylene YCYCLIC AROMATIC HYDROCARBO	<0.05		ND	<0.05	<0.05	ND	-	-	-
Xylene YCYCLIC AROMATIC HYDROCARBO		< 0.05	ND	<0.05	< 0.05	ND	-	-	-
		<0.05	ND	<0.05	<0.05	ND	-	-	-
	1								-
Acononthana						•			
Acenapthene	<0.1	<0.1	ND	<0.1	<0.1	ND	-	-	-
Acenapthlyene	<0.1	<0.1	ND	<0.1	<0.1	ND	-		-
Antrhacene	<0.1	<0.1	ND	<0.1	<0.1	ND	-	-	-
Benz(a)anthracene	<0.1	<0.1	ND	<0.1 ND	<0.1	ND	-	-	-
Benzo(a)pyrene	<0.1	<0.1	ND		<0.1	ND	-	-	-
Benzo(b)fluoranthene	<0.1	<0.1	ND	<0.1	<0.1	ND ND	-	-	-
Benzo(g.h.i.)prylene Benzo(k)fluoranthene	<0.1 <0.1	<0.1 <0.1	ND ND	<0.1 <0.1	<0.1 <0.1	ND	-	-	-
Chrysene	<0.1	<0.1	ND	<0.1	<0.1	ND			-
Dibenz(a.h)anthracene	<0.1	<0.1	ND	<0.1	<0.1	ND		-	-
Fluoranthene	<0.1	<0.1	ND	<0.1	<0.1	ND			-
Fluorene	<0.1	<0.1	ND	<0.1	<0.1	ND			-
Indeno(1.2.30cd)pyrene	<0.1	<0.1	ND	<0.1	<0.1	ND	-	-	-
Napthalene	<0.1	<0.1	ND	<0.1	<0.1	ND	-		-
Phenanthrene	<0.1	<0.1	ND	<0.1	<0.1	ND	-	-	
Pyrene	<0.1	<0.1	ND	<0.1	<0.1	ND	-	-	-
Total PAH	<1.6	<1.6	ND	<1.6	<1.6	ND			-
ORGANOCHLORINE PESTICIDES									
Aldrin	<0.05	<0.05	ND	<0.05	<0.05	ND	<0.05	<0.05	ND
Dieldrin	<0.05	<0.05	ND	<0.05	<0.05	ND	<0.05	<0.05	ND
Heptachlor epoxide	< 0.05	< 0.05	ND	< 0.05	< 0.05	ND	< 0.05	< 0.05	ND
DDT	< 0.05	< 0.05	ND	< 0.05	< 0.05	ND	<0.05	< 0.05	ND
DDE Other OCP	< 0.05	< 0.05	ND	< 0.05	< 0.05	ND	<0.05	< 0.05	ND
Other OCP	<1.15	<1.15	ND	<1.15	<1.15	ND	<1.15	<1.15	ND
RGANOPHOSPHOROUS PESTICIDES	;								
Total	<4.2	<4.2	ND	<4.2	<4.2	ND	<4.2	<4.2	ND
	L								
HEAVY METALS			ND		07	00.57			
Arsenic	<2	<2	ND	3.6	2.7	28.57	3	3	0.00
Cadmium	<0.5	<0.5	ND	<0.5	<0.5	ND	<0.5	<0.5	ND
Chromium	72	71	1.40	30	25	18.18	23	22	4.44
Copper Nickel	17 8.5	17 7.5	0.00	31 15	29 15	6.67 0.00	27 12	30 11	10.53 8.70
Lead	8.5 20	7.5 22	9.52	31	15 24	25.45	12 21	11 24	
Zinc	20 55	67	9.52	120	100	25.45	100	24 97	13.33 3.05
Mercury	55 <0.1	<0.1	19.67 ND	<0.1	<0.1	18.18 ND	<0.1	97 <0.1	3.05 ND
wordury	NU.1	<u></u>	שא	<u></u>	<u></u>	UD.	<u></u>	NV.1	
	1			1					

Bold

RPD exceeds control limit of 50%

6.3.2.2 Soil Vapour Criteria

For the purposes of this report the generalised soil vapour criteria presented in Table 5 have been used as a guide to the potential for hydrocarbon contamination. These criteria have been developed by Coffey based on our experience (where monitoring for volatile organic compounds has occurred) to assist in the assessment of hydrocarbon contamination levels in soil. It is important to note that these generalised criteria are only a guide and that the PID has a different response to different chemicals.

TABLE 5: GENERALISED SOIL GAS CRITERIA

PID reading as ppm isobutylene	Generalised soil gas content description relating to petroleum hydrocarbon contamination
<20 ppm	NEGLIGIBLE
20 to 60 ppm	LOW
60 - 300 ppm	MODERATE
>300 ppm	SIGNIFICANT

Summarised in Table 6 are the results of PID testing of samples collected in the field, with comparison to the above criteria.

TABLE 6: SU	MMARY OF PID RESULTS
-------------	----------------------

Borehole	Depth	Result	Description	Borehole	Depth	Result	Description
A1	0.0 to 0.2	0.0	Negligible	E4	0.0 to 0.2	0.0	Negligible
A2	0.0 to 0.2	0.0	Negligible	E5	0.0 to 0.2	0.0	Negligible
A3	0.0 to 0.2	0.0	Negligible	F1	0.0 to 0.2	0.0	Negligible
B1	0.0 to 0.2	0.0	Negligible	F2	0.0 to 0.2	0.0	Negligible
B2	0.0 to 0.2	0.0	Negligible	F3	0.0 to 0.2	0.0	Negligible
B3	0.0 to 0.2	0.0	Negligible	F4	0.0 to 0.2	0.0	Negligible
C1	0.0 to 0.2	0.0	Negligible	G1	0.0 to 0.2	0.0	Negligible
C2	0.0 to 0.2	0.0	Negligible	H1	0.0 to 0.2	0.0	Negligible
C3	0.0 to 0.2	0.0	Negligible	S1	0.0 to 0.2	0.0	Negligible
D1	0.0 to 0.2	0.0	Negligible	S2	0.0 to 0.2	0.0	Negligible
D2	0.0 to 0.2	0.0	Negligible	S3	0.0 to 0.2	0.0	Negligible
D3	0.0 to 0.2	0.0	Negligible	S4	0.0 to 0.2	0.0	Negligible
D4	0.0 to 0.2	0.0	Negligible	S5	0.0 to 0.2	0.0	Negligible
E1	0.0 to 0.2	0.0	Negligible	S6	0.0 to 0.2	0.0	Negligible
E2	0.0 to 0.2	0.0	Negligible	S7	0.0 to 0.2	0.0	Negligible
E3	0.0 to 0.2	0.0	Negligible				

As can be seen in Table 6, each sample had a PID reading of 0.0, which is negligible. No odours were noted

in the samples.

6.3.2.3 Comparison of Results to Soil Investigation Levels

Individual samples were sent to MGT Environmental Consulting Laboratory, a NATA accredited chemical laboratory, under chain of custody conditions.

Each sample was tested for heavy metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury) and OCP and OPP. 15 samples were selected for TPH, BTEX and PAH testing. The results of the laboratory testing are included in Appendix B and are summarised in Tables 7 and 8.

(All results in hig/kg)																	
Sample ID			A2	B3	C1	D2	E3	E5	F2	F4	S1	S2	S3	S4	S5	S6	
Material	THRES		Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	L
Date of Sampling	CONCENT	RATIONS	6/9/2006	6/9/2006	6/9/2006	6/9/2006	6/9/2006	6/9/2006	6/9/2006	6/9/2006	13-Jun-2006	13-Jun-2006	13-Jun-2006	13-Jun-2006	13-Jun-2006	13-Jun-2006	╞
Depth (m)			0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	┝
HEAVY METALS																	┝
Arsenic	100 ¹	20 ²	<2	2.5	2.1	<2	<2	2.2	2.9	<2	3.6	2.6	2.7	3.7	2.3	3.6	┢
Cadmium	20 ¹	3 ²	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	,0.5	<0.5	+
Chromium (Total)	120,000 ¹	400 ²	72	24	28	50	43	43	36	41	30	23	20	21	,0.5	25	┢
Copper	1,000 ¹	100 ²	17	24	20	18	23	27	24	23	31	31	32	37	31	34	┢
Mercury	1,000 15 ¹	1 ²	8.5	11	11	7.2	6.9	14	10	7.8	15	9.2	12	11	12	12	+
Lead	300 ¹	600 ²	20	24	26	16	23	22	24	23	31	26	23	25	25	25	+
Nickel	600 ¹	60 ²	55	110	91	41	110	94	95	78	120	120	130	140	120	140	+
Zinc	7000 ¹	200 ²	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	┢
2110	7000	200	<0.1	<0.1	NO.1	NU.1	<0.1	<0.1	<0.1	NO.1	NO.1	NO.1	<0.1	NO.1	NO.1	<0.1	+
TOTAL PETROLEUM HYDROCAR	BONS																+
C6 - C9 Fraction	65 ³		<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	
C10-C14 Fraction	00		<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	+
C15-C28 Fraction			<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	\vdash
C29-C36 Fraction			<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	\vdash
Total C10-C36	1000 ³		<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	\vdash
>C16-C35 Fraction (aromatics)	90 ¹		<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	┢
>C16-C35 Fraction (aromatics)	5,600 ¹		<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	┢
>C35 Fraction (aliphatics)	56,000 ¹		<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	┢
	00,000		100		(100	100	(100	100		100	(100	(100	100	(100	(100	100	+
втех																	+
Benzene	1 ³		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	┢
Toluene	130 ³		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	┢
Ethylbenzene	50 ³		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	┢
Total Xylene	25 ³		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	+
	20		NO.00	NO.00	10.00	10.00	NO.00	10.00	NO.00	10.00	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	t
POLYCYCLIC AROMATIC HYDRO	CARBONS																t
Acenapthene	1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	T
Acenapthlyene			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Antrhacene			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Benz(a)anthracene			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	t
Benzo(a)pyrene	1 ¹		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Benzo(b)fluoranthene			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	t
Benzo(g.h.i.)prylene			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	t
Benzo(k)fluoranthene			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	T
Chrysene			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	F
Dibenz(a.h)anthracene			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	T
Fluoranthene			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Fluorene			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	T
Indeno(1.2.30cd)pyrene			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	T
Napthalene	1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	\square
Phenanthrene			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	\vdash
Pyrene			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	F
Total PAH	20 ¹		<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	\square
					-				-			-		-	-		T
ORGANOCHLORINE PESTICIDES																	
Heptachlor	10 ¹		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Chlordane	50 ¹		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Γ
Aldrin + Dieldrin	10 ¹		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
DDT + DDE + DDD	200 ¹		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	\square
Other OCP			<1.15	<1.15	<1.15	<1.15	<1.15	<1.15	<1.15	<1.15	<1.15	<1.15	<1.15	<1.15	<1.15	<1.15	T
			-	-	-	-	-	-	-	-			-	-		-	t
ORGANOPHOSPHOROUS PESTIC	CIDES																T
Total			<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	T
	1																t
NOTES	8		1	1			1				l	L.			L.		-

Heavy Metals, TPH, BTEX, PAH, OCP and OPP

SUMMARY OF LABORATORY RESULTS FOR SOIL SAMPLES

(All results in mg/kg)

TABLE 7:

NOTES:

Bold

Concentration exceeds the respective threshold concentration

¹ Based on NSW DEC (2006), Guidelines for the NSW Site Auditor Scheme (2nd edition) and NEPM (1999) (Residential with access to soil - NEHF - A)

² Based on NSW DEC (2006), Guidelines for the NSW Site Auditor Scheme (2nd edition) - Column 5 Provisional Phytotoxicity

 $^{\rm 3}$ Based on NSW EPA (1994), Guidelines for Assessing Service Station Sites - Table 3

⁻ Not Analysed

	S7
	Soil
06	13-Jun-2006
	0.0-0.2
	3.1
	<0.5 22
	35 16
	26 160
	<0.1
	NO.1
	<20
	<50
	<100
	<100
	<250
	<200
	<200
	<200
	(100
	<0.05
	<0.05
	<0.05
	<0.05
	<0.1
	<0.1
	<0.1
	<0.1
	<0.1
	<0.1
	<0.1 <0.1
	<0.1
	<0.1 <0.1
	<0.1 <0.1 <0.1
	<0.1 <0.1 <0.1 <0.1
	<0.1 <0.1 <0.1 <0.1 <0.1
	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <1.15
	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

SUMMARY OF LABORATORY RESULTS FOR SOIL SAMPLES

Heavy Metals, OCP and OPP

(All results in mg/kg)

TABLE 8:

Sample ID																			
			A1	A3	B1	B2	C2	C3	D1	D3	D4	E1	E2	E4	E5	F1	F3	G1	H1
Material	THRES	-	Soil																
Date of Sampling	CONCENT	RATIONS	6/9/2006	6/9/2006	6/9/2006	6/9/2006	6/9/2006	6/9/2006	6/9/2006	6/9/2006	6/9/2006	6/9/2006	6/9/2006	6/9/2006	6/9/2006	6/9/2006	6/9/2006	6/9/2006	13-Jun-2006
Depth (m)			0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
IEAVY METALS																			
Arsenic	100 ¹	20 ²	<2	<2	2.5	2.2	<2	2.7	2.7	2.9	2.7	2.7	<2	2.3	2.2	2.1	<2	4.2	3
Cadmium	20 ¹	3 ²	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.1	<0.5
Chromium (Total)	120,000 ¹	400 ²	60	72	40	58	51	55	27	58	38	32	44	35	43	29	41	26	23
Copper	1,000 ¹	100 ²	27	17	16	22	14	18	20	25	22	25	24	24	27	26	23	45	27
ead	300 ¹	600 ²	9	8.5	11	9.1	5.7	13	10	14	8.7	9.7	7.8	7.6	14	14	7.8	58	12
Nickel	600 ¹	60 ²	29	20	25	28	31	19	20	33	24	32	26	35	22	26	23	34	21
Zinc	7000 ¹	200 ²	68	55	59	69	61	63	72	100	84	120	120	97	94	140	78	1600	100
Mercury	15 ¹	1 ²	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1
DRGANOCHLORINE PESTICIDES																			
leptachlor	10 ¹		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chlordane	50 ¹		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin + Dieldrin	10 ¹		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
DDT + DDE + DDD	200 ¹		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dther OCP			<0.1	<0.1	<1.15	<1.15	<1.15	<1.15	<1.15	<1.15	<1.15	<1.15	<1.15	<1.15	<1.15	<1.15	<1.15	<1.15	<1.15
DRGANOPHOSPHOROUS PESTICIE	DES																		
Fotal					<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2

NOTES:

Bold

Concentration exceeds the respective threshold concentration

¹ Based on NSW DEC (2006), Guidelines for the NSW Site Auditor Scheme (2nd edition) and NEPM (1999) (Residential with access to soil - NEHF - A)

² Based on NSW DEC (2006), Guidelines for the NSW Site Auditor Scheme (2nd edition) - Column 5 Provisional Phytotoxicity

³ Based on NSW EPA (1994), Guidelines for Assessing Service Station Sites - Table 3

⁻ Not Analysed

	ž	
-	Ĕ	
1	2	

The following points are noted with regard to the results of testing on individual samples summarised in Tables 7 and 8:

- Concentration of zinc exceeded the provisional phytotoxicity criteria in sample G1. Heavy Metal concentrations were below adopted criteria or the laboratory Limit Of Reporting (LOR) in each other sample tested;
- TPH concentrations were below the LOR in each sample tested. However, the LOR exceeds the adopted criteria for >C₁₆-C₃₅ Fraction (aromatic). It is noted that the results for TPH do not differentiate between aromatic and aliphatic TPH, and it is possible that no aromatic TPH is present;
- BTEX concentrations were below the LOR in each sample tested;
- PAH concentrations were below the LOR in each sample tested;
- OCP and OPP concentrations were below the LOR in each sample tested.

6.4 Conclusions and Recommendations after Phase 1 Assessment

The site occupies an area of about 9.9ha and forms Lot 2 DP622475. The site history indicated that there had been no major developments on the site other than the construction of a small shed and that there had been no widespread contaminating activities carried out. For at least the last 30 years the site has been used for cattle grazing, and is likely to have been used for cattle grazing since being granted from Crown Land in 1902 to 1911.

Twenty-two sample locations were spread evenly across the site in an approximate 70m grid, and seven sample locations targeted a small shed. The sample analysis was used to assess the site for the presence or absence of contamination.

The laboratory results of surface soil samples collected, indicated that concentrations of the chemicals of concern, were below the adopted guideline criteria for human health. One sample, G1, had a zinc concentration which exceeds the provisional phytotoxicity criteria.

The zinc exceedance may suggest that the health of some plant species, sensitive to zinc, could be affected if planted in these soils. There was no obvious source of the elevated zinc contamination in this area. Zinc can be commonly found from weathering of galvanised products such as corrugated iron and could have originated from such a source. It is noted that the phytotoxicity investigation levels are provisional and their use has significant limitations because phytotoxicity depends on soil and species parameters in ways that are not fully understood. They are used as a screening guide and are assumed to apply to sandy loam soils with a pH of 6 to 8.

Based on the concentration of zinc exceeding the adopted criteria by more than two and half times, it is considered the sample represents a hot spot. As such, it was recommended to the client that further investigations (Phase 2) be carried out near G1. Such further sampling was approved and subsequently carried out. The results of the Phase 2 assessment are presented and discussed below.

7. PHASE 2 ASSESSMENT

7.1 Sampling and Analysis Plan

The previous sampling location, G1, is located on the northern portion of the proposed subdivision. The site history indicated that the proposed subdivision area had not been subject to past contaminating land uses.

Based on this, the likelihood of widespread contamination occurring on the site was considered to be low, and the elevated zinc concentration encountered in sample G1 was likely to represent a localised area of zinc contamination.

The chemical of concern identified for sample G1 was heavy metal zinc.

Samples for this current study were collected using an approximate grid, with 4 surface samples collected at 5m distance, 8 surface samples collected at 10m to 14m distance and 16 surface samples collected at 20m to 28m distance from the original sample location of G1 as shown on Figure 2.

Initially samples from 5m and 10m-14m distance were analysed for zinc. Based on the results of this first round of testing, it was considered appropriate to carry out further testing on the samples. Testing for 8 Heavy Metals and the toxicity characterisation leachability procedure (TCLP) was carried out on each sample, including the original sample G1.

7.2 Field Investigations

Field work was carried out on the 3 August 2006 and comprised collection of samples on the site by a Senior Geotechnician from our Northern Rivers office. For the site layout, and sample locations, see Figures 1 and 2.

The samples were collected from the top 0.2m of the surface soils, using hand tools. Individual samples were directly placed into laboratory supplied glass jars, and stored in chilled insulated containers during fieldwork and transport to the contract laboratory. A clean pair of latex gloves was used to collect each individual sample. The sampling equipment was decontaminated between each location using the triple rinse method, which involves washing the equipment in potable water, rinsing with 4% Decon 90 (a phosphate free detergent) solution and a final rinse in potable water.

Duplicates were collected at a rate of one per ten samples. To confirm effective equipment decontamination one wash blank sample was collected and analysed.

7.3 Soil Sampling and Analysis Results

7.3.1 Subsurface Conditions

Each sample was collected in topsoil, which generally comprised clayey silt and silty clay, low to medium plasticity, dark brown, and with a friable consistency. No evidence of fill soils was noted nor were unusual odours or staining.

7.3.2 Quality Assurance/Quality Control (QA/QC) and Data Usability

Soil sampling activities were generally based on procedures and protocols outlined in Coffey's Environmental Field Manual (QP 15/5-E, June 1995, revised September 1997) which is based on industry accepted standard practice.

Samples were received and analysed by mgt Environmental Consulting (mgt) within the recommended holding times. Copies of the Chain of Custody documentation are attached. Duplicate samples (DUP 1 and DUP2) were taken in the field and a wash blank (WB1) collected. The results of the primary and duplicate results are compared in Table 9.

TABLE 9:	COMPARISON OF PRIMARY & I	DUPLICATE SAMPLE RI	ESULTS	
Sample ID	Primary/Duplicate	Zinc (mg/kg)	RPD (%)	
GA4	Primary	330	-	
DUP 1	Duplicate	270	20	
GB8	Primary	160	-	
DUP 2	Duplicate	350	75	

Coffey *******

As can be seen in Table 2, the Relative Percentage Difference (RPD) for samples GB8 and DUP2 exceeded the control limit of 50%. Three samples, which were tested in the first and second round of testing for zinc, were reported by the laboratory with significantly different concentrations of zinc. These three samples were retested to check for sample heterogeneity, or possible laboratory errors. In total, the three samples were tested for zinc four times. The results for additional testing on the three samples are shown in Table 10.

Sample ID		Zinc (mg/kg)								
Sample ID	Test 1	Test 2	Test 3	Test 4						
GA2	670	800	1,100	860						
GB1	360	860	680	760						
GB7	460	1,000	960	570						

TABLE 10: SUMMARY OF RE-TEST ON SAMPLES

The results from Table 10 show that zinc concentrations are variable and show considerable sample heterogeneity. Taking into account the observed heterogeneity of the samples, it is therefore considered that the RPDs shown in Table 9 are acceptable.

The wash blank was tested for heavy metal zinc. Concentrations of zinc in the wash blank sample were below the Limit of Reporting (LOR). The decontamination procedures adopted by Coffey are considered to be satisfactory and in accordance with standard industry practice.

Laboratory QA/QC included laboratory blanks, laboratory duplicates, laboratory control samples, and method blanks. The RPDs of laboratory duplicates were within control limits. No analytes were detected in the laboratory blanks. The laboratory control samples were generally within control limits.

Based on the results of QA/QC testing, it is considered that the soil analytical results are useable, and reasonably represent the conditions at the sampling locations at the time of sampling.

7.3.3 Laboratory Results

Samples from the locations 5m and 10m-14m distance were submitted for analysis of zinc. The laboratory results for zinc analysis are summarised in Table 11. The samples from 20m-28m distance were held in storage for possible later analysis. The laboratory results of analysis are summarised in Table 11. The laboratory results sheets are presented in Appendix C.

SAMPLE ID	DATE	ZINC (mg/kg)	Adopted Criteria
GA1	3 August 2006	150	200
GA2	3 August 2006	<mark>670</mark>	200
GA3	3 August 2006	180	200
GA4	3 August 2006	<mark>330</mark>	200
GB1	3 August 2006	<mark>360</mark>	200
GB2	3 August 2006	140	200
GB3	3 August 2006	<mark>250</mark>	200
GB4	3 August 2006	110	200
GB5	3 August 2006	<mark>220</mark>	200
GB6	3 August 2006	100	200
GB7	3 August 2006	<mark>460</mark>	200
GB8	3 August 2006	160	200

Coffey ***

TABLE 11: SUMMARY OF LABORATORY RESULTS FOR ZINC

Note: Values in **bold & shaded** exceed the adopted criteria

As can be seen in Table 4 samples GA2, GA4, GB1, GB3, GB5 and GB7 had zinc concentrations which exceeded the residential phytotoxicity criteria, the other samples tested were below the adopted criteria.

Based on the results, it was recommended that further analysis on the samples be carried out to assess the waste classification. Testing for eight heavy metals (arsenic, cadmium, chromium, copper lead, nickel, zinc, mercury) and the toxicity characterisation leachability procedure (TCLP) for eight heavy metals was carried out on the samples, including the original sample G1. The results of the second round of testing are summarised in Table 12 below.

TABLE 12: SUMMARY OF LABORATORY RESULTS FOR HEAVY METALS

(All results in mg/kg)

(All results in hig/kg)																		
Sample ID				G1	GA1	GA2	GA3	GA4	GB1	GB2	GB3	GB4	GB5	GB6	GB7	GB8	GC1	GC2
Material				Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date of Sampling	THRESH	OLD CONCENT	RATION	6-Sep-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006
Depth (m)	_			0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Unit				Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil
HEAVY METALS																		
Arsenic	100 ¹	20 ²	500 ³	4.2	3.9	4.6	4.7	3.9	3.5	5.3	3.9	4	3.5	3.4	4.5	3.4	2.8	2.7
Cadmium	20 ¹	3 ²	100 ³	1.1	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.9	<0.5	<0.5	<0.5
Chromium (Total)	120,000 ¹	400 ²	1,900 ³	26	30	26	33	26	30	35	30	42	26	33	26	31	32	27
Copper	1000 ¹	100 ²	- 3	45	36	45	35	41	33	40	36	37	47	31	47	38	23	30
Lead	300 ¹	600 ²	1500 ³	58	36	89	45	52	33	27	30	21	36	18	73	27	11	8.7
Nickel	600 ¹	60 ²	1050 ³	34	29	32	25	28	22	27	27	28	32	25	33	30	23	22
Zinc	7000 ¹	200 ²	- 3	1600	180	670	180	310	360	140	250	110	220	100	460	160	69	75
Mercury	15 ¹	1 ²	50 ³	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
wercury	15	1	50	<0.1	<0.1	۲0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TCLP HEAVY METALS							1			1								
Arsenic	0.5 4			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cadmium	0.0 ⁴			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chromium	0.1 1 ⁴			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
-	- 4			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Copper Nickel	0.2 4			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	0.2																	
Lead	0.5 - ⁴			<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Zinc				2.3	0.28	1.3	0.19	0.39	0.69	0.09	0.46	0.07	0.29	0.06	2.2	0.29	0.04	0.05
Mercury	0.02 4			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Sample ID		I		GC3	GC4	GC5	GC6	GC7	GC8	GC9	GC10	GC11	GC12	GC13	GC14	GC15	GC16	
Material	_			Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
Date of Sampling	THRESH	OLD CONCENT	RATION	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	3-Aug-2006	
Depth (m)	_			0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	
Unit				Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	
HEAVY METALS																		
Arsenic	100 ¹	20 ²	500 ³	7.7	16	7.5	3.4	3.1	3.3	4.5	2.9	4.3	4	2.6	6.4	3.4	3.8	
Cadmium	20 ¹	3 ²	100 ³	<0.5	<0.5	<0.5	<0.5	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	120,000 ¹	400 ²	1,900 ³	38	27	26	27	25	40	30	25	34	45	31	36	37	33	
Copper	1000 ¹	100 ²	- 3	38	36	39	30	54	32	48	27	42	31	35	59	34	44	
Lead	300 ¹	600 ²	1500 ³	32	24	29	14	70	17	36	14	22	11	16	31	26	21	
Nickel	600 ¹	60 ²	1000 ³	25	29	28	20	28	25	33	25	31	32	28	38	32	35	
Zinc	7000 ¹	200 ²	- 3	190	140	190	130	660	120	210	110	150	110	140	300	260	170	
Mercury	15 ¹	200 1 ²	50 ³	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
wereary	15		50	NO.1	NO.1	NO.1	NO.1	XU.1	<0.1	NU.1	<0.1	×0.1	NO.1	×0.1	NU.1	NU.1	NU.1	
TCLP HEAVY METALS																		
Arsenic	0.5 4			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Cadmium	0.1 4			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Chromium	1 4			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Copper	- 4			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Nickel	0.2 4			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Lead	0.5 4			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Zinc	- 4			0.33	0.09	0.49	0.1	0.08	0.07	0.25	0.26	0.19	0.05	0.07	0.44	0.52	0.15	
Mercury	0.02 4			<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	
,																		
	1			1			1			1								

NOTES:

Bold

Concentration exceeds Human Health and/or Phytotoxicity Criteria

¹ Based on NSW DEC (2006), Guidelines for the NSW Site Auditor Scheme (2nd edition) and NEPM (1999) (Residential - NEHF-A)

² Based on NSW DEC (2006), Guidelines for the NSW Site Auditor Scheme (2nd edition) - Provisional Phytotoxicity based investigation levels for sandy loams pH 6-8 and NEPM (1999) - Environmental Investigation Levels

³ Based on NSW DEC (2004), Environmental Guidelines: Assessment, Classification & Management of Liquid & Non-Liquid Wastes - Table A4 Inert waste Total Concentration

⁴ Based on NSW DEC (2004), Environmental Guidelines: Assessment, Classification & Management of Liquid & Non-Liquid Wastes - Table A4 Inert Waste Leachable Concentration

Three samples, which were tested in the first and second round of testing for zinc, were reported with significantly different concentrations of zinc. These three samples were retested to check for sample heterogeneity, or possible laboratory errors. In total, the three samples were tested for zinc four times. The results differed in each test and the laboratory commented that the samples were heterogeneous in nature.

8. CONCLUSIONS

The site history information presented in this report suggested that, in general, the site had not been subject to activities that would be considered to be potentially contaminating.

Based on this, the location of the elevated zinc concentration, G1, was investigated to aid in assessing the extent of contamination in the form of heavy metal zinc at this location. The results of the step out samples indicated that elevated zinc concentrations extended to at least 20m to 28m distance from the G1 location, however concentrations tended to decrease with distance, indicating the contamination was not wide spread and represented localised contamination. Based on the concentrations of the zinc in the samples, it was recommended that eight heavy metals and a TCLP of heavy metals be carried out to assess the waste classification of the soils.

The Phase 1 laboratory testing indicated that common contaminants, Total Petroleum Hydrocarbons (TPH), Benzene, Toluene, Ethyl-benzene, Xylene (BTEX), Poly-Aromatic Hydrocarbons (PAH), and organochlorine pesticides (OCPs) were below the adopted criteria.

Based on the results of the heavy metal and TCLP testing, and the previous testing (reported in NR1059/3-AB) the soils classify as **inert** waste in accordance with the NSW DEC (2004) guidelines and can be disposed of to landfill licensed to accept this waste

Based on the results of the site history assessment, and the laboratory testing, it is considered that there are two remediation options for the site. These options are:

- Excavation and removal off site to landfill. Soils in the location of G1 (outlined on Figure 3) to a depth of about 0.2m should be removed to a landfill that can accept inert waste. Validation testing of the excavation should be carried out by a qualified environmental consultant to assess the effectiveness of the remediation.
- 2. Containment of the soils on site under pavements or residential slabs. The soils could be removed from their current position and moved to an appropriate place within the site where pavements are planned. Validation testing as in Option 1 would still be required. This option would also require the preparation of a Site Management Plan that may include sampling of the groundwater depending on the final resting place of the soil.

Please note that the area outlined on Figure 3 is estimated, and the actual lateral and vertical extent of the contamination may differ from that shown. It may be necessary to excavate further should the results of the validation testing indicate elevated levels of zinc in the excavation walls.

9. LIMITATIONS

The findings of the soil sampling and analysis are the result of discrete and specific sampling methodologies, involving sampling from predetermined locations within the soil profile. Whilst it is considered that the results obtained are likely to be representative of general conditions on the site, the existence of undetected

Coffey **}**

contamination between sampling locations cannot be precluded. This report does not address issues relating to potentially hazardous building materials or services which may be present on the site. This report does not address geotechnical issues.

REFERENCES:

- 1. NSW Department of Environment & Conservation (DEC), Guidelines for the NSW Site Auditor Scheme (2nd edition), April 2006
- 2. The NEPC (1999) National Environment Protection (Assessment of Site Contamination) Measure, Schedule B (7a) Guideline on Health-Based Investigation Levels
- 3. NSW Environmental Protection Authority (EPA), Guidelines for Consultants Reporting on Contaminated Sites, September 2000
- 4. NSW Department of Environment & Conservation (DEC), Environmental Guidelines: Assessment, Classification & Management of Liquid & Non-Liquid Wastes, June 2004

For and on behalf of COFFEY GEOSCIENCES PTY LTD

DAVID BARKER Senior Geotechnical Engineer

Information a

Important information about your Coffey Environmental Site Assessment

Uncertainties as to what lies below the ground on potentially contaminated sites can lead to remediation costs blow outs, reduction in the value of land and to delays in the redevelopment of land. These uncertainties are an inherent part of dealing with land contamination. The following notes have been prepared by Coffey to help you interpret and understand the limitations of your environmental site assessment report.

Your report has been written for a specific purpose

Your report has been developed on the basis of a specific purpose as understood by Coffey and applies only to the site or area investigated. For example, the purpose of your report may be:

- To assess the environmental effects of an on-going operation.
- To provide due diligence on behalf of a property vendor.
- To provide due diligence on behalf of a property purchaser.
- To provide information related to redevelopment of the site due to a proposed change in use, for example, industrial use to a residential use.
- To assess the existing baseline environmental, and sometimes geological and hydrological conditions or constraints of a site prior to an activity which may alter the sites environmental, geological or hydrological condition.

For each purpose, a specific approach to the assessment of potential soil and groundwater contamination is required. In most cases, a key objective is to identify, and if possible, quantify risks that both recognised and unrecognised contamination pose to the proposed activity. Such risks may be both financial (for example, clean up costs or limitations to the site use) and physical (for example, potential health risks to users of the site or the general public).

Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man and may change with time. For example, groundwater levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of the subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult Coffey to be advised how time may have impacted on the project and/or on the property.

Interpretation of factual data

Environmental site assessments identify actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from indirect field measurements and sometimes other reports on the site are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how well qualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, parties involved with land acquisition, management and/or redevelopment should retain the services of Coffey through the development and use of the site to identify variances, conduct additional tests if required, and recommend solutions to unexpected conditions or other problems encountered on site.

Your report will only give preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced and therefore your report recommendations can only be regarded as preliminary. Only Coffey, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered with redevelopment or on-going use of the site. If another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Coffey cannot be held responsible for such misinterpretation.

Your report is prepared for specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Coffey before passing your report on to another party who may not be familiar with the background and the purpose of the report. In particular, a due diligence report for a property vendor may not be suitable for satisfying the needs of a purchaser. Your report should not be applied for any purpose other than that originally specified at the time the report was issued.

Interpretation by other professionals

Costly problems can occur when other professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain Coffey to work with other professionals who are affected by the report. Have Coffey explain the report implications to professionals affected by them and then review plans and specifications produced to see how they have incorporated the report findings.

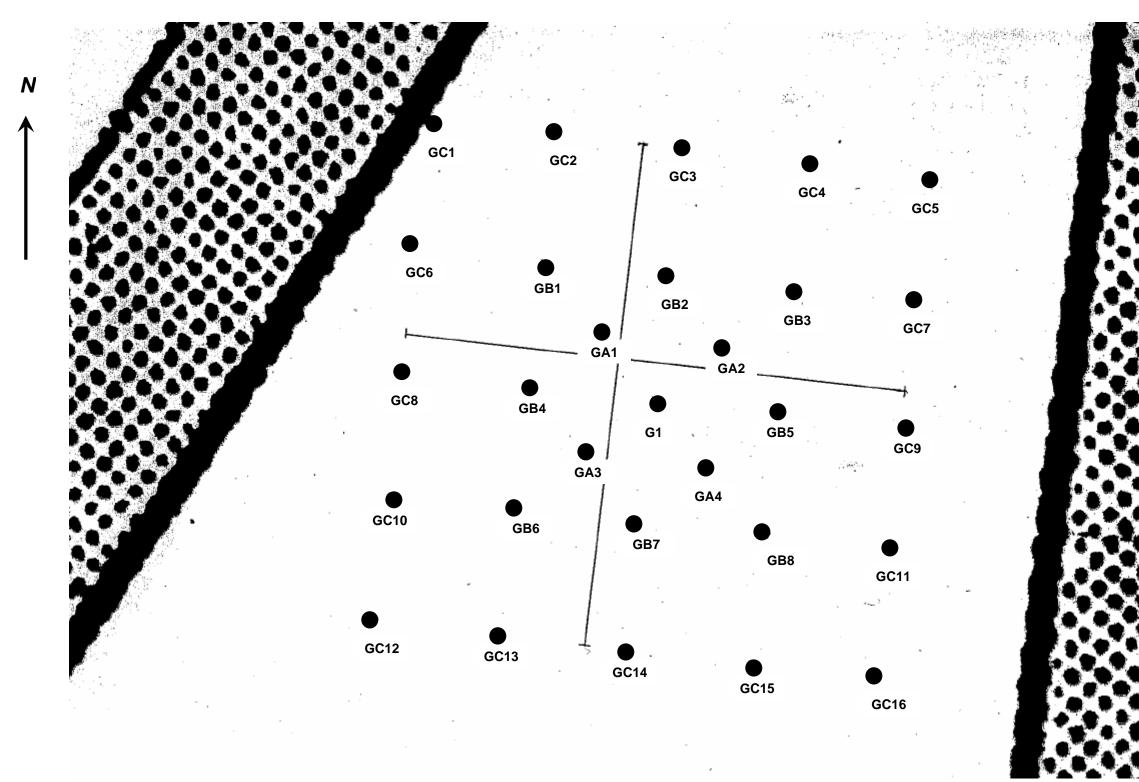
Coffey

Important information about your Coffey Environmental Site Assessment

Data should not be separated from the report

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way.

Logs, figures, laboratory data, drawings etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel), field testing and laboratory evaluation of field samples. This information should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.


Contact Coffey for additional assistance

Coffey is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to land development and land use. It is common that not all approaches will be necessarily dealt with in your environmental site assessment report due to concepts proposed at that time. As a project progresses through planning and design toward construction and/or maintenance, speak with Coffey to develop alternative approaches to problems that may be of genuine benefit both in time and cost.

Responsibility

Environmental reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than other design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from Coffey to other parties but are included to identify where Coffey's responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Coffey closely and do not hesitate to ask any questions you may have.

LEGEND		Coffey (Geosciences	Pty Ltd ACN 056 335 516	Geotechnical I
-		Drawn	ELC		
	Approximate location of samples	Approved			ROPOSED SUBI
GC1		Date	7/9/2006		
		Scale	1:300	GRID SAMPLE L	OCATIONS FOR

I Recources Environmental Techni	cal I Project Management
al I Resources I Environmental I Techni IENT PTY LTD	Cal I Project Management Drawing no:
IBDIVISION	
NNOX HEAD, NSW	FIGURE 2
OR PHASE 2 ASSESSMENT	Job no: NR1059/3-AE

Coffey **ma**

Plan provided by:

				Coffey
0	40	80	120	Drawn
	SCA	LE (m)		Approved
				Date
				Scale

Coffey Geosciences Pty Ltd ACN 056 335 516			Geotechnical I Resources I Environmental I Technical I Project Management		
Drawn	ELC	SAKE DEVELOPMENT PTY LTD PROPOSED SUBDIVISION SURVEY STREET, LENNOX HEAD, NSW		Drawing no:	
Approved				FIGURE 3	
Date	7/9/2006				
Scale	~1:2000	SITE PLAN SHO	WING AREA REQUIRING REMEDIATION	Job no: NR1059/3-AE	

APPENDIX A

Site History Assessment Documentation

Our Ref: D06/036954 Your Ref: Emma Coleman/David Barker

1 June 2006

Attention: Ms Emma Coleman Coffey Geosciences PO Box 704 COFFS HARBOUR NSW 2450

Dear Ms Coleman

RE SITE: 1 Survey Street, Lennox Head

I refer to your search request of 31 May 2006 requesting information on licences to Keep Dangerous Goods for the above site.

A search of the Stored Chemical Information Database (SCID) and the microfiche records held by WorkCover has not located any records pertaining to the above-mentioned premises.

If you have any further queries, please contact Dangerous Goods Licensing staff on (02) 4321 5500.

1

i almore

Gabriela Wilsmore A/Team Leader Dangerous Goods

WorkCover. Watching out for you.

WorkCover NSW ABN 77 682 742 966 92-100 Donnison Street Gosford NSW 2250 Locked Bag 2906 Lisarow NSW 2252 Telephone 02 4321 5000 Facsimile 02 4325 4145 WorkCover Assistance Service **13 10 50** DX 731 Sydney Website www.workcover.nsw.gov.au

Our Ref: D06/036954 Your Ref: Emma Coleman/David Barker

1 June 2006

Attention: Ms Emma Coleman Coffey Geosciences PO Box 704 COFFS HARBOUR NSW 2450

Dear Ms Coleman

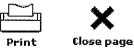
<u>RE SITE:</u> 1 Survey Street, Lennox Head

I refer to your search request and acknowledge receipt on 31 May 2006 requesting information on licences to Keep Dangerous Goods for the above site.

A search of the Stored Chemical Information Database (SCID) and the microfiche records held by WorkCover will be conducted and any records pertaining to the above-mentioned premises will be forwarded to you. Please note there may be a delay if the file needs to be requested from our storage warehouse, which is located offsite.

If you have any further queries, please contact Dangerous Goods Licensing Unit on (02) 4321 5500.

9. Vilmre


Gàbriela Wilsmore Acting Team Leader Dangerous Goods

WorkCover. Watching out for you.

WorkCover NSW ABN 77 682 742 966 92-100 Donnison Street Gosford NSW 2250 Locked Bag 2906 Lisarow NSW 2252 Telephone 02 4321 5000 Facsimile 02 4325 4145 WorkCover Assistance Service **13 10 50** DX 731 Sydney Website www.workcover.nsw.gov.au

Search results

Your search for: LGA: Ballina Shire Council

Matched 1 notice relating to 1 site.

Suburb	Address	Site Name	Notices related to this site
Lennox Head Page 1 of 1	Fig Tree Hill Drive	Dip 5282 Spoors	1 current

25 May 2006

ADVANCE LEGAL SEARCH PTY LIMITED

(ACN 077 067 068) ABN 49 077 067 068

PO Box 149 Yagoona NSW 2199
 Telephone:
 +612
 9754
 1590

 Mobile:
 0412
 169
 809

 Facsimile:
 +612
 9754
 1364

 Email:
 alsearch@optusnet.com.au

30 May 2006

COFFEY GEOSCIENCES Pty Ltd PO Box 704 COFFS HARBOUR NSW 2450

Attention David Barker

RE:

1 Survey Rd, Lennox Head Reference No: NR 1059/2

Current Search

Folio Identifier 2/622475 (attached) DP 622475 (plan attached) Dated 24 May 2006 Registered Proprietor: **DAVID MALCOLM DOSSOR RUTH DIANE DOSSOR**

-2-Title Tree Lot 2 DP 622475

Folio Identifier 2/622475

Certificate of Title Volume 14696 Folio 29

(a)		(b)
Certificate of Title Volume 11798 Folio 7	9 Certificate of Tit	le Volume 13262 Folio 50
Certificate of Title Volume 11044 Folio 16	2 Certificate of Tit	le Volume 12959 Folio 145
Certificate of Title Volume 7226 Folio 180) Certificate of Titl	e Volume 11798 Folio 136
Certificate of Title Volume 2168 Folio 35	/	١
CROWN LAND	CT Vol 1425 – 36	CT Vol 11044 – 162
****	CROWN LAND	CT Vol 7226 – 180
	****	CT Vol 2168 – 35
		CROWN LAND

-3-Summary of Proprietor(s) Lot 2 DP 622475

Y	ear Proprietor
	(Lot 2 DP 622475)
2002 - todate	David Malcolm Dossor
	Ruth Diane Dossor
	(Lot 2 DP 622475 - CT Vol 14696 Fol 29)
1982 - 2002	David Malcolm Dossor
	Ruth Diane Dossor
1982 - 1982	Michael David Mazzer
	Wendy Ann Mazzer
	David Malcolm Dossor
	Ruth Diane Dossor

See Notes (a) & (b)

Note (a)

· · · · · · ·	(Lot 61 DP 242183 - CT Vol 11798 Fol 79)
1979 - 1982	Michael David Mazzer
	Wendy Ann Mazzer
1972 - 1979	Cyril John Skimmings, chartered accountant
1972 – 1972	Jack Stuart Easter, farmer
	(Lot 8 DP 237480 - CT Vol 11044 Fol 162)
1969 - 1972	Jack Stuart Easter, farmer
	(Part Portion 48 Parish Ballina - Area 26 Acres 3 Roods 4 Perches -
	CT Vol 7226 Fol 180)
1962 - 1969	Jack Stuart Easter, farmer
1956 - 1962	Joseph Holmes Henderson, farmer
	Edward Henderson, picture operator
	Laura Adeline Henderson, spinster
	(Portion 48 Paris Ballina - Area 31 acres 2 Roods 37 Perches - CT
	Vol 2168 Fol 35)
1954 – 1956	Joseph Holmes Henderson, farmer
	Edward Henderson, picture operator
	Laura Adeline Henderson, spinster
1911 – 1954	Edward Henderson, farmer
1911 – 1911	The Commercial Banking Company of Sydney Limited (Grantee)
Prior – 1911	CROWN LAND

Note (b)

	(Lot 1 DP 587685 - CT Vol 13262 Fol 50)	
1981 - 1982	David Malcolm Dossor	
	Ruth Diane Dossor	
1979 – 1981	John Chesterton Gunn, panel beater	
	Alana Carol Gunn	
1977 – 1979	Stanley Charles Dorbon, clerk	
	(Lot 2 DP 573196 - CT Vol 12959 Fol 145)	
1975 – 1977	Stanley Charles Dorbon, clerk	
	(Lot 118 DP 242183 - CT Vol 11798 Fol 136)	
1974 – 1975	Stanley Charles Dorbon, clerk	
1972- 1974	Jack Stuart Easter, farmer	

See (bi) & (bii)

(bi)

	(Portion 56 Parish Ballina - Area 56 Acres - CT Vol 1425 Fol 36)
1962 - 1972	Jack Stuart Easter, farmer
1955 – 1962	Joseph Holmes Henderson, farmer
	Edward Henderson, picture operator
	Laura Adeline Henderson, spinster
1902 – 1955	Edward Henderson, farmer
1902 - 1902	The Commercial Banking Company of Sydney Limited (grantee)
Prior – 1902	CROWN LAND

.

(bii)

	(Lot 8 DP 237480 - CT Vol 11044 Fol 162)
1969 – 1972	Jack Stuart Easter, farmer
	(Part Portion 48 Parish Ballina - Area 26 Acres 3 Roods 4 Perches -
	CT Vol 7226 Fol 180)
1962 – 1969	Jack Stuart Easter, farmer
1956 - 1962	Joseph Holmes Henderson, farmer
	Edward Henderson, picture operator
	Laura Adeline Henderson, spinster
	(Portion 48 Paris Ballina - Area 31 acres 2 Roods 37 Perches - CT
	Vol 2168 Fol 35)
1954 - 1956	Joseph Holmes Henderson, farmer
	Edward Henderson, picture operator
	Laura Adeline Henderson, spinster
1911 – 1954	Edward Henderson, farmer
1911 – 1911	The Commercial Banking Company of Sydney Limited (Grantee)
Prior – 1911	CROWN LAND

Information Provided Through Advance Legal Search Pty Ltd

Ph. 0297541590 Fax. 0297541364

Title Search

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 2/622475

SEARCH DATE	TIME	EDITION NO	DATE
24/5/2006	5:04 PM	1	13/12/2002

LAND

LOT 2 IN DEPOSITED PLAN 622475 AT LENNOX HEAD LOCAL GOVERNMENT AREA: BALLINA PARISH OF BALLINA COUNTY OF ROUS TITLE DIAGRAM: DP622475

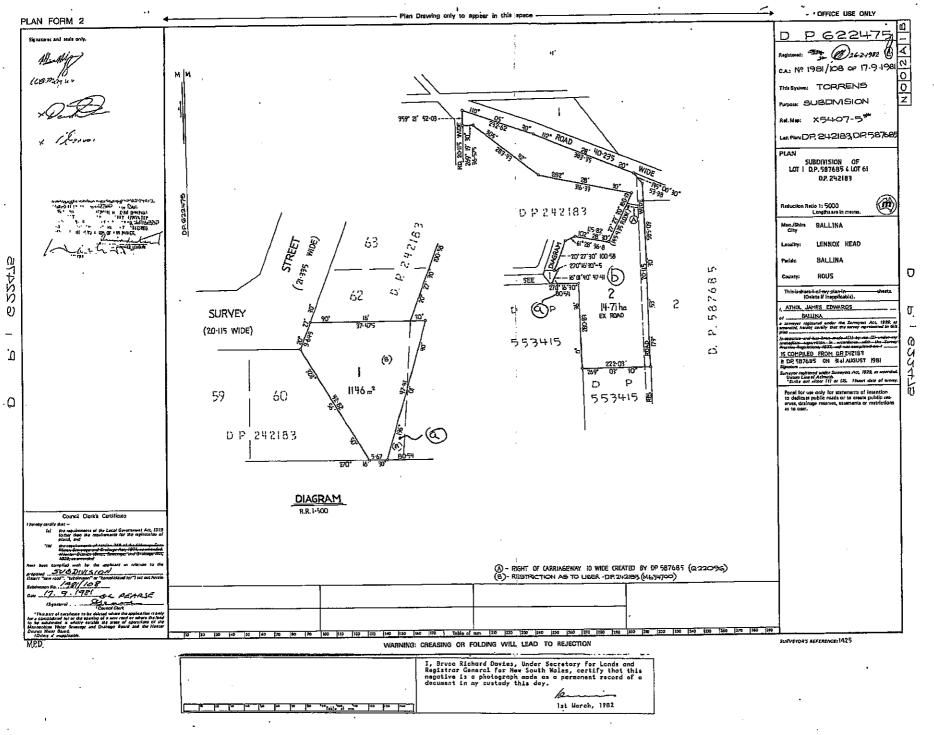
FIRST SCHEDULE DAVID MALCOLM DOSSOR RUTH DIANE DOSSOR AS JOINT TENANTS

(T S970455)

SECOND SCHEDULE (3 NOTIFICATIONS)

- 1. LAND EXCLUDES MINERALS AND IS SUBJECT TO RESERVATIONS AND CONDITIONS IN FAVOUR OF THE CROWN - SEE CROWN GRANT(S)
- 2. DP587685 RIGHT OF CARRIAGEWAY AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 3. DP242183 RESTRICTION(S) ON THE USE OF LAND AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM

NOTATIONS


UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

Coffey - Lennox Head ALSP

* ANY ENTRIES PRECEDED BY AN ASTERISK DO NOT APPEAR ON THE CURRENT EDITION OF TITLE. WARNING: THE INFORMATION APPEARING UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER. ADVANCE LEGAL SEARCH PTY LTD CERTIFIES THAT THE INFORMATION CONTAINED IN THIS DOCUMENT HAS BEEN PROVIDED ELECTRONICALLY BY THE REGISTRAR-GENERAL IN ACCORDANCE WITH SECTION 96B(2) OF THE REAL PROPERTY ACT, 1900.

http://www.ezisearch.com.au/4DACTION/LPIProcessGenericSearch

/Sec:1 /Pgs:ALL 17:08 2006 Δ. 0622475 15rc:M Ref:ALSP /S

ä

EziSearch Historical Search

Information Provided Through Advance Legal Search Pty Ltd Ph. 0297541590 Fax. 0297541364

Historical Search

EziSearch An Approved LPI NSW Information Broker Page 1 of 1

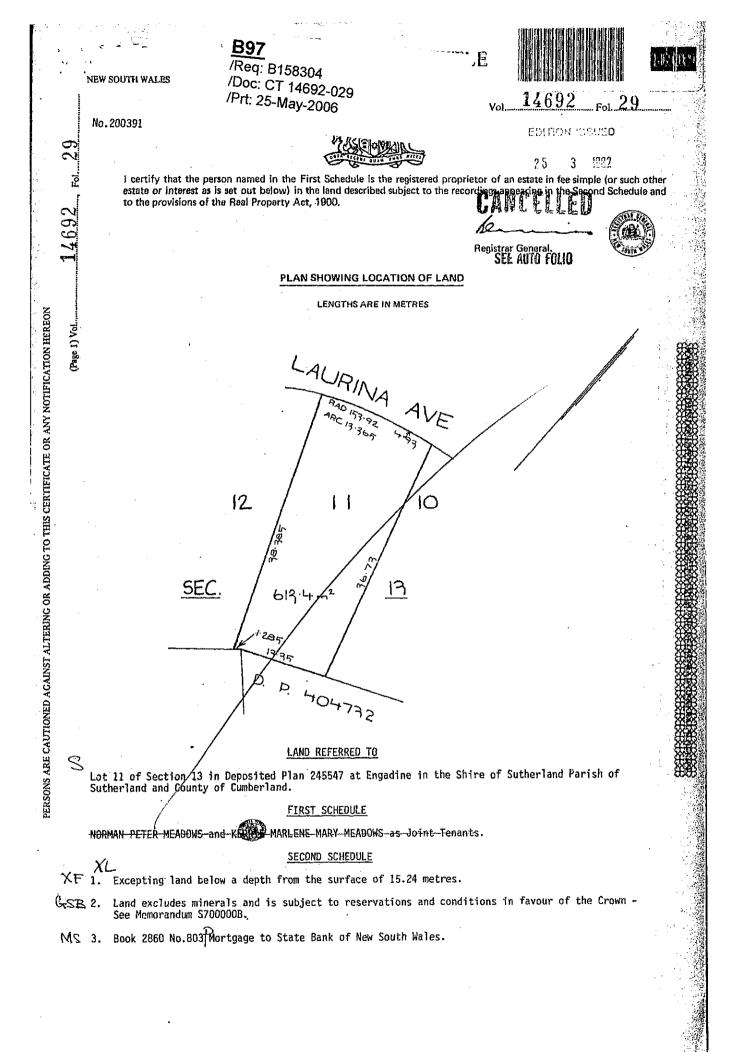
LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE ------24/5/2006 5:06PM

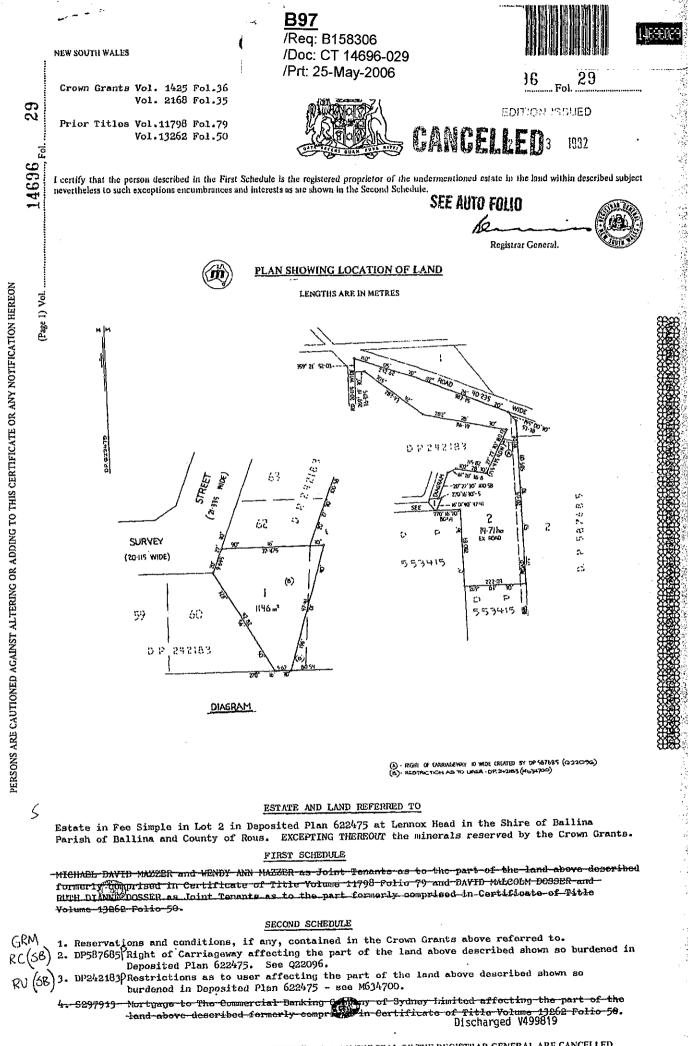
FOLIO: 2/622475

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 14696 FOL 29

Recorded	Number	Type of Instrument	C.T. Issue
28/3/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
14/9/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
13/12/2002	9215262	DISCHARGE OF MORTGAGE	EDITION 1

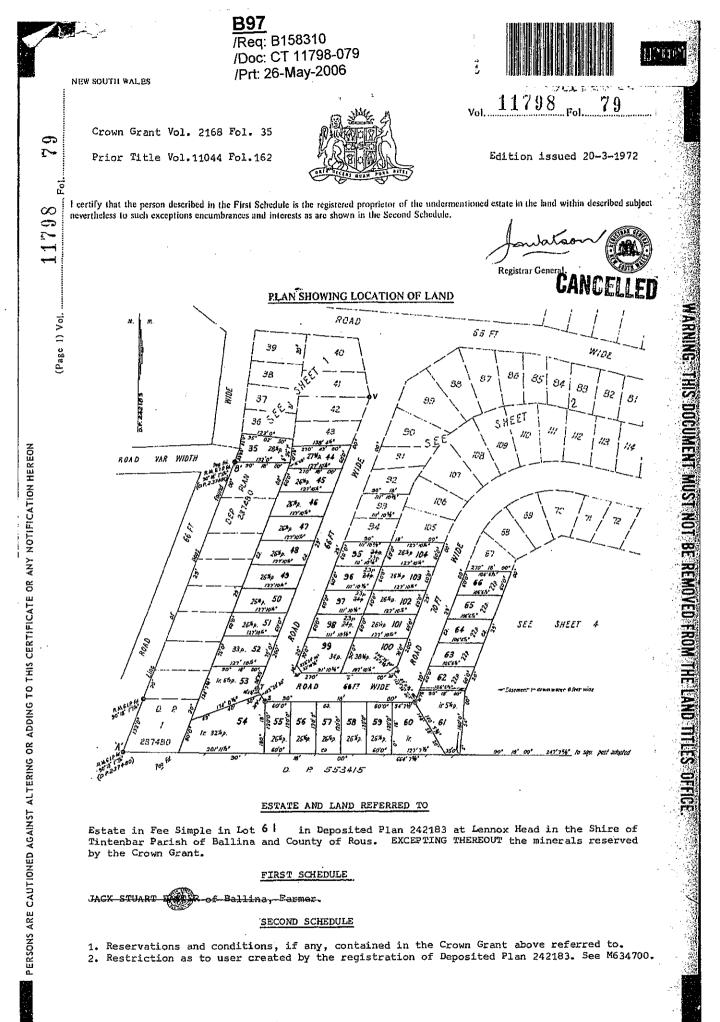

*** END OF SEARCH ***

Coffey - Lennox Head ALSP


PRINTED ON 24/5/2006

* ANY ENTRIES PRECEDED BY AN ASTERISK DO NOT APPEAR ON THE CURRENT EDITION OF TITLE. WARNING: THE INFORMATION APPEARING UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER. ADVANCE LEGAL SEARCH PTY LTD CERTIFES THAT THE INFORMATION CONTAINED IN THIS DOCUMENT HAS BEEN PROVIDED ELECTRONICALLY BY THE REGISTRAR-GENERAL IN ACCORDANCE WITH SECTION 96B(2) OF THE REAL PROPERTY ACT, 1900.

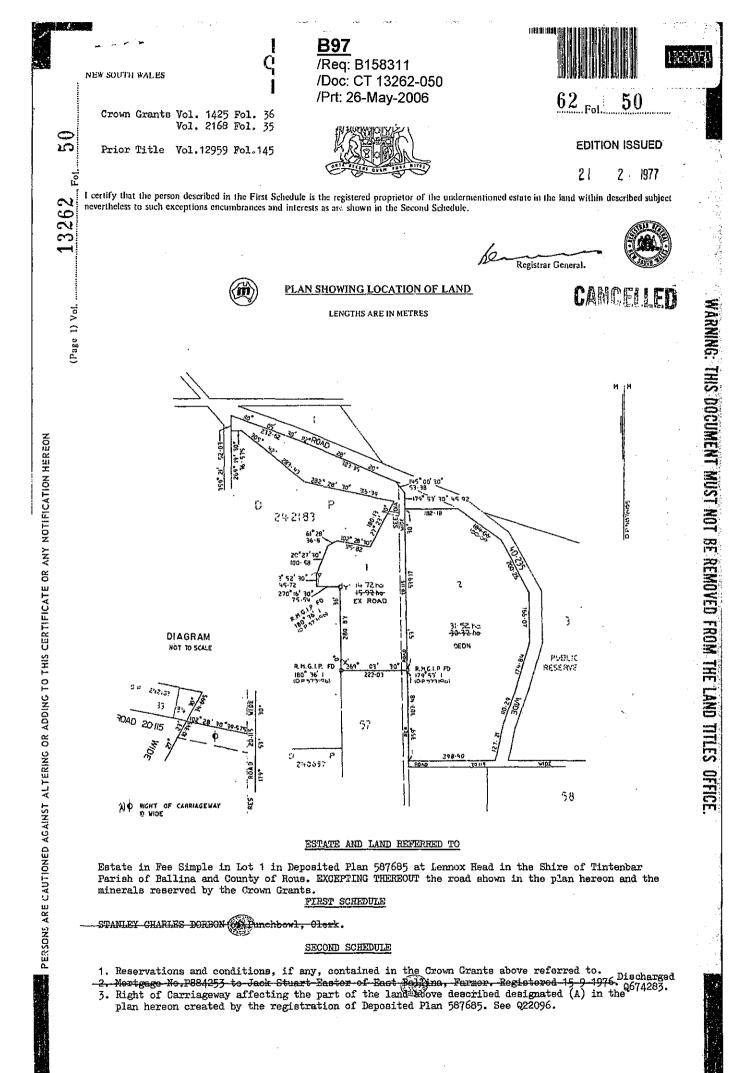
http://www.ezisearch.com.au/4DACTION/LPIProcessGenericSearch



:			941	37C 4.81 D. West, G	overnment Pri	inter
F	FIRST SCHEDULE (con	tinued)				
REGIST	TERED PROPRIETOR				Registrar G	
Kerroe Mary eme ,aru Mea Kerrie Marlene Mary	Meadows by Transfe	v525482.	Registered 5-2	-1985		1
					·	
					1	
				н. А.		
					· ·	
	ANCELLE					
n in the second s						
	one 1170 - 20110					
	SEE AUTO FOLIO	-				
		a sea Na				
	·····		·			
	COND SCHEDULE (con	ntinued)				
PARTIC	CULARS			Registrar General	CANCELL	ATI
				· · .		
		н ^т .		· · · ·		
		•				
				• •		
				-		
		•				
				-		
		· ·				
					1	
					:	-
		•				
NOTATIO	NS AND UNREGISTER	ED DEALING	35			
		-		•		

1

دء	(Page 2 of 2 pages)	<u></u>	Vol	1469	6. _{Fol} 29	
				9413	7C 4.81 D. West, Go	vornment Printor
	<u></u>	FIRST	SCHEDULE (continued)			
		······································	PROPRIETOR			Registrar Gene
David 1	Malcolm Dossor and Ruth	Diane Dossor as join	nt tenants by Transfer S970455.R	egistere	d 18-6-1982	kennen
	•					
			<u>а каса</u> йі і і і	3		
			GANGELLE			
.* 			SEE AUTO FOLIO			
						!
		SECONI	D SCHEDULE (continued)			<u> </u>
		PARTICULAI			Registrar General	CANCELLAT
V49987	20 Mortgage to Australi	ia and New Zealand Ba	anking Group Limited. Registered			
	8-1-1985.					
- -						
ta de la composition Estado en la composition						
· . · .						
			• •		7.	
				-		
· · ·						
	e l					
	$\sum_{i=1}^{n}$					
ł		NOTATIONS A	ND UNREGISTERED DEALINGS			
28	st.					
p. p.	1.00%					
phorper y	(1)					
			ATED BY THE SEAL OF THE REGISTI			



Registrar General NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED.

·· · · · · · · · · · · · · · · · · ·			FIRST SCHEDULE (continued)		INSTRUMENT	······································		Signature of	1
					NUMBER		ENTERED	Signature of Registror General	 ,
-Cyril-John-:	Scimmings-of J	<u>saulina, Una</u>	rtered Accountant	Transfor.		9 7-4-1972 	3-5-1972	2	
SDRGT HGATO	Rover or nem	<u>lux_lieau</u> , <u></u>	TAGE TINTI OT ON JOINT WILL WARDET ING WITH SE UNTIL MIN				4-4-1979		Q415
									ass
							<u></u>	l	R597
*. 	···.		······································						RIGY
	<u>-</u>						-		K164
3						·	· · · · · ·		1 -
	······		NEW CERTIFICATELS OF TITLE ISSUING ON						R 54
_ <u>_</u>			DEALINGS BRANCH				<u> </u>		538
<u></u>	······		· · · · · · · · · · · · · · · · · · ·		}		<u>j</u>	<u> </u>	5970 5970
<u> </u>			SECOND SCHEDULE (continued)			······································			[(lef)
NATURE	INSTRUMENT NUMBER	DATE	PARTICULARS	ENTERED	Signature of Registrar General		CANCELLATION	····	
Mortgage	M698510	10-4-1972	to The National Bank of Australasia Limited.			Discharged	Q418562		
-Nortgage	9551339		to Ganeral Gredits Limited	8-2-1978-	k	Discharged	R164146	kin	_
Mortgage	R546907		AF estal by A 59212 Variation of Antralia Limited	20-2-19=9-	kanna	Cancelled	R164146	here	-
Hortgago	A790701					Discharged	<u>\$388563</u>		-
					·····				
	·		This deed is cancelled as to Whole		····		· · ·	·	_
			New Certificates of Title have issued on 26.3	r R1				·	
			for lots in Apposited Plan No. 622475 as follows					+	-
]	·····	Lots 1-2-Vol. (469(Fol. 28-27espective)]
				/·					-
···	·					<u> </u>		<u> </u>	-
			here and the second sec		<u> </u>	· · · · · · · · · · · · · · · · · · ·		· <u></u>	4
			TXUS SAR SENERAL						
· · · · · · · · · · · · · · · · · · ·			A CONTRACT AND A CONTRACT]
	· [· · · · · · ·			ļ	<u> </u>		<u> </u>		_

__. _

•

NOTE; ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED.

~ , [·····		Q6742835mR R172467, Te, R
	FIRST SCHEDULE (continued)	r					
1	REGISTERED PROPRIETOR	NATURE	INSTRUMENT NUMBER	DATE	ENTERED	Signature of Registrar General	529791257
0.0	John Chesterton Gunn of Bonnets Bay, Paneli Better and Alana-Carol-Gunn-his-wife-as-joint tenents-	Transfor	-B172467		12-4-1979	lannan .	-13m/R
10	David Malcolm Dossor of Lane Cove, Commodity Trader and Ruth Dianne Dossor his wife, as joint						C.T. 18 (1, 8)-
	tenants	Transfer	S297912		16-2-1981	&	C.T.1811,812 S970454Tei (Lot 10P 622415)
Fol	· · ·						(Lot 1 3P 122+35)
62							
9							
32		· · · · · · · · · · · · · · · · · · ·	1	<u>├</u>	1		
الم				+,,_,_			
1		<u> </u>					
	NEW CERTIFICATE(S) OF TITLE ISSUING ON			*******		and a second	
۲۰	DEALINGS BRANCH,						
							· :

			SECOND SCHEDULE (continued)				
NATURE	INSTRUMENT NUMBER	DATE	PARTICULARS	ENTERED	Signature of Registrar General	CANCELLATION	
Mortgage	8297913		to The Commercial Banking Company of Sydney Limited	16-2-1981	&		
			This deed is cancelled as to involution				
			Now Corrificates of Title have issued on 26, 3.	<u>sa</u>			
			for lots in Deopsited Plan No. 62247525 follo	vis:			
			LotsVol. 14096 Fol. 28-29 trespecti	v=ty,			
·		 			· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·			- Demonstration of the second se				
pages)					-		
0 0 1 2	_ <u>_</u>	{	REAL REAL	in the			<u> </u>
~							
(bage							
,							
				<u> </u>	<u></u>		

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

en la ser la la la ser la la la serie de la serie de la la serie de la la serie de la serie de la serie de la s

B97 /Reg: B158318 1 han /Doc: CT 11044-162 Ę NEW SOUTH WALES /Prt: 26-May-2006 11044 162Vn Crown Grant Volume 2168 Folio 35 ŝ ¢ Prior Title Volume 7226 Folio 180 ΕH Edition issued 9-5-1969 Fol 1 certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule. 1044 Wilness Millint Registrar General. PLAN SHOWING LOCATION OF LAND AMINU: IMO DUCUMENT MUSI NUT DE KEMUNEU HKUM THE LAND TITLES UMICE. Page 1) Vol CANCELLED PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON 1 na 4 MAGRAN ESTATE AND LAND REFERRED TO Estate in Fee Simple in Lot 8 in Deposited Plan 237480 at Lennox Head in the Shire of Tintenbar Parish of Ballina and County of Rous. EXCEPTING THEREOUT the minerals reserved by the Crown Grant. FIRST SCHEDULE. JACK STUART EASTER, of Ballina, Farmer. SECOND SCHEDULE 1. Reservations and conditions, if any, contained in the Crown Grant above referred to. Ko é Registrar General.

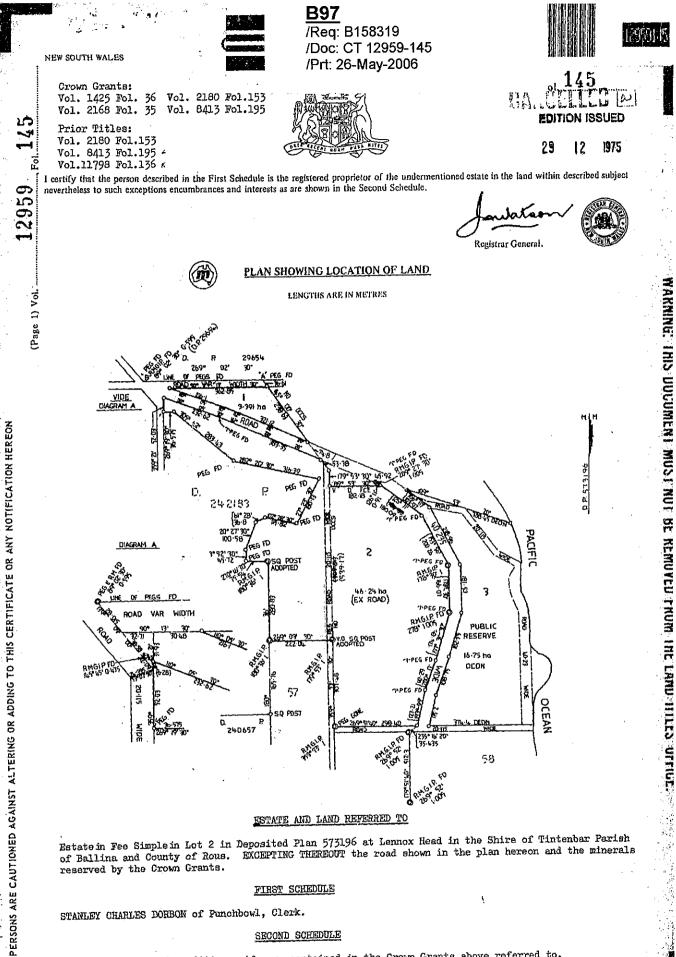
NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

	FIRST SCHEDULE (continued)				· · · · · · · · · · · · · · · · · · · ·		DP242183
REGISTERED PRO		NATURE	INSTRUMENT	DATE	ENTERED	Signature of Registrar General	6237
is deed is cancelled as to the whole and houd	The residue of land in this certificate of title						Areas, Area
ew Cercificates of Title have issued on 20-3-1972	comprises New HOads in D.242183						1 61 1
DODDI LOC DIL MA 242183 ar follows:		· · · · · · · · · · · · · · · · · · ·				· · · ·	01 24
ns 1+0118 Vol 11798 Fols 19 to respectively.	Entered 22 ra Match, 1972			····		·	161
36							Autor
faulateon (REGISTRAR GENERAL						1. 62. 705
BEGISTRAB GENEBAL	CONSTRUCTION SERVEL			~·····		<u> </u>	
· · · · · · · · · · · · · · · · · · ·				······			
	annaar 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1 Alam 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
				••••••••••••		·····	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						

4

5

400 A. A.


1 54 A. A

ないというなの

2

۰.

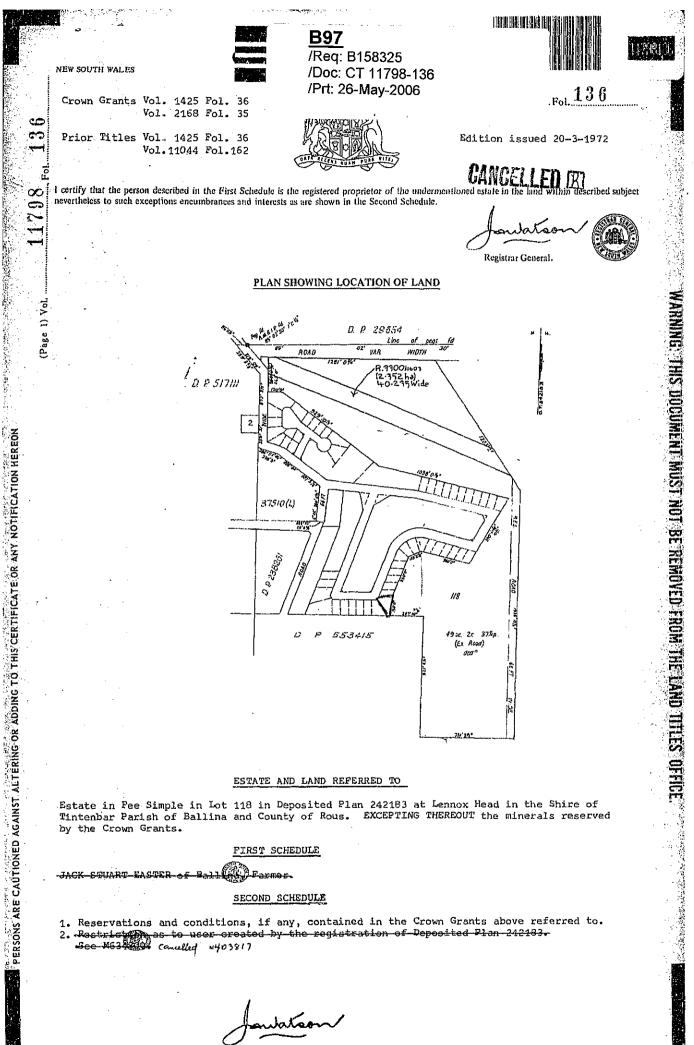
NATURE	INSTRUMENT	I DATE	PARTICULARS	ENTERED	Signature of Registrar General		CANCELLATION	
m 634700			Interests created pursuant to Section 200 Conveyancing Act, 1919, by the registration of Beposited Plan 242183	1-3-1972	1-3-1972			
			The interest of the cauncil of the shire of Lintenbar in the new road shown on					
			D.P.242183	1-3-1972				
			·			· · · · · · · · · · · · · · · · · · ·		
						w and successive and successive and		
·				·				
·······				••••		- · · · ·		
				· · · · ·	·			
			and the second secon	No. Barren and				

EXCEPTING THEREOUT the road shown in the plan hereon and the minerals of Ballina and County of Rous. reserved by the Crown Grants.

ų

FIRST SCHEDULE

STANLEY CHARLES DORBON of Punchbowl, Clerk.


SECOND SCHEDULE

1. Reservations and conditions, if any, contained in the Crown Grants above referred to.

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

FIRST SCHEDUL	E (continued)		+	
REGISTERED PROPRIETOR	NATURE	INSTRUMENT NUMBER DATE	ENTERED	Signature of Registrar General
	·····	EES OF TITLE ISSUING ON DP3876		Signature of Registrar General
This deed is cancelled as to the ushall		TO BE RECEITERED WITHOUT REFERENCE SURVEY DEAFTING BLANCH.	170	
for lots in DR Parked Pian No. SET 5 SS as follows:-				
Lots 1-2 Vol 15262 Fol. Fol. Fol. respectively.				
REGISTRAR GENERAL			· · · · · ·	
		· · · · · · · · · · · · · · · · · · ·		

NATURE	NUMBER	DATE	PARTICULARS	ENTERED	Signature of Registrar General	CANCELLATION		
fortgage	P884253		to Jack Stuert Easter of East Ballina, Farmer	15-9-1976				
BBB INST	Q22096			1-2-1977				
			Interests created pursuant to Section 88B Conveyancing Act, 1919, by the registration of Deposited Plan 587685					
· · · · · · · · · · · · · · · · · · ·								
		·····			·			
	<u>}</u> }-			+				
	<u>├</u>				╞			
	<u>}</u>				<u> </u>			
	<u>}</u>							
	{			· [<u>}</u> {-			
	<u> </u>	·····		<u> </u>				
	}				<u> </u> -			
					<u> </u>			
	<u> </u> .	·····			ļ			
		·····						
				1				
	1 1			1 .	† 			
			ES RULED-THROUGH AND AUTHENTICATED BY THE SEAL OF THE P		L			

Registrar General

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED.

	FIRST SCHEDULE (continued)		INSTRUMENT		a di second	Standburg of	12-51
REGISTERED PROPRIETOR		NATURE	NUMBER	DATE	ENTERED	Signature of Registrer General	Renn
by Charles (Dorbon of Punchbourf, Clerk		Transfer	N 300453	6-6-1973	20-2-1974	foundance	Naje
an chartes (borbon of Internet in)			ļ	<u> </u>			N231
	The residue of land in this	folio comprises				`	NBEUG
This deed is cancelled as to the whole so rocial	the road in DPS	73196				ļ	N40381
New Certificates of Title have Istund on 271-12-75					· · · · ·	<u> </u>	- 47-17-
for loss in Deposited plan 20 5 7996 as follows:-	- bito		·	· · · · · · · · · · · · · · · · · · ·		<u> </u>	Road Baz 29
the second s			ll				R. 394
Lors 1-3 Val 12959 Fol 144-165 Perpetitivity.	REGISTRAR GENERA	A CONST	[<u> </u>		· ·	<u> · · · · · · · · · · · · · · · · · · ·</u>	
							AN SH

INSTRUMENT			PARTICULARS	ENTERED I			CANCELLATION		
NATURE	NUMBER	DATE		25-7-1973	Signature of Registrar General	Wilhdrown	N970231	forwerten	
oved to	N231104	27-4-1973		273175	9				
www.ptim	N841551	t.	The Lund shown by From lines (2352 ha) 40 235 Will on						
<u>sound forma</u>	110 11		the Han I were, is fublic food l'instation is limited to a						
··			dette de 15-24 matrice brone lie aurace	12-1-1474	Jawatson	· <u></u>			
	- <u> </u>								
	<u> </u>								
							Ţ		
	Ţ	1							
	-								
								_ <u> </u>	
•						L			
	 -								
		ļ				 			
			ES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE						

: 2017년 1월 2 1월 2017년 1월 2 1. T. T. T. T. T. T. T.

5 N N T

B97 202 [CERTIFICATE OF TITLE] /Req: B158324 /Doc: CT 08413-195 /Prt: 26-May-2006 Primary Appa No. Reference to Last Title RECISTER BOOK Vol. Fol. 174 6.27 8413 For 195 Vol. Mic Issued on Transfer No.J152807 CANCELLED JACK STUART EASTER, of Ballas, Farmer, is now the proprietor of an Estate in Fee Simple. subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such encumbrances liens, and interests as are notified hereon, in That piece of land in the Shire of Tintenbar Parish of Ballina and County of Rous shown in the plan hereon being Portion 36 granted on 11th September 1882 by Grown Grant Volume 627 Folic 174. EXCEPTING THEREOUT :--(a) the row! 200 links wide shown in the plan hereon, (b) the minerals reserved by the Grown Grant. notification thereon In witness whereof I have hereunto signed my name and affixed my Seal, this Twenty-first day of November **, 19** Signed in the presence of Devenfort 3...... DT RUV Registrar-General. No. N 841551 Resumption of land for Public Road. Notice in Government Gazette dated 29th March 1974 Folio 1174 20 whereby and by operation of the Public Roads Act of 1902 the road shown in the plan catalogued R 33000 1603 in the Department of Lands and shown as firm lines and notation Furne Lunas (1.229 ha) 40 235 wide-var-width on the plan hereon or adding to was declared to be a Public Road. Declarchon olimited to a depth of issumition Registered 12th June 1974. 20 chains to one inch REGISTRAR GENERAL ٠<u>.</u> MOTIFICATION REFERENCE IT This died is concelled as to the whole ex 121- NZ31104 Carvent dated 27th April 197 Now Certificate of Title lave issued on 29-12-75 Requisiteried 25th July 1973 for lossin departed plannos 7319 bachlows Lors \$ 1-3 Val 12.959 ... Foll44 -146 respectively. Registran General REGISTRAR GENERAL Borb Stanlay Charles Punchbrut Cla npw the registered proprietor of the land within described. The residue of land in this folio comprised the road SIJIA6. G O See TRANSFER No. N 300453 dated 6 me 1973 Hano Entered REGISTRAR GENERAL Jatas REGISTRAR GENERAL

N. S. S.

.;

. Revenue

à

.!

;

1.1

2

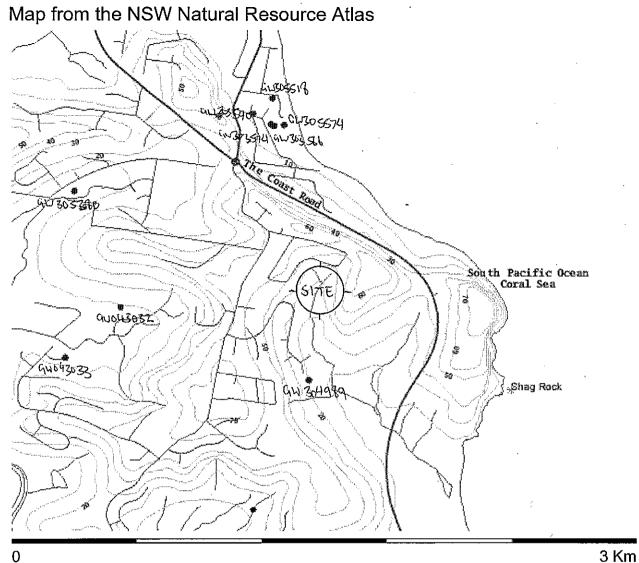
.

- the second state of the second

4

調査と

Read Adam wate 503 29.8.74 51 174 R 33,001 :005 N970231 w/r P and the state of the


1

ана и 2011 г. 7 и 10

• ۲

: ÷

•

0

Legend

Symbol

Layer

Groundwater bores

Major rivers

No Contour Background

o Town N Primary/arterial road Motorway Treeway 🖌 Railway N Runway

Topographic base map (Topoweb)

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, May 25, 2006

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW304989

Works Details (top)

GROUNDWATER NUMBER	GW304989
LIC-NUM	30BL181269
AUTHORISED-PURPOSES	DOMESTIC STOCK
INTENDED-PURPOSES	DOMESTIC STOCK
WORK-TYPE	Bore
WORK-STATUS	
CONSTRUCTION-METHOD	Rotary - Percussion (Down Hole Hammer)
OWNER-TYPE	
COMMENCE-DATE	
COMPLETION-DATE	2004-12-06
FINAL-DEPTH (metres)	19.00
DRILLED-DEPTH (metres)	19.00
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY 💦 🕓	DOSSOR'S
GWMA	- GUNNEDAH BASIN
GW-ZONE	- MAIN FAN AREA PRIMARY RECHARGE
STANDING-WATER-LEVEL	. 7.00
SALINITY	
YIELD	1.50
Site Details <u>(top)</u>	
REGION 30 -	NORTH COAST
RIVER-BASIN	
AREA-DISTRICT	
AREA-DISTRICT	
AREA-DISTRICT CMA-MAP	
AREA-DISTRICT CMA-MAP GRID-ZONE	
AREA-DISTRICT CMA-MAP GRID-ZONE SCALE	
AREA-DISTRICT CMA-MAP GRID-ZONE SCALE ELEVATION ELEVATION-SOURCE	2477.00
AREA-DISTRICTCMA-MAPGRID-ZONESCALEELEVATIONELEVATION-SOURCENORTHING681	2477.00 086.00
AREA-DISTRICTCMA-MAPGRID-ZONESCALEELEVATIONELEVATION-SOURCENORTHING681EASTING558	
AREA-DISTRICTCMA-MAPGRID-ZONESCALEELEVATIONELEVATION-SOURCENORTHING681EASTING284	086.00
AREA-DISTRICTCMA-MAPGRID-ZONESCALEELEVATIONELEVATION-SOURCENORTHING681EASTING28 4	086.00 18' 50"

http://is2.dipnr.nsw.gov.au/proxy/dipnr/gwworks?GWWID=GW304989

AMG-ZONE 56 COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

COUNTY	ROUS
PARISH	BALLINA
PORTION-LOT-DP	88 802588

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD (mm)	ID (mm)	INTERVAL	DETAIL
1		Hole	Hole	0.00	18.00	250			Rotary - Percussion (Down Hole Hammer)
1		Hole	Hole	18.00	30.00	165			Rotary - Percussion (Down Hole Hammer)
1	1	Casing	Steel - ERW	0.00	18.00	219	209.4		Welded - Butt; Seated on Bottom
1	1	Casing	PVC Class 9	0.00	19.00	140			Glued
1	1	Opening	Slots - Vertical	13.00	19.00	140		-	PVC Class 9; Casing - Drilled Holes; SL: 5mm; A: 100mm

Water Bearing Zones (top)

FROM- DEPTH (metres)	TO-DEPTH (metres)	THICKNESS (metres)	ROCK- CAT- DESC	S₋ W-L	D- D- L	YIELD	TEST-HOLE- DEPTH (metres)	DURATION SALINITY
18.00	30.00	12.00		7.00		1.50	19.00	2.00

Drillers Log (top)

FROM	то	THICKNESS	DESC	GEO-N	IATERIAL	COMMENT
0.00	1.20	1.20	soil			
1.20	4.80	3.60	clay			

http://is2.dipnr.nsw.gov.au/proxy/dipnr/gwworks?GWWID=GW304989

4.80 19.00 14.20 basalt broken dec

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, May 25, 2006

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW043033

Works Details (top)

GROUNDWATER NUMBER	GW043033
LIC-NUM	30BL101704
AUTHORISED-PURPOSES	STOCK
INTENDED-PURPOSES	STOCK
WORK-TYPE	Well
WORK-STATUS	(Unknown)
CONSTRUCTION-METHOD	(Unknown)
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	
FINAL-DEPTH (metres)	2.40
DRILLED-DEPTH (metres)	2.40
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	N/A
GWMA	- GUNNEDAH BASIN
GW-ZONE	- MAIN FAN AREA PRIMARY RECHARGE
STANDING-WATER-LEVEL	
SALINITY	
YIELD	
Site Details (ton)	

Site Details (top)

REGION	30 - NORTH COAST
RIVER-BASIN	203 - RICHMOND RIVER
AREA-DISTRICT	
CMA-MAP	9640-3N
GRID-ZONE	56/2
SCALE	1:25,000
ELEVATION	`
ELEVATION-SOURCE	(Unknown)
NORTHING	6812615.00
EASTING	556894.00
LATITUDE	28 48' 46"
LONGITUDE	153 34' 59"
GS-MAP	0005C4

AMG-ZONE 56 COORD-SOURCE GD.,ACC.MAP REMARK

Form-A (top)

COUNTY	ROUS
PARISH	BALLINA
PORTION-LOT-DP	44

Licensed (top)

COUNTY ROUS PARISH BALLINA PORTION-LOT-DP 44

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD (mm)	ID (mm)	INTERVAL DETAIL
		Casing	Nil	0.00	0.00	0		(Unknown)
1 .	1	Casing	Drilled	0.00	2.40	914		(Unknown)

Water Bearing Zones (top)

no details

Drillers Log (top)

FROM TOTHICKNESSDESCGEO-MATERIALCOMMENT0.002.442.44Basalt Broken Water Supply

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, May 25, 2006

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW043032

Works Details (top)

GROUNDWATER NUMBER	GW043032
LIC-NUM	30BL101703
AUTHORISED-PURPOSES	STOCK
INTENDED-PURPOSES	STOCK
WORK-TYPE	Well
WORK-STATUS	(Unknown)
CONSTRUCTION-METHOD	(Unknown)
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	
FINAL-DEPTH (metres)	2.40
DRILLED-DEPTH (metres)	2.40
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	N/A
GWMA	- GUNNEDAH BASIN
GW-ZONE	- MAIN FAN AREA PRIMARY RECHARGE
STANDING-WATER-LEVEL	· · · · · · · · · · · · · · · · · · ·
SALINITY	
YIELD	

Site Details (top)

REGION	30 - NORTH COAST
RIVER-BASIN	203 - RICHMOND RIVER
AREA-DISTRICT	
CMA-MAP	9640-3N
GRID-ZONE	56/2
SCALE	1:25,000
ELEVATION	
ELEVATION-SOURCE	(Unknown)
NORTHING	6812869.00
EASTING	557158.00
LATITUDE	28 48' 37"
LONGITUDE	153 35' 9"
GS-MAP	0005C4

AMG-ZONE 56 COORD-SOURCE GD.,ACC.MAP REMARK

Form-A (top)

COUNTY	ROUS
PARISH	BALLINA
PORTION-LOT-DP	44

Licensed (top)

COUNTY	ROUS
PARISH	BALLINA
PORTION-LOT-DP	44

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT-	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD (mm)	ID (mm) INTERVAL DETAIL
1	1	Casing	Nil	0.00	0.00	0	(Unknown)
1	1	Casing	Drilled	0.00	2.40	1829	(Unknown)

Water Bearing Zones (top)

FROM- DEPTH (metres)	TO- DEPTH (metres)	THICKNESS (metres)	ROCK- CAT- DESC	S- D- D- YII W-L L	TEST- HOLE- DEPTH (metres)	DURATION SALINITY
1.80	2.40	0.60	Fractured	1.20		Potable

Drillers Log (top)

FROM	то	THICKNESS	DESC	GEO-MATERIAL	COMMENT
0.00	2.44	2.44	Basalt Broken Water Supply		

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, May 25, 2006

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW305380

Works Details (top)

GROUNDWATER NUMBER LIC-NUM AUTHORISED-PURPOSES INTENDED-PURPOSES WORK-TYPE WORK-STATUS CONSTRUCTION-METHOR	30BL183549 MONITORING BORE MONITORING BORE Bore
OWNER-TYPE	
COMMENCE-DATE	
COMPLETION-DATE	
FINAL-DEPTH (metres)	
DRILLED-DEPTH (metres)	11.00
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	GRADWELL
GWMA	
GW-ZONE	- MAIN FAN AREA PRIMARY RECHARGE
STANDING-WATER-LEVE	
SALINITY	186.00
YIELD	
Site Details <u>(top)</u>	
REGION 30	NORTH COAST
RIVER-BASIN	·
AREA-DISTRICT	
CMA-MAP	
GRID-ZONE	
SCALE	
ELEVATION	
ELEVATION-SOURCE	
NORTHING 681	3524.00
	942.00
LATITUDE 28	48' 16"
	3 35' 1"
GS-MAP	
-	

AMG-ZONE 56 COORD-SOURCE REMARK

Form-A (top)

COUNTY	ROUS
PARISH	BALLINA
PORTION-LOT-DP	151 1076456

Licensed (top)

COUNTY	ROUS
PARISH	BALLINA
PORTION-LOT-DP	151 1076456

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD (mm)	ID (mm) INTERVAL	DETAIL
1		Hole	Hole	0.00	11.00	100		Auger - Solid Flight
1	1	Casing	Steel - ERW	0.00	2.50	50	44	Screwed; Seated on Backfill
1	1	Opening	Slots	2.20	5.50	50		Steel - ERW

Water Bearing Zones (top)

FROM- DEPTH (metres)		I THICKNESS (metres)	ROCK- CAT- DESC	S- W-L	D- D- L	YIELD	TEST-HOLE- DEPTH (metres)	DURATION SALINITY
3.30	5.50	2.20		3.30				186.00

Drillers Log (top)

FROM	ТО	THICKNESS	DESC	GEO- MATERIAL	COMMENT
0.00	2.50	2.50	silt red-brown		
2.50	2.80	0.30	clayey slt, grey brown iwth light brown decomposed basalt, saprolitic		
2.80	11.00	8.20	silty clay, grey to light brown		

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for

use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, May 25, 2006

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW303566

Works Details (top)

GROUNDWATER NUMBER	GW303566			
LIC-NUM	30BL180722			
AUTHORISED-PURPOSES	DOMESTIC			
INTENDED-PURPOSES	DOMESTIC			
WORK-TYPE	Bore			
WORK-STATUS				
CONSTRUCTION-METHOD	(Unknown)			
OWNER-TYPE				
COMMENCE-DATE				
COMPLETION-DATE	1980-01-01			
FINAL-DEPTH (metres)	6.00			
DRILLED-DEPTH (metres)				
CONTRACTOR-NAME				
DRILLER-NAME				
PROPERTY	PROUDFOOT'S			
GWMA	- GUNNEDAH BASIN			
GW-ZONE	- MAIN FAN AREA PRIMARY RECHARGE			
STANDING-WATER-LEVEL				
SALINITY				
YIELD				
Site Details <u>(top)</u>				
REGION 30 -	NORTH COAST			
RIVER-BASIN				
AREA-DISTRICT				
CMA-MAP				
GRID-ZONE				
SCALE				
ELEVATION-SOURCE				
	3874.00			
	924.00			
	8' 5"			
	35' 37"			
GS-MAP				
GS-MAP				

AMG-ZONE 56 COORD-SOURCE Map Interpretation REMARK

Form-A (top)

COUNTY	ROUS
PARISH	BALLINA
PORTION-LOT-DP	LT 85 DP 29654

Licensed (top)

5.

COUNTY	ROUS
PARISH	BALLINA
PORTION-LOT-DP	85 29654

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)		OD (mm)	ID (mm)	INTERVAL DETAIL
1		Hole	Hole	0.00	6.00			

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, May 25, 2006

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW303574

Works Details (top)

GROUNDWATER NUMBER	GW303574
LIC-NUM	30BL180792
AUTHORISED-PURPOSES	DOMESTIC
INTENDED-PURPOSES	
WORK-TYPE	Bore
WORK-STATUS	
CONSTRUCTION-METHOD	(Unknown)
OWNER-TYPE	
COMMENCE-DATE	
COMPLETION-DATE	2003-03-31
FINAL-DEPTH (metres)	
DRILLED-DEPTH (metres)	
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	KING'S
GWMA	- GUNNEDAH BASIN
GW-ZONE	- MAIN FAN AREA PRIMARY RECHARGE
STANDING-WATER-LEVEL	
SALINITY	· · · ·
YIELD	
Site Details <u>(top)</u>	

REGION **30 - NORTH COAST RIVER-BASIN AREA-DISTRICT** CMA-MAP **GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6813883.00 557907.00 EASTING 28 48' 4" LATITUDE LONGITUDE 153 35' 36" **GS-MAP**

AMG-ZONE56COORD-SOURCEMap InterpretationREMARKInterpretation

Form-A (top)

COUNTY	ROUS
PARISH	BALLINA
PORTION-LOT-DP	LT 87 DP 29654

Licensed (top)

COUNTY ROUS PARISH BALLINA PORTION-LOT-DP 87 29654

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, May 25, 2006

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW303540

Works Details (top)

GROUNDWATER NUMBER	k GW303540
LIC-NUM	30BL181543
AUTHORISED-PURPOSES	DOMESTIC
INTENDED-PURPOSES	DOMESTIC
WORK-TYPE	Bore
WORK-STATUS	
CONSTRUCTION-METHOD	Hand Auger
OWNER-TYPE	
COMMENCE-DATE	
COMPLETION-DATE	2002-07-27
FINAL-DEPTH (metres)	5:60
DRILLED-DEPTH (metres)	
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	HAMMER'S
GWMA	- GUNNEDAH BASIN
GW-ZONE	- MAIN FAN AREA PRIMARY RECHARGE
STANDING-WATER-LEVE	_ 1.90
SALINITY	
YIELD	0.16
Site Details <u>(top)</u>	
REGION 30 ·	NORTH COAST
RIVER-BASIN	
AREA-DISTRICT	
CMA-MAP	
GRID-ZONE	
SCALE	
ELEVATION	
ELEVATION-SOURCE	
NORTHING 681	3942.00
EASTING 557	819.00
LATITUDE 28	48' 2"
LONGITUDE 153	35' 33"
GS-MAP	

AMG-ZONE56COORD-SOURCEMap InterpretationREMARK100 model

Form-A (top)

COUNTY	ROUS
PARISH	BALLINA
PORTION-LOT-DP	LT 12 DP 239776

Licensed (top)

COUNTY	ROUS
PARISH	BALLINA
PORTION-LOT-DP	12 239776

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD ID (mm) (mm) INTERVAL D	ETAIL
1		Hole	Hole	0.00	5.60	Q()	land .uger
1	1	Casing	P.V.C.	0.00	5.60		-

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Groundwater Works Summary

 For information on the meaning of fields please see Glossary
 Print Report

 Document Generated on Thursday, May 25, 2006
 Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW305518

Works Details (top)

GROUNDWATER NUMBER	GW305518
LIC-NUM	30BL180914
AUTHORISED-PURPOSES	DOMESTIC
INTENDED-PURPOSES	DOMESTIC
WORK-TYPE	Spear
WORK-STATUS	New Bore
CONSTRUCTION-METHOD	· · · · · · · · · · · · · · · · · · ·
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	2003-08-26
FINAL-DEPTH (metres)	4.00
DRILLED-DEPTH (metres)	
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	SIMPSON'S
GWMA	- GUNNEDAH BASIN
GW-ZONE	- MAIN FAN AREA PRIMARY RECHARGE
STANDING-WATER-LEVEL	
SALINITY	
YIELD	
Site Details <u>(top)</u>	
REGION 30 -	NORTH COAST
RIVER-BASIN	
AREA-DISTRICT	
CMA-MAP	
GRID-ZONE	
SCALE	
ELEVATION	
ELEVATION-SOURCE	
NORTHING 6814	4027.28
EASTING 557	914.75
LATITUDE 28 4	7' 60"
LONGITUDE 153	35' 36"
GS-MAP	

AMG-ZONE56COORD-SOURCEMap InterpretationREMARK

Form-A (top)

COUNTY	ROUS
PARISH	BALLINA
PORTION-LOT-DP	9//20330

Licensed (top)

COUNTY ROUS PARISH BALLINA PORTION-LOT-DP 9 20330

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, May 25, 2006

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW305574

Works Details (top)

GROUNDWATER NUM	BER GW305574
LIC-NUM	30BL180924
AUTHORISED-PURPOS	SES DOMESTIC
INTENDED-PURPOSES	DOMESTIC
WORK-TYPE	Spear
WORK-STATUS	New Bore
CONSTRUCTION-METH	łOD
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	2002-11-04
FINAL-DEPTH (metres)	6.00
DRILLED-DEPTH (metr	es)
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	WILSON'S
GWMA	- GUNNEDAH BASIN
GW-ZONE	- MAIN FAN AREA PRIMARY RECHARGE
STANDING-WATER-LE	VEL 2.50
SALINITY	
YIELD	1.25
Site Details <u>(top)</u>	
REGION	30 - NORTH COAST
RIVER-BASIN	
AREA-DISTRICT	
CMA-MAP	
GRID-ZONE	
SCALE	
ELEVATION	
ELEVATION-SOURCE	
NORTHING	6813879.38
EASTING	557972.03
LATITUDE	28 48' 4"
LONGITUDE	153 35' 39"
GS-MAP	

http://is2.dipnr.nsw.gov.au/proxy/dipnr/gwworks?GWWID=GW305574

AMG-ZONE56COORD-SOURCEMap InterpretationREMARK

Form-A (top)

COUNTY	ROUS
PARISH	BALLINA
PORTION-LOT-DP	86//29654

Licensed (top)

COUNTY	ROUS
PARISH	BALLINA
PORTION-LOT-DP	86 29654

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

APPENDIX B

Laboratory Test Result Sheets for Phase 1 Assessment

Environmental Consulting Pty. Ltd.

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal address: P. O. Box 276, Oakleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190 Email: mgt@mgtenv.com.au

CERTIFICATE OF ANALYSIS

Coffey Geosciences UNI T 1/222 BERKELEY ST Unanderra **NSW 2526** Site: NR1059/3

Report Number: 195159 Page 1 of 50 Order Number: Date Received: Jun 15, 2006 Date Sampled: Jun 9, 2006 Date Reported: Jun 26, 2006 Contact: Emma Coleman

Methods

- USEPA 6010B Heavy Metals & USEPA7470/71 Mercury
 USEPA 6020 Heavy Metals
- .
- USEPA 8141A Organophosphorus Pesticides USEPA 8081A Organochlorine Pesticides USEPA 8270C Polycyclic Aromatic Hydrocarbons USEPA 8260B MGT 350A Monocyclic Aromatic
- Hydrocarbons
- MGT100A-GC Total Recoverable Hydrocarbons
- USEPA 6010B Heavy Metals & USÉPA 7470/71 Mercury
- Method 102 ANZECC % Moisture

Comments

Notes

1. The results in this report supersede any previously corresponded results.

All Soil Results are reported on a dry basis.

3. Samples are analysed on an as received basis.

ABBREVIATIONS

mg/kg : milligrams per kilograms, mg/L : milligrams per litre, ppm : parts per million, LOR : Limit of Reporting RPD : Relative Percent Difference CRM : Certified Reference Material LCS : Laboratory Control Sample

Authorised

Comfth

Michael Wright NATA Signatory Laboratory Manager

WORLD RECOGNISED

NATA Accredited Laboratory Number 1261 The tests, calibrations or me The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the equirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced, except in full.

Group Member

Laborator

Industry

Report Number: 195159

Environmental Consulting Pty. Ltd.

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal address: P. O. Box 276, Oakleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190 Email: mgt@mgtenv.com.au

Coffey Geosciences	Client Sample ID		A1	A2	A3	B1
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03485	06-JN03486	06-JN03487	06-JN03488
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	ALCOR .	Units				
Total Recoverable Hydrocarbons						
TRH C6-C9 Fraction by GC	20	mg/kg	-	< 20	-	-
TRH C10-C14 Fraction by GC	50	mg/kg	-	< 50	-	-
TRH C15-C28 Fraction by GC	100	mg/kg	-	< 100	-	-
TRH C29-C36 Fraction by GC	100	mg/kg	-	< 100	-	
Monocyclic Aromatic Hydrocarbons						
Benzene	0.05	mg/kg	. –	< 0.05	-	-
Toluene	0.05	mg/kg	-	< 0.05	-	-
Ethylbenzene	0.05	mg/kg	-	< 0.05	-	-
Xylenes(ortho.meta and para)	0.05	mg/kg	-	< 0.05	-	-
Fluorobenzene (surr.)	1	%	-	87	-	-
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.1	mg/kg	-	< 0.1	-	-
Acenaphthylene	0.1	mg/kg	-	< 0.1	-	-
Anthracene	0.1	mg/kg	-	< 0.1	-	-
Benz(a)anthracene	0.1	mg/kg	-	< 0.1	-	-
Benzo(a)pyrene	0.1	mg/kg	-	< 0.1	-	-
Benzo(b)fluoranthene	0.1	mg/kg	-	< 0.1	- ·	-
Benzo(g.h.i)perylene	0.1	mg/kg	-	< 0.1	-	-
Benzo(k)fluoranthene	0.1	mg/kg	-	< 0.1	-	-
Chrysene	0.1	mg/kg	-	< 0.1	-	-
Dibenz(a.h)anthracene	0.1	mg/kg	-	< 0.1	-	-
Fluoranthene	0.1	mg/kg	-	< 0.1	. –	
Fluorene	0.1	mg/kg	-	< 0.1	-	
Indeno(1.2.3-cd)pyrene	0.1	mg/kg	-	< 0.1	-	-
Naphthalene	0.1	mg/kg	-	< 0.1	-	-
Phenanthrene	0.1	mg/kg	-	< 0.1	-	-
Pyrene	0.1	mg/kg	-	< 0.1	-	-
Total PAH	1.6	mg/kg	-	< 1.6	-	
Chrysene-d12 (surr.)	1	%	-	110	-	- · ·
2-Fluorobiphenyl (surr.)	1	%	-	120	-	-

COMMENTS:

Coffey Geosciences	Client Sample ID		A1	A2	A3	B1
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03485	06-JN03486	06-JN03487	06-JN03488
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date	· · · · · · · · · · · · · · · · · · ·	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				
Organochlorine Pesticides						
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05′	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Chlordane	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	∕mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxophene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
DibutyIchlorendate (surr.)	1	%	87	81	69	91
Tetrachloro-m-xylene (surr.)	1	%	110	100	86	110
Organophosphorous Pesticides						
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Coffey Geosciences	Client Sample ID		A1	A2	A3	B1
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03485	06-JN03486	06-JN03487	06-JN03488
Unanderra	Matrix		Soil ,	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				1911 Karlandar II. Karalan arenderer 1911 Karlandar I. Karlandar arenderer
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl azinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	110	96	110	83
% Moisture	0.1	%	38	35	42	37
Heavy Metals (7)						
Arsenic	2	mg/kg	< 2	< 2	3.1	2.5
Cadmium	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	5	mg/kg	60	72	40	40
Copper	5	mg/kg	27	17	19	16
Lead	5	mg/kg	9.0	8.5	. 13	11
Nickel	5	mg/kg	29	20	22	25
Zinc	5	mg/kg	68	55	88	59
Heavy Metals			Martan Barra I. (1993) Andre Star (1997) Andre			

Coffey Geosciences	Client Sample ID		A1	A2	A3	B1
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03485	06-JN03486	06-JN03487	06-JN03488
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				
Mercury	0.1	mg/kg	< 0.1	< 0.1	0.1	< 0.1
	· · · · ·					
1						
· · · · · · · · · · · · · · · · · · ·						

-

offey Geosciences	Client Sample ID		B2	B3	C1	C2
NI T 1/222 BERKELEY ST	Lab Number		06-JN03489	06-JN03490	06-JN03491	06-JN03492
nanderra	Matrix		Soil	Soil	Soil	Soil
SW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
nalysis Type	LOR	Units				
otal Recoverable Hydrocarbons						
RH C6-C9 Fraction by GC	20	mg/kg	-	< 20	< 20	-
RH C10-C14 Fraction by GC	50	mg/kg	-	< 50	< 50	-
RH C15-C28 Fraction by GC	100	mg/kg	-	< 100	< 100	-
RH C29-C36 Fraction by GC	100	mg/kg	-	< 100	< 100	-
Ionocyclic Aromatic Hydrocarbons			alah dalam kash yang yang dalam kasar sang Anto pilang panan sang sang pang panan kasar jaga			
enzene	0.05	mg/kg	-	< 0.05	< 0.05	-
oluene	0.05	mg/kg	-	< 0.05	< 0.05	-
thylbenzene	0.05	mg/kg	-	< 0.05	< 0.05	-
ylenes(ortho.meta and para)	0.05	mg/kg	-	< 0.05	< 0.05	-
luorobenzene (surr.)	1	%	-	80	110	
olycyclic Aromatic Hydrocarbons						
cenaphthene	0.1	mg/kg	-	< 0.1	< 0.1	-
cenaphthylene	0.1	mg/kg	-	< 0.1	< 0.1	-
nthracene	0.1	mg/kg	-	< 0.1	< 0.1	-
enz(a)anthracene	0.1	mg/kg	-	< 0.1	< 0.1	-
enzo(a)pyrene	0.1	mg/kg	- '	< 0.1	< 0.1	-
enzo(b)fluoranthene	0,1	mg/kg	-	< 0.1	< 0.1	-
enzo(g.h.i)perylene	0.1	mg/kg	-	< 0.1	< 0.1	-
enzo(k)fluoranthene	0.1	mg/kg	-	< 0.1	< 0.1	-
hrysene	0.1	mg/kg	-	< 0.1	< 0.1	-
ibenz(a.h)anthracene	0.1	mg/kg	-	< 0.1	< 0.1	-
luoranthene	0.1	mg/kg	. .	< 0.1	< 0.1	-
luorene	0.1	mg/kg	-	< 0.1	< 0.1	-
ndeno(1.2.3-cd)pyrene	0.1	mg/kg	-	< 0.1	< 0.1	-
laphthalene	0.1	mg/kg	-	< 0.1	< 0.1	-
henanthrene	0.1	mg/kg	-	< 0.1	< 0.1	-
yrene	0.1	mg/kg	-	< 0.1	< 0.1	-
otal PAH	1.6	mg/kg	-	< 1.6	< 1.6	-
Chrysene-d12 (surr.)	1	%	-	110	· 100 ·	-
-Fluorobiphenyl (surr.)	1	%	-	120	100	-

COMMENTS:

· ·

Coffey Geosciences	Client Sample ID		B2	B3	C1	C2
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03489	06-JN03490	06-JN03491	06-JN03492
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type		Units				
Organochlorine Pesticides						
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Chlordane	0.1	mg/kg	<.0.1	< 0.1	< 0.1	< 0.1
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan i	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachior	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxophene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	89	92	120	81
Tetrachloro-m-xylene (surr.)	1	%	110	110	110	96
Organophosphorous Pesticides						
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

COMMENTS:

.

.

•

MGT Report No. 195159 Page 7 of 50

. .

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal address: P. O. Box 276, Oakleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190 Email: mgt@mgtenv.com.au

Coffey Geosciences	Client Sample ID		B2	B3	C1	C2
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03489	06-JN03490	06-JN03491	06-JN03492
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units			1.1. I. S. (1.5.) in the second state of th	
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl azinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	95	86	120	120
	nat cénére - réér a collective al l'Éléctrony de la como a conque de c la collective - réér a collective de l'Éléctrony de la como a conque de c			The second s		
% Moisture	0.1	%	36	45	42	30
Heavy Metals (7)						
Arsenic	2	mg/kg	2.2	2.5	2.1	<2
Cadmium	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	5	mg/kg	58	24	28	51
Copper	5	mg/kg	22	24	22	14
Lead	5	mg/kg	9.1	11	11	5.7
Nickel	5	mg/kg	28	24	26	31
Zinc	5	mg/kg	. 69	110	91	61
Heavy Metals						
		<u>, I</u>			1	L

MGT Report No. 195159 Page 8 of 50

COMMENTS:

•

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal address: P. O. Box 276, Oakleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190 Email: mgt@mgtenv.com.au

Coffey Geosciences	Client Sample ID		B2	B3	C1	C2
JNI T 1/222 BERKELEY ST	Lab Number		06-JN03489	06-JN03490	06-JN03491	06-JN03492
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units		i di prospitut per d		
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
		· .				
		· ·				
					· · ·	
			,	1		
						1

,

Coffey Geosciences	Client Sample ID		C3	D1	D2	D3
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03493	06-JN03494	06-JN03495	06-JN03496
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				
Total Recoverable Hydrocarbons	aranangai taniataningin di					
TRH C6-C9 Fraction by GC	20	mg/kg	-	-	< 20	-
TRH C10-C14 Fraction by GC	50	mg/kg	-	-	< 50	-
TRH C15-C28 Fraction by GC	100	mg/kg	-	-	< 100	-
TRH C29-C36 Fraction by GC	100	mg/kg	-	-	< 100	-
Monocyclic Aromatic Hydrocarbons						
Benzene	0.05	mg/kg	-	-	< 0.05	-
Toluene	0.05	mg/kg	-	-	< 0.05	-
Ethylbenzene	0.05	mg/kg	-	-	< 0.05	-
Xylenes(ortho.meta and para)	0.05	. mg/kg	_	-	< 0.05	-
Fluorobenzene (surr.)	1	%	-	-	100	-
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.1	mg/kg	-	-	< 0.1	-
Acenaphthylene	0.1	mg/kg	-	-	< 0.1	-
Anthracene	0.1	mg/kg	-	-	< 0.1	
Benz(a)anthracene	0.1	mg/kg	-	-	< 0.1	-
Benzo(a)pyrene	0.1	mg/kg	-	-	< 0.1	-
Benzo(b)fluoranthene	0.1	mg/kg	-	-	< 0.1	-
Benzo(g.h.i)perylene	0.1	mg/kg	-	-	< 0.1	-
Benzo(k)fluoranthene	0.1	mg/kg	-	-	< 0.1	-
Chrysene	0.1	mg/kg	-	-	< 0.1	-
Dibenz(a.h)anthracene	0.1	mg/kg	-	-	< 0.1	-
Fluoranthene	0.1	mg/kg	-	-	< 0.1	-
Fluorene	0.1	mg/kg	-	ан са н ан са селото на селото Селото на селото на се	< 0.1	-
Indeno(1.2.3-cd)pyrene	0.1	mg/kg	-	-	< 0.1	-
Naphthalene	0.1	mg/kg	-	-	< 0 _, 1	-
Phenanthrene	0.1	mg/kg	-	-	< 0.1	-
Pyrene	0.1	mg/kg	-	-	< 0.1	-
Total PAH	1.6	mg/kg	-	-	< 1.6	-
Chrysene-d12 (surr.)	1	%	-		99	-
2-Fluorobiphenyl (surr.)	1	%	-	-	120	-
						ł

COMMENTS:

Coffey Geosciences	Client Sample ID		C3	D1	D2	D3
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03493	06-JN03494	06-JN03495	06-JN03496
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				
Organochlorine Pesticides					 III di stali di subor ca sono como presente primi 	
4.4-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Chlordane	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxophene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	100	110	99	82
Tetrachloro-m-xylene (surr.)	1	%	120	120	110	89
Organophosphorous Pesticides		CONTRACTOR OF A			an a	
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

MGT Report No. 195159 Page 11 of 50

Coffey Geosciences	Client Sample ID		C3	D1	D2	D3
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03493	06-JN03494	06-JN03495	06-JN03496
Unanderra	Matrix		Soil	Soii	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units	www.sets.off.day.day.day.			
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton .	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl azinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	90	110	89	130
					li - Iniúnio nomo o mai contine danata ar statalo	
% Moisture	0.1	%	38	40	32	45
Heavy Metals (7)						
Arsenic	2	mg/kg	2.7	2.7	< 2	2.9
Cadmium	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	5	mg/kg	55	27	50	58
Copper	5	mg/kg	18	20	18	25
Lead	5	mg/kg	13	10	7.2	14
Nickel	5	mg/kg	19	20	16	33
Zinc	5	mg/kg	63	72	41	100
Heavy Metals						

COMMENTS:

`

MGT Report No. 195159 Page 12 of 50

Coffey Geosciences	Client Sample ID		C3	D1	D2	D3
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03493	06-JN03494	06-JN03495	06-JN03496
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units	i interest in the second second			
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
	~					

Coffey Geosciences	Client Sample ID		D4	E1	E2	E3
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03497	06-JN03498	06-JN03499	06-JN03500
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				
Total Recoverable Hydrocarbons						
TRH C6-C9 Fraction by GC	20	mg/kg	-	-	-	< 20
TRH C10-C14 Fraction by GC	50	mg/kg	-	-	-	< 50
TRH C15-C28 Fraction by GC	100	mg/kg	-	- <u>.</u>	-	< 100
TRH C29-C36 Fraction by GC	100	mg/kg	-	-		< 100
Monocyclic Aromatic Hydrocarbons						
Benzene	0.05	mg/kg	-	-	-	< 0.05
Toluene	0.05	mg/kg	-	-	-	< 0.05
Ethylbenzene	0.05	mg/kg	- *	-	-	< 0.05
Xylenes(ortho.meta and para)	0.05	mg/kg	-	-	-	< 0.05
Fluorobenzene (surr.)	1	%	-	· •	-	110
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.1	mg/kg	-	-	-	< 0.1
Acenaphthylene	0.1	mg/kg	-	-	-	< 0.1
Anthracene	0.1	mg/kg	-	-	-	< 0.1
Benz(a)anthracene	0.1	mg/kg	-	-	-	< 0.1
Benzo(a)pyrene	0.1	mg/kg	-	-	-	< 0.1
Benzo(b)fluoranthene	0.1	mg/kg	-	-	-	< 0.1
Benzo(g.h.i)perylene	0.1	mg/kg	-	-	-	< 0.1
Benzo(k)fluoranthene	0.1	mg/kg	-	-	-	< 0.1
Chrysene	0.1	mg/kg	-	-	-	< 0.1
Dibenz(a,h)anthracene	0.1	mg/kg	-	· -	-	< 0.1
Fluoranthene	0.1	mg/kg	-	-	-	< 0.1
Fluorene	0.1	mg/kg	-	-	-	< 0.1
Indeno(1.2.3-cd)pyrene	0.1	mg/kg	-	-	-	< 0.1
Naphthalene	0.1	mg/kg	-	-	-	< 0.1
Phenanthrene	0.1	mg/kg	-	-	-	< 0.1
Pyrene	0.1	mg/kg	-	-	-	< 0.1
Total PAH	1.6	mg/kg	-	-	-	< 1.6
Chrysene-d12 (surr.)	1	%	-	-	-	88
2-Fluorobiphenyl (surr.)	1	%	-	-		98

Coffey Geosciences	Client Sample ID		D4:	E1	E2	E3
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03497	06-JN03498	06-JN03499	06-JN03500
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				
Organochlorine Pesticides						
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Chlordane	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	· < 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxophene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	82	78	80	75
Tetrachloro-m-xylene (surr.)	1	%	93	85	99	89
Organophosphorous Pesticides						
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

MGT Report No. 195159 Page 15 of 50

.

Coffey Geosciences	Client Sample ID		D4	E1	E2	E3
JNI T 1/222 BERKELEY ST	Lab Number		06-JN03497	06-JN03498	06-JN03499	06-JN03500
Jnanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfolhion	.0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl azinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Valed	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	· 1	%	120	110	100	93
			Rifer agailing of the later of the second	i wird glab wigi i digi i gan i gan dalah di i di		
% Moisture	0.1	%	37	41	46	39
Heavy Metals (7)						
Arsenic	2	mg/kg	2.7	2.7	< 2	< 2
Cadmium	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	5	mg/kg	38	32	44	43
Copper	5	mg/kg	22	25	24	23
Lead	5	mg/kg	8.7	9.7	7.8	6.9
Nickel	5	mg/kg	24	32	26	23
Zinc	5	mg/kg	84	120	120	110
Heavy Metals						

COMMENTS:

I T 1/222 BERKELEY ST anderra W 2526 alysis Type rcury	Lab Number Matrix Sample Date LOR 0.1	mg/kg	06-JN03497 Soil Jun 9, 2006	06-JN03498 Soil Jun 9, 2006 < 0.1	06-JN03499 Soil Jun 9, 2006 <0.1	Jumphel Mark June 06-JN03500 Soil Jun 9, 2006
W 2526 alysis Type	Matrix Sample Date LOR	>> <x><</x>	Soil Jun 9, 2006	Soil Jun 9, 2006	Soil Jun 9, 2006	Jun 9, 2006
alysis Type	Sample Date	>> <x><</x>	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	
		>> <x><</x>	< 0.1	**************************************	 < 0.1 	 < 0.1
rcury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
						1
			1	1		
	1					
	· · · · ·					
			-			
				· · · · ·		
		ŧ				

.

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal address: P. O. Box 276, Oakleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190 Email: mgt@mgtenv.com.au

Coffey Geosciences	Client Sample ID		E4	E5	F1	F2
UNI T 1/222 BERKELEY ST	Lab Number	an sharen marina aran 19	06-JN03501	06-JN03502	06-JN03503	06-JN03504
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				
Total Recoverable Hydrocarbons						
TRH C6-C9 Fraction by GC	20	mg/kg	-	< 20	-	< 20
TRH C10-C14 Fraction by GC	50	mg/kg	-	< 50	-	< 50
TRH C15-C28 Fraction by GC	100	mg/kg	-	< 100	-	< 100
TRH C29-C36 Fraction by GC	100	mg/kg	-	< 100	-	< 100
Monocyclic Aromatic Hydrocarbons						
Benzene	0.05	mg/kg	-	< 0.05	-	< 0.05
Toluene	0.05	mg/kg	-	< 0.05	-	< 0.05
Ethylbenzene	0.05	mg/kg	-	< 0.05	-	< 0.05
Xylenes(ortho.meta and para)	0.05	mg/kg	-	< 0.05	-	< 0.05
Fluorobenzene (surr.)	1	%	-	98	-	96
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.1	mg/kg		< 0.1	-	< 0.1
Acenaphthylene	0.1	mg/kg	-	< 0.1	-	< 0.1
Anthracene	0.1	mg/kg	-	< 0.1	-	< 0.1
Benz(a)anthracene	0.1	mg/kg	-	< 0.1	-	< 0.1
Benzo(a)pyrene	0.1	mg/kg	-	< 0.1	-	< 0.1
Benzo(b)fluoranthene	0.1	mg/kg	-	< 0.1	-	< 0.1
Benzo(g.h.i)perylene	0.1	mg/kg	-	< 0.1	-	< 0.1
Benzo(k)fluoranthene	0.1	mg/kg	-	< 0.1	-	< 0.1
Chrysene	0.1	mg/kg	-	< 0.1	-	< 0.1
Dibenz(a.h)anthracene	0.1 .	mg/kg	-	< 0.1	-	< 0.1
Fluoranthene	0.1	mg/kg	-	< 0.1	-	< 0.1
Fluorene	0.1	mg/kg	-	< 0.1	_	< 0.1
Indeno(1.2.3-cd)pyrene	0.1	mg/kg	-	< 0.1	-	< 0.1
Naphthalene	0.1	mg/kg	-	< 0.1	-	< 0.1
Phenanthrene	0.1	mg/kg	-	< 0.1		< 0.1
Pyrene	0.1	mg/kg	-	< 0.1	-	< 0.1
Total PAH	1.6	mg/kg	-	< 1.6	-	< 1.6
Chrysene-d12 (surr.)	1	%	-	96	-	86
2-Fluorobiphenyl (surr.)	1	%	-	100	-	84

COMMENTS:

MGT Report No. 195159 Page 18 of 50

Coffey Geosciences	Client Sample ID		E4	E5	F1	F2
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03501	06-JN03502	06-JN03503	06-JN03504
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				
Organochlorine Pesticides						
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Chlordane	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.0ָ5	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	. mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxophene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	87	66	76	76
Tetrachloro-m-xylene (surr.)	1	%	110	130	82	86
Organophosphorous Pesticides					ician dinordia nanorda da conducta, inte	
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

COMMENTS:

MGT Report No. 195159 Page 19 of 50

.

~

,

Coffey Geosciences	Client Sample ID		E4	E5	F1	F2
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03501	06-JN03502	06-JN03503	06-JN03504
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	. < 0.2	< 0.2	< 0.2	< 0.2
Methyl azinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	100	89	100	94
		ale d'addite la la star bratal la bie est bien ann Bisto a fai suddi a bien ann an bien ann ann				
% Moisture	0.1	%	38	37	32	42
Heavy Metals (7)						
Arsenic	2	mg/kg	2.3	2.2	2.1	2.9
Cadmium	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	5	mg/kg	35	43	29	36
Copper	. 5	mg/kg	24	27	26	24
Lead	5	mg/kg	7.6	14	14	10
Nickel	5	mg/kg	35	22	26	24
Zinc	5	mg/kg	97	94	140	95
Heavy Metals						

COMMENTS:

,

Coffey Geosciences	Client Sample ID		E4	E5	F1	F2
JNI T 1/222 BERKELEY ST	Lab Number		06-JN03501	06-JN03502	06-JN03503	06-JN03504
Jnanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
			-			
					1	
		l i				
					1	

COMMENTS:

Coffey Geosciences	Client Sample ID		F3	F4	G1	H1
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03505	06-JN03506	06-JN03507	06-JN03508
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units Units				
Total Recoverable Hydrocarbons		The second se				
TRH C6-C9 Fraction by GC	20	mg/kg	-	< 20	-	-
TRH C10-C14 Fraction by GC	50	mg/kg	-	< 50	-	-
TRH C15-C28 Fraction by GC	100	mg/kg	-	< 100	-	-
TRH C29-C36 Fraction by GC	100	mg/kg	-	100		-
Monocyclic Aromatic Hydrocarbons						
Benzene	0.05	mg/kg	-	` < 0.05	-	-
Toluene	0.05	mg/kg	-	< 0.05	-	-
Ethylbenzene	0.05	mg/kg	-	< 0.05	-	-
Xylenes(ortho.meta and para)	0.05	mg/kg	-	< 0.05	· -	-
Fluorobenzene (surr.)	1	%	-	90	-	-
Polycyclic Aromatic Hydrocarbons					raine an an anns an Anna Anna Anna Anna Anna	141 141 141 141 141 141 141 141 141 141
Acenaphthene	0.1	mg/kg	-	< 0.1	-	-
Acenaphthylene	0.1	mg/kg		. < 0.1	-	-
Anthracene	0.1	mg/kg	-	< 0.1	-	-
Benz(a)anthracene	0.1	mg/kg	-	< 0.1	-	-
Benzo(a)pyrene	0.1	mg/kg	-	< 0.1	-	-
Benzo(b)fluoranthene	0.1	mg/kg	-	< 0.1	-	-
Benzo(g.h.i)perylene	0.1	mg/kg	-	< 0.1	-	
Benzo(k)fluoranthene	0.1	mg/kg	-	< 0.1	-	-
Chrysene	0.1	mg/kg	-	< 0.1	-	-
Dibenz(a.h)anthracene	0.1	mg/kg	-	< 0.1	-	-
Fluoranthene	0.1	mg/kg	-	< 0.1	-	-
Fluorene	0.1	mg/kg	-	< 0.1	-	-
Indeno(1.2.3-cd)pyrene	0.1	mg/kg	-	< 0.1	-	-
Naphthalene	0.1	mg/kg	-	< 0.1	-	-
Phenanthrene	0.1	mg/kg	-	< 0.1	-	-
Pyrene	0.1	mg/kg	-	< 0.1	- •	-
Total PAH	1.6	mg/kg	-	< 1.6	-	-
Chrysene-d12 (surr.)	1	%	<u>ت</u>	100	-	-
2-Fluorobiphenyl (surr.)	1	%	-	100	· _	-

COMMENTS:

Coffey Geosciences	Client Sample ID		F3	F4	G1	H1
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03505	06-JN03506	06-JN03507	06-JN03508
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				
Organochlorine Pesticides						
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Chlordane	0.1	mg/kg	< 0.1	· < 0.1	< 0.1	< 0.1
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxophene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	84	76	85	93
Tetrachloro-m-xylene (surr.)	1	%	91	. 82	96	120
Organophosphorous Pesticides						
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Coffey Geosciences	Client Sample ID		F3	F4	G1	H1
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03505	06-JN03506	06-JN03507	06-JN03508
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date	· · · · ·	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				
Diazinon	0.2	mg/kg [·]	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl azinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	· 1	%	110	94	120	91
				i liigta yötere bilan sotegain yötere in onton remin) mus		
% Moisture	0.1	%	36	34	38	34
Heavy Metals (7)						
Arsenic	2	mg/kg	< 2	3.0	4.2	3.0
Cadmium	0.5	mg/kg	< 0.5	< 0.5	1.1	< 0.5
Chromium	5	mg/kg	41	35	26	23
Copper	. 5	mg/kg	23	24	45	27
Lead	5	mg/kg	7.8	8.8	58	12
Nickel	5	mg/kg	23	35	34	21
Zinc	5	mg/kg	78	82	1600	100
Heavy Metals						
		L	1			I

COMMENTS:

~

.

Coffey Geosciences	Client Sample ID		F3	F4	G1	H1
JNI T 1/222 BERKELEY ST	Lab Number		06-JN03505	06-JN03506	06-JN03507	06-JN03508
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units		uniti. Uniterative contraction are		
Mercury	0.1	mg/kg	0.1	< 0.1	< 0.1	< 0.1
						1
				-		
,						
					(
					ť	
	· · ·					

.

COMMENTS:

Coffey Geosciences	Client Sample ID		S1	S2	S3	S4
UNI T 1/222 BERKELEY ST	Lab Number	.0.050404040500400000000000000000000000	06-JN03509	06-JN03510	06-JN03511	06-JN03512
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				
Total Recoverable Hydrocarbons						
TRH C6-C9 Fraction by GC	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14 Fraction by GC	50	mg/kg	< 50	< 50	< 50	< 50
TRH C15-C28 Fraction by GC	100	mg/kg	< 100	< 100	< 100	< 100
TRH C29-C36 Fraction by GC	100	mg/kg	< 100	< 100	< 100	< 100
Monocyclic Aromatic Hydrocarbons						
Benzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toluene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Ethylbenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Xylenes(ortho.meta and para)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Fluorobenzene (surr.)	1	%	97	120	110	86
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Benz(a)anthracene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(g.h.i)perylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibenz(a.h)anthracene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1.2.3-cd)pyrene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Naphthalene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PAH	1.6	mg/kg	< 1.6	< 1.6	< 1.6	< 1.6
Chrysene-d12 (surr.)	1	%	88	92	84	90
2-Fluorobiphenyl (surr.)	1	%	98		100	110

COMMENTS:

Coffey Geosciences	Client Sample ID		S1	S2	S3	S4
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03509	06-JN03510	06-JN03511	06-JN03512
Unanderra	Matrix -		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				
Organochlorine Pesticides						
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Chlordane	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan 1	0.05	mg/kg	< 0.05	· < 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxophene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	76	71	66	65
Tetrachloro-m-xylene (surr.)	1	%	89	84	79	84
Organophosphorous Pesticides			3 19 19 19 19 19 19 19 19 19 19 19 19 19			
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

COMMENTS:

MGT Report No. 195159 Page 27 of 50

.

Coffey Geosciences	Client Sample ID		S1	S2	S3	S4
UNI T 1/222 BERKELEY ST	Lab Number	artin di Kingi Kuriya da kara d	06-JN03509	06-JN03510	06-JN03511	06-JN03512
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	/ mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0,2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl azinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	. 0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	84	100	94	86
аланы каналарын кираларын калаларын каларын каналар жарарын каналарын каналарын каналарын каналарын каналарын к Каналарын каналарын ка			ទាំងប្រសួរប្រសាសន៍សារ សារសារសារាងដែរដែល និងស្ថិត ស្ថិត សារសារសារសារសារសារសារសារសារសារសារសារសារស			
% Moisture	0.1	%	39	38	40	43
Heavy Metals (7)						
Arsenic	2	mg/kg	3.6	2.6	2.7	3.7
Cadmium	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	5	mg/kg	30	23	20	21
Copper	5	mg/kg	31	31	32	37
Lead	5	mg/kg	15	9.2	12	11
Nickel	5	mg/kg	31	26	23	25
Zinc	5	mg/kg	120	120	130	140
Heavy Metals						

COMMENTS:

MGT Report No. 195159 Page 28 of 50

Coffey Geosciences	Client Sample ID		S1	S2	S 3	S4
UNI T 1/222 BERKELEY ST	Lab Number	s	06-JN03509	06-JN03510	06-JN03511 Soil Jun 9, 2006	06-JN03512 Soil Jun 9, 2006
Unanderra	Matrix		Soil	Soil		
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006		
Analysis Type	LOR	Units				
Mercury	. 0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
-						
			,			5

~

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal address: P. O. Box 276, Oakleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190 Email: mgt@mgtenv.com.au

. -

offey Geosciences	Client Sample ID		S5	S6	S7	DUP1
NI T 1/222 BERKELEY ST	Lab Number	en en perpertativa su autopativa (populari).	06-JN03513	06-JN03514	06-JN03515	06-JN03516
inanderra	Matrix		Soil	Soil	Soil	Soil
ISW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
nalysis Type	LOR	Units				
otal Recoverable Hydrocarbons						
RH C6-C9 Fraction by GC	20	mg/kg	< 20	< 20	< 20	< 20
RH C10-C14 Fraction by GC	50	mg/kg	< 50	< 50	< 50	< 50
RH C15-C28 Fraction by GC	100	mg/kg	< 100	< 100	< 100	< 100
RH C29-C36 Fraction by GC	100	mg/kg	< 100	< 100	< 100	< 100
tonocyclic Aromatic Hydrocarbons						
lenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
oluene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
thylbenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
ylenes(ortho.meta and para)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
luorobenzene (surr.)	1	%	100	120	110	82
olycyclic Aromatic Hydrocarbons	211 Bid Holbit Light et als a house holbit hold hel in the second second second second second second second second second second second second second sec					
cenaphthene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
cenaphthylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Inthracene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Benz(a)anthracene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
lenzo(b)fluoranthene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
lenzo(g.h.i)perylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
lenzo(k)fluoranthene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
hrysene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibenz(a.h)anthracene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
luoranthene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
luorene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
ndeno(1.2.3-cd)pyrene	0.1	mg/kg	< 0.1	. < 0.1	< 0.1	< 0.1
laphthalene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
otal PAH	1.6	mg/kg	< 1.6	< 1.6	< 1.6	< 1.6
Chrysene-d12 (surr.)	1	%	87	89	85	110
-Fluorobiphenyl (surr.)	1	% ·	91	120	110	100

COMMENTS:

Coffey Geosciences	Client Sample ID		S5	S6	S7	DUP1
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03513	06-JN03514	06-JN03515	06-JN03516
Unanderra	Matrix	· ·	Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				d olois alk link la la nomi diaste, more la la
Organochlorine Pesticides						
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Chlordane	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin .	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxophene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	62	64	62	65
Tetrachloro-m-xylene (surr.)	1	%	87	80	100	84 `
Organophosphorous Pesticides	ennan berginde werder einer			inne gar de derenier er seine	n kan produktion (alama a sha ka sha ka sha ka sha ka sha sha sha sha sha sha sha sha sha sh	
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

COMMENTS:

MGT Report No. 195159 Page 31 of 50

Coffey Geosciences	Client Sample ID		S5	S6	S7	DUP1
JNI T 1/222 BERKELEY ST	Lab Number		06-JN03513	06-JN03514	06-JN03515	06-JN03516
Jnanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units				
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	· < 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl azinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Naled	0.2	. mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	96	89	120	96
% Moisture	0.1	%	39	36	32	37
Heavy Metals (7)						
Arsenic	2	mg/kg	2.3	3.6	3.1	< 2
Cadmium	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	5	mg/kg	21	25	22	71
Copper	5	mg/kg	31	34	35	17
Lead	5	mg/kg	12	12	16	7.5
Nickel	5	mg/kg	25	25	26	22
Zinc	5	mg/kg	120	140	160	67
Heavy Metals						

ć

.

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal address: P. O. Box 276, Oakleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190 Email: mgt@mgtenv.com.au

Coffey Geosciences	Client Sample ID		S5	S6	S7	DUP1
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03513	06-JN03514	06-JN03515	06-JN03516
Unanderra	Matrix		Soil	Soil	Soil	Soil
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units			NEP I Mielele under die Swieder schreiten	
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
	×					
			1			
	· ·					
			· .			
· · ·						
n an						
	· ·					

Coffey Geosciences	Client Sample ID		DUP2	DUP3	WB1
UNI T 1/222 BERKELEY ST			06-JN03517	06-JN03518	06-JN03519
Unanderra	Matrix		Soil	Soil	Water
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	LOR	Units	0411 0, 2000	0411 5, 2000	5411 5, 2000
Total Recoverable Hydrocarbons			a da kata para kana kana kata kata kata kata kata kat	sase spittingenginkinnerseise	ndan sugaran Sitan artis
TRH C6-C9 Fraction by GC	20	mg/kg	< 20		< 0.02
TRH C10-C14 Fraction by GC	50	mg/kg	< 50	-	< 0.05
TRH C15-C28 Fraction by GC	100	mg/kg	< 100		< 0.1
TRH C29-C36 Fraction by GC	100	mg/kg	< 100		< 0.1
Monocyclic Aromatic Hydrocarbons					
landen zu zu den die eine eine eine eine eine eine e	0.05	mg/kg	< 0.05	-	< 0.001
Toluene	0.05	mg/kg	< 0.05		< 0.001
Ethylbenzene	0.05	mg/kg	< 0.05		< 0.001
Xylenes(ortho.meta and para)	0.05	mg/kg	< 0.05	-	< 0.001
Fluorobenzene (surr.)	1	%	110	-	91
Polycyclic Aromatic Hydrocarbons					alanda aliminin madra complete
Acenaphthene	0.1	mg/kg	< 0.1	-	< 0.0002
Acenaphthylene	0.1	mg/kg	< 0.1		< 0.0002
Anthracene	0.1	mg/kg	< 0.1	-	< 0.0002
Benz(a)anthracene	0.1	mg/kg	< 0.1	-	< 0.0002
Benzo(a)pyrene	0.1	mg/kg	< 0.1	-	< 0.0002
Benzo(b)fluoranthene	0.1	mg/kg	< 0.1	-	< 0.0002
Benzo(g.h.i)perylene	0.1	mg/kg	< 0.1	-	< 0.0002
Benzo(k)fluoranthene	0.1	mg/kg	< 0.1	-	< 0.0002
Chrysene	0.1	mg/kg	< 0.1	-	< 0.0002
Dibenz(a.h)anthracene	0.1	mg/kg	< 0.1	-	< 0.0002
Fluoranthene	0.1	mg/kg	< 0.1	-	< 0.0002
Fluorene	0.1	mg/kg	< 0.1	- '	< 0.0002
ndeno(1.2.3-cd)pyrene	0.1	mg/kg	< 0.1	-	< 0.0002
Naphthalene	0.1	mg/kg	< 0.1	-	< 0.0002
Phenanthrene	0.1	mg/kg	< 0.1	-	< 0.0002
Pyrene	0.1	mg/kg	< 0.1	-	< 0.0002
Total PAH	1.6	mg/kg	< 1.6	-	< 0.0032
Chrysene-d12 (surr.)	1	%	82	-	85
2-Fluorobiphenyl (surr.)	1	%	80	-	76

COMMENTS:

Coffey Geosciences	Client Sample ID		DUP2	DUP3	WB1	
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03517	06-JN03518	06-JN03519	
Unanderra	Matrix		Soil	Soil	Water Jun 9, 2006	
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006		
Analysis Type	LOR	Units				
Organochlorine Pesticides						
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.0001	
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.0001	
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.0001	
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.0001	
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.0001	
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.0001	
Chlordane	0.1	mg/kg	< 0.1	< 0.1	< 0.0005	
d-BHC	0.05	` mg/kg	< 0.05	< 0.05	< 0.0001	
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.0001	
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.0001	
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.0001	
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.0001	
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.0001	
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.0001	
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.0001	
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.0001	
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.0001	
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.0001	
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.0001	
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.0001	
Toxophene	0.1	mg/kg	< 0.1	< 0.1	< 0.0005	
Dibutylchlorendate (surr.)	1	%	63	70	100	
Tetrachloro-m-xylene (surr.)	1	%	85	85	85	
Organophosphorous Pesticides	en er en en er en					
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Coumaphos	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.002	

;

Coffey Geosciences	Client Sample ID		DUP2	DUP3	WB1	
UNI T 1/222 BERKELEY ST	Lab Number		06-JN03517	06-JN03518	06-JN03519	
Jnanderra	Matrix		Soil	Soil	Water Jun 9, 2006	
NSW 2526	Sample Date		Jun 9, 2006	Jun 9, 2006		
Analysis Type	LOR	Units				
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Methyl azinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.002	
Triphenylphosphate (surr.)	1	%	86	110	86	
% Moisture	0.1	%	37	33		
Heavy Metals (7)						
Arsenic	2	mg/kg	2.7	3.0	< 0.001	
Cadmium	0.5	mg/kg	< 0.5	< 0.5	< 0.0002	
Chromium	5	mg/kg	25	22	< 0.001	
Copper	5	· mg/kg	29	30	< 0.001	
Lead	5	mg/kg	15	11	< 0.001	
Vickel	5	mg/kg	24	24	< 0.001	
Zinc	5	mg/kg	100	97	< 0.001	
leavy Metals						

•

COMMENTS:

MGT Report No. 195159 Page 36 of 50

	Client Sample ID		DUP2	DUP3	WB1	
UNI T 1/222 BERKELEY ST	Lab Number	5 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	06-JN03517	06-JN03518	06-JN03519 Water	
Unanderra	Matrix		Soil	Soil		
NSW 2526	Sample Date	1	Jun 9, 2006	Jun 9, 2006	Jun 9, 200	
Analysis Type		Units				
така на при н Мегситу	0.1	mg/kg	< 0.1	< 0.1	< 0.0	
				•		
			•			
]				
i						

.

.

Coffey Geosciences	Client Sample	A1	A1	A1	A1	Method blank
UNI T 1/222 BERKELEY ST	Lab Number	06-JN03485	06-JN03485	06-JN03485	06-JN03485	Batch
Unanderra	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery	
NSW 2526	Matrix	Soil	Soil	Soil	Soil	Soil
	Sample Date	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	Units			% RPD	% Recovery	mg/L
Organochlorine Pesticides						
4.4'-DDD	· ·	< 0.05	< 0.05	<1	-	< 0.005
4.4'-DDE	1	< 0.05	< 0.05	<1	-	< 0.005
4.4'-DDT	1	< 0.05	< 0.05	<1	-	< 0.005
a-BHC		< 0.05	< 0.05	<1	-	< 0.005
Aldrin	1	< 0.05	< 0.05	<1	-	< 0.005
b-BHC		< 0.05	< 0.05	<1	-	< 0.005
Chlordane	1	< 0.1	< 0.1	<1	-	< 0.01
d-BHC		< 0.05	< 0.05	. <1	-	< 0.005
Dieldrin		< 0.05	< 0.05	<1	-	< 0.005
Endosulfan I		< 0.05	< 0.05	<1	-	< 0.005
Endosulfan II		< 0.05	< 0.05	<1	-	< 0.005
Endosulfan sulphate		< 0.05	< 0.05	<1	-	< 0.005
Endrin		< 0.05	< 0.05	<1	-	< 0.005
Endrin aldehyde		< 0.05	< 0.05	<1	-	< 0.005
Endrin ketone		< 0.05	< 0.05	<1	-	. < 0.005
g-BHC (Lindane)		< 0.05	< 0.05	<1	-	< 0.005
Heptachlor		< 0.05	< 0.05	<1	-	< 0.005
Heptachlor epoxide		< 0.05	< 0.05	<1	-	< 0.005
Hexachlorobenzene		< 0.05	< 0.05	<1	-	< 0.005
Methoxychlor		< 0.05	< 0.05	<1	-	< 0.005
Toxophene	1	< 0.1	< 0.1	<1	-	< 0.01
Dibutylchlorendate (surr.)		87	93	-	-	82
Tetrachloro-m-xylene (surr.)		110	120	-	-	79
Heavy Metals (7)		9.445.445.450.450.450				
Arsenic	T	< 2	< 2	<1	79	< 0.02
Cadmium		< 0.5	< 0.5	<1	98	< 0.02
Chromium		60	61	2.7	90	< 0.05
Copper		27	27	<1	106	< 0.05

.

COMMENTS:

MGT Report No. 195159 Page 38 of 50

~.

	Client Sample	A1			A1	Method blank
JNI T 1/222 BERKELEY ST	Lab Number	06-JN03485	06-JN03485	06-JN03485	06-JN03485	Batch
	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery	
	Matrix	Soil	Soil	Soil	Soil	Soil
	Sample Date	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
	Units	,		% RPD	% Recovery	mg/L
Heavy Metals (7)		an and address in the second				
Lead		9.0	11	22	88	< 0.05
Nickel		29	32	7.0	77	< 0.05
Zinc		68	71	5.9	93	< 0.05
Heavy Metals						
Mercury		< 0.1	< 0.1	10	93	< 0.005
						,
						- -

COMMENTS:

Coffey Geosciences	Client Sample	A2	A2	A2	A2	Method blank
UNI T 1/222 BERKELEY ST	Lab Number	06-JN03486	06-JN03486	06-JN03486	06-JN03486	Batch
Jnanderra	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery	Daton
NSW 2526	Matrix	Soil	Soil	Soil	Soil	Soil
	Sample Date	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	Units			% RPD	% Recovery	mg/L
Total Recoverable Hydrocarbons		y na piana na fan lainen nyn, mydrold. Ar fan de fan				
TRH C6-C9 Fraction by GC		-	. –	<1	103	< 0.02
TRH C10-C14 Fraction by GC		-	-	-	-	< 0.05
TRH C15-C28 Fraction by GC		-	-	-	-	< 0.1
TRH C29-C36 Fraction by GC		-	-	-	-	< 0.1
Monocyclic Aromatic Hydrocarbons						an in droit a lant bits ru
Benzene		< 0.05	< 0.05	<1 .	129	< 0.005
Toluene		< 0.05	< 0.05	<1	107	< 0.005
Ethylbenzene		< 0.05	< 0.05	×1	92	< 0.005
Xylenes(ortho.meta and para)		< 0.05	< 0.05	<1	103	< 0.005
Fluorobenzene (surr.)		87	96	-	100	96
Polycyclic Aromatic Hydrocarbons						
Acenaphthene		< 0.1	< 0.1	<1	-	< 0.001
Acenaphthylene		< 0.1	< 0.1	<1	-	< 0.001
Anthracene	·	< 0.1	< 0.1	<1	-	< 0.001
Benz(a)anthracene		< 0.1	< 0.1	<1	-	< 0.001
Benzo(a)pyrene		< 0.1	< 0.1	<1	-	< 0.001
Benzo(b)fluoranthene		< 0.1	< 0.1	<1	-	< 0.001
Benzo(g.h.i)perylene		< 0.1	< 0.1	<1	-	< 0.001
Benzo(k)fluoranthene		< 0.1	< 0.1	<1	-	< 0.001
Chrysene		< 0.1	< 0.1	<1	-	< 0.001
Dibenz(a.h)anthracene		< 0.1	< 0.1	<1	-	< 0.001
Fluoranthene		< 0.1	< 0.1	<1	-	< 0.001
Fluorene		< 0.1	< 0.1	<1	-	< 0.001
Indeno(1.2.3-cd)pyrene		< 0.1	< 0.1	<1	-	< 0.001
Naphthalene		< 0.1	< 0.1	<1	-	< 0.001
Phenanthrene		< 0.1	< 0.1	<1	-	< 0.001
Pyrene		< 0.1	< 0.1	<1	-	< 0.001
Total PAH		< 1.6	< 1.6	-	- `	< 0.016

COMMENTS:

MGT Report No. 195159 Page 40 of 50 .

Coffey Geosciences	Client Sample	A2	A2	A2	A2	Method blank
JNI T 1/222 BERKELEY ST	Lab Number	06-JN03486	06-JN03486	06-JN03486	06-JN03486	Batch
Jnanderra	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery	
NSW 2526	Matrix	Soil	Soil	Soil	Soil	Soil
	Sample Date	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	Units			% RPD	% Recovery	mg/L
Polycyclic Aromatic Hydrocarbons						
Chrysene-d12 (surr.)		110	99	-	-	93
2-Fluorobiphenyl (surr.)		120	86	-	-	130
Organophosphorous Pesticides						
Bólstar		< 0.2	< 0.2	<1	-	< 0.002
Chlorpyrifos		< 0.2	< 0.2	<1	<u>-</u>	< 0.002
Coumaphos		< 0.2	< 0.2	<1	-	< 0.002
Demeton-O		< 0.2	< 0.2	<1	-	< 0.002
Diazinon		< 0.2	< 0.2	<1	-	< 0.002
Dichlorvos		< 0.2	< 0.2	<1	-	< 0.002
Disulfoton		< 0.2	< 0.2	<1	-	< 0.002
Ethion		< 0.2	< 0.2	<1	-	< 0.002
Ethoprop		< 0.2	< 0.2	<1	-	< 0.002
Fenitrothion		< 0.2	< 0.2	<1	-	< 0.002
Fensulfothion		< 0.2	< 0.2	<1	-	< 0.002
Fenthion		< 0.2	< 0.2	<1	-	< 0.002
Merphos		< 0.2	< 0.2	<1	-	< 0.002
Methyl azinphos		< 0.2	< 0.2	<1	-	< 0.002
Methyl parathion		< 0.2	< 0.2	<1	-	< 0.002
Mevinphos		< 0.2	< 0.2	<1	-	< 0.002
Naled		< 0.2	< 0.2	<1	-	< 0.002
Phorate		< 0.2	< 0.2	<1	-	< 0.002
Ronnel		< 0.2	< 0.2	<1	-	< 0.002
Tokuthion		< 0.2	< 0.2	<1	-	< 0.002
Trichloronate		< 0.2	< 0.2	<1	-	< 0.002
Triphenylphosphate (surr.)		96	87	-	-	110

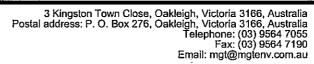
.

COMMENTS:

.

MGT Report No. 195159 Page 41 of 50

offey Geosciences	Client Sample	RPD	A3
	Lab Number	BATCH	06-JN03487
nanderra	QA Description		Spike % Recovery
	Matrix	Soil	Soil
	Sample Date	Jun 9, 2006	Jun 9, 2006
malysis Type	Units		% Recovery
Organochlorine Pesticides			
Chlordane		-	85
oxophene		-	95
Dibutylchlorendate (surr.)		-	93
etrachloro-m-xylene (surr.)		-	85


COMMENTS:

N

MGT Report No. 195159 Page 42 of 50

.

н Стал

Coffey Geosciences	Client Sample	D2	D2	D2	D2
UNI T 1/222 BERKELEY ST	Lab Number	06-JN03495	06-JN03495	06-JN03495	06-JN03495
Unanderra	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery
NSW 2526	Matrix	Soil	Soil	Soil	Soil
	Sample Date	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	Units			% RPD	% Recovery
Organochlorine Pesticides					Realized and the second s
4.4'-DDD		< 0.05	< 0.05	<1	-
4.4'-DDE		< 0.05	< 0.05	<1	-
4.4'-DDT		< 0.05	< 0.05	<1	-
a-BHC		< 0.05	< 0.05	<1	-
Aldrin		< 0.05	< 0.05	<1	-
b-BHC		< 0.05	< 0.05	<1	-
Chlordane ·		< 0.1	< 0.1	<1	· •
d-BHC		< 0.05	< 0.05	<1	-
Dieldrin		< 0.05	< 0.05	<1	-
Endosulfan I		< 0.05	< 0.05	<1	-
Endosulfan II		< 0.05	< 0.05	<1	-
Endosulfan sulphate		< 0.05	< 0.05	<1	-
Endrin		< 0.05	< 0.05	<1	-
Endrin aldehyde		< 0.05	< 0.05	<1	-
Endrin ketone		< 0.05	< 0.05	<1	-
g-BHC (Lindane)		< 0.05	< 0.05	<1	-
Heptachlor		< 0.05	< 0.05	<1	-
Heptachlor epoxide		< 0.05	< 0.05	<1	-
Hexachlorobenzene		< 0.05	< 0.05	<1	-
Methoxychlor		< 0.05	< 0.05	<1	-
Toxophene		< 0.1	< 0.1	<1	-
Dibutylchlorendate (surr.)		99	96	-	-
Tetrachioro-m-xylene (surr.)		110,	110	-	-
Heavy Metals (7)		hi i jeli v sliho deg i spihi bilo deg v sliho sliho deg i spihi bilo deg			
Arsenic		< 2	< 2	<1	77
Cadmium		< 0.5	< 0.5	<1	96
Chromium		50	47	4.1	89
Copper		18	18	2.2	109

.

COMMENTS:

.

MGT Report No. 195159 Page 43 of 50

.

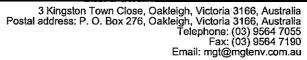
Coffey Geosciences		D2	D2		D2
INI T 1/222 BERKELEY \$T	Lab Number	06-JN03495	06-JN03495	06-JN03495	06-JN03495
Inanderra	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery
ISW 2526	Matrix	Soil	Soil	Soil	Soil
	Sample Date	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	Units			% RPD	% Recovery
Heavy Metals (7)					
Lead		7.2	< 5	<1	88
Nickel		16	16	1.2	75
Zinc		41	40	5.0	81
leavy Metals			ia Hi Ni pinchidadi		
Mercury		< 0.1	< 0.1	9.1	92
ι					

ì

×.

Coffey Geosciences	Client Sample	F3	F3	F3	F3
JNI T 1/222 BERKELEY ST	ID Lab Number	06-JN03505	06-JN03505	06-JN03505	06-JN03505
Jnanderra	QA	00-3103303	Duplicate	Duplicate %	Spike %
	Description		Duplicate	RPD	Recovery
NSW 2526	Matrix	Soil	Soil	Soil	Soil
	Sample Date	Jun 9, 2006	Јип 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	Units			% RPD	% Recovery
Organochlorine Pesticides					
4.4'-DDD		< 0.05	< 0.05	<1	85
4.4'-DDE		< 0.05	< 0.05	<1	115
4.4'-DDT		< 0.05	< 0.05	<1	92
a-BHC		< 0.05	< 0.05	<1	106
Aldrin		< 0.05	< 0.05	<1	130
b-BHC		< 0.05	< 0.05	<1	94
Chlordane		< 0.1	< 0.1	<1	-
d-BHC		< 0.05	< 0.05	<1	107
Dieldrin		< 0.05	< 0.05	<1	116
Endosulfan l		< 0.05	< 0.05	<1	95
Endosulfan II		< 0.05	< 0.05	<1	100
Endosulfan sulphate		< 0.05	< 0.05	<1	99
Endrin		< 0.05	< 0.05	<1	103
Endrin aldehyde		< 0.05	< 0.05	<1 .	114
Endrin ketone		< 0.05	< 0.05	<1	95
g-BHC (Lindane)		< 0.05	< 0.05	<1	98
Heptachlor		< 0.05	< 0.05	<1	130
Heptachlor epoxide		< 0.05	< 0.05	<1	107
Hexachlorobenzene		< 0.05	< 0.05	<1	103
Methoxychlor		< 0.05	< 0.05	<1	94
Toxophene		< 0.1	< 0.1	<1	-
Dibutyichlorendate (surr.)		84	77	-	-
Tetrachloro-m-xylene (surr.)		91	96	-	-
Organophosphorous Pesticides	lai giri rinjui garana xoti inalal udagora) angi yangi yang angi yangi yang	ntigotillen vigenterete orun v			
Bolstar		< 0.2	< 0.2	-	-
Chlorpyrifos		< 0.2	< 0.2	-	-
Coumaphos		< 0.2	< 0.2	-	-
Diazinon		< 0.2	< 0.2	1.	1

COMMENTS:


	Client Sample	F3		F3	F3
NI T 1/222 BERKELEY ST	Lab Number	06-JN03505	06-JN03505	06-JN03505	06-JN03505
Inanderra	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery
ISW 2526	Matrix	Soil	Soil	Soil	Soil
	Sample Date	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	Units			% RPD	% Recovery
Organophosphorous Pesticides					
Disulfoton		< 0.2	< 0.2	-	-
Ethion		< 0.2	< 0.2	-	98
Fenitrothion		< 0.2	< 0.2	-	105
Fensulfothion		< 0.2	< 0.2	-	93
Fenthion		< 0.2	< 0.2	-	
Merphos		< 0.2	< 0.2	-	-
Methyl azinphos		< 0.2	< 0.2	-	-
Methyl parathion		< 0.2	< 0.2	-	107
Ronnel		< 0.2	< 0.2	-	-
Tokuthion		< 0.2	< 0.2	-	-
Trichloronate		< 0.2	< 0.2	-	-
Friphenylphosphate (surr.)		110	110	-	88
Heavy Metals (7)			H Internet of the Rever	a Uthinishingaringari	
Arsenic		< 2	2.8	<1	81
Cadmium		< 0.5	< 0.5	<1	88
Chromium		41	42	4.8	77
Соррег		23	23	<1	95
ead		7.8	6.4	19	76
		23	23	<1	77
Nickel		78	77	3.0	84
Nickel		/ /0		3.0	04
		70		3.0	

1

MGT Report No. 195159 Page 46 of 50

COMMENTS:

ł

Coffey Geosciences	Client Sample	S3	S3	S3	S3
JNI T 1/222 BERKELEY ST	Lab Number	06-JN03511	06-JN03511	06-JN03511	06-JN03511
Jhanderra	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery
NSW 2526	Matrix	Soil	Soil	Soil	Soil
	Sample Date	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	Units			% RPD	% Recovery
Total Recoverable Hydrocarbons					
TRH C10-C14 Fraction by GC		< 50	< 50	<1	87
TRH C15-C28 Fraction by GC		< 100	< 100	<1	-
TRH C29-C36 Fraction by GC	· ·	< 100	< 100	<1	-
Monocyclic Aromatic Hydrocarbons					
Benzene		< 0.05	< 0.05	<1	129
Toluene		< 0.05	< 0.05	<1	106
Ethylbenzene		< 0.05	< 0.05	<1	91
Xylenes(ortho.meta and para)		< 0.05	< 0.05	<1	101
Fluorobenzene (surr.)		110	110	-	121
Polycyclic Aromatic Hydrocarbons					
Acenaphthene		< 0.1	< 0.1	<1	107
Acenaphthylene		< 0.1	< 0.1	<1	97
Anthracene		< 0.1	< 0.1	<1	105
Benz(a)anthracene		< 0.1	< 0.1	<1	101
Benzó(a)pyrene		< 0.1	< 0.1	<1	92
Benzo(b)fluoranthene		< 0.1	< 0.1	<1	108
Benzo(g.h.i)perylene		< 0.1	< 0.1	<1	114
Benzo(k)fluoranthene		< 0.1	< 0.1	<1	113
Chrysene		< 0.1	< 0.1	. <1	108
Dibenz(a.h)anthracene		< 0.1	< 0.1	<1	92
Fluoranthene		< 0.1	< 0.1	<1	100
Fluorene		< 0.1	< 0.1	<1	108
Indeno(1.2.3-cd)pyrene		< 0.1	< 0.1	<1	101
Naphthalene		< 0.1	< 0.1	<1	107
Phenanthrene		< 0.1	< 0.1	-<1	113
Pyrene		< 0.1	< 0.1	<1	110
Total PAH		< 1.6	< 1.6	-	-
Chrysene-d12 (surr.)		84	96		89

COMMENTS:

	Client Sample	S3	S3	S3	S3
NI T 1/222 BERKELEY ST	Lab Number	06-JN03511	06-JN03511	06-JN03511	06-JN03511
Inanderra	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery
ISW 2526	Matrix	Soil	Soil	Soil	Soil
	Sample Date	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	Units			% RPD	% Recovery
Polycyclic Aromatic Hydrocarbons					
2-Fluorobiphenyl (surr.)		100	94		103
Drganophosphorous Pesticides					
Bolstar		< 0.2	< 0.2	<1	·-
Chlorpyrifos		< 0.2	< 0.2	<1	-
Coumaphos		< 0.2	< 0.2	<1	-
Demeton-O		< 0.2	< 0.2	<1	-
Diazinon		< 0.2	< 0.2	<1	-
Dichlorvos		< 0.2	< 0.2	<1	-
Disulfoton		< 0.2	< 0.2	<1	-
thion		< 0.2	< 0.2	<1	-
Ethoprop		< 0.2	< 0.2	<1	-
enitrothion		< 0.2	< 0.2	<1	-
Fensulfothion		< 0.2	< 0.2	<1	-
enthion		< 0.2	< 0.2	<1	-
/lerphos		< 0.2	< 0.2	<1	-
/lethyl azinphos		< 0.2	< 0.2	<1	-
Nethyl parathion		< 0.2	< 0.2	<1	-
/levinphos		< 0.2	< 0.2	<1	-
Valed		< 0.2	< 0.2	<1	-
Phorate		< 0.2	< 0.2	<1	-
Ronnel		< 0.2	< 0.2	<1	-
okuthion		< 0.2	< 0.2	<1	-
richloronate		< 0.2	< 0.2	<1	-
	-1	94	100	-	-

COMMENTS:

.

×.

Coffey Geosciences	Client Sample	S7.	S7	S7	S7
JNI T 1/222 BERKELEY ST	Lab Number	06-JN03515	06-JN03515	06-JN03515	06-JN03515
Jnanderra	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery
NSW 2526	Matrix	Soil	Soil	Soil	Soil
	Sample Date	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	Units			% RPD	% Recovery
Organochlorine Pesticides					
4.4'-DDD		< 0.05	< 0.05	<1	85
4.4'-DDE		< 0.05	< 0.05	<1	77
4.4'-DDT		< 0.05	< 0.05	<1	85
a-BHC		< 0.05	< 0.05	<1	103
Aldrin		< 0.05	< 0.05	<1	129
b-BHC		< 0.05	< 0.05	<1	75
Chlordane		< 0.1	< 0.1	<1	-
d-BHC		< 0.05	< 0.05	<1	100
Dieldrin		< 0.05	< 0.05	<1	83
Endosulfan 1		< 0.05	< 0.05	<1	89
Endosulfan II		< 0.05	< 0.05	<1	85
Endosulfan sulphate		< 0.05	< 0.05	<1	77
Endrin		< 0.05	< 0.05	<1	84
Endrin aldehyde		< 0.05	< 0.05	<1	96
Endrin ketone		< 0.05	< 0.05	<1	76
g-BHC (Lindane)		< 0.05	< 0.05	<1	75
Heptachlor		< 0.05	< 0.05	<1	129
Heptachlor epoxide		< 0.05	< 0.05	<1	107
Hexachlorobenzene		< 0.05	< 0.05	<1	99
Methoxychlor		∕ < 0.05	< 0.05	<1	85
Toxophene		< 0.1	< 0.1	<1	-
Dibutylchlorendate (surr.)		62	72	-	-
Tetrachloro-m-xylene (surr.)		100	120	-	-
Heavy Metals					
Mercury		< 0.1	< 0.1	16	92

,

COMMENTS:

1

Coffey Geosciences	Client Sample	WB1	WB1	WB1	WB1
JNI T 1/222 BERKELEY ST	Lab Number	06-JN03519	06-JN03519	06-JN03519	06-JN03519
Jnanderra	QA Description	00-01100010	Duplicate	Duplicate %	Spike % Recovery
NSW 2526	Matrix	Water	Water	Water	Water
	Sample Date	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006	Jun 9, 2006
Analysis Type	Units			% RPD	% Recovery
Heavy Metals (7)					
neste zaminani vizikani e razuni zinani na prizveni prizveni na prizveni na prizveni prizveni prizveni prizveni Arsenic	Alignizaciji na dala sliki konstruktivno vrom	< 0.001	< 0.001	<1	in: cirimetatatikin pertakan p
Cadmium		< 0.0002	< 0.0002	<1	97
Chromium		< 0.001	< 0.001	<1	107
Copper		< 0.001	< 0.001	4.2	97
Lead		< 0.001	< 0.001	<1	102
Nickel		< 0.001	< 0.001	<1	102
Zinc		< 0.001	< 0.001	2.5	107
Heavy Metals					
Mercury		< 0.0001	< 0.0001	<1	99

1

COMMENTS:

										No:	3415	8	
Chain of Custody			Laboratory Q	uotation / Orde	er No:			Job No: A	1059/3	Sheet	7 of 2		A
Dispatch to: (r) (4) (Address &			Sampled by.	ALE				* •	flicer: AGA (1). 1961: 13/16/67 6	2,7°4*			<u>S</u>
Attention: Let N - Parking py			Project Mana (report results	iger: /ﷺ/ w) (c	Frink 1 S Geogradio	e de aran (a' n an	ZN, 19	Courier Servit					B
Reiinquished by:		,	Date:	Time:	Received by	Y.	~2				Date.	: Tim	6:
			·								•		
										~	: 		
	. <u>.</u>		, 		<u>l</u>		د . 		nalyses Required	. čin		196. 75159	
Comments	Sample Matrix	Container Type and Preservative	Sample	No.	Late Sampled	PAHS TPHS TPHS AAHS = BTEX	\sim					;	Sample Condition on Receipt
		F. Sare Martin 424	<u>ag 165</u>		Hikk				······	Í			
A			<u>A\$104</u>		7-7				i	······	······		
			AS172		· · · · · · · · · · · · · · · · · · ·		: ~~~ t				······	···	
<u>.</u>			<u>AG171</u>		1								
2 			<u> 49172</u> ASI73								·····i	i	
<u>i. /</u>			AS(14					Martin Martin Stranger	****	····· i	·	····:	
			A5175									Ŷ	
ζ,,		2011-00-00-00-00-00-00-00-00-00-00-00-00-	A8174		· · · ·	· · · · · · · · · · · · · · · · · · ·			I : ;				
			A 3:177							: ;			
	; ; ;		<u>A8(75</u>								;		
: 			A4179						·····	·····		·····	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·		<u>A6180</u>			······	····; ``				······		
	·		AS151				· · · · · · · · · · · · · · · · · · ·					:	
	······································		15192 13183				·····					······································	
	V :		AG1 84				····	in the second		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Special Laboratory Instructions			Turnaround Reg	iired.				• ====================================	•• ••••••••••• •• ••••••••••	· · · · · · · · · · · · · · · · · · ·	REFE	UMBER M RENCED EQUENT	ON ALL

......

. .___

Copies: WHITE: Sign on release YELLOW: If dispatched to interstate Lab. Lab to sign on receipt and fax back to Colley BLUE: To be returned with results

				Nº: 34159	Й
hain of Custody	Laboratory Quotation / Ord	ter No:	JOD NO: NR 1059/3	Sheel Z of	
Dispatch to	Sampled by: ALB		Consigning Officer, $A = B$		
Aduess a Thane No.)			Date Dispetched: $73/6/6$	2 Ó	Ś
Attention: $\sum_{\substack{\alpha \in \mathcal{A}, \ \alpha \in \mathcal{A}}} \int_{\mathcal{A}} e^{-i\alpha \alpha \beta - i\alpha \beta} \int_{\mathcal{A}} e^{-i\beta - i\alpha \beta} \int_{$	Project Manager: Jamp (report results to) , Com. C. J	na si brang (sta	Courier Service:		
Relinquished by:	Date: Time:	Received by:	. · ·	: Date 1	Time:
	· · · · · · · · · · · · · · · · · · ·	 			
	·······			· · · · · · · · · · · · · · · · · · ·	
			\sim	- Mins 15/6/06	
			Analyses Required	19515	9
Comments Container Type and Preservative	Sample No.	 Date Sampled PAHs PAHs TPHs MAHs = BTEX 	All AX		Sample Condition
IT Lost Soil Jur / une/oxived	<u>AS135</u>	7/0/00) 	
E }	<u>AR186</u>				
ř2	48137				
<u> </u>	49193				
F 49-	AA189				
	<u>\$190 ب</u> م				
	<u> </u>	12/6/06			
	<u>A8(42</u>				
	<u></u>				
	A 8 194				
<u> </u>	<u>A 8 195</u> Do wak				
······································	<u> </u>				
	<u> </u>			······	
	A& 194				
57	A8195				
· · · · · · · · · · · · · · · · · · ·	A 8 195 <u>A 8 199</u> <u>A 83 DO</u>				** \

Detection Limits

Turnaround Required:

														Ν	o: 3	416(J	係
nain of Custody			Laboratory	Quotation / Ord	ler No:					Job No: /	V_{K}^{i} i,	s. 1	3	Sh	. 199	of is		係
ispatch lo:			Sampled b	W. ALB					:	Consignir			~					>
one Na)										Date Disp		9	6/	ç Ú				
lention:			Project Ma (report resu	anager: Frank Its to)	vita na Car do ra	- 733	an Ça	- <u>0</u> 44	e., 7	Courier S Consignn	ervice: nent Not	e No:						ð
elinquished by			· Dale:	Time:	Received t)y:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									Date:		Time:
					• • • • • • • • • • • • • • • • • • •		,,		<u>`</u>				$\leq l$	Jair.	۷-		(6¢	•
			• •	<u></u>			••-				Azenla	ses Req		_ { ` } . `		1	95	159.
Comments	Sample Matrix	Container Type and Preservative	Sanı	ole No.	Date Sampled		PAHs TPHs	MAHs = BTEX	metals: /∱∫ (Haay:			-	-	,	. :	Sample Condition on Receipt
N()			1822	> 2_	1 / /-/- 1 / / (-/-)	, i.		<u> </u>	· · · · · · ·		:		;	 				
									:	ļ							: 	
	······		·			i.									i	: : :	·······	
	·	·				: : :		······	:	: :						· : : : ·	· ····································	
			1			······,			-						i	ii	······	
	······		:			• • •	! 			·····	••••	;			i.,		·	
		and in the second s							:	·	:		· · ·					
					······		······································										••••••	
							1		1 - , I					! 		· · · · · · · · · · · · · · · · · · ·	· ····································	·····
			·		• •			:	: : :	: .				!			••••••••••••••••••••••••••••••••••••••	
•	,		····				•		······································	······································	i			·····		· · · · · · · · · · · · · · · · · · ·	·	
Special Laboratory Instructions:																REFER	ENCE	MUST BI
Detection Limits. Copies: WHITE: Sign on release		hed to interstate Lab. Lab to sign on receip	Turnaround Re			••••		• ••••	• •••••						•••••••	SUBSE	QUEN	T PAGE

APPENDIX C

Laboratory Test Result Sheets for Phase 2 Assessment

Environmental Consulting Pty. Ltd.

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal address: P. O. Box 276, Oakleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190 Email: mgt@mgtenv.com.au

CERTIFICATE OF ANALYSIS

Coffey Geotechnics Pty Ltd Unit 1 18 Hurley Dve **Coffs Harbour NSW 2450** Site: NR1059/3

Report Number: 197100 Page 1 of 7 Order Number: Date Received: Aug 7, 2006 Date Sampled: Aug 3, 2006 Date Reported: Aug 14, 2006 Contact: David Barker

Methods

- USEPA 6010B Heavy Metals & USEPA 7470/71
- Mercury
- USEPA 6020 Heavy Metals Method 102 ANZECC % Moisture

Comments

Notes

- 1. The results in this report supersede any previously corresponded results.
- 2. All Soil Results are reported on a dry basis.
- 3. Samples are analysed on an as received basis.

ABBREVIATIONS mg/kg : milligrams per kilograms, mg/L : milligrams per litre, ppm : parts per million, LOR : Limit of Reporting RPD : Relative Percent Difference CRM : Certified Reference Material LCS : Laboratory Control Sample

Authorised

(chifth

Michael Wright NATA Signatory Laboratory Manager

NATA Accredited Laboratory Number 1261 The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced, except in full. le the

Report Number: 197100

Member

Environmental Consulting Pty. Ltd.

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal address: P. O. Box 276, Oakleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190 Email: mgt@mgtenv.com.au

Coffey Geotechnics Pty Ltd	Client Sample ID		GA1	GA2	GA3	GA4
Unit 1 18 Hurley Dve	Lab Number		06-AU01720	06-AU01721	06-AU01722	06-AU01723
Coffs Harbour	Matrix		Soil	Soil	Soil	Soil
NSW 2450	Sample Date		Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006
Analysis Type	LOR	Units				
% Moisture	0.1	%	34	33	40	42
Heavy Metals						
Zinc	5	mg/kg	150	670	180	330

COMMENTS:

Coffey Geotechnics Pty Ltd	Client Sample ID		DUP1	GB1	GB2	GB3
Unit 1 18 Hurley Dve	Lab Number		06-AU01724	06-AU01725	06-AU01726	06-AU01727
Coffs Harbour	Matrix		Soil	Soil	Soil	Soil
NSW 2450	Sample Date		Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006
Analysis Type	LOR	Units				
% Moisture	0.1	%	49	45	39	36
Heavy Metals						
Zinc	5	mg/kg	270	360	140	250

Coffey Geotechnics Pty Ltd	Client Sample ID		GB4	GB5	GB6	GB7
Unit 1 18 Hurley Dve	Lab Number		06-AU01728	06-AU01729	06-AU01730	06-AU01731
Coffs Harbour	Matrix		Soil	Soil	Soil	Soil
NSW 2450	Sample Date		Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006
Analysis Type	LOR	Units				
% Moisture	0.1	%	42	35	38	35
Heavy Metals						
Zinc	5	mg/kg	110	220	100	460
·						
		1	1	1		

Matrix Soil Soil Water NSW 2450 Sample Date Aug 3, 2006 Aug 3, 2006 Aug 3, 2006 Aug 3, 2006 Analysis Type LOR Units % Moisture 0.1 % 33 48	Coffey Geotechnics Pty Ltd	Client Sample ID		GB8	DUP2	WB1
Matrix Soil Soil Water NSW 2450 Sample Date Aug 3, 2006 Aug 3, 2006 Aug 3, 2006 Analysis Type 0.1 % 33 48	Unit 1 18 Hurley Dve	Lab Number	, bibolelli, Lid-Digdolphi) (1996) "	06-AU01732	06-AU01733	06-AU01734
NSW 2450 Aug 3, 2006 Aug 3, 2006 Aug 3, 2006 Analysis Type LOR Units % Moisture 0.1 % 33 48 Heavy Metals 5 mg/kg 160 350 < 0.001	Coffs Harbour					
Analysis Type LOR Units Image: Constraint of the second sec	NSW 2450		· · · · · · · · · · · · · · · · · · ·			
% Moisture 0.1 % 33 48 Heavy Metals mg/kg 160 350 < 0.001	Analysis Type		Units			
Heavy Metals mg/kg 160 350 < 0.001				33	48	
Zinc 5 mg/kg 160 350 < 0.001						
	Zinc		mg/kg	160	350	< 0.001
						L L
	Υ.					
	,					
	,					
					- e	
			·			

COMMENTS:

.

Coffey Geotechnics Pty Ltd	Client Sample	GA1	GA1	GA1	GA1	Method blank
Unit 1 18 Hurley Dve	Lab Number	06-AU01720	06-AU01720	06-AU01720	06-AU01720	Batch
Coffs Harbour	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery	Butter
NSW 2450	Matrix	Soil	Soil	Soil	Soil	Soil
	Sample Date	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006
Analysis Type	Units			% RPD	% Recovery	mg/L
Heavy Metals						
Zinc		150	200	21	89	< 0.05
	, í					
·						
					`	
· · · ·						
					1	

COMMENTS:

Coffey Geotechnics Pty Ltd	Client Sample	GB6	GB6	GB6	GB6
Unit 1 18 Hurley Dve	Lab Number	06-AU01730	06-AU01730	06-AU01730	06-AU01730
Coffs Harbour	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery
NSW 2450	Matrix	Soil	Soil	Soil	Soil
	Sample Date	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006
Analysis Type	Units			% RPD	% Recovery
Heavy Metals					
Zinc		100	110	5.2	-
					1
					1
		1			

COMMENTS:

.

Chain of Custody			Laboratory Quotation - O	irder No	Geotabton Job No:	059AC	o: 34171	Â
Phone No: 3 KINO	nvironm ston Tox	nclose	Sampled by COA	ΣX		Offices: C-MCNS med. 3/8/06		ð
Allentor Client	Services		1960011085605 (C)	parker agroffice	· Couvier Sen Consignmer		ack .	8
Reinquished by.			Date Tinle	Received by	100	197100	. Date. 7 - 8 -	. Time - <u>06</u>
······		······		18		Ansiyses Required		
Comments	Sample Marro	Container Type and Preservative	Sample No	Date Samplixd PAHs	TPHs MAHs = BTEX Metalis: Zinc			Sample Condition on Receipt
00-02m	<u> </u>	ारी, देवेंदी	GAL	38/06	· · · · · · · · · · · · · · · · · · ·	······································	······	
0:0-0:2m	<u> </u>	*	GA 2 GA 3	······				• •••••
00-02m		······	GA3 GA4			······································		·
<u>00-02m</u>	3 .		DUP#1		······································		······································	
<u><u><u>N</u></u><u>n</u><u>-0</u><u>2</u><u>m</u></u>	5.	}	621				• •	
00-0-2m	5,	ł	GB2			· · · · · · · · · · · · · · · · · · ·		
0.0°02m	<u> </u>	········	<u>: GBZ</u>				· · · · · · · · · · · · · · · · · · ·	
00-02m	5 .		<u></u>	· · · · · · · · · · · · · · · · · · ·			·····	· ····································
0.0.0.2m		ł	GRS			,		······· · · · · · · · · · · · · · ·
<u>0:0-0:2m</u>	<u> </u>	······	<u>GR6</u>		· i ; ;			
<u>6.0-0.2M</u>			GÂJ	· · · · · · · · · · · · · · · · · · ·		،،، ، ،،،،،،،،،،،،،،،،،،،،،،،،،،،،	· · · · · · · · · · · · · · · · · · ·	
00.0.2m	· · · >	· ····· · ······ · ······· ········ ····	Di BZ		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
WashBlank	<u> </u>	nostic Rottle	WBI	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Special Laboratory Instructions				····· · ···· · ···· · ···· · ···			JOB NUM	SER MUST BF
Detection Limits			Tamaround Requirem	ar antarat will much			SUBSEQU	IENT P/

Contest: WHITE, Service where YELLOW, Plasma and executive Lance and an executive land lax back to Cohever BLUE: To be returned with on

Environmental Consulting Pty. Ltd.

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal address: P. O. Box 276, Oakleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190 Email: mgt@mgtenv.com.au

CERTIFICATE OF ANALYSIS

Coffey Geotechnics Pty Ltd Unit 1 18 Hurley Dve Coffs Harbour NSW 2450 Site: NR1059/3 Report Number: 197632 Page 1 of 10 Order Number: Date Received: Aug 21, 2006 Date Sampled: Aug 3, 2006 Date Reported: Aug 29, 2006 Contact: Emma Coleman

Methods

- USEPA 6010B Heavy Metals & USEPA7470/71 Mercury
- USEPA 6010B Heavy Metals & USEPA 7470/71
- Mercury
- Method 102 ANZECC % Moisture

Comments

Please Note Coffey Sample No GA2(MGT No Au05130),GB1(Au05133) and GB7(Au05139) were all repeated in quadruple for Zinc: GA2 670,800,1100 and 860 mg/kg GB1 360,860,680 and 760 mg/kg GB7 460,1000,960 and 570mg/kg From the results obtained above it appears that the samples are not homogenous.

Notes

1. The results in this report supersede any previously corresponded results.

2. All Soil Results are reported on a dry basis.

3. Samples are analysed on an as received basis.

ABBREVIATIONS mg/kg : milligrams per kilograms, mg/L : milligrams per litre, ppm : parts per million,

Authorised

Comfth

Michael Wright NATA Signatory Laboratory Manager

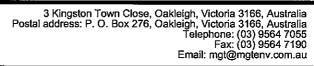
NATA WORLD RECOGNIBED ACCREDITATION

NATA Accredited Laboratory Number 1261 The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced, except in full.

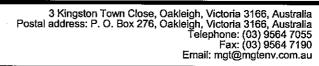
Member

Environmental Consulting Pty. Ltd.

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal address: P. O. Box 276, Oakleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190 Email: mgt@mgtenv.com.au


Coffey Geotechnics Pty Ltd	Client Sample ID		GA1	GA2	GA3	GA4
Unit 1 18 Hurley Dve	Lab Number		06-AU05129	06-AU05130	06-AU05131	06-AU05132
Coffs Harbour	Matrix		Soil	Soil	Soil	Soil
	Sample Date		Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006
Analysis Type	LOR	Units		1		
% Moisture	0.1	%	34	35	40	39
Heavy Metals (7)						
Arsenic	2	mg/kg	3.9	4.6	4.7	3.9
Cadmium	0.5	mg/kg	< 0.5	0.6	< 0.5	< 0.5
Chromium	5	mg/kg	30	26	33	26
Copper	5	mg/kg	36	45	35	41
Lead	5	mg/kg	36	89	45	52
Nickel	5	mg/kg	29	32	25	28
Zinc	5	mg/kg	180	800	250	310
Heavy Metals						
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1

COMMENTS:


Client Sample ID		GB1	GB2	GB3	GB4
Lab Number		06-AU05133	06-AU05134	06-AU05135	06-AU05136
					Soil
					Aug 3, 2006
LOR	Units				
0.1	%	46	38	36	43
				anda an anna ann ann ann an Anna	
2	mg/kg	3.5	5.3	3.9	4.0
0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
5	mg/kg	30	35	30	42
5	mg/kg	33	40	36	37
5	mg/kg	33	27	30	21
5	mg/kg	22	27	27	28
5	mg/kg	810	160	280	140
	criste anni bebata triosata ata (11151555) (111				
0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
	Lab Number Matrix Sample Date LOR 0.1 2 0.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Lab Number Matrix Sample Date LOR Units 0.1 % 2 mg/kg 0.5 mg/kg 5 mg/kg	Lab Number 06-AU05133 Matrix Soil Sample Date Aug 3, 2006 LOR Units 0.1 % 46 0.1 % 46 0.1 % 46 0.1 % 46 0.1 % 46 0.5 mg/kg 3.5 0.5 mg/kg 30 5 mg/kg 33 5 mg/kg 33 5 mg/kg 810 1000 1000 1000	Lab Number 06-AU05133 06-AU05134 Matrix Soil Soil Sample Date Aug 3, 2006 Aug 3, 2006 LOR Units 46 38 0.1 % 46 38 2 mg/kg 3.5 5.3 0.1 % 46 38 2 mg/kg 3.5 5.3 0.5 mg/kg 30 35 5 mg/kg 30 35 5 mg/kg 33 40 5 mg/kg 33 27 5 mg/kg 810 160	Lab Number 06-AU05133 06-AU05134 06-AU05135 Matrix Soil Soil Soil Soil Sample Date Aug 3, 2006 Aug 3, 2006 Aug 3, 2006 Aug 3, 2006 LOR Units 46 38 36 O.1 % 46 38 36 Quarties Matrix Mark 3, 2006 Aug 3, 2006 Aug 3, 2006 LOR Units 46 38 36 Quarties Mark 40 35 30 Quarties Mark 40 33 27 30 Quarties Mark 40 36

1

Coffey Geotechnics Pty Ltd	Client Sample ID		GB5	GB6	GB7	GB8
Unit 1 18 Hurley Dve	Lab Number		06-AU05137	06-AU05138	06-AU05139	06-AU05140
Coffs Harbour	Matrix		Soil	Soil	Soil	Soil
NSW 2450	Sample Date		Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006
Analysis Type	LOR	Units				
% Moisture	0.1	%	34	39	34	36
Heavy Metals (7)						
Arsenic	2	mg/kg	3.5	3.4	4.5	3.4
Cadmium	0.5	mg/kg	< 0.5	< 0.5	0.9	< 0.5
Chromium	5	· mg/kg	26	33	26	31
Copper	5	mg/kg	47	31	47	38
Lead	5	mg/kg	36	18	73	27
Nickel	5	mg/kg	32	25	33	30
Zinc	5 ·	mg/kg	200	120	1000	200
Heavy Metals	and the second contract and the second contract and the second seco					
Мегсигу	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
COMMENTS						

~

Coffey Geotechnics Pty Ltd	Client Sample ID		GC1	GC2	GC3	GC4
Unit 1 18 Hurley Dve	Lab Number		06-AU05141	06-AU05142	06-AU05143	06-AU05144
Coffs Harbour	Matrix		Soil	Soil	Soil	Soil
NSW 2450	Sample Date		Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006
Analysis Type	LOR	Units				
% Moisture	0.1	%	29	33	31	45
Heavy Metals (7)						
Arsenic	2	mg/kg	2.8	2.7	7.7	16
Cadmium	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	5	mg/kg	32	27	38	27
Copper	5	mg/kg	23	30	38	36
Lead	5	mg/kg	11	8.7	32	24
Nickel	5	mg/kg	23	22	25	29
Zinc	5	mg/kg	69	75	190	140
Heavy Metals						
Мегсигу	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
·						
COMMENTS						

Coffey Geotechnics Pty Ltd	Client Sample ID	No.	GC5	GC6	GC7	GC8
Unit 1 18 Hurley Dve	Lab Number		06-AU05145	06-AU05146	06-AU05147	06-AU05148
Coffs Harbour	Matrix		Soil	Soil	Soil	Soil
NSW 2450	Sample Date	· · · · · ·	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006
Analysis Type	LOR	Units				
% Moisture	0.1	%	31	36	33	37
Heavy Metals (7)						
Arsenic	2	mg/kg	7.4	3.4	3.1	3.3
Cadmium	0.5	mg/kg	< 0.5	< 0.5	0.7	< 0.5
Chromium	5	mg/kg	26	27	25	40
Соррег	5	mg/kg	39	30	54	32
Lead	1 5	mg/kg	29	14	70	17
Nickel	5	mg/kg	28	20	28	25
Zinc	5	mg/kg	190	130	660	120
Heavy Metals					linit ter i terrini terini tetmetera attali. 2019	
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1

Coffey Geotechnics Pty Ltd	Client Sample ID		GC9	GC10	GC11	GC12
Unit 1 18 Hurley Dve	Lab Number		06-AU05149	06-AU05150	06-AU05151	06-AU05152
Coffs Harbour	Matrix		Soil	Soil	Soil	Soil
NSW 2450	Sample Date		Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006
Analysis Type	LOR	Units	100			
% Moisture	0.1	%	34	45	33	38
Heavy Metals (7)					oom oorangtiin oliin 1990	
Arsenic	2	mg/kg	4.5	2.9	4.3	4.0
Cadmium	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	5	mg/kg	30	25	34	45
Copper	5	mg/kg	48	27	42	31
Lead	5	mg/kg	36	14	22	11
Nickel	5	mg/kg	33	25	31	32
Zinc	5	mg/kg	210	110	150	110
Heavy Metals						
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1

COMMENTS:

Coffey Geotechnics Pty Ltd	Client Sample ID		GC13	GC14 GC14	GC15	GC16
Jnit 1 18 Hurley Dve	Lab Number		06-AU05153	06-AU05154	06-AU05155	06-AU05156
Coffs Harbour	Matrix		Soil	Soil	Soil	Soil
NSW 2450	Sample Date		Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006
Analysis Type	LOR	Units	-			
% Moisture	0.1	%	46	39	38	34
leavy Metals (7)					hini dhihan coora. Tarifa	
Arsenic	2	mg/kg	2.6	6.4	3.4	3.8
Cadmium	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	5	mg/kg	31	36	37	33
Copper	5	mg/kg	35	59	34	44
ead	5	mg/kg	16	31	26	21
Nickel	5	mg/kg	28	38	32	35
Zinc	5	mg/kg	140	· 300	260	170
leavy Metals						
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1

Client Sample . D	GA1	GA1	GA1	GA1	Method blank
Lab Number	06-AU05129	06-AU05129	06-AU05129	06-AU05129	Batch
QA Description		Duplicate	Duplicate % RPD	Spike % Recovery	
Matrix	Soil	Soil	Soil	Soil	Soil
Sample Date	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006
Units	74 199 199 199 199		% RPD	% Recovery	mg/L
					9 999 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	3.9	3.3	14	81	< 0.02
	< 0.5	< 0.5	<1	86	< 0.02
	30	29	3.9	78	< 0.05
	36	36	3.4	99	< 0.05
	36	44	19	112	< 0.05
	29	27	6.1	89	< 0.05
	180	170	4.5	96	< 0.05
				at average the Courter of	()
	< 0.1	< 0.1	<1	-	< 0.005
	D Lab Number QA Description Matrix Sample Date	DOdeLab Number06-AU05129QA DescriptionMatrixSoilSample DateAug 3, 2006UnitsIntersection3.9< 0.5	D O6-AU05129 O6-AU05129 QA Duplicate Description Soil Soil Matrix Soil Soil Sample Date Aug 3, 2006 Aug 3, 2006 Units	D O6-AU05129 O6-AU05129 O6-AU05129 QA Duplicate Duplicate % RPD Matrix Soil Soil Soil Sample Date Aug 3, 2006 Aug 3, 2006 Aug 3, 2006 Units	D O6-AU05129 O6-AU05129 O6-AU05129 O6-AU05129 QA Duplicate Duplicate % Spike % Description Soil Soil Soil Matrix Soil Soil Soil Sample Date Aug 3, 2006 Aug 3, 2006 Aug 3, 2006 Aug 3, 2006 Units % RPD % Recovery 3.9 3.3 14 81 < 0.5

.

COMMENTS:

- (

Coffey Geotechnics Pty Ltd	Client Sample	GB7	GB7	GB7	GB7
Unit 1 18 Hurley Dve	Lab Number	06-AU05139	06-AU05139	06-AU05139	06-AU05139
Coffs Harbour	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery
NSW 2450	Matrix	Soil	Soil	Soil	Soil
	Sample Date	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006
Analysis Type	Units			% RPD	% Recovery
Heavy Metals (7)					
Arsenic		4.5	4.1	10	
Cadmium		0.9	0.9	4.6	-
Chromium		26	26	3.8	-
Copper		47	45	4.0	-
Lead		73	70	4.7	-
Nickel		33	30	11	-
Heavy Metals				er hersen sen hersen die	
Mercury		< 0.1	< 0.1	<1	86
		· · · · · · · · · · · · · · · · · · ·			

COMMENTS:

Chain of Custody			5 V																		
-				Laboratory C	ebrO (nocielouc	r No:					Job No:	ALST	010	50	1 AC	She	et	1 0	رسر ا		
Dispatch to: Mg/ (Address & J LINLST Phone No.)	of To			Sampled by:	:						Consigning Officer: ELC										
Phone Naj O Pirvy J				AB +	C/M																2
Attention: TAXIX 95(4	5166				· · · · · · · · · · · · · · · · · · ·			<u> </u>		n.	reined	15	16	/06		4-	7/	81	66	Coffer
	5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	•		Project Man. (report results							Courier	Service:	Sd	Imo	D.	\$) Lack		VD.	ь. 	
Ci.ent 5	8-2126	× <		Emma	COUM	Prov		•			Consign	ament No	e No:	T		-			5 01	104	
Relinquished by: C FFEY	GEOT	ECHNICS PTY LT	ß	Date:	Time:	Received by:							_ ·					- Tn	ale:		Time:
4/6 Q ALSYONN	SSELU	TOA DR				_		.										-	410.		TREP:
ALSYON	MUE	MSL1 247-	}										C	īn	uù s	>		u	3/8	100	(9763)
							1				<u>-</u>				· · · · · ·						19763
	atrix					-pe	·	r		-	ž.	Analy	ses R	equire	;		. ,	·······	.		
Comments	Sample Matrix	Container Type and Preservative		Sample	No.	Date Sampled		-	втех	$\sum_{i=1}^{n}$	00			İ							Sample Condition on Receipt
	Sam					Date	PAHs	TPHG	MAHs = BTEX	Metals:	LCLP										B C S
-	Srat	GLASS JAR		· •	1175-7	91-610	: 		MM		¥⊢		ļ				<u> </u>	10			
			CA		2010	3/8/06				1			<u>{</u>	Þ	30	1	10.	14		54	727
			GA		וגרו (569.	 			/			ou		pb_	F	b.	<u>14</u>	100	<u> </u>	-
			GA	3 A	21722					1	$\overline{\mathbf{X}}$			1							
		· · · · · · · · · · · · · · · · · · ·	GA		31723																
			<u>48</u>		25						$\mathbf{\Sigma}$							_			
			GB		N1726		 			\geq	\geq			.l	ļ	[[
			GR		い う う 29				-		\geq			┥	<u> </u>						
			दिष्ठ	5 /	NN29	• ····································					\leftrightarrow		<u> </u>	<u>. . </u>							
		· ·			01730.	<u> </u>		·			\rightarrow			+	<u> </u>						
			48 48	7 A	J1731	1				Ń	$\overline{}$			+			╞━╌╵				
			48	9 A	21732		<u> </u>				$\overline{\mathbf{n}}$		[1							•
			GC		H 284					X			1	1			+		İ		
			<u>G</u> C	2	<u> </u>					\sum	\mathbf{N}										
			4	<u>a</u> <u>7</u>		-				1	\sum										
		C Mal-	1 h	ĻΨ,	<u> </u>				L_	\mathbf{N}	<u> </u>	_				<u> </u>				<u> </u>	
Special Laboratory Instructions:						Pb, Ni,	, Z	h,	H	9								R	EFER	ENCE	T MUST BE D on All
	RMAI			around Requi														SI	JBSE	QUE	IT PAGES

ispatch to: ddress & ione No.)			Sampled	Sampled by: Project Manager:					G	ALST (Insigning ()ificer;					<u>Zº 2</u>		
flention:		-							Date Dispatched:									
_			(report res	ianager: uits ioj					1	xmer Servi unsignmen		lo:			· .			Č
elinquished by;			Date:	Time:	Received by:				1							Date	:	Time:
								·····				C	η.	ũ.S)	(30	3/3-	19763
	峑							•	, Fe] 5 A	nalyses	Fequ	bani					1976
Comments	Sample Matrix	Container Type and Preservative	Sar	pie No.	Date Sampled	PAHs	TPHs	MAHs = BTEX	Metals: 8									Sample Condition on Receipt
· · · · · · · · · · · · · · · · · · ·	Son	GLASS JAR	465 46	H286	38/06						Yø	~_!	Ø	2 '	yo,	197	(ð	6
			KC 7			-									$\left\ - \right\ $			
<u>. </u>	•	· · · · · · · · · · · · · · · · · · ·	4C 8 4C 9 4C 10						\sum				_					
······································			GC 10			1			\mathbb{R}						-	┦──┨─		+
			GC 11						\mathbf{N}									
i			CC 12 GC 13						$\mathbb{R}^{\mathbb{N}}$	+			_ -					1
			GC 14						\sum									1
·····			4C 15				<u> </u>		\mathbb{R}	$\left\{ -\right\}$					\mathbb{K}		_	
				<u>.</u>											-4			
			·															
				·····														
																		<u> </u>

Copies: Whitte: Sign on release. YELLOW: If dispatched to interstate Lab, Lab to sign on receipt and fax back to Coffex. BLUE: To be returned with results.

.

18-08-00,11.4 , כטווס המיטטעו

> ~ 4 Т . 4

Environmental Consulting Pty. Ltd.

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal address: P. O. Box 276, Oakleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190 Email: mgt@mgtenv.com.au

CERTIFICATE OF ANALYSIS

Coffey Geotechnics Pty Ltd ALS 4/6 Russelton Dve Alstonville NSW Site: NR1059/3 Report Number: 197633 Page 1 of 9 Order Number: Date Received: Aug 18, 2006 Date Sampled: Aug 3, 2006 Date Reported: Aug 29, 2006 Contact: Emma Coleman

Methods

- USEPA 6010B Heavy Metals & USEPA7470/71 Mercury
- USEPA 6010B Heavy Metals & USEPA 7470/71 Mercury

Comments

Notes

1. The results in this report supersede any previously corresponded results.

2. All Soil Results are reported on a dry basis.

3. Samples are analysed on an as received basis.

ABBREVIATIONS mg/kg : milligrams per kilograms, mg/L : milligrams per litre, ppm : parts per million, LOR : Limit of Reporting RPD : Relative Percent Difference CRM : Certified Reference Material LCS : Laboratory Control Sample

Authorised

Canfth

Michael Wright NATA Signatory Laboratory Manager

NATA Accredited Laboratory Number 1261 The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced, except in full.

Report Number: 197633

Momber

Environmental Consulting Pty. Ltd.

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal address: P. O. Box 276, Oakleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190 Email: mgt@mgtenv.com.au

Coffey Geotechnics Pty Ltd ALS	Client Sample ID		G1	GA1	GA2	GA3
4/6 Russelton Dve	Lab Number		06-AU05157	06-AU05158	06-AU05159	06-AU05160
Alstonville	Matrix	· · · ·	TCLP	TCLP	TCLP	TCLP
NSW	Sample Date		Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006
Analysis Type	LOR	Units	<u> </u>			
Heavy Metals (7)						
Arsenic	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Cadmium	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Chromium	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Copper	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Lead	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Nickel	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Zinc	0.01	mg/l	2.3	0.28	1.3	0.19
Heavy Metals				n er versielet er er i tiet et britet et inter et er er tre pe		
Mercury	0.005	mg/l	< 0.005	<0.005	<0.005	<0.005

COMMENTS:

~

Coffey Geotechnics Pty Ltd ALS	Client Sample ID	and the second second	GA4	GB1	GB2	GB3
4/6 Russelton Dve	Lab Number		06-AU05161	06-AU05162	06-AU05163	06-AU05164
Alstonville	Matrix		TCLP	TCLP	TCLP	TCLP
NSW	Sample Date		Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006
Analysis Type	LOR	Units		3 .,		
Heavy Metals (7)						
Arsenic	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Cadmium	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Chromium	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Copper	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Lead	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Nickel	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Zinc	0.01	mg/l	0.39	0.69	0.09	0.46
Heavy Metals						
Mercury	0.005	mg/i	<0.005	< 0.005	<0.005	<0.005
COMMENTS					t No. 197633	

Coffey Geotechnics Pty Ltd ALS	Client Sample ID		GB4	GB5	GB6 in a	GB7
4/6 Russelton Dve	Lab Number		06-AU05165	06-AU05166	06-AU05167	06-AU05168
Alstonville	Matrix		TCLP	TCLP	TCLP	TCLP
NSW	Sample Date		Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006
Analysis Type	LOR	Units	Aug 0, 2000	Aug 0, 2000	Aug 0, 2000	Aug 0, 2000
Heavy Metals (7)						
Arsenic	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Cadmium	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Chromium	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Соррег	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Lead	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Nickel	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Zinc	0.01	mg/l	0.07	0.29	0.06	2.2
Heavy Metals					17 - 1917) (17) (17) (17) (17) (17) (17) (17) (
Mercury	0.005	mg/l	<0.005	< 0.005	< 0.005	<0.005

1

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal address: P. O. Box 276, Oakleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190 Email: mgt@mgtenv.com.au

Coffey Geotechnics Pty Ltd ALS	Client Sample ID		GB8	GC1	GC2	GC3		
4/6 Russelton Dve	Lab Number	and an electrony of the second second	06-AU05169	06-AU05170	06-AU05171	06-AU05172		
	Matrix		TCLP	TCLP	TCLP	TCLP		
	Sample Date		Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006		
Analysis Type	LOR	Units						
Heavy Metals (7)								
Arsenic	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01		
Cadmium	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01		
Chromium	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01		
Copper	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01		
Lead	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01		
Nickel	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01		
Zinc	0.01	mg/l	0.29	0.04	0.05	0.33		
Heavy Metals								
Mercury	0.005	mg/l	<0.005	<0.005	< 0.005	<0.005		

.

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal address: P. O. Box 276, Oakleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190 Email: mgt@mgtenv.com.au

.

.

~

Coffey Geotechnics Pty Ltd ALS	Client Sample ID		GC4	GC5	GC6	GC7		
4/6 Russelton Dve	Lab Number		06-AU05173	06-AU05174	06-AU05175	06 4105476		
Alstonville	Matrix		TCLP	TCLP	TCLP	06-AU05176 TCLP		
NSW	Sample Date		Aug 3, 2006	Aug 3, 2006	Aug 3, 2006			
Analysis Type	LOR	Units	Aug 5, 2000	Aug 3, 2000	Aug 3, 2000	Aug 3, 2006		
Heavy Metals (7)	-94							
Arsenic	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01		
Cadmium	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01		
Chromium	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01		
Copper	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01		
Lead	0.01	mg/i	< 0.01	< 0.01	< 0.01	< 0.01		
Nickel	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01		
Zinc	0.01	mg/l	0.09	0.49	0.10	0.08		
Heavy Metals								
Mercury	0.005	mg/l	<0.005	< 0.005	<0.005	< 0.005		

COMMENTS:

.

Coffey Geotechnics Pty Ltd ALS	Client Sample ID		GC8	GC9	GC10	GC11		
4/6 Russelton Dve	Lab Number		06-AU05177	06-AU05178	06-AU05179	06-AU05180		
	Matrix		TCLP	TCLP	TCLP	TCLP		
NSW	Sample Date		Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006		
Analysis Type	LOR	Units				3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Heavy Metals (7)								
Arsenic	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01		
Cadmium	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01		
Chromium	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01		
Copper	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01		
Lead	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01		
Nickel	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01		
Zinc	0.01	mg/l	0.07	0.25	0.26	0.19		
Heavy Metals								
Mercury	0.005	mg/l	<0.005	< 0.005	<0.005	< 0.005		
COMMENTS:					t No. 197633			

Coffey Geotechnics Pty Ltd ALS	Client Sample ID		GC12	GC13	GC14 Boots and Street	GC15
4/6 Russelton Dve	Lab Number		06-AU05181	06-AU05182	06-AU05183	06-AU05184
Alstonville	Matrix		TCLP	TCLP	TCLP	TCLP
NSW	Sample Date		Aug 3, 2006	Aug 3, 2006	Aug 3, 2006	Aug 3, 2006
Analysis Type	LOR	Units				
Heavy Metals (7)						
Arsenic	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Cadmium	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Chromium	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Copper	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Lead	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Nickel	0.01	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Zinc	0.01	mg/l	0.05	0.07	0.44	0.52
Heavy Metals						
Mercury	0.005	mg/l	< 0.005	<0.005	<0.005	<0.005
· · ·						

Coffey Geotechnics Pty Ltd ALS	Client Sample ID		GC16
4/6 Russelton Dve	Lab Number		06-AU05185
Aistonville	Matrix		TCLP
NSW	Sample Date		Aug 3, 2006
Analysis Type	LOR	Units	
Heavy Metals (7)			
Arsenic	0.01	mg/l	< 0.01
Cadmium	0.01	mg/l	< 0.01
Chromium	0.01	mg/l	< 0.01
Соррег	0.01	mg/l	< 0.01
Lead	0.01	mg/l	< 0.01
Nickel	0.01	mg/l	< 0.01
Zinc	0.01	mg/i	0.15
Heavy Metals			
Mercury	0.005	mg/l	<0.005

`

Samon and the end and a		$\mathcal{L} = \{ i_1, \dots, i_{k-1} \}$	5 1			-														
hain of Custody				Laboratory	Quelation / Order	No:					Job No:	1257	010	59	₩¢	Shee	4	سر ان	2	
Dispatch to: Mggt			Sampled by:								Consigni									
Address & J LING TON Phone Na) GALLEIGH Attention: TAX 102 9564-		<u>5166</u>		AB 4	C/M						Dato Dig	honketer A ~n/ o	15	16/	106	ł		18	166	Ð
Attention: 1 AX 195 9564 - ((.e.,) 500				Project Ma (report resu EMMA		Ard					Courier &	Service: nent No	Sc). te No:	mpl	وج	ۍ	on)	pre	2/100	Coffee
Relinquished by: CFFEY G	Eote	ECHNICS PTY LT	3	Date:	Time:	Received by:												Dale:		Time:
4/6 RXS	NELL LE	TOA DR NSL 247											\overline{C}	n.	<u>iis</u>		<u> </u>	121	alu	1976
											7									197633
	登					ß		T		-		Anaiy	ises Re	quired	·					
Comments	Sample Matrix	Container Type and Preservative		Samp	le No.	Date Sempled	PAHs	TPH6	MAHS = BTEX	Metals:	1216									Sampla Condition on Receipt
	501L	GLASS JAR	C, '	1	TC25 4E	97-610	_		2				lar		3		b .	195	159	727
······			CA	1 /	120	3/8/04				$\mathbf{\Sigma}$	$\overline{\mathbf{N}}$		lou.	1	30	n	5.	9-11	20	
			GA'		<u>וגרו ט</u>	569.			[\geq	\leq	_			Ľ					·
			GY		1122				[\geq	$\geq \mid$		<u> </u>		-					· .
			GA		<u>NI723</u>			-+		\geq	$\rightarrow -$		-							<u> </u>
			GB GB		N125				k	\rightarrow	$\geq \mid$		- 			ļ				<u> </u>
	••		48		AU 1727					\rightarrow	$\rightarrow +$							{		
······	γ			34	N 1728				<u> </u>	\ge	$ \ge -$	_		<u> </u>		 				
······································	······································		ŢĽŔ		NN29					\geq	Ċ								<u> </u>	
			C.P		N1730		1			$\overline{}$			-							+
			1Gg	7	AJ 1731					$\overline{}$										1
			GÊ	<u>Ġ</u>	ADINGL	1	1-1			$\overline{}$			1							1.
			GC	- <u>-</u>	H 285					\leq	\mathbf{n}		1							1
			GC							$\mathbf{\Sigma}$	\mathbf{N}	_	T							
			4	\$3						$\boldsymbol{\lambda}$	\mathbf{N}					1				
	i	8 Metals =	16	CU	Jur, Cu,				ľ	$\mathbf{\nabla}$				1	T		1 1			

Coples: WHITE: Sign on release. YELLOW: If dispetched to Interstate Lab, Lab to sign on receipt and fax back to Colley. BLUE: To be relumed with results.

							Joh No:	57010	>59	AC		Sheel		2°17	۲				
ispaich to: ddress &			Sampled	l by:					Consigning Officer:										
kale No.)									Dale Di	spaiched	5								
itention:			Project I (report re	vianager: suits toi					Couniar	Service:								2	
									Consign	nmen i N a	le No:								
linquished by:			Date:	Time:	Received by:				·							Date	9:	Time:	
										. <u> </u>		<u>.</u> ר	متد	5		190	263-3	1976	
	· · · ·	······································				- 			1									1970	
	철				g				E .	Anal	ses Re	quired		·					
Comments Container Type Container Type and Preservative	Sample	nple No.	Date Sampled	PAHs	TPHs [.] unu- etter	Motals: 8	18 177									Sample Condition			
	Son	GLASS JAN	465	H286	38/06				4	-	low	, ,	<u>d</u>			19-	1 17	6	
			1926					N	\mathbf{N}			Y	- 	Ĭ				<u> </u>	
			GC 7	····	_				[N]					_[_]					
······			4C 8 4C 9 4C 10 4C 11			┼─┼		\rightarrow	\mathbb{N}^{+}					╶┨┽	_			<u>`-</u>	
	····	······································	4C 10		·	╁╾┼		\wedge	\mathbb{R}^{+}									-	
			GC 11					K	\mathbf{N}		1								
			<u>CC</u> 12			<u> </u>		-N	\square										
			CC 13 CC 14			╉╼╍╊		-	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$										
			CC IS												\checkmark				
			GC 15 GC 16						N					M	·				
······											<u> </u>								
											<u> </u>								
						┨──┤			+									-{	
P										_									
pecial Laboratory Instructions:		<u>.</u>					l					I		L	L	LL.		, L	

· .

Copies: WHITE: Sign on release. YELLOW: If dispatched to Intersiste Lab, Lab to sign on receipt and fax back to Colley. BLUE: To be returned with results.