

STACK MODELLING FOR TRANSPACIFIC REFINERS, RUTHERFORD

Transpacific Refiners

Job No: 6963

6 August 2012

PROJECT TITLE:Stack Modelling for Transpacific Refiners,
RutherfordJOB NUMBER:6963PREPARED FOR:Nicholas Welbourne
Transpacific RefinersPREPARED BY:Khalia HillDISCLAIMER & COPYRIGHT:This report is subject to the copyright
statement located at www.paeholmes.com ©
Queensland Environment Pty Ltd trading as

DOCUMENT CONTROL							
VERSION	DATE	PREPARED BY	REVIEWED BY				
D1	06.07.12	Khalia Hill	J. Barnett				
D2	11.07.12	Khalia Hill					
D3	06.08.12	Khalia Hill	J. Barnett				

Queensland Environment Pty Ltd trading as **PAEHoImes** ABN 86 127 101 642

SYDNEY:

Suite 203, Level 2, Building D, 240 Beecroft Road Epping NSW 2121 Ph: +61 2 9870 0900 Fax: +61 2 9870 0999

BRISBANE:

Level 1, La Melba, 59 Melbourne Street, South Brisbane QLD 4101 PO Box 3306, South Brisbane QLD 4101 Ph: +61 7 3004 6400 Fax: +61 7 3844 5858

ADELAIDE:

35 Edward Street, Norwood SA 5067 PO Box 1230,Littlehampton SA 5250 Ph: +61 8 8332 0960 Fax: +61 7 3844 5858

Email: <u>info@paeholmes.com</u> Website: <u>www.paeholmes.com</u>

PERTH:

Level 18, Central Park Building, 152-158 St Georges Terrace, Perth WA 6000 Ph: +61 8 9288 4522 Fax: +61 8 9288 4400

PAEHolmes ABN 86 127 101 642

MELBOURNE:

Suite 62, 63 Turner Street, Port Melbourne VIC 3207 PO Box 23293, Docklands VIC 8012 Ph: +61 3 9681 8551 Fax: +61 3 9681 3408

GLADSTONE:

Suite 2, 36 Herbert Street, Gladstone QLD 4680 Ph: +61 7 4972 7313 Fax: +61 7 3844 5858

ES1 EXECUTIVE SUMMARY

Transpacific Refiners (TPR) are investigating potential effects on ground level concentration due to changes in the stack parameters of the gas fired heater at their Rutherford refinery. Six scenarios have been modelled to incorporate all combinations of two stack heights and three exit velocities.

Dispersion modelling conducted for this assessment has been based on a modelling system using TAPM, CALMET and CALPUFF.

Initial modelling was carried out for 23 receptors in the area, which included the existing exit velocity and the two stack heights (16 m and 25 m). Further modelling was then done for five on site receptors for each of the six scenarios.

The results indicate that the largest reductions in ground level concentrations come from increasing the stack height rather than the exit velocity. The most significant of these is in the H_2SO_4 concentrations (up to 45% by increasing to 25 m alone, and 46% for increasing stack height and exit velocity).

1 INTRODUCTION

Transpacific Refiners (TPR) operate an oil refinery that processes recycled oil feedstock, located within an industrial area in Kyle Street, Rutherford. TPR wish to investigate the effects of increasing the height of the Fired Heater stack on ground level concentrations in the area.

PAEHolmes has been commissioned to conduct dispersion modelling to assess the potential impact of two different stack heights for the gas fired heater. The methodologies and results from this modelling are presented in the following.

2 IMPACT ASSESSMENT CRITERIA

The New South Wales Environment Protection Authority (EPA) provides guidance for the selection and configuration of air dispersion models, methodologies to be used to compile meteorological datasets and emissions data, and specifies the assessment criteria to be used to evaluate compliance. This guidance is the '*Approved Methods for modelling and assessment of air pollutants in New South Wales*' (**DEC, 2005**). The criteria are health-based and are consistent with the National Environment Protection Measure for Ambient Air Quality (referred to as the Ambient Air-NEPM) (**NEPC, 1998**).

Table 1 summarises the adopted air quality criteria for the six key air quality indicators that are relevant to the scope of this study. Note that Benzene has been chosen for modelling as it represents the highest proportion of total VOCs measured onsite and it has the most stringent assessment criteria.

Pollutant	Averaging Period	Maximum Concentration µg/m ³
PM ₁₀	24 hour	50
FI110	Annual	30
Benzene (VOCs)	1 hour	0.029
	1 hour	570
SO ₂	24 hour	228
	Annual	60
NO	1 hour	246
NO ₂	Annual	62
H ₂ SO ₄ mist (sulphuric acid)	1 hour	0.018
H ₂ S	Nose response time average (99th Percentile)	3.45

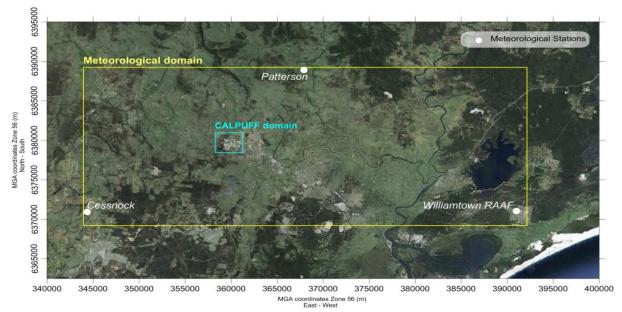
Table 1 Ambient Air Quality Criteria relevant to the Current Study (Source: Air NEPM)

Hydrogen Sulfide (H_2S) is an odorous air pollutant and is reported as a peak concentration at an approximately 1 second average. Therefore the 1 hour average ground level concentrations of H_2S are scaled with an appropriate peak-to-mean ratio from **Table 2**, which was a near field wake-affected point for all atmospheric stability classes A to F.

Source Type	Pasquil-Gifford stability class	Near field P/M60*	Far field P/M60*
Area	A, B, C, D	2.5	2.3
Aled	E, F	2.3	1.9
Line	A-F	6	6
Curface walks free point	А, В, С	12	4
Surface wake-free point	D, E, F	25	7
Tall wake free point	А, В, С	17	3
Tall wake-free point	D, E, F	35	6
Wake-affected point	A-F	2.3	2.3
Volume	A-F	2.3	2.3

Table 2 Factors for estimating peak concentrations in flat terrain (Source: Approved Methods)

*Ratio of peak 1-second average concentrations to mean 1-hour average concentrations


3 DISPERSION MODELLING

The modelling has been carried out in general accordance with the '*Approved Methods'* which specify how assessments based on the use of air dispersion models should be undertaken.

Dispersion modelling conducted for this assessment has been based on a modelling system using TAPM, CALMET and CALPUFF.

TAPM is a prognostic meteorological model that generates gridded three-dimensional meteorological data for each hour of the model run period. CALMET, the meteorological pre-processor for the dispersion model CALPUFF, calculates three-dimensional meteorological data based upon observed ground and upper level meteorological data, as well as modelled data generated for example by TAPM. CALPUFF then calculates the dispersion of plumes within this three-dimensional meteorological field.

The meteorological year modelled is 2011, which was selected due to the availability of high quality meteorological at the three Bureau of Meteorology Automatic Weather stations (AWS) at Patterson, Cessnock and Williamtown RAAF. The location of the meteorological sites and CALMET and CALPUFF modelling domains are shown in **Figure 3.1**. **Table 3** summarises the data used for this dispersion modelling.

TAPM (v 4.0.4)	
Number of grids (spacing)	30 km, 10 km, 3 km, 1km
Number of grid points	50 x 50 x 35
Year of analysis	January 2011 – December 2011
Centre of domain	35º43.5′ S, 151º35.5′ E
CALMET (v. 6.42)	
Meteorological grid domain	48 km x 20 km
Meteorological grid resolution	0.25 km
Surface meteorological stations	
	Williamtown RAFF AWS (BoM, Station No. 061078)
	- Wind speed - Cloud Amount
	- Wind direction - Relative humidity
	- Temperature - Sea Level Pressure
	- Cloud Height
	Patterson AWS (BoM, Station No. 061250)
	- Wind speed - Relative humidity
	- Wind direction - Sea Level Pressure
	- Temperature
	Cessnock Airport AWS (BoM, Station No. 061260)
	- Wind speed - Relative humidity
	- Wind direction - Sea Level Pressure
	- Temperature
3D.dat	Data extracted from 3 km TAPM
CALPUFF (v. 6.42)	
Computational domain	2.75 x 2.75 km
Sampling grid resolution	50m

Table 3: Meteorological Parameters used for TAPM and CALMET

3.1 Dispersion Meteorology

Annual and seasonal wind roses for the CALMET generated meteorological data onsite are presented in **Figure 3.2**. On an annual basis the winds are predominantly west-northwesterly. To use the wind data to assess the dispersion, it is necessary to also have data on the atmospheric stability. The frequency distribution of the estimated Pasquil-Gifford scheme stability classes are presented in **Table 4**. Overall the stability class D occurs most frequently (39%) of the time, which indicates a predominantly neutral stable atmosphere where dispersion is more efficient.

Table 4. Trequency of Stability class							
Stability Class	Percentage of occurrence (CALMET)						
А	1%						
В	5%						
С	15%						
D	39%						
E	15%						
F	25%						
Total	100%						

Table 4: Frequency of stability class

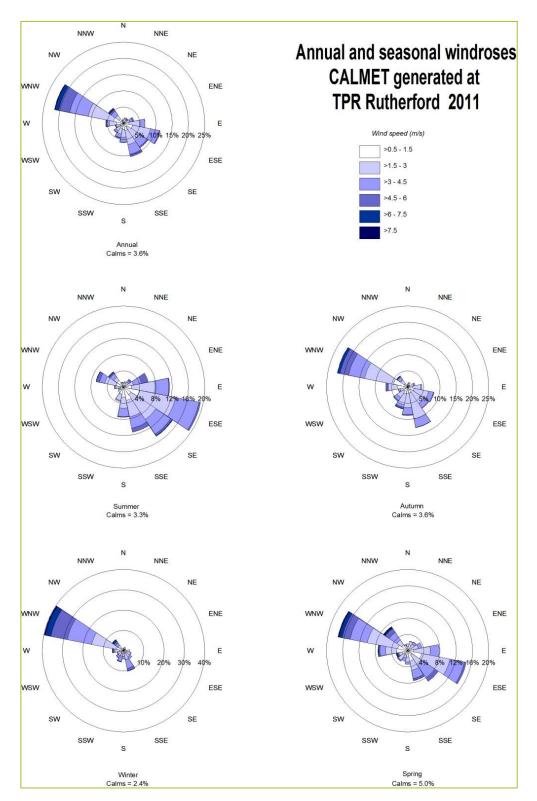
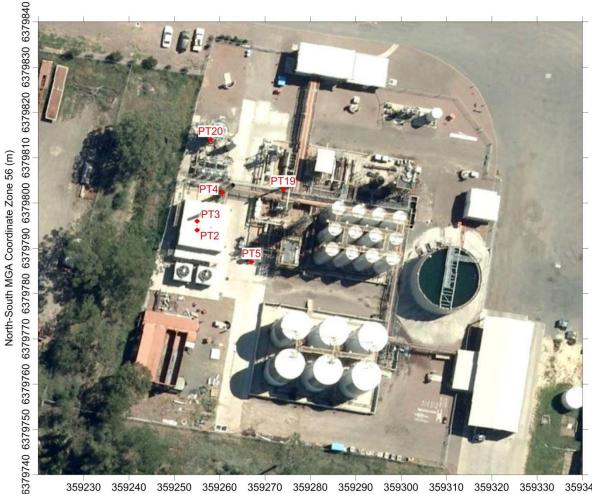


Figure 3.2: Annual and seasonal wind roses for CALMET generated meteorological data onsite



4 EMISSION ESTIMATES

New Environment Quality (newEQ) has conducted regular stack testing at the Rutherford refinery for each of the sources listed below:

- Points 2 and 3 0.2 and 3.0 MW gas fired boilers
- Point 5 Light Ends Scrubber
- Point 19 stack that serves two gas fired heaters
 - The thermal oil heater operates on natural gas and exhausts directly out of Point 19 (via in-duct monitoring point 18)
 - $\circ~$ The Fired Heater operates on natural gas and fuel gas from the process, and exhausts to a SO_X scrubber to control potential sulphur emissions. After passing though the scrubber, emissions from the Fired Heater exhaust to point 19 (via induct monitoring point 1)
- Point 20 exhaust emissions associated with operation of the reformer.

The point source locations are shown in **Figure 4.1**. Note that the point 4 flare stack is not subject to testing in this assessment.

359230 359240 359250 359260 359270 359280 359290 359300 359310 359320 359330 359340 East-West MGA Coordinate Zone 56 (m) Figure 4.1: Source locations

Table 5 summarises the characteristics of each point source. Two scenarios were modelled, one where the stack height of Point 19 is 16m and the other at 25m.

Table 5. CALFOFF Model Options used								
Parameter	Point 2	Point 3	Point 5	Point 19	Point 20			
Temperature (K)	470	522	295	378	1072			
Exit velocity (m/s)	2.72	10.29	5.72	4.67	11.29			
Diameter (m)	0.65	0.16	0.2	0.4	0.34			
Height (m)	8	10	8	16/25	14			
Volumetric flow rate (m ³ /s)	0.90	0.68	0.18	0.59	1.03			

Table 5: CALPUFF Model Options used

The maximum emission rates measured at each stack source for each pollutant of interest is presented in **Table 6**. These are the emission rates that were used for the dispersion modelling.

			(3)		
Pollutant	Point 2	Point 3	Point 5	Point 19	Point 20
PM ₁₀	0.00211	0.00033	0.00156	0.00569	0.00130
VOCs	0.00041	0.00029	0.00018	0.00038	0.00020
Benzene	0.00016	0.00012	0.00007	0.00015	0.00008
NO _x	0.03536	0.02639	0.00037	0.07527	0.01715
SO ₂	0.00128	0.00088	0.00052	0.00624	0.00058
H ₂ SO ₄	-	-	0.00028	0.03428	-
H₂S	0.00108	0.00074	-	0.00054	0.00041

Table 6: Maximum measured emission rates (g/s)

5 PREDICTED GROUND LEVEL CONCENTRATIONS

The predicted ground level concentrations for each of the six key pollutants are presented in the following sections for the relevant averaging periods.

The ground level concentrations predicted at a number of nearby receptors are presented in **Table** 6 and **Table 7**. No receptors are predicted to exceed any of the criteria of the pollutants modelled.

	Easting	Northing	H₂S	H_2SO_4 (SO ₃)	SO ₂		-	VOCs	PM ₁₀		NOx		Benzene
Receptor			99th	1 hour	1 hour	24 hour	Annual	1 hour	24 hour	Annual	1 hour	Annual	1 hour
ID			percentile										
	Criteria		3.45	0.018	570	228	60	-	50	30	246	62	0.029
	Units		µg/m³	mg/m ³	µg/m³	µg/m³	µg/m³	mg/m ³	µg/m³	µg/m³	µg/m³	µg/m³	mg/m ³
1	359332	6379827	1.20	0.0090	2.5	0.94	0.104	0.00039	1.16	0.13	38	1.61	0.00061
2	359810	6380106	0.12	0.0014	0.4	0.09	0.006	0.00006	0.10	0.01	6	0.10	0.00008
3	360241	6379147	0.09	0.0008	0.2	0.07	0.009	0.00003	0.08	0.01	3	0.15	0.00005
4	360134	6378983	0.07	0.0007	0.2	0.05	0.005	0.00003	0.06	0.01	3	0.08	0.00004
5	360115	6378743	0.03	0.0005	0.1	0.02	0.002	0.00002	0.03	0.00	2	0.03	0.00003
6	359822	6378743	0.02	0.0006	0.2	0.02	0.001	0.00003	0.03	0.00	3	0.02	0.00004
7	359608	6378819	0.02	0.0008	0.2	0.02	0.001	0.00003	0.03	0.00	3	0.02	0.00004
8	359814	6380102	0.12	0.0014	0.4	0.08	0.006	0.00006	0.09	0.01	6	0.10	0.00008
9	359285	6380087	0.37	0.0031	0.8	0.37	0.037	0.00013	0.41	0.04	13	0.58	0.00019
10	359266	6379626	0.31	0.0038	1.1	0.26	0.015	0.00018	0.32	0.02	17	0.24	0.00031
11	359372	6379611	0.28	0.0040	1.0	0.20	0.027	0.00016	0.25	0.03	16	0.43	0.00023
12	359441	6379596	0.26	0.0029	0.7	0.21	0.035	0.00011	0.25	0.04	11	0.57	0.00017
13	359479	6379592	0.27	0.0025	0.7	0.23	0.039	0.00010	0.26	0.05	10	0.62	0.00015
14	359536	6379588	0.27	0.0022	0.6	0.21	0.041	0.00009	0.25	0.05	9	0.66	0.00013
15	359631	6379615	0.28	0.0020	0.6	0.21	0.045	0.00010	0.25	0.05	10	0.72	0.00016
16	359734	6379741	0.23	0.0019	0.5	0.18	0.026	0.00009	0.20	0.03	8	0.40	0.00014
17	359696	6379908	0.19	0.0021	0.5	0.14	0.012	0.00008	0.15	0.01	8	0.19	0.00012
18	359624	6379939	0.21	0.0023	0.6	0.15	0.014	0.00009	0.16	0.02	9	0.22	0.00013
19	359475	6379939	0.37	0.0038	1.0	0.38	0.028	0.00015	0.42	0.03	15	0.42	0.00023
20	359281	6379969	0.75	0.0061	1.6	0.80	0.086	0.00024	0.88	0.10	25	1.34	0.00035
21	359239	6379874	1.29	0.0084	2.1	1.63	0.261	0.00039	1.85	0.30	34	4.01	0.00056
22	359186	6379733	0.89	0.0092	2.5	0.80	0.065	0.00040	0.92	0.08	40	1.01	0.00058
23	359171	6379642	0.35	0.0049	1.3	0.34	0.019	0.00020	0.39	0.02	20	0.30	0.00033

Table 7: Predicted ground level concentrations at nearby residences for the 16m Point 19 stack

Table 8: Predicted ground level concentrations at nearby residences for the 25 Point 19 stack

		curcecu	ground	level con	contra	liono at	incur 5 y	. conta cint			•	20 014	
	Easting	Northing	H ₂ S	H_2SO_4 (SO ₃)	SO ₂			VOCs	PM ₁₀		NOx		Benzene
			99th	1 hour	1 hour	24 hour	Annual	1 hour	24 hour	Annual	1 hour	Annual	1 hour
Receptor			percentile										
ID													
	Criteria		3.45	0.018	570	228	60	-	50	30	246	62	0.029
	Units		µg/m³	mg/m ³	µg/m³	µg/m³	µg/m³	mg/m ³	μg/m³	µg/m³	µg/m³	µg/m³	mg/m ³
1	359332	6379827	0.97	0.0064	1.7	0.39	0.053	0.00033	0.68	0.08	27	1.00	0.00058
2	359810	6380106	0.10	0.0008	0.2	0.05	0.004	0.00005	0.05	0.01	4	0.07	0.00008
3	360241	6379147	0.09	0.0006	0.2	0.06	0.009	0.00003	0.07	0.01	3	0.15	0.00004
4	360134	6378983	0.07	0.0006	0.2	0.05	0.005	0.00003	0.06	0.01	3	0.08	0.00004
5	360115	6378743	0.03	0.0005	0.1	0.03	0.002	0.00002	0.03	0.00	2	0.03	0.00003
6	359822	6378743	0.02	0.0006	0.2	0.03	0.001	0.00003	0.03	0.00	3	0.02	0.00004
7	359608	6378819	0.02	0.0007	0.2	0.03	0.001	0.00003	0.03	0.00	3	0.02	0.00004
8	359814	6380102	0.10	0.0008	0.2	0.05	0.004	0.00005	0.05	0.01	4	0.07	0.00008
9	359285	6380087	0.35	0.0024	0.7	0.26	0.028	0.00011	0.31	0.03	11	0.47	0.00018
10	359266	6379626	0.30	0.0028	0.9	0.21	0.013	0.00016	0.27	0.02	14	0.21	0.00031
11	359372	6379611	0.27	0.0026	0.7	0.17	0.020	0.00012	0.22	0.03	11	0.35	0.00022
12	359441	6379596	0.25	0.0023	0.6	0.16	0.026	0.00009	0.20	0.03	9	0.45	0.00016
13	359479	6379592	0.24	0.0021	0.6	0.16	0.030	0.00008	0.20	0.04	9	0.52	0.00014
14	359536	6379588	0.24	0.0018	0.5	0.20	0.036	0.00008	0.24	0.04	7	0.59	0.00013
15	359631	6379615	0.26	0.0017	0.4	0.23	0.044	0.00008	0.26	0.05	7	0.70	0.00015
16	359734	6379741	0.21	0.0013	0.4	0.15	0.019	0.00007	0.17	0.02	6	0.32	0.00014
17	359696	6379908	0.16	0.0013	0.4	0.09	0.008	0.00007	0.11	0.01	6	0.14	0.00011
18	359624	6379939	0.18	0.0015	0.4	0.08	0.008	0.00008	0.10	0.01	7	0.15	0.00013
19	359475	6379939	0.31	0.0028	0.8	0.15	0.015	0.00012	0.20	0.02	12	0.27	0.00021
20	359281	6379969	0.64	0.0032	0.9	0.41	0.050	0.00019	0.51	0.06	17	0.89	0.00033
21	359239	6379874	1.19	0.0058	1.7	0.70	0.119	0.00033	1.01	0.17	27	2.29	0.00054
22	359186	6379733	0.79	0.0042	1.2	0.55	0.040	0.00031	0.69	0.05	22	0.71	0.00055
23	359171	6379642	0.33	0.0028	0.7	0.23	0.014	0.00016	0.27	0.02	12	0.24	0.00032

5.1 Coarse particles – PM₁₀

The maximum predicted 24-hour and annual ground level concentrations of PM_{10} where the point 19 stacks are varied from 16 m and 25 m are presented in **Figure 5.1** and **Figure 5.2**.

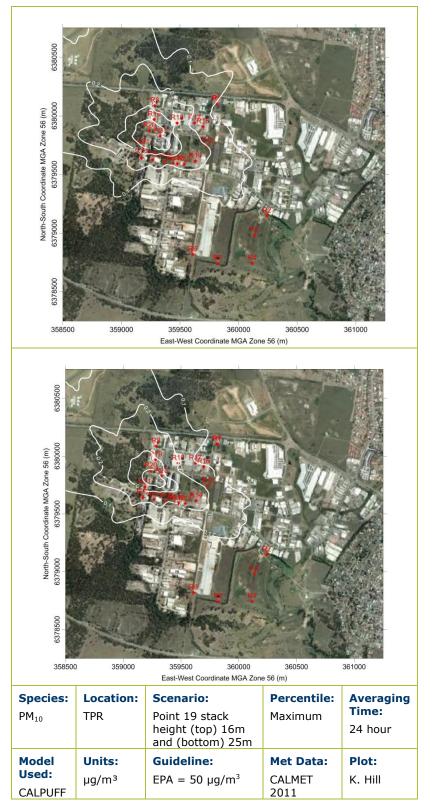


Figure 5.1: Predicted 24-hour average ground-level concentrations of PM_{10} (µg/m³)

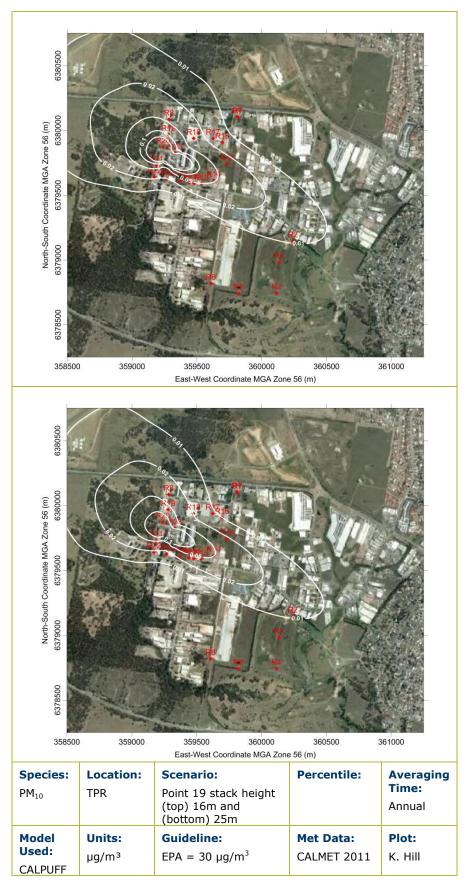


Figure 5.2: Predicted annual average ground-level concentrations of PM_{10} (µg/m³)

5.2 VOCs (Benzene)

The maximum predicted average 1-hour Benzene ground level concentrations where the Point 19 stacks are varied from 16 m and 25 m are compared in **Figure 5.3**.

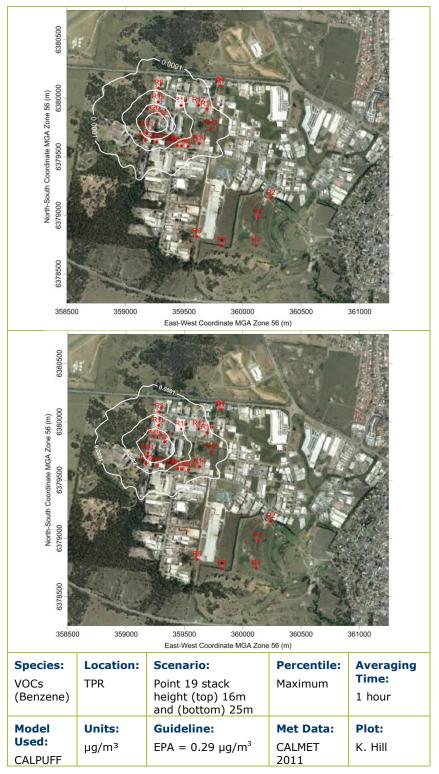


Figure 5.3: Predicted 1-hour average ground-level concentrations of C_6H_6 ($\mu g/m^3$)

5.3 Sulphur Dioxide – SO₂

The maximum predicted 1-hour, 24-hour and annual ground level concentrations of SO_2 where the Point 19 stacks are varied from 16 m and 25 m are presented in **Figure 5.4**, **Figure 5.5** and **Figure 5.6**.

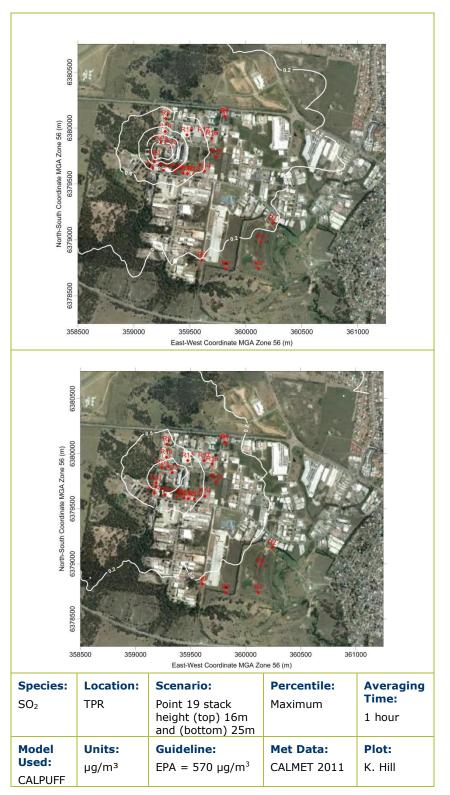


Figure 5.4: Predicted 1-hour average ground-level concentrations of $SO_2 (\mu g/m^3)$

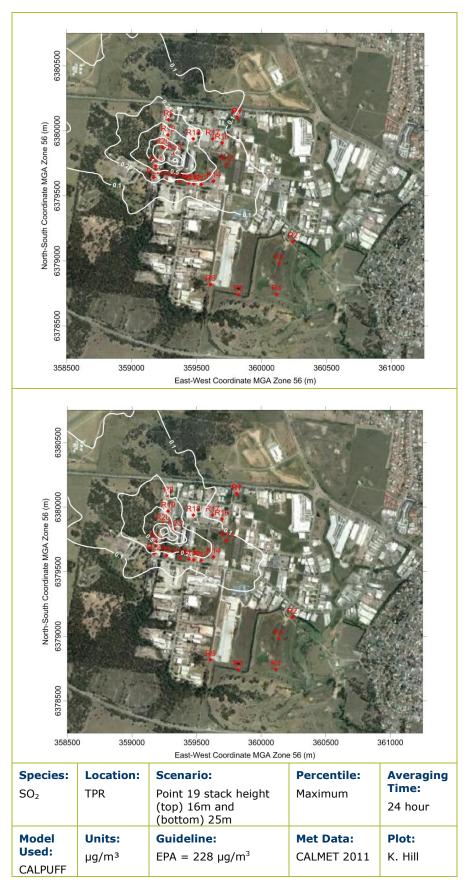


Figure 5.5: Predicted maximum 24-hour average ground-level concentrations of SO_2 (µg/m³)

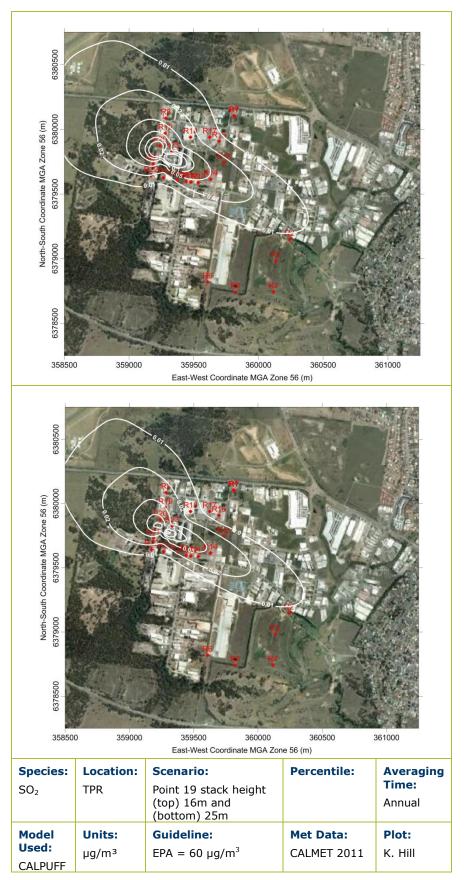


Figure 5.6: Predicted annual average ground-level concentrations of SO₂ (µg/m³)

5.4 Nitrogen Dioxide – NO₂

The maximum predicted 1-hour and annual ground level concentrations of NO_2 (assuming 100% conversion of NO_x to NO_2), where the Point 19 stacks are varied from 16 m and 25 m are presented in **Figure 5.7** and **Figure 5.8**.

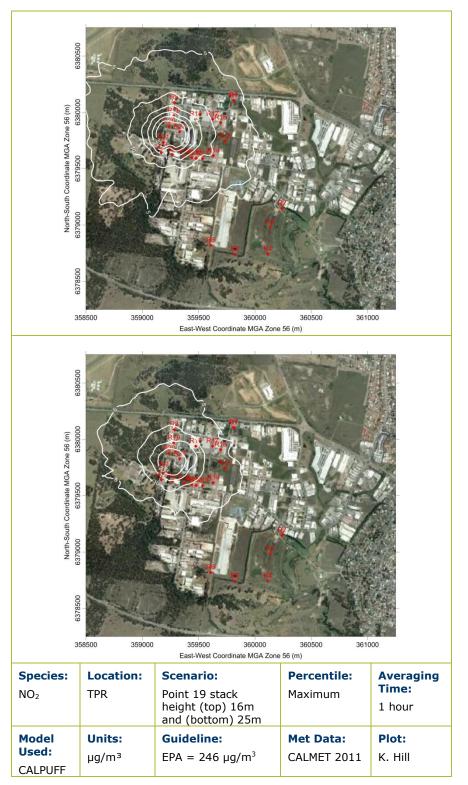


Figure 5.7: Predicted 1-hour average ground-level concentrations of NO_2 ($\mu g/m^3$)

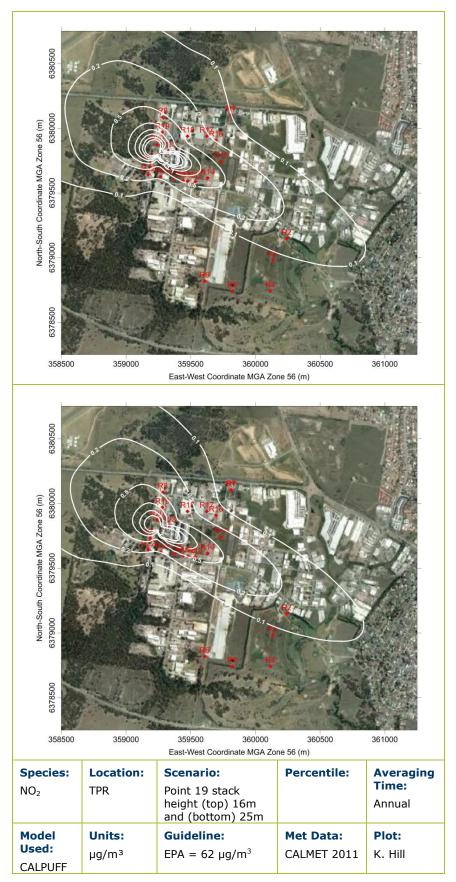


Figure 5.8: Predicted annual average ground-level concentrations of NO_2 (µg/m³)

5.5 Hydrogen Sulphide Mist – H₂SO₄

The maximum predicted 1-hour ground level concentrations of H_2SO_4 where the Point 19 stacks are varied from 16 m and 25 m are presented in **Figure 5.9**.

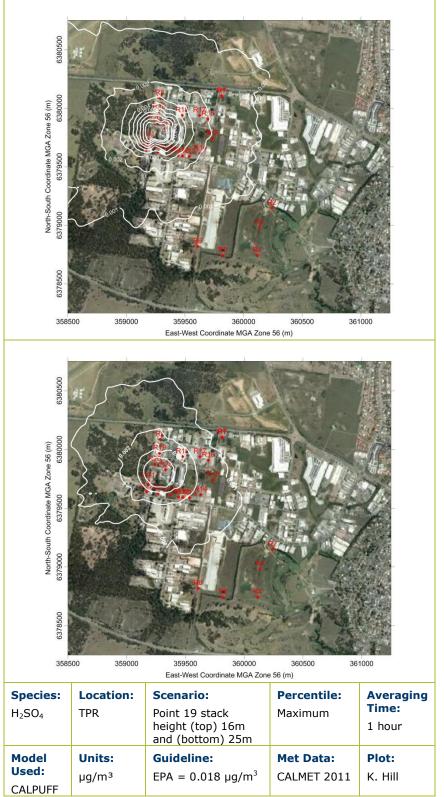


Figure 5.9: Predicted 1-hour average ground-level concentrations of H_2SO_4 (µg/m³)

5.1 Hydrogen Sulfide – H₂S

The maximum predicted nose response time averaged 99^{th} percentile ground level concentrations of H_2S where the Point 19 stacks are varied from 16 m and 25 m are presented in **Figure 5.10**.

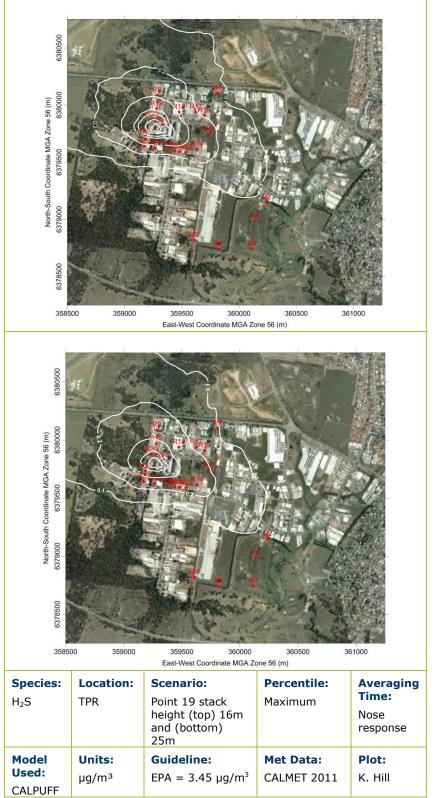


Figure 5.10: Predicted nose response time-averaged ground-level concentrations of H_2S ($\mu g/m^3$)

6 VARYING STACK PARAMETERS

Further investigation was carried out for five on site receptor locations. **Figure 6.1** shows the locations of these on-site receptors and the six modelling scenarios are listed below.

- Scenario 1: 16 m stack, exit velocity 4.7 m/s (current conditions)
- Scenario 2: 25 m stack, exit velocity 4.7 m/s
- Scenario 3: 16 m stack, exit velocity 7 m/s
- Scenario 4: 25 m stack, exit velocity 7 m/s
- Scenario 5: 16 m stack, exit velocity 15 m/s
- Scenario 6: 25 m stack, exit velocity 15 m/s

These scenarios were run for H_2SO_4 , NO_x , H_2S and Benzene as these pollutants were those closest to the air quality goals. The results are presented in **Table 9**, and the percentage change in ground level concentrations relative to Scenario 1 are shown in **Table 10**.

For these five on-site receptors there is very little reduction gained by increasing the exit velocity. The biggest reductions come from increasing the stack height to 25 m, and the most significant of these is in the H_2SO_4 concentrations (up to 45% by increasing to 25 m alone, and 46% for increasing stack height and exit velocity).

		oncentrations		-		
Receptor ID	Easting	Northing	H ₂ SO ₄	NO _x 1hr	H ₂ S	Benzene
Criteria			0.018	246	3.45	0.029
		nario 1 - 16m	stack EV	4.67 m/s		
R1	359309	6379756	0.010	38	1.37	0.0008
R2	359310	6379815	0.013	50	1.69	0.0010
R3	359268	6379824	0.014	52	1.87	0.0010
R4	359256	6379764	0.009	38	1.17	0.0011
R5	359311	6379839	0.010	42	1.30	0.0007
	Scer	nario 2 - 25m	stack EV 4	4.67 m/s		
R1	359309	6379756	0.006	30	1.32	0.0008
R2	359310	6379815	0.007	36	1.56	0.0010
R3	359268	6379824	0.008	38	1.86	0.0010
R4	359256	6379764	0.008	34	1.13	0.0011
R5	359311	6379839	0.007	27	1.09	0.0007
	Sc	enario 3 - 16	m stack E\	/ 7 m/s		
R1	359309	6379756	0.010	37	1.37	0.0008
R2	359310	6379815	0.012	49	1.67	0.0010
R3	359268	6379824	0.014	51	1.87	0.0010
R4	359256	6379764	0.009	38	1.17	0.0011
R5	359311	6379839	0.009	41	1.29	0.0007
	Sce	enario 4 - 25r	n stack E	/ 7 m/s		
R1	359309	6379756	0.006	30	1.32	0.0008
R2	359310	6379815	0.007	36	1.56	0.0010
R3	359268	6379824	0.008	38	1.86	0.0010
R4	359256	6379764	0.008	34	1.13	0.0011
R5	359311	6379839	0.007	27	1.09	0.0007
	Sce	enario 5 - 16n	n stack EV	15 m/s		
R1	359309	6379756	0.010	36	1.37	0.0008
R2	359310	6379815	0.012	46	1.65	0.0010
R3	359268	6379824	0.014	52	1.87	0.0010
R4	359256	6379764	0.009	38	1.17	0.0011
R5	359311	6379839	0.009	38	1.24	0.0007
	Sce	enario 6 - 25n	n stack EV	15 m/s		
R1	359309	6379756	0.006	30	1.32	0.0008
R2	359310	6379815	0.007	36	1.56	0.0010
R3	359268	6379824	0.008	38	1.86	0.0010
R4	359256	6379764	0.008	34	1.13	0.0011
R5	359311	6379839	0.007	27	1.09	0.0007

Table 9: Ground level concentrations for each modelling scenario ($\mu g/m^3$)

able 10: Pe	-	-	ations relative	to Scenario 1				
	H ₂ SO ₄	NO ₂ 1hr	H₂S	Benzene				
	Scenario	2 - 25m stack	EV 4.67 m/s					
R1	-39%	-20%	-4%	-1%				
R2	-45%	-28%	-8%	-3%				
R3	-41%	-27%	0%	0%				
R4	-11%	-10%	-3%	0%				
R5	-32%	-37%	-17%	-5%				
	Scenario	o 3 - 16m stacl	k EV 7 m/s					
R1	-2%	-2%	0%	0%				
R2	-4%	-3%	-1%	0%				
R3	-1%	-1%	0%	0%				
R4	-1%	0%	0%	0%				
R5	-7%	-3%	-1%	0%				
	Scenario	9 4 - 25m stack	cEV7m/s					
R1	-39%	-20%	-4%	-1%				
R2	-46%	-28%	-8%	-3%				
R3	-42%	-27%	0%	0%				
R4	-11%	-10%	-3%	0%				
R5	-33%	-37%	-17%	-5%				
	Scenario	5 - 16m stack	EV 15 m/s	·				
R1	-3%	-4%	0%	0%				
R2	-4%	-9%	-3%	-1%				
R3	2%	1%	0%	0%				
R4	2%	1%	0%	0%				
R5	-12%	-10%	-5%	-1%				
Scenario 6 - 25m stack EV 15 m/s								
R1	-38%	-20%	-4%	-1%				
R2	-45%	-28%	-8%	-3%				
R3	-41%	-26%	0%	0%				
R4	-10%	-10%	-3%	0%				
R5	-32%	-37%	-17%	-5%				

Table 10: Percentage change in concentrations relative to Scenario 1

7 CONCLUSION

The results indicate that the largest reductions in ground level concentrations come from increasing the stack height rather than the exit velocity. The most significant of these is in the H_2SO_4 concentrations (up to 45% by increasing to 25 m alone, and 46% for increasing stack height and exit velocity).

No concentrations are predicted to exceed their relevant air quality criterion at any of the receptors.

8 **REFERENCES**

DEC (2005)

"Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales". New South Wales EPA.

NEPC (1998)

"National Environmental Protection Measure and Impact Statement for Ambient Air Quality". National Environment Protection Council Service Corporation, Level 5, 81 Flinders Street, Adelaide SA 5000.