Water Sensitive Urban Design Strategy Report

PROPOSED COMMERCIAL DEVELOPMENT

Corner Punchbowl and Cosgrove Road, Enfield

PREPARED BY

ENGINEER Simon Kapsis

DATE 18 March 2016

ISSUE 001 REVISION 005

OFFICE 02 9891 5033 FAX 02 9891 3898

REF NO. 15200

PREPARED FOR

CLIENT Flower Power Pty Ltd

PHONE EMAIL

PO Box 979 Level 1, 91 George Street PARRAMATTA NSW 2150

admin@sparksandpartners.com.au sparksandpartners.com.au

Disclaimer

This report (including any enclosures and attachments) has been prepared for the exclusive use and benefit of the addressee(s) and solely for the purpose for which it is provided. Unless we provide express prior written consent, no part of this report should be reproduced, distributed or communicated to any third party. We do not accept any liability if this report is used for an alternative purpose from which it is intended, nor to any third party in respect of this report

Document Control

Revision	Date	Description	Prepared	Reviewed	Approved
1	18.03.16	DRAFT	SK	CV	MW
2	21.04.16	Issued for DA	SK	MW	MW
3	21.07.16	Issued for DA	SK	MW	MW
4	23.11.16	Re-Issued for DA	SK	SK	MW
5	01.08.17	Appendices updated	MW	MW	MW

Table of Contents

Introduction	1
Introduction	1
Proposed Development	1
WSUD Objectives	2
Rainwater Reuse	
Stormwater Quality	2
Stormwater Quantity	3
Maintenance and Monitoring	
Flooding Review	
Conclusion	
Appendix A - Concept Stormwater Drainage Plans	6
Appendix B – MUSIC Model Parameters	15
Appendix C - Concept Catchment Plan	17
Appendix D - OSD Design Coordination with Sydney Water	19
Appendix E - Maintenance and Monitoring Schedule	20
Appendix F - Council Correspondence Re: Flooding	23
Appendix G - Excerpts from the Environmental Impact Statement (EIS) for Intermodal L	ogistics
Center, Enfield.	30

Introduction

Sparks & Partners have been engaged by Flower Power Pty Ltd, to provide civil engineering services to support the proposed Development Application for a proposed commercial development at the corner of Punchbowl and Cosgrove Road, Enfield. The engineering services include the design and documentation of the storm water drainage infrastructure and finished pavement levels for the proposed development.

Strathfield City Council being the approval authority for the proposed development, require a Water Sensitive Urban Design (WSUD) Strategy Plan be prepared that takes into consideration the objectives and controls under Strathfield Development Control Plan 2005 (SCC DCP) Part N. In response to this requirement Sparks and Partners has undertaken modelling of the proposed integrated water management measures and prepared this report to demonstrate that the proposed Commercial development identifies and incorporates water conservation and stormwater management measures into its design and operation in accordance with the requirements of Part N of the SCC DCP.

Existing Site

The Existing site is approximately 2.470 ha and consists of an existing building which is heritage listed. The proposed development extents do not extend to all boundaries of the subject property as it is part of the intermodal facility and access is provided through the existing site. The site is bounded by Mount Enfield to the west, 123 Cosgrove Road to the north, Cosgrove Road to the east and Punchbowl road to the South. Sydney Water Channel Coxs Creek is located north of the site and is beyond a nearby Frog Pond area requiring preservation; measures to be put in place to mitigate any disturbances within this area.

Proposed Development

The proposed development will be used as a commercial site (Flower Power Garden Center). The existing building, being heritage listed, will be used as part of the proposed development, car park and storage pavement areas, and landscaping areas. The building occupies 0.617 ha, the pavement area proposed is to occupy 1.163 ha and the landscaping will occupy 0.690 ha. Retaining walls will be provided along Mount Enfield due to the proposed extents of the carparking are requiring the reshaping of the existing terrain.

WSUD Objectives

The objective of WUSD is to provide a strategy that brings together the different aspects of the water cycle as a whole rather than an ad hoc approach to water management. This includes the management aspects of freshwater, wastewater and stormwater and to minimize the impacts on the urban water cycle. The following WSUD objectives according to Part N of the Strathfield Council DCP have been considered and addressed for the proposed development:

- Protect and enhance natural water systems (creeks and rivers etc.)
- Treat urban stormwater to meet water quality objectives for reuse and/or discharge to receiving waters.
- Match the natural water runoff regime as closely as possible (where appropriate).
- Reduce potable water demand through water efficient fittings and appliances, rainwater harvesting and wastewater reuse.
- Provide objectives and controls for specific WSUD elements including water conservation, stormwater quality and waterway stability management.

To demonstrate the above concept, stormwater drainage plans and associated details have been prepared along with detailed modelling using the Council endorsed MUSIC software package. The concept stormwater drainage plans (included in Appendix A) detail the location of the water management infrastructure and this report describes the treatment measures taken to achieve these objectives and Strathfield Council's Water treatment targets. Coordination has been undertaken with Sydney Water to connect to the Coxs Creek Channel just north of the site. In order to connect to their Channel, water treatment targets set by Sydney Water which are the same as those set by Strathfield Council will need to be met.

Rainwater Reuse

Through the reuse of collected roofwater for non-potable reuse the proposed demand on potable water resources is reduced. The proposed development will capture roof water from part of the building roof area (0.3ha – maximum 50% of roof area can be connected to Rainwater Tank – SCC WUSD reference Guidelines part 2.4 Table 6). This collected roofwater will be conveyed to a 30kL tank for storage and reuse throughout the development. Re-use purposes will primarily include toilet flushing and irrigation uses. A water balance of the proposed reuse system has been completed to model the effectiveness and efficiency of the system. The water balance model was constructed using the MUSIC software package with the following inputs:

- Sydney Airport Rainfall data (Rainfall Station 066037, 6 minute time step and in 1979-1988 modelling period).
- Total approximate non-potable reuse of 1000kL per year plus 600L/day based on the following assumptions:
 - o 100 persons using the facility each day and using the toilet (6L per flush) facilities one time each per day (6L per person x 100 persons = 600L).
 - o 2500m² of irrigated area requiring 10mm rainfall per week equates to approx. 1000kL per year with a distribution factor for Potential Evapotranspiration.

Using the above determined non-potable demand the MUSIC model determines the rainwater tank met the reuse demand up to 82.6% (SCC WUSD minimum water use demand of 80% met according to Strathfield Council WUSD Fact Sheet). This efficiency results in an approximate reduction in the proposed demand on potable water supplies of 1000kL per year.

Stormwater Quality

To ensure the quality of stormwater leaving the site is acceptable and complies with Strathfield Council's and Sydney Water's requirements, specific water quality treatment measures are to be

employed. These treatment measures are to treat the collected stormwater runoff prior to discharge into the Sydney Water Channel (Coxs Creek) located to the north of the site. The treatment measures consist of Enviropods from Stormwater 360, a Rainwater Tank which is to collect no more than 50% of the roof catchment, and a Sandfilter Chamber within the On-site Detention Tank. The combination of these measures provides a treatment train approach to the treatment of stormwater runoff.

Modelling of the proposed treatment measures has been undertaken using the MUSIC software package version 6. The modelling results of the water quality achieved for the site is detailed in Table 1 – MUSIC Model Results below, along with a figure of the prepared model.

Further Details of the MUSIC Model including catchment details, source nodes, treatment nodes etc. are shown in Appendix B. Soil parameters for the source nodes were set according to Table 4 of Section 2.2 (Rainfall runoff Parameters in SCC WSUD reference Guideline March 2011). Nodes verified by a third party (Blacktown City Council) have been utilized within the model to demonstrate treatment train effectiveness.

	Source Load	Residual Load	% Reduction Achieved	SW % Reduction Requirement	SCC % Reduction Requirement	Compliance with SCC Requirement
Total Suspended Solids (kg/yr)	3590	314	91.3	85	85	Yes
Total Phosphorus (kg/yr)	11	2.33	78.9	65	65	Yes
Total Nitrogen (kg/yr)	37.4	19.7	47.3	45	45	Yes
Gross Pollutants (kg/yr)	432	0.00146	100	90	90	Yes

Table 1 - MUSIC Model Results

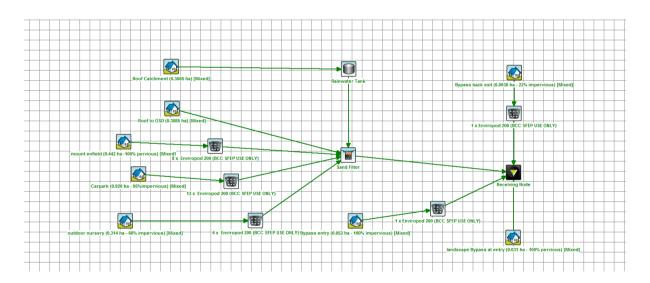


Figure 2 - MUSIC Model

Stormwater Quantity

The proposed development requires the implementation of on-site detention (OSD) as per the SCC Stormwater Management Code 1994 part 5 for Development to control stormwater discharge from the site. The proposed development has an approximate area of 93% draining to the proposed on-site detention (OSD) facility which includes hardstand (10,905m²), roof (6,170m²) and landscaped (5858m²) areas. There are two separate areas of catchment bypassing the OSD, one draining to the Sydney Water Channel (936m²) and one draining to Council's drainage system (833m²). Both these

Bypass catchment areas are treated with an Stormwater 360 Envirpod prior to discharge. A catchment plan of the proposed development is included in Appendix C conveying the areas described above.

Liaising with Sydney Water was undertaken to establish a connection with the Sydney Water Channel (Coxs Creek), north of the site. Based on the above catchment areas the storage required for the proposed development is 494m³ with a maximum discharge of 583L/sec, given by Sydney Water. Email from Sydney Water is shown in Appendix D.

Maintenance and Monitoring

To ensure the continued efficient and correct operation of the proposed integrated water management infrastructure, a 'maintenance and monitoring schedule' is included in Appendix E of this report. The schedule details the frequency of inspections, what is to be inspected and what rectifications to make if required for the water management infrastructure located within the proposed development. The schedule is to be implemented upon commissioning of the water management infrastructure and remain in place for the life of the development; with all records kept on site for inspection should the approval authority deem it necessary.

Flooding Review

A pre DA meeting was held with Council on the 23rd December 2015 and it was raised that Councils flood mapping indicated that the site may be partially flood affected. Council was contacted to obtain this flood mapping to allow for further analysis against the proposed development. Further advice was sought from Council with regard to the flood mapping/modelling however discussions held (Said Saqeb) indicated that their current modelling does not extend into the site itself. Appendix F details the correspondence and flood mapping received from Council.

Further to the above a review of the Environmental Impact Statement, Hydrology and Hydraulics (EISHH) completed in 2005 by Sinclair Knight Mertz (SKM) for the Intermodal Logistics Center was undertaken to determine relevant flood levels for the proposed development. The EISHH details the impact of the intermodal facility on the hydrology and hydraulics of the surrounding catchment, and as such includes Coxs Creek which is located to the north of the development. Figure 19 and Appendix B of the EISHH detail the modelling flood extents and relevant flood levels for the Coxs Creek Channel, and are included Appendix G of this report for reference. The modelling indicates that at chainage 287.1 the 1:100yr ARI flood level is approximately 16.119 AHD. This flood level is significantly below the proposed lowest finished levels of the proposed building and services areas of 21.000 and 19.000 respectively (refer to plan DA4.02 in Appendix A), therefore there is approximately 2.9m of freeboard from the mainstream flooding of Coxs Creek to the proposed development.

Conclusion

Based on the preparation of the concept stormwater drainage plans and MUSIC modeling results it is demonstrated that the principles of Water Sensitive Urban Design have been incorporated into the design and operation of the proposed commercial development at the corner of Cosgrove Road and Punchbowl Road, Enfield in accordance with SCC DCP 2005 Part N. It is demonstrated that the proposed development achieves reductions in potable water by capturing rainwater on site and reusing this for non-potable uses including irrigation and toilet flushing, achieves pollution reduction targets set by council, and employs OSD for the control of stormwater discharge from the site in accordance with targets set by Strathfield Council and Sydney Water. It is demonstrated that the water conservation measures of the proposed development will continue to operate effectively and efficiently through the implementation and use of a monitoring and maintenance schedule ensuring the integrity of the system is maintained. With respect to flooding a review has been undertaken and the proposed development is determined to be located above the mainstream flooding extents of Coxs Creek with sufficient freeboard provided.

PROPOSED COMMERCIAL DEVELOPMENT CORNER COSGROVE ROAD AND PUNCHBOWL ROAD ENFIELD CONCEPT STORMWATER MANAGEMENT

SITE WORKS - GENERAL

- 1. ALL WORKS ARE TO BE UNDERTAKEN IN ACCORDANCE WITH LOCAL COUNCIL, AUSTRALIAN AND AUTHORITY STANDARDS.
- 2. ALL TRENCHING WORKS ARE TO BE RESTORED TO ORIGINAL CONDITION 3. THE INTEGRITY OF ALL EXISTING AND NEW SERVICES IS TO BE
- MAINTAINED THROUGHOUT THE CONSTRUCTION PERIOD 4. ALL PLANS ARE TO BE READ IN CONJUNCTION WITH APPROVED ARCHITECTS, STRUCTURAL ENGINEERS AND OTHER CONSULTANT'S
- PLANS. ANY DISCREPANCIES ARE TO BE NOTIFIED TO THE ENGINEER FOR CLARIFICATION. 5. THE ENGINEER SHALL BE GIVEN A MIN. OF 48 HOURS NOTICE FOR ALL STORMWATER DRAINAGE AND PAVEMENT INSPECTIONS. CONCRETE SHALL NOT BE DELIVERED UNTIL ENGINEERS APPROVAL IS OBTAINED.

SITE WORKS - ACCESS AND SAFETY

- 1. ALL WORKS ARE TO BE UNDERTAKEN IN A SAFE MANNER IN ACCORDANCE WITH ALL STATUTORY AND INDUSTRIAL RELATION REQUIREMENTS.
- 2 ACCESS TO ADJACENT BUILDINGS AND PROPERTIES SHALL BE MAINTAINED AT ALL TIMES.
- 3. WHERE NECESSARY SAFE PASSAGE SHALL BE PROVIDED FOR VEHICLES AND PEDESTRIANS THROUGH OR ADJACENT TO THE SITE

SEDIMENT AND EROSION CONTROL

- 1. THE CONTRACTOR SHALL INSTIGATE ALI. SEDIMENT AND FROSION THE CONTROL WAS DEADLE AND STRAIL FAIL SEARCH AND LEADANN CONTROL MASCIRES IN ACCORDANCE WITH STRAITHFEID COUNCIL STANDARDS AND THE "BLUE BOOK" (MANAGING URBAN STORMWATER SOILS AND CONSTRUCTION, PRODUCED BY THE DEPARTMENT OF HOUSING). THESE MEASURES ARE TO BE REGULARLY INSPECTED AND MAINTAINED.
- THE CONTRACTOR SHALL AT ALL TIMES BE RESPONSIBLE FOR THE ESTABLISHMENT & MANAGEMENT OF A DETAILED SCHEME MEETING COUNCIL'S DESIGN. AND ALL OTHER REGULATORY AUTHORITY
- 3. WHERE PRACTICAL, THE SOIL EROSION HAZARD ON THE SITE SHALL BE KEPT AS LOW AS POSSIBLE TO THIS END, WORKS SHOULD BE UNDERTAKEN IN THE FOLLOWING SEQUENCE:
- a. INSTALL ALL TEMPORARY SEDIMENT FENCES AND BARRIER FENCES. WHERE FENCES ARE ADJACENT TO EACH OTHER THE SEDIMENT FENCE CAN BE INCORPORATED INTO THE BARRIER FENCE.
- b. CONSTRUCT TEMPORARY STABILISED SITE ACCESS. INCLUDING SHAKE DOWN AND WASH PAD.
- c. INSTALL SEDIMENT CONTROL MEASURES AS OUTLINED ON THESE SEDIMENT AND CONTROL PLANS (ONCE APPROVED)
- 4. THE CONTRACTOR SHALL UNDERTAKE SITE DEVELOPMENT WORKS SO THAT LAND DISTURBANCE IS CONFINED TO AREAS OF MINIMUM WORKABLE SIZE.
- 5. AT ALL TIMES AND IN PARTICULAR DURING WINDY AND DRY WEATHER, LARGE, UNPROTECTED AREAS WILL BE KEPT MOIST (NOT WET) BY SPRINKLING WITH WATER TO KEEP DUST UNDER CONTROL. TACIFIERS MAY BE USED TO CONTROL DUST DURING EXTENDED PERIODS OF DRY
- 6. ANY SAND USED IN THE CONCRETE CURING PROCESS (SPREAD OVER THE SURFACE) SHALL BE REMOVED AS SOON AS POSSIBLE AND WITHIN 10 WORKING DAYS FROM PLACEMENT.
- 7. WATER SHALL BE PREVENTED FROM ENTERING THE PERMANENT DRAINAGE SYSTEM UNLESS THE CATCHMENT AREA HAS BEEN STABILISED AND/OR ANY LIKELY SEDIMENT HAS BEEN FILTERED OUT.
- 8. TEMPORARY SOIL AND WATER MANAGEMENT STRUCTURES SHALL BE REMOVED ONLY AFTER THE LANDS THEY ARE PROTECTING ARE STABILISED / REHABILITATED
- 9. THE CONTRACTOR SHALL ALLOW FOR THE ESTABLISHMENT OF ANY OTHER EROSION PROTECTION MEASURES (IF APPLICABLE)
- 10. THE CONTRACTOR SHALL REGULARLY INSPECT (MINIMUM TWICE PER WEEK) ALL EROSION AND SEDIMENT CONTROL MEASURES TO ENSURE THEY ARE OPERATING EFFECTIVELY REPAIRS AND/OR MAINTENANCE SHALL BE UNDERTAKEN REGULARLY AND AS REQUIRED, PARTICULARLY FOLLOWING STORM EVENTS.
- 11. ACCEPTABLE RECEPTORS SHALL BE USED FOR CONCRETE AND MORTAR ACCEPTABLE RECEPTORS SHALL BE USED FOR VOINGREEF AND BOWLAN
 SUURIES, PAINTS, ACID WASHINGS, LICHIT-WEIGHT WASTE MATERIALS
 AND LITTER. WASTE FROM THESE RECEPTORS SHALL BE DISPOSED OF IN
 ACCORDANCE WITH RECULATORY AUTHORITY REQUIREMENTS. PAY ALL
 FEES AND PROVIDE EVIDENCE OF SAFE DISPOSAL.

STORMWATER

- 1 DESIGN CRITERIA
- ROOF DRANAGE (Eaves and Gutter) 1:20YR ARI ROOF DRANAGE (Box Gutters) 1:100YR ARI
- PIPED DRAINAGE (MINOR STORM- 1:50YR ARI
- 1.3. OVERLAND FLOW (MAJOR STORM) BETWEEM 1:50YR-1:100YR ARI
- 2. ALL WORKS ARE TO BE UNDERTAKEN IN ACCORDANCE WITH THE FOLLOWING AUSTRALIAN STANDARDS AS2032, AS3500 AND AS3725 AS A MINIMUM
- 3. ALL PIPES LESS THAN OR EQUAL TO Ø300mmIN SIZE ARE TO BE SOLVENT WELD-JOINTED UPVC CLASS SN8 U.N.O.
- 4. ALL PIPES Ø375mmCR CREATER IN SIZE ARE TO BE MN CLASS 2 RUBBER RING JOINTED (RRI) REINFORCED CONCRETE PIPE (RCP) OR FIBRE REINFORCED CONCRETE (FRC) WITH DUAL V-RING AND COLLAR
- 5. ALL PIPES ARE TO BE LAID AT MIN. 1.0% GRADE ILN.O.
- 6. PIPE BEDDING IS TO BE HS2 UNDER ROADS AND TRAFFICKED AREAS AND SHALL BE H2 N LANDSCAPED AND PEDESTRIAN TRAFFICKED AREAS U.N.O.
- 7. ALL PIPE BENDS AND JUNCTIONS ARE TO BE MADE WITH EITHER PURPOSE MADE FITTINGS OR STORMWATER DRAINAGE PITS.
- 8. MINIMUM COVER FROM THE OBVERT OF THE STORMWATER PIPE OF 300mm IS TO BE PROVIDED IN LANDSCAPED AREAS AND 600mm IN VEHICULAR TRAFFICKED AREAS U.N.O.
- WHERE MINIMUM COVER CANNOT BE ACHIEVED CONCRETE ENCASEMENT OF THE AFFECTED PIPE IS MAY BE UNDERTAKEN WITH 20MPA CONCRETE WITH A MIN. COVER OF 150mm TO ALL SIDES OF THE PIPE THE CONTRACTOR SHALL CONFRM THIS REQUIREMENT WITH THE ENGINEER OR SUPERINTENDENT.
- 10. LAID PIPELINES ARE TO HAVE THE FOLLOWING CONSTRUCTED
- a. HORIZONTAL-1:300 ANGULAR DEVIATION FROM REQUIRED ALIGNMENT b VERTICAL-1:300 ANGULAR DEVIATION FROM REQUIRED ALIGNMENT
- 10. ALL DRAINAGE PITS ARE TO BE CAST IN-SITU. PRECAST DRAINAGE PITS MAY BE USED WITH APPROVAL FROM THE ENGINEER. THE CONTRACTOR SHALL SUBMIT A PRECAST PIT INSTALLATION WORK METHOD STATEMENT FOR ASSESSMENT BY THE ENGINEER FOR
- 11 DRANAGE PIT COVERS ARE TO BE EITHER GALVANISED STEEL OR CAST IRON CLASS 'B' IN LANDSCAPED AND PEDESTRIAN TRAFFICKED AREAS AND CLASS 'D' IN ALL VEHICULAR TRAFFICKED AREAS U.N.O.
- 12. DRAINAGE PIT COVERS ARE TO BE 'HEELSAFE' TYPE IN ALL PEDESTRIAN TRAFFICKED AREAS II NO

FINISHED LEVELS

- 13. EXISTING STORMWATER PIT LOCATIONS AND INVERT LEVELS TO BE CONFIRMED PRIOR TO COMMENCING WORKS ON SITE.
- 14. PROVIDE CLEANING EYES (RODDING POINTS) TO PIPES AT ALL CORNERS AND T-JUNCTIONS WHERE NO PITS ARE PRESENT.
- 15. DOWN PIPS CONNETIED DIRECT TO PIPS TO BE CONNECIED AT 45° TO THE FLOW DIRECTION WITH A CLEANING EYE PROVIDED AT GROUND

1. LEVELS BASED ON SURVEY PREPARED BY BOXALL SURVEYORS PTD.

SHALL BE NOTIFIED TO THE ENGINEER OR SUPERINTENDENT FOR

2. CARPARK & SERVICE AREA LAYOUT AND GRADES TO COMPLY WITH

4. ALL CONTOUR LINES & SPOT LEVELS INDICATE FINISHED PAVEMENT LEVELS U.N.O. ON PLAN.

6. ALL FOOTPATHS ARE TO FALL AWAY FROM THE BUILDING AT 2.5% NOMINAL GRADE U.N.O..
7. BUILDING PAD LEVELS SHOWN AT +/-0.5m TO ALLOW FOR

REQUIRED TO ACHIEVE BALANCED CUT TO FILL.

CONSTRUCTION TOLERANCES AND ADJUSTMENT TO SITE LEVELS AS

3. DRIVEWAY LAYOUT AND DESIGN TO COMPLY WITH STRATHFIELD COUNCIL ACCESS DRIVEWAY DESIGN AND CONSTRUCTION SPECIFICATION.

5. PERMANENT BATTER SLOPES ARE TO HAVE A MAXIMUM GRADE OF 1V:3H U.N.O.

LTD., DATED 25.06.15 (REF: 10215). THE CONTRACTOR SHALL VERIFY LEVELS PRIOR TO CONSTRUCTION COMMENCEMENT, ANY DISCREPANCIES

REFER TO WSUD REPORT

DESIGN SUMMARY STORMWATER QUALITY AND RETENTION

ON-SITE DETENTION

OSD DESIGNED IN ACCORDANCE WITH SYDNEY WATER STANDARDS AND REGULATIONS SINCE THE DISCHARGE CONNECTION POINT IS WITH SYDNEY

EFFECTIVE OSD VOLUME AND PERMISSIBLE SITE DISCHARGE GIVEN BY SYDNEY WATER FOR THE PROPOSED POST DEVELOPED SITE INFORMATION SHOWN

TOTAL SITE AREA: 24.600m MHENZIG AREA DRAINIC TO CSD 10,799hi (439%)
HENZIGS AREA DRAINIC TO CSD 5959hi (238%)
ROCF CATCHMENT AREA = 6,170hi (25,1%)
BYPASS CATCHMENT AREA DRAINING TO SYDNEY WATER CHANNEL = 946m² (38% OF TOTAL SITE - 22%

BYPASS CATCHMENT AREA DRANING TO
COSCROVE ROAD (COLNOIL DRAINAGE SYSTEM)= 833m² (34% OF TOTAL SITE

OSD VOLUME 494m² PERMISSIBLE SITE DISCHARGE: 583L/s

LOCALITY PLAN

DRAWING SCHEDULE

DA1.01 COVER SHEET, DRAWING SCHEDULE AND LOCALITY PLAN

DA2.01 CONCEPT SEDIMENT AND EROSION CONTROL PLAN

DA2.02 CONCEPT SEDIMENT AND EROSION CONTROL DETAILS

DA4.01 CONCEPT STORMWATER MANAGEMENT PLAN SHEET 1 DA4.02 CONCEPT STORMWATER MANAGEMENT PLAN SHEET 2

DA4.05 CONCEPT STORMWATER MANAGEMENT CATCHMENT PLAN

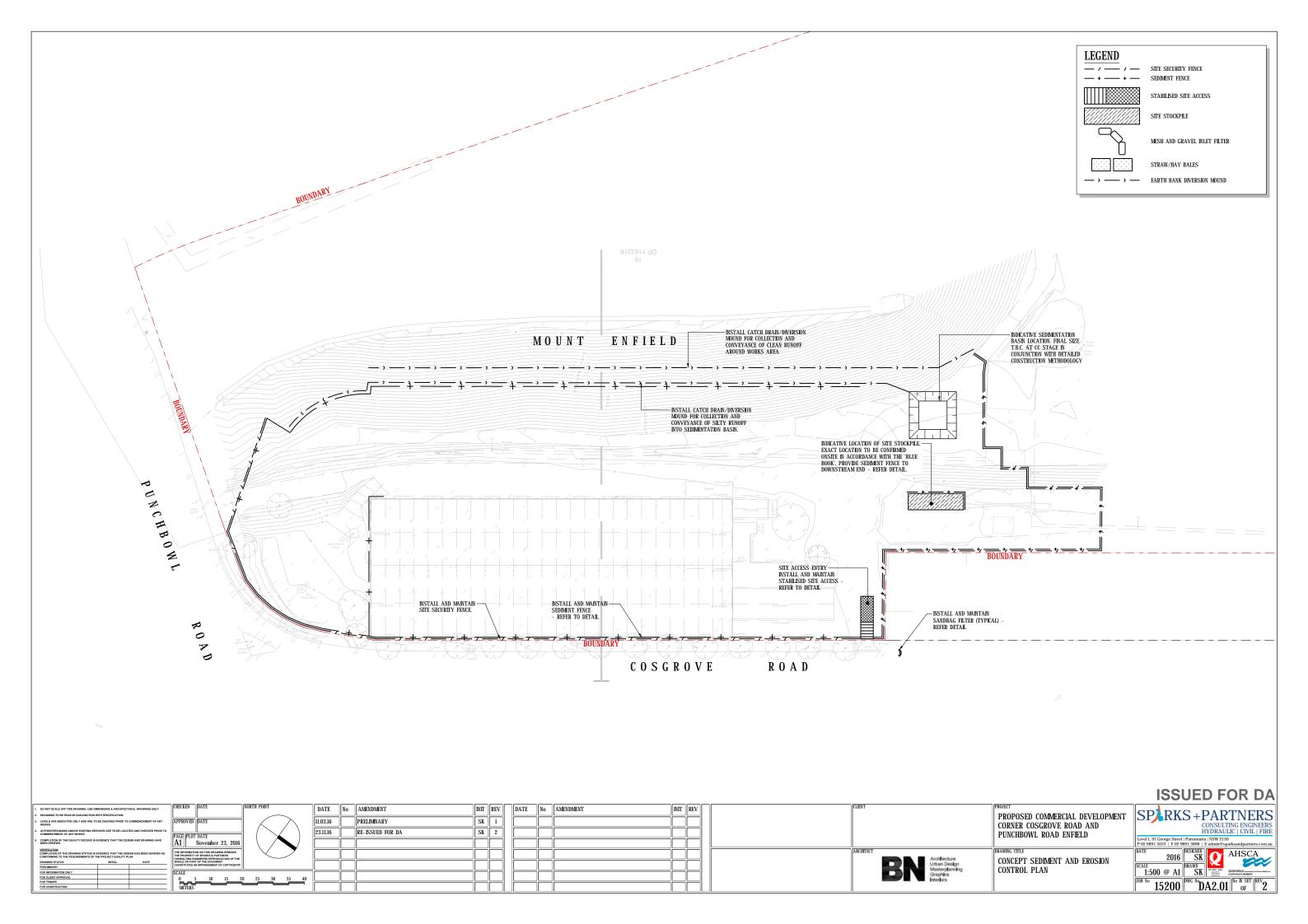
DA4.11 CONCEPT STORMWATER MANAGEMENT PLAN DETAILS SHEET 1

DA4.12 CONCEPT PIT SCHEDULE

November 23 201 NOT TO SCALE

CHECKED

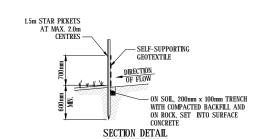
DATE No AMENDMENT 11 03 16 PRELIMINARY SK 1 RE-ISSUED FOR DA

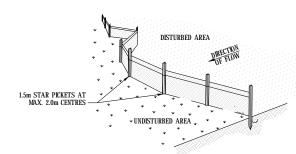

DATE No AMENDMENT INIT REV

Architecture
Urban Design
Masterplanning
Graphics

PROPOSED COMMERCIAL DEVELOPMENT CORNER COSGROVE ROAD AND PUNCHBOWL ROAD ENFIELD

COVER SHEET. DRAWING SCHEDULE AND LOCALITY PLAN




GRADIENT OF DRAIN 1% TO 5% CAN BE CONSTRUCTED WITH OR WITHOUT CHANNEL -ALL BATTER GRADES 2(H):(V) MAX DIRECTION OF FLOW

ONLY TO BE USED AS TEMPORARY BANK WHERE MAXIMUM UPSLOPE LENGTH IS 80m

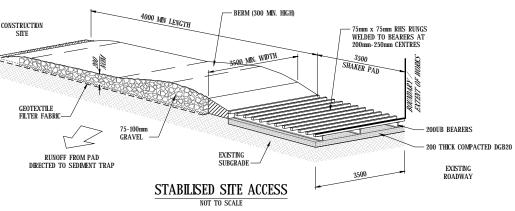
- CONSTRUCTION NOTES:

 1. BUILD WITH CRADIENTS BETWEEN 1% AND 5%.
 2. AVOID REMOVING TREES AND SHRUES IF POSSIBLE- WORK AROUND THEM.
 3. ENSURE THE STRUCTURES ARE FREE OF PROJECTIONS OR OTHER RREGULARITIES THAT COULD IMPEDE WATER FLOW
- BUILD THE DRAINS WITH CIRCULAR, PARABOLIC OR TRAPEZOIDAL CROSS SECTIONS, NOT V SHAPED
- ENSURE THE BANKS ARE PROPERLY COMPACTED TO PREVENT FAILURE
 COMPLETE PERMANENT OR TEMPORARY STABILISATION WITHIN 10 DAYS OF CONSTRUCTION

SEDIMENT FENCE NOT TO SCALE

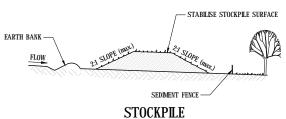
- NOTES:

 1. CONSTRUCT SEDIMENT FENCES AS CLOSE AS POSSIBLE TO BEING PARALLEL TO THE

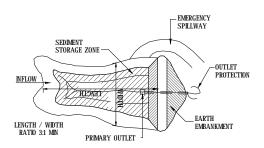

 THE DEALING THE DE CONTOURS OF THE SITE, BUT WITH SMALL RETURNS AS SHOWN IN THE DRAWING TO LIMIT THE CATCHMENT AREA OF ANY ONE SECTION. THE CATCHMENT AREA SHOULD BE SMALL ENOUGH TO LIMIT WATER FLOW IF CONCENTRATED AT ONE POINT TO 50L/s IN THE DESIGN
- ENOUGH TO LIMIT WATER FLOW IF CONCENTRATED AT ONE POINT TO SOL'S IN THE DESIGNATION OF THE VENT, USUALLY THE 10-YEAR EVENT.

 2. CUT A 200mm DEEP TRENCH ALONG THE UPSLOPE LINE OF THE FENCE FOR THE BOTTOM OF THE FABRIC TO BE ENTRENCHED.

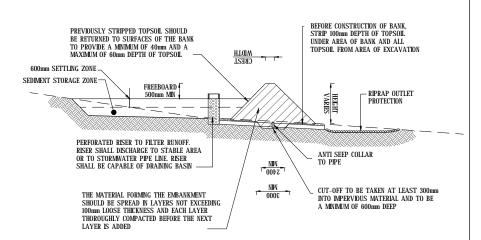
 3. DRIVE 1.5m LONG STAR PICKETS INTO GROUND AT 2.0m INTERVALS (MAX) AT THE DOWNSLOPE EDGE OF THE TRENCH. ENSURE ANY STAR PICKETS ARE FITTED WITH SAFETY CAPS.


 4. EVENTE INTRODUCTION OF CONTENTING TO THE UDSLOPE SIDE OF THE DOSTS ENSURING TO
- SAFELY CAPS.

 A FIX SELF-SUPPORTING GEOTEXTILE TO THE UPSLOPE SIDE OF THE POSTS ENSURING IT GOES TO THE BASE OF THE TRENCH. FIX THE GEOTEXTILE WITH WIRE THES OR AS RECOMMENDED BY THE MANUFACTURER, ONLY USE GEOTEXTILE SPECIFICALLY PRODUCED FOR SEDIMENT FENCING. THE USE OF SHADE CLOTH FOR THIS PURPOSE IS NOT SATISFACTORY
- SALISPACION T.
 JOIN SECTIONS OF FABRIC AT A SUPPORT POST WITH A 150mm OVERLAP.
 BACKFEL THE TRENCH OVER THE BASE OF THE FABRIC AND COMPACT IT THOROUGHLY
 OVER THE GEOTEXTILE.


MAINTENANCE

- 1. THE TEMPORARY ACCESS SHALL BE MAINTAINED IN A CONDITION THAT PREVENTS TRACKING OR FLOWING OF SEDMENT ONTO PUBLIC RIGHTS OF WAY,
 2. THIS MAY REQUIRE PERIODIC TOP DRESSING WITH ADDITIONAL CRAVEL AS CONDITIONS DEMAND AND REPAIR AND/OR CLEANOUT OF ANY MEASURES USED TO TRAP SEDMENT,
- 3. ALL SEDIMENT SPILLED, DROPPED, WASHED OR TRACKED ONTO PUBLIC RIGHTS OF WAY
- MUST BE REMOVED IMMEDIATELY
- NUSTALL BARKER ON ETHER SIDE OF SHAKER PAD
 TO ENSURE VEHICLES ARE GUIDED ON TO THE PAD.
 RIVERT OF SHAKER PAD TO BE DRANED VIA AGRICULTURAL PIPE WRAPPED IN
 GEOTEXTILE FABRIC.



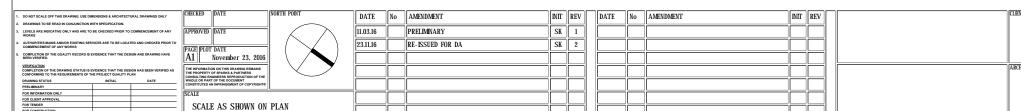
NOTES:

- PLACE STOCKPILES MORE THAN 2 (PREFERABLY 5) METRES FROM EXISTING VEGETATION, CONCENTRATED WATER FLOW, ROADS AND HAZARD AREAS.
 CONSTRUCT ON THE CONTOUR AS LOW, FLAT, ELONCATED MOUNDS.
 WHERE THERE IS SUFFICIENT AREA, TOPSOUL STOCKPILES SHALL BE LESS THAN 2 METRES IN HEIGHT. 4. WHERE THEY ARE TO BE IN PLACE FOR MORE THAN 10 DAYS, STABILISE FOLLOWING THE APPROVED ESCP OR SWMP TO REDUCE THE C-FACTOR TO LESS THAN 0.10.
- CONSTRUCT EARTH BANKS ON THE UPSLOPE SIDE TO DIVERT WATER AROUND STOCKPILES AND SEDIMENT FENCES 1 TO 2 METRES DOWNSLOPE.

SEDIMENT BASIN (TYPICAL) PLAN - TYPE C SOILS

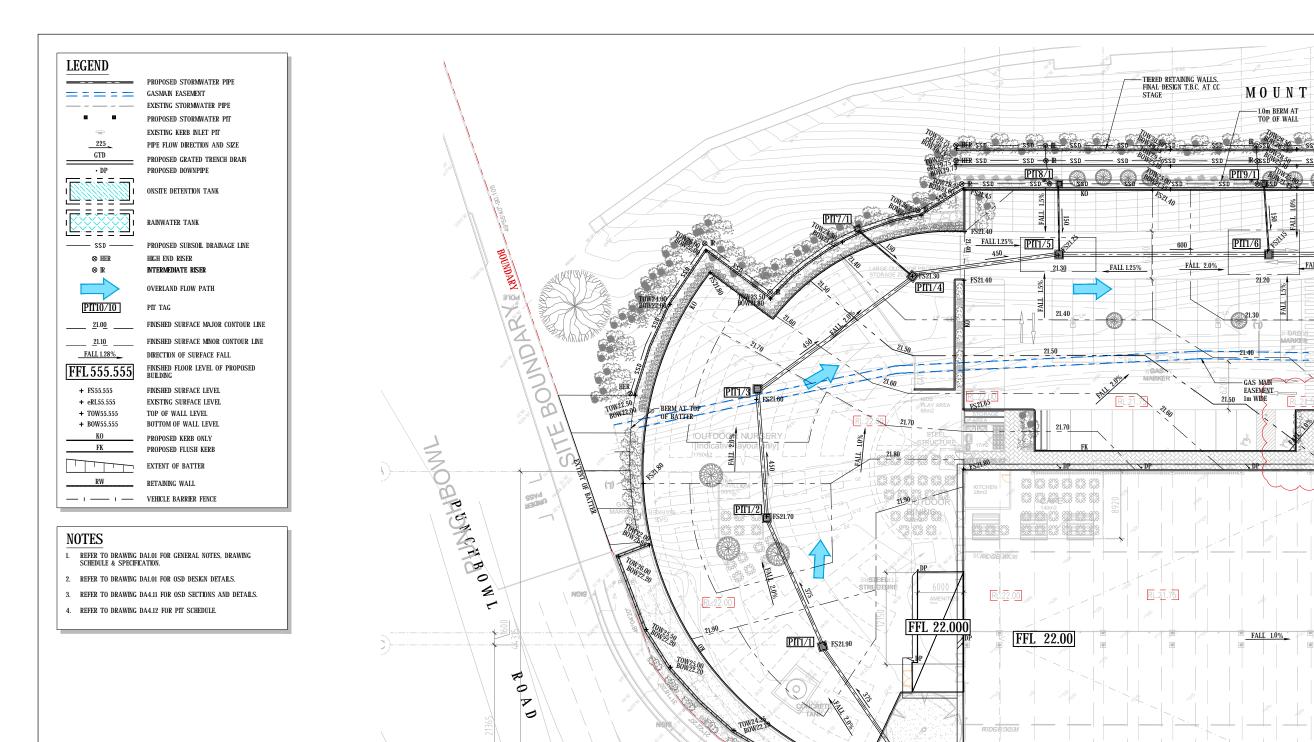
SEDIMENT BASIN (TYPICAL) CROSS SECTION - TYPE C SOILS

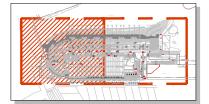
- CONSTRUCTION NOTES:


 1. REMOVE ALL VECETATION AND TOPSOIL FROM UNDER THE DAM WALL AND FROM WITHIN THE STORAGE AREA
 2. CONSTRUCT A CUT-OFF TRENCH 500mm DEEP AND 1200mm WIDE ALONG THE CENTERLINE OF THE EMBANKMENT
 EXTERDING TO A POINT ON THE CULLY WALL LEVEL WITH THE RISER CREST
 3. MANTAIN THE TRENCH FREE OF WATER AND RECOMPACT THE MATERIAL WITH EQUIPMENT AS SPECIFIED IN THE
- SWAP TO 95% STANDARD PROCTOR DENSITY
 SELECT FILL FOLLOWING THE SWAP THAT IS FREE OF ROOTS, WOOD, ROCK, LARGE STONE OR FOREIGN MATERIAL
 PREPARE THE SITE UNDER THE EMBANKMENT BY RIPPING TO AT LEAST 100mm TO HELP BOND COMPACTED FILL TO
 THE EXPERIMENCE CHIESTOPAET.
- PREPARE THE SITE UNDER THE EMBANKMENT BY RIPPING TO AT LEAST 100mm TO HELP BOND COMPACTED FILL TO THE ENSITING SUBSTRATE THE SPREAD THE FILL IN 100mm TO 150mm LAYERS AND COMPACT IT AT OPTIMUM MOISTURE CONTENT FOLLOWING THE SWMP CONSTRUCT THE EMERGENCY SPILLWAY REHABILITATE THE STRUCTURE FOLLOWING THE SWMP

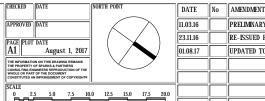
NOTES

Architecture
Urban Design
Masterplanning
Graphics
Interiors


NOTE: TYPE OF SOIL T.B.C.


ISSUED FOR DA

PROPOSED COMMERCIAL DEVELOPMENT CORNER COSGROVE ROAD AND PUNCHBOWL ROAD ENFIELD CONCEPT SEDIMENT AND EROSION CONTROL DETAILS



KEY PLAN

DO NOT SCALE OFF THIS DRAWNING, USE DIMENSIONS & ARCHITECTURAL DRAWNISS ONLY
 DRAWNINGS TO BE READ IN CONJUNCTION WITH SPECIFICATION.
 LEVELS ARE REVICATIVE ONLY AND ARE TO BE CHECKED PRIOR TO COMMENCEMENT OF ANY
WORKS
 AUTHORITIES MAINS ANDIOR EXISTING SERVICES ARE TO BE LOCATED AND CHECKED PRIOR TO

COMMENCE OF THE QUALITY RECORD IS EVIDENCE THAT THE DESIGN AND DRAWING HAVE RECOVERED OF THE QUALITY RECORD IS EVIDENCE THAT THE DESIGN AND DRAWING HAVE RECOVERED OF THE DRAWING STATUS IS EVIDENCE THAT THE DESIGN HAS BEEN PERIFED AS CONFORMED TO THE DRAWING STATUS IS EVIDENCE THAT THE DESIGN HAS BEEN PERIFED AS CONFORMED TO THE REQUIREMENTS OF THE PROJECT GUALITY PLAN

VERIFICATION
CONFICTION OF THE DRAWNO STATUS IS EVIDENCE THAT THE CESION HAS BEEN VERCONFICTION OF THE DRAWNO STATUS IS EVIDENCE THAT THE CESION HAS BEEN VERCONFICENCE TO THE DRAWNO STATUS IN THE CONFIDENCE TO THE CONFIDENCE

	DATE	NO	AMENDMENI	INII	KEV	DATE	NO	AMENDMENI	INII	KEV	i II	
	11.03.16		PRELIMINARY	SK	1							
)	23.11.16		RE-ISSUED FOR DA	SK	2							
J	01.08.17		UPDATED TO REVISED ARCHITECTURALS	MW	3							
7											il	
5 20.0												
											i II	

RAINWATER TANK-

PRODUCT
PROPOSED COMMERCIAL DEVELOPMENT
PROPOSED COMMERCIAL DEVELOPMENT
PROPOSED COMMERCIAL DEVELOPMENT

ENFIELD

FALL 2.0%

PIT1/7

21.10

GARDEN CENTRE / HARDWA BUILDING SUPPLIES

FFL 21.500

GALVANISED IRON

LN U A T I O N

C

F 0 R

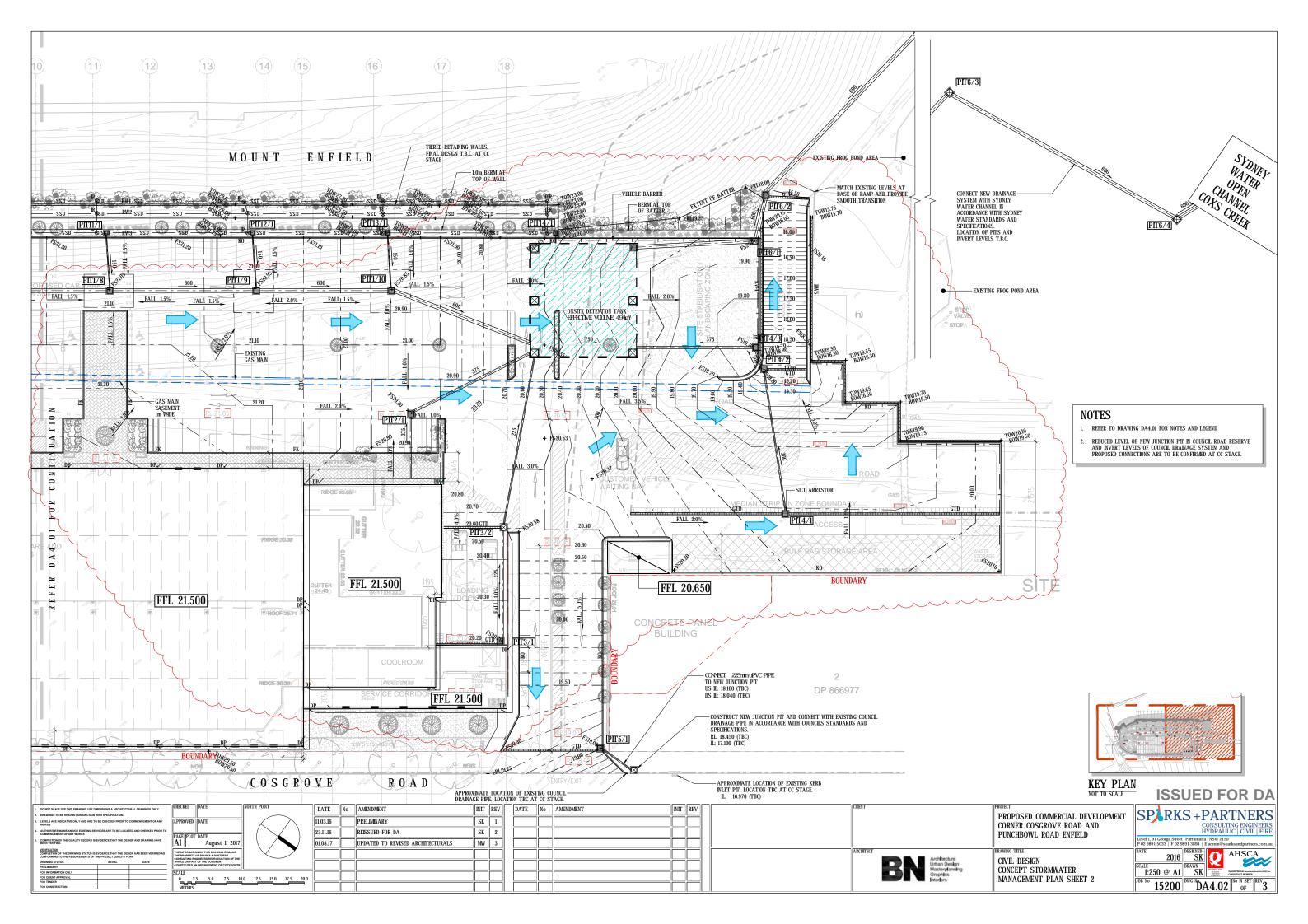
REFER

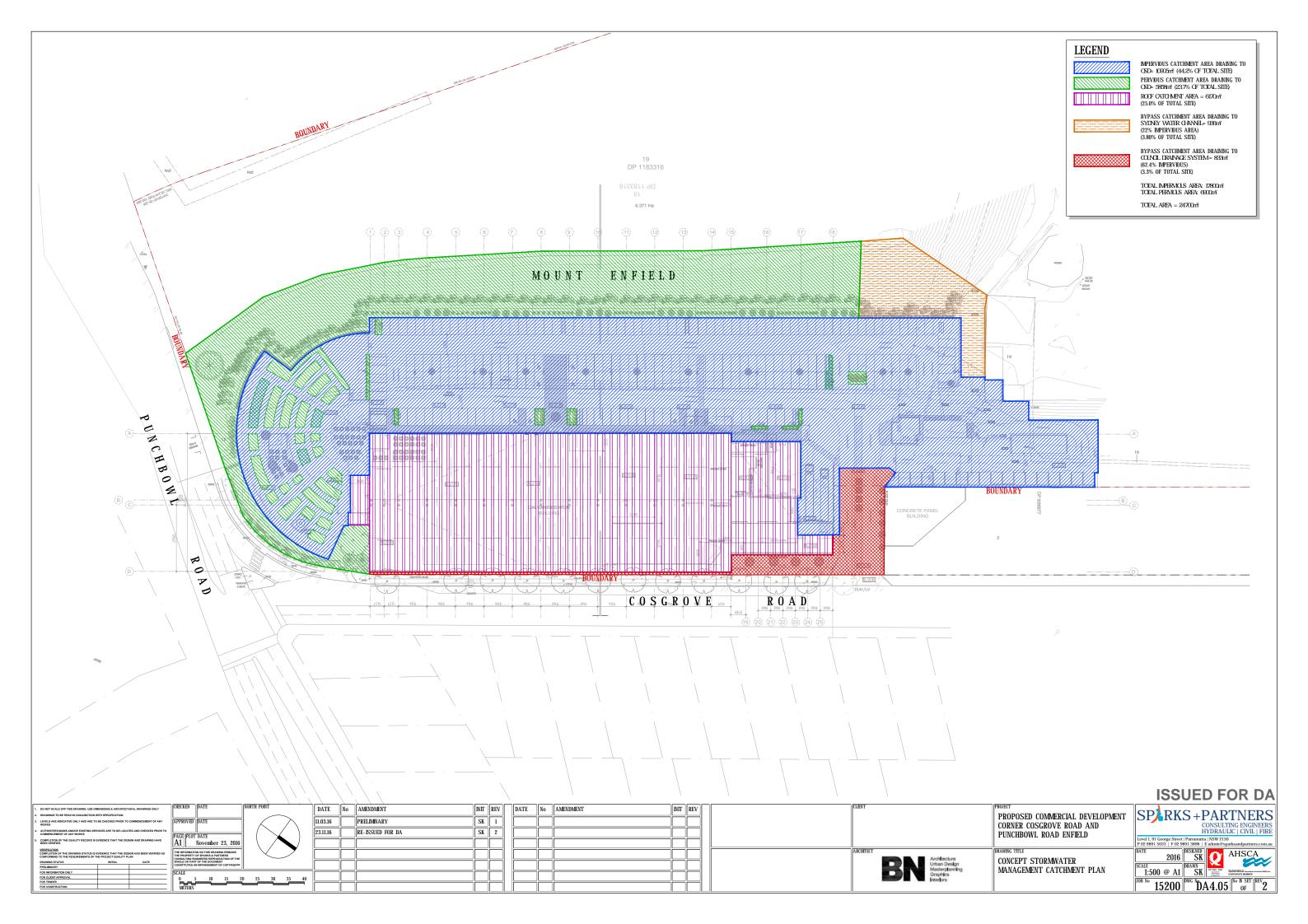
CORNER COSGROVE ROAD AND
PUNCHBOWL ROAD ENFIELD

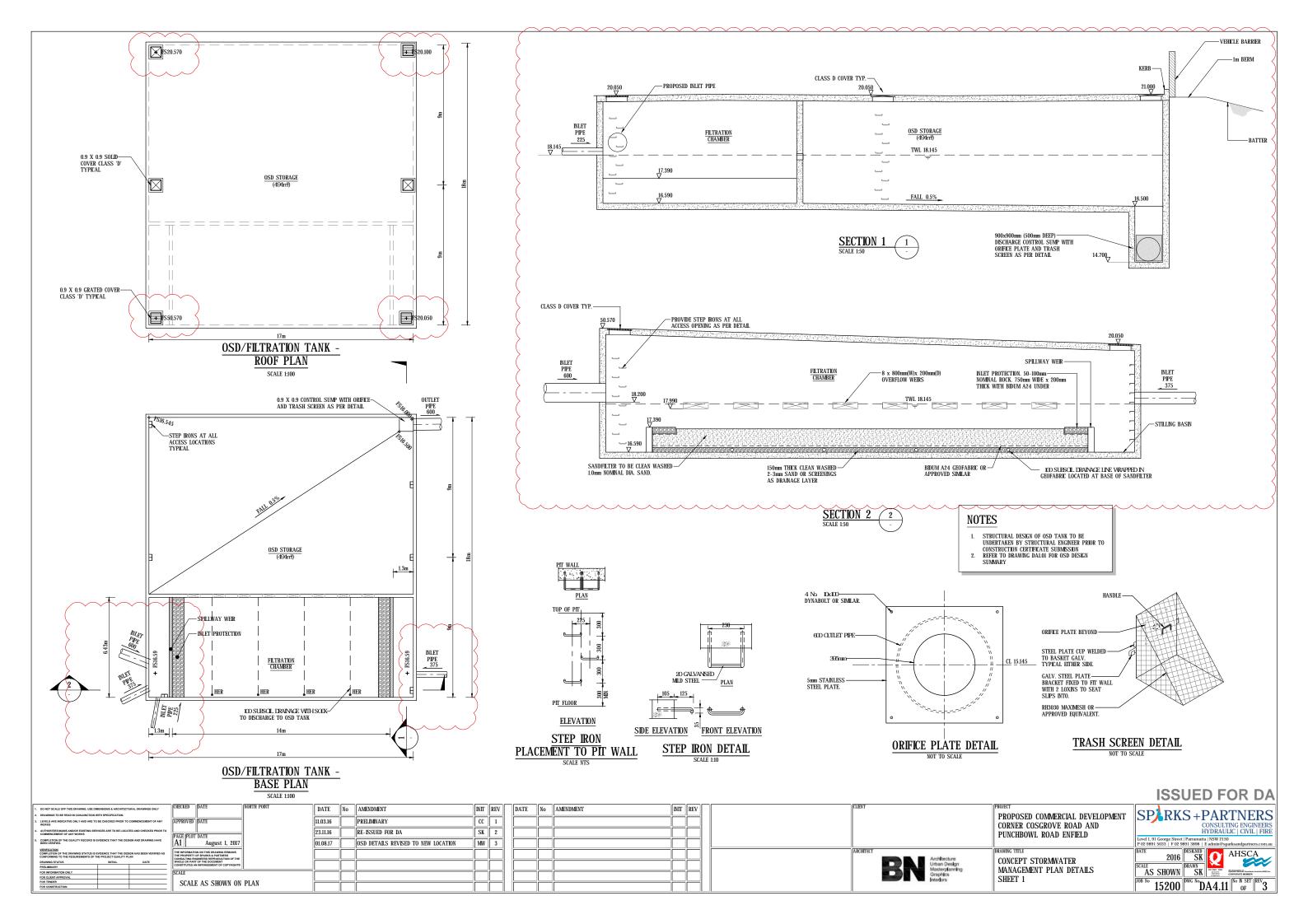
DRAWING THIE
CONCEPT STORMWATER
MANAGEMENT PLAN SHEET 1

CORD STATE STORM SHEET 1

SCALE 1.95


EXISTING COUNCIL DRAINAGE PIT


R O A D


9 C 0 S G R O V E

Architecture
Urban Design
Masterplanning
Graphics
Interiors

	PIT SCHEDULE										
PIT No.	PIT TYPE	CHAMBER SIZE	COVER TYPE	COVER RL	EASTING	NORTHING	COMMENTS				
1 / 1	SURFACE INLET PIT	900 x 900	900 x 900 CLASS 'D' COVER	21.90			FITTED WITH ENVIROPOD				
1 / 2	SURFACE INLET PIT	900 x 900	900 x 900 CLASS 'D' COVER	21.70			FITTED WITH ENVIROPOD				
1 / 3	SURFACE INLET PIT	900 x 900	900 x 900 CLASS 'D' COVER	21.60			FITTED WITH ENVIROPOD				
1 / 4	SURFACE INLET PIT	900 x 900	900 x 900 CLASS 'D' COVER	21.30			FITTED WITH ENVIROPOD				
1 / 5	SURFACE INLET PIT	900 x 900	900 x 900 CLASS 'D' COVER	21.25			FITTED WITH ENVIROPOD				
1 / 6	SURFACE INLET PIT	900 x 900	900 x 900 CLASS 'D' COVER	21.15			FITTED WITH ENVIROPOD				
1 / 7	SURFACE INLET PIT	900 x 900	900 x 900 CLASS 'D' COVER	21.05			FITTED WITH ENVIROPOD				
1 / 8	SURFACE INLET PIT	900 x 900	900 x 900 CLASS 'D' COVER	21.05			FITTED WITH ENVIROPOD				
1 / 9	SURFACE INLET PIT	900 x 900	900 x 900 CLASS 'D' COVER	20.95			FITTED WITH ENVIROPOD				
1 / 10	SURFACE INLET PIT	900 x 900	900 x 900 CLASS 'D' COVER	20.85			FITTED WITH ENVIROPOD				
2 / 1	SURFACE INLET PIT	900 x 900	900 x 900 CLASS 'D' COVER	20.80			FITTED WITH ENVIROPOD				
3 / 1	SURFACE INLET PIT	900 x 900	900 x 900 CLASS 'D' COVER	20.20			FITTED WITH ENVIROPOD				
3 / 2	JUNCTION PIT	900 x 900	900 x 900 CLASS 'D' COVER	20.60							
3 / 3	SURFACE INLET PIT	900 x 900	900 x 900 CLASS 'D' COVER	20.35			FITTED WITH ENVIROPOD				
4 / 1	SURFACE INLET PIT	900 x 900	900 x 900 CLASS 'D' COVER	19.91			FITTED WITH ENVIROPOD AND SILT ARRESTOR				
4/2	SURFACE INLET PIT	900 x 900	900 x 900 CLASS 'D' COVER	19.00			FITTED WITH ENVIROPOD				
4 / 3	SURFACE INLET PIT	900 x 900	900 x 900 CLASS 'D' COVER	19.70			FITTED WITH ENVIROPOD				
5 / 1	SURFACE INLET PIT	900 x 900	900 x 900 CLASS 'D' COVER	19.00			FITTED WITH ENVIROPOD				
6 / 1	JUNCTION PIT	900 x 900	900 x 900 CLASS 'D' COVER	20.00							
6 / 2	SURFACE INLET PIT	900 x 900	900 x 900 CLASS 'D' COVER	15.50			FITTED WITH ENVIROPOD				
6 / 3	JUNCTION PIT	900 x 900	900 x 900 CLASS 'D' COVER	14.75							
6 / 4	JUNCTION PIT	900 x 900	900 x 900 CLASS 'D' COVER	T.B.C.							
7 / 1	SURFACE INLET PIT	600 x 600	600 x 600 CLASS 'B' COVER	24.40			FITTED WITH ENVIROPOD				
8 / 1	SURFACE INLET PIT	600 x 600	600 x 600 CLASS 'B' COVER	25.00			FITTED WITH ENVIROPOD				
9 / 1	SURFACE INLET PIT	600 x 600	600 x 600 CLASS 'B' COVER	24.90			FITTED WITH ENVIROPOD				
10 / 1	SURFACE INLET PIT	600 x 600	600 x 600 CLASS 'B' COVER	24.90			FITTED WITH ENVIROPOD				
11 / 1	SURFACE INLET PIT	600 x 600	600 x 600 CLASS 'B' COVER	24.90			FITTED WITH ENVIROPOD				
12 / 1	SURFACE INLET PIT	600 x 600	600 x 600 CLASS 'B' COVER	23.90			FITTED WITH ENVIROPOD				
13 / 1	SURFACE INLET PIT	600 x 600	600 x 600 CLASS 'B' COVER	21.90			FITTED WITH ENVIROPOD				
14 / 1	SURFACE INLET PIT	600 x 600	600 x 600 CLASS 'B' COVER	20.45			FITTED WITH ENVIROPOD				

ISSUED FOR DA PROPOSED COMMERCIAL DEVELOPMENT CORNER COSGROVE ROAD AND PUNCHBOWL ROAD ENFELD PROPOSED COMMERCIAL DEVELOPMENT CORNER COSGROVE ROAD AND PUNCHBOWL ROAD ENFELD POZ 9891 5033 | F 0Z 9891 5038 | E admin@sparksandpartners.com.au PRAWNG TITLE CIVIL DESIGN CONCEPT PIT SCHEDULE PARTNERS CONSULTING ENGINEERS HYDRAULIC [CIVIL] FIRE Level 1.91 George Street | Parramatia | NSW 2150 P 0Z 9891 5033 | F 0Z 9891 5038 | E admin@sparksandpartners.com.au PRAWNG TITLE CIVIL DESIGN CONCEPT PIT SCHEDULE PARTNERS CONSULTING ENGINEERS HYDRAULIC [CIVIL] FIRE Level 1.91 George Street | Parramatia | NSW 2150 P 0Z 9891 5033 | F 0Z 9891 5038 | E Admin@sparksandpartners.com.au PRAWNG TITLE CIVIL DESIGN CONCEPT PIT SCHEDULE POR NO 15200 | PWC N DA4.12 | NO SET | REV 3 CHECKED DATE | INIT | REV | DATE | No | AMENDMENT | SK | 1 | INIT REV DATE No AMENDMENT APPROVED DATE 11.03.16 PRELIMINARY PAGE PLOT DATE A1 August 1, 2017 THE INFORMATION ON THIS GRAWING REMAINS THE PROPERTY OF PRIVAGE & PARTNERS. CONSULTING ENGINEERS REPRODUCTION OF THE WHOLE OR PART OF THE DOCUMENT CONSTITUTES AN INFRANCEMENT OF COPYRIGHTS 23.11.16 REISSUED FOR DA SK 2 MW 3 01.08.17 PIT SCHEDULE UPDATED Architecture Urban Design Masterplanning Graphics Interiors S OF THE PROJECT QUALITY PLAN INITIAL DATE NOT TO SCALE

Appendix B – MUSIC Model Parameters

Table 1. Catchment Details and Stormwater Quality Parameters of Source Nodes in MUSIC Model

Source Node	Land use Category	Fraction Impervious	TSS Storm Flow	TSS Base Flow	TP Storm Flow	TP Base Flow	TN Storm Flow	TN Base Flow
Roof Catchment to RWT	Roof Areas	1.0	Mean: 1.30 STD: 0.32	0.0	Mean: -0.89 STD: 0.25	0.0	Mean: 0.3 STD: 0.19	0.0
Roof Catchment to OSD	Roof Areas	1.0	Mean: 1.30 STD: 0.32	0.0	Mean: -0.89 STD: 0.25	0.0	Mean: 0.3 STD: 0.19	0.0
Mount Enfield	Forest/Natural	0.0	Mean: 1.6 STD: 0.32	Mean: 0.78 STD: 0.17	Mean: -1.1 STD:0.25	Mean: -1.52 STD: 0.19	Mean: -0.05 STD:0.19	Mean: -0.52 STD: 0.12
Outdoor Nursery	Commercial	0.65	Mean: 2.15 STD: 0.32	Mean: 1.20 STD: 0.17	Mean: -0.60 STD: 0.25	Mean: - 0.85 STD: 0.19	Mean: 0.30 STD: 0.19	Mean: 0.11 STD: 0.12
Carpark	Road Areas	0.95	Mean: 2.43 STD: 0.32	0.0	Mean: -0.03 STD: 0.25	0.0	Mean: 0.30 STD: 0.19	0.0
Bypass at entry	Road Areas	1.0	Mean: 2.43 STD: 0.32	0.0	Mean: -0.03 STD: 0.25	0.0	Mean: 0.30 STD: 0.19	0.0
Landscape Bypass at Entry	Forest/Natural	0.0	Mean: 1.6 STD: 0.32	Mean: 0.78 STD: 0.17	Mean: -1.1 STD:0.25	Mean: -1.52 STD: 0.19	Mean: -0.05 STD:0.19	Mean: -0.52 STD: 0.12
Bypass at Back exit of Site	Commercial	0.25	Mean: 2.15 STD: 0.32	Mean: 1.20 STD: 0.17	Mean: -0.60 STD: 0.25	Mean: - 0.85 STD: 0.19	Mean: 0.30 STD: 0.19	Mean: 0.11 STD: 0.12

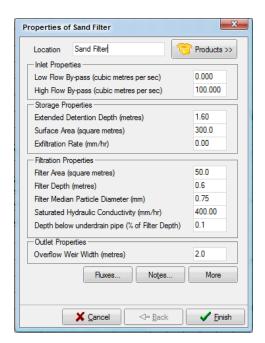
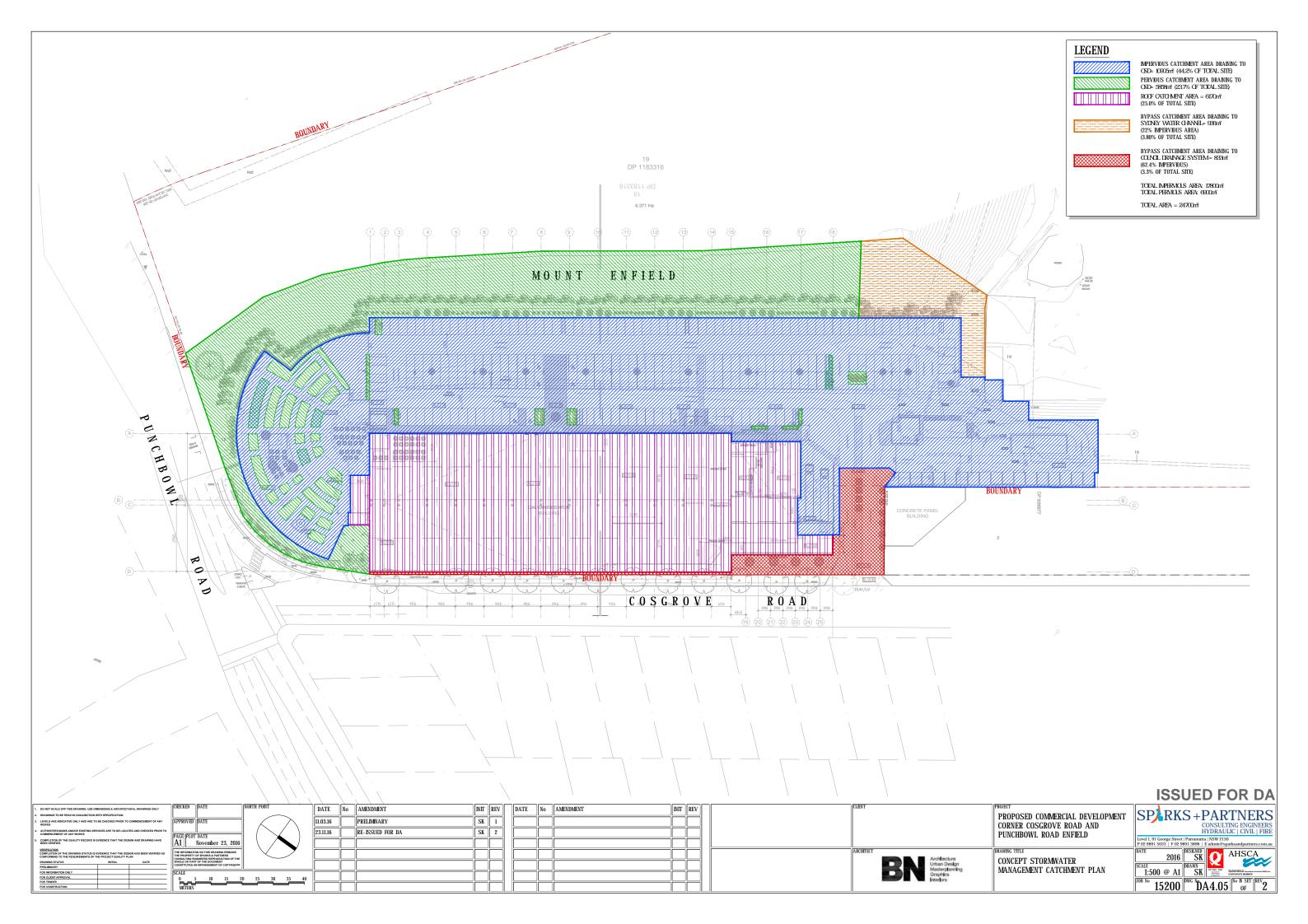


Table 2. Percent Reduction of each treatment System in MUSIC Model

Treatment Node	Treating source node	Description of the function and intent of treatment system	TSS % reduction	TP % reduction	TN % reduction	Gross Pollutants % reduction
Rainwater Tank	50 % of Roof Area	For irrigation and greywater reuse	50.2	40.2	39.7	100
8 Enviropods	Mount Enfield	Filter Runoff from Mount Enfield	54	30	21	0
4 Enviropods	Outdoor Nursery	Filter Runoff from the Outdoor Nursery	54	30	21	100
12 Enviropods	Carpark Area	Filter runoff from the Carpark area	53.9	30	21	100
Sandfilter Tank	93% of site	Treatment of runoff at OSD tank before discharge into Sydney Water Channel	93.9	81.8	48.9	100
1 Envirpod	Bypass at entry to site	Filter runoff in Bypass area at entry of site	54	30	21	100
1 Envirpod	Bypass on western side of site	Filter runoff in Bypass area before discharge into Sydney Water Channel	53.8	29.9	21	100


Figure 1. Parameters of Sandfilter Tank in MUSIC Model

Using MUSIC version 6.1.0, a Media Filtration Treatment Node was used for the Sandfilter and the figure below shows the values entered for the Treatment Node. The values entered were referenced from MUSIC Modelling Guidelines Version 1.0-2010 Section 4.12 for Sand filter nodes.

Appendix C – Concept Catchment Plan

Appendix D - OSD Design Coordination with Sydney Water

Reply Reply All A Forward

2

Stormwater < Stormwater@sydneywater.com.au>

Daniel Drewitt

RE: 15200 - Garden Center, Enfield. Site Drainage Options

11:00 AM. Typical to this message on 12/4/2015 11:00 AM.

Click here to download pictures. To help protect your privacy, Outlook prevented automatic download of some pictures in this message.

Daniel,

The On Site Detention requirements for the 24,500 square meter site at Garden Center, Enfield is as follows:

On Site Detention

494 cubic meter

Permissible Site Discharge

583 L/s

Best regards, Jeya Jeyadevan | Waterway Planner

Liveable City Solutions | Sydney Water Level 10, 1 Smith St Parramatta NSW 2150 PO Box 399 Parramatta NSW 2124 T 8849 6118 | M 0409 318 827 E jeva.jeyadevan@sydneywater.com.au sydneywater.com.au

From: Daniel Drewitt [mailto:Daniel@sparksandpartners.com.au]

Sent: Friday, 4 December 2015 10:33 AM

To: Stormwater

Subject: RE: 15200 - Garden Center, Enfield. Site Drainage Options

Appendix E – Maintenance and Monitoring Schedule

STORMWATER DRAINAGE SYSTEM MONITORING AND MAINTENANCE SCHEDULE

Site: 123 Cosgrove Road, Enfield	
Owner:	
Commencement Date:	

Designer Signature Simon Kapsis

Date 11.03.16

SPARKS+PARTNERS

Author Name & Signature: Date:

123 Cosgrove Road, Enfield

General Notes:

- 1 Maintenance is to be carried out with regard to relevant occupational health and safety guidelines and standards. This includes all confined space, traffic management, fall arrest and other requirments.
- 2 Initial monitoring and inspections of the stormwater system post commissioning are to be carried out every 3 months for the first year of operation. The amount and type of debris is to be noted and recorded. This information shall be used to determine if modification of the frequency of inspections is required.
- 3 The frequency of inspections shown in the stormwater maintenance schedule are the maximum periods. Inspection frequencies may be reduced upon completion of the initial monitoring and inspection program as noted in note 2.
- 4 Blank copies of the maintenance schedule are to be made and filled out during each subsequent inspection with the details kept on site for future reference.

Inspected by:
Date of Inspection:
Date of Next Inspection:

Item to be Inspected	Frequency	Performed by	Inspected	Maintenance Required	Maintenance Procedure	
General			Yes/No	Yes/No		Date
Eaves/Box Guttering System and Downpipes	Six Monthly/ After Major Storm	Owner / Maintenance Contractor			Inspect and remove any build up of sediment, debris, litter and vegetation within gutter system.	
Stormwater surface inlet and junction pits	Four Monthly/ After Major Storm	Owner / Maintenance Contractor			Remove grate and inspect internal walls and base, repair where required. Remove any collected sediment, debris, litter and vegetation. (e.g. Vacum/eductor truck) Inspect and ensure grate is clear of sediment, debris, litter and vegetation. Ensure flush placement of grate on refitment	
General inspection of complete stormwater drainage system (that's visible)	Bi-annually	Owner / Maintenance Contractor			Inspect all drainage structures noting any dilapidation, carrry out required repairs.	
Rainwater Tank						
First Flush Device	6 Monthly	Owner / Maintenance Contractor			Inspect first flush device to ensure correct operation. Remove accumulated litter & debris. If device is not functioning properly repair or replace.	
Internal Inspection	6 Monthly	Owner / Maintenance Contractor			Check for evidence of access by animals, birds or insects including the presence of mosquito larvae. If present, identify access point and close. If evidence of algal growth, find and close points of light entry.	
Tank and tank roof	6 Monthly	Owner / Maintenance Contractor			Check structural inegrity of tank including roof and access covers. Any dilapidation including holes or gaps are to be noted and repaired.	
Sand Filter						
Sedimentation chamber	6 Monthly	Owner / Maintenance Contractor			Check chamber for build up of sediment, if sediment is greater than 1/3 depth of sedimentation chamber remove collected sediment	
Evidence of inlet surface erosion	6 Monthly	Maintenance Contractor			Check for scour of filter media at sedimentation chamber overflow. If scour present rake back filter media and provide scour protection.	
Sand filter media	6 Monthly	Owner / Maintenance Contractor			Inspect for surface clogging/ponding in sand filter. If clogging or ponding present check subsoil drainge line for blockage and cleanout. If no blockage present in sub-soil driange remove clogged filter media and replace with specified filter media.	
Sand filter area	6 Monthly	Owner / Maintenance Contractor			Inspect sand filter area for build up of litter and debris, remove any litter present. Inspect sand filter for distribution of media, if required rake filter media to provide even depth through sand filter area.	
Outlet/overflow spillway	6 Monthly	Owner / Maintenance Contractor			Inspect spillway to ensure in good condition with no deterioration present. If required provide repairs.	
On-Site Detention Tank						
Trash Screen	Six Monthly/ After Major Storm	Owner / Maintenance Contractor			Inspect trash screen to ensure correct operation. Remove accumulated litter & debris. If device is not functioning properly repair or replace.	
Orifice Plate	Six Monthly/ After Major Storm	Owner / Maintenance Contractor			Inspect orifice plate to ensure correct operation. Check orifice diameter size is correct and no damage is present to orifice edge. Check orifice plate is securely fastened to wall with no gaps present between plate and face of wall. If gaps are present fill with sealant or mortar to provide water tight seal.	
Weep Holes in base of sump	Six Monthly/ After Major Storm	Owner / Maintenance Contractor			Inspect weep holes in base of sump. Ensure weep holes are able to drain effectively and remove accumulated sediment and debris if present.	
Tank and tank roof	6 Monthly	Owner / Maintenance Contractor			Check structural inegrity of tank including roof and access covers. Any dilapidation including holes or gaps are to be noted and repaired.	

Appendix F – Council Correspondence Re: Flooding

Morgan Walter

From: Morgan Walter

Sent: Wednesday, February 17, 2016 12:42 PM

To: 'Said Saqeb'
Cc: Simon Kapsis

Subject: RE: 15200 - 127 Cosgrove Rd, Strathfield South - Flooding Information

Hi Said,

Thanks for the screen shot. It appears that the flooding is wholly contained within the road carriageway and not extending into adjacent properties. Can you confirm with the consultant is the modelling suggesting that this is local overland flow and not flooding in terms of flood inundation?

Thanks

Morgan Walter Civil Engineering Manager

BE (Civil & Environmental) MEEM MIEAust Direct 0414 930 828

Sparks & Partners Consulting Engineers / Office 02 9891 5033 / Fax 02 9891 3898

PO Box 979 / Level 1, 91 George Street / Parramatta NSW 2150 / sparksandpartners.com.au

In 2016 Sparks & Partners celebrates it's 28th birthday – with an unwavering commitment to quality work and happy clients.

QUALITY ENGINEERING SINCE 1989

Please consider the environment before printing this email. This email is intended for the named recipient only. It may contain privileged and/or confidential information. If you are not the intended recipient/s, then any use or reliance upon it, saving, disclosure, forwarding or copying of this email and/or any attachments is unauthorised by law. If you have received this email in error, please reply to it regarding incorrect receipt and then delete it from your system. Thank you in advance.

From: Said Saqeb [mailto:Said.Saqeb@strathfield.nsw.gov.au]

Sent: Wednesday, February 17, 2016 8:14 AM

To: Morgan Walter < Morgan@sparksandpartners.com.au>

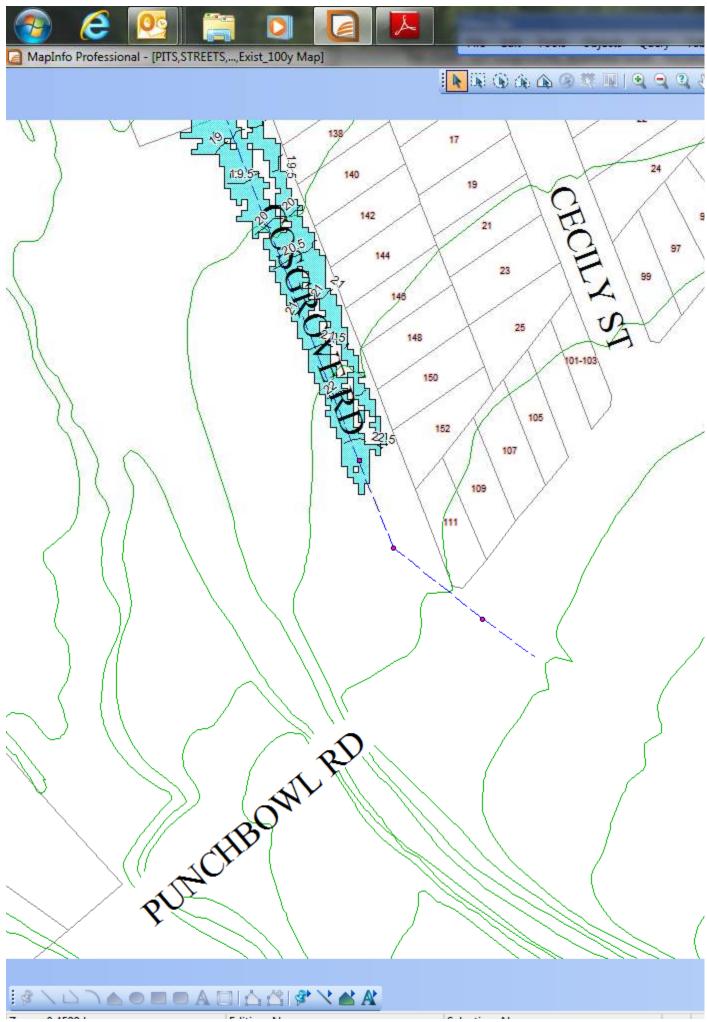
Subject: FW: 15200 - 127 Cosgrove Rd, Strathfield South - Flooding Information

Hi Morgan,

Please find attached below the 1 in 100 year flood extent at the subject site. I will seek advice from Consultant about the 1 in 100 year flood level.

Regards

Said



Said Saqeb | *Drainage Engineer*P 9748 9938 F 9764 1034
65 Homebush Road, Strathfield NSW 2135
www.strathfield.nsw.gov.au

From: Morgan Walter [mailto:Morgan@sparksandpartners.com.au]

Sent: Wednesday, 17 February 2016 7:59 AM

To: Said Saqeb **Cc:** Simon Kapsis

Subject: RE: 15200 - 127 Cosgrove Rd, Strathfield South - Flooding Information

Hi Said,

Refer to the attached SIX Maps markups for your reference to locate the site. It is at the corner of Cosgrove Rd and Punchbowl Rd being the old Tarpaulin Shed.

Regards

Morgan Walter

Civil Engineering Manager

BE (Civil & Environmental) MEEM MIEAust Direct 0414 930 828

Sparks & Partners Consulting Engineers / Office 02 9891 5033 / Fax 02 9891 3898

PO Box 979 / Level 1, 91 George Street / Parramatta NSW 2150 / sparksandpartners.com.au

In 2016 Sparks & Partners celebrates it's 28th birthday – with an unwavering commitment to quality work and happy clients.

OUALITY ENGINEERING SINCE 1989

Please consider the environment before printing this email. This email is intended for the named recipient only. It may contain privileged and/or confidential information. If you are not the intended recipient/s, then any use or reliance upon it, saving, disclosure, forwarding or copying of this email and/or any attachments is unauthorised by law. If you have received this email in error, please reply to it regarding incorrect receipt and then delete it from your system. Thank you in advance.

From: Said Sageb [mailto:Said.Sageb@strathfield.nsw.gov.au]

Sent: Tuesday, February 16, 2016 4:00 PM

To: Morgan Walter < Morgan@sparksandpartners.com.au >

Subject: RE: 15200 - 127 Cosgrove Rd, Strathfield South - Flooding Information

Hi Morgan,

Please attach a plan to your email that shows 127 Cosgrove Road. I was unable to find the subject site on Council's GIS.

Regards

Said

Said Saqeb | Drainage Engineer
P 9748 9938 F 9764 1034
65 Homebush Road, Strathfield NSW 2135
www.strathfield.nsw.gov.au

From: Morgan Walter [mailto:Morgan@sparksandpartners.com.au]

Sent: Wednesday, 10 February 2016 11:57 AM

To: Said Sageb

Subject: 15200 - 127 Cosgrove Rd, Strathfield South - Flooding Information

Hi Said,

We have been given your contact details from Sophie Olsen in relation to obtaining flood information for the property at 127 Cosgrove Rd, Strathfield South.

A Pre DA meeting was held on the 23rd December 2015, with item 4. noting the site is subject to flooding. As we are undertaking the Civil engineering design for the project can you please provide the information (Flood Mapping etc) indicating where the site is partially affected by the 1:100yr flood event.

Should you have any questions please contact me.

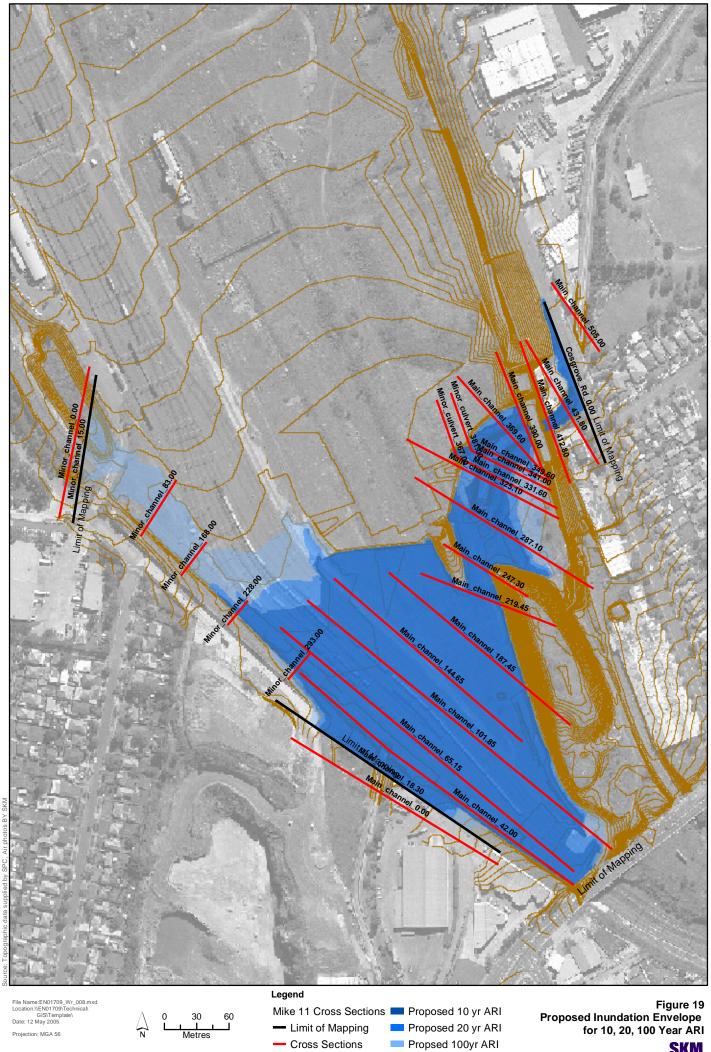
Regards

Morgan Walter
Civil Engineering Manager
BE (Civil & Environmental) MEEM MIEAust
Direct 0414 930 828

Sparks & Partners Consulting Engineers / Office 02 9891 5033 / Fax 02 9891 3898 PO Box 979 / Level 1, 91 George Street / Parramatta NSW 2150 / sparksandpartners.com.au

In 2016 Sparks & Partners celebrates it's 28th birthday – with an unwavering commitment to quality work and happy clients.

QUALITY ENGINEERING SINCE 1989



Please consider the environment before printing this email. This email is intended for the named recipient only. It may contain privileged and/or confidential information. If you are not the intended recipient/s, then any use or reliance upon it, saving, disclosure, forwarding or copying of this email and/or any attachments is unauthorised by law. If you have received this email in error, please reply to it regarding incorrect receipt and then delete it from your system. Thank you in advance.

Disclaimer: This transmission is intended for the addressee named and may contain confidential information. If you are not the intended recipient of the transmission, please delete the transmission and notify the sender. The contents of the transmission are the opinion of the individual sender, and are not necessarily endorsed by Strathfield Municipal Council.

Appendix G – Excerpts from the Environmental Impact Statement (EIS) for Intermodal Logistics Center, Enfield.

Proposed 0.5m Contours

B.1 Summary of Mike-11 Flood Level Results, 10 and 20 year ARI

Cross-sections			10 year AR	I		20 year AR	I	Notes
Flowpath	Chainage	Existing	Proposed	Change	Existing	Proposed	Change	Notes
MINOR_CHANNEL	15	16.085	16.085	0	16.798	16.798	0	
MINOR_CHANNEL	83	16.010	15.999	-0.011	16.424	16.415	-0.009	
MINOR_CHANNEL	168	16.038	16.025	-0.013	16.431	16.425	-0.006	
MINOR_CHANNEL	228	16.039	16.025	-0.014	16.442	16.437	-0.005	
MINOR_CHANNEL	293	16.260	16.236	-0.024	16.490	16.469	-0.021	
MAIN_CHANNEL	18.3	16.248	16.225	-0.023	16.476	16.460	-0.016	
MAIN_CHANNEL	42	16.263	16.240	-0.023	16.486	16.470	-0.016	
MAIN_CHANNEL	65.15	16.256	16.234	-0.022	16.480	16.464	-0.016	
MAIN_CHANNEL	101.85	16.252	16.230	-0.022	16.477	16.461	-0.016	
MAIN_CHANNEL	144.65	16.250	16.228	-0.022	16.476	16.460	-0.016	Approx. upstream site boundary
MAIN_CHANNEL	187.45	16.244	16.227	-0.017	16.468	16.459	-0.009	
MAIN_CHANNEL	219.45	16.212	16.221	0.009		16.452	0.021	
MAIN_CHANNEL	247.3	16.039	16.055	0.016	16.235	16.271	0.036	
MAIN_CHANNEL	287.1	15.593	15.587	-0.006	15.787	15.755	-0.032	
MAIN_CHANNEL	325.1	14.728	14.598	-0.130	15.180	15.038	-0.142	
MAIN_CHANNEL	331.6	14.735	14.608	-0.127			-0.137	
MINOR_CULVERT	367	14.773	14.620	-0.153				
MAIN_CHANNEL	341	14.720	14.592	-0.128	15.166	15.035	-0.131	
MINOR_CULVERT	381	14.783	14.627	-0.156	15.216	15.064	-0.152	
MAIN_CHANNEL	349.6	14.763	14.638	-0.125				
MAIN_CHANNEL	369.6	14.792	14.643			15.077	-0.144	
MAIN_CHANNEL	390	14.784	14.612	-0.172				
MAIN_CHANNEL	412.8	12.626	12.627	0.001	12.626			Approx. downstream site boundary
MAIN_CHANNEL	431.8	12.815						
COSGROVE_RD	0	13.067	13.059	-0.008	13.124	13.118	-0.006	

Appendix B Page 1 of 2

B.2 Summary of Mike-11 Flood Level Results, 100 year ARI and PMF

Cross-sections		1	100 year AF	RI		PMF		Notes
Flowpath	Chainage	Existing	Proposed	Change	Existing	Proposed	Change	Notes
MINOR_CHANNEL	15	17.953	17.953	0	19.440	19.768	0.328	
MINOR_CHANNEL	83	17.127	17.127	0	19.430	19.763	0.333	
MINOR_CHANNEL	168	16.872	16.864	-0.008	19.407	19.755	0.348	
MINOR_CHANNEL	228	16.870	16.862	-0.008	19.399	19.749	0.350	
MINOR_CHANNEL	293	16.865	16.859	-0.006	19.363	19.729	0.366	
MAIN_CHANNEL	18.3	16.855	16.849	-0.006	19.336	19.706	0.370	
MAIN_CHANNEL	42	16.866	16.859	-0.007	19.351	19.712	0.361	
MAIN_CHANNEL	65.15	16.859	16.853	-0.006	19.342	19.704	0.362	
MAIN_CHANNEL	101.85	16.856	16.850	-0.006	19.341	19.704	0.363	
MAIN_CHANNEL	144.65	16.854	16.848	-0.006	19.338	19.704	0.366	Approx. upstream site boundary
MAIN_CHANNEL	187.45	16.841	16.845	0.004	19.283	19.701	0.418	
MAIN_CHANNEL	219.45	16.788	16.834	0.046	19.151	19.686	0.535	
MAIN_CHANNEL	247.3	16.548	16.638	0.090	18.950	19.672	0.722	
MAIN_CHANNEL	287.1	16.184	16.119	-0.065	18.417	19.672	1.255	
MAIN_CHANNEL	325.1	16.042	15.931	-0.111	18.403	19.670	1.267	
MAIN_CHANNEL	331.6	16.019	15.932	-0.087	18.339	19.655	1.316	
MINOR_CULVERT	367	16.151	15.926	-0.225	18.416	19.668	1.252	
MAIN_CHANNEL	341	15.977	15.921	-0.056	18.274	19.641	1.367	
MINOR_CULVERT	381	16.064	15.932	-0.132	18.416	19.667	1.251	
MAIN_CHANNEL	349.6	15.982	15.926	-0.056	18.266	19.638	1.372	
MAIN_CHANNEL	369.6	16.057	15.934	-0.123	18.417	19.666	1.249	
MAIN_CHANNEL	390	16.068	15.91	-0.158	18.434	19.651	1.217	
MAIN_CHANNEL	412.8	12.627	12.626	-0.001	14.336*	13.856*	-0.480*	Approx. downstream site boundary
MAIN_CHANNEL	431.8	12.812	12.814	0.002	14.375*	13.985*	-0.390*	
COSGROVE_RD	0	13.240	13.242	0.002	14.373*	14.008*	-0.365*	

^{*} Flood level results at these cross-sections are subject to boundary condition effects

Appendix B Page 2 of 2