# **Appendix K**

Noise Assessment

# Noise Impact Assessment – Resource Recovery and Recycling Facility (Rutherford, NSW)

January 2006

Transpacific Industries Pty Ltd



Parsons Brinckerhoff Australia Pty Limited ACN 078 004 798 and Parsons Brinckerhoff International (Australia) Pty Limited ACN 006 475 056 trading as Parsons Brinckerhoff ABN 84 797 323 433

PPK House
9 Blaxland Road
Rhodes NSW 2138
Locked Bag 248
Rhodes NSW 2138
Australia
Telephone +61 2 9743 0333
Facsimile +61 2 9736 1568
Email sydney@pb.com.au

ABN 84 797 323 433 NCSI Certified Quality System ISO 9001

Parsons Brinckerhoff supports the Environment by printing on 100% A4 recycled paper

| ©Parsons Brind<br>Brinckerhoff ("F | ckerhoff Australia Pty Limited and Parsons Brinckerhoff International (Australia) Pty Limited trading as Parsons PB"). [2006]                                                                                                                                                                                                                                                                                                                            |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| document and reproduced in         | the drawings, information and data recorded in this document ("the information") is the property of PB. This the information are solely for the use of the authorised recipient and this document may not be used, copied or whole or part for any purpose other than that for which it was supplied by PB. PB makes no representation, duty and accepts no responsibility to any third party who may use or rely upon this document or the information. |
| Author:                            | Shane Harris                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Reviewer:                          | Shane Harris / Carlos Olles                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Approved by:                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Signed:                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Date:                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Distribution:                      | internal (electronic)                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



# **Contents**

Page Number

| Ex        | ecuti           | iv                                                                                                         |          |
|-----------|-----------------|------------------------------------------------------------------------------------------------------------|----------|
| 1.        | Intr            | oduction                                                                                                   | 1        |
|           | 1.1             | Background                                                                                                 | 1        |
|           | 1.2             | Scope                                                                                                      | 1        |
| 2.        | Site            | e description and proposal details                                                                         | 2        |
|           | 2.1             | Site location and surrounding environs                                                                     | 2        |
|           | 2.2             | Description of proposal                                                                                    | 3        |
|           |                 | 2.2.1 Overview                                                                                             | 3        |
|           |                 | <ul><li>2.2.2 Construction works</li><li>2.2.3 Operations</li></ul>                                        | 3        |
| 3.        | Exis            | sting noise environment                                                                                    | 6        |
|           | 3.1             | Overview                                                                                                   | 6        |
| <b>3.</b> | 3.2             | Noise monitoring methodology                                                                               | 6        |
|           | 3.3             | Measurement locations                                                                                      | 6        |
|           | 3.4             | Data exclusion                                                                                             | 7        |
|           | 3.5             | Measured background noise levels                                                                           | 9        |
|           |                 | 3.5.1 Unattended noise monitoring                                                                          | 9        |
|           |                 | 3.5.2 Attended noise monitoring                                                                            | 10       |
| 4.        | Ado             | pted criteria and guidelines                                                                               | 11       |
|           | 4.1             | Overview                                                                                                   | 11       |
|           | 4.2             | Construction noise                                                                                         | 11       |
|           | 4.3             | Operational noise                                                                                          | 12       |
|           | 4.4             | Sleep disturbance                                                                                          | 13       |
|           | 4.5             | Road traffic noise                                                                                         | 13       |
|           | 4.6             | Vibration                                                                                                  | 14       |
| 5.        | Pre             | dicted impact profiles                                                                                     | 15       |
|           | 5.1             | Construction noise                                                                                         | 15       |
|           | 5.2             | Operational noise                                                                                          | 17       |
|           |                 | 5.2.1 Model inputs                                                                                         | 17       |
|           |                 | <ul><li>5.2.2 Modelling techniques and scenarios</li><li>5.2.3 Modelled operational noise impact</li></ul> | 17<br>19 |
|           | 5.3             | Sleep disturbance                                                                                          | 23       |
|           | 5.4             | Road traffic noise                                                                                         | 23       |
|           | J. <del>↑</del> | Hoda Italiio Holoo                                                                                         | 20       |

PARSONS BRINCKERHOFF



# Contents (continued)

|    |     |                           |                                                                          | Page Number    |
|----|-----|---------------------------|--------------------------------------------------------------------------|----------------|
|    |     | 5.4.1<br>5.4.2<br>5.4.3   | Existing Levels Proposed Levels Change in Road Traffic Noise Profiles    | 24<br>24<br>25 |
|    | 5.5 | Vibrati                   | ion                                                                      | 25             |
| 6. | Sta | tement                    | of potential impact                                                      | 27             |
|    | 6.1 | Constr<br>6.1.1<br>6.1.2  | ruction noise<br>Potential impacts<br>Mitigation measures and safeguards | 27<br>27<br>27 |
|    | 6.2 | Opera<br>6.2.1<br>6.2.2   | tional noise Potential impacts Mitigation measures and safeguards        | 28<br>28<br>28 |
|    | 6.3 | Sleep<br>6.3.1<br>6.3.2   | disturbance Potential impacts Mitigation measures and safeguards         | 29<br>29<br>30 |
|    | 6.4 | Road t<br>6.4.1           | traffic noise<br>Mitigation measures and safeguards                      | 30<br>30       |
|    | 6.5 | Vibrati<br>6.5.1<br>6.5.2 | ion Potential impacts Mitigation measures and safeguards                 | 31<br>31<br>31 |
| 7. | Con | clusion                   | n                                                                        | 32             |
| 8. | Ref | erence                    | s                                                                        | 33             |
| 9. | Lim | itation                   | s                                                                        | 34             |



#### Contents (continued)

Page Number

#### **List of Tables**

| Table 2.1: | Adopted noise catchment areas                            | 2  |
|------------|----------------------------------------------------------|----|
| Table 3.1: | Selected background noise monitoring locations           | 7  |
| Table 3.2: | Unattended noise monitoring results                      | 9  |
| Table 3.3: | Operator attended noise monitoring results (27/06/05)    | 10 |
| Table 4.1: | Acoustic design objectives for construction activities   | 11 |
| Table 4.2: | NSW INP amenity criteria – suburban setting              | 12 |
| Table 5.1: | Typical sound power levels for construction equipment    | 15 |
| Table 5.2: | Predicted construction noise impacts (indicative values) | 16 |
| Table 5.3: | Noise propagation modelling scenarios considered         | 18 |
| Table 5.4: | Predicted operational noise impacts (all operations)     | 20 |
| Table 5.5: | Primary noise sources (neutral conditions)               | 21 |

# **List of Figures**

| Figure ES-1: | Noise monitoring locations and potentially affected receivers            | vi |
|--------------|--------------------------------------------------------------------------|----|
| Figure 2.1:  | Study area location and surrounding landscapes                           | 4  |
| Figure 2.2:  | Indicative site layout (process areas idientified)                       | 5  |
| Figure 3.1:  | Monitoring locations and receivers considered                            | 8  |
| Figure 5.1:  | Noise contour impact isopleth (all sources, still isothermal conditions) | 22 |

# **Appendices**

| Appendix A: | Instrument set calibration certificates |
|-------------|-----------------------------------------|
| Appendix B: | Compiled daily noise logger graphs      |
| Appendix C: | Sample ENM output file                  |
| Appendix D: | Sample ENM ranking file                 |



# **Executive summary**

Parsons Brinckerhoff (PB) was commissioned by Transpacific Industries Pty Ltd to undertake an environmental noise and vibration impact assessment for the proposed construction and operation of the Rutherford Waste Recovery and Recycling Facility.

The proposed plant incorporates green waste, liquid waste and waste oil processing and a vehicle servicing workshop. The facility would store, treat, recycle, recover and transport industrial wastes generated within the region.

Background noise levels for the area were assessed in accordance with current guidelines and standards. Existing local noise environs where characterised based on long-term (unattended) and short-term (attended) baseline noise levels measured at five noise monitoring locations. Monitoring locations are presented in Figure ES-1.

Operational noise criteria were established with reference to the NSW Industrial Noise Policy (INP). Sleep disturbance and construction noise planning goals were determined based on the methodologies presented in the Environmental Noise Control Manual (ENCM). Road traffic noise impacts were qualitatively assessed with reference to the Environmental Criteria for Road Traffic Noise document (ECRTN). A number of standards and guidelines were considered in the assessment of construction related vibration impact potential.

Noise criteria was established for the anticipated site construction works ( $L_{A10}$  level of 51 dB(A)). A  $L_{Aea}$  criterion of 46 dB(A) (day time), 45 dB(A) (evening) and 38 dB(A) (night time) were established for the operations of the proposed site. The noise criteria set down in this report are planning levels only. Factors such as social impacts (annoyance) and other environmental effects of the development need to be considered in regard to the approval process.

Indicative construction noise impacts were predicted using a simplified and conservative approach of calculating noise attenuation with distance. Indicative A-weighted sound power levels were adopted in the assessment of construction noise impacts.

During the construction phase, manual works would be primarily carried out. Construction noise sources would include hand tools and short-term movement of mobile sources throughout each daily period. Noise emissions from the construction works would be sporadic and intermittent, dependent on the activities conducted. Primary noise generating works were assumed to require less than a six month -construction period.

Worse case received noise levels of up to 50 dB(A) were reported. Typical mid-point received noise levels satisfied the construction noise design goal. Cumulative construction noise impacts were not assessed.

Noise controls and management practices were recommended for the construction works.

The NSW Department of Environment and Conservation recognised Environmental Noise Model (ENM) was used to assess the potential for operational noise impacts. The noise impact potential from the site was assessed at the adopted 16 reference locations provided on Figure ES-1.



Operational noise source data was adopted from existing data. One / one octave band data was adopted.

During peak operations, a worse case predicted noise level of 30 dB(A) ( $L_{Aeq}$ ) was predicted for a residential receiver located to the south east with still isothermal conditions. With noise enhancing gradient wind flows, received noise levels up to 36.5 dB(A) ( $L_{Aeq}$ ) were reported.

Boundary nose levels of less than 70 dB(A) ( $L_{Aeg}$ ) are expected.

The established noise model predicted that the operations of the facility would meet the requirements of the Department of Environment and Conservations Industrial Noise Policy. Existing ambient noise profiles are not expected to be affected by the operations of the site. Under worse case conditions, the site is not expected to be audible throughout the local residential community during the day time, evening or night time periods.

No sleep disturbance, road traffic noise or vibration impacts are anticipated.

With reference to the recommendations of this report, no long-term degradation to the existing noise environs or loss of local acoustic amenity is expected form the operations of the proposed waste resource recovery and recycling facility. It is recommended that post-commissioning noise source validation measurements be carried out to verify the assumptions made, and subsequent conclusions provided, within this report.

It is expected that a performance based approach would be applied during the final design and construct stage of the site. Conceptually, the proposed site is not expected to result in future socioacoustic land use incompatibility.



Figure ES-1: Noise monitoring locations and potentially affected receivers



 PARSONS BRINCKERHOFF
 2118506Ao PR\_2489Iss3 100106
 Page vi



# 1. Introduction

#### 1.1 Background

This report has been prepared by Parsons Brinckerhoff (PB) on behalf of Transpacific Industries Pty Ltd (Transpacific) to assess the potential noise and vibration impacts of the proposed construction and operation of the Rutherford Waste Recovery and Recycling Facility. The study has been prepared for inclusion within the Environmental Impact Statement (EIS) being prepared by PB.

This assessment has been completed in accordance with the guidelines presented in, the *Industrial Noise Policy* (NSW DEC INP 2000), the *Environmental Noise Control Manual* (NSW DEC ENCM 1994) and the document *Environmental Criteria for Road Traffic Noise* (NSW DEC ECRTN 1999) and other relevant guidelines.

The study assessed the potential for noise and vibration impacts from the proposed construction works and operational activities. Short-term construction activities would be undertaken within the subject site. Operational noise emissions from the proposal have the potential to influence to impact a number of existing nearby residences.

### 1.2 Scope

The scope of works for this study was to prepare a noise and vibration impact assessment for the proposed construction and operations of the Rutherford Waste Recovery and Recycling Facility. This required completion of the following tasks:

- assess existing ambient noise environment in the study area
- establish reasonable and feasible noise design objectives and assessment criteria for the study area
- provide a detailed assessment of potential noise impacts associated with the proposal (operations, sleep disturbance, construction and road traffic noise)
- provide a qualitative assessment of potential vibration impacts associated with the proposal
- assess potential impacts against relevant legislation and guidelines
- provide a concise statement of potential noise and vibration impact
- develop noise and vibration impact mitigation measures.



# 2. Site description and proposal details

#### 2.1 Site location and surrounding environs

The proposed waste resource recovery and recycling facility is located at Kyle Street, Rutherford. The site is approximately 10 hectares (25 acres) in size and has dimensions of 435 metres by 235 metres.

The proposed facility would be located within the existing industrial area, zoned 4(a) (General Industry) within the Maitland Local Environmental Plan. The township of Rutherford is 1,500 metres east of the site. A number of existing receivers are located to the north west, north east and east of the proposed site. The New England Highway lie approximately 250 metres to the north of the subject site.

The study area and nearest potentially affected receivers considered for operational noise impacts are shown in *Figure 2.1*. Identified noise catchment areas adopted within this assessment have been outlined in *Table 2.1*.

Table 2.1: Adopted noise catchment areas

| Catchment | Distance       | Bearing    | Description                                        |
|-----------|----------------|------------|----------------------------------------------------|
| 1         | ≈ 1,300 metres | north west | Receivers A and B                                  |
|           |                |            | Dent Street. Elevated receivers                    |
| 2         | ≈ 1,000 metres | north west | Receivers C and D                                  |
|           |                |            | Located adjacent New England Highway               |
| 3         | ≈ 1,000 metres | south      | Receivers E and F                                  |
|           |                |            | Isolated semi-rural allotments. Elevated receivers |
| 4         | ≈ 1,000 metres | south east | Receivers G, H, I and J                            |
|           |                |            | Rutherford South                                   |
| 5         | ≈ 1,100 metres | north east | Receivers K, L and M                               |
|           |                |            | Rutherford South                                   |
| 6         | ≈ 1,000 metres | north      | Receivers N, O and P                               |
|           |                |            | Anambah                                            |

Noise catchment areas were identified and selected with consideration to existing land use(s) and noise sources influencing existing background noise levels.



#### 2.2 Description of proposal

#### 2.2.1 Overview

The proposed plant incorporates green waste, liquid waste and waste oil processing and a vehicle servicing workshop. The facility would store, treat, recycle, recover and transport industrial wastes generated within the region.

Potential noise and vibration impacts may be associated with both the construction and operational phases of the development.

#### 2.2.2 Construction works

Where possible, components of the proposed development would be constructed and operated with existing site buildings and using existing infrastructure. Renovation of existing buildings and infrastructure would be undertaken. Demolition of existing site infrastructure, including a steel tank, existing waste water treatment facilities stormwater lagoon and an existing dwelling would be carried out.

Components of the facility that would increase the footprint of the development include hydrogenation process, oily water treatment, waste water treatment plant, truck parking, fuel bowsers, truck and tanker wash and tank farms for waste treatments.

Noise generating construction works (not including internal fit outs and associated) is expected to be completed in less than six months.

#### 2.2.3 Operations

The waste resource recovery and recycling facility would incorporate the following treatment processes:

- oily water treatment and waste oil recovery
- treatment of non-sewerable aqueous wastes by neutralisation, chemical fixation, stabilisation and solidification (CFS)
- hydrogenation of re-refined base lube oils.

Each above process has the potential to influence the ambient noise environs for nearby receivers.

The proposed site layout, with each is process area identified, is provided as *Figure 2.2*.



Figure 2.1: Study area location and surrounding landscapes



 PARSONS BRINCKERHOFF
 2118506A PR\_24891ss3 100106
 Page 4



Figure 2.2: Indicative site layout (process areas idientified)





# 3. Existing noise environment

#### 3.1 Overview

This section of the report presents the results of ambient noise measurements carried out in the study area. The results have been used to characterise current ambient noise profiles and establish project-specific noise design objectives.

Noise monitoring was carried out for the assessment of the primary issue of environmental noise impacts. Detailed assessment of existing road traffic noise levels was not undertaken.

#### 3.2 Noise monitoring methodology

Background noise measurements were carried out using a RION NA27 Precision Sound Level Meter (operator attended noise monitoring) and Acoustic Research Laboratories statistical environmental noise loggers, type EL-215 (long-term unattended noise monitoring). The instrument sets comply with AS 1259.

Instrument sets were calibrated by a NATA accredited laboratory within two years of the measurement period. Copies of the instrument set calibration certificates have been included with *Appendix A*.

Microphones were positioned at 1.2 metres above ground level and were fitted with windsocks. Each instrument was calibrated before and after the measurement period to ensure the reliability and accuracy of the results. No significant variances were noted.

The instruments were set on A-weighted fast response and logged noise levels over fifteen minute statistical intervals. Observations of source influencing the current ambient noise environment were made during logger placement and the attended noise monitoring intervals.

Long term monitoring was conducted between Friday 17/06/2005 and Monday 27/06/2005. Attended noise monitoring was carried out during the day on Monday 27/06/2005.

#### 3.3 Measurement locations

Noise measurement locations were selected for each nominated noise catchment area (representative locations with the potential to be influenced by noise impacts for the proposal). The information obtained during the noise monitoring program provides an adequate characterisation of existing ambient noise profiles for the study area.

The noise monitoring reference locations have been presented in the local context as *Figure 3.1*. A description of the selected locations follows.



Table 3.1: Selected background noise monitoring locations

| Location | Address         | Form of<br>Monitoring | Comments                                                                                    |
|----------|-----------------|-----------------------|---------------------------------------------------------------------------------------------|
| 1        | 9 Denton Close  | Long Term             | Elevated with respect to subject site.                                                      |
|          |                 | Day Time Attended     | Suburban noise amenity. No constant day time industry observed. Road traffic noise present. |
|          |                 |                       | Receiver elevated.                                                                          |
|          |                 |                       | $\approx$ 1,300 metres north west of Transpacific site.                                     |
|          |                 |                       | $\approx$ 350 metres from New England Highway.                                              |
|          |                 |                       | Environmental noise monitoring location.                                                    |
| 2        | 96 Anambah Road | Long Term             | Suburban noise setting. Nearby New England                                                  |
|          |                 | Day Time Attended     | Highway audible. No day time industrial noise influence noted.                              |
|          |                 |                       | $\approx$ 1,000 metres north east of Transpacific site.                                     |
|          |                 |                       | $\approx$ 900 metres from New England Highway.                                              |
|          |                 |                       | Environmental noise monitoring location.                                                    |

#### 3.4 Data exclusion

Hourly meteorological data was obtained from the nearest Bureau of Meteorology operated all-weather station to the noise monitoring locations (Paterson-Tocal AWS, #61250). Although not ideal, the use of this data is generally considered to be slightly conservative – and therefore acceptable.

Data obtained from the unattended noise monitoring during periods of inclement weather conditions, such as wind speeds greater than five metres per second or during rainfall were not included in the analysis of unattended noise levels. Periods of noted anomalies were also excluded from the recorded unattended noise levels.

Approximately 55 percent of the noise measurements were excluded. Periods excluded from recorded noise levels are shown as shaded on the compiled daily noise logger graphs (*Appendix B*).

Given the amount of data excluded, a conservative approach has been applied to criterion establishment.



Figure 3.1: Monitoring locations and receivers considered





#### 3.5 Measured background noise levels

#### 3.5.1 Unattended noise monitoring

The results of the ambient noise monitoring program are presented in *Table 3.2*.

**Table 3.2: Unattended noise monitoring results** 

| Period                     | L <sub>A10</sub>                                                                                                   |                        | L        | -Aeq        | L <sub>A90</sub> |             |
|----------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------|----------|-------------|------------------|-------------|
| Period                     | Average                                                                                                            | Range                  | Median   | Range       | Median           | Range       |
| Location 1:                | 9 Denton (                                                                                                         | Close (north           | west)    |             |                  |             |
| ARL EL 215                 | noise logg                                                                                                         | er <sup>#</sup> 194447 |          |             |                  |             |
| Day Time<br>(7am – 6pm)    | 54.5                                                                                                               | 52.5 – 57.5            | 55.0     | 52.0 – 56.5 | 44.0             | 38.5 – 49.0 |
| Evening<br>(6pm – 10pm)    | 51.5                                                                                                               | 48.5 – 55.5            | 50.5     | 45.5 – 53.0 | 41.5             | 38.0 – 45.5 |
| Night Time<br>(10pm – 7am) | 49.0                                                                                                               | 45.5 – 53.5            | 47.0     | 42.5 – 53.5 | 35.0             | 28.5 – 42.5 |
| Location 2:                | 96 Anamb                                                                                                           | ah Road (nor           | th east) |             |                  |             |
| ARL EL 215                 | noise logg                                                                                                         | er <sup>#</sup> 194446 |          |             |                  |             |
| Day Time<br>(7am – 6pm)    | 55.5                                                                                                               | 50.5 – 61.0            | 57.0     | 55.0 – 64.5 | 41.0             | 32.0 – 47.0 |
| Evening<br>(6pm – 10pm)    | 52.0                                                                                                               | 46.5 – 66.0            | 54.5     | 51.0 – 64.0 | 40.5             | 34.0 – 47.0 |
| Night Time<br>(10pm – 7am) | 50.0                                                                                                               | 44.0 – 62.0            | 51.5     | 46.5 – 63.5 | 34.0             | 29.0 – 45.0 |
| Notes to Table 3.2:        | tes to Table 3.2: Values expressed as dB(A) and rounded to nearest 0.5 dB(A)  Range based on analysed daily levels |                        |          |             |                  |             |

 $L_{A10}$  = Noise level 10% of time

 $L_{Aeq}$  = Equivalent noise level (average)

L<sub>A90</sub> = Noise level 90% of time (background)

The unattended noise monitoring was carried out continuously between the dates of Monday 17/06/2005 through to Thursday 27/06/2005.

The daily noise logger graphs compiled for unattended noise monitoring Locations 1 and 2 (*Appendix B*) were found to fluctuate throughout each daytime, evening and night-time period.

Background noise levels for the area are typical of a suburban or urban environment. Variations of 5 dB(A) to 10 dB(A) in the analysed day, evening and night time noise levels is noted ( $L_{Aeq}$  and  $L_{A90}$ ).

A slight increase in measured noise levels was apparent between the hours of 06:00 – 22:00. This is likely to be the result of noise impacts associated with traffic movements along the New England Highway.



The measured  $L_{Aeq}$  and  $L_{A90}$  median noise levels varied between 10 dB(A) to 15 dB(A) for each period. The night time period shows the greatest difference between  $L_{Aeq}$  and  $L_{A90}$  levels indicating the sporadic nature of existing local noise environs. The difference observed can be largely attributed to the characteristics of local noise sources impacting the local ambient noise environment (such as fauna and traffic pass-by).

The median  $L_{Aeq}$  and  $L_{A90}$  values presented in *Table 3.2* were used to set the project-specific noise design goals (*Section 4*).

#### 3.5.2 Attended noise monitoring

Attended noise monitoring was carried out at each noise monitoring locations during daytime hours. Meteorological conditions during the attended noise monitoring program were observed to be satisfactory for noise monitoring purposes with a slight northerly breeze, some cloud cover and a temperature of approximately 16 °C. *Table 3.3* presents the results of the attended noise monitoring.

Table 3.3: Operator attended noise monitoring results (27/06/05)

| Location           | Address                        | Time             | Measured Noise<br>Level |                  | oise             | Comment                                                                                                                                                                                                                                                                      |
|--------------------|--------------------------------|------------------|-------------------------|------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                |                  | L <sub>A10</sub>        | L <sub>Aeq</sub> | L <sub>A90</sub> | -                                                                                                                                                                                                                                                                            |
| 1                  | 9 Denton Close<br>(north west) | 13:05 –<br>13:20 | 53.5                    | 51.0             | 46.0             | No industry audible during monitoring interval  New England Highway audible throughout, road transport trucks observed at 52 – 54 dB(A) at pass by Local fauna (birds) observed at 49 – 57 dB(A) S.S. ≈ 44 – 46 dB(A) minimal traffic  S.S. ≈ 48 – 49 dB(A) standard traffic |
| 2                  | 96 Anambah Road<br>(north)     | 13:35 –<br>13:50 | 55.0                    | 52.5             | 42.5             | No industry audible during monitoring interval  New England Highway audible throughout, road transport trucks observed at 45 – 46 dB(A) at pass by  S.S. ≈ 42 – 43 dB(A)                                                                                                     |
| Notes to Table 3.3 | 3: Values expresse             | d as dB(A) an    | d rounded t             | o nearest 0      | .5 dB(A)]        |                                                                                                                                                                                                                                                                              |
|                    | S.S.: observed                 | steady state no  | oise level              |                  |                  |                                                                                                                                                                                                                                                                              |
|                    | L <sub>A10</sub> = Noise leve  | el 10% of time   |                         |                  |                  |                                                                                                                                                                                                                                                                              |
|                    | L <sub>Aeq</sub> = Equivalen   | t noise level (a | verage)                 |                  |                  |                                                                                                                                                                                                                                                                              |

Noise levels measured at each location were consistent during the day time attended noise monitoring period. Day time measurements for each descriptor were generally within 2 dB(A).

PARSONS BRINCKERHOFF 2118506A PR\_2489Iss3 100106 Page 10

 $L_{A90}$  = Noise level 90% of time (background).



# 4. Adopted criteria and guidelines

#### 4.1 Overview

The *Protection of the Environment Operations Act, 1997* (POEO Act) regulates noise generation and prohibits the generation of "offensive noise" as defined by the *POEO Act.* 

In addition to the regulatory requirements under the *POEO Act*, NSW Department of Environment and Conservation provides guidelines in relation to acoustic criteria and noise controls.

#### 4.2 Construction noise

Noise criteria for construction sites are established in accordance with Chapter 171 of the *Environmental Noise Control Manual* (NSW DEC ENCM, 1994). It is important to note that the recommended criteria are planning goals only. Numerous other factors need to be considered when assessing potential noise impacts from construction works such as the social worth of the activity, economic constraints, nature and duration of a proposed construction program.

The NSW Department of Environment and Conservation recognise that individuals accept higher perceived noise impacts for emission sources with a limited duration and identified end date.

Table 4.1: Acoustic design objectives for construction activities

| <b>Construction Period</b> | <b>Acoustic Design Objective</b>                  |
|----------------------------|---------------------------------------------------|
| <4 weeks                   | Received $L_{A10} \le L_{A90}$ + 20 dB(A)         |
| >4 weeks and <26 weeks     | Received $L_{A10} \le L_{A90} + 10 \text{ dB(A)}$ |
| >26 weeks                  | Received $L_{A10} \le L_{A90} + 5 \text{ dB(A)}$  |

Notes to Table 4.1:  $L_{A10} = Noise level 10\% of time$ 

L<sub>A90</sub> = Noise level 90% of time (background)

Although the final construction schedule and construction methods statements have not been determined at the writing of this document, construction activities and indicative time frames are expected to require between 4 weeks and 26 weeks.

The appropriate constriction criteria for the Transpacific site is likely to be the following:

Received  $L_{A10} \leq L_{A90} + 10 \text{ dB(A)}$ 

Day time  $L_{A90}$  noise levels ranged from of 38.5 dB(A) – 49 dB(A), with a median of 44 dB(A) reported for Location 1. Day time  $L_{A90}$  noise levels at Location 2 ranged from of 32 dB(A) – 47 dB(A), with a median of 41 dB(A) reported for Location 2. The following resultant constructive noise design goals would therefore apply:

• 'medium term' construction work: **51 dB(A)** [L<sub>A10</sub> impacts], L<sub>A90, median</sub> + 10 dB(A).



Construction works with the potential to generate noise impacts would be undertaken during the day time period only (7am – 6pm, weekdays, 7am – 1pm Saturdays and no work on Sundays or public holidays).

#### 4.3 Operational noise

Noise emissions from the operations of the site would require adherence to the NSW *Industrial Noise Policy* (NSW DEC INP, 2000).

The policy sets out two criteria that are used to assess potential off-site noise impacts. The first criterion aims at controlling intrusive short-term noise impacts for residences (intrusive criterion). The second criterion aims at maintaining the long-term amenity of particular land uses (amenity criterion). The more conservative of the two limits are established as project-specific operational noise goals.

The relevant intrusive criterion can be summarised as follows:

L<sub>Aeq (15 min)</sub> ≤ rating background levels + 5 dB(A)

The amenity criterion is determined based on guidelines presented in the INP. The acceptable amenity limits for a rural area are listed in *Table 4.2*.

Table 4.2: NSW INP amenity criteria – suburban setting

| Type of Receptor                | Period of day/ day of week             | Acceptable<br>Noise Level |
|---------------------------------|----------------------------------------|---------------------------|
|                                 |                                        | $(L_{Aeq})$               |
| Residential-Day-Time interval   | 7am – 6pm, Monday to Saturday          | 55 dB(A)                  |
|                                 | 8am – 6pm, Sundays and Public Holidays |                           |
| Residential-Evening interval    | 6pm – 10pm                             | 45 dB(A)                  |
| Residential-Night-Time interval | remaining periods                      | 40 dB(A)                  |
| Commercial Premises             | when in use                            | 65 dB(A)                  |
| Industrial Premises             | when in use                            | 70 dB(A)                  |

Notes to Table 4.2:

 $L_{Aeq}$  = Equivalent noise level (average)

Source Table 2.1 NSW DEC INP

Amenity criterion is established with reference made to the  $L_{Aeq}$  noise levels for the area and the existing industrial noise influence. The amenity criterion is then corrected with reference being made to Table 2.2 of the INP.

No industrial noise influence was noted for the setting. Referencing the attended noise monitoring results, the existing industrial noise influence can be conservatively set at less than 36 dB(A) (Location 1 attended  $L_{A90}$  of 46 dB(A) – 10 dB(A)). Therefore, NSW DEC recommended acceptable night time noise levels have been modified (to account for the existing level of stationary industrial noise).



Based on the existing noise environs, amenity limits consistent with the NSW DECs recommended acceptable noise levels would apply:

Day Time Amenity Noise Limit (7am – 6pm):
 55 dB(A) [L<sub>Aeq, day</sub>]

■ Evening Time Amenity Noise Limit (6pm – 10pm): 45 dB(A) [L<sub>Aeq, evening</sub>]

Night Time Amenity Noise Limit (10pm – 7am):
 38 dB(A) [L<sub>Aeq, night</sub>].

Referencing the RBL ( $L_{A90}$ ) values measured at Location 2 during the unattended noise monitoring program and the formula to assess the intrusive noise criterion, the following intrusive noise limits would apply:

Day Time Intrusive Noise Limit (7am – 6pm):
 46 dB(A) [L<sub>Aeq, 15 min</sub>]

Evening Time Intrusive Noise Limit (6pm – 10pm): 45 dB(A) [L<sub>Aeq, 15 min</sub>]

Night Time Intrusive Noise Limit (10pm – 7am):
 39 dB(A) [L<sub>Aeq, 15 min</sub>].

The day time and evening intrusive noise criterion is more stringent and would therefore govern. Amenity limits would likely apply during the night time period. The values assume there would be no annoying characteristics associated with site-related operational noise impacts.

Boundary noise limits should not exceed a level of **70 dB(A)** [ $L_{Aeq, 15 min}$ ]. Compliance with the adopted design goals would maintain the acoustic amenity for the area.

The established operational noise design objectives are consistent with the requirements of the NSW INP. The noise limits have been established to minimise the potential for degradation to local ambient noise levels.

## 4.4 Sleep disturbance

The emission of peak noise levels for an instant or very short time period may cause sleep disturbance to residents. In accordance with the *Environmental Noise Control Manual* (NSW DEC ENCM, 1994), the  $L_{A1}$  level of any specific noise source should not exceed the background noise level ( $L_{A90}$ ) by more than 15 dB(A) when measured outside the bedroom window of the nearest potentially affected receptor.

A night time  $L_{A90}$  noise level of 34 dB(A) was measured at Location 2. Adopting this level provides a sleep disturbance criterion of **49 dB(A)** [ $L_{A1}$  impacts].

#### 4.5 Road traffic noise

Road traffic noise criteria have been established for the project. It is considered the primary road traffic noise generating activities would be associated with the proposed construction program. Criterion establishment is generally applied for long-term planning purposes only.



The *Environmental Criteria for Road Traffic Noise* (NSW DEC ECRTN, 1999) recommended 'base' and 'allowance' criteria.

The recommended 'base' criteria for land use developments with the potential to create additional traffic on existing freeways / arterials are day time  $L_{Aeq, 15hr}$  levels of **60 dB(A)** and night time  $L_{Aeq, 9hr}$  levels of **55 dB(A)**.

The recommended 'base' criteria for land use developments with the potential to create additional traffic on existing collector roads are day time  $L_{Aeq, 1hr}$  levels of **60 dB(A)** and night time  $L_{Aeq, 1hr}$  levels of **55 dB(A)**.

The 'allowance' criteria is generally established where the 'base' criteria are already exceeded. In such circumstances, traffic arising from a development should not lead to an increase in existing noise levels of more than 2 dB. The base criterion is unlikely to be exceeded in the study area, and therefore the allowance criteria would not apply.

#### 4.6 Vibration

In establishing vibration limits (particularly for the construction works), it is common practice to set vibration limits to protect buildings against damage in accordance with German Standard DIN 4150-3 1999 *Structural Vibration Part 3 Effects of Vibration on Structures*. Typical vibration limits for building damage are as follows:

residences: 10 millimetres per second

heritage buildings and sensitive structures:3 millimetres per second.

The criteria outlined to protect occupants of buildings from discomfort are more stringent. A number of British, German and Australian standards have been referenced with respect to protecting amenity including: ENCM (Chapter 174); AS 2670 Evaluation of Human Exposure to Whole-body Vibration; BS 6472 1992 Evaluation of Human Exposure to Vibration in Buildings (1 Hz to 80 Hz); BS 7385 1990 Evaluation and Measurement for Vibration in Buildings; and DIN 4150-3 1999 Structural Vibration Part 3 Effects of Vibration on Structures. Vertical (as opposed to horizontal) limits would be established consistent with the following:

residential levels (night time): 0.14 - 0.2 millimetres per second

residential levels (day time):0.28 - 0.56 millimetres per second.

The 'comfort' limits vary across the frequency spectrum, although they are generally a constant level across the frequency range generated by most construction activities.



# 5. Predicted impact profiles

#### 5.1 Construction noise

Calculations were undertaken to investigate the impact of the primary noise sources during their operation. Sound power levels were drawn from existing data to represent the expected construction and equipment noise sources.

Construction noise sources would include, but not be limited to, the itemised equipment presented in *Table 5.1*.

Table 5.1: Typical sound power levels for construction equipment

| <b>Construction Phase</b> | <b>Equipment Type</b>       | A-weighted Range | Adopted L <sub>A10</sub> |  |  |
|---------------------------|-----------------------------|------------------|--------------------------|--|--|
| Preparatory Works         | Excavator                   | 108 – 118 dB(A)  | 112 dB(A)                |  |  |
|                           | Grader                      | 114 - 120 dB(A)  | 117 dB(A)                |  |  |
|                           | Backhoe                     | 100 - 108 dB(A)  | 103 dB(A)                |  |  |
|                           | Concrete Supply Truck (24t) | 107 – 116 dB(A)  | 110 dB(A)                |  |  |
|                           | Crane (10t, lorry mounted)  | 118 - 120 dB(A)  | 118 dB(A)                |  |  |
| Installation / Fit Out    | Hand held tools             | 94 - 118 dB(A)   | 105 dB(A)                |  |  |
|                           | Semi-Trailers (10t / 20t)   | 103 - 120 dB(A)  | 108 dB(A)                |  |  |

It is recommended that the above sound power levels are validated during the initial stages of the construction program. Assessment of annoying characteristics would also be required.

Predictions were carried out for the proposed peak noise generating activities. The requirement for plant and equipment would depend on the stage of construction. It is unlikely that all plant listed would be on site at any given time.

Noise emissions from the construction works would be sporadic and intermittent, depending on the activities conducted. Significant variations in noise emission potential would be present throughout each daily period. Received noise levels would likely be lower than predicted for the majority of the time.

To provide a conservative construction noise impact assessment, acoustic shielding due to natural topography and intervening structures was not included in the calculation of potential noise levels at nearby receivers. Atmospheric absorption values were not considered in the calculations. Noise enhancing meteorological conditions were not assessed due to the temporary nature of the construction works.

Potential noise impacts from each nominated source have been considered. Based on the intermittent nature of noise emissions, cumulative impacts have not been assessed in detail as part of this study.



The distance attenuation was calculated by assuming unidirectional hemispherical propagation. Indicative calculations of received noise levels from each nominated source are outlined in *Table 5.2*.

 Table 5.2:
 Predicted construction noise impacts (indicative values)

|                                               |           | Received Noise Level (dB(A)) |          |          |            |          |          |  |  |  |  |  |  |
|-----------------------------------------------|-----------|------------------------------|----------|----------|------------|----------|----------|--|--|--|--|--|--|
|                                               |           | Noise Catchment              |          |          |            |          |          |  |  |  |  |  |  |
| Noise Source                                  | SWL       | 1 - NW                       | 2 - NW   | 3 - S    | 4 - SE     | 5 - NE   | 6 - NE   |  |  |  |  |  |  |
|                                               |           |                              |          | Rec      | eiver      |          |          |  |  |  |  |  |  |
|                                               |           | A, B                         | C, D     | E, F     | G, H, I, J | K, L, M  | N, O, P  |  |  |  |  |  |  |
| Preparatory Works                             |           |                              |          |          |            |          |          |  |  |  |  |  |  |
| Excavator                                     | 112       | 40                           | 42       | 43       | 43         | 42       | 44       |  |  |  |  |  |  |
| Graders                                       | 117       | 45                           | 47       | 48       | 48         | 47       | 49       |  |  |  |  |  |  |
| Backhoes                                      | 103       | 31                           | 33       | 34       | 34         | 33       | 35       |  |  |  |  |  |  |
| Concrete Supply Truck (24t)                   | 110       | 38                           | 40       | 41       | 41         | 40       | 42       |  |  |  |  |  |  |
| Crane                                         | 118       |                              |          |          |            |          |          |  |  |  |  |  |  |
| (10t, lorry mounted)                          |           | 46                           | 48       | 49       | 49         | 48       | 50       |  |  |  |  |  |  |
| Installation / Fit Out                        |           |                              |          |          |            |          |          |  |  |  |  |  |  |
| Hand held tools                               | 105       | 33                           | 35       | 36       | 36         | 35       | 37       |  |  |  |  |  |  |
| Semi-Trailers (10t / 20t)                     | 108       | 36                           | 38       | 39       | 39         | 38       | 40       |  |  |  |  |  |  |
| Anticipated Range of Impa                     | cts       | 31 - 46                      | 33 - 48  | 34 - 49  | 34 - 49    | 33 - 48  | 35 - 50  |  |  |  |  |  |  |
| Typical Mid-Point                             |           | 38                           | 40       | 41       | 41         | 40       | 42       |  |  |  |  |  |  |
| Impact Potential – Preparatory                | Works     |                              |          |          |            |          |          |  |  |  |  |  |  |
| Adopted Day Time Planing GoadB(A) $[L_{A10}]$ | l = 51    | Low                          | Moderate | Moderate | Moderate   | Moderate | Moderate |  |  |  |  |  |  |
| Impact Potential - Installation               | / Fit Out |                              |          |          |            |          |          |  |  |  |  |  |  |
| Adopted Day Time Planing GoadB(A) $[L_{A10}]$ | I = 51    | Low                          | Low      | Low      | Low        | Low      | Low      |  |  |  |  |  |  |

During the construction phase, works would be primarily manual. Construction noise emissions would include the use of hand tools and short term movements of mobile sources throughout the site.

Noise emissions from the construction works would be sporadic and intermittent, and would depend on the activities conducted. Significant variations in noise emissions may be present throughout each daily period.

Exceedances of the recommended  $L_{A10}$  construction noise planning goal of 51 dB(A) may occur for the closest residential receivers without suitable noise control measures or construction management practices. Note that no allowance for ground effects, topographical shielding or atmospheric absorption has been made in the above calculations. Considering these items may slightly reduce the reported range of noise impacts, the resultant construction noise impact potential (and recommendations made) would remain consistent however.



#### 5.2 Operational noise

#### 5.2.1 Model inputs

A noise propagation model was established in the assessment of potential operational noise impacts from the proposed Waste Resource Recovery and Recycling Facility. Noise modelling was undertaken through the use of the ENM Noise Prediction Software (Version 3.06). The modelling was based on the following:

- linear weighted 1/1 octave band noise source data [L<sub>Aeq</sub>]
- topographical contours (approximate 3,500 metres x 2,000 metres at 10 metre intervals) for local area
- mobile source heights of 1.5 metre
- rural land use category
- ground type consistent with grass / rough pasture
- predictions presented for ground level receivers (reduced level + 1.2 metres)
- indicative source locations based on site layout presented as *Figure 2.1*.

#### 5.2.2 Modelling techniques and scenarios

Noise modelling scenarios were developed based on anticipated 'peak' site operating conditions. Constant noise emissions from the adopted site sources were assumed. Noise modelling was carried out for  $L_{Aeq}$  (operational) noise emissions in accordance with the NSW INP.

Scenarios considered, and source sound power levels adopted (SWLs) have been outlined in *Table 5.3*.

Operational noise modelling was carried out for the following atmospheric conditions:

- condition A: still isothermal conditions, temperature 25°C, relative humidity 50 percent
- condition B: 3 metres per second south easterly wind at 10 metres metres above ground level, temperature 25°C, relative humidity 50 percent
  - potential increase in site noise impacts to noise catchment 1 (receivers A, B) and noise catchment 2 (receivers C, D)
- condition C: 3 metres per second northerly wind at 10 metres metres above ground level, temperature 25°C, relative humidity 50 percent
  - potential increase in site noise impacts to noise catchment 3 (receivers E, F)
- condition D: 3 metres per second westerly wind at 10 metres metres above ground level, temperature 25°C, relative humidity 50 percent

potential increase in site noise impacts to noise catchment 4 (receivers G, H, I, J)



- condition E: 3 metres per second south westerly wind at 10 metres above ground level, temperature 25°C, relative humidity 50 percent
  - potential increase in site noise impacts to noise catchment 5 (receivers K, L, M) and noise catchment 6 (receivers N, O, P)
- condition F: 3°C per 100 metre radiative temperature inversion, temperature 10°C, relative humidity 25 percent

potential increase in site noise impacts to all noise catchments.

Drainage flows, being wind movement 'down hill', were not considered in the noise predictions because selected receivers are generally not located down gradient of the site.

Table 5.3: Noise propagation modelling scenarios considered

| Scenario | Process                                    | Source(s)                            | SWL (dB(A))<br>L <sub>Aeq</sub> |
|----------|--------------------------------------------|--------------------------------------|---------------------------------|
|          |                                            | road transport truck manoeuvring     | 106                             |
| A-1      | oily water treatment and                   | tanker unload                        | 106                             |
| A-1      | waste oil recovery                         | wash press / screen conveyors        | 79.5                            |
|          |                                            | transfer pump x 3                    | 70.5                            |
|          |                                            | dehydrator – internal                | not assessed                    |
|          |                                            | compressor – internal                | 88.5                            |
| A-2      | hydrogenation of re-refined base lube oils | boiler – internal                    | 95.5                            |
|          | base lube oils                             | boiler pump – internal               | 93 <sup>x</sup>                 |
|          |                                            | flare stack (assumed)                | 100 <sup>x</sup>                |
|          |                                            | backhoe – internal                   | 102 <sup>x</sup>                |
|          |                                            | FEL – internal                       | 105                             |
|          | treatment of non-sewerable                 | conveyor belt / motor - internal x 6 | 84.5                            |
|          | aqueous wastes by                          | road transport truck manoeuvring     | 106                             |
| A-3      | neutralisation, chemical                   | road transport truck reversing       | 96.5                            |
|          | fixation, stabilisation and                | dust collector / fan                 | 107                             |
|          | solidification (CFS)                       | forklift                             | 98                              |
|          |                                            | aggregate unload                     | 109                             |
|          |                                            | silo vent x 2                        | 87                              |

Notes to Table 5.3:

X – even distribution of 1/1 octave band data (equivalent summation to reported SWL) assumed

The adopted source data is considered suitable for this noise impact assessment. All additional plant items and processes within the proposed site would likely be insignificant and not contribute to noise emissions from the site.

Of the sources presented in *Table 5.3*, the external stationary and mobile sources were considered to have the greatest potential to influence the off-site ambient noise environment.

Post commissioning source validation measurements would be used to verify the assumed data.



#### **Note on Internal Noise Sources**

Where internal sources have been considered, an insertion loss of 10 dB(A) from the structure façade has been conservatively assumed. The attenuation achieved from building facades could be expected in the order of 15 dB(A) to 20 dB(A).

#### **Note on Flare Stack Noise Emissions**

When compared to other site emissions, noise from the flare is not expected to be a primary noise source for the site. Further, high pressure flaring is not expected.

The adopted sound power level is higher than anticipated and would be confirmed through monitoring after commissioning. If the adopted sound power level exceeds the adopted specification, then mitigation would be considered.

#### **5.2.3** Modelled operational noise impact

Predicted point-to-point noise levels for each identified receiver are provided in *Table 5.4.* 

The operational noise criteria were achieved at each location under each scenario. The proposed facility is expected to be inaudible in the surrounding residential areas for all periods of the day.

A sample ENM source ranking file, and ENM output file, has been included as *Appendix C* and *Appendix D* respectively.

Examination of the ENM ranking file and output files indicated which sources are the primary contributors to the predicted levels. These sources and their relative contributions are identified in *Table 5.5*.

The treatment of non-sewerable aqueous wastes by neutralisation and chemical fixation, stabilisation and solidification (CFS) were key sources for the site.

The movement of mobile sources throughout the site were noted to be the primary contributor to potential off-site noise impacts.

To aid in the assessment of results, a noise contour impact isopleth has been prepared for Scenario A (all sources, still isothermal conditions) and is presented as *Figure 5.1*. The contour plot has been provided to aid visual interpretation only.



**Table 5.4:** Predicted operational noise impacts (all operations)

|                          | Received Noise Level (dB(A)) |      |        |      |       |      |        |              |      |        |      |      |        |      |      |      |
|--------------------------|------------------------------|------|--------|------|-------|------|--------|--------------|------|--------|------|------|--------|------|------|------|
|                          | Noise Catchment              |      |        |      |       |      |        |              |      |        |      |      |        |      |      |      |
| Meteorological Condition | 1 - NW                       |      | 2 – NW |      | 3 · S |      | 4 - SE |              |      | 5 - NE |      |      | 6 - NE |      |      |      |
|                          | Receiver                     |      |        |      |       |      |        |              |      |        |      |      |        |      |      |      |
|                          | A                            | В    | С      | D    | E     | F    | G      | н            | ı    | J      | K    | L    | М      | N    | 0    | P    |
| A – neutral              | 28                           | 26.5 | 23.5   | 22   | 24.5  | 23   | 19.5   | 26           | 22.5 | 20     | 20.5 | 19.5 | 23     | 25.5 | 24   | 21   |
| B – 3 m/s SEly           | 34.5                         | 36.5 | 28     | 26.5 | 21    | 19   | 16     | 22.5         | 19.5 | 16.5   | 18.5 | 18   | 21.5   | 26   | 28   | 23   |
| C – 3 m/s Nly            | 26.5                         | 24   | 22     | 21   | 33    | 32   | 24     | 30           | 24.5 | 22     | 19.5 | 18   | 21.5   | 22   | 20   | 16.5 |
| D – 3 m/s Wly            | 25.5                         | 23   | 19.5   | 18.5 | 28    | 28   | 26.5   | 32.5         | 31.5 | 30     | 27.5 | 26   | 30.5   | 29   | 26.5 | 21   |
| E – 3 m/s SWly           | 27.5                         | 25   | 22     | 20   | 22    | 21.5 | 21     | 27           | 26.5 | 24.5   | 26.5 | 26.5 | 31     | 33   | 31   | 24   |
| F – Inversion            | 30.5                         | 32.5 | 25.5   | 24   | 30    | 28.5 | 22.5   | 29           | 25.5 | 23.5   | 23   | 22   | 26     | 28   | 27.5 | 22.5 |
| Criteria                 |                              |      |        |      |       |      |        |              |      |        |      |      |        |      |      |      |
| - Day Time 46 dB(A)      | ✓                            | ✓    | ✓      | ✓    | ✓     | ✓    | ✓      | $\checkmark$ | ✓    | ✓      | ✓    | ✓    | ✓      | ✓    | ✓    | ✓    |
| - Evening 45 dB(A)       | ✓                            | ✓    | ✓      | ✓    | ✓     | ✓    | ✓      | ✓            | ✓    | ✓      | ✓    | ✓    | ✓      | ✓    | ✓    | ✓    |
| - Night Time 38 dB(A)    | ✓                            | ✓    | ✓      | ✓    | ✓     | ✓    | ✓      | ✓            | ✓    | ✓      | ✓    | ✓    | ✓      | ✓    | ✓    | ✓    |

Notes to Table 5.4: L<sub>Aeq</sub> levels presented

values rounded to nearest 0.5 dB(A)

✓ - criterion satisfied

X - potential exceedance

PARSONS BRINCKERHOFF Page 20 2118506A PR\_2489Iss3 100106



**Table 5.5:** Primary noise sources (neutral conditions)

|                                                                                                                                    | Received Noise Level (dB(A)) |      |        |      |       |      |        |      |      |        |      |      |        |      |      |      |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------|--------|------|-------|------|--------|------|------|--------|------|------|--------|------|------|------|
| Scenario -                                                                                                                         | Noise Catchment              |      |        |      |       |      |        |      |      |        |      |      |        |      |      |      |
|                                                                                                                                    | 1 - NW                       |      | 2 – NW |      | 3 - S |      | 4 - SE |      |      | 5 - NE |      |      | 6 - NE |      |      |      |
|                                                                                                                                    | Receiver                     |      |        |      |       |      |        |      |      |        | ,    |      |        |      |      |      |
|                                                                                                                                    | A                            | В    | С      | D    | E     | F    | G      | н    | I    | J      | K    | L    | М      | N    | 0    | P    |
| A-1                                                                                                                                |                              |      |        |      |       |      |        |      |      |        |      |      |        |      |      |      |
| oily water treatment and waste oil recovery                                                                                        | <10                          | <10  | 10.5   | <10  | 20.5  | 19.5 | 15     | 18.5 | 18   | 15.5   | 15   | 14   | 17     | 21   | 19   | 15.5 |
| A-2                                                                                                                                |                              |      |        |      |       |      |        |      |      |        |      |      |        |      |      |      |
| hydrogenation of re-refined base lube oils                                                                                         | 14.5                         | 10.5 | 17.5   | 15.5 | 10.5  | 10   | 12     | 12.5 | 12   | 12.5   | 11.5 | 10.5 | <10    | 12   | 12.5 | <10  |
| A-3                                                                                                                                |                              |      |        |      |       |      |        |      |      |        |      |      |        |      |      |      |
| treatment of non-sewerable<br>aqueous wastes by<br>neutralisation, chemical<br>fixation, stabilisation and<br>solidification (CFS) | 28                           | 26.5 | 22     | 21   | 22.5  | 20   | 16.5   | 24.5 | 20.5 | 17.5   | 18.5 | 17.5 | 21.5   | 23   | 22   | 19   |
| Σ                                                                                                                                  | 28                           | 26.5 | 23.5   | 22   | 24.5  | 23   | 19.5   | 26   | 22.5 | 20     | 20.5 | 19.5 | 23     | 25.5 | 24   | 21   |

Notes to *Table 5.4*: L<sub>Aeq</sub> levels presented

values rounded to nearest 0.5 dB(A)

PARSONS BRINCKERHOFF Page 21 2118506A PR\_2489Iss3 100106



Figure 5.1: Noise contour impact isopleth (all sources, still isothermal conditions)



PARSONS BRINCKERHOFF

Job No PR\_2489iss3 100106 Page 22



#### 5.3 Sleep disturbance

An  $L_{A1}$  sound power level of 111 dB(A) has been adopted for a road transport truck air break release. Impact noise on site from forklift tighnes or similar could be expected at an  $L_{A1}$  sound power level of 115 dB(A). These values have been measured by PB previously.

Assuming noise attenuation for distance alone (no allowance for ground effects, topographical shielding or atmospheric absorption) the following received noise levels would be expected under still isothermal conditions:

1,000 metres separation

Air break Release - 43 dB(A) Impact Noise - 47 dB(A)

The adopted  $L_{A1}$  sleep disturbance criterion of 49 dB(A) would be expected to be readily achieved throughout.

#### 5.4 Road traffic noise

An average of 7 trucks per hour, resulting in a total of 14 truck movements, would be reasonably expected from the proposed facility. This is equivalent to approximately one truck every five minutes. Peak hour movements (8am to 9am and 3pm to 4pm) were indicated to be 22 trips / 44 movements in the a.m. and 17 / 34 movements in the p.m.

The haulage route to and from the site would be via the New England Highway.

Existing (2005) peak hour flows along the New England Highway were reported by Northern Transport Planning and Engineering Pty Ltd at 1305 light vehicles and 213 heavy vehicles (AM peak hour) and 1433 light vehicles and 153 heavy vehicles (PM peak hour).

Information contained in the Roads and Traffic Authority (RTA) *Traffic Volume Data for Northern Region* (1998), and projected to the year 2008, and reported by Bridges Acoustics (2002) provides the following existing traffic flow data:

New England Highway East (RTA station 05-147)

day time 26460 cars, 6615 trucks

night time 6615 cars, 4410 trucks

New England Highway West (RTA station 05-030)

day time 14160 cars, 3540 trucks

night time 3540 cars, 2360 trucks



#### **5.4.1 Existing Levels**

No baseline road traffic noise monitoring has been undertaken as part of this technical paper, nor is it considered necessary given the magnitude id the existing road traffic movements along the New England Highway and the minor contribution the site would have to existing traffic numbers.

Calculated traffic noise levels for the year 2008 were reported within the Bridges Acoustics National Ceramic Insutries Australia Pty Ltd Ceramic Tile Manufacturing Facility, Rutherford Technical Paper Mo. 1 – Noise (Report J0028-11-R1, dated December 2002). The following existing noise levels were calculated at an approximate distance of 15 metres from the roadway:

New England Highway East

 $L_{Aeq,15hr}$  (day time) 71 – 72 dB(A)

 $L_{Aeq. 9hr}$  (night time) 69 - 70 dB(A)

New England Highway West

L<sub>Aeq,15hr</sub> (day time) 69 - 70 dB(A)

L<sub>Aeq, 9hr</sub> (night time) 67 dB(A)

The number presented above indicate that noise levels from existing road traffic flows along the New England Highway would be well in excess of DEC base criteria at the nearest residential facades.

The Bridges Acoustic report did not include validation measurements for calculated existing road traffic noise levels.

#### **5.4.2** Proposed Levels

At a distance of 20 metres between a given façade and the middle of the near side road carriage way, assuming a sound exposure pass-by level of 110 dB(A), anticipated hourly incremental  $L_{Aeq}$  levels follow:

■ am peak (44 movements): L<sub>Aeq. 1hr</sub> 59.5 dB(A)

■ pm peak (34 movements): L<sub>Aeq. 1hr</sub> 58 dB(A)

standard hour day / night (14 movements): L<sub>Aeq. 1hr</sub> 54.5 dB(A).

Day time  $L_{Aeq,15hr}$  impacts (260 movements adopted [am peak + pm peak + 13 standard hours]) would be expected in the range of 55 dB(A) to 56 dB(A).

Night time  $L_{Aeq,9hr}$  impacts (126 movements adopted [9 standard hours]) would be expected in the range of 54 dB(A) to 55 dB(A).



#### 5.4.3 Change in Road Traffic Noise Profiles

No measurebale increase in existing road traffic noise levels is expected. That is, truck movements would not result in any cumulative road traffic noise impacts for the area.

Although a number of existing sensitive receptors are located along the proposed route, and road truck noise may be audible, the potential for adverse impacts is not considered likely given the existing nature of road traffic noise profiles for the area.

Sleep disturbance issues and  $L_{AMax}$  noise impacts have not been considered in detail (outlined with the RTAs *Environmental Noise Management Manual* and NSW DECs *Environmental Criteria for Road Traffic Noise*) given the elevated number of existing road transport movements for the New England Highway. However, night time impacts due to air brake release (up to a noise emission level of 115 dB(A)) and impact noise (up to a noise emission level of 120 dB(A)) may be expected in the range of 70 – 85 dB(A) for the nearest receivers to the roadside carriageway of the New England Highway. The short term impacts, where evident, are not expected to result in a loss of sleep amenity. Any perceived impacts would be comnsistent with existing profiles.

Negligible change is expected to existing traffic noise profiles. The heavy vehicle movement schedule outlined within the Traffic Impact Assessment (prepared by Northern Transport Planning and Engineering Pty Ltd) indicates a total equivalent weekday daily movement number of 163 truck movements.

No significant cumulative increases in existing road traffic noise impacts would occur due to the proposal. The plant would likely reduce total network movements as movements to Branxton, Singleton Newcastle, Sydney and Queensland would not be required as frequently.

In considering portential road traffic noise impacts, it is important to note that the historical growth of the New England Highway be considered. A growth rate of three percent through Rutherford and Maitland would be expected to result in an increase in the range of 1000 to 1500 vehicles per day, of which between 250 – 500 would be expected to be road transport trucks. Compared to the proposed increase of approximately 260 day time movements and 126 night time movements through Rutherford and Maitland related directly to the proposal. At final design capacity, the waste resource and recovery facility would not be a significant contributor to existing road traffic movements for the area.

It is therefore considered that a more detailed road traffic noise impact assessment is not deemed necessary.

Several road traffic noise management practices have been recommended (Section 6.4).

#### 5.5 Vibration

A qualitative assessment of potential vibration impacts has been presented within this section of the report. No targeted impact calculations have been carried out.



Vibration issues are not likely to be associated with the construction or operation of the facility.

Worse case vibration levels may be associated with the site preparation works and the movement of road transport trucks. There is negligible potential for off-site structural damage, and regenerated noise issues.

Potential annoyance and comfort impacts associated with vibration have been detailed below.

Typical vibration levels for an excavator range from one – two millimetres per second at a distance of five metres and generally decreases to less than 0.2 millimetres per second at distances greater than 20 metres. Typical vibration levels from heavy trucks passing over normal (smooth) road surfaces generate relatively low vibration levels in the range of 0.01 – 0.2 millimetres per second at the footings of buildings located 10 – 20 metres from a roadway.

Vibration impacts are expected to be insignificant at a distance of 10 metres and immeasurable beyond 50 metres.

Vibration emission levels from the site (construction and operation phases) would be negligible given the separation distances to the nearest potentially affected receivers. No structural damage is expected. Furthermore, annoyance due to vibration is not likely to be experienced.



# Statement of potential impact

#### **6.1** Construction noise

#### **6.1.1** Potential impacts

Construction noise impacts are not expected to exceed the adopted noise design goals. The adopted goal of 51 dB(A) ( $L_{A10}$ ) was achieved for each receiver.

However, short term construction noise impacts may occur if appropriate construction noise controls and management practices are not implemented.

A number of economically reasonable and technically feasible noise mitigation options that would be considered by the construction contractor have been provided in *Section 6.1.2*.

#### **6.1.2** Mitigation measures and safeguards

The contractor would address each of the following items to ensure every reasonable effort is made to meet the identified noise design goals, and so that no unnecessary exceedances occur:

- intensive construction activities (with the potential to be audible off site) would be scheduled between Monday to Friday, 7.00 am to 6.00 pm, and Saturdays, 8.00 am to 1.00 pm. No audible works would be undertaken on Sundays or Public holidays
- construction activities would be undertaken in accordance with Australian Standard AS 2436-1981 Guide to Noise Control on Construction, Maintenance and Demolition Sites. All equipment used on site would be required to demonstrate compliance with the noise levels recommended within AS 2436-1981.

It is also recommended that noise monitoring be undertaken during the initial construction works. The noise compliance monitoring would ensure that any assumptions made in the calculations are verified and would also allow an opportunity for liaison with the local community. The compliance monitoring would provide the contractor with feedback relating to operating practices and the adoption of technically feasible and/or economically reasonable noise control measures for key sources affecting residential noise levels.

A noise management plan would be developed as part of the construction environmental management plan to be prepared by the construction contractor prior to the commencement of construction activities.

The management plan would identify and address noise impact for all potentially affected receivers and provide procedures, noise mitigation measures and noise management practices proposed throughout the duration of the works.



#### 6.2 Operational noise

#### **6.2.1** Potential impacts

The operation of the proposed facility is unlikely to result in a degradation of the existing ambient noise environment.

Received noise levels were calculated at ground level for 16 adjacent existing residential receivers (a total of six noise catchments).

Residential  $L_{Aeq}$  predictions of 30 dB(A) and below were reported for still conditions. Under noise enhancing meteorological conditions, residential  $L_{Aeq}$  noise impact of 36.5 dB(A) and below were predicted.

Boundary noise levels of less than 70 dB(A) are anticipated.

Compliance with the noise design objectives established for this proposal were achieved for all assessed operations.

Background (median  $L_{A90}$ ) noise levels at Location 1, Dent Street to the north west, were reported at 44 dB(A), 41.5 dB(A) and 35 dB(A) (for the day time, evening and night time periods respectively). Background (median  $L_{A90}$ ) noise levels at Location 2, Anambah Road to the north east, were reported at 41 dB(A), 40.5 dB(A) and 34 dB(A) (for the day time, evening and night time periods respectively).

No increase in long-term degradation to the existing off-site residential noise profiles is expected, that is, the site would be inaudible to barely audible at each nearest potentially affected receiver during all periods of operations.

Potential intrusive noise impacts during the night time period may occur from the short term movement of mobile sources throughout the site. Recommendations have been made to minimise these impacts within *Section 6.2.2*.

#### 6.2.2 Mitigation measures and safeguards

The works carried out as part of this assessment has been based on conservative factors and all potential operating conditions, with an emphasis being placed on worse case events.

Given the potential for short-term elevated site operations (particularly vehicle movements) and nature of the existing ambient noise environment, several environmental management procedures have been recommended aimed at limiting potential noise emission issues.

Analysis of the ENM output files has shown that auxiliary equipment such as an articulated semi-trailer significantly contribute to the noise emissions from the site when operating on the internal access road. Therefore, the use of this equipment would be carried out in a reasonable manner, with the associated off-site noise impacts considered at all times.



Scheduling of truck movements would be undertaken. No more than six road transport trucks would be in operation (manoeuvring or idling) on the site at any one time. This was the number assumed in the modelling carried out.

Each item outlined below would minimise the potential for adverse off-site noise impacts.

- a contact number would be provided to the public so that information can be received or complaints made in relation to noise. A log of complaints would be maintained and actioned by the contractor. A complaint handling procedure would be formulated and adhered to
- residential class mufflers and where applicable, engine shrouds (acoustic lining) to permanent on site mobile sources engine would be used. Noise emissions are to be an important consideration when selecting equipment for the site. All equipment would be maintained in good order including mufflers, enclosures and bearings to ensure unnecessary noise emissions are eliminated
- appropriate use of all plant and equipment. Reasonable work practices are to be applied with no extended periods of 'revving', idling or 'warming up' within the proximity of existing residential receivers. Any excessively loud activities would be scheduled during periods of the day when an increase in general ambient noise levels is apparent. This would reduce the potential for cumulative noise impacts (relating to worst-case elevated operations) and extended periods of off-site annoyance.

The final design of the plant is to consider the impact potential presented within this report. Source selection and noise emission levels have been assumed in the assessment of impact potential. Process operations additional to, or that emit noise at levels higher than, those adopted in the predictive modelling may result in changes to received operational noise impacts.

Post commissioning source emission and ambient background monitoring would be undertaken prior to each stage of the developed to confirm the noise source levels and associated received noise levels. An assessment of annoying characteristics would need to be undertaken at this stage.

An operational environmental management plan (noise issues) would outline procedures that specifically address potential noise impacts and the requirements for corrective measures in the event of elevated off-site noise levels or residential complaints.

### 6.3 Sleep disturbance

#### **6.3.1** Potential impacts

No sleep disturbance issues are anticipated from the operations of the facility.  $L_{A1}$  impacts of less than 49 dB(A) were reported.



#### **6.3.2** Mitigation measures and safeguards

No site-specific mitigation measures or safeguards are deemed necessary. The operational environmental management plan (noise issues) would outline procedures that specifically address the requirements for corrective measures in the event that sleep disturbance noise impacts occur.

#### 6.4 Road traffic noise

No operational road traffic noise issues are anticipated.

Detailed assessment of road traffic noise impacts for the operations works has not been undertaken due to existing heavy traffic flows along the New England Highway and negligible incrementral impacts from the proposal.

As the distance of separation from the New England Highway increases, road traffic noise impacts would reduce significantly. Further attenuation would also be provided by existing structures located along the noise transmission path (being the façade of the residential dwellings).

Existing road traffic noise impacts would be well above the NSW DECs 'base' criterion. The NSW DEC road traffic noise 'allowance' criterion would be readily achieved.

Controlling existing road traffic noise impacts from a source such as the New England Highway is considered beyond the principles of reasonable and feasible for a single industrial development.

#### **6.4.1** Mitigation measures and safeguards

A road traffic noise management plan would be completed as part of the construction and operational noise management plan. Factors such as route selection, preferred movement times, scheduling of movements, speed limits and 'community friendly' driving practices would be clearly outlined.

Truck movements would be limited to no more than six movements per hour (excluding peak hour flows). This would provide a safeguard for protecting local residential noise amenity. Site management is to ensure that the necessary timetabling and organisation of contractors is conducted in a manner that accommodates this need.

It is proposed that trucks entering the site during the night time period have air bag suspensions. Engine brakes would not be used. Access would be via Kyle Street with a creep speed of 5 km/hr. Limiting the potential for night time noise impacts would significantly reduce the potential for local residential annoyance and potential sleep disturbance issues.

No queuing of road transport trucks along Kyle Street are to take place at any time. The following practical on-site vehicle movement practices are also recommended:



- low on-site speed limits
- no use of horns or engine brakes
- adequate access road design.

#### 6.5 Vibration

#### **6.5.1** Potential impacts

No construction vibration issues are anticipated. Similarly, minimal potential for operational related vibration impacts are expected. Given the separation distances between the nearest resident and the site, no vibration impact is considered likely.

The intermittent and transient activities would not result in structural damage. Minimal potential for annoyance is anticipated.

#### **6.5.2** Mitigation measures and safeguards

No site-specific mitigation measures or safeguards are deemed necessary.



## 7. Conclusion

This report documents as assessment of environmental noise issues for the proposed construction and operation of the waste resource recovery and recycling facility located at Rutherford.

A number of source emission scenarios were considered with impact potential (and loss of residential amenity / noise intrusion) compared with site-specific noise design goals derived in accordance with NSW Department of Environment and Conservation guidelines.

Short-term construction impacts may occur for the closest residential receivers without suitable noise control measures or construction management practices. External construction activities have the greatest potential for construction noise impacts in residential areas.

It is important to note that with respect to construction noise planning goals, the NSW Department of Environment and Conservation recognise that individuals accept higher perceived noise impacts for emission sources with a limited duration and identified end date. A number of construction noise management options have been recommended.

No operational noise issues are anticipated. The adopted operational noise design goals were achieved throughout. With the adoption of the recommended management practices, the operations of the site are expected to be generally inaudible within the surrounding residential areas for all periods of the day.

No sleep disturbance, construction-related road traffic noise or construction-related vibration impacts are anticipated.

It is recommended that post-commissioning noise source validation measurements be carried out to verify the assumptions made, and subsequent conclusions provided, within this report.

It is expected that a performance based approach would be applied during the final design and construct stage of the site. Conceptually, the proposed site is not expected to result in future socio-acoustic land use incompatibility.

With adherence to the recommendations made within this report, no long-term loss or degradation to the existing local acoustic amenity is expected from the construction and operation of the proposed waste resource recovery and recycling facility.



## 8. References

AS 2436-1981 Guide to Noise Control on Construction, Maintenance and Demolition Sites

AS 2670 Evaluation of Human Exposure to Whole-body Vibration

Bridges Acoustics National Ceramic Insutries Australia Pty Ltd Ceramic Tile Manufacturing Facility, Rutherford Technical Paper Mo. 1 – Noise (Report J0028-11-R1, dated December 2002)

BS 6472 1992 Evaluation of Human Exposure to Vibration in Buildings (1 Hz to 80 Hz)

BS 7385 1990 Evaluation and Measurement for Vibration in Buildings

DIN 4150-3 1999 Structural Vibration Part 3 Effects of Vibration on Structures.

Northern Transport Planning and Engineering Pty Ltd *Transpacific Industries Pty Ltd Proposed Resource Recovery and Recycling Facility, Rutherford Traffic Impact Study* (Report 05908, dated April 2005)

NSW DEC Industrial Noise Policy (2000)

NSW DEC Environmental Noise Control Manual (1994)

NSW DEC Environmental Criteria for Road Traffic Noise (1999)

Protection of the Environment Operations Act (1997)



## 9. Limitations

#### **Scope of Services and Reliance of Data**

This environmental impact study ("the study") has been prepared in accordance with the scope of work/services set out in the contract, or as otherwise agreed, between Parsons Brinckerhoff (PB) and the Client. In preparing this environmental impact study, PB has relied upon data, surveys, analyses, designs, plans and other information provided by the Client and other individuals and organisations, most of which are referred to in the environmental impact study ("the data"). Except as otherwise stated in the environmental impact study, PB has not verified the accuracy or completeness of the data. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations in this environmental impact study ("conclusions") are based in whole or part on the data, those conclusions are contingent upon the accuracy and completeness of the data. PB will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to PB.

#### **Study for Benefit of Client**

This environmental impact study has been prepared for the exclusive benefit of the Client and no other party. PB assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with in this environmental impact study, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in this environmental impact study (including without limitation matters arising from any negligent act or omission of PB or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in this environmental impact study). Other parties should not rely upon the environmental impact study or the accuracy or completeness of any conclusions and should make their own inquiries and obtain independent advice in relation to such matters.

#### **Other Limitations**

To the best of PBs knowledge, the proposal presented and the facts and matters described in this environmental impact study reasonably represent the Client's intentions at the time of printing of the environmental impact study. However, the passage of time, the manifestation of latent conditions or the impact of future events (including a change in applicable law) may have resulted in a variation of the Proposal and of its possible environmental impact.

PB will not be liable to update or revise the environmental impact study to take into account any events or emergent circumstances or facts occurring or becoming apparent after the date of the environmental impact study.

## **Appendix A**

Instrument set calibration certificates

#### **EL 215 Noise Logger - unattended noise monitoring**

(Location 1, 9 Denton Close)

## Acoustic Research Laboratories

Noise and Vibration Monitoring Instrumentation for Industry and the Environment

## Sound Level Meter Test Certificate

Report Number: 03230

Date of Test: 17th October 2003

Report Issue Date: 17th October 2003

Equipment Tested: ARL Noise Logger

Model Number: EL-215

Serial Number: 194447

Client Name: Acoustic Research Laboratories

Contact Name: Robyn Hastings

Tested by: Will Ford

Approved Signatory :

Date: 17th October 2003



Measurement

- The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025:1999 and are traceable to national standards of measurement.
- This Report may not be published except in full, unless permission has been granted in writing from Acoustic Research Laboratories Pty Ltd.

#### EL 215 Noise Logger - unattended noise monitoring

(Location 2, 96 Anambah Denton Road)

## Acoustic Research Laboratories

Noise and Vibration Monitoring Instrumentation for Industry and the Environment

## **Sound Level Meter Test Certificate**

Report Number: 05077.doc

Date of Test: 18/04/2005

Report Issue Date: 20/04/2005

Equipment Tested: Environmental Noise Logger

Model Number: EL-215

Serial Number: 194446

Client Name: Acoustic Research Laboratories

Contact Name: Katie Fairjones

Tested by: Will Ford

Approved Signatory:

Ken Williams

Date: 20th April 2005.



The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025:1999 and are traceable to Australian national standards of measurement. This document shall not be reproduced except in full.

#### **RION NA 27 - attended day time monitoring**

17/06/2004 10:10 61294840884

ARL

PAGE 01

# Acoustic Research Laboratories Proprietary Limited A.B.N. 47 050 100 804 Noise and Vibration Monitoring Instrumentation for Industry and the Environment

#### **Sound Level Meter Test Report**

Report Number: 03277

Date of Test: 2<sup>nd</sup> December 2003

Report Issue Date: 2nd December 2003

Equipment Tested: Rion

Model Number: NA-27

Serial Number: 00601291

Client Name: Acoustic Research Laboratories

Contact Name: Robyn Hastings

Tested by: Will Ford

Approved Signatory:

Date: 2<sup>nd</sup> December 2003



- The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025:1999 and are traceable to national standards of measurement.
- This Report may not be published except in full, unless permission has been granted in writing from Acoustic Research Laboratories Pty Ltd.

# Appendix B

Compiled daily noise logger graphs













































# Appendix C

Sample ENM output file

```
OUTPUT FOR (.out) Ruthe
SINGLE POINT CALCULATION
                                                      Rutherford Waste Revocey - Scn A-3 (CFS) neutral
   ENM CALC MODULE
  FILENAMES
     C:\ENM\SOURCES\2118506A\506A-3
     2118506A.GEN
     C:\ENM\MAPS\2118506A\506A
    OUT1 file and RNK1 file
  TEMP (deg C)
                                                  HUMIDITY (%)
         25.0
                                                              50.0
   WIND SPEED (m/sec) WIND DIR (deg)
                                                                  .0
               .0
  TEMP GRAD (deg C/100m)
                .0
   X= 647.000 Y= 3483.000 Z=
                                                                                            46.200
   SOURCE :
                                   13
  CFS - processing (external) - backhoe
                                                                                                    ___FREQUENCY Hz_
                                                 31.5 63 125
                                                                                               250
                                                                                                                500
                                                                                                                                  1k
                                                                                                                                                   2k
                                                                                                                                                                    4k
                                                                                                                                                                                   8k
                                                                                                                                                                                                16k
  POWER LEVEL
                                                  95.0 95.0 95.0 95.0 95.0 95.0
                                                                                                                                                              95.0
                                                                                                                                                                                95.0
  DIRECTIVITY
                                                   .0
                                                                    .0
                                                                                   .0
                                                                                                   .0
                                                                                                                   .0
                                                                                                                                  .0
                                                                                                                                                  .0
                                                                                                                                                                   .0
                                                                                                                                                                                  .0
                                                  76.2 76.2
                                                                                 76.2
                                                                                                76.2
                                                                                                                 76.2
                                                                                                                                76.2
                                                                                                                                                                 76.2
  DISTANCE
                                                                                                                                                 76.2
                                                                                                                                                                                 76.2 76.2
                                                                                 18.6 21.6
.6 2.1
                                                                                                                                                 25.0
18.9
                                                                                                                                                                25.0
37.0
  BARRIER
                                                  12.8
                                                                 15.6
                                                                                                                 24.6
                                                                                                                                 25.0
                                                                                                                                                                                 25.0
                                                                                                                                                                                              25.0
                                                   .0
   AIR ABSORPTION
                                                                                                                  5.7
                                                                                                                                11.0
                                                                                   .6
.0
                                                                                                                .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .
   TEMP & WIND
                                                         . 0
                                                                         . 0
                                                  -3.7
                                                                   1.7
                                                                                   3.2 -3.6
  GROUND
                                                                  1.3 -3.7 -1.4 -11.3 -14.4 -22.6 -41.5-100.0-100.0
  TOTAL AWT -7.1 9.6
  CFS - processing (external) - FEL
                                                                                                   ___FREQUENCY Hz_
                                                  31.5 63
                                                                               125
                                                                                              250
                                                                                                                500
                                                                                                                                                                                                16k
                                                                                                                                  1k
                                                                                                                                                   2k
                                                                                                                                                                    4k
                                                                                                                                                                                   8k
   POWER LEVEL
                                                  94.0 100.0 100.0 106.0 98.0 101.0 98.0
                                                                                                                                                              92.0
                                                                                                                                                                                 86.0
  DIRECTIVITY
                                                   .0 .0
                                                                                .0 .0
                                                                                                                 .0 .0
                                                                                                                                                  . 0
                                                                                                                                                                    .0
                                                                                                                                                                                   . 0
                                                 DISTANCE
```

. 0

. 0

| BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 1.1 | 13.4<br>.0<br>.0<br>-3.7 | 16.4<br>.2<br>.0<br>1.6 |                    |                     |                     |                      |                      | 25.0<br>37.0<br>.0<br>-3.1 | .0                    | 25.0<br>300.0<br>.0<br>-1.8 |
|---------------------------------------------------------|--------------------------|-------------------------|--------------------|---------------------|---------------------|----------------------|----------------------|----------------------------|-----------------------|-----------------------------|
| SOURCE : 15<br>CFS - curing (int                        | enral)                   | - FEL                   |                    |                     |                     |                      |                      |                            |                       |                             |
|                                                         |                          |                         |                    | FR                  | EQUENC              | Y Hz_                |                      |                            |                       |                             |
|                                                         | 31.5                     | 63                      | 125                | 250                 | 500                 | 1k                   | 2k                   | 4k                         | 8k                    | 16k                         |
| POWER LEVEL<br>DIRECTIVITY                              | 84.0                     | 90.0                    | 90.0               | 96.0                | 88.0                | 91.0                 | 88.0                 | 82.0                       | 76.0<br>.0            | .0                          |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION                   | 76.4<br>12.9<br>.0       | 76.4<br>15.8            | 76.4<br>18.8<br>.6 | 76.4<br>21.8<br>2.2 | 76.4<br>24.8<br>5.8 | 76.4<br>25.0<br>11.1 | 76.4<br>25.0<br>19.1 | 76.4<br>25.0<br>37.4       | 76.4<br>25.0<br>100.2 | 25.0                        |

| SOURCE :     | 16         |            |        |         |
|--------------|------------|------------|--------|---------|
| CFS - curing | (intenral) | - conveyor | belt / | motor 1 |

|                                                                |                          | FREQUENCY Hz_            |                                 |                                   |                                |                                    |                                    |                                    |                             |                                     |  |  |
|----------------------------------------------------------------|--------------------------|--------------------------|---------------------------------|-----------------------------------|--------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------|-------------------------------------|--|--|
|                                                                | 31.5                     | 63                       | 125                             | 250                               | 500                            | 1k                                 | 2k                                 | 4k                                 | 8k                          | 16k                                 |  |  |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0<br>.0               | 93.0                     | 80.0                            | 74.0                              | 72.0                           | 68.0                               | 65.0                               | 62.0                               | 58.0                        | .0                                  |  |  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 76.4<br>12.7<br>.0<br>.0 | 76.4<br>15.4<br>.2<br>.0 | 76.4<br>18.4<br>.6<br>.0<br>4.4 | 76.4<br>21.4<br>2.2<br>.0<br>-3.3 | 76.4<br>24.4<br>5.8<br>.0<br>9 | 76.4<br>25.0<br>11.2<br>.0<br>-2.7 | 76.4<br>25.0<br>19.2<br>.0<br>-2.6 | 76.4<br>25.0<br>37.6<br>.0<br>-2.7 | 76.4<br>25.0<br>100.7<br>.0 | 76.4<br>25.0<br>300.0<br>.0<br>-1.6 |  |  |

TOTAL AWT -8.5 -1.6 -4.1 -8.9 -.7 -18.6 -18.7 -29.9 -54.6-100.0-100.0

TOTAL AWT -24.6 -8.3 -.4 -19.9 -22.7 -33.7 -41.9 -52.9 -74.3-100.0-100.0

SOURCE : 17

CFS - curing (intenral) - conveyor belt / motor 2

|                                                                |                          |                                 |                                 | FF                                | REQUEN                         | CY Hz_                             |                                    |                                    |         |        |
|----------------------------------------------------------------|--------------------------|---------------------------------|---------------------------------|-----------------------------------|--------------------------------|------------------------------------|------------------------------------|------------------------------------|---------|--------|
|                                                                | 31.5                     | 63                              | 125                             | 250                               | 500                            | 1k                                 | 2k                                 | 4k                                 | 8k      | 16k    |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0<br>.0               | 93.0                            | 80.0                            | 74.0                              | 72.0                           | 68.0                               | 65.0                               | 62.0                               | 58.0    | .0     |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 76.4<br>12.6<br>.0<br>.0 | 76.4<br>15.2<br>.2<br>.0<br>1.4 | 76.4<br>18.2<br>.6<br>.0<br>4.3 | 76.4<br>21.2<br>2.2<br>.0<br>-3.3 | 76.4<br>24.2<br>5.8<br>.0<br>8 | 76.4<br>25.0<br>11.3<br>.0<br>-2.8 | 76.4<br>25.0<br>19.3<br>.0<br>-2.5 | 76.4<br>25.0<br>37.8<br>.0<br>-2.6 | .0      | .0     |
| TOTAL AWT -24.4                                                | -8.3                     | 2                               | -19.6                           | -22.5                             | -33.7                          | -42.0                              | -53.2                              | -74.6                              | -100.0- | -100.0 |

SOURCE : 18 CFS - curing (intenral) - conveyor belt / motor 3

|                                                                |                          |                                 |                          | FR                                | EQUEN                             | CY Hz_                             |                                    |                    |                     |                                     |
|----------------------------------------------------------------|--------------------------|---------------------------------|--------------------------|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|--------------------|---------------------|-------------------------------------|
|                                                                | 31.5                     | 63                              | 125                      | 250                               | 500                               | 1k                                 | 2k                                 | 4k                 | 8k                  | 16k                                 |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0                     | 93.0                            | 80.0                     | 74.0                              | 72.0                              | 68.0                               | 65.0<br>.0                         | 62.0               | 58.0                | .0                                  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 76.4<br>11.1<br>.0<br>.0 | 76.4<br>12.8<br>.2<br>.0<br>2.2 | 76.4<br>15.6<br>.6<br>.0 | 76.4<br>18.6<br>2.2<br>.0<br>-3.5 | 76.4<br>21.6<br>5.8<br>.0<br>-1.2 | 76.4<br>24.6<br>11.3<br>.0<br>-1.3 | 76.4<br>25.0<br>19.3<br>.0<br>-2.8 | 25.0<br>37.8<br>.0 | 25.0<br>101.2<br>.0 | 76.4<br>25.0<br>300.0<br>.0<br>-2.9 |
| TOTAL ANT 22 1                                                 | 7 1                      | 1 /                             | 1 / E                    | 10.7                              | 20.7                              | 42.0                               | E2 0                               | 76 1               | 100 0               | 100 0                               |

TOTAL AWT -22.1 -7.1 1.4 -14.5 -19.7 -30.7 -43.0 -52.9 -76.1-100.0-100.0

SOURCE : 19 CFS - curing (intenral) - conveyor belt / motor 4

|                                                                |                         |                                 |                          | FF                                | REQUENC                           | CY Hz_                             |                                    |                                    |                                     |                                     |
|----------------------------------------------------------------|-------------------------|---------------------------------|--------------------------|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|
|                                                                | 31.5                    | 63                              | 125                      | 250                               | 500                               | 1k                                 | 2k                                 | 4k                                 | 8k                                  | 16k                                 |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0                    | 93.0                            | 80.0                     | 74.0                              | 72.0                              | 68.0<br>.0                         | 65.0<br>.0                         | 62.0                               | 58.0                                | .0                                  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 76.4<br>9.8<br>.0<br>.0 | 76.4<br>12.0<br>.2<br>.0<br>2.4 | 76.4<br>13.8<br>.6<br>.0 | 76.4<br>16.8<br>2.2<br>.0<br>-3.3 | 76.4<br>19.8<br>5.8<br>.0<br>-1.4 | 76.4<br>22.9<br>11.2<br>.0<br>-1.7 | 76.4<br>25.0<br>19.2<br>.0<br>-1.9 | 76.4<br>25.0<br>37.6<br>.0<br>-1.7 | 76.4<br>25.0<br>100.7<br>.0<br>-2.2 | 76.4<br>25.0<br>300.0<br>.0<br>-3.3 |
| TOTAL AWT -20.9                                                | -5.8                    | 2.0                             | -12.2                    | -18.1                             | -28.6                             | -40.8                              | -53.6                              | -75.3                              | -100.0-                             | -100.0                              |

SOURCE : 20 CFS - curing (intenral) - conveyor belt / motor 5

|                                                                |                          | FREQUENCY Hz                    |                                 |                                   |                                   |                                    |                                    |                                    |                                    |        |  |  |
|----------------------------------------------------------------|--------------------------|---------------------------------|---------------------------------|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--------|--|--|
|                                                                | 31.5                     | 63                              | 125                             | 250                               | 500                               | 1k                                 | 2k                                 | 4k                                 | 8k                                 | 16k    |  |  |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0                     | 93.0                            | 80.0                            | 74.0                              | 72.0                              | 68.0                               | 65.0                               | 62.0                               | 58.0                               | .0     |  |  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 76.3<br>11.7<br>.0<br>.0 | 76.3<br>13.3<br>.2<br>.0<br>2.1 | 76.3<br>16.3<br>.6<br>.0<br>2.1 | 76.3<br>19.3<br>2.1<br>.0<br>-3.5 | 76.3<br>22.3<br>5.7<br>.0<br>-1.0 | 76.3<br>25.0<br>11.1<br>.0<br>-1.4 | 76.3<br>25.0<br>18.9<br>.0<br>-2.6 | 76.3<br>25.0<br>37.2<br>.0<br>-2.8 | 76.3<br>25.0<br>99.5<br>.0<br>-3.3 | .0     |  |  |
| TOTAL AWT -22.6                                                | -7.5                     | 1.1                             | -15.3                           | -20.2                             | -31.3                             | -43.0                              | -52.6                              | -73.6-                             | 100.0-                             | -100.0 |  |  |

CFS - curing (intenral) - conveyor belt / motor 6

|                                                                |                          | FREQUENCY Hz                    |                          |                                   |                                   |                                    |                                    |                                    |                                 |                                     |  |  |
|----------------------------------------------------------------|--------------------------|---------------------------------|--------------------------|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|---------------------------------|-------------------------------------|--|--|
|                                                                | 31.5                     | 63                              | 125                      | 250                               | 500                               | 1k                                 | 2k                                 | 4k                                 | 8k                              | 16k                                 |  |  |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0                     | 93.0                            | 80.0                     | 74.0                              | 72.0                              | 68.0                               | 65.0<br>.0                         | 62.0                               | 58.0                            | .0                                  |  |  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 76.2<br>11.2<br>.0<br>.0 | 76.2<br>12.8<br>.2<br>.0<br>2.1 | 76.2<br>15.6<br>.6<br>.0 | 76.2<br>18.7<br>2.1<br>.0<br>-3.5 | 76.2<br>21.7<br>5.7<br>.0<br>-1.2 | 76.2<br>24.7<br>11.0<br>.0<br>-1.3 | 76.2<br>25.0<br>18.8<br>.0<br>-2.8 | 76.2<br>25.0<br>36.8<br>.0<br>-1.0 | 76.2<br>25.0<br>98.6<br>.0<br>2 | 76.2<br>25.0<br>300.0<br>.0<br>-3.4 |  |  |
| TOTAL AWT -21.9                                                | -6.9                     | 1.7                             | -14.4                    | -19.5                             | -30.4                             | -42.6                              | -52.2                              | -75.0-                             | 100.0-                          | -100.0                              |  |  |

SOURCE : 22

| CFS - processing                                               | (exte        | rnal) ·      |              |              | o E∩IIENI    | TV UF              |                    |                    |                    |                     |
|----------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------------|--------------------|--------------------|--------------------|---------------------|
|                                                                | 31.5         | 63           |              |              |              |                    | 2k                 |                    | 8k                 | 16k                 |
| POWER LEVEL<br>DIRECTIVITY                                     | 111.0        | 114.0        | 103.0        | 104.0        | 103.0        | 100.0              | 98.0               | 94.0               | 88.0               | .0                  |
|                                                                | 75.5         | 75.5<br>.0   | 75.5<br>.0   | 75.5<br>.0   | 75.5<br>.0   | 75.5<br>.0<br>10.2 | 75.5<br>.0<br>17.4 | 75.5<br>.0<br>34.4 | 75.5<br>.0<br>91.5 | 75.5<br>.0<br>300.0 |
| TEMP & WIND<br>GROUND                                          | .0<br>-4.8   | .0<br>-1.3   | .0<br>8.4    | .0<br>9.7    | .0<br>1.2    |                    | .0<br>-3.3         |                    |                    |                     |
| TOTAL AWT 22.4                                                 | 40.3         | 39.6         | 18.5         | 16.8         | 21.1         | 18.6               | 8.3                | -13.2              | -76.4              | -100.0              |
| SOURCE : 23<br>CFS - processing                                |              | rnal) ·      | - RTT :      | revers       | ing          |                    |                    |                    |                    |                     |
|                                                                |              |              |              | FI           | REQUEN       | CY Hz_             |                    |                    |                    |                     |
|                                                                | 31.5         | 63           | 125          | 250          | 500          | 1k                 | 2k                 | 4k                 | 8k                 | 16k                 |
| POWER LEVEL<br>DIRECTIVITY                                     | . 0          | . 0          | . 0          | . 0          | . 0          | . 0                | . 0                | . 0                | . 0                | . 0                 |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 76.3         | 76.3         | 76.3         | 76.3         | 76.3         | 76.3               | 76.3               | 76.3               | 76.3               | 76.3                |
| AIR ABSORPTION                                                 | .0           | . 2          | . 6          | 2.1          | 5.7          | 11.1               | 19.0               | 37.2               | 99.7               | 300.0               |
| GROUND                                                         | -4.8         | -1.0         | 9.1          | 9.7          | 1.2          | -4.3               | 19.0<br>.0<br>-3.4 | -2.7               | -2.7               | -3.0                |
| TOTAL AWT 11.0                                                 | -14.6        | 4            | -11.0        | -9.1         | 5.8          | 9.9                | 9                  | -23.9              | -96.4              | -100.0              |
| SOURCE : 24<br>CFS - processing                                |              | rnal) ·      | - dust       | colle        | ctor /       | fan                |                    |                    |                    |                     |
|                                                                |              |              |              | FI           | REQUEN       | CY Hz_             |                    |                    |                    |                     |
|                                                                |              |              |              |              |              |                    | 2k                 |                    |                    |                     |
| POWER LEVEL<br>DIRECTIVITY                                     |              |              |              |              |              |                    |                    |                    |                    |                     |
| DISTANCE<br>BARRIER                                            | 76.1<br>.0   | 76.1<br>.0   | 76.1<br>.0   | 76.1<br>.0   | 76.1<br>.0   | 76.1<br>.0         | 76.1<br>.0         | 76.1<br>.0         | 76.1<br>.0         | 76.1<br>.0          |
| AIR ABSORPTION<br>TEMP & WIND                                  | . 0          | . 2          | .6           | 2.1          | 5.6          | 10.9               | .0<br>18.6<br>.0   | 36.6               | 97.8               | 300.0               |
| GROUND                                                         | -4.8         | -1.1         | 8.9          | 9.6          | 1.1          | -4.3               | -3.3               | -2.7               | -2.7               | -2.9                |
| TOTAL AWT 23.9                                                 |              | 26.8         | 20.3         | 21.1         | 25.1         | 18.3               | 2.6                | -21.0              | -88.3              | -100.0              |
| SOURCE : 25<br>CFS - processing                                |              | rnal) ·      | - fork       | lift         |              |                    |                    |                    |                    |                     |
|                                                                |              |              |              | FI           | REQUEN       | CY Hz_             |                    |                    |                    |                     |
|                                                                |              |              |              |              |              |                    | 2k                 |                    |                    |                     |
| POWER LEVEL<br>DIRECTIVITY                                     |              |              |              |              |              |                    | 91.0<br>.0         |                    |                    |                     |
| DISTANCE<br>BARRIER                                            | 76.3<br>11.4 | 76.3<br>12.9 | 76.3<br>15.9 | 76.3<br>18.9 | 76.3<br>21.9 | 76.3<br>24.9       | 76.3<br>25.0       | 76.3<br>25.0       | 76.3<br>25.0       | 76.3<br>25.0        |
| AIR ABSORPTION                                                 | .0           | . 2          | .6           | 2.1          | 5.7          | 11.1               | 19.0               | 37.2               | 99.6               | 300.0               |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND                      | -3.5         | 2.1          | 2.1          | -3.5         | -1.0         | -1.4               | -2.6               | -3.0               | -3.2               | .0<br>-2.9          |
| TOTAL AWT -3.6                                                 |              |              |              |              |              |                    |                    |                    |                    |                     |
| SOURCE : 26<br>CFS - processing                                |              | rnal) ·      | - aggre      | egate 1      | unload       |                    |                    |                    |                    |                     |
|                                                                |              |              |              | FI           | REQUEN       | CY Hz_             |                    |                    |                    |                     |
|                                                                | 31.5         | 63           | 125          | 250          | 500          | 1k                 | 2k                 | 4k                 | 8k                 | 16k                 |
| POWER LEVEL<br>DIRECTIVITY                                     |              |              |              |              |              |                    |                    |                    |                    |                     |
| DISTANCE                                                       | 76.2         | 76.2         | 76.2         | 76.2         | 76.2         | 76.2               | 76.2               | 76.2               | 76.2               | 76.2                |
| BARKIER<br>AIR ABSORPTION                                      | .0           | .0           | .0<br>.6     | .0<br>2.1    | .0<br>5.7    | .0<br>11.0         | .0<br>18.8         | .0<br>36.8         | .0<br>98.6         | 300.0               |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND             | .0<br>-4.8   | .0<br>-1.1   | 9.0          | .0<br>9.7    | .0<br>1.2    | .0<br>-4.3         | .0<br>-3.4         | .0<br>-2.7         | .0                 | .0<br>-3.0          |
| TOTAL AWT 22.6                                                 |              |              |              |              |              |                    |                    |                    |                    |                     |
| SOURCE : 27<br>CFS - processing                                |              | rnal) ·      | - silo       | vent :       | 1            |                    |                    |                    |                    |                     |
|                                                                |              |              |              | FI           | REQUEN       | CY Hz_             |                    |                    |                    |                     |
|                                                                |              |              |              |              |              |                    |                    |                    |                    |                     |

|                                                                                                                                                                                                                                                                                                                           | 31.5                                                                                                  | 63                                                        | 125                                                                     | 250                                                                    | 500                                                                                                                   | 1k                                                              | 2k                                      | 4k                                                              | 8k                                                           | 16k                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------|
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                           |                                                                         | 89.0                                                                   |                                                                                                                       |                                                                 |                                         |                                                                 |                                                              |                                         |
|                                                                                                                                                                                                                                                                                                                           |                                                                                                       |                                                           |                                                                         | 76.1                                                                   |                                                                                                                       |                                                                 |                                         |                                                                 |                                                              |                                         |
| BARRIER<br>AIR ABSORPTION                                                                                                                                                                                                                                                                                                 | .0                                                                                                    | .0                                                        | 6                                                                       | .0                                                                     |                                                                                                                       | .0<br>10.9                                                      |                                         |                                                                 |                                                              |                                         |
| TEMP & WIND                                                                                                                                                                                                                                                                                                               | .0                                                                                                    | .0                                                        |                                                                         | .0                                                                     |                                                                                                                       |                                                                 | .0                                      |                                                                 |                                                              |                                         |
| GROUND                                                                                                                                                                                                                                                                                                                    |                                                                                                       |                                                           | 7.0                                                                     | 2.8                                                                    |                                                                                                                       |                                                                 |                                         |                                                                 |                                                              |                                         |
| TOTAL AWT 7.9                                                                                                                                                                                                                                                                                                             | 12.2                                                                                                  | 6.3                                                       | 2.2                                                                     | 8.0                                                                    | 10.1                                                                                                                  | -4.1                                                            | -18.3                                   | -40.8                                                           | -100.0-                                                      | -100.0                                  |
| SOURCE : 28<br>CFS - processing                                                                                                                                                                                                                                                                                           |                                                                                                       | nal) -                                                    | - silo                                                                  | vent 2                                                                 |                                                                                                                       |                                                                 |                                         |                                                                 |                                                              |                                         |
|                                                                                                                                                                                                                                                                                                                           |                                                                                                       |                                                           |                                                                         | FR                                                                     | EQUENC                                                                                                                | CY Hz_                                                          |                                         |                                                                 |                                                              |                                         |
|                                                                                                                                                                                                                                                                                                                           | 31.5                                                                                                  | 63                                                        | 125                                                                     | 250                                                                    | 500                                                                                                                   | 1k                                                              | 2k                                      | 4k                                                              | 8k                                                           | 16k                                     |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                                                                                                                | 84.0                                                                                                  | 82.0                                                      | 86.0                                                                    | 89.0                                                                   | 88.0                                                                                                                  | 81.0                                                            | 74.0                                    | 69.0<br>.0                                                      | 63.0                                                         | . (                                     |
| DISTANCE                                                                                                                                                                                                                                                                                                                  | 76.2                                                                                                  | 76.2                                                      | 76.2                                                                    | 76.2                                                                   | 76.2                                                                                                                  | 76.2                                                            | 76.2                                    | 76.2                                                            | 76.2                                                         | 76.2                                    |
| BARRIER                                                                                                                                                                                                                                                                                                                   | .0                                                                                                    | .0                                                        | .0                                                                      | .0                                                                     | .0                                                                                                                    | .0                                                              | .0                                      | .0                                                              | .0                                                           | . (                                     |
| AIR ABSORPTION                                                                                                                                                                                                                                                                                                            | . 0                                                                                                   | 2                                                         | .6<br>.0                                                                | 2 1                                                                    |                                                                                                                       | 10.9                                                            |                                         |                                                                 |                                                              | 300.0                                   |
| TEMP & WIND<br>GROUND                                                                                                                                                                                                                                                                                                     | .0<br>-4.4                                                                                            | . U<br>6                                                  | 7.0                                                                     | 2.8                                                                    |                                                                                                                       | .0<br>-1.9                                                      | .0<br>-2.5                              | -3.0                                                            | .0<br>-2.9                                                   | -2.3                                    |
| FOTAL AWT 7.9                                                                                                                                                                                                                                                                                                             | 12.2                                                                                                  | 6.3                                                       | 2.2                                                                     | 7.9                                                                    | 10.0                                                                                                                  | -4.1                                                            | -18.3                                   | -40.9-                                                          | -100.0-                                                      | -100.0                                  |
|                                                                                                                                                                                                                                                                                                                           |                                                                                                       |                                                           |                                                                         |                                                                        |                                                                                                                       |                                                                 |                                         |                                                                 |                                                              |                                         |
| FOTAL AWT 28.0<br>SINGLE POINT CALC<br>ENM CALC MODULE                                                                                                                                                                                                                                                                    |                                                                                                       |                                                           | 23.6                                                                    | 23.4                                                                   | 27.3                                                                                                                  | 24.5                                                            | 12.6                                    | -9.7                                                            | -66.5                                                        | -88.0                                   |
|                                                                                                                                                                                                                                                                                                                           |                                                                                                       |                                                           |                                                                         |                                                                        |                                                                                                                       |                                                                 |                                         |                                                                 |                                                              |                                         |
| OUT1 file and RI<br>TEMP (deg C)<br>25.0                                                                                                                                                                                                                                                                                  | HUN                                                                                                   |                                                           | (%)                                                                     |                                                                        |                                                                                                                       |                                                                 |                                         |                                                                 |                                                              |                                         |
| TEMP (deg C)<br>25.0                                                                                                                                                                                                                                                                                                      | HUN                                                                                                   | MIDITY<br>50.0                                            |                                                                         |                                                                        |                                                                                                                       |                                                                 |                                         |                                                                 |                                                              |                                         |
| TEMP (deg C)<br>25.0<br>WIND SPEED (m/sec                                                                                                                                                                                                                                                                                 | HUN                                                                                                   | MIDITY<br>50.0                                            |                                                                         |                                                                        |                                                                                                                       |                                                                 |                                         |                                                                 |                                                              |                                         |
| TEMP (deg C)<br>25.0<br>WIND SPEED (m/sec<br>.0<br>TEMP GRAD (deg C,                                                                                                                                                                                                                                                      | HUN<br>C) WIN<br>/100m)                                                                               | MIDITY<br>50.0<br>ND DIR<br>.0                            | (deg)                                                                   | 53.20                                                                  | 0                                                                                                                     |                                                                 |                                         |                                                                 |                                                              |                                         |
| TEMP (deg C) 25.0  WIND SPEED (m/sec .0  TEMP GRAD (deg C, .0  X= 510.000 Y:                                                                                                                                                                                                                                              | HUN<br>c) WIN<br>/100m)<br>= 3539                                                                     | MIDITY 50.0 ND DIR .0                                     | (deg) Z= - backh                                                        | noe                                                                    |                                                                                                                       |                                                                 |                                         |                                                                 |                                                              |                                         |
| TEMP (deg C) 25.0  WIND SPEED (m/sec .0  TEMP GRAD (deg C, .0  X= 510.000 Y:                                                                                                                                                                                                                                              | HUN c) WIN /100m) = 3539 (exter                                                                       | MIDITY 50.0 ND DIR .0                                     | (deg) Z= - backh                                                        | noe<br>FR                                                              | EQUENC                                                                                                                |                                                                 |                                         |                                                                 |                                                              |                                         |
| TEMP (deg C) 25.0  WIND SPEED (m/sec .0  TEMP GRAD (deg C, .0  X= 510.000 Y:                                                                                                                                                                                                                                              | HUN c) WIN /100m) = 3539 (exter                                                                       | MIDITY 50.0 ND DIR .0                                     | (deg) Z= - backh                                                        | noe                                                                    | EQUENC                                                                                                                |                                                                 |                                         |                                                                 | 8k                                                           | 16k                                     |
| TEMP (deg C) 25.0  NIND SPEED (m/sec. 0  TEMP GRAD (deg C, 0  K= 510.000 Y:  SOURCE: 13  CFS - processing                                                                                                                                                                                                                 | HUN /100m) = 3539 (exter                                                                              | MIDITY 50.0 ND DIR .0 .0 .0 .0 .0 .0 .00                  | Z= - backl                                                              | noe<br>FR<br>250                                                       | EQUENC<br>500                                                                                                         | 1k                                                              | 2k                                      | 4k                                                              | 95.0                                                         |                                         |
| TEMP (deg C) 25.0  WIND SPEED (m/sec0  TEMP GRAD (deg C, .0  K= 510.000 Y:  SOURCE : 13  DESCRIPTION OF THE PROCESSING  POWER LEVEL DIRECTIVITY  DISTANCE                                                                                                                                                                 | HUN (100m) = 3539 (exter 31.5 95.0 .0 76.9                                                            | AIDITY 50.0 ND DIR .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | Z= - backh 125 95.0 .0 76.9                                             | noe FR 250 95.0 .0 76.9                                                | 500<br>95.0<br>.0                                                                                                     | 1k<br>95.0<br>.0                                                | 2k<br>95.0<br>.0                        | 4k<br>95.0<br>.0                                                | 95.0<br>.0<br>76.9                                           | 76.                                     |
| CEMP (deg C) 25.0  NIND SPEED (m/sec. 0  CEMP GRAD (deg C, 0  C= 510.000 Y:  COURCE: 13  CFS - processing  COWER LEVEL DIRECTIVITY                                                                                                                                                                                        | HUN (100m) = 3539 (exter 31.5 95.0 .0 76.9                                                            | AIDITY 50.0 ND DIR .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | Z= - backh 125 95.0 .0 76.9                                             | noe FR 250 95.0 .0 76.9                                                | 500<br>95.0<br>.0                                                                                                     | 1k<br>95.0<br>.0                                                | 2k<br>95.0<br>.0                        | 4k<br>95.0<br>.0                                                | 95.0<br>.0<br>76.9                                           | 76.                                     |
| CEMP (deg C) 25.0  VIND SPEED (m/sec. 0  CEMP GRAD (deg C, 0  C= 510.000 Y: COURCE: 13  CFS - processing  COWER LEVEL DIRECTIVITY                                                                                                                                                                                         | HUN (100m) = 3539 (exter 31.5 95.0 .0 76.9                                                            | AIDITY 50.0 ND DIR .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | Z= - backh 125 95.0 .0 76.9                                             | noe FR 250 95.0 .0 76.9                                                | 500<br>95.0<br>.0                                                                                                     | 1k<br>95.0<br>.0                                                | 2k<br>95.0<br>.0                        | 4k<br>95.0<br>.0                                                | 95.0<br>.0<br>76.9                                           | 76.                                     |
| CEMP (deg C) 25.0  NIND SPEED (m/sec. 0  CEMP GRAD (deg C, 0  C= 510.000 Y:  COURCE: 13  CFS - processing  COWER LEVEL DIRECTIVITY                                                                                                                                                                                        | HUN (100m) = 3539 (exter 31.5 95.0 .0 76.9                                                            | AIDITY 50.0 ND DIR .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | Z= - backh 125 95.0 .0 76.9                                             | noe FR 250 95.0 .0 76.9                                                | 500<br>95.0<br>.0                                                                                                     | 1k<br>95.0<br>.0                                                | 2k<br>95.0<br>.0                        | 4k<br>95.0<br>.0                                                | 95.0<br>.0<br>76.9                                           | 76.                                     |
| TEMP (deg C) 25.0  NIND SPEED (m/sec. 0  TEMP GRAD (deg C, 0  K= 510.000 Y:  SOURCE: 13  JFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                                                    | HUN /100m) = 3539 (exter 31.5 95.0 .0 76.9 12.88 .0 .0 -3.5                                           | MIDITY 50.0 ND DIR .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | Z= - backl  125 95.0 .0 76.9 18.6 .7 .0 2.6                             | 250<br>95.0<br>.0<br>76.9<br>21.6<br>2.3<br>.0                         | 500<br>95.0<br>.0<br>76.9<br>24.6<br>6.1<br>.0                                                                        | 1k  95.0 .0  76.9 25.0 11.9 .0 -2.5                             | 2k  95.0 .0  76.9 25.0 20.3 .0 -2.5     | 4k  95.0 .0  76.9 25.0 39.6 .0 -3.0                             | 95.0<br>.0<br>76.9<br>25.0<br>106.5<br>.0<br>-3.3            | 76.9<br>25.0<br>300.0                   |
| TEMP (deg C) 25.0  WIND SPEED (m/sec .0  TEMP GRAD (deg C, .0  K= 510.000 Y:  SOURCE: 13  CFS - processing  POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  FOTAL AWT -8.1  SOURCE: 14                                                                                                        | HUN (100m) = 3539 (exten 31.5 95.0 0.0 76.9 12.8 0.0 -3.5 8.8                                         | 63<br>95.0<br>76.9<br>15.6<br>2.1                         | Z= - backl  125 95.0 .0 76.9 18.6 .7 .0 2.6                             | 250<br>95.0<br>.0<br>76.9<br>21.6<br>2.3<br>.0                         | 500<br>95.0<br>.0<br>76.9<br>24.6<br>6.1<br>.0                                                                        | 1k  95.0 .0  76.9 25.0 11.9 .0 -2.5                             | 2k  95.0 .0  76.9 25.0 20.3 .0 -2.5     | 4k  95.0 .0  76.9 25.0 39.6 .0 -3.0                             | 95.0<br>.0<br>76.9<br>25.0<br>106.5<br>.0<br>-3.3            | 76.9<br>25.0<br>300.0<br>-4.1           |
| TEMP (deg C) 25.0  WIND SPEED (m/sec0  TEMP GRAD (deg C, .0  X= 510.000 Y:  SOURCE: 13  CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER ABSORPTION TEMP & WIND GROUND  TOTAL AWT -8.1  SOURCE: 14                                                                                                             | HUN (100m) = 3539 (exten 31.5 95.0 0.0 76.9 12.8 0.0 -3.5 8.8                                         | MIDITY 50.0 ND DIR .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | Z= - backh  125 95.0 .0 76.9 18.6 .7 .0 2.6 -3.8                        | 250<br>95.0<br>.0<br>76.9<br>21.6<br>2.3<br>.0                         | 500<br>95.0<br>.0<br>76.9<br>24.6<br>6.1<br>.0<br>5                                                                   | 1k 95.0 .0 76.9 25.0 11.9 .0 -2.5                               | 2k 95.0 .0 76.9 25.0 20.3 .0 -2.5       | 4k 95.0 .0 76.9 25.0 39.6 .0 -3.0                               | 95.0<br>.0<br>76.9<br>25.0<br>106.5<br>.0<br>-3.3            | 76.9<br>25.0<br>300.0                   |
| TEMP (deg C) 25.0  WIND SPEED (m/sec0  TEMP GRAD (deg C, .0  X= 510.000 Y:  SOURCE: 13  CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER ABSORPTION TEMP & WIND GROUND  TOTAL AWT -8.1  SOURCE: 14                                                                                                             | HUN  (c) WIP  (100m)  = 3539  (exter  31.5  95.0  .0  .0  .0  -3.5  8.8  (exter                       | MIDITY 50.0 ND DIR .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | Z= - backl  125 95.0 .0 76.9 18.6 .7 .0 2.6 -3.8                        | 95.0<br>95.0<br>0<br>76.9<br>21.6<br>2.3<br>.0<br>-3.7                 | 500<br>95.0<br>.0<br>76.9<br>24.6<br>6.1<br>.0<br>5                                                                   | 1k 95.0 .0 76.9 25.0 11.9 .0 -2.5                               | 2k 95.0 .0 76.9 25.0 20.3 .0 -2.5       | 4k 95.0 .0 76.9 25.0 39.6 .0 -3.0                               | 95.0<br>.0<br>76.9<br>25.0<br>106.5<br>.0<br>-3.3            | 76.9<br>25.0<br>300.0<br>-4.3           |
| TEMP (deg C) 25.0  WIND SPEED (m/sec0  TEMP GRAD (deg C, .0  X= 510.000 Y:  SOURCE: 13  CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER ALIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -8.1  SOURCE: 14  CFS - processing                                                                                      | HUN  c) WIR  /100m)  = 3539  (exter  31.5  95.0  .0  .0  .3.5  8.8  (exter  31.5  94.0                | MIDITY 50.0 ND DIR .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | Z= - backl  125 95.0 .0 76.9 18.6 .7 .0 2.6 -3.8 - FEL  125 100.0       | 76.9<br>21.6<br>2.3<br>0 -3.7<br>-2.1                                  | EQUENC<br>500<br>95.0<br>.0<br>76.9<br>24.6<br>6.1<br>.0<br>.5<br>-12.2<br>EQUENC<br>500<br>98.0                      | 1k 95.0 .0 76.9 25.0 11.9 .0 -2.5 -16.3                         | 2k 95.0 .0 76.9 25.0 20.3 .0 -2.5 -24.7 | 4k<br>95.0<br>.0<br>76.9<br>25.0<br>39.6<br>.0<br>-3.0<br>-43.6 | 95.0<br>.0<br>76.9<br>25.0<br>106.5<br>.0<br>-3.3<br>-100.0- | 76.9<br>25.0<br>300.0<br>-4.3           |
| TEMP (deg C) 25.0  WIND SPEED (m/sec0  TEMP GRAD (deg C, .0  X= 510.000 Y:  SOURCE: 13  CFS - processing  POWER LEVEL DIRECTIVITY  DIRECTIVITY  DIRECTIVITY  TOTAL AWT -8.1  SOURCE: 14  CFS - processing                                                                                                                 | HUN  c) WIR  /100m)  = 3539  (exter  31.5  95.0  .0  .0  .3.5  8.8  (exter  31.5  94.0  .0  .0        | MIDITY 50.0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)       | Z= - backl  125 95.0 .0 76.9 18.6 .7 .0 2.6 -3.8 - FEL  125 100.0 .0    | 76.9<br>25.0<br>76.9<br>21.6<br>2.3<br>.0<br>-3.7<br>-2.1<br>FR<br>250 | EQUENC<br>500<br>95.0<br>.0<br>76.9<br>24.6<br>6.1<br>.0<br>.5<br>-12.2<br>EQUENC<br>500<br>98.0<br>.0                | 1k 95.0 .0 76.9 25.0 11.9 .0 -2.5 -16.3  CY Hz 1k 101.0 .0      | 2k 95.0 .0 76.9 25.0 20.3 .0 -2.5 -24.7 | 4k<br>95.0<br>.0<br>76.9<br>25.0<br>39.6<br>.0<br>-3.0<br>-43.6 | 95.0<br>.0<br>76.9<br>25.0<br>106.5<br>.0<br>-3.3<br>-100.0- | 76.9<br>25.0<br>300.0<br>-4.3<br>-100.0 |
| TEMP (deg C) 25.0  WIND SPEED (m/sec0  TEMP GRAD (deg C, .0  X= 510.000 Y:  SOURCE: 13  CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -8.1  SOURCE: 14  CFS - processing                                                                                       | HUN  (c) WIP  (100m)  = 3539  (exter  31.5  95.0  .0  76.9  12.88  (exter  31.5  94.0  .0  76.9  13.4 | MIDITY 50.0 ND DIR .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0       | Z= - backl  125 95.0 76.9 18.6 -7.0 2.6 -3.8 - FEL  125 100.0 76.9 19.4 | FR 250 95.0 .0 76.9 21.6 2.3 .0 -3.7 -2.1 FR 250 106.0 .0 76.9 22.4    | EQUENC<br>500<br>95.0<br>.0<br>76.9<br>24.6<br>6.1<br>.0<br>5<br>-12.2<br>EQUENC<br>500<br>98.0<br>.0<br>76.9<br>25.0 | 1k 95.0 .0 76.9 25.0 11.9 .0 -2.5 -16.3  CY Hz 1k 101.0 .0 76.9 | 2k 95.0 .0 76.9 25.0 20.3 .0 -2.5 -24.7 | 4k 95.0 .0 76.9 25.0 39.6 .0 -3.0 -43.6                         | 95.0<br>.0<br>76.9<br>25.0<br>106.5<br>.0<br>-3.3<br>-100.0- | 76.9<br>25.0<br>300.0<br>-4.5<br>-100.0 |
| TEMP (deg C) 25.0  WIND SPEED (m/sec0  TEMP GRAD (deg C, .0  X= 510.000 Y:  SOURCE: 13 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -8.1  SOURCE: 14 CFS - processing                                                                                         | HUN  (c) WIP  (100m)  = 3539  (exter  31.5  95.0  .0  76.9  12.88  (exter  31.5  94.0  .0  76.9  13.4 | MIDITY 50.0 ND DIR .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0       | Z= - backl  125 95.0 76.9 18.6 -7.0 2.6 -3.8 - FEL  125 100.0 76.9 19.4 | FR 250 95.0 .0 76.9 21.6 2.3 .0 -3.7 -2.1 FR 250 106.0 .0 76.9 22.4    | EQUENC<br>500<br>95.0<br>.0<br>76.9<br>24.6<br>6.1<br>.0<br>5<br>-12.2<br>EQUENC<br>500<br>98.0<br>.0<br>76.9<br>25.0 | 1k 95.0 .0 76.9 25.0 11.9 .0 -2.5 -16.3  CY Hz 1k 101.0 .0 76.9 | 2k 95.0 .0 76.9 25.0 20.3 .0 -2.5 -24.7 | 4k 95.0 .0 76.9 25.0 39.6 .0 -3.0 -43.6                         | 95.0<br>.0<br>76.9<br>25.0<br>106.5<br>.0<br>-3.3<br>-100.0- | 76.9<br>25.0<br>300.0<br>-4.5<br>-100.0 |
| TEMP (deg C) 25.0  WIND SPEED (m/sec0  TEMP GRAD (deg C, .0  X= 510.000 Y:  SOURCE: 13  CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -8.1  SOURCE: 14  CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER | HUN  (c) WIP  (100m)  = 3539  (exter  31.5  95.0  .0  76.9  12.88  (exter  31.5  94.0  .0  76.9  13.4 | MIDITY 50.0 ND DIR .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0       | Z= - backl  125 95.0 76.9 18.6 -7.0 2.6 -3.8 - FEL  125 100.0 76.9 19.4 | FR 250 95.0 .0 76.9 21.6 2.3 .0 -3.7 -2.1 FR 250 106.0 .0 76.9 22.4    | EQUENC<br>500<br>95.0<br>.0<br>76.9<br>24.6<br>6.1<br>.0<br>5<br>-12.2<br>EQUENC<br>500<br>98.0<br>.0<br>76.9<br>25.0 | 1k 95.0 .0 76.9 25.0 11.9 .0 -2.5 -16.3  CY Hz 1k 101.0 .0 76.9 | 2k 95.0 .0 76.9 25.0 20.3 .0 -2.5 -24.7 | 4k 95.0 .0 76.9 25.0 39.6 .0 -3.0 -43.6                         | 95.0<br>.0<br>76.9<br>25.0<br>106.5<br>.0<br>-3.3<br>-100.0- | 76.9<br>25.0<br>300.0<br>-4.1<br>-100.0 |
| TEMP (deg C) 25.0  WIND SPEED (m/sec0  TEMP GRAD (deg C, .0  X= 510.000 Y:  SOURCE: 13  CFS - processing  POWER LEVEL DIRECTIVITY  DIRECTIVITY  DIRECTIVITY  TOTAL AWT -8.1  SOURCE: 14  CFS - processing                                                                                                                 | HUN  (c) WIP  (100m)  = 3539  (exter  31.5  95.0  .0  76.9  12.88  (exter  31.5  94.0  .0  76.9  13.4 | MIDITY 50.0 ND DIR .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0       | Z= - backl  125 95.0 76.9 18.6 -7.0 2.6 -3.8 - FEL  125 100.0 76.9 19.4 | FR 250 95.0 .0 76.9 21.6 2.3 .0 -3.7 -2.1 FR 250 106.0 .0 76.9 22.4    | EQUENC<br>500<br>95.0<br>.0<br>76.9<br>24.6<br>6.1<br>.0<br>5<br>-12.2<br>EQUENC<br>500<br>98.0<br>.0<br>76.9<br>25.0 | 1k 95.0 .0 76.9 25.0 11.9 .0 -2.5 -16.3  CY Hz 1k 101.0 .0 76.9 | 2k 95.0 .0 76.9 25.0 20.3 .0 -2.5 -24.7 | 4k 95.0 .0 76.9 25.0 39.6 .0 -3.0 -43.6                         | 95.0<br>.0<br>76.9<br>25.0<br>106.5<br>.0<br>-3.3<br>-100.0- | 76.9<br>25.0<br>300.0<br>-4.5<br>-100.0 |

|                                                                                                                                                                        |                                                                                                                                                          |                                                                                                        |                                                                               | FR                                                                                  | EQUENC                                                                                 | Y Hz_                                                                           |                                                                            |                                                                           |                                                              |                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                        | 31.5                                                                                                                                                     | 63                                                                                                     | 125                                                                           | 250                                                                                 | 500                                                                                    | 1k                                                                              | 2k                                                                         | 4k                                                                        | 8k                                                           | 16k                                                                                                                            |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                             | 84.0                                                                                                                                                     |                                                                                                        |                                                                               |                                                                                     |                                                                                        |                                                                                 |                                                                            |                                                                           | 76.0<br>.0                                                   |                                                                                                                                |
| DISTANCE                                                                                                                                                               | 77.0                                                                                                                                                     | 77.0                                                                                                   | 77.0                                                                          | 77.0                                                                                | 77.0                                                                                   | 77.0                                                                            | 77.0                                                                       | 77.0                                                                      | 77.0                                                         | 77.0                                                                                                                           |
| AIR ABSORPTION                                                                                                                                                         | .0                                                                                                                                                       | .2                                                                                                     | .7                                                                            | 2.3                                                                                 | 6.2                                                                                    | 12.0                                                                            | 20.5                                                                       | 40.0                                                                      | 107.7                                                        | 300.0                                                                                                                          |
| BARRIER<br>AIR ABSORPTION<br>FEMP & WIND<br>GROUND                                                                                                                     | .0<br>-3.5                                                                                                                                               | .0<br>2.2                                                                                              | .0<br>2.5                                                                     | .0<br>-3.7                                                                          | .0<br>5                                                                                | .0<br>-2.3                                                                      | .0<br>-2.4                                                                 | .0<br>-2.7                                                                | .0<br>-3.6                                                   | .(<br>-1.1                                                                                                                     |
| TOTAL AWT -9.3                                                                                                                                                         | -2.4                                                                                                                                                     | -5.2                                                                                                   | -9.0                                                                          | -1.5                                                                                | -19.5                                                                                  | -20.7                                                                           | -32.1                                                                      | -57.3-                                                                    | -100.0-                                                      | -100.0                                                                                                                         |
| SOURCE : 16<br>CFS - curing (int                                                                                                                                       | enral)                                                                                                                                                   | - con                                                                                                  | nveyor                                                                        | belt /                                                                              | motor                                                                                  | 1                                                                               |                                                                            |                                                                           |                                                              |                                                                                                                                |
|                                                                                                                                                                        |                                                                                                                                                          |                                                                                                        |                                                                               | FR                                                                                  | EQUENC                                                                                 | Y Hz_                                                                           |                                                                            |                                                                           |                                                              |                                                                                                                                |
|                                                                                                                                                                        | 31.5                                                                                                                                                     | 63                                                                                                     | 125                                                                           | 250                                                                                 | 500                                                                                    | 1k                                                                              | 2k                                                                         | 4k                                                                        | 8k                                                           | 16k                                                                                                                            |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                             | 77.0                                                                                                                                                     | 93.0                                                                                                   | 80.0                                                                          | 74.0                                                                                | 72.0                                                                                   | 68.0                                                                            | 65.0                                                                       | 62.0                                                                      | 58.0                                                         | . 0                                                                                                                            |
| DISTANCE<br>BARRIER                                                                                                                                                    | 77.1<br>12.7                                                                                                                                             | 77.1<br>15.4                                                                                           | 77.1<br>18 4                                                                  | 77.1<br>21.4                                                                        | 77.1<br>24.4                                                                           | 77.1<br>25.0                                                                    | 77.1<br>25.0                                                               | 77.1<br>25.0                                                              | 77.1<br>25.0                                                 | 77.1<br>25.0                                                                                                                   |
| AIR ABSORPTION<br>TEMP & WIND                                                                                                                                          | .0                                                                                                                                                       | .2                                                                                                     | .7                                                                            | 2.3                                                                                 | 6.2                                                                                    | 12.1                                                                            | 20.6                                                                       | 40.2                                                                      | 108.2                                                        | 300.0                                                                                                                          |
| FEMP & WIND<br>GROUND                                                                                                                                                  | .0<br>-3.7                                                                                                                                               | .0<br>1.8                                                                                              | .0<br>3.8                                                                     | .0<br>-3.5                                                                          | .0<br>5                                                                                | .0<br>-3.0                                                                      | .0<br>-2.0                                                                 | .0<br>-2.2                                                                | .0<br>-3.6                                                   | -2.4                                                                                                                           |
| TOTAL AWT -25.5                                                                                                                                                        | -9.1                                                                                                                                                     | -1.5                                                                                                   | -20.0                                                                         | -23.3                                                                               | -35.2                                                                                  | -43.1                                                                           | -55.6                                                                      | -78.0-                                                                    | -100.0-                                                      | -100.0                                                                                                                         |
| SOURCE : 17<br>CFS - curing (int                                                                                                                                       | enral)                                                                                                                                                   | - con                                                                                                  | nveyor                                                                        | belt /                                                                              | motor                                                                                  | 2                                                                               |                                                                            |                                                                           |                                                              |                                                                                                                                |
|                                                                                                                                                                        |                                                                                                                                                          |                                                                                                        |                                                                               | FR                                                                                  | EQUENC                                                                                 | Y Hz_                                                                           |                                                                            |                                                                           |                                                              |                                                                                                                                |
|                                                                                                                                                                        |                                                                                                                                                          |                                                                                                        | 125                                                                           |                                                                                     |                                                                                        |                                                                                 |                                                                            |                                                                           |                                                              |                                                                                                                                |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                             |                                                                                                                                                          |                                                                                                        |                                                                               |                                                                                     |                                                                                        |                                                                                 |                                                                            |                                                                           |                                                              |                                                                                                                                |
| BARRIER                                                                                                                                                                | 77.1<br>12.6                                                                                                                                             | 15.2                                                                                                   | 18.2                                                                          | 21.2                                                                                | 24.2                                                                                   | 25.0                                                                            | 25.0                                                                       | 25.0                                                                      | 25.0                                                         | 25.0                                                                                                                           |
| AIR ABSORPTION                                                                                                                                                         | . 0                                                                                                                                                      | .2                                                                                                     | . 7                                                                           | 2.3                                                                                 | 6.2                                                                                    | 12.1                                                                            | 20.7                                                                       | 40.4                                                                      | 108.7                                                        | 300.0                                                                                                                          |
| AIR ABSORPTION<br>FEMP & WIND<br>GROUND                                                                                                                                | -3.7                                                                                                                                                     | 1.9                                                                                                    | 3.7                                                                           | -3.5                                                                                | 4                                                                                      | -3.0                                                                            | -1.9                                                                       | -2.5                                                                      | -2.0                                                         | -2.4                                                                                                                           |
| TOTAL AWT -25.3                                                                                                                                                        | -9.1                                                                                                                                                     | -1.3                                                                                                   | -19.7                                                                         | -23.1                                                                               | -35.1                                                                                  | -43.2                                                                           | -55.9                                                                      | -78.0-                                                                    | -100.0-                                                      | -100.0                                                                                                                         |
| SOURCE : 18                                                                                                                                                            | enral)                                                                                                                                                   | - con                                                                                                  | veyor                                                                         | belt /                                                                              | motor                                                                                  | 3                                                                               |                                                                            |                                                                           |                                                              |                                                                                                                                |
| CFS - curing (int                                                                                                                                                      |                                                                                                                                                          |                                                                                                        |                                                                               |                                                                                     | HOLLENIC                                                                               |                                                                                 |                                                                            |                                                                           |                                                              |                                                                                                                                |
| urs - curing (int                                                                                                                                                      |                                                                                                                                                          |                                                                                                        |                                                                               | FR                                                                                  | FOOFING                                                                                | Y HZ                                                                            |                                                                            |                                                                           |                                                              |                                                                                                                                |
| ers - curing (int                                                                                                                                                      | 31.5                                                                                                                                                     |                                                                                                        | 125                                                                           |                                                                                     |                                                                                        |                                                                                 |                                                                            |                                                                           | 8k                                                           | 16k                                                                                                                            |
| POWER LEVEL                                                                                                                                                            | 77 N                                                                                                                                                     | 63<br>93 N                                                                                             | 125                                                                           | 250<br>74 0                                                                         | 500<br>72 0                                                                            | 1k                                                                              | 2k                                                                         | 4k                                                                        | 58.0                                                         | (                                                                                                                              |
| POWER LEVEL<br>DIRECTIVITY<br>DISTANCE                                                                                                                                 | 77.0<br>.0                                                                                                                                               | 63<br>93.0<br>.0                                                                                       | 125<br>80.0<br>.0                                                             | 250<br>74.0<br>.0                                                                   | 500<br>72.0<br>.0<br>77.1                                                              | 1k<br>68.0<br>.0                                                                | 2k<br>65.0<br>.0                                                           | 4k<br>62.0<br>.0                                                          | 58.0<br>.0                                                   | . (<br>. (<br>77. 1                                                                                                            |
| POWER LEVEL<br>DIRECTIVITY<br>DISTANCE<br>BARRIER                                                                                                                      | 77.0<br>.0<br>77.1<br>11.0                                                                                                                               | 63<br>93.0<br>.0<br>77.1<br>12.7                                                                       | 125<br>80.0<br>.0<br>77.1<br>15.4                                             | 250<br>74.0<br>.0<br>77.1<br>18.4                                                   | 500<br>72.0<br>.0<br>77.1<br>21.4                                                      | 1k<br>68.0<br>.0<br>77.1<br>24.4                                                | 2k<br>65.0<br>.0<br>77.1<br>25.0                                           | 4k 62.0 .0 77.1 25.0                                                      | 58.0<br>.0<br>77.1<br>25.0                                   | .(<br>.(<br>77.1<br>25.(                                                                                                       |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                                                                                    | 77.0<br>.0<br>77.1<br>11.0<br>.0                                                                                                                         | 63<br>93.0<br>.0<br>77.1<br>12.7<br>.2                                                                 | 125<br>80.0<br>.0<br>77.1<br>15.4                                             | 250<br>74.0<br>.0<br>77.1<br>18.4<br>2.3<br>.0                                      | 500<br>72.0<br>.0<br>77.1<br>21.4<br>6.2<br>.0                                         | 1k 68.0 .0 77.1 24.4 12.1 .0                                                    | 2k 65.0 .0 77.1 25.0 20.7 .0                                               | 4k 62.0 .0 77.1 25.0 40.4 .0                                              | 58.0<br>.0<br>77.1<br>25.0<br>108.7                          | 77.1<br>25.0<br>300.0                                                                                                          |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                                                                                    | 77.0<br>.0<br>77.1<br>11.0<br>.0<br>.0                                                                                                                   | 63<br>93.0<br>.0<br>77.1<br>12.7<br>.2<br>.0<br>2.6                                                    | 125<br>80.0<br>.0<br>77.1<br>15.4<br>.7<br>.0                                 | 250<br>74.0<br>.0<br>77.1<br>18.4<br>2.3<br>.0<br>-3.4                              | 500<br>72.0<br>.0<br>77.1<br>21.4<br>6.2<br>.0<br>-1.4                                 | 1k 68.0 .0 77.1 24.4 12.1 .0 -1.4                                               | 2k 65.0 .0 77.1 25.0 20.7 .0 -2.6                                          | 4k 62.0 .0 77.1 25.0 40.4 .0 -3.3                                         | 58.0<br>.0<br>77.1<br>25.0<br>108.7<br>.0<br>-2.8            | .0<br>.0<br>77.1<br>25.0<br>300.0<br>.0                                                                                        |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER ABSORPTION TEMP & WIND GROUND TOTAL AWT -22.9 SOURCE: 19                                                                      | 77.0<br>.0<br>77.1<br>11.0<br>.0<br>.0<br>-3.3                                                                                                           | 63<br>93.0<br>.0<br>77.1<br>12.7<br>.2<br>.0<br>2.6                                                    | 125<br>80.0<br>.0<br>77.1<br>15.4<br>.7<br>.0<br>1.4                          | 250 74.0 .0 77.1 18.4 2.3 .0 -3.4                                                   | 500 72.0 .0 77.1 21.4 6.2 .0 -1.4                                                      | 1k 68.0 .0 77.1 24.4 12.1 .0 -1.4                                               | 2k 65.0 .0 77.1 25.0 20.7 .0 -2.6                                          | 4k 62.0 .0 77.1 25.0 40.4 .0 -3.3                                         | 58.0<br>.0<br>77.1<br>25.0<br>108.7<br>.0<br>-2.8            | .0<br>.0<br>77.1<br>25.0<br>300.0<br>.0                                                                                        |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT -22.9                                                                             | 77.0<br>.0<br>77.1<br>11.0<br>.0<br>.0<br>-3.3                                                                                                           | 63<br>93.0<br>.0<br>77.1<br>12.7<br>.2<br>.0<br>2.6                                                    | 125<br>80.0<br>.0<br>77.1<br>15.4<br>.7<br>.0<br>1.4                          | 250 74.0 .0 77.1 18.4 2.3 .0 -3.4 -20.4                                             | 72.0<br>.0<br>77.1<br>21.4<br>6.2<br>.0<br>-1.4                                        | 1k 68.0 .0 77.1 24.4 12.1 .0 -1.4                                               | 2k 65.0 .0 77.1 25.0 20.7 .0 -2.6                                          | 4k 62.0 .0 77.1 25.0 40.4 .0 -3.3                                         | 58.0<br>.0<br>77.1<br>25.0<br>108.7<br>.0<br>-2.8            | 77.1<br>25.0<br>300.0<br>-3.0                                                                                                  |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER ABSORPTION TEMP & WIND GROUND TOTAL AWT -22.9 SOURCE: 19                                                                      | 77.0<br>.0<br>77.1<br>11.0<br>.0<br>.0<br>-3.3<br>-7.8                                                                                                   | 63 93.0 .0 77.1 12.7 .2 .0 2.6 .3                                                                      | 125 80.0 .0 77.1 15.4 .7 .0 1.4 -14.6                                         | 250 74.0 .0 77.1 18.4 2.3 .0 -3.4 -20.4 belt /                                      | 72.0<br>.0<br>77.1<br>21.4<br>6.2<br>.0<br>-1.4<br>-31.4<br>motor                      | 1k 68.0 .0 77.1 24.4 12.1 .0 -1.4 -44.2                                         | 2k 65.0 .0 77.1 25.0 20.7 .0 -2.6                                          | 4k 62.0 .0 77.1 25.0 40.4 .0 -3.3                                         | 58.0<br>.0<br>77.1<br>25.0<br>108.7<br>.0<br>-2.8            | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                             |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION FEMP & WIND GROUND TOTAL AWT -22.9 SOURCE : 19 CFS - curing (int                                               | 77.0<br>.0<br>77.1<br>11.0<br>.0<br>.0<br>-3.3<br>-7.8<br>eenral)                                                                                        | 63<br>93.0<br>.0<br>77.1<br>12.7<br>.2<br>.0<br>2.6<br>.3<br>- con                                     | 125 80.0 .0 77.1 15.4 .7 .0 1.4 -14.6                                         | 250 74.0 .0 77.1 18.4 2.3 .0 -3.4 -20.4 belt /FR 250 74.0                           | 72.0<br>.0<br>77.1<br>21.4<br>6.2<br>.0<br>-1.4<br>-31.4<br>motor<br>500<br>72.0       | 1k 68.0 .0 77.1 24.4 12.1 .0 -1.4 -44.2 -44.2 1k 68.0                           | 2k 65.0 .0 77.1 25.0 20.7 .0 -2.6 -55.2                                    | 4k 62.0 .0 77.1 25.0 40.4 .0 -3.3 -77.1                                   | 58.0<br>.0<br>77.1<br>25.0<br>108.7<br>.0<br>-2.8<br>-100.0- | .(<br>.(<br>.(<br>.(<br>.25.(<br>.300.(<br><br>3.(<br><br>100.(<br>                                                            |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION FEMP & WIND GROUND  TOTAL AWT -22.9  SOURCE : 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE         | 77.0<br>.0<br>77.1<br>11.0<br>.0<br>.0<br>-3.3<br>-7.8<br>enral)<br>31.5<br>77.0<br>.0                                                                   | 63 93.0 .0 77.1 12.7 .0 2.6 .3 - con 63 93.0 .0 77.0                                                   | 125 80.0 .0 77.1 15.4 .7 .0 1.4 -14.6  aveyor  125 80.0 .0 77.0               | 250 74.0 .0 77.1 18.4 2.3 .0 -3.4 -20.4 belt / FR 250 74.0 .0 77.0                  | 72.0<br>.0<br>77.1<br>21.4<br>6.2<br>.0<br>-1.4<br>-31.4<br>motor<br>500<br>72.0<br>.0 | 1k 68.0 .0 77.1 24.4 12.1 .0 -1.4 -44.2  1k 68.0 .0 77.0                        | 2k 65.0 .0 77.1 25.0 20.7 .0 -2.6 -55.2  2k 65.0 .0 77.0                   | 4k 62.0 .0 77.1 25.0 40.4 .0 -3.3 -77.1 4k 62.0 .0 77.0                   | 58.0<br>.0<br>77.1<br>25.0<br>108.7<br>.0<br>-2.8<br>-100.0- | .(<br>.(<br>.(<br>.25.(<br>300.(<br>.(<br>3.(<br>100.(<br>.(<br>.(<br>.(<br>.(<br>.(<br>.(<br>.(<br>.(<br>.(<br>.(<br>.(<br>.( |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION FEMP & WIND GROUND FOTAL AWT -22.9 SOURCE : 19 JEFS - curing (int                                              | 77.0<br>.0<br>77.1<br>11.0<br>.0<br>.0<br>-3.3<br>-7.8<br>enral)<br>31.5<br>77.0<br>.0                                                                   | 63<br>93.0<br>.0<br>77.1<br>12.7<br>.2<br>.0<br>2.6<br>.3<br>- con<br>63<br>93.0<br>.0<br>77.0<br>12.0 | 125 80.0 .0 77.1 15.4 .7 .0 1.4 -14.6  aveyor  125 80.0 .0 77.0 13.8          | 250 74.0 .0 77.1 18.4 2.3 .0 -3.4 -20.4 belt / FR 250 74.0 .0 77.0 16.8             | 500 72.0 .0 77.1 21.4 6.2 .0 -1.4 -31.4 motor 500 72.0 .0 77.0 19.8                    | 1k 68.0 .0 77.1 24.4 12.1 .0 -1.4 -44.2 -44.2 1k 68.0 .0 77.0 22.8              | 2k 65.0 .0 77.1 25.0 20.7 .0 -2.6 -55.2  2k 65.0 .0 77.0 25.0              | 4k 62.0 .0 77.1 25.0 40.4 .0 -3.3 -77.1 4k 62.0 .0 77.0 25.0              | 58.0<br>.0<br>77.1<br>25.0<br>108.7<br>.0<br>-2.8<br>-100.0- | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                     |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -22.9  SOURCE : 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER | 77.0<br>.0<br>77.1<br>11.0<br>.0<br>.0<br>-3.3<br>-7.8<br>enral)<br>31.5<br>77.0<br>.0                                                                   | 63<br>93.0<br>.0<br>77.1<br>12.7<br>.2<br>.0<br>2.6<br>.3<br>- con<br>63<br>93.0<br>.0<br>77.0<br>12.0 | 125 80.0 .0 77.1 15.4 .7 .0 1.4 -14.6  aveyor  125 80.0 .0 77.0 13.8          | 250 74.0 .0 77.1 18.4 2.3 .0 -3.4 -20.4 belt / FR 250 74.0 .0 77.0 16.8             | 500 72.0 .0 77.1 21.4 6.2 .0 -1.4 -31.4 motor 500 72.0 .0 77.0 19.8                    | 1k 68.0 .0 77.1 24.4 12.1 .0 -1.4 -44.2 -44.2 1k 68.0 .0 77.0 22.8              | 2k 65.0 .0 77.1 25.0 20.7 .0 -2.6 -55.2  2k 65.0 .0 77.0 25.0              | 4k 62.0 .0 77.1 25.0 40.4 .0 -3.3 -77.1 4k 62.0 .0 77.0 25.0              | 58.0<br>.0<br>77.1<br>25.0<br>108.7<br>.0<br>-2.8<br>-100.0- | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                     |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION FEMP & WIND GROUND  TOTAL AWT -22.9  SOURCE : 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE         | 77.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.3.3<br>.7.8<br>.eenral)<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | 63 93.0 .0 77.1 12.7 .2 .0 2.6 .3 - con 63 93.0 .0 77.0 12.0 .2 .0 2.8                                 | 125 80.0 .0 77.1 15.4 .7 .0 1.4 -14.6  aveyor  125 80.0 .0 77.0 13.8 .7 .0 .9 | 250 74.0 .0 77.1 18.4 2.3 .0 -3.4 -20.4 belt / FR 250 74.0 .0 77.0 16.8 2.3 .0 -3.2 | 500 72.0 .0 77.1 21.4 6.2 .0 -1.4 -31.4 motor 500 72.0 .0 77.0 19.8 6.2 .0 -1.5        | 1k 68.0 .0 77.1 24.4 12.1 .0 -1.4 -44.2 -44.2 1k 68.0 .0 77.0 22.8 12.0 .0 -1.9 | 2k 65.0 .0 77.1 25.0 20.7 .0 -2.6 -55.2  2k 65.0 .0 77.0 25.0 20.6 .0 -1.8 | 4k 62.0 .0 77.1 25.0 40.4 .0 -3.3 -77.1 4k 62.0 .0 77.0 25.0 40.2 .0 -3.1 | 58.0<br>.0<br>77.1<br>25.0<br>108.7<br>.0<br>-2.8<br>-100.0- | 16k .(77.1 .25.(300.(100.(100.(100.(100.(100.(100.(100.(100.(100.(100.(100.(100.(                                              |

|                                                                |                                 |                         |                                | FI                            | REQUEN                           | CY Hz_                             |                                  |                                  |                                   |                                   |
|----------------------------------------------------------------|---------------------------------|-------------------------|--------------------------------|-------------------------------|----------------------------------|------------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|
|                                                                | 31.5                            | 63                      | 125                            | 250                           | 500                              | 1k                                 | 2k                               | 4k                               | 8k                                | 16k                               |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0<br>.0                      | 93.0                    | 80.0                           | 74.0                          | 72.0                             | 68.0                               | 65.0<br>.0                       | 62.0                             | 58.0                              | .0                                |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND             | 76.9<br>11.7<br>.0              | 76.9<br>13.3<br>.2      | 76.9<br>16.3<br>.7             | 76.9<br>19.3<br>2.3           | 76.9<br>22.3<br>6.1              | 76.9<br>25.0                       | 76.9<br>25.0<br>20.3             | 76.9<br>25.0<br>39.8             | 76.9<br>25.0<br>106.9             | 76.9<br>25.0<br>300.0             |
| TOTAL AWT -23.4                                                | -8.3                            | .0                      | -15.6                          | -21.1                         | -32.2                            | -44.5                              | -54.5                            | -78.5                            | -100.0                            | -100.0                            |
| SOURCE : 21<br>CFS - curing (int                               | cenral                          | - cor                   | nveyor                         | belt ,                        | / moto                           | r 6                                |                                  |                                  |                                   |                                   |
|                                                                |                                 |                         |                                | FI                            | REQUEN                           | CY Hz_                             |                                  |                                  |                                   |                                   |
|                                                                | 31.5                            | 63                      | 125                            | 250                           | 500                              | 1k                                 | 2k                               | 4k                               | 8k                                | 16k                               |
| POWER LEVEL<br>DIRECTIVITY                                     | .0                              | .0                      | .0                             | .0                            | .0                               | .0                                 | .0                               | .0                               | .0                                | .0                                |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND             | . 0                             | . 2                     | . 7                            | 2.3                           | 6.1                              | 76.9<br>24.7<br>11.8<br>.0<br>-1.4 | 20.2                             | 39.5                             | 106.1                             | 300.0                             |
| TOTAL AWT -22.8                                                | -7.7                            | . 6                     | -14.6                          | -20.4                         | -31.3                            | -43.9                              | -54.5                            | -76.1-                           | -100.0                            | -100.0                            |
| SOURCE : 22<br>CFS - processing                                | (exter                          | rnal) -                 | - RTT r                        | manv                          |                                  |                                    |                                  |                                  |                                   |                                   |
|                                                                |                                 |                         |                                |                               |                                  | CY Hz_                             |                                  |                                  |                                   |                                   |
| DOMED I EVEI                                                   |                                 |                         |                                |                               |                                  | 1k                                 |                                  |                                  |                                   |                                   |
| POWER LEVEL<br>DIRECTIVITY                                     | .0                              | .0                      | .0                             | .0                            | .0                               | .0                                 | .0                               | .0                               | .0                                | .0                                |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 5.0                             | 5.0                     | 4 9                            | 4 8                           | 4 2                              | 76.2<br>3.0<br>11.0<br>.0<br>-1.0  | 1 4                              | 0                                | 0                                 | Ω                                 |
| TOTAL AWT 20.2                                                 |                                 |                         |                                |                               |                                  |                                    |                                  |                                  |                                   |                                   |
| SOURCE : 23<br>CFS - processing                                |                                 | nal) -                  | - RTT 1                        | revers                        | ing                              |                                    |                                  |                                  |                                   |                                   |
|                                                                |                                 |                         |                                | FI                            | REQUEN                           | CY Hz                              |                                  |                                  |                                   |                                   |
|                                                                |                                 |                         |                                |                               |                                  | 1k                                 |                                  |                                  |                                   |                                   |
| POWER LEVEL<br>DIRECTIVITY                                     | .0                              | .0                      | .0                             | . 0                           | .0                               | .0                                 | . 0                              | .0                               | . 0                               | .0                                |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND             | 77.0<br>5.0<br>.0<br>.0<br>-4.3 | 77.0<br>4.9<br>.2<br>.0 | 77.0<br>4.9<br>.7<br>.0<br>8.2 | 77.0<br>4.7<br>2.3<br>.0<br>7 | 77.0<br>3.9<br>6.2<br>.0<br>-4.5 | 77.0<br>2.6<br>12.0<br>.0<br>9     | 77.0<br>.8<br>20.4<br>.0<br>-2.4 | 77.0<br>.0<br>39.9<br>.0<br>-2.6 | 77.0<br>.0<br>107.3<br>.0<br>-2.5 | 77.0<br>.0<br>300.0<br>.0<br>-3.9 |
| TOTAL AWT 6.4                                                  | -20.7                           | -7.4                    | -15.7                          | -4.3                          | 6.5                              | 2.4                                | -4.8                             | -27.3                            | -100.0                            | -100.0                            |
| SOURCE : 24<br>CFS - processing                                | (exter                          | nal) -                  | - dust                         | colled                        | ctor /                           | fan                                |                                  |                                  |                                   |                                   |
|                                                                |                                 |                         |                                |                               |                                  | CY Hz                              |                                  |                                  |                                   |                                   |
| DOMED I EVEL                                                   |                                 |                         |                                |                               |                                  | 1k                                 |                                  |                                  |                                   |                                   |
| POWER LEVEL<br>DIRECTIVITY                                     | .0                              | .0                      | .0                             | .0                            | .0                               | .0                                 | .0                               | .0                               | .0                                | .0                                |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND             | 76.8<br>5.0<br>.0<br>.0<br>-4.3 | 76.8<br>4.9<br>.2<br>.0 | 76.8<br>4.9<br>.7<br>.0<br>8.1 | 76.8<br>4.7<br>2.3<br>.0<br>7 | 76.8<br>4.0<br>6.1<br>.0<br>-4.5 | 76.8<br>2.7<br>11.7<br>.0<br>-1.0  | 76.8<br>.9<br>20.0<br>.0<br>-2.3 | 76.8<br>.0<br>39.2<br>.0<br>-2.6 | 76.8<br>.0<br>105.3<br>.0<br>-2.2 | 76.8<br>.0<br>300.0<br>.0<br>-3.1 |
| TOTAL AWT 23.9                                                 | 22.4                            | 19.8                    | 15.5                           | 25.9                          | 25.6                             | 10.7                               | -1.5                             | -24.4                            | -96.9                             | -100.0                            |
| SOURCE : 25<br>CFS - processing                                | (exter                          | nal) -                  |                                |                               |                                  | <b></b>                            |                                  |                                  |                                   |                                   |
|                                                                | 31 5                            | 63                      |                                |                               |                                  | CY Hz<br>1k                        |                                  |                                  | 8k                                | 16k                               |
|                                                                | 21.3                            | U.S                     | 143                            | ∪∪ت                           | 200                              | TΥ                                 | Δħ                               | ıν                               | ΛO                                | T0V                               |

POWER LEVEL 101.0 100.0 99.0 97.0 93.0 93.0 91.0 88.0 83.0 . 0 DIRECTIVITY . 0 .0 . 0 . 0 .0 . 0 DISTANCE 77.0 77.0 77.0 77.0 77.0 77.0 77.0 77.0 77.0 77.0 BARRIER 12.9 18.8 21.8 24.8 25.0 25.0 25.0 25.0 AIR ABSORPTION .0 . 2 . 7 2.3 6.2 11.9 20.4 39.8 107.2 300.0 . 0 . 0 . 0 TEMP & WIND .0 .0 .0 . 0 . 0 . 0 . 0 -1.3 -2.8 GROUND -3.4 2.5 -3.5 -1.3 -1.5 -2.2 -2.1 2.4 -10.7 -19.4 -28.5 -52.3-100.0-100.0 TOTAL AWT -4.3 16.1 7.5 4.0 SOURCE : 26 CFS - processing (external) - aggregate unload \_FREQUENCY Hz\_ 31.5 63 125 250 500 1k 16k POWER LEVEL 110.0 111.0 102.0 100.0 101.0 104.0 101.0 97.0 105.0 .0 DIRECTIVITY DISTANCE 76.9 76.9 76.9 76.9 76.9 76.9 76.9 76.9 76.9 76.9 5.0 4.7 4.0 BARRIER 4.9 4.9 .0 AIR ABSORPTION .2 .7 2.3 6.1 11.8 20.2 39.5 106.1 300.0 TEMP & WIND .0 .0 . 0 .0 .0 .0 . 0 .0 .0 .0 8.2 -4.5 -2.5 -2.6 .3 32.4 28.7 11.4 16.8 18.6 13.5 5.5 -16.7 -75.4-100.0 TOTAL AWT 18.5 SOURCE : 27 CFS - processing (external) - silo vent 1 FREQUENCY Hz\_ 63 125 250 500 POWER LEVEL 84.0 89.0 88.0 82.0 86.0 81.0 74.0 69.0 63.0 .0 DIRECTIVITY .0 . 0 .0 .0 . 0 . 0 . 0 .0 .0 76.8 DISTANCE 76.8 76.8 76.8 76.8 76.8 76.8 76.8 76.8 76.8 1.2 BARRIER 5.0 4.9 4.7 4.1 2.9 .0 .0 . 0 .0 . 2 AIR ABSORPTION 2.3 6.1 11.7 20.1 39.2 105.4 300.0 TEMP & WIND .0 .0 .0 . 0 .0 .0 . 0 . 0 . 0 .0 -.5 -2.3 -2.4 GROUND 2.9 -3.6 -3.7 5.9 2.7 -6.4 -20.5 -44.2-100.0-100.0 TOTAL AWT 3.7 . 9 9.4 -1.5 SOURCE : 28 CFS - processing (external) - silo vent 2 \_FREQUENCY Hz\_ 31.5 63 125 250 500 1k 2k 8k 16k 4k POWER LEVEL 84 0 89 N 82 0 86 0 88 0 81 0 74 0 69 N 63 0 Ω DIRECTIVITY .0 . 0 .0 .0 . 0 .0 . 0 .0 . 0 . 0 76.8 DISTANCE 76 8 76 8 76 8 76 8 76 8 76 8 76 8 76 8 76 8 BARRIER 5.0 4.1 2.9 1.2 4.9 4.8 .0 .0 . 0 . 0 . 7 .0 . 2 AIR ABSORPTION 2.3 6.1 11.8 20.1 39.3 105.6 300.0 TEMP & WIND Ω Ω Ω Ω .0 Ω .0 Ω Ω Ω -3.6 -2.4 -2.4 -2.9 GROUND -3.7 1.7 2.9 TOTAL AWT 2 7 -6 4 -20 5 -44 3-100 0-100 0 3 7 5 9 -1 6 8 9 3 TOTAL AWT 26.3 36.6 34.3 18.9 27.8 27.6 16.9 8.4 -13.2 -74.7 -88.0 SINGLE POINT CALCULATION ENM CALC MODULE FILENAMES C:\ENM\SOURCES\2118506A\506A-3 2118506A.GEN C:\ENM\MAPS\2118506A\506A OUT1 file and RNK1 file HUMIDITY (%) TEMP (deg C) 25.0 50.0 WIND SPEED (m/sec) WIND DIR (deg) .0 . 0 TEMP GRAD (deg C/100m) . 0 X= 827.000 Y= 3006.000 7.= 22,200

SOURCE :

13 CFS - processing (external) - backhoe

|                                                                    |                          |                          |                         | FR                               | EQUENC                    | CY Hz_                    |                            |                            |                            |                             |
|--------------------------------------------------------------------|--------------------------|--------------------------|-------------------------|----------------------------------|---------------------------|---------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|
|                                                                    | 31.5                     | 63                       | 125                     | 250                              | 500                       | 1k                        | 2k                         | 4k                         | 8k                         | 16k                         |
| POWER LEVEL<br>DIRECTIVITY                                         |                          |                          |                         | 95.0                             |                           |                           |                            |                            |                            |                             |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                 | 12.9<br>.0<br>.0         | 15.9<br>.1<br>.0         | 18.9<br>.5<br>.0        | 74.3<br>21.9<br>1.7<br>.0<br>1.5 | 24.9<br>4.6<br>.0         | 25.0<br>8.8<br>.0         | 25.0<br>15.2<br>.0         | 25.0<br>30.2<br>.0         | 25.0<br>79.8<br>.0         | 25.0<br>264.6<br>.0         |
| TOTAL AWT -4.8                                                     | 12.4                     | 5.5                      | -7.4                    | -4.3                             | -4.4                      | -12.1                     | -16.5                      | -31.3                      | -81.3-                     | -100.0                      |
| SOURCE : 14<br>CFS - processing                                    | (exter                   | nal)                     | - FEL                   |                                  |                           |                           |                            |                            |                            |                             |
|                                                                    |                          |                          |                         | FR                               | EQUENC                    | CY Hz_                    |                            |                            |                            |                             |
|                                                                    | 31.5                     | 63                       | 125                     | 250                              | 500                       | 1k                        | 2k                         | 4k                         | 8k                         | 16k                         |
| POWER LEVEL<br>DIRECTIVITY                                         | 94.0                     | 100.0                    | 100.0                   | 106.0                            | 98.0                      | 101.0                     | 98.0                       | 92.0                       | 86.0                       | .0                          |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND                           | 13.6<br>.0<br>.0<br>-4.7 | 16.6<br>.1<br>.0<br>-1.0 | 19.6<br>.5<br>.0<br>8.9 | 74.3<br>22.6<br>1.7<br>.0<br>2.1 | 25.0<br>4.6<br>.0<br>-4.1 | 25.0<br>8.8<br>.0<br>-1.9 | 25.0<br>15.2<br>.0<br>-2.6 | 25.0<br>30.2<br>.0<br>-3.1 | 25.0<br>79.8<br>.0<br>-2.8 | 25.0<br>264.6<br>.0<br>-1.1 |
| CFS - curing (int                                                  | enral)                   |                          |                         |                                  |                           |                           |                            |                            |                            |                             |
|                                                                    |                          |                          |                         | FR                               |                           |                           |                            |                            |                            |                             |
| DOMED I EVEL                                                       |                          |                          |                         | 250                              |                           |                           |                            |                            |                            |                             |
| POWER LEVEL<br>DIRECTIVITY                                         |                          |                          |                         | 96.0                             |                           |                           |                            |                            |                            |                             |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND                           | 13.1                     | 16.1<br>.1<br>.0         | 19.0<br>.5<br>.0        | 74.3<br>22.1<br>1.7<br>.0<br>1.3 | 25.0<br>4.6<br>.0         | 25.0<br>8.9<br>.0         | 25.0<br>15.3<br>.0         | 25.0<br>30.4<br>.0         | 25.0<br>80.5<br>.0         | 25.0<br>266.8<br>.0         |
| TOTAL AWT -8.9                                                     | 1.2                      | . 4                      | -12.4                   | -3.4                             | -11.6                     | -16.5                     | -23.5                      | -44.9-                     | 100.0                      | -100.0                      |
| SOURCE : 16<br>CFS - curing (int                                   | enral)                   | - coi                    | nveyor                  |                                  |                           |                           |                            |                            |                            |                             |
|                                                                    | 31.5                     | 63                       | 125                     | 250                              | 500                       | 1k                        | 2k                         | 4k                         | 8k                         | 16k                         |
| POWER LEVEL<br>DIRECTIVITY                                         |                          |                          |                         | 74.0                             |                           |                           |                            |                            |                            |                             |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT -21.4 | 12.8<br>.0<br>.0<br>-4.6 | 15.7<br>.1<br>.0<br>9    | 18.7<br>.5<br>.0<br>8.4 | 74.4<br>21.7<br>1.7<br>.0<br>1.0 | 24.7<br>4.6<br>.0<br>-4.4 | 25.0<br>8.9<br>.0<br>4    | 25.0<br>15.4<br>.0<br>-3.3 | 25.0<br>30.5<br>.0<br>-2.2 | 25.0<br>80.8<br>.0<br>-2.4 | 25.0<br>267.9<br>.0<br>-3.8 |
| SOURCE : 17                                                        |                          |                          |                         |                                  |                           |                           |                            |                            |                            |                             |
| CFS - curing (int                                                  |                          |                          |                         |                                  |                           |                           |                            |                            |                            |                             |
|                                                                    |                          |                          |                         | FR                               |                           |                           |                            |                            | 8k                         | 16k                         |
| POWER LEVEL<br>DIRECTIVITY                                         | 77.0                     | 93.0                     | 80.0                    | 74.0                             | 72.0                      | 68.0                      | 65.0                       | 62.0                       | 58.0                       | .0                          |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND                 | 12.7<br>.0<br>.0<br>-4.6 | 15.5<br>.1<br>.0<br>8    | 18.4<br>.5<br>.0<br>8.4 | 74.4<br>21.5<br>1.7<br>.0<br>.8  | 24.5<br>4.6<br>.0<br>-4.4 | 25.0<br>9.0<br>.0<br>3    | 25.0<br>15.4<br>.0<br>-3.4 | 25.0<br>30.6<br>.0<br>-2.0 | 25.0<br>81.1<br>.0<br>-2.9 | 25.0<br>268.9<br>.0<br>-2.2 |
| TOTAL AWT -21.2                                                    | -5.6                     | 3.8                      | -21.7                   | -24.4                            | -27.1                     | -40.1                     | -46.5                      | -66.0-                     | -100.0-                    | -100.0                      |
| SOURCE: 18<br>CFS - curing (int                                    | enral)                   | - coi                    | nveyor                  | belt /                           | motor                     | 3                         |                            |                            |                            |                             |

\_\_\_\_FREQUENCY Hz\_\_\_

|                                                                                                                                                                                                                                                                    | 31.5                                                                                       | 63                                                                                              | 125                                                                                 | 250                                                                                            | 500                                                                                                        | 1k                                                       | 2k                                                                       | 4k                                                                       | 8k                                                                        | 16k                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                                                         | 77.0                                                                                       | 93.0                                                                                            | 80.0                                                                                | 74.0                                                                                           | 72.0                                                                                                       |                                                          | 65.0                                                                     | 62.0                                                                     | 58.0                                                                      | .0                                                                                      |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND<br>TOTAL AWT -16.7                                                                                                                                                                                  | 74.4<br>8.8<br>.0<br>.0                                                                    |                                                                                                 |                                                                                     |                                                                                                |                                                                                                            |                                                          |                                                                          |                                                                          |                                                                           |                                                                                         |
| TOTAL AWT -16.7                                                                                                                                                                                                                                                    | -1.9                                                                                       | 7.6                                                                                             | -13.9                                                                               | -15.4                                                                                          | -22.8                                                                                                      | -34.8                                                    | -46.9                                                                    | -65.4-                                                                   | 100.0-                                                                    | -100.0                                                                                  |
| SOURCE : 19<br>CFS - curing (in                                                                                                                                                                                                                                    | tenral'                                                                                    | ) – ຕວາ                                                                                         | nvevor                                                                              | belt.                                                                                          | / moto                                                                                                     | r 4                                                      |                                                                          |                                                                          |                                                                           |                                                                                         |
| , ,                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                 | _                                                                                   |                                                                                                |                                                                                                            | CY Hz_                                                   |                                                                          |                                                                          |                                                                           |                                                                                         |
|                                                                                                                                                                                                                                                                    | 31.5                                                                                       | 63                                                                                              | 125                                                                                 | 250                                                                                            | 500                                                                                                        | 1k                                                       | 2k                                                                       | 4k                                                                       | 8k                                                                        | 16k                                                                                     |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                                                         | 77.0<br>.0                                                                                 | 93.0                                                                                            | 80.0                                                                                | 74.0                                                                                           | 72.0                                                                                                       | 68.0                                                     | 65.0                                                                     | 62.0                                                                     | 58.0                                                                      | .0                                                                                      |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND                                                                                                                                                                                                     | 10.3                                                                                       | 12.3<br>.1<br>.0                                                                                | 14.4<br>.5<br>.0                                                                    | 17.5<br>1.7<br>.0                                                                              | 20.5<br>4.6<br>.0                                                                                          | 74.3<br>23.5<br>8.9<br>.0<br>-2.0                        | 25.0<br>15.3<br>.0                                                       | 25.0<br>30.4<br>.0                                                       | 25.0<br>80.3<br>.0                                                        | 25.0<br>266.3<br>.0                                                                     |
| TOTAL AWT -18.0                                                                                                                                                                                                                                                    | -3.2                                                                                       | 6.6                                                                                             | -16.3                                                                               | -18.1                                                                                          | -23.6                                                                                                      | -36.7                                                    | -47.6                                                                    | -65.6-                                                                   | 100.0-                                                                    | -100.0                                                                                  |
| SOURCE : 20<br>CFS - curing (in                                                                                                                                                                                                                                    |                                                                                            | ) - CO1                                                                                         | nveyor                                                                              | belt ,                                                                                         | / moto                                                                                                     | r 5                                                      |                                                                          |                                                                          |                                                                           |                                                                                         |
|                                                                                                                                                                                                                                                                    |                                                                                            |                                                                                                 |                                                                                     |                                                                                                |                                                                                                            | CY Hz_                                                   |                                                                          |                                                                          |                                                                           |                                                                                         |
| DOWER I THE                                                                                                                                                                                                                                                        |                                                                                            |                                                                                                 |                                                                                     |                                                                                                |                                                                                                            | 1k                                                       |                                                                          |                                                                          |                                                                           |                                                                                         |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                                                         | .0                                                                                         | 93.0                                                                                            | .0                                                                                  | .0                                                                                             | .0                                                                                                         | .0                                                       | .0                                                                       | .0                                                                       | .0                                                                        | .0                                                                                      |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND                                                                                                                                                                                                     |                                                                                            | .1                                                                                              | .5                                                                                  | 1.7                                                                                            | 4.5                                                                                                        | 74.2<br>25.0<br>8.8<br>.0<br>8                           | 15.1                                                                     | 30.1                                                                     | 79.4                                                                      | 263.2                                                                                   |
|                                                                                                                                                                                                                                                                    |                                                                                            |                                                                                                 |                                                                                     |                                                                                                |                                                                                                            |                                                          |                                                                          |                                                                          |                                                                           |                                                                                         |
| TOTAL AWT -19.4                                                                                                                                                                                                                                                    | -4.7                                                                                       | 5.5                                                                                             | -19.4                                                                               | -21.5                                                                                          | -25.1                                                                                                      | -39.2                                                    | -46.9                                                                    | -64.7-                                                                   | -100.0-                                                                   | -100.0                                                                                  |
| TOTAL AWT -19.4  SOURCE : 21 CFS - curing (in                                                                                                                                                                                                                      |                                                                                            |                                                                                                 |                                                                                     |                                                                                                |                                                                                                            |                                                          | -46.9                                                                    | -64.7-                                                                   | -100.0-                                                                   | -100.0                                                                                  |
| SOURCE : 21                                                                                                                                                                                                                                                        |                                                                                            |                                                                                                 | nveyor                                                                              | belt ,                                                                                         | / moto                                                                                                     |                                                          |                                                                          |                                                                          | -100.0-                                                                   | -100.0                                                                                  |
| SOURCE : 21<br>CFS - curing (in                                                                                                                                                                                                                                    | 31.5                                                                                       | 63                                                                                              | nveyor                                                                              | belt FI                                                                                        | / moto: REQUENC                                                                                            | r 6<br>CY Hz_<br>1k                                      | 2k                                                                       | 4k                                                                       | 8k                                                                        |                                                                                         |
| SOURCE : 21<br>CFS - curing (in                                                                                                                                                                                                                                    | 31.5<br>77.0                                                                               | 63<br>93.0                                                                                      | 125<br>80.0                                                                         | belt FI 250 74.0 .0                                                                            | / moto: REQUENC 500 72.0 .0                                                                                | r 6 CY Hz 1k 68.0 .0                                     | 2k<br>65.0<br>.0                                                         | 4k<br>62.0<br>.0                                                         | 8k<br>58.0                                                                | 16k<br>.0                                                                               |
| SOURCE : 21 CFS - curing (in                                                                                                                                                                                                                                       | 31.5<br>77.0<br>.0                                                                         | 63<br>93.0<br>.0<br>74.2                                                                        | 125<br>80.0<br>.0<br>74.2                                                           | belt FI 250 74.0 .0 74.2                                                                       | / moto: REQUENC 500 72.0 .0 74.2                                                                           | 1k 68.0 .0 74.2                                          | 2k<br>65.0<br>.0<br>74.2                                                 | 4k 62.0 .0 74.2                                                          | 8k<br>58.0<br>.0                                                          | 16k .0 .0 .0 .74.2                                                                      |
| SOURCE : 21 CFS - curing (in  POWER LEVEL DIRECTIVITY  DISTANCE BARRIED                                                                                                                                                                                            | 31.5<br>77.0<br>.0<br>74.2<br>11.5<br>.0<br>.0                                             | 63<br>93.0<br>.0<br>74.2<br>13.2<br>.1<br>.0                                                    | 125<br>80.0<br>.0<br>74.2<br>16.1<br>.5<br>.0                                       | FI 250 74.0 .0 74.2 19.1 1.7 .06                                                               | / moto: REQUENC 500 72.0 .0 74.2 22.2 4.5 .0 -4.3                                                          | 1k 68.0 0 74.2 25.0 8.7 .0 -1.2                          | 2k 65.0 .0 74.2 25.0 15.0 .0 -1.8                                        | 4k 62.0 .0 74.2 25.0 29.9 .0 -2.7                                        | 8k<br>58.0<br>.0<br>74.2<br>25.0<br>78.9<br>.0                            | 16k<br>.0<br>.0<br>74.2<br>25.0<br>261.5<br>.0                                          |
| SOURCE : 21 CFS - curing (in  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                                                                          | 31.5<br>77.0<br>.0<br>74.2<br>11.5<br>.0<br>.0<br>-4.5                                     | 63<br>93.0<br>.0<br>74.2<br>13.2<br>.1<br>.0<br>6                                               | 125<br>80.0<br>.0<br>74.2<br>16.1<br>.5<br>.0<br>7.6                                | FI 250 74.0 .0 74.2 19.1 1.7 .06                                                               | / moto: REQUENC 500 72.0 .0 74.2 22.2 4.5 .0 -4.3                                                          | 1k 68.0 .0 74.2 25.0 8.7 .0 -1.2 -38.6                   | 2k<br>65.0<br>.0<br>74.2<br>25.0<br>15.0<br>.0<br>-1.8                   | 4k 62.0 .0 74.2 25.0 29.9 .0 -2.7                                        | 8k<br>58.0<br>.0<br>74.2<br>25.0<br>78.9<br>.0<br>-3.4                    | 16k<br>.0<br>.0<br>74.2<br>25.0<br>261.5<br>.0                                          |
| SOURCE : 21 CFS - curing (in  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -18.8  SOURCE : 22                                                                                                                            | 31.5<br>77.0<br>.0<br>74.2<br>11.5<br>.0<br>.0<br>-4.5                                     | 63<br>93.0<br>.0<br>74.2<br>13.2<br>.1<br>.0<br>6                                               | 125<br>80.0<br>.0<br>74.2<br>16.1<br>.5<br>.0<br>7.6                                | belt FFI 250 74.0 .0 74.2 19.1 1.7 .06 -20.4 manvFFI                                           | / moto: REQUENC 500 72.0 .0 74.2 22.2 4.5 .0 -4.3                                                          | r 6  CY Hz  1k  68.0  0  74.2  25.0  8.7  0  -1.2  -38.6 | 2k 65.0 .0 74.2 25.0 15.0 .0 -1.8                                        | 4k 62.0 .0 74.2 25.0 29.9 .0 -2.7                                        | 8k 58.0 0 74.2 25.0 78.9 0 -3.4                                           | 16k<br>.0 .0<br>74.2<br>25.0<br>261.5<br>.0 -2.5                                        |
| SOURCE : 21 CFS - curing (in  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -18.8  SOURCE : 22 CFS - processing                                                                                                           | 31.5 77.0 .0 74.2 11.5 .0 .0 -4.5 -4.2 (exter                                              | 63<br>93.0<br>.0<br>74.2<br>13.2<br>.1<br>.0<br>6<br>6.1                                        | 125<br>80.0<br>.0<br>74.2<br>16.1<br>.5<br>.0<br>7.6                                | belt FI 250 74.0 .0 74.2 19.1 1.7 .06 -20.4 manv                                               | / moto: REQUENC 500 72.0 .0 74.2 22.2 4.5 .0 -4.3 -24.5                                                    | 2                                                        | 2k 65.0 .0 74.2 25.0 15.0 .0 -1.8 -47.4                                  | 4k 62.0 .0 74.2 25.0 29.9 .0 -2.7 -64.3-                                 | 8k<br>58.0<br>.0<br>74.2<br>25.0<br>78.9<br>.0<br>-3.4                    | 16k .0 .0 74.2 25.0 261.5 .0 -2.5                                                       |
| SOURCE : 21 CFS - curing (in  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -18.8  SOURCE : 22 CFS - processing  POWER LEVEL DIRECTIVITY                                                                                  | 31.5 77.0 0 74.2 11.5 0 0 -4.5 -4.2 (exter                                                 | 63<br>93.0<br>.0<br>74.2<br>13.2<br>.1<br>.0<br>6<br>6.1                                        | 125 80.0 .0 74.2 16.1 .55 .0 7.6 -18.4 - RTT t                                      | FI 250 74.0 .0 74.2 19.1 1.7 7 .06 -20.4 manv FI 250 104.0 .0                                  | / moto: REQUENC 500 72.0 .0 74.2 22.2 4.5 .0 -4.3 -24.5  REQUENC 500 103.0 .0                              | 1k 68.0 .0 .0 .0 .74.2 .25.0 .8.7 .0 .1.238.6 1k 1k 1k   | 2k 65.0 .0 74.2 25.0 15.0 .0 -1.8 -47.4                                  | 4k 62.0 .0 74.2 25.0 29.9 .0 -2.7 -64.3-                                 | 8k 58.0 .0 74.2 25.0 78.9 .0 -3.4 -100.0-                                 | 16k .0 .0 74.2 25.0 261.5 .0 -2.5 -100.0                                                |
| SOURCE : 21 CFS - curing (in  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -18.8  SOURCE : 22 CFS - processing  POWER LEVEL                                                                                              | 31.5 77.0 .0 74.2 11.5 .0 .0 -4.5 -4.2 (exter                                              | 63<br>93.0<br>.0<br>74.2<br>13.2<br>.1<br>.0<br>.6<br>6.1<br>cnal)<br>63<br>114.0<br>.0<br>73.3 | 125 80.0 .0 74.2 16.1 .5 .0 7.6 -18.4 - RTT t  125 103.0 .0 73.3                    | belt FFI 250 74.0 .0 74.2 19.1 1.7 .06 -20.4 manv FFI 250 104.0 .0 73.3                        | / moto: REQUENC 500 72.0 .0 74.2 22.2 4.5 .0 -4.3 -24.5  REQUENC 500 103.0 .0 73.3                         | 1k 68.0 .0 .0 .0 .74.2 .25.0 .8.7 .0 .1.238.6 1k 1k 1k   | 2k 65.0 .0 74.2 25.0 15.0 .1.8 -47.4  2k 98.0 .0 73.3 .0                 | 4k 62.0 .0 74.2 25.0 29.9 .0 -2.7 -64.3-                                 | 8k 58.0 .0 74.2 25.0 78.9 .0 -3.4 -100.0-                                 | 16k .0 .0 74.2 25.0 261.5 .0 -2.5 -100.0                                                |
| SOURCE : 21 CFS - curing (in  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -18.8  SOURCE : 22 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                     | 31.5 77.0 .0 74.2 11.5 .0 .0 -4.5 -4.2 (exter                                              | 63 93.0 0 74.2 13.2 1.0 06 6.1 63 114.0 0 73.3 0 0 1.0 0 -4.1                                   | 125 80.0 .0 74.2 16.1 .5 .0 7.6 -18.4 - RTT t  125 103.0 .0 73.3 .0 .0 4.0 3.6      | belt FI 250 74.0 .0 74.2 19.1 1.7 .066 -20.4 manv FI 250 73.3 .0 .0 1.5 .0 15.0                | / moto: REQUENC 500 72.0 .0 74.2 22.2 4.5 .0 -4.3 -24.5  REQUENC 500 103.0 .0 4.1 .0 15.0                  | 2Y Hz                                                    | 2k 65.0 .0 74.2 25.0 15.0 .0 -1.8 -47.4  2k 98.0 .0 73.3 .0 13.6 .0 13.9 | 4k 62.0 .0 74.2 25.0 29.9 .0 -2.7 -64.3- 4k 94.0 .0 73.3 .0 27.3 .0 7.9  | 8k 58.0 74.2 25.0 78.9 .0 -3.4 -100.0-                                    | 16k .0 .0 .0 .250 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                   |
| SOURCE : 21 CFS - curing (in  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -18.8  SOURCE : 22 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                              | 31.5 77.0 .0 74.2 11.5 .0 .0 -4.5 -4.2 (exter 31.5 111.0 .0 73.3 .0 .0 .0 .0 .0 43.5       | 63<br>93.0<br>.0<br>74.2<br>13.2<br>.1<br>.0<br>.6<br>6.1<br>cnal) -                            | 125 80.0 .0 74.2 16.1 .5 .0 7.6 -18.4 - RTT t  125 103.0 .0 73.3 .0 .4 .0 3.6 25.7  | belt FI 250 74.0 .0 74.2 19.1 1.7 .0 -6 -20.4 manv FI 250 73.3 .0 1.5 .0 15.0 14.2             | 7 moto: REQUENC 500 72.0 .0 74.2 22.2 4.5 .0 -4.3 -24.5  REQUENC 500 103.0 .0 73.3 .0 4.1 .0 15.0          | 2Y Hz                                                    | 2k 65.0 .0 74.2 25.0 15.0 .0 -1.8 -47.4  2k 98.0 .0 73.3 .0 13.6 .0 13.9 | 4k 62.0 .0 74.2 25.0 29.9 .0 -2.7 -64.3- 4k 94.0 .0 73.3 .0 27.3 .0 7.9  | 8k 58.0 74.2 25.0 78.9 .0 -3.4 -100.0-                                    | 16k .0 .0 .0 .250 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                   |
| SOURCE : 21 CFS - curing (in  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -18.8  SOURCE : 22 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 19.7  SOURCE : 23 | 31.5 77.0 .0 74.2 11.5 .0 .0 -4.5 -4.2 (external) 31.5 111.0 .0 73.3 .0 .0 .0 .0 -5.8 43.5 | 63 93.0 .0 74.2 13.2 .1 .0 .6 6.1  cnal)  73.3 .0 .1 .0 .4.1  44.7                              | 125 80.0 .0 74.2 16.1 .5.0 7.6 -18.4 - RTT t  125 103.0 .0 73.3 .0 .4 .0 3.6 25.7   | FI 250 74.0 .0 74.2 19.1 1.7 .06 -20.4 manv FI 250 104.0 .0 73.3 .0 1.5 5 .0 15.0 14.2 revers: | / moto: REQUENC 500 72.0 .0 74.2 22.2 4.5 .0 -4.3 -24.5  REQUENC 500 103.0 .0 73.3 .0 4.1 .0 15.0 10.6     | 2Y Hz                                                    | 2k 65.0 .0 74.2 25.0 15.0 .0 -1.8 -47.4  2k 98.0 .0 73.3 .0 13.6 .0 13.9 | 4k 62.0 .0 74.2 25.0 29.9 .0 -2.7 -64.3-  4k 94.0 .0 73.3 .0 27.3 .0 7.9 | 8k 58.0 .0 74.2 25.0 78.9 .0 -3.4 -100.0-  8k 88.0 .0 73.3 .0 71.8 .0 1.9 | 16k .0 .0 .0 .250 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                   |
| SOURCE : 21 CFS - curing (in  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -18.8  SOURCE : 22 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 19.7  SOURCE : 23 | 31.5 77.0 0 74.2 11.5 0 0 -4.5 -4.2 (external) 31.5 111.0 0 73.3 0 0 0 -5.8 43.5           | 63 93.0 .0 74.2 13.2 .1 .0 .6 6.1  63 114.0 .0 73.3 .0 .1 .0 44.7                               | 125 80.0 .0 74.2 16.1 .5 .0 7.6 -18.4 - RTT t  125 103.0 .0 73.3 .0 .4 .0 3.66 25.7 | belt                                                                                           | / moto: REQUENC 500 72.0 .0 74.2 22.2 4.5 .0 -4.3 -24.5  REQUENC 500 73.3 .0 4.1 .0 15.0 10.6  ing REQUENC | TK 6  CY Hz                                              | 2k 65.0 .0 74.2 25.0 15.0 .0 -1.8 -47.4  2k 98.0 .0 13.6 .0 13.9 -2.8    | 4k 62.0 .0 74.2 25.0 29.9 .0 -2.7 -64.3-  4k 94.0 .0 73.3 .0 27.3 .0 7.9 | 8k 58.0 .0 74.2 25.0 78.9 .0 -3.4 -100.0-                                 | 16k .0 .0 .74.2 .25.0 .261.5 .0 .2.5 -100.0  16k .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 |

| DIRECTIVITY                                                                                                                                                                                                                    | . 0                                                                                                             | . 0                                                                                   | . 0                                                                                    | . 0                                                                                                                                                                                                                                   | . 0                                                                                                                            | . 0                                                                            | . 0                                                                          | . 0                                                                                                            | . 0                                                                                                              | . 0                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| DISTANCE                                                                                                                                                                                                                       |                                                                                                                 |                                                                                       |                                                                                        | 74.4                                                                                                                                                                                                                                  |                                                                                                                                |                                                                                |                                                                              |                                                                                                                |                                                                                                                  |                                                                                                                   |
| DADDTED                                                                                                                                                                                                                        | 0                                                                                                               | 0                                                                                     | 0                                                                                      | 0                                                                                                                                                                                                                                     | 0                                                                                                                              | 0                                                                              | 0                                                                            | 0                                                                                                              | 0                                                                                                                | 0                                                                                                                 |
| AIR ABSORPTION TEMP & WIND GROUND                                                                                                                                                                                              | .0                                                                                                              | .0                                                                                    | .0                                                                                     | .0<br>15.0                                                                                                                                                                                                                            | .0                                                                                                                             | .0                                                                             | .0                                                                           | .0                                                                                                             | .0                                                                                                               | .0                                                                                                                |
| TOTAL AWT -2.7                                                                                                                                                                                                                 |                                                                                                                 |                                                                                       |                                                                                        |                                                                                                                                                                                                                                       |                                                                                                                                |                                                                                |                                                                              |                                                                                                                |                                                                                                                  |                                                                                                                   |
| SOURCE : 24                                                                                                                                                                                                                    |                                                                                                                 |                                                                                       |                                                                                        |                                                                                                                                                                                                                                       |                                                                                                                                |                                                                                |                                                                              |                                                                                                                |                                                                                                                  |                                                                                                                   |
| CFS - processing                                                                                                                                                                                                               |                                                                                                                 | nal) -                                                                                | - dust                                                                                 | colle                                                                                                                                                                                                                                 | ctor /                                                                                                                         | fan                                                                            |                                                                              |                                                                                                                |                                                                                                                  |                                                                                                                   |
|                                                                                                                                                                                                                                |                                                                                                                 |                                                                                       |                                                                                        | FI                                                                                                                                                                                                                                    | REQUEN                                                                                                                         | CY Hz_                                                                         |                                                                              |                                                                                                                |                                                                                                                  |                                                                                                                   |
|                                                                                                                                                                                                                                | 31.5                                                                                                            | 63                                                                                    | 125                                                                                    | 250                                                                                                                                                                                                                                   | 500                                                                                                                            | 1k                                                                             | 2k                                                                           | 4k                                                                                                             | 8k                                                                                                               | 16k                                                                                                               |
|                                                                                                                                                                                                                                | . 0                                                                                                             | .0                                                                                    | .0                                                                                     | . 0                                                                                                                                                                                                                                   | .0                                                                                                                             | .0                                                                             | .0                                                                           | .0                                                                                                             | .0                                                                                                               | .0                                                                                                                |
| DISTANCE<br>BARRIER                                                                                                                                                                                                            | 74.1                                                                                                            | 74.1                                                                                  | 74.1                                                                                   | 74.1<br>18.4                                                                                                                                                                                                                          | 74.1                                                                                                                           | 74.1                                                                           | 74.1                                                                         | 74.1                                                                                                           | 74.1                                                                                                             | 74.1                                                                                                              |
| AIR ABSORPTION<br>TEMP & WIND<br>GROUND                                                                                                                                                                                        | .0                                                                                                              | .1                                                                                    | .5                                                                                     | 1.7                                                                                                                                                                                                                                   | 4.5                                                                                                                            | 8.7                                                                            | 14.9                                                                         | 29.7                                                                                                           | 78.6                                                                                                             | 260.2                                                                                                             |
| TEMP & WIND<br>GROUND                                                                                                                                                                                                          | .0<br>-4.5                                                                                                      | .0<br>4                                                                               | .0<br>7.6                                                                              | . 0<br>7                                                                                                                                                                                                                              | .0<br>-4.3                                                                                                                     | .0<br>-1.4                                                                     | .0<br>-1.7                                                                   | .0<br>-2.9                                                                                                     | .0<br>-3.5                                                                                                       | .0<br>-3.0                                                                                                        |
| TOTAL AWT 11.3                                                                                                                                                                                                                 | 19.3                                                                                                            | 15.4                                                                                  | 8.4                                                                                    | 15.6                                                                                                                                                                                                                                  | 12.3                                                                                                                           | -4.8                                                                           | -18.4                                                                        | -37.0                                                                                                          | -91.2-                                                                                                           | -100.0                                                                                                            |
| SOURCE : 25                                                                                                                                                                                                                    |                                                                                                                 |                                                                                       |                                                                                        |                                                                                                                                                                                                                                       |                                                                                                                                |                                                                                |                                                                              |                                                                                                                |                                                                                                                  |                                                                                                                   |
| CFS - processing                                                                                                                                                                                                               | (exte                                                                                                           |                                                                                       |                                                                                        |                                                                                                                                                                                                                                       |                                                                                                                                |                                                                                |                                                                              |                                                                                                                |                                                                                                                  |                                                                                                                   |
|                                                                                                                                                                                                                                |                                                                                                                 |                                                                                       |                                                                                        | FI                                                                                                                                                                                                                                    |                                                                                                                                |                                                                                |                                                                              |                                                                                                                |                                                                                                                  |                                                                                                                   |
|                                                                                                                                                                                                                                |                                                                                                                 |                                                                                       |                                                                                        | 250                                                                                                                                                                                                                                   |                                                                                                                                |                                                                                |                                                                              |                                                                                                                |                                                                                                                  |                                                                                                                   |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                     |                                                                                                                 |                                                                                       |                                                                                        |                                                                                                                                                                                                                                       |                                                                                                                                |                                                                                |                                                                              |                                                                                                                |                                                                                                                  |                                                                                                                   |
| DISTANCE<br>BARRIER                                                                                                                                                                                                            | 74.3                                                                                                            | 74.3                                                                                  | 74.3                                                                                   | 74.3<br>17.4                                                                                                                                                                                                                          | 74.3                                                                                                                           | 74.3                                                                           | 74.3                                                                         | 74.3                                                                                                           | 74.3                                                                                                             | 74.3<br>25.0                                                                                                      |
| AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                                  | .0                                                                                                              | .1                                                                                    | .5                                                                                     | 1.7                                                                                                                                                                                                                                   | 4.6                                                                                                                            | 8.9                                                                            | 15.3                                                                         | 30.4                                                                                                           | 80.3                                                                                                             | 266.1                                                                                                             |
| TEMP & WIND<br>GROUND                                                                                                                                                                                                          | .0<br>-4.4                                                                                                      | .0<br>4                                                                               | .0<br>7.3                                                                              | .0<br>-1.1                                                                                                                                                                                                                            | .0<br>-4.0                                                                                                                     | .0<br>-1.8                                                                     | .0<br>-1.7                                                                   | .0<br>-2.9                                                                                                     | .0<br>-3.0                                                                                                       | .0<br>-4.0                                                                                                        |
| TOTAL AWT6                                                                                                                                                                                                                     |                                                                                                                 |                                                                                       |                                                                                        |                                                                                                                                                                                                                                       |                                                                                                                                |                                                                                |                                                                              |                                                                                                                |                                                                                                                  |                                                                                                                   |
|                                                                                                                                                                                                                                |                                                                                                                 |                                                                                       |                                                                                        |                                                                                                                                                                                                                                       |                                                                                                                                |                                                                                |                                                                              |                                                                                                                |                                                                                                                  |                                                                                                                   |
| SOURCE : 26                                                                                                                                                                                                                    |                                                                                                                 |                                                                                       |                                                                                        |                                                                                                                                                                                                                                       |                                                                                                                                |                                                                                |                                                                              |                                                                                                                |                                                                                                                  |                                                                                                                   |
| SOURCE : 26<br>CFS - processing                                                                                                                                                                                                |                                                                                                                 | nal) -                                                                                | - aggre                                                                                |                                                                                                                                                                                                                                       |                                                                                                                                | TV H2                                                                          |                                                                              |                                                                                                                |                                                                                                                  |                                                                                                                   |
|                                                                                                                                                                                                                                | (exter                                                                                                          |                                                                                       |                                                                                        | FI                                                                                                                                                                                                                                    | REQUEN                                                                                                                         |                                                                                |                                                                              | 4k                                                                                                             | 8k                                                                                                               |                                                                                                                   |
| CFS - processing                                                                                                                                                                                                               | 31.5                                                                                                            | 63                                                                                    | 125                                                                                    | FI                                                                                                                                                                                                                                    | REQUENC<br>500                                                                                                                 | 1k                                                                             | 2k                                                                           |                                                                                                                |                                                                                                                  |                                                                                                                   |
| CFS - processing  POWER LEVEL DIRECTIVITY                                                                                                                                                                                      | 31.5<br>110.0                                                                                                   | 63<br>111.0<br>.0                                                                     | 125<br>102.0<br>.0                                                                     | 250<br>100.0                                                                                                                                                                                                                          | 500<br>101.0                                                                                                                   | 1k<br>104.0<br>.0                                                              | 2k<br>101.0<br>.0                                                            | 97.0                                                                                                           | 105.0                                                                                                            | .0                                                                                                                |
| CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE                                                                                                                                                                            | 31.5<br>110.0<br>.0                                                                                             | 63<br>111.0<br>.0                                                                     | 125<br>102.0<br>.0                                                                     | 250<br>100.0<br>.0                                                                                                                                                                                                                    | 500<br>101.0<br>.0                                                                                                             | 1k<br>104.0<br>.0                                                              | 2k<br>101.0<br>.0                                                            | 97.0<br>.0                                                                                                     | 105.0<br>.0                                                                                                      | .0<br>.0                                                                                                          |
| CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE                                                                                                                                                                            | 31.5<br>110.0<br>.0<br>74.2                                                                                     | 63<br>111.0<br>.0<br>74.2                                                             | 125<br>102.0<br>.0<br>74.2                                                             | 250<br>100.0<br>.0<br>74.2                                                                                                                                                                                                            | 500<br>101.0<br>.0<br>74.2                                                                                                     | 1k 104.0 .0 74.2                                                               | 2k<br>101.0<br>.0<br>74.2                                                    | 97.0<br>.0<br>74.2                                                                                             | 105.0<br>.0<br>74.2                                                                                              | .0<br>.0<br>74.2                                                                                                  |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                                                                                                                                            | 31.5<br>110.0<br>.0<br>74.2                                                                                     | 63<br>111.0<br>.0<br>74.2                                                             | 125<br>102.0<br>.0<br>74.2                                                             | 250<br>100.0<br>.0<br>74.2                                                                                                                                                                                                            | 500<br>101.0<br>.0<br>74.2                                                                                                     | 1k 104.0 .0 74.2                                                               | 2k<br>101.0<br>.0<br>74.2                                                    | 97.0<br>.0<br>74.2                                                                                             | 105.0<br>.0<br>74.2                                                                                              | .0<br>.0<br>74.2                                                                                                  |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                                                                     | 31.5<br>110.0<br>.0<br>74.2<br>.0<br>.0<br>.0<br>-5.8                                                           | 63<br>111.0<br>.0<br>74.2<br>.0<br>.1<br>.0<br>-3.9                                   | 125<br>102.0<br>.0<br>74.2<br>.0<br>.5<br>.0<br>4.3                                    | 74.2<br>0 1.7<br>.0<br>15.0                                                                                                                                                                                                           | 500<br>101.0<br>.0<br>74.2<br>.0<br>4.5<br>.0                                                                                  | 1k 104.0 .0 74.2 .0 8.8 .0 15.0                                                | 2k 101.0 .0 74.2 .0 15.1 .0 14.5                                             | 97.0<br>.0<br>74.2<br>.0<br>30.1<br>.0<br>8.9                                                                  | 105.0<br>.0<br>74.2<br>.0<br>79.4<br>.0<br>2.9                                                                   | .0<br>.0<br>74.2<br>.0<br>263.3<br>.0<br>-2.5                                                                     |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                                                                                                                                            | 31.5<br>110.0<br>.0<br>74.2<br>.0<br>.0<br>.0<br>-5.8<br>41.5                                                   | 63<br>111.0<br>.0<br>74.2<br>.0<br>.1<br>.0<br>-3.9                                   | 125<br>102.0<br>.0<br>74.2<br>.0<br>.5<br>.0<br>4.3                                    | 74.2<br>0 1.7<br>.0<br>15.0                                                                                                                                                                                                           | 500<br>101.0<br>.0<br>74.2<br>.0<br>4.5<br>.0                                                                                  | 1k 104.0 .0 74.2 .0 8.8 .0 15.0                                                | 2k 101.0 .0 74.2 .0 15.1 .0 14.5                                             | 97.0<br>.0<br>74.2<br>.0<br>30.1<br>.0<br>8.9                                                                  | 105.0<br>.0<br>74.2<br>.0<br>79.4<br>.0<br>2.9                                                                   | .0<br>.0<br>74.2<br>.0<br>263.3<br>.0<br>-2.5                                                                     |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 16.2                                                                                                                                      | 31.5<br>110.0<br>.0<br>74.2<br>.0<br>.0<br>.0<br>.0<br>-5.8<br>41.5                                             | 63 111.0 .0 74.2 .0 .1 .0 -3.9 40.5                                                   | 125<br>102.0<br>.0<br>74.2<br>.0<br>.5<br>.0<br>4.3<br>23.0                            | 74.2<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                                                                    | 500<br>101.0<br>.0<br>74.2<br>.0<br>4.5<br>.0<br>15.0                                                                          | 1k 104.0 .0 74.2 .0 8.8 .0 15.0                                                | 2k 101.0 .0 74.2 .0 15.1 .0 14.5                                             | 97.0<br>.0<br>74.2<br>.0<br>30.1<br>.0<br>8.9                                                                  | 105.0<br>.0<br>74.2<br>.0<br>79.4<br>.0<br>2.9                                                                   | .0<br>.0<br>74.2<br>.0<br>263.3<br>.0<br>-2.5                                                                     |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 16.2 SOURCE : 27                                                                                                                          | 31.5<br>110.0<br>.0<br>74.2<br>.0<br>.0<br>.0<br>-5.8<br>41.5                                                   | 63 111.0 .0 74.2 .0 .1 .0 -3.9 40.5                                                   | 125 102.0 .0 74.2 .0 .5 .0 4.3 23.0                                                    | FF 250  100.0  .0  74.2 .0 1.7 .0 15.0  9.1  vent 1                                                                                                                                                                                   | 74.2<br>0 4.5<br>0 15.0<br>7.2                                                                                                 | 1k 104.0 .0 74.2 .0 8.8 .0 15.0 6.0                                            | 2k 101.0 .0 74.2 .0 15.1 .0 14.5                                             | 97.0<br>.0<br>74.2<br>.0<br>30.1<br>.0<br>8.9                                                                  | 105.0<br>.0<br>74.2<br>.0<br>79.4<br>.0<br>2.9                                                                   | .0<br>.0<br>74.2<br>.0<br>263.3<br>.0<br>-2.5                                                                     |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 16.2 SOURCE : 27 CFS - processing                                                                                                         | 31.5<br>110.0<br>.0<br>74.2<br>.0<br>.0<br>.0<br>.0<br>-5.8<br>41.5<br>(exter                                   | 63 111.0 .0 74.2 .0 .1 .0 -3.9 40.5                                                   | 125 102.0 .0 74.2 .0 .5 .0 4.3 23.0 - silo                                             | FI 250 100.0 0 0 74.2 0 1.7 0 15.0 9.1 vent 1                                                                                                                                                                                         | 500  101.0  .0  74.2 .0 4.5 .0 15.0  7.2                                                                                       | 1k 104.0 .0 74.2 .0 8.8 .0 15.0 6.0                                            | 2k 101.0 .0 74.2 .0 15.1 .0 14.5 -2.8                                        | 97.0<br>.0<br>74.2<br>.0<br>30.1<br>.0<br>8.9                                                                  | 105.0<br>.0<br>74.2<br>.0<br>79.4<br>.0<br>2.9                                                                   | .0<br>.0<br>.0<br>74.2<br>.0<br>263.3<br>.0<br>-2.5<br>-100.0                                                     |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 16.2  SOURCE : 27 CFS - processing  POWER LEVEL DIRECTIVITY                                                                             | 31.5<br>110.0<br>.0<br>74.2<br>.0<br>.0<br>.0<br>-5.8<br>41.5<br>(extendar)                                     | 63 111.0 .0 74.2 .0 .1 .0 -3.9 40.5 cnal) -                                           | 125 102.0                                                                              | FI 250 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                          | 74.2<br>.00<br>4.5<br>.00<br>77.2<br>L<br>REQUENC<br>88.0<br>.0                                                                | 1k 104.0 .0 74.2 .0 8.8 .0 15.0 6.0                                            | 2k 101.0 .0 74.2 .0 15.1 .0 14.5 -2.8                                        | 97.0<br>.0<br>74.2<br>.0<br>30.1<br>.0<br>8.9<br>-16.2                                                         | 105.0<br>.0<br>74.2<br>.0<br>79.4<br>.0<br>2.9<br>-51.6                                                          | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-2.5<br>-100.0                                                          |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 16.2  SOURCE : 27 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE                                                                   | 31.5<br>110.0<br>.0<br>74.2<br>.0<br>.0<br>.0<br>.0<br>-5.8<br>41.5<br>(exterior)<br>31.5<br>84.0<br>.0<br>74.1 | 63 111.0 .0 74.2 .0 .1 .0 -3.9 40.5 cmal) -                                           | 125 102.0 .0 74.2 .0 .5 .0 4.3 23.0 - silo 125 86.0 .0 74.1                            | FI 250 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                          | 74.2<br>.0<br>4.5<br>.0<br>15.0<br>7.2<br>L<br>REQUENC<br>500<br>88.0<br>.0<br>74.1                                            | 1k 104.0 .0 74.2 .0 8.8 8.0 15.0 6.0  CY Hz 1k 81.0 .0 74.1                    | 2k 101.0 .0 74.2 .0 15.1 .00 14.5 -2.8  2k 74.0 .0 74.1                      | 97.0<br>.0<br>74.2<br>.0<br>30.1<br>.0<br>8.9<br>-16.2<br>4k<br>69.0<br>.0                                     | 105.0<br>.0<br>74.2<br>.0<br>79.4<br>.0<br>2.9<br>-51.6                                                          | .0<br>.0<br>.0<br>74.2<br>.0<br>263.3<br>.0<br>-2.5<br>-100.0                                                     |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 16.2  SOURCE: 27 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION                                             | 31.5<br>110.0<br>.0<br>74.2<br>.0<br>.0<br>.0<br>-5.8<br>41.5<br>(exter                                         | 63 111.0 .0 74.2 .0 .1 .0 -3.9 40.5  63 82.0 .0 74.1 .0                               | 125 102.0 .0 74.2 .0 .5 .0 4.3 23.0 - silo  125 86.0 .0 74.1 .0                        | FI 250 100.0 0 1.7 .0 15.0 15.0 89.0 0 74.1 .0 1.7 1.0 1.7                                                                                                                                                                            | 74.2<br>.00<br>15.00<br>74.2<br>.00<br>15.00<br>7.2<br>1<br>1<br>88.0<br>.00<br>74.1<br>.00<br>4.5                             | 1k 104.0 .0 74.2 .0 8.8 .0 15.0 6.0  CY Hz 1k 81.0 .0 74.1 .0 8.7              | 2k 101.0 .0 74.2 .0 15.1 .0 14.5 -2.8  2k 74.0 .0 74.1 .0 15.0               | 97.0<br>.0<br>74.2<br>.0<br>30.1<br>.0<br>8.9<br>-16.2<br>4k<br>69.0<br>.0<br>74.1<br>.0<br>29.8               | 105.0<br>.0<br>74.2<br>.0<br>79.4<br>.0<br>2.9<br>-51.6-                                                         | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 16.2 SOURCE: 27 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                             | 31.5<br>110.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                             | 63 111.0 .0 74.2 .0 .1 .0 -3.9 40.5 cnal) - 63 82.0 .0 74.1 .0 .1 .0                  | 125 102.0                                                                              | FI 250 100.0 0 74.2 0 15.0 15.0 9.1 vent 1 250 89.0 0 74.1 0 1.7 7 0                                                                                                                                                                  | 74.2<br>.00<br>4.5<br>.00<br>77.2<br>L<br>REQUENC<br>500<br>88.0<br>.0<br>74.1<br>.0<br>4.5                                    | 1k 104.0 .0 74.2 .0 8.8 .0 15.0 6.0  CY Hz 1k 81.0 .0 74.1 .0 8.7              | 2k 101.0 .0 74.2 .0 15.1 .0 14.5 -2.8  2k 74.0 .0 74.1 .0 15.0               | 97.0<br>.0<br>74.2<br>.0<br>30.1<br>.0<br>8.9<br>-16.2<br>4k<br>69.0<br>.0<br>74.1<br>.0<br>29.8               | 105.0<br>.0<br>74.2<br>.0<br>79.4<br>.0<br>2.9<br>-51.6<br>8k<br>63.0<br>.0<br>74.1<br>.0<br>78.7                | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.2.5<br>-100.0                                                          |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 16.2 SOURCE : 27 CFS - processing  POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                    | 31.5<br>110.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                             | 63 111.0 .0 74.2 .0 .1 .0 -3.9 40.5 cnal) - 63 82.0 .0 74.1 .0 .0 -1.9                | 125 102.0 .0 74.2 .0 .5 .0 4.3 23.0 - silo 125 86.0 .0 74.1 .0 .5 .0 7.4               | FI 250 100.0 .0 .0 .0 .1.7 .0 .0 .1.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                                                                          | 74.2<br>101.0<br>0<br>74.2<br>15.0<br>7.2<br>15.0<br>7.2<br>10<br>88.0<br>0<br>74.1<br>0<br>4.5<br>0<br>0<br>2.2               | 1k 104.0 .0 74.2 .0 8.8 .0 15.0 6.0  CY Hz 1k 81.0 .0 74.1 .0 8.7 .0 -3.7      | 2k 101.0 .0 74.2 .0 15.1 .0 14.5 -2.8  2k 74.0 .0 74.1 .0 15.0 .0 -4.3       | 97.0<br>.0<br>74.2<br>.0<br>30.1<br>.0<br>8.9<br>-16.2<br>4k<br>69.0<br>.0<br>74.1<br>.0<br>29.8<br>.0<br>-2.6 | 105.0<br>.0<br>74.2<br>.0<br>79.4<br>.0<br>2.9<br>-51.6-                                                         | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                        |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 16.2 SOURCE: 27 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 6.5 SOURCE: 28 | 31.5 110.0 .0 74.2 .0 .0 .0 -5.8 41.5 (exter                                                                    | 63 111.0 .0 74.2 .0 .1 .0 -3.9 40.5 cnal) - 63 82.0 .0 74.1 .0 .1 .0 -1.9 9.6         | 125 102.0 .0 74.2 .0 .5 .0 4.3 23.0 - silo  125 86.0 .0 74.1 .0 .5 .0 7.4 3.9          | FI 250 100.0 0 1.7 0 1.7 0 0 1.7 0 0 1.7 0 0 10.9 2.3                                                                                                                                                                                 | 74.2<br>0.0<br>15.0<br>74.2<br>0.0<br>15.0<br>7.2<br>15.0<br>7.2<br>10<br>88.0<br>0.0<br>74.1<br>0.0<br>4.5<br>0.0<br>2.2      | 1k 104.0 .0 74.2 .0 8.8 .0 15.0 6.0  CY Hz 1k 81.0 .0 74.1 .0 8.7 .0 -3.7      | 2k 101.0 .0 74.2 .0 15.1 .0 14.5 -2.8  2k 74.0 .0 74.1 .0 15.0 .0 -4.3       | 97.0<br>.0<br>74.2<br>.0<br>30.1<br>.0<br>8.9<br>-16.2<br>4k<br>69.0<br>.0<br>74.1<br>.0<br>29.8<br>.0<br>-2.6 | 105.0<br>.0<br>74.2<br>.0<br>79.4<br>.0<br>2.9<br>-51.6-                                                         | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                        |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 16.2  SOURCE : 27 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 6.5          | 31.5 110.0 .0 74.2 .0 .0 .0 -5.8 41.5 (exter                                                                    | 63 111.0 .0 74.2 .0 .1 .0 -3.9 40.5  63 82.0 .0 74.1 .0 .1 .0 -1.9 9.6                | 125 102.0 .0 74.2 .0 .0 .5 .0 4.3 23.0 - silo  74.1 .0 .5 .0 7.4 3.9                   | FI 250 100.0 0 0 1.7 1.0 15.0 1.7 1.0 1.0 1.7 1.0 1.0 1.7 1.0 1.0 1.7 1.0 1.0 1.7 1.0 1.0 1.7 1.0 1.0 1.7 1.0 1.0 1.7 1.0 1.0 1.7 1.0 1.0 1.7 1.0 1.0 1.7 1.0 1.0 1.7 1.0 1.0 1.7 1.0 1.0 1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | 74.2<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                             | 1k 104.0 .0 74.2 .0 8.8 .0 15.0 6.0  CY Hz 1k 81.0 .0 74.1 .0 8.7 .0 -3.7      | 2k 101.0 .0 74.2 .0 15.1 .0 14.5 -2.8  2k 74.0 .0 15.0 .0 -4.3               | 97.0<br>.0<br>74.2<br>.0<br>30.1<br>.0<br>8.9<br>-16.2<br>4k<br>69.0<br>.0<br>74.1<br>.0<br>29.8<br>.0<br>-2.6 | 105.0<br>.0<br>74.2<br>.0<br>79.4<br>.0<br>2.9<br>-51.6-                                                         | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                        |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 16.2 SOURCE: 27 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 6.5 SOURCE: 28 | 31.5 110.0 .0 74.2 .0 .0 .0 -5.8 41.5 (exter 31.5 84.0 .0 74.1 .0 .0 .0 -5.0 14.8 (exter                        | 63 111.0 .0 74.2 .0 .1 .0 -3.9 40.5 cnal) - 63 82.0 .0 74.1 .0 .1 .0 -1.9 9.6 cnal) - | 125 102.0 .0 74.2 .0 .0 .5 .0 4.3 23.0 - silo  125 86.0 .0 .5 .0 74.1 .0 .5 .0 7.4 3.9 | FF 250 100.0 .0 .0 .0                                                                                                                                                                                                                 | 74.2 15.0 7.2  REQUENC  74.2 15.0 7.2  REQUENC  88.0 0 74.1 0 4.5 0 2.2 7.2                                                    | 1k 104.0 .0 74.2 .0 8.8 .0 15.0 6.0  CY Hz                                     | 2k 101.0 .0 74.2 .0 15.1 .0 14.5 -2.8  2k 74.0 .0 74.1 .0 15.0 .0 -4.3 -10.8 | 97.0<br>.0<br>74.2<br>.0<br>30.1<br>.0<br>8.9<br>-16.2<br>4k<br>69.0<br>.0<br>74.1<br>.0<br>29.8<br>.0<br>-2.6 | 105.0<br>.0<br>74.2<br>.0<br>79.4<br>.0<br>2.9<br>-51.6-<br>8k<br>63.0<br>.0<br>74.1<br>.0<br>78.7<br>.0<br>-2.3 | .0<br>.0<br>74.2<br>.0<br>263.3<br>.0<br>-2.5<br>-100.0                                                           |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 16.2 SOURCE: 27 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 6.5 SOURCE: 28 | 31.5 110.0 .0 74.2 .0 .0 .0 .0 -5.8 41.5 (exter  31.5 84.0 .0 74.1 .0 .0 .0 -5.0  14.8 (exter                   | 63 111.0 .0 74.2 .0 .1 .0 -3.9 40.5 cnal) - 63 82.0 .0 74.1 .0 .1 .0 -1.9 9.6 cnal) - | 125 102.0 .0 74.2 .0 .5 .0 4.3 23.0 - silo  74.1 .0 .5 .0 7.4 3.9 - silo               | FI 250 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                          | 74.2<br>.0<br>4.5<br>.0<br>77.2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 1k 104.0 .0 74.2 .0 8.8 8.0 15.0 6.0  CY Hz 1k 81.0 .0 74.1 .0 8.7 .0 -3.7 1.9 | 2k 101.0 .0 74.2 .0 15.1 .0 14.5 -2.8  2k 74.0 .0 15.0 .0 -4.3 -10.8         | 97.0<br>.0<br>74.2<br>.0<br>30.1<br>.0<br>8.9<br>-16.2<br>4k<br>69.0<br>.0<br>74.1<br>.0<br>29.8<br>.0<br>-2.6 | 105.0<br>.0<br>74.2<br>.0<br>79.4<br>.0<br>2.9<br>-51.6<br>8k<br>63.0<br>.0<br>74.1<br>.0<br>78.7<br>.0<br>-2.3  | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.2.5<br>-100.0                                                          |

```
BARRIER
                                .0
                                     .0
1.7
                                                  .0
8.7
                                            4.5
                                                      15.0 29.9
AIR ABSORPTION
                    . 0
                                                                   78.9 261.5
                    . 0
                           . 0
                                 . 0
                                             . 0
GROUND
                  -5.0
                        -1.9
                               7.5
                                    10.9
                                            2.2
                                                 -3.7
                                                       -4.3
                                                            -2.6
                                                                   -2.3
TOTAL AWT
             6.5 14.8
                         9.6
                               3.9
                                      2.2
                                            7.1
                                                  1.8 -10.8 -32.5 -87.8-100.0
TOTAL AWT 22.1 45.7 46.1 27.7 19.1 16.6 10.2 1.3 -11.9 -50.8 -88.0 SINGLE POINT CALCULATION
ENM CALC MODULE
FILENAMES
 C:\ENM\SOURCES\2118506A\506A-3
 2118506A GEN
 C:\ENM\MAPS\2118506A\506A
 OUT1 file and RNK1 file
TEMP (deg C)
                    HUMIDITY (%)
   25.0
                       50.0
WIND SPEED (m/sec) WIND DIR (deg)
     .0
                         . 0
TEMP GRAD (deg C/100m)
     .0
   661.000 Y= 2957.000
                                    22.200
SOURCE :
             13
CFS - processing (external) - backhoe
                                      __FREQUENCY Hz_
                  31.5
                         63
                                           500
                                                                         16k
                              125
                                    250
                                                  1k
                                                        2k
                                                              4k
                                                                    8k
POWER LEVEL
                  95.0
                       95.0
                              95.0
                                     95.0
                                           95.0 95.0
                                                       95.0
                                                             95.0
                                                                   95.0
                   . 0
                                                 .0
                                                                    .0
DIRECTIVITY
                          .0
                               .0
                                      . 0
                                            .0
                                                        .0
                                                               .0
                                                                           . 0
DISTANCE
                  75.1
                        75 1
                              75 1
                                     75.1
                                           75 1
                                                 75.1
                                                       75.1
                                                             75.1
                                                                   75.1
                                                                         75 1
BARRIER
                  12.9
                        15.9
                              18.9
                                     21.9
                                           24.9
                                                 25.0
                                                       25.0
                                                             25.0
                                                                   25.0
                                                                         25.0
AIR ABSORPTION
                   .0
                               . 6
                                     1.9
                                                             32.8
                         .1
                                           5.0
                                                 9.7
                                                       16.6
TEMP & WIND
                     Ω
                           Ω
                                 . 0
                                       Ω
                                             . 0
                                                    . 0
                                     2.1 -4.1 -2.2 -2.6
                                                                  -3.1 -4.6
                         -.6
                               9.5
                                                            -2.9
GROUND
                  -4.6
TOTAL AWT -6.2 11.6
                              -9.0 -6.0 -5.9 -12.5 -19.1 -35.0 -89.2-100.0
                         4.5
             14
CFS - processing (external) - FEL
                                      ___FREQUENCY Hz_
                  31 5 63
                              125
                                    250
                                           500
                                                  1k
                                                        2k
                                                              4k
                                                                    8k
                                                                         16k
POWER LEVEL
                  94.0 100.0 100.0 106.0
                                           98.0 101.0
                                                       98.0
                                                             92.0
                                                                   86.0
                                                        .0
                                                               .0
                                                                    .0
DIRECTIVITY
                   . 0
                          . 0
                               .0
                                      .0
                                            .0
                                                 .0
                                                                           . 0
DISTANCE
                  75.1
                        75.1
                              75.1
                                     75.1
                                           75.1
                                                 75.1
                                                       75.1
                                                             75.1
                                                                         75.1
BARRIER
                  13.6
                        16.6
                              19.6
                                    22.6
                                           25.0
                                                 25.0
                                                       25.0
16.6
                                                             25.0
                                                                   25.0 25.0
87.2 289.7
AIR ABSORPTION
                   . 0
                                                  9.7
                                                             32.8
                                           5.0
                                .6
TEMP & WIND
                     . 0
                           .0
                                 . 0
                                                    . 0
                                     2.7
                                                      -2.6
                         -.8
                               9.5
                                          -3.8
                                                -3.0
                                                                  -2.8
GROUND
                  -4 7
                                                            -2.6
                                                                         -3 7
TOTAL AWT
           -.6
                   9.9
                         8.9
                              -4.7
                                     3.8 -3.2 -5.8 -16.1 -38.3 -98.5-100.0
             15
CFS - curing (intenral) - FEL
                                       _FREQUENCY Hz_
                  31.5
                         63
                              125
                                    250
                                           500
                                                  1k
                                                        2k
                                                              4k
                                                                    8k
                                                                         16k
POWER LEVEL
                  84.0
                        90.0
                              90.0
                                     96.0
                                           88.0
                                                 91.0
                                                       88.0
                                                             82.0
                                                                   76.0
                                           . 0
                                                                    .0
DIRECTIVITY
                   .0
                          .0
                               .0
                                     .0
                                                 .0
                                                        .0
                                                              .0
                                                                           .0
DISTANCE
                  75.1
                        75.1
                              75.1
                                     75.1
                                           75.1
                                                 75.1
                                                       75.1
                                                             75.1
                                                                         75.1
BARRIER
                  13.1
                        16.1
                              19.1
                                    22.1
                                           25.0
                                                 25.0
                                                       25.0
16.7
                                                             25.0
                                                                   25.0
                                                                         25.0
AIR ABSORPTION
                   .0
                                                 9.7
                         .1
                               . 6
                                           5.0
                                                             33.0
                                                                   87.6 291.2
TEMP & WIND
                     . 0
GROUND
                  -4.6
                         -.8
                               9.2
                                    2.0 -4.1 -1.9 -2.6
                                                            -3.1 -2.8
                         -.6 -13.9 -5.0 -13.0 -17.0 -26.2 -48.0-100.0-100.0
TOTAL AWT -10.3
                    . 4
SOURCE :
              16
CFS - curing (intenral) - conveyor belt / motor 1
                                       FREOUENCY Hz
```

31.5 63 125 250

500

1k

2k

4k

8k

16k

| POWER LEVEL DIRECTIVITY                 | 77.0       | 93.0  | 80.0   | 74.0        | 72.0    | 68.0  | 65.0<br>.0   | 62.0         | 58.0         |        |
|-----------------------------------------|------------|-------|--------|-------------|---------|-------|--------------|--------------|--------------|--------|
| DISTANCE                                | 75.2       | 75.2  | 75.2   | 75.2        | 75.2    | 75.2  | 75.2         | 75.2         | 75.2         | 75.2   |
| BARRIER                                 | 12.8       | 15.7  | 18.7   | 21.7        | 24.7    | 25.0  | 25.0         | 25.0         | 25.0         |        |
| AIR ABSORPTION<br>TEMP & WIND           | . 0        | . 1   | . 0    | 1.9         | 5.0     | 9.7   | 16.7         | 33.1         | 87.9         | .0     |
| GROUND                                  | .0<br>-4.6 | 7     | 9.1    | 1.6         | -4.3    | -1.4  | -2.8         | -3.3         | -2.3         |        |
| TOTAL AWT -22.5                         | -6.4       | 2.7   | -23.5  | -26.4       | -28.6   | -40.5 | -49.1        | -67.9-       | -100.0-      | -100.0 |
| SOURCE : 17                             |            |       |        |             |         |       |              |              |              |        |
| CFS - curing (int                       | enral)     | - cor | _      |             |         |       |              |              |              |        |
|                                         | 21 5       |       |        | FR          |         |       |              |              | 01-          | 1.61-  |
|                                         | 31.5       | 63    | 125    | 250         | 500     | IK    | 2K           | 4K           | 8k           | 16k    |
| POWER LEVEL<br>DIRECTIVITY              | 77.0       | 93.0  | 80.0   | 74.0        | 72.0    | 68.0  | 65.0         | 62.0         | 58.0         | .0     |
| DISTANCE                                |            |       |        | 75.2        |         |       |              |              | 75.2         | 75.2   |
| BARRIER                                 | 12.8       | 15.5  | 18.5   | 21.5        | 24.5    | 25.0  | 25.0         | 25.0         | 25.0<br>88.1 |        |
| AIR ABSORPTION<br>TEMP & WIND           | .0         | .0    | .0     | .0          | .0      | .0    | .0           | .0           | . 0          | . 0    |
| GROUND                                  | -4.6       | 7     | 9.0    | 1.4         | -4.3    | -1.0  | -2.9         | -3.2         | -2.7         | -3.6   |
| TOTAL AWT -22.3                         | -6.4       | 2.8   | -23.2  | -26.0       | -28.4   | -40.9 | -49.0        | -68.1-       | -100.0-      | -100.0 |
| SOURCE : 18<br>CFS - curing (int        | enral)     | - cor | wevor  | helt /      | motor   | ٠ ٦   |              |              |              |        |
| CLD CULLING (IIII                       | .ciii ai / | COL   |        | Deit /      |         |       |              |              |              |        |
|                                         | 31.5       | 63    |        | 250         | -       |       |              | 4k           | 8k           | 16k    |
| POWER LEVEL                             |            |       |        |             |         |       |              |              |              |        |
| DIRECTIVITY                             | .0         | .0    | .0     | . 0         | . 0     | .0    | .0           | .0           | . 0          | .0     |
| DISTANCE<br>BARRIER                     | 75.2       | 75.2  | 75.2   | 75.2        | 75.2    | 75.2  | 75.2         | 75.2         | 75.2         | 75.2   |
| AIR ABSORPTION                          | .0         | .1    | .6     | 1.9         | 5.0     | 9.7   | 16.7         | 33.1         | 87.9         | 292.0  |
| TEMP & WIND                             | .0<br>-4.3 | .0    | .0     | .0          | .0      | . 0   | .0           | .0           | .0           | .0     |
| GROUND                                  | -4.3       | . 0   | 6.8    | -1.8        | -3.5    | -2.1  | -2.4         | -2.2         | -3.7         | -2.3   |
| TOTAL AWT -17.7                         | -2.7       | 6.6   | -15.3  | -16.8       | -23.2   | -36.3 | -49.1        | -69.0-       | -100.0-      | -100.0 |
| SOURCE : 19<br>CFS - curing (int        | enral)     | - cor | nvevor | belt /      | ′ motor | 4     |              |              |              |        |
|                                         |            |       | _      | FR          |         |       |              |              |              |        |
|                                         | 31.5       | 63    | 125    | 250         | 500     | 1k    | 2k           | 4k           | 8k           | 16k    |
| POWER LEVEL                             | 77.0       | 93.0  | 80.0   | 74.0        | 72.0    | 68.0  | 65.0         | 62.0         | 58.0         | . 0    |
| DIRECTIVITY                             | 77.0<br>.0 | .0    | .0     | .0          | .0      | .0    | .0           | .0           | .0           | .0     |
| DISTANCE                                | 75.1       | 75.1  | 75.1   | 75.1        | 75.1    | 75.1  | 75.1         | 75.1         | 75.1         | 75.1   |
| BARRIER                                 | 10.3       | 12.4  | 14.5   | 17.5        | 20.5    | 23.5  | 25.0         | 25.0         | 25.0         | 25.0   |
| AIR ABSORPTION                          | . 0        | .1    | .6     | 1.9         | 5.0     | 9.7   | 16.6         | 32.9         | 87.3         | 290.1  |
| AIR ABSORPTION<br>TEMP & WIND<br>GROUND | -4.4       | 2     | 7.7    | 9           | -4.3    | -1.5  | -1.7         | -3.0         | -3.1         | -3.8   |
| TOTAL AWT -19.0                         |            |       |        |             |         |       |              |              |              |        |
| SOURCE : 20                             |            |       |        |             |         |       |              |              |              |        |
| CFS - curing (int                       | enral)     |       |        |             |         |       |              |              |              |        |
|                                         | 21 5       |       |        | FR<br>250   |         |       |              |              | 01-          | 161    |
|                                         |            |       |        |             |         |       |              |              |              |        |
| POWER LEVEL<br>DIRECTIVITY              | 77.0       | 93.0  | 80.0   | 74.0        | 72.0    | 68.0  | 65.0         | 62.0         | 58.0         | .0     |
|                                         | 75.0       |       |        |             |         |       |              |              |              |        |
| BARRIER<br>AIR ABSORPTION               | 12.0       | 13.8  | 16.8   | 19.8<br>1.9 | 22.8    | 25.0  | 25.0<br>16 5 | 25.0<br>32.6 | 25.0         | 25.0   |
| TEMP & WIND                             | .0         | .0    | .0     | .0          | .0      | .0    | .0           | .0           | .0           | .0     |
| GROUND                                  | -4.5       | 4     | 8.7    | .0          | -4.5    | 3     | -3.4         | -2.0         | -3.3         | -1.9   |
| TOTAL AWT -20.6                         | -5.5       | 4.4   | -21.1  | -23.2       | -26.3   | -41.3 | -48.1        | -68.5-       | -100.0-      | -100.0 |
| SOURCE : 21<br>CFS - curing (int        | enral)     | - cor | nveyor | belt /      | motor   | : 6   |              |              |              |        |
| J                                       |            |       | _      | FR          |         |       |              |              |              |        |
|                                         |            |       |        | 250         |         |       |              |              |              |        |
| POWER LEVEL                             | 77.0       | 93.0  | 80.0   | 74.0        | 72.0    | 68.0  | 65.0         | 62.0         | 58.0         | . 0    |
| POWER LEVEL<br>DIRECTIVITY              | 77.0<br>.0 | .0    | .0     | .0          | .0      | .0    | .0           | .0           | .0           | .0     |
|                                         |            |       |        |             |         |       |              |              |              |        |

| DISTANCE                                                                                                                                                                                                                                                                                    | 75.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75.0                                                                                                      | 75.0                                                                                                         | 75.0                                                                                                                      | 75.0                                                                                                                            | 75.0                                                                                                         | 75.0                                                                             | 75.0                                                                                           | 75.0                                                                                                                 | 75.0                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| BARRIER                                                                                                                                                                                                                                                                                     | 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.2                                                                                                      | 16.2                                                                                                         | 19.2                                                                                                                      | 22.2                                                                                                                            | 25.0                                                                                                         | 75.0<br>25.0                                                                     | 25.0                                                                                           | 25.0                                                                                                                 | 25.0                                                                                                                                      |
| AIR ABSORPTION<br>TEMP & WIND<br>GROUND                                                                                                                                                                                                                                                     | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .1                                                                                                        | .5                                                                                                           | 1.8                                                                                                                       | 4.9                                                                                                                             | 9.5                                                                                                          | 16.4                                                                             | 32.4                                                                                           | 86.1                                                                                                                 | 286.3                                                                                                                                     |
| GROUND                                                                                                                                                                                                                                                                                      | -4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                         | 8.3                                                                                                          | .0                                                                                                                        | -4.5                                                                                                                            | 5                                                                                                            | -3.0                                                                             | -2.6                                                                                           | -2.4                                                                                                                 | -1.8                                                                                                                                      |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                                              |                                                                                                                           |                                                                                                                                 |                                                                                                              |                                                                                  |                                                                                                |                                                                                                                      |                                                                                                                                           |
| TOTAL AWT -19.9                                                                                                                                                                                                                                                                             | -5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.1                                                                                                       | -20.0                                                                                                        | -22.0                                                                                                                     | -25.6                                                                                                                           | -41.1                                                                                                        | -48.3                                                                            | -67.8-                                                                                         | -100.0-                                                                                                              | -100.0                                                                                                                                    |
| SOURCE : 22                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                                              |                                                                                                                           |                                                                                                                                 |                                                                                                              |                                                                                  |                                                                                                |                                                                                                                      |                                                                                                                                           |
| CFS - processing                                                                                                                                                                                                                                                                            | (exte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rnal) -                                                                                                   | - RTT r                                                                                                      | manv                                                                                                                      |                                                                                                                                 |                                                                                                              |                                                                                  |                                                                                                |                                                                                                                      |                                                                                                                                           |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                                              | FI                                                                                                                        | FOITEM                                                                                                                          | 7V H7                                                                                                        |                                                                                  |                                                                                                |                                                                                                                      |                                                                                                                                           |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                                              |                                                                                                                           | CEQUEIN                                                                                                                         |                                                                                                              |                                                                                  |                                                                                                |                                                                                                                      |                                                                                                                                           |
|                                                                                                                                                                                                                                                                                             | 31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63                                                                                                        | 125                                                                                                          | 250                                                                                                                       | 500                                                                                                                             | 1k                                                                                                           | 2k                                                                               | 4k                                                                                             | 8k                                                                                                                   | 16k                                                                                                                                       |
| POWER LEVEL                                                                                                                                                                                                                                                                                 | 111 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 114 0                                                                                                     | 103 0                                                                                                        | 104 0                                                                                                                     | 103 0                                                                                                                           | 100 0                                                                                                        | 98 0                                                                             | 94 0                                                                                           | 88 0                                                                                                                 | 0                                                                                                                                         |
| DIRECTIVITY                                                                                                                                                                                                                                                                                 | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .0                                                                                                        | .0                                                                                                           | .0                                                                                                                        | .0                                                                                                                              | .0                                                                                                           | .0                                                                               | .0                                                                                             | .0                                                                                                                   | .0                                                                                                                                        |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | E4 0                                                                                                         | E4 0                                                                                                                      |                                                                                                                                 |                                                                                                              |                                                                                  |                                                                                                |                                                                                                                      | T4 0                                                                                                                                      |
| DISTANCE<br>BARRIER                                                                                                                                                                                                                                                                         | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .0                                                                                                        | .0                                                                                                           | .0                                                                                                                        | .0                                                                                                                              | .0                                                                                                           | 74.2                                                                             | .0                                                                                             | .0                                                                                                                   | .0                                                                                                                                        |
| AIR ABSORPTION                                                                                                                                                                                                                                                                              | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .1                                                                                                        | . 5                                                                                                          | 1.7                                                                                                                       | 4.5                                                                                                                             | 8.7                                                                                                          | 15.0                                                                             | 29.9                                                                                           | 79.1                                                                                                                 | 262.0                                                                                                                                     |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND                                                                                                                                                                                                                                          | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .0                                                                                                        | .0                                                                                                           | .0                                                                                                                        | .0                                                                                                                              | .0                                                                                                           | .0                                                                               | .0                                                                                             | .0                                                                                                                   | .0                                                                                                                                        |
| GROUND                                                                                                                                                                                                                                                                                      | -5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -3.9                                                                                                      | 4.3                                                                                                          | 15.0                                                                                                                      | 15.0                                                                                                                            | 15.0                                                                                                         | 14.5                                                                             | 8.9                                                                                            | 2.9                                                                                                                  | -2.5                                                                                                                                      |
| TOTAL AWT 18.6                                                                                                                                                                                                                                                                              | 42.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43.6                                                                                                      | 24.1                                                                                                         | 13.1                                                                                                                      | 9.3                                                                                                                             | 2.1                                                                                                          | -5.7                                                                             | -19.0                                                                                          | -68.1-                                                                                                               | -100.0                                                                                                                                    |
| SOURCE : 23                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                                              |                                                                                                                           |                                                                                                                                 |                                                                                                              |                                                                                  |                                                                                                |                                                                                                                      |                                                                                                                                           |
| CFS - processing                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nal) ·                                                                                                    | - RTT :                                                                                                      | revers                                                                                                                    | ing                                                                                                                             |                                                                                                              |                                                                                  |                                                                                                |                                                                                                                      |                                                                                                                                           |
| _                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                                              |                                                                                                                           |                                                                                                                                 |                                                                                                              |                                                                                  |                                                                                                |                                                                                                                      |                                                                                                                                           |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                                              | F                                                                                                                         | REQUEN                                                                                                                          | CY Hz_                                                                                                       |                                                                                  |                                                                                                |                                                                                                                      |                                                                                                                                           |
|                                                                                                                                                                                                                                                                                             | 31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63                                                                                                        | 125                                                                                                          | 250                                                                                                                       | 500                                                                                                                             | 1k                                                                                                           | 2k                                                                               | 4k                                                                                             | 8k                                                                                                                   | 16k                                                                                                                                       |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                                              | <b>50</b> 00                                                                                                              | 00.0                                                                                                                            | 00.0                                                                                                         | 01 0                                                                             | 0                                                                                              |                                                                                                                      | •                                                                                                                                         |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                                                                                  | 57.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75.0                                                                                                      | 75.0                                                                                                         | 79.0                                                                                                                      | 89.0                                                                                                                            | 93.0                                                                                                         | 91.0                                                                             | 87.0                                                                                           | 77.0                                                                                                                 | .0                                                                                                                                        |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                                              |                                                                                                                           |                                                                                                                                 |                                                                                                              |                                                                                  |                                                                                                |                                                                                                                      |                                                                                                                                           |
| DISTANCE                                                                                                                                                                                                                                                                                    | 75.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75.2                                                                                                      | 75.2                                                                                                         | 75.2                                                                                                                      | 75.2                                                                                                                            | 75.2                                                                                                         | 75.2<br>25.0                                                                     | 75.2                                                                                           | 75.2                                                                                                                 | 75.2                                                                                                                                      |
| BARRIER<br>AIR ABSORPTION                                                                                                                                                                                                                                                                   | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.1                                                                                                      | 14.0                                                                                                         | 17.0                                                                                                                      | 5 0                                                                                                                             | 9.8                                                                                                          | 25.0<br>16.8                                                                     | 25.0<br>33.1                                                                                   | 88 O                                                                                                                 | 25.0                                                                                                                                      |
| TEMP & WIND                                                                                                                                                                                                                                                                                 | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .0                                                                                                        | .0                                                                                                           | .0                                                                                                                        | .0                                                                                                                              | .0                                                                                                           | 16.8<br>.0                                                                       | .0                                                                                             | .0                                                                                                                   | .0                                                                                                                                        |
| GROUND                                                                                                                                                                                                                                                                                      | -4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                         | 7.8                                                                                                          | 9                                                                                                                         | -4.3                                                                                                                            |                                                                                                              | -1.8                                                                             |                                                                                                |                                                                                                                      | -2.5                                                                                                                                      |
| TOTAL AWT -8.2                                                                                                                                                                                                                                                                              | -23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -12.4                                                                                                     | -22.5                                                                                                        | -14.2                                                                                                                     | -6.9                                                                                                                            | -13.6                                                                                                        | -24.2                                                                            | -43.4-                                                                                         | -100.0-                                                                                                              | -100.0                                                                                                                                    |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                                              |                                                                                                                           |                                                                                                                                 |                                                                                                              |                                                                                  |                                                                                                |                                                                                                                      |                                                                                                                                           |
| SOURCE : 24<br>CFS - processing                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anol)                                                                                                     | duat                                                                                                         | gollo                                                                                                                     | n+on /                                                                                                                          | fon                                                                                                          |                                                                                  |                                                                                                |                                                                                                                      |                                                                                                                                           |
| CFS - processing                                                                                                                                                                                                                                                                            | (exter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | illai) -                                                                                                  | - dust                                                                                                       | COLLEC                                                                                                                    | SCOI /                                                                                                                          | Lall                                                                                                         |                                                                                  |                                                                                                |                                                                                                                      |                                                                                                                                           |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                                              | F                                                                                                                         | EOHENG                                                                                                                          | Y Hz                                                                                                         |                                                                                  |                                                                                                |                                                                                                                      |                                                                                                                                           |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                                              |                                                                                                                           | LLQ O LL.                                                                                                                       |                                                                                                              |                                                                                  |                                                                                                |                                                                                                                      |                                                                                                                                           |
|                                                                                                                                                                                                                                                                                             | 31 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63                                                                                                        |                                                                                                              |                                                                                                                           |                                                                                                                                 |                                                                                                              |                                                                                  |                                                                                                | 8k                                                                                                                   | 16k                                                                                                                                       |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | 125                                                                                                          | 250                                                                                                                       | 500                                                                                                                             | 1k                                                                                                           | 2k                                                                               | 4k                                                                                             |                                                                                                                      |                                                                                                                                           |
| POWER LEVEL                                                                                                                                                                                                                                                                                 | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102.0                                                                                                     | 125<br>106.0                                                                                                 | 250<br>109.0                                                                                                              | 500<br>108.0                                                                                                                    | 1k<br>101.0                                                                                                  | 2k<br>94.0                                                                       | 4k<br>89.0                                                                                     | 83.0                                                                                                                 | .0                                                                                                                                        |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                                                                                  | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102.0                                                                                                     | 125<br>106.0                                                                                                 | 250<br>109.0                                                                                                              | 500<br>108.0                                                                                                                    | 1k<br>101.0                                                                                                  | 2k                                                                               | 4k<br>89.0                                                                                     | 83.0                                                                                                                 | .0                                                                                                                                        |
| DIRECTIVITY                                                                                                                                                                                                                                                                                 | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102.0                                                                                                     | 125<br>106.0<br>.0                                                                                           | 250<br>109.0<br>.0                                                                                                        | 500<br>108.0<br>.0                                                                                                              | 1k<br>101.0<br>.0                                                                                            | 2k<br>94.0<br>.0                                                                 | 4k<br>89.0<br>.0                                                                               | 83.0                                                                                                                 | .0                                                                                                                                        |
| DIRECTIVITY                                                                                                                                                                                                                                                                                 | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102.0                                                                                                     | 125<br>106.0<br>.0                                                                                           | 250<br>109.0<br>.0                                                                                                        | 500<br>108.0<br>.0                                                                                                              | 1k<br>101.0<br>.0                                                                                            | 2k<br>94.0<br>.0                                                                 | 4k<br>89.0<br>.0                                                                               | 83.0                                                                                                                 | .0                                                                                                                                        |
| DIRECTIVITY                                                                                                                                                                                                                                                                                 | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102.0                                                                                                     | 125<br>106.0<br>.0                                                                                           | 250<br>109.0<br>.0                                                                                                        | 500<br>108.0<br>.0                                                                                                              | 1k<br>101.0<br>.0                                                                                            | 2k<br>94.0<br>.0                                                                 | 4k<br>89.0<br>.0                                                                               | 83.0                                                                                                                 | .0                                                                                                                                        |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                                                                                                                                                                                                                    | 100.0<br>.0<br>74.9<br>11.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102.0<br>.0<br>74.9<br>12.7<br>.1                                                                         | 125<br>106.0<br>.0<br>74.9<br>15.4<br>.5                                                                     | 250<br>109.0<br>.0<br>74.9<br>18.4<br>1.8                                                                                 | 500<br>108.0<br>.0<br>74.9<br>21.4<br>4.9                                                                                       | 1k 101.0 .0 74.9 24.5 9.5                                                                                    | 2k<br>94.0<br>.0                                                                 | 4k<br>89.0<br>.0<br>74.9<br>25.0<br>32.4                                                       | 83.0<br>.0<br>74.9<br>25.0<br>85.9                                                                                   | .0<br>.0<br>74.9<br>25.0<br>285.5                                                                                                         |
| DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                                                                                                                                              | 100.0<br>.0<br>74.9<br>11.0<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102.0<br>.0<br>74.9<br>12.7<br>.1<br>.0                                                                   | 125<br>106.0<br>.0<br>74.9<br>15.4<br>.5<br>.0<br>8.2                                                        | 250<br>109.0<br>.0<br>74.9<br>18.4<br>1.8<br>.0<br>2                                                                      | 500<br>108.0<br>.0<br>74.9<br>21.4<br>4.9<br>.0<br>-4.5                                                                         | 1k 101.0 .0 74.9 24.5 9.5 .06                                                                                | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8                                                | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6                                                              | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1                                                                     | .0<br>.0<br>74.9<br>25.0<br>285.5<br>.0<br>-2.2                                                                                           |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                                                                                                                                                                                                                    | 100.0<br>.0<br>74.9<br>11.0<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102.0<br>.0<br>74.9<br>12.7<br>.1<br>.0                                                                   | 125<br>106.0<br>.0<br>74.9<br>15.4<br>.5<br>.0<br>8.2                                                        | 250<br>109.0<br>.0<br>74.9<br>18.4<br>1.8<br>.0<br>2                                                                      | 500<br>108.0<br>.0<br>74.9<br>21.4<br>4.9<br>.0<br>-4.5                                                                         | 1k 101.0 .0 74.9 24.5 9.5 .06                                                                                | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8                                                | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6                                                              | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1                                                                     | .0<br>.0<br>74.9<br>25.0<br>285.5<br>.0<br>-2.2                                                                                           |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25                                                                                                                                                                                                 | 100.0<br>.0<br>74.9<br>11.0<br>.0<br>-4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 102.0<br>.0<br>74.9<br>12.7<br>.1<br>.0<br>3                                                              | 125<br>106.0<br>.0<br>74.9<br>15.4<br>.5<br>.0<br>8.2                                                        | 250<br>109.0<br>.0<br>74.9<br>18.4<br>1.8<br>.0<br>2                                                                      | 500<br>108.0<br>.0<br>74.9<br>21.4<br>4.9<br>.0<br>-4.5                                                                         | 1k 101.0 .0 74.9 24.5 9.5 .06                                                                                | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8                                                | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6                                                              | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1                                                                     | .0<br>.0<br>74.9<br>25.0<br>285.5<br>.0<br>-2.2                                                                                           |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1                                                                                                                                                                                                             | 100.0<br>.0<br>74.9<br>11.0<br>.0<br>-4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 102.0<br>.0<br>74.9<br>12.7<br>.1<br>.0<br>3                                                              | 125<br>106.0<br>.0<br>74.9<br>15.4<br>.5<br>.0<br>8.2                                                        | 250<br>109.0<br>.0<br>74.9<br>18.4<br>1.8<br>.0<br>2                                                                      | 500<br>108.0<br>.0<br>74.9<br>21.4<br>4.9<br>.0<br>-4.5                                                                         | 1k 101.0 .0 74.9 24.5 9.5 .06                                                                                | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8                                                | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6                                                              | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1                                                                     | .0<br>.0<br>74.9<br>25.0<br>285.5<br>.0<br>-2.2                                                                                           |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25                                                                                                                                                                                                 | 100.0<br>.0<br>74.9<br>11.0<br>.0<br>-4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 102.0<br>.0<br>74.9<br>12.7<br>.1<br>.0<br>3                                                              | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9                                                                         | 250<br>109.0<br>.0<br>74.9<br>18.4<br>1.8<br>.0<br>2<br>14.0                                                              | 500<br>108.0<br>.0<br>74.9<br>21.4<br>4.9<br>.0<br>-4.5                                                                         | 1k 101.0 .0 74.9 24.5 9.5 .06                                                                                | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8                                                | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6                                                              | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1                                                                     | .0<br>.0<br>74.9<br>25.0<br>285.5<br>.0<br>-2.2                                                                                           |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25                                                                                                                                                                                                 | 100.0<br>.0<br>74.9<br>11.0<br>.0<br>.0<br>-4.4<br>18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102.0<br>.0<br>74.9<br>12.7<br>.1<br>.0<br>3                                                              | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9                                                                         | 250  109.0 .0  74.9 18.4 1.8 .02  14.0                                                                                    | 500  108.0 .0  74.9 21.4 4.9 .0 -4.5  11.2                                                                                      | 1k 101.0 .0 74.9 24.5 9.5 .06 -7.3                                                                           | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8                                                | 4k<br>89.0<br>.0<br>74.9<br>25.0<br>32.4<br>.0<br>-2.6                                         | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1                                                                     | .0<br>.0<br>74.9<br>25.0<br>285.5<br>.0<br>-2.2                                                                                           |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25                                                                                                                                                                                                 | 100.0<br>.0<br>74.9<br>11.0<br>.0<br>.0<br>-4.4<br>18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102.0<br>.0<br>74.9<br>12.7<br>.1<br>.0<br>3                                                              | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9                                                                         | 250  109.0 .0  74.9 18.4 1.8 .02  14.0                                                                                    | 500  108.0 .0  74.9 21.4 4.9 .0 -4.5  11.2                                                                                      | 1k 101.0 .0 74.9 24.5 9.5 .06 -7.3                                                                           | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8                                                | 4k<br>89.0<br>.0<br>74.9<br>25.0<br>32.4<br>.0<br>-2.6                                         | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1                                                                     | .0<br>.0<br>74.9<br>25.0<br>285.5<br>.0<br>-2.2                                                                                           |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25 CFS - processing  POWER LEVEL                                                                                                                                                                   | 100.0<br>.0<br>74.9<br>11.0<br>.0<br>.0<br>.0<br>-4.4<br>18.4<br>(exter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102.0<br>.0<br>74.9<br>12.7<br>.1<br>.0<br>-3<br>14.4                                                     | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9 - fork:                                                                 | 250  109.0 .0  74.9 18.4 1.8 .02 14.0  lift                                                                               | 500  108.0 .0  74.9 21.4 4.9 .0 -4.5  11.2  REQUENCE 500 93.0                                                                   | 1k 101.0 .0 74.9 24.5 9.5 .06 -7.3 CY Hz_ 1k 93.0                                                            | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8 -19.5                                          | 4k<br>89.0<br>.0<br>74.9<br>25.0<br>32.4<br>.0<br>-2.6<br>-40.7                                | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1                                                                     | .0<br>.0<br>.0<br>.0<br>.0<br>.25.0<br>.0<br>.0<br>.2.2<br>-100.0                                                                         |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE : 25 CFS - processing                                                                                                                                                                               | 100.0<br>.0<br>74.9<br>11.0<br>.0<br>.0<br>.0<br>-4.4<br>18.4<br>(exter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102.0<br>.0<br>74.9<br>12.7<br>.1<br>.0<br>-3<br>14.4                                                     | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9 - fork:                                                                 | 250  109.0 .0  74.9 18.4 1.8 .02 14.0  lift                                                                               | 500  108.0 .0  74.9 21.4 4.9 .0 -4.5  11.2  REQUENCE 500 93.0                                                                   | 1k 101.0 .0 74.9 24.5 9.5 .06 -7.3 CY Hz_ 1k 93.0                                                            | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8 -19.5                                          | 4k<br>89.0<br>.0<br>74.9<br>25.0<br>32.4<br>.0<br>-2.6<br>-40.7                                | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1                                                                     | .0<br>.0<br>.0<br>.0<br>.0<br>.25.0<br>.0<br>.0<br>.2.2<br>-100.0                                                                         |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY                                                                                                                                                       | 100.0<br>.0<br>74.9<br>11.0<br>.0<br>.0<br>-4.4<br>18.4<br>(exteri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 102.0<br>.0<br>74.9<br>12.7<br>.1<br>.0<br>3<br>14.4<br>cnal)                                             | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9 fork:                                                                   | 250  109.0 .0  74.9 18.4 1.8 .02  14.0  lift  FF  250 97.0 .0                                                             | 500  108.0 .0  74.9 21.4 4.9 .0 -4.5  11.2  REQUENC 500 93.0 .0                                                                 | 1k 101.0 .0 74.9 24.5 9.5 .06 -7.3  CY Hz                                                                    | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8 -19.5                                          | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6 -40.7  4k 88.0 .0                                            | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1<br>-99.7-                                                           | .0<br>.0<br>74.9<br>25.0<br>285.5<br>.0<br>-2.2<br>-100.0                                                                                 |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                                                                                     | 100.0<br>.0<br>74.9<br>11.0<br>.0<br>.0<br>.0<br>-4.4<br>18.4<br>(exter<br>31.5<br>101.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 102.0<br>.0<br>74.9<br>12.7<br>.1<br>.0<br>-3<br>14.4<br>enal)                                            | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9 - fork:                                                                 | 250  109.0 .0  74.9 18.4 1.8 .02 14.0  lift  FF  250 97.0 .0  75.1 16.5                                                   | 500  108.0 .0  74.9 21.4 4.9 .0 -4.5  11.2  REQUENCE 500 93.0 .0  75.1 19.5                                                     | 1k 101.0 .0 74.9 24.5 9.5 .06 -7.3  CY Hz 1k 93.0 .0 75.1 22.5                                               | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8 -19.5                                          | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6 -40.7  4k 88.0 .0 75.1 25.0                                  | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1<br>-99.7-<br>8k<br>83.0<br>.0                                       | .0<br>.0<br>.0<br>.0<br>.0<br>.25.0<br>.0<br>.0<br>.2.2<br>-100.0                                                                         |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                                                                                     | 100.0<br>.0<br>74.9<br>11.0<br>.0<br>.0<br>.0<br>-4.4<br>18.4<br>(exter<br>31.5<br>101.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 102.0<br>.0<br>74.9<br>12.7<br>.1<br>.0<br>-3<br>14.4<br>enal)                                            | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9 - fork:                                                                 | 250  109.0 .0  74.9 18.4 1.8 .02 14.0  lift  FF  250 97.0 .0  75.1 16.5                                                   | 500  108.0 .0  74.9 21.4 4.9 .0 -4.5  11.2  REQUENCE 500 93.0 .0  75.1 19.5                                                     | 1k 101.0 .0 74.9 24.5 9.5 .06 -7.3  CY Hz 1k 93.0 .0 75.1 22.5                                               | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8 -19.5                                          | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6 -40.7  4k 88.0 .0 75.1 25.0                                  | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1<br>-99.7-<br>8k<br>83.0<br>.0                                       | .0<br>.0<br>.0<br>.0<br>.0<br>.25.0<br>.0<br>.0<br>.2.2<br>-100.0                                                                         |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                                                                                     | 100.0<br>.0<br>74.9<br>11.0<br>.0<br>.0<br>.0<br>-4.4<br>18.4<br>(exter<br>31.5<br>101.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 102.0<br>.0<br>74.9<br>12.7<br>.1<br>.0<br>-3<br>14.4<br>enal)                                            | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9 - fork:                                                                 | 250  109.0 .0  74.9 18.4 1.8 .02 14.0  lift  FF  250 97.0 .0  75.1 16.5                                                   | 500  108.0 .0  74.9 21.4 4.9 .0 -4.5  11.2  REQUENCE 500 93.0 .0  75.1 19.5                                                     | 1k 101.0 .0 74.9 24.5 9.5 .06 -7.3  CY Hz 1k 93.0 .0 75.1 22.5                                               | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8 -19.5                                          | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6 -40.7  4k 88.0 .0 75.1 25.0                                  | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1<br>-99.7-<br>8k<br>83.0<br>.0                                       | .0<br>.0<br>.0<br>.0<br>.0<br>.25.0<br>.0<br>.0<br>.2.2<br>-100.0                                                                         |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                   | 100.0 .0 74.9 11.0 .0 .0 .0 .0 .0 .0 .1 .18.4 (exter  31.5 101.0 .0 75.1 9.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 102.0<br>.0<br>74.9<br>12.7<br>.1<br>.0<br>3<br>14.4<br>enal) -                                           | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9 - fork:  125 99.0 .0 75.1 13.5 .6 .0 7.7                                | 250  109.0 .0  74.9 18.4 1.8 .02 14.0  lift  FF  250 97.0 .0  75.1 16.5 1.9 .09                                           | 500  108.0 .0  74.9 21.4 4.9 .0 -4.5  11.2  REQUENC 500 93.0 .0  75.1 19.5 5.0 .0 -4.3                                          | 1k 101.0 .0 74.9 24.5 9.5 .06 -7.3  CY Hz 1k 93.0 .0 75.1 22.5 9.7 .0 -1.5                                   | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8 -19.5                                          | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6 -40.7  4k 88.0 .0 75.1 25.0 32.9 .0 -3.0                     | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1<br>-99.7-<br>8k<br>83.0<br>.0<br>75.1<br>25.0<br>87.5<br>.0<br>-3.1 | .0<br>.0<br>.0<br>.0<br>.0<br>.25.0<br>.0<br>.0<br>.2.2<br>-100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                                                                                     | 100.0 .0 74.9 11.0 .0 .0 .0 .0 .0 .0 .1 .18.4 (exter  31.5 101.0 .0 75.1 9.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 102.0<br>.0<br>74.9<br>12.7<br>.1<br>.0<br>3<br>14.4<br>enal) -                                           | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9 - fork:  125 99.0 .0 75.1 13.5 .6 .0 7.7                                | 250  109.0 .0  74.9 18.4 1.8 .02 14.0  lift  FF  250 97.0 .0  75.1 16.5 1.9 .09                                           | 500  108.0 .0  74.9 21.4 4.9 .0 -4.5  11.2  REQUENC 500 93.0 .0  75.1 19.5 5.0 .0 -4.3                                          | 1k 101.0 .0 74.9 24.5 9.5 .06 -7.3  CY Hz 1k 93.0 .0 75.1 22.5 9.7 .0 -1.5                                   | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8 -19.5                                          | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6 -40.7  4k 88.0 .0 75.1 25.0 32.9 .0 -3.0                     | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1<br>-99.7-<br>8k<br>83.0<br>.0<br>75.1<br>25.0<br>87.5<br>.0<br>-3.1 | .0<br>.0<br>.0<br>.0<br>.0<br>.25.0<br>.0<br>.0<br>.2.2<br>-100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                   | 100.0<br>.0<br>74.9<br>11.0<br>.0<br>.0<br>-4.4<br>18.4<br>(external control of the control of th | 102.0<br>.0<br>74.9<br>12.7<br>.1<br>.0<br>3<br>14.4<br>enal) -                                           | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9 - fork:  125 99.0 .0 75.1 13.5 .6 .0 7.7                                | 250  109.0 .0  74.9 18.4 1.8 .02 14.0  lift  FF  250 97.0 .0  75.1 16.5 1.9 .09                                           | 500  108.0 .0  74.9 21.4 4.9 .0 -4.5  11.2  REQUENC 500 93.0 .0  75.1 19.5 5.0 .0 -4.3                                          | 1k 101.0 .0 74.9 24.5 9.5 .06 -7.3  CY Hz 1k 93.0 .0 75.1 22.5 9.7 .0 -1.5                                   | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8 -19.5                                          | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6 -40.7  4k 88.0 .0 75.1 25.0 32.9 .0 -3.0                     | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1<br>-99.7-<br>8k<br>83.0<br>.0<br>75.1<br>25.0<br>87.5<br>.0<br>-3.1 | .0<br>.0<br>.0<br>.0<br>.0<br>.25.0<br>.0<br>.0<br>.2.2<br>-100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT9                                                                                       | 100.0 .0 74.9 11.0 .0 .0 -4.4  18.4  (external content of the cont                 | 102.0<br>.0<br>74.9<br>12.7<br>.1<br>.0<br>3<br>14.4<br>cnal) -                                           | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9 - fork: 125 99.0 .0 75.1 13.5 .6 .0 7.7                                 | 250  109.0 .0  74.9 18.4 1.8 .02  14.0  lift  250  97.0 .0  75.1 16.5 1.9 .09 4.4                                         | 500  108.0 .0  74.9 21.4 4.9 .0 -4.5  11.2  REQUENC 500 93.0 .0  75.1 19.5 5.0 .0 -4.3                                          | 1k 101.0 .0 74.9 24.5 9.5 .06 -7.3  1k 93.0 .0 75.1 22.5 9.7 .0 -1.5                                         | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8 -19.5                                          | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6 -40.7  4k 88.0 .0 75.1 25.0 32.9 .0 -3.0                     | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1<br>-99.7-<br>8k<br>83.0<br>.0<br>75.1<br>25.0<br>87.5<br>.0<br>-3.1 | .0<br>.0<br>.0<br>.0<br>.0<br>.25.0<br>.0<br>.0<br>.2.2<br>-100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT9  SOURCE: 26                                                                           | 100.0 .0 74.9 11.0 .0 .0 -4.4  18.4  (external content of the cont                 | 102.0 .0 74.9 12.7 .1 .0 .3 14.4 cnal) 63 100.0 .0 75.1 11.8 .1 .0 .1 13.1                                | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9 - fork: 125 99.0 .0 75.1 13.5 .6 .0 7.7 2.1                             | 250  109.0 .0 74.9 18.4 1.8 .02 14.0  lift  FF  250 97.0 .0 75.1 16.5 1.9 .09 4.4                                         | 500  108.0 .0 74.9 21.4 4.9 .0 -4.5  11.2  REQUENC 500 93.0 .0 75.1 19.5 5.0 .0 -4.3  -2.4                                      | 1k 101.0 .0 74.9 24.5 9.5 .06 -7.3  CY Hz 1k 93.0 .0 75.1 22.55 9.7 .0 -1.5                                  | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8 -19.5                                          | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6 -40.7  4k 88.0 .0 75.1 25.0 32.9 .0 -3.0                     | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1<br>-99.7-<br>8k<br>83.0<br>.0<br>75.1<br>25.0<br>87.5<br>.0<br>-3.1 | .0<br>.0<br>.0<br>.0<br>.0<br>.25.0<br>.0<br>.0<br>.2.2<br>-100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT9  SOURCE: 26                                                                           | 100.0 .0 74.9 11.0 .0 .0 .0 .0 .0 .0 .1 18.4  (external content of the content of                 | 102.0 .0 74.9 12.7 .1 .0 .3 14.4 cnal) 63 100.0 .0 75.1 11.8 .1 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9 - fork:  125 99.0 .0 75.1 13.5 .6 .0 7.7 2.1                            | 250  109.0 .0  74.9 18.4 1.8 .02  14.0  lift                                                                              | 500  108.0 .0  74.9 21.4 4.9 .0 -4.5  11.2  REQUENO 93.0 .0  75.1 19.5 5.0 .0 -4.3 -2.4  unload  REQUENO                        | 1k 101.0 .0 74.9 24.5 9.5 .06 -7.3  CY Hz 1k 93.0 .0 75.1 22.5 9.7 .0 -1.5 -12.9                             | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8 -19.5  2k 91.0 .0 75.1 25.0 16.7 .0 -1.7       | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6 -40.7  4k 88.0 .0 75.1 25.0 32.9 .0 -3.0 -42.1               | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1<br>-99.7-<br>8k<br>83.0<br>.0<br>75.1<br>25.0<br>87.5<br>.0<br>-3.1 | .0<br>.0<br>.0<br>.0<br>.0<br>.285.0<br>.0<br>.0<br>.2.2<br>-100.0                                                                        |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT9  SOURCE: 26                                                                           | 100.0 .0 74.9 11.0 .0 .0 .0 .0 .0 .0 .1 18.4  (external content of the content of                 | 102.0 .0 74.9 12.7 .1 .0 .3 14.4 cnal) 63 100.0 .0 75.1 11.8 .1 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9 - fork:  125 99.0 .0 75.1 13.5 .6 .0 7.7 2.1                            | 250  109.0 .0  74.9 18.4 1.8 .02  14.0  lift                                                                              | 500  108.0 .0  74.9 21.4 4.9 .0 -4.5  11.2  REQUENO 93.0 .0  75.1 19.5 5.0 .0 -4.3 -2.4  unload  REQUENO                        | 1k 101.0 .0 74.9 24.5 9.5 .06 -7.3  CY Hz 1k 93.0 .0 75.1 22.5 9.7 .0 -1.5 -12.9                             | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8 -19.5                                          | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6 -40.7  4k 88.0 .0 75.1 25.0 32.9 .0 -3.0 -42.1               | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1<br>-99.7-<br>8k<br>83.0<br>.0<br>75.1<br>25.0<br>87.5<br>.0<br>-3.1 | .0<br>.0<br>.0<br>.0<br>.0<br>.285.0<br>.0<br>.0<br>.2.2<br>-100.0                                                                        |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT9  SOURCE: 26 CFS - processing                                                          | 100.0 .0 74.9 11.0 .0 .0 -4.4  18.4  (extendary continuation of the continuation of th                 | 102.0 .0 74.9 12.7 .1 .0 .3 14.4 cnal) 63 100.0 .0 75.1 11.8 .1 .0 .1 13.1 cnal)                          | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9 - fork:  125 99.0 .0 75.1 13.5 .6 .0 7.7 2.1 - aggree                   | 250  109.0 .0  74.9 18.4 1.8 .0 .0 -2  14.0  lift  FF  250  75.1 16.5 1.9 .0 -9 4.4  egate v                              | 500  108.0 .0  74.9 21.4 4.9 21.4 4.9 11.2  REQUENC 500  93.0 .0  75.1 19.5 5.0 .0 -4.3 -2.4  unload REQUENC 500                | 1k 101.0 .0 74.9 24.5 9.5 .0 -6 -7.3  CY Hz 1k 93.0 .0 75.1 22.5 9.7 .0 -1.5 -12.9                           | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8 -19.5  2k 91.0 .0 75.1 25.0 -1.7 -24.1         | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6 -40.7  4k 88.0 .0 75.1 25.0 32.9 .3.0 -42.1                  | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1<br>-99.7-<br>8k<br>83.0<br>.0<br>75.1<br>25.0<br>87.5<br>.0<br>-3.1 | .0<br>.0<br>.0<br>.0<br>.0<br>.25.0<br>.0<br>.2.2<br>-100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0       |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT9  SOURCE: 26                                                                           | 100.0 .0 74.9 11.0 .0 .0 -4.4  18.4  (external content of the cont                 | 102.0 .0 .74.9 12.7 .1 .0 .3 .14.4 cnal) .0 .0 .0 .0 .1 .1.8 .1 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9 - fork:  125 99.0 .0 75.1 13.5 .6 .0 7.7 2.1 - aggree  125 102.0        | 250  109.0 .0  74.9 18.4 1.8 .0 .2 14.0  lift  FI  250  75.1 16.5 1.9 .0 .09 4.4  egate to FI  250  100.0                 | 500  108.0 .0  74.9 21.4 4.9 .0 -4.5  11.2  REQUENC 500 93.0 .0  75.1 19.5 5.0 .0 -4.3 -2.4  unload REQUENC 500  101.0          | 1k 101.0 .0 74.9 24.5 9.5 .06 -7.3  CY Hz 1k 93.0 .0 75.1 22.5 9.7 .0 -1.5 -12.9  CY Hz 1k 104.0             | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8 -19.5  2k 91.0 .0 75.1 25.0 -1.7 -24.1         | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6 -40.7  4k 88.0 .0 75.1 25.0 32.9 .0 -3.0 -42.1               | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1<br>-99.7-<br>8k<br>83.0<br>.0<br>75.1<br>25.0<br>87.5<br>.0<br>-3.1 | .0<br>.0<br>.0<br>.0<br>.0<br>.25.0<br>.0<br>.0<br>.22<br>-100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0  |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT9  SOURCE: 26 CFS - processing                                                          | 100.0 .0 74.9 11.0 .0 .0 -4.4  18.4  (exter  31.5  101.0 .0 .0 75.1 9.6 .0 .0 -4.4  20.7  (exter  31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.0 .0 74.9 12.7 .1 .0 .3 14.4 cnal) 63 100.0 .0 75.1 11.8 .1 .0 .1 13.1 cnal) 63                       | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9 - fork:  125 99.0 .0 75.1 13.5 .6 .0 7.7 2.1 - aggre                    | 250  109.0 .0 74.9 18.4 1.8 .0 .2 14.0  lift  FF  250 97.0 .0 75.1 16.5 1.9 .0 .9 4.4  egate t                            | 500  108.0 .0 74.9 21.4 4.9 .0 -4.5  11.2  REQUENC 500 93.0 .0 75.1 19.5 5.0 .0 -4.3  -2.4  anload REQUENC 500 101.0 .0         | 1k  101.0 .0  74.9 24.5 9.5 .0 .6  -7.3  CY Hz 1k  93.0 .0  75.1 22.5 9.7 .0 .1.5  -12.9  CY Hz 1k  104.0 .0 | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8 -19.5  2k 91.0 .0 75.1 25.0 16.7 .0 -1.7 -24.1 | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6 -40.7  4k 88.0 .0 75.1 25.0 32.9 .0 -3.0  -42.1              | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1<br>-99.7-<br>8k<br>83.0<br>.0<br>75.1<br>25.0<br>87.5<br>.0<br>-3.1 | .0<br>.0<br>.0<br>.0<br>.0<br>.25.0<br>.0<br>.2.2<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0           |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT9  SOURCE: 26 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE : 26 CFS - processing | 100.0 .0 74.9 11.0 .0 .0 -4.4  18.4  (exter  31.5  101.0 .0 -4.4  20.7  (exter  31.5  110.0 .0 75.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 102.0 .0 .74.9 12.7 .1 .0 .3 .14.4 cnal) .0 .0 .1 .13.1 cnal) .0 .75.0                                    | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9 - fork:  125 99.0 .0 75.1 13.5 .6 .0 7.7 2.1 - aggree 125 102.0 .0 75.0 | 250  109.0 .0  74.9 18.4 1.8 .0 .0 14.0  lift  FF  250 97.0 .0  75.1 16.5 1.9 .0 -9 4.4  egate v  FF  250  100.0 .0  75.0 | 500  108.0 .0  74.9 21.4 4.9 21.4 500  -4.5  11.2  REQUENC 500  75.1 19.5 5.0 .0 -4.3  -2.4  anload REQUENC 500  101.0 .0  75.0 | 1k 101.0 .0 74.9 24.5 9.5 .0 -6 -7.3  CY Hz 1k 93.0 .0 75.1 22.5 9.7 .0 -1.5 -12.9  CY Hz 1k 104.0 .0 75.0   | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8 -19.5  2k 91.0 .0 75.1 25.0 -1.7 -24.1         | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6 -40.7  4k 88.0 .0 75.1 25.0 32.9 .3.0 -42.1  4k 97.0 .0 75.0 | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1<br>-99.7-<br>8k<br>83.0<br>.0<br>75.1<br>25.0<br>87.5<br>.0<br>-3.1 | .0<br>.0<br>.0<br>.0<br>.0<br>.25.0<br>.0<br>.0<br>.22<br>-100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0  |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 10.1  SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT9  SOURCE: 26 CFS - processing                                                          | 100.0 .0 74.9 11.0 .0 .0 -4.4  18.4  (exter  31.5  101.0 .0 -4.4  20.7  (exter  31.5  110.0 .0 75.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 102.0 .0 .74.9 12.7 .1 .0 .3 .14.4 cnal) .0 .0 .1 .13.1 cnal) .0 .75.0                                    | 125 106.0 .0 74.9 15.4 .5 .0 8.2 6.9 - fork:  125 99.0 .0 75.1 13.5 .6 .0 7.7 2.1 - aggree 125 102.0 .0 75.0 | 250  109.0 .0  74.9 18.4 1.8 .0 .0 14.0  lift  FF  250 97.0 .0  75.1 16.5 1.9 .0 -9 4.4  egate v  FF  250  100.0 .0  75.0 | 500  108.0 .0  74.9 21.4 4.9 21.4 500  -4.5  11.2  REQUENC 500  75.1 19.5 5.0 .0 -4.3  -2.4  anload REQUENC 500  101.0 .0  75.0 | 1k 101.0 .0 74.9 24.5 9.5 .0 -6 -7.3  CY Hz 1k 93.0 .0 75.1 22.5 9.7 .0 -1.5 -12.9  CY Hz 1k 104.0 .0 75.0   | 2k 94.0 .0 74.9 25.0 16.4 .0 -2.8 -19.5  2k 91.0 .0 75.1 25.0 -1.7 -24.1         | 4k 89.0 .0 74.9 25.0 32.4 .0 -2.6 -40.7  4k 88.0 .0 75.1 25.0 32.9 .3.0 -42.1  4k 97.0 .0 75.0 | 83.0<br>.0<br>74.9<br>25.0<br>85.9<br>.0<br>-3.1<br>-99.7-<br>8k<br>83.0<br>.0<br>75.1<br>25.0<br>87.5<br>.0<br>-3.1 | .0<br>.0<br>.0<br>.0<br>.0<br>.25.0<br>.0<br>.0<br>.22<br>-100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0  |

TEMP & WIND .0 .0 -5.8 -3.7 .0 .0 .0 9.3 3.3 -2.1 GROUND TOTAL AWT 15.1 40.7 39.6 21.5 8.1 6.0 4.3 -5.2 -20.1 -60.2-100.0 27 CFS - processing (external) - silo vent 1 \_\_\_FREQUENCY Hz\_ 31.5 63 125 250 500 1k 2k 4k 16k 8k POWER LEVEL 84.0 82.0 86.0 89.0 88.0 81.0 74.0 69.0 63.0 DIRECTIVITY .0 .0 .0 .0 .0 .0 .0 . 0 . 0 . 0 75.0 75.0 75.0 75.0 75.0 DISTANCE 75.0 75.0 75.0 75.0 75.0 BARRIER .0 .0 .0 .0 1.8 . 0 . 0 AIR ABSORPTION 4.9 9.5 16.4 86.1 286.2 32.4 .0 .0 -3.3 -4.9 TEMP & WIND Ω .0 .0 0 . 0 8.2 11.6 2.9 GROUND -5.0 -1.7 -2.0 -2.1 -3.3 2.3 5.2 -.2 -12.5 -36.4 -96.0-100.0 TOTAL AWT 4.5 14.0 8.6 . 6 SOURCE : 28 CFS - processing (external) - silo vent 2 \_\_\_FREQUENCY Hz\_ 31.5 63 125 250 500 1k 2k 4k 8k 16k POWER LEVEL 84.0 82.0 86.0 89.0 88.0 81.0 74.0 69.0 63.0 DIRECTIVITY .0 .0 .0 .0 .0 .0 .0 .0 .0 . 0 75.0 DISTANCE 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 .0 BARRIER .0 .0 . 0 .0 .0 1.8 AIR ABSORPTION 4.9 9.6 16.4 32.5 86.3 286.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .3.2 -4.9 -2.0 -2.1 -3.2 TEMP & WIND . 0 . 0 . 0 . 0 .0 -5.0 -1.7 8.2 11.6 2.9 GROUND TOTAL AWT 4.5 14.0 -.3 -12.5 -36.5 -96.2-100.0 8.6 2.3 5.2 . 5 TOTAL AWT 20.9 44.8 45.1 26.1 17.8 15.3 8.3 -1.3 -16.3 -59.5 -88.0 SINGLE POINT CALCULATION ENM CALC MODULE FILENAMES C:\ENM\SOURCES\2118506A\506A-3 2118506A.GEN C:\ENM\MAPS\2118506A\506A OUT1 file and RNK1 file TEMP (deg C) HUMIDITY (%) 50.0 25.0 WIND SPEED (m/sec) WIND DIR (deg) .0 .0 TEMP GRAD (deg C/100m) .0 X= 2568.000 Y= 556.000 Z= 61.200 SOURCE : 13 CFS - processing (external) - backhoe

| CFS - processing                | (exte           | rnaı) | - Dack          | noe   |                  |                   |                  |                  |                   |        |
|---------------------------------|-----------------|-------|-----------------|-------|------------------|-------------------|------------------|------------------|-------------------|--------|
|                                 |                 |       |                 | FR    | EQUENC           | CY Hz_            |                  |                  |                   |        |
|                                 | 31.5            | 63    | 125             | 250   | 500              | 1k                | 2k               | 4k               | 8k                | 16k    |
| POWER LEVEL<br>DIRECTIVITY      |                 |       |                 |       |                  |                   |                  |                  |                   |        |
|                                 | 5.0<br>.0<br>.0 | .2    | 4.9<br>.7<br>.0 | .0    | 4.0<br>6.2<br>.0 | 2.7<br>11.9<br>.0 | .9<br>20.4<br>.0 | .0<br>39.9<br>.0 | .0<br>107.3<br>.0 | 300.0  |
| TOTAL AWT 10.8                  | 16.2            | 9.9   | 12.3            | 13.4  | 9.2              | 5.4               | 9                | -22.1            | -87.4             | -100.0 |
| SOURCE : 14<br>CFS - processing | (exte           | rnal) | - FEL           |       |                  |                   |                  |                  |                   |        |
|                                 |                 |       |                 | FR    | EQUENC           | CY Hz_            |                  |                  |                   |        |
|                                 | 31.5            | 63    | 125             | 250   | 500              | 1k                | 2k               | 4k               | 8k                | 16k    |
| POWER LEVEL<br>DIRECTIVITY      |                 |       |                 | 106.0 |                  |                   |                  |                  |                   |        |

| BARRIER<br>AIR ABSORPTION                                                                                                                                                                                                  | 77.0<br>5.0<br>.0<br>.0                                                                                                     | 4.9                                                                                                                | 4.9                                                                                                                        | 4.7                                                                                                                             | 3.9<br>6.1                                                                                                                                                                                                        | 2.5                                                                                                               | .7<br>20 4                                                                                                        | .0<br>39.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 107.0                                                                                                         | 300 0                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| TOTAL AWT 18.1                                                                                                                                                                                                             | 15.2                                                                                                                        | 15.0                                                                                                               | 17.3                                                                                                                       | 24.5                                                                                                                            | 12.3                                                                                                                                                                                                              | 11.6                                                                                                              | 2.3                                                                                                               | -25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -95.9-                                                                                                        | -100.0                                                                     |
| SOURCE : 15<br>CFS - curing (int                                                                                                                                                                                           | enral)                                                                                                                      | - FEL                                                                                                              |                                                                                                                            | -                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                                                                            |
|                                                                                                                                                                                                                            | 31 5                                                                                                                        | 63                                                                                                                 |                                                                                                                            | FR<br>250                                                                                                                       | -                                                                                                                                                                                                                 |                                                                                                                   |                                                                                                                   | 4 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 k-                                                                                                          | 16k                                                                        |
| POWER LEVEL                                                                                                                                                                                                                |                                                                                                                             |                                                                                                                    |                                                                                                                            |                                                                                                                                 |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                                                                            |
| DIRECTIVITY                                                                                                                                                                                                                | .0                                                                                                                          | .0                                                                                                                 | .0                                                                                                                         | .0                                                                                                                              | .0                                                                                                                                                                                                                | .0                                                                                                                | .0                                                                                                                | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .0                                                                                                            | .0                                                                         |
| DISTANCE<br>BARRIER                                                                                                                                                                                                        | 5.0                                                                                                                         | 4.9                                                                                                                | 4.8                                                                                                                        | 4.6                                                                                                                             | 3.6                                                                                                                                                                                                               | 2.1                                                                                                               | . 4                                                                                                               | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 0                                                                                                           | . 0                                                                        |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                   | .0<br>.0<br>-3.2                                                                                                            | .2                                                                                                                 | .7                                                                                                                         | 2.3                                                                                                                             | 6.0<br>.0                                                                                                                                                                                                         | 11.7                                                                                                              | 19.9<br>.0                                                                                                        | 39.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 104.7                                                                                                         | 300.0                                                                      |
|                                                                                                                                                                                                                            |                                                                                                                             |                                                                                                                    |                                                                                                                            |                                                                                                                                 |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                                                                            |
| TOTAL AWT 8.8                                                                                                                                                                                                              | 5.4                                                                                                                         | 5.2                                                                                                                | 7.4                                                                                                                        | 15.0                                                                                                                            | 3.0                                                                                                                                                                                                               | 2.5                                                                                                               | -6.8                                                                                                              | -29.6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -100.0-                                                                                                       | -100.0                                                                     |
| SOURCE : 16<br>CFS - curing (int                                                                                                                                                                                           | enral)                                                                                                                      | - con                                                                                                              | veyor                                                                                                                      | belt /                                                                                                                          | motor                                                                                                                                                                                                             | 1                                                                                                                 |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                                                                            |
|                                                                                                                                                                                                                            |                                                                                                                             |                                                                                                                    |                                                                                                                            | FR                                                                                                                              | EQUENC                                                                                                                                                                                                            | Y Hz_                                                                                                             |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                                                                            |
|                                                                                                                                                                                                                            | 31.5                                                                                                                        | 63                                                                                                                 | 125                                                                                                                        | 250                                                                                                                             | 500                                                                                                                                                                                                               | 1k                                                                                                                | 2k                                                                                                                | 4k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8k                                                                                                            | 16k                                                                        |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                 | 77.0                                                                                                                        | 93.0                                                                                                               | 80.0                                                                                                                       | 74.0                                                                                                                            | 72.0                                                                                                                                                                                                              | 68.0                                                                                                              | 65.0                                                                                                              | 62.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 58.0                                                                                                          | .0                                                                         |
| DISTANCE<br>BARRIER                                                                                                                                                                                                        | 76.7<br>5.0                                                                                                                 | 76.7<br>4.9                                                                                                        | 76.7<br>4.8                                                                                                                | 76.7<br>4.7                                                                                                                     | 76.7<br>3.7                                                                                                                                                                                                       | 76.7<br>2.2                                                                                                       | 76.7<br>.5                                                                                                        | 76.7<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76.7<br>.0                                                                                                    | 76.7<br>.0                                                                 |
| AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                              | Ω                                                                                                                           | 2                                                                                                                  | 7                                                                                                                          | 2 2                                                                                                                             | 5 9                                                                                                                                                                                                               | 11 5                                                                                                              | 19 7                                                                                                              | 38 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103 5                                                                                                         | 300 0                                                                      |
| GROUND                                                                                                                                                                                                                     | .0                                                                                                                          | 3.0                                                                                                                | . 4                                                                                                                        | -2.6                                                                                                                            | -1.4                                                                                                                                                                                                              | -2.0                                                                                                              | -2.3                                                                                                              | -4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.4                                                                                                          | -2.3                                                                       |
| TOTAL AWT -10.3                                                                                                                                                                                                            | -1.5                                                                                                                        | 8.3                                                                                                                | -2.5                                                                                                                       | -6.9                                                                                                                            | -12.9                                                                                                                                                                                                             | -20.3                                                                                                             | -29.5                                                                                                             | -49.1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -100.0-                                                                                                       | -100.0                                                                     |
| SOURCE : 17<br>CFS - curing (int                                                                                                                                                                                           | enral)                                                                                                                      | - con                                                                                                              | veyor                                                                                                                      | belt /                                                                                                                          | motor                                                                                                                                                                                                             | 2                                                                                                                 |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                                                                            |
|                                                                                                                                                                                                                            |                                                                                                                             |                                                                                                                    |                                                                                                                            | FR                                                                                                                              | EQUENC                                                                                                                                                                                                            | Y Hz_                                                                                                             |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                                                                            |
|                                                                                                                                                                                                                            |                                                                                                                             |                                                                                                                    |                                                                                                                            |                                                                                                                                 |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                                                                            |
|                                                                                                                                                                                                                            | 31.5                                                                                                                        | 63                                                                                                                 | 125                                                                                                                        | 250                                                                                                                             | 500                                                                                                                                                                                                               | 1k                                                                                                                | 2k                                                                                                                | 4k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8k                                                                                                            | 16k                                                                        |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                 | 77.0                                                                                                                        | 93.0                                                                                                               | 80.0                                                                                                                       | 74.0                                                                                                                            | 72.0                                                                                                                                                                                                              | 68.0                                                                                                              | 65.0                                                                                                              | 62.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 58.0                                                                                                          | .0                                                                         |
| DIRECTIVITY                                                                                                                                                                                                                | 77.0<br>.0<br>76.6                                                                                                          | 93.0<br>.0<br>76.6                                                                                                 | 80.0<br>.0<br>76.6                                                                                                         | 74.0<br>.0                                                                                                                      | 72.0<br>.0                                                                                                                                                                                                        | 68.0<br>.0<br>76.6                                                                                                | 65.0<br>.0<br>76.6                                                                                                | 62.0<br>.0<br>76.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58.0<br>.0<br>76.6                                                                                            | .0<br>.0<br>76.6                                                           |
| DIRECTIVITY DISTANCE BARRIER                                                                                                                                                                                               | 77.0<br>.0<br>76.6<br>5.0                                                                                                   | 93.0<br>.0<br>76.6<br>4.9<br>.2                                                                                    | 80.0<br>.0<br>76.6<br>4.8<br>.7                                                                                            | 74.0<br>.0<br>76.6<br>4.7<br>2.2                                                                                                | 72.0<br>.0<br>76.6<br>3.7<br>5.9                                                                                                                                                                                  | 68.0<br>.0<br>76.6<br>2.3<br>11.4                                                                                 | 65.0<br>.0<br>76.6<br>.5                                                                                          | 62.0<br>.0<br>76.6<br>.0<br>38.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58.0<br>.0<br>76.6<br>.0<br>102.4                                                                             | .0<br>.0<br>76.6<br>.0<br>300.0                                            |
| DIRECTIVITY                                                                                                                                                                                                                | 77.0<br>.0<br>76.6<br>5.0                                                                                                   | 93.0<br>.0<br>76.6<br>4.9<br>.2                                                                                    | 80.0<br>.0<br>76.6<br>4.8<br>.7                                                                                            | 74.0<br>.0                                                                                                                      | 72.0<br>.0<br>76.6<br>3.7<br>5.9                                                                                                                                                                                  | 68.0<br>.0<br>76.6<br>2.3<br>11.4                                                                                 | 65.0<br>.0<br>76.6<br>.5                                                                                          | 62.0<br>.0<br>76.6<br>.0<br>38.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58.0<br>.0<br>76.6<br>.0<br>102.4                                                                             | .0<br>.0<br>76.6<br>.0<br>300.0                                            |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                                                                                                                                                                | 77.0<br>.0<br>76.6<br>5.0<br>.0<br>.0                                                                                       | 93.0<br>.0<br>76.6<br>4.9<br>.2<br>.0<br>2.9                                                                       | 80.0<br>.0<br>76.6<br>4.8<br>.7<br>.0                                                                                      | 74.0<br>.0<br>76.6<br>4.7<br>2.2<br>.0<br>-2.6                                                                                  | 72.0<br>.0<br>76.6<br>3.7<br>5.9<br>.0<br>-1.4                                                                                                                                                                    | 68.0<br>.0<br>76.6<br>2.3<br>11.4<br>.0<br>-2.0                                                                   | 65.0<br>.0<br>76.6<br>.5<br>19.5<br>.0<br>-2.3                                                                    | 62.0<br>.0<br>76.6<br>.0<br>38.2<br>.0<br>-3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58.0<br>.0<br>76.6<br>.0<br>102.4<br>.0<br>-1.8                                                               | .0<br>.0<br>76.6<br>.0<br>300.0<br>.0<br>-2.5                              |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                                                                            | 77.0<br>.0<br>76.6<br>5.0<br>.0<br>-3.2                                                                                     | 93.0<br>.0<br>76.6<br>4.9<br>.2<br>.0<br>2.9                                                                       | 80.0<br>.0<br>76.6<br>4.8<br>.7<br>.0<br>.4                                                                                | 74.0<br>.0<br>76.6<br>4.7<br>2.2<br>.0<br>-2.6                                                                                  | 72.0<br>.0<br>76.6<br>3.7<br>5.9<br>.0<br>-1.4                                                                                                                                                                    | 68.0<br>.0<br>76.6<br>2.3<br>11.4<br>.0<br>-2.0                                                                   | 65.0<br>.0<br>76.6<br>.5<br>19.5<br>.0<br>-2.3                                                                    | 62.0<br>.0<br>76.6<br>.0<br>38.2<br>.0<br>-3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58.0<br>.0<br>76.6<br>.0<br>102.4<br>.0<br>-1.8                                                               | .0<br>.0<br>76.6<br>.0<br>300.0<br>.0<br>-2.5                              |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -10.2 SOURCE : 18                                                                                                                               | 77.0<br>.0<br>76.6<br>5.0<br>.0<br>.0<br>-3.2<br>-1.3                                                                       | 93.0<br>.0<br>76.6<br>4.9<br>.2<br>.0<br>2.9                                                                       | 80.0<br>.0<br>76.6<br>4.8<br>.7<br>.0<br>.4<br>-2.4                                                                        | 74.0<br>.0<br>76.6<br>4.7<br>2.2<br>.0<br>-2.6                                                                                  | 72.0<br>.0<br>76.6<br>3.7<br>5.9<br>.0<br>-1.4                                                                                                                                                                    | 68.0<br>.0<br>76.6<br>2.3<br>11.4<br>.0<br>-2.0                                                                   | 65.0<br>.0<br>76.6<br>.5<br>19.5<br>.0<br>-2.3                                                                    | 62.0<br>.0<br>76.6<br>.0<br>38.2<br>.0<br>-3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58.0<br>.0<br>76.6<br>.0<br>102.4<br>.0<br>-1.8                                                               | .0<br>.0<br>76.6<br>.0<br>300.0<br>.0<br>-2.5                              |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -10.2 SOURCE : 18                                                                                                                               | 77.0<br>.0<br>76.6<br>5.0<br>.0<br>.0<br>-3.2<br>-1.3                                                                       | 93.0<br>.0<br>76.6<br>4.9<br>.2<br>.0<br>2.9<br>8.4                                                                | 80.0<br>.0<br>76.6<br>4.8<br>.7<br>.0<br>.4                                                                                | 74.0<br>.0<br>76.6<br>4.7<br>2.2<br>.0<br>-2.6                                                                                  | 72.0<br>.0<br>76.6<br>3.7<br>5.9<br>.0<br>-1.4<br>-12.8<br>motor                                                                                                                                                  | 68.0<br>.0<br>76.6<br>2.3<br>11.4<br>.0<br>-2.0                                                                   | 65.0<br>.0<br>76.6<br>.5<br>19.5<br>.0<br>-2.3                                                                    | 62.0<br>.0<br>76.6<br>.0<br>38.2<br>.0<br>-3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58.0<br>.0<br>76.6<br>.0<br>102.4<br>.0<br>-1.8                                                               | .0<br>.0<br>76.6<br>.0<br>300.0<br>-2.5                                    |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -10.2 SOURCE : 18                                                                                                                               | 77.0<br>.0<br>76.6<br>5.0<br>.0<br>-3.2<br>-1.3<br>:enral)                                                                  | 93.0<br>.0<br>76.6<br>4.9<br>.2<br>.0<br>2.9<br>8.4<br>- con                                                       | 80.0<br>.0<br>76.6<br>4.8<br>.7<br>.0<br>.4<br>-2.4<br>                                                                    | 74.0<br>.0<br>76.6<br>4.7<br>2.2<br>.0<br>-2.6<br>-6.8                                                                          | 72.0<br>.0<br>76.6<br>3.7<br>5.9<br>.0<br>-1.4<br>-12.8<br>motor<br>500<br>72.0                                                                                                                                   | 68.0<br>.0<br>76.6<br>2.3<br>11.4<br>.0<br>-2.0<br>-20.2<br>3<br>2Y Hz                                            | 65.0<br>.0<br>76.6<br>.5<br>19.5<br>.0<br>-2.3<br>-29.3                                                           | 62.0<br>.0<br>76.6<br>.0<br>38.2<br>.0<br>-3.9<br>-48.9-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58.0<br>.0<br>76.6<br>.0<br>102.4<br>.0<br>-1.8<br>-100.0-                                                    | .0<br>.0<br>76.6<br>.0<br>300.0<br>-2.5<br>-100.0                          |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -10.2  SOURCE : 18 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE                                                                         | 77.0<br>.0<br>76.6<br>5.0<br>.0<br>.0<br>-3.2<br>-1.3<br>cenral)<br>31.5<br>77.0<br>.0                                      | 93.0<br>.0<br>76.6<br>4.9<br>.2<br>.0<br>2.9<br>8.4<br>- con<br>63<br>93.0<br>.0<br>76.5                           | 80.0<br>.0<br>76.6<br>4.8<br>.7<br>.0<br>.4<br>-2.4<br>veyor<br>125<br>80.0<br>.0<br>76.5                                  | 74.0<br>.0<br>76.6<br>4.7<br>2.2<br>.0<br>-2.6<br>-6.8<br>belt /<br>250<br>74.0<br>.0<br>76.5                                   | 72.0<br>.0<br>76.6<br>3.7<br>5.9<br>.0<br>-1.4<br>-12.8<br>motor<br>500<br>72.0<br>.0<br>76.5                                                                                                                     | 68.0<br>.0<br>76.6<br>2.3<br>11.4<br>.0<br>-2.0<br>-20.2<br>3<br>2Y Hz                                            | 65.0<br>.0<br>76.6<br>.5<br>19.5<br>.0<br>-2.3<br>-29.3                                                           | 62.0<br>.0<br>76.6<br>.0<br>38.2<br>.0<br>-3.9<br>-48.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58.0<br>.0<br>76.6<br>.0<br>102.4<br>.0<br>-1.8<br>-100.0-                                                    | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-2.5<br>-100.0                   |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -10.2  SOURCE : 18 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION                                                  | 77.0<br>.0<br>76.6<br>5.0<br>.0<br>.0<br>-3.2<br>-1.3<br>eenral)<br>31.5<br>77.0<br>.0                                      | 93.0<br>.0<br>76.6<br>4.9<br>.0<br>2.9<br>8.4<br>- con<br>63<br>93.0<br>.0<br>76.5                                 | 80.0<br>.0<br>76.6<br>4.8<br>.7<br>.0<br>.4<br>-2.4<br>.veyor<br>125<br>80.0<br>.0<br>76.5<br>4.8                          | 74.0<br>.0<br>76.6<br>4.7<br>2.2<br>.0<br>-2.6<br>-6.8<br>belt /<br>FR<br>250<br>74.0<br>.0                                     | 72.0<br>.0<br>76.6<br>3.7<br>5.9<br>.0<br>-1.4<br>-12.8<br>motor<br>500<br>72.0<br>.0<br>76.5                                                                                                                     | 68.0<br>.0<br>76.6<br>2.3<br>11.4<br>.0<br>-2.0<br>-20.2<br>-3<br>2Y Hz                                           | 65.0<br>.0<br>76.6<br>.9.5<br>.0<br>-2.3<br>-29.3                                                                 | 62.0<br>.0<br>76.6<br>.0<br>38.2<br>.0<br>-3.9<br>-48.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58.0<br>.0<br>76.6<br>.0<br>102.4<br>.0<br>-1.8<br>-100.0-                                                    | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-2.5<br>-100.0                   |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -10.2 SOURCE : 18 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                  | 77.0<br>.0<br>76.6<br>5.0<br>.0<br>.0<br>-3.2<br>-1.3<br>cenral)<br>31.5<br>77.0<br>.0                                      | 93.0<br>.0<br>76.6<br>4.9<br>.0<br>2.9<br>8.4<br>- con<br>63<br>93.0<br>.0<br>76.5                                 | 80.0<br>.0<br>76.6<br>4.8<br>.7<br>.0<br>.4<br>-2.4<br>.veyor<br>125<br>80.0<br>.0<br>76.5<br>4.8                          | 74.0<br>.0<br>76.6<br>4.7<br>2.2<br>.0<br>-2.6<br>-6.8<br>belt /<br>FR<br>250<br>74.0<br>.0                                     | 72.0<br>.0<br>76.6<br>3.7<br>5.9<br>.0<br>-1.4<br>-12.8<br>motor<br>500<br>72.0<br>.0<br>76.5                                                                                                                     | 68.0<br>.0<br>76.6<br>2.3<br>11.4<br>.0<br>-2.0<br>-20.2<br>-3<br>2Y Hz                                           | 65.0<br>.0<br>76.6<br>.9.5<br>.0<br>-2.3<br>-29.3                                                                 | 62.0<br>.0<br>76.6<br>.0<br>38.2<br>.0<br>-3.9<br>-48.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58.0<br>.0<br>76.6<br>.0<br>102.4<br>.0<br>-1.8<br>-100.0-                                                    | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-2.5<br>-100.0                   |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -10.2  SOURCE : 18 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                      | 77.0<br>.0<br>76.6<br>5.0<br>.0<br>-3.2<br>-1.3<br>tenral)<br>31.5<br>77.0<br>.0<br>76.5<br>5.0<br>.0<br>.0                 | 93.0<br>.0<br>76.6<br>4.9<br>.2.9<br>8.4<br>- con<br>63<br>93.0<br>.0<br>76.5<br>4.9<br>.2<br>.0<br>2.9            | 80.0<br>.0<br>76.6<br>4.8<br>.7<br>.0<br>.4<br>-2.4<br>eveyor<br>125<br>80.0<br>.0<br>76.5<br>4.8<br>.6<br>.0              | 74.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.2.6<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0        | 72.0<br>.0<br>76.6<br>3.7<br>5.9<br>.0<br>-1.4<br>-12.8<br>motor<br>500<br>72.0<br>.0<br>76.5<br>3.7<br>5.8<br>.0<br>-1.4                                                                                         | 68.0<br>.0<br>76.6<br>2.3<br>11.4<br>.0<br>-2.0<br>-20.2<br>1k<br>68.0<br>.0<br>76.5<br>2.3<br>11.3<br>.0<br>-2.0 | 65.0<br>.0<br>76.6<br>.5<br>19.5<br>.0<br>-2.3<br>-29.3<br>-29.3<br>-29.3                                         | 62.0<br>.0<br>76.6<br>.0<br>38.2<br>.0<br>-3.9<br>-48.9-<br>4k<br>62.0<br>.0<br>76.5<br>.0<br>38.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58.0<br>.0<br>76.6<br>.0<br>102.4<br>.0<br>-1.8<br>-100.0-                                                    | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.2.5<br>-100.0                   |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -10.2  SOURCE : 18 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                               | 77.0<br>.0<br>76.6<br>5.0<br>.0<br>.0<br>-3.2<br>-1.3<br>senral)<br>31.5<br>77.0<br>.0<br>76.5<br>5.0<br>.0<br>.0<br>-3.2   | 93.0<br>.0<br>76.6<br>4.9<br>.2.9<br>8.4<br>- con<br>63<br>93.0<br>.0<br>76.5<br>4.9<br>.2.0<br>.2.9               | 80.0<br>.0<br>76.6<br>4.8<br>.7<br>.0<br>.4<br>-2.4<br>veyor<br>125<br>80.0<br>.0<br>76.5<br>4.8<br>.6<br>.0<br>.4         | 74.0<br>.0<br>76.6<br>4.7<br>2.2<br>.0<br>-2.6<br>-6.8<br>belt /<br>FR<br>250<br>74.0<br>.0<br>76.5<br>4.7<br>2.2<br>.0<br>-2.6 | 72.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1.4<br>.12.8<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                           | 68.0<br>.0<br>76.6<br>2.3<br>11.4<br>.0<br>-2.0<br>-20.2<br>18<br>68.0<br>.0<br>76.5<br>2.3<br>11.3<br>.0<br>-2.0 | 65.0<br>.0<br>76.6<br>.5<br>19.5<br>.0<br>-2.3<br>-29.3<br>-29.3<br>-29.3                                         | 62.0<br>.0<br>76.6<br>.0<br>38.2<br>.0<br>-3.9<br>-48.9-<br>4k<br>62.0<br>.0<br>76.5<br>.0<br>38.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58.0<br>.0<br>76.6<br>.0<br>102.4<br>.0<br>-1.8<br>-100.0-                                                    | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.2.5<br>-100.0                   |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -10.2  SOURCE : 18 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -10.1  SOURCE : 19 | 77.0<br>.0<br>76.6<br>5.0<br>.0<br>.0<br>-3.2<br>-1.3<br>senral)<br>31.5<br>77.0<br>.0<br>76.5<br>5.0<br>.0<br>.0<br>-3.2   | 93.0<br>.0<br>76.6<br>4.9<br>.2.9<br>8.4<br>- con<br>63<br>93.0<br>.0<br>76.5<br>4.9<br>.2.0<br>.2.9               | 80.0<br>.0<br>76.6<br>4.8<br>.7<br>.0<br>.4<br>-2.4<br>Eveyor<br>125<br>80.0<br>.0<br>76.5<br>4.8<br>.6<br>.0<br>.4        | 74.0<br>.0<br>76.6<br>4.7<br>2.2<br>.0<br>-2.6<br>-6.8<br>belt /<br>FR<br>250<br>74.0<br>.0<br>76.5<br>4.7<br>2.2<br>.0<br>-2.6 | 72.0<br>.0<br>76.6<br>3.7<br>5.9<br>.0<br>-1.4<br>-12.8<br>motor<br>500<br>72.0<br>.0<br>76.5<br>3.7<br>5.9<br>.0<br>-1.4<br>-12.8                                                                                | 68.0<br>.0<br>76.6<br>2.3<br>11.4<br>.0<br>-2.0<br>-20.2<br>1k<br>68.0<br>.0<br>76.5<br>2.3<br>11.3<br>.0<br>-2.0 | 65.0<br>.0<br>76.6<br>.5<br>.0<br>-2.3<br>-29.3<br>-29.3<br>-29.3<br>-29.3<br>-29.3                               | 62.0<br>.0<br>76.6<br>.0<br>38.2<br>.0<br>-3.9<br>-48.9<br>4k<br>62.0<br>.0<br>76.5<br>.0<br>38.0<br>-4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58.0<br>.0<br>76.6<br>.0<br>102.4<br>.0<br>-1.8<br>-100.0-                                                    | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.2.5<br>-100.0                   |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -10.2  SOURCE : 18 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -10.1  SOURCE : 19 | 77.0<br>.0<br>76.6<br>5.0<br>.0<br>-3.2<br>-1.3<br>tenral)<br>31.5<br>77.0<br>.0<br>76.5<br>5.0<br>.0<br>.0<br>-3.2<br>-1.3 | 93.0<br>.0<br>76.6<br>4.9<br>.2<br>.0<br>2.9<br>8.4<br>- con<br>63<br>93.0<br>.0<br>76.5<br>4.9<br>.2<br>.0<br>2.9 | 80.0<br>.0<br>76.6<br>4.8<br>.7<br>.0<br>.4<br>-2.4<br>veyor<br>125<br>80.0<br>.0<br>76.5<br>4.8<br>.6<br>.0<br>.4         | 74.0<br>.0<br>76.6<br>4.7<br>2.2<br>.0<br>-2.6<br>-6.8<br>belt /<br>250<br>74.0<br>.0<br>76.5<br>4.7<br>2.2<br>.0<br>-2.6       | 72.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1.4<br>.12.8<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                           | 68.0<br>.0<br>76.6<br>2.3<br>11.4<br>.0<br>-2.0<br>-20.2<br>3<br>2Y Hz                                            | 65.0<br>.0<br>76.6<br>.5<br>19.5<br>.0<br>-2.3<br>-29.3<br>2k<br>65.0<br>.0<br>76.5<br>.5<br>19.4<br>.0<br>-2.3   | 62.0<br>.0<br>76.6<br>.0<br>38.2<br>.0<br>-3.9<br>-48.9<br>4k<br>62.0<br>.0<br>76.5<br>.0<br>38.0<br>.0<br>-4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58.0<br>.0<br>76.6<br>.0<br>102.4<br>.0<br>-1.8<br>-100.0-                                                    | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.2.5<br>-100.0             |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -10.2  SOURCE : 18 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -10.1  SOURCE : 19 | 77.0<br>.0<br>76.6<br>5.0<br>.0<br>.0<br>-3.2<br>-1.3<br>tenral)<br>31.5<br>77.0<br>.0<br>76.5<br>5.0<br>.0<br>-3.2<br>-1.3 | 93.0<br>.0<br>76.6<br>4.9<br>.2<br>.0<br>2.9<br>8.4<br>- con<br>63<br>93.0<br>.0<br>76.5<br>4.9<br>.2<br>.0<br>2.9 | 80.0<br>.0<br>76.6<br>4.8<br>.7<br>.0<br>.4<br>-2.4<br>veyor<br>125<br>80.0<br>.0<br>76.5<br>4.8<br>.6<br>.0<br>.4<br>-2.4 | 74.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                    | 72.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1.4<br>.12.8<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1.4<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | 68.0<br>.0<br>76.6<br>2.3<br>11.4<br>.0<br>-2.0<br>-20.2<br>3<br>PY Hz                                            | 65.0<br>.0<br>76.6<br>.5<br>19.5<br>.0<br>-2.3<br>-29.3<br>-29.3<br>-29.3<br>-29.1<br>2k<br>65.0<br>-2.3<br>-29.1 | 62.0<br>.0<br>76.6<br>.0<br>38.2<br>.0<br>-3.9<br>-48.9<br>4k<br>62.0<br>.0<br>76.5<br>.0<br>.0<br>.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4.0<br>-4. | 58.0<br>.0<br>76.6<br>.0<br>102.4<br>.0<br>-1.8<br>-100.0<br>8k<br>58.0<br>.0<br>76.5<br>.0<br>-1.6<br>-100.0 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |

| AIR ABSORPTION                                           | 0           | 2                  | 7           | 2 2         | 5.9         | 11 4        | 19 4        | 38 1        | 102 1       | 300 0        |
|----------------------------------------------------------|-------------|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|                                                          |             |                    |             |             |             |             |             |             |             |              |
| TOTAL AWT -10.1                                          | -1.3        | 8.5                | -2.5        | -6.7        | -12.7       | -20.2       | -29.2       | -48.8       | -100.0      | -100.0       |
| SOURCE : 20<br>CFS - curing (int                         | enral       | ) – cor            | nveyor      | belt /      | / moto      | c 5         |             |             |             |              |
|                                                          |             |                    |             | FI          | REQUEN      | CY Hz_      |             |             |             |              |
|                                                          | 31.5        | 63                 | 125         | 250         | 500         | 1k          | 2k          | 4k          | 8k          | 16k          |
| POWER LEVEL<br>DIRECTIVITY                               | 77.0        | 93.0               | 80.0        | 74.0        | 72.0        | 68.0        | 65.0        | 62.0        | 58.0        | .0           |
| DISTANCE<br>BARRIER                                      |             | 76.7<br>12.7       |             |             |             |             |             |             |             |              |
| AIR ABSORPTION<br>TEMP & WIND                            | .0          | .2                 | .7          | 2.2         | 6.0         | 11.6        | 19.8        | 38.7        | 103.9       | 300.0        |
| GROUND                                                   | -1.9        | 4.8                | -2.4        | 8           | -1.0        | -1.6        | -1.8        | -2.7        | 1           | -2.0         |
| TOTAL AWT -22.8                                          | -8.8        | -1.4               | -10.3       | -22.5       | -31.0       | -43.0       | -54.7       | -75.7       | -100.0      | -100.0       |
| SOURCE : 21<br>CFS - curing (int                         | cenral      | ) - cor            | nveyor      | belt ,      | / moto      | c 6         |             |             |             |              |
|                                                          |             |                    |             | FI          | REQUEN      | CY Hz_      |             |             |             |              |
|                                                          | 31.5        | 63                 | 125         | 250         | 500         | 1k          | 2k          | 4k          | 8k          | 16k          |
| POWER LEVEL<br>DIRECTIVITY                               | 77.0        | 93.0               | 80.0        | 74.0        | 72.0        | 68.0<br>.0  | 65.0<br>.0  | 62.0        | 58.0        | .0           |
| DISTANCE<br>BARRIER                                      | 76.9        | 76.9<br>12.5<br>.2 | 76.9        | 76.9        | 76.9        | 76.9        | 76.9        | 76.9        | 76.9        | 76.9         |
| AIR ABSORPTION                                           | .0          | .2                 | .7          | 2.3         | 6.1         | 11.8        | 20.1        | 39.4        | 105.9       | 300.0        |
| TEMP & WIND<br>GROUND                                    |             | .0<br>4.8          |             |             |             |             |             |             |             |              |
| TOTAL AWT -22.5                                          | -8.6        | -1.3               | -9.9        | -22.2       | -30.6       | -43.0       | -56.0       | -77.7       | -100.0      | -100.0       |
| SOURCE : 22<br>CFS - processing                          |             | nal) -             | - RTT r     | nanv        |             |             |             |             |             |              |
|                                                          |             |                    |             | FI          | REQUEN      | CY Hz_      |             |             |             |              |
|                                                          | 31.5        | 63                 | 125         | 250         | 500         | 1k          | 2k          | 4k          | 8k          | 16k          |
| POWER LEVEL<br>DIRECTIVITY                               |             | 114.0              |             |             |             |             |             |             |             |              |
|                                                          |             | 77.2<br>4.9        |             |             |             |             |             |             |             |              |
| AIR ABSORPTION                                           | . 0         | .2                 | .7          | 2.4         | 6.3         | 12.3        | 21.0        | 41.0        | 110.4       | 300.0        |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 18.3 | -3.2        | 3.0                | .7          | -3.1        | -1.5        | -2.0        | -2.1        | -2.9        | -2.4        | -3.4         |
| TOTAL AWT 18.3                                           | 32.0        | 28.7               | 19.6        | 22.8        | 17.2        | 10.3        | 1.4         | -21.3       | -97.2       | -100.0       |
| SOURCE : 23<br>CFS - processing                          | (exter      | nal) -             | RTT         | revers      | ing         |             |             |             |             |              |
|                                                          |             |                    |             | FI          |             |             |             |             |             |              |
|                                                          |             | 63                 |             |             |             |             |             |             |             |              |
| POWER LEVEL<br>DIRECTIVITY                               | 57.0<br>.0  | 75.0<br>.0         | 75.0<br>.0  | 79.0<br>.0  |             |             | 91.0        |             |             |              |
| DISTANCE<br>BARRIER                                      | 77.0<br>5.0 | 77.0<br>5.0        | 77.0<br>5.0 | 77.0<br>5.0 | 77.0<br>4.9 | 77.0<br>4.8 | 77.0<br>4.7 | 77.0<br>3.7 | 77.0<br>2.3 | 77.0         |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND       | .0          | .2                 | .7          | 2.3         | 6.2         | 11.9        | 20.4        | 39.8        | 107.1       | 300.0        |
| GROUND                                                   | -3.1        | 3.3                | 1           | -2.2        | -1.3        | -2.2        | -2.7        | -4.1        | -1.7        | -2.2         |
| TOTAL AWT 3.9                                            | -21.9       | -10.4              | -7.5        | -3.1        | 2.3         | 1.4         | -8.3        | -29.5       | -100.0      | -100.0       |
| SOURCE : 24<br>CFS - processing                          | (exter      | nal) -             | - dust      | collec      | ctor /      | fan         |             |             |             |              |
|                                                          |             |                    |             | FI          | REQUEN      | CY Hz_      |             |             |             |              |
|                                                          | 31.5        | 63                 | 125         | 250         | 500         | 1k          | 2k          | 4k          | 8k          | 16k          |
| POWER LEVEL<br>DIRECTIVITY                               | 100.0       | 102.0              | 106.0       | 109.0       | 108.0       | 101.0       | 94.0        | 89.0        | 83.0        | .0           |
|                                                          |             | 77.0<br>12.6       |             |             |             |             |             |             |             | 77.0<br>25.0 |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND                 | .0          | .2                 | .7          | 2.3         | 6.2         | 12.0        | 20.5        | 40.0        | 107.7       | 300.0        |
| TEMP & WIND<br>GROUND                                    | .0<br>-1.9  | .0<br>4.8          | .0<br>-2.4  | 8           | .0<br>-1.1  | .0<br>-1.6  | .0<br>-1.5  | .0<br>-2.5  | .0<br>-1.2  | .0<br>-2.0   |
|                                                          |             |                    |             |             |             |             |             |             |             |              |

TOTAL AWT 7.0 14.2 7.5 15.8 12.5 4.9 -10.4 -27.0 -50.6-100.0-100.0

SOURCE : 25

CFS - processing (external) - forklift

|                                                    |                         |                                |                         | FR                               | EQUENC                           | Y Hz                              |                                   |                                  |                                   |        |
|----------------------------------------------------|-------------------------|--------------------------------|-------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|--------|
|                                                    | 31.5                    | 63                             | 125                     | 250                              | 500                              | 1k                                | 2k                                | 4k                               | 8k                                | 16k    |
| POWER LEVEL<br>DIRECTIVITY                         | 101.0                   | 100.0                          | 99.0                    | 97.0                             | 93.0                             | 93.0                              | 91.0                              | 88.0                             | 83.0                              | .0     |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND | 76.9<br>5.0<br>.0<br>.0 | 76.9<br>5.0<br>.2<br>.0<br>3.1 | 76.9<br>4.9<br>.7<br>.0 | 76.9<br>4.8<br>2.3<br>.0<br>-2.3 | 76.9<br>4.3<br>6.1<br>.0<br>-1.3 | 76.9<br>3.2<br>11.8<br>.0<br>-2.1 | 76.9<br>1.6<br>20.2<br>.0<br>-2.6 | 76.9<br>.0<br>39.5<br>.0<br>-2.7 | 76.9<br>.0<br>106.2<br>.0<br>-3.4 | .0     |
| TOTAL AWT 10.3                                     | 22.3                    | 14.9                           | 16.5                    | 15.3                             | 7.0                              | 3.1                               | -5.0                              | -25.7                            | -96.7                             | -100.0 |

SOURCE : 26 CFS - processing (external) - aggregate unload

|                                                    |                          |                                 |                                  | FI                             | REQUEN                            | CY Hz_                             |                                    |                                    |                                     |                                     |
|----------------------------------------------------|--------------------------|---------------------------------|----------------------------------|--------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|
|                                                    | 31.5                     | 63                              | 125                              | 250                            | 500                               | 1k                                 | 2k                                 | 4k                                 | 8k                                  | 16k                                 |
| POWER LEVEL<br>DIRECTIVITY                         | 110.0                    | 111.0                           | 102.0                            | 100.0                          | 101.0                             | 104.0                              | 101.0                              | 97.0<br>.0                         | 105.0                               | .0                                  |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND | 77.0<br>13.3<br>.0<br>.0 | 77.0<br>16.3<br>.2<br>.0<br>4.8 | 77.0<br>19.3<br>.7<br>.0<br>-2.2 | 77.0<br>22.3<br>2.3<br>.0<br>5 | 77.0<br>25.0<br>6.2<br>.0<br>-1.2 | 77.0<br>25.0<br>12.0<br>.0<br>-1.8 | 77.0<br>25.0<br>20.5<br>.0<br>-2.5 | 77.0<br>25.0<br>40.1<br>.0<br>-2.9 | 77.0<br>25.0<br>107.8<br>.0<br>-2.8 | 77.0<br>25.0<br>300.0<br>.0<br>-2.8 |
| TOTAL AWT -2.3                                     | 21.9                     | 12.8                            | 7.2                              | -1.1                           | -6.0                              | -8.2                               | -19.0                              | -42.2                              | -100.0                              | -100.0                              |

SOURCE : 27 CFS - processing (external) - silo vent 1

|                                                    |                         |                                |                                 | FR                            | EQUEN                            | CY Hz_                            |                                   |       |                                    |                                    |
|----------------------------------------------------|-------------------------|--------------------------------|---------------------------------|-------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-------|------------------------------------|------------------------------------|
|                                                    | 31.5                    | 63                             | 125                             | 250                           | 500                              | 1k                                | 2k                                | 4k    | 8k                                 | 16k                                |
| POWER LEVEL<br>DIRECTIVITY                         | 84.0                    | 82.0                           | 86.0                            | 89.0                          | 88.0                             | 81.0                              | 74.0                              | 69.0  | 63.0                               | .0                                 |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND | 77.0<br>5.0<br>.0<br>.0 | 77.0<br>5.0<br>.2<br>.0<br>4.8 | 77.0<br>5.0<br>.7<br>.0<br>-2.2 | 77.0<br>5.0<br>2.3<br>.0<br>5 | 77.0<br>5.0<br>6.2<br>.0<br>-1.3 | 77.0<br>5.0<br>12.0<br>.0<br>-1.8 | 77.0<br>4.9<br>20.5<br>.0<br>-2.2 | .0    | 77.0<br>4.7<br>107.9<br>.0<br>-2.3 | 77.0<br>3.7<br>300.0<br>.0<br>-2.6 |
| TOTAL AWT .9                                       | 4.1                     | -5.0                           | 5.4                             | 5.1                           | 1.0                              | -11.3                             | -26.2                             | -50.3 | -100.0                             | -100.0                             |

SOURCE : 28

CFS - processing (external) - silo vent 2

|                                                    |                         |                                |                                 | FR                            | EQUENC                           | CY Hz_                            |                                   |                                   |                                    |                                 |
|----------------------------------------------------|-------------------------|--------------------------------|---------------------------------|-------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|---------------------------------|
|                                                    | 31.5                    | 63                             | 125                             | 250                           | 500                              | 1k                                | 2k                                | 4k                                | 8k                                 | 16k                             |
| POWER LEVEL<br>DIRECTIVITY                         | 84.0                    | 82.0                           | 86.0                            | 89.0                          | 88.0                             | 81.0                              | 74.0                              | 69.0                              | 63.0                               | .0                              |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND | 77.0<br>5.0<br>.0<br>.0 | 77.0<br>5.0<br>.2<br>.0<br>4.8 | 77.0<br>5.0<br>.7<br>.0<br>-2.2 | 77.0<br>5.0<br>2.3<br>.0<br>5 | 77.0<br>5.0<br>6.2<br>.0<br>-1.1 | 77.0<br>5.0<br>12.0<br>.0<br>-1.9 | 77.0<br>4.9<br>20.5<br>.0<br>-2.8 | 77.0<br>4.8<br>40.1<br>.0<br>-2.6 | 77.0<br>4.7<br>107.9<br>.0<br>-3.0 | 77.0<br>3.7<br>300.0<br>.0<br>7 |
| TOTAL AWT .8                                       | 4.1                     | -5.0                           | 5.5                             | 5.2                           | .9                               | -11.1                             | -25.7                             | -50.4                             | -100.0                             | -100.0                          |

TOTAL AWT 22.4 33.0 29.4 24.2 27.7 19.7 15.4 6.6 -16.6 -84.3 -88.0 SINGLE POINT CALCULATION ENM CALC MODULE

FILENAMES

C:\ENM\SOURCES\2118506A\506A-3 2118506A.GEN C:\ENM\MAPS\2118506A\506A

OUT1 file and RNK1 file

TEMP (deg C) HUMIDITY (%) 25.0 50.0 50.0

WIND SPEED (m/sec) WIND DIR (deg) .0 .0

TEMP GRAD (deg C/100m)

X= 2964.000 Y= 577.000 Z= 51.200

DISTANCE BARRIER AIR ABSORPTION TEMP & WIND

| SOURCE : 13<br>CFS - processing                                | (exter                          | nal) -                         | - backl                        | noe                              |                               |                                   |                                  |                                  |                                   |                                   |
|----------------------------------------------------------------|---------------------------------|--------------------------------|--------------------------------|----------------------------------|-------------------------------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|
|                                                                |                                 |                                |                                | FR                               | EQUEN                         | CY Hz_                            |                                  |                                  |                                   |                                   |
|                                                                |                                 |                                |                                | 250                              |                               |                                   |                                  |                                  |                                   |                                   |
| POWER LEVEL DIRECTIVITY                                        | 95.0<br>.0                      | 95.0<br>.0                     | 95.0<br>.0                     | 95.0                             | 95.0                          | 95.0<br>.0                        | 95.0<br>.0                       | 95.0                             | 95.0<br>.0                        | .0                                |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND                       | 5.0<br>.0<br>.0                 | 5.0<br>.2<br>.0                | 5.0<br>.7<br>.0                | 77.4<br>5.0<br>2.4<br>.0<br>-3.7 | 5.0<br>6.4<br>.0              | 4.9<br>12.5<br>.0                 | 4.8<br>21.3<br>.0                | 4.3<br>41.5<br>.0                | 3.1<br>111.9<br>.0                | 1.4<br>300.0<br>.0                |
| TOTAL AWT 9.1                                                  | 16.1                            | 10.4                           | 9.1                            | 13.9                             | 6.6                           | 2.9                               | -5.9                             | -25.4                            | -95.1-                            | -100.0                            |
| SOURCE : 14<br>CFS - processing                                | (exter                          | nal) -                         |                                |                                  |                               |                                   |                                  |                                  |                                   |                                   |
|                                                                |                                 |                                |                                | FR                               |                               |                                   |                                  |                                  |                                   |                                   |
|                                                                |                                 |                                |                                | 250                              |                               |                                   |                                  |                                  |                                   |                                   |
| POWER LEVEL<br>DIRECTIVITY                                     | 94.0                            | 100.0                          | 100.0                          | 106.0                            | 98.0                          | 101.0                             | 98.0                             | 92.0                             | 86.0                              | .0                                |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 5.0                             | 5.0                            | 5.0                            | 77.3<br>5.0<br>2.4<br>.0<br>-3.7 | 4 9                           | 4 9                               | 4 7                              | 3 9                              | 2.5                               | 8                                 |
| TOTAL AWT 17.5                                                 | 15.2                            | 15.4                           | 14.1                           | 24.9                             | 9.7                           | 9.0                               | -2.7                             | -28.1-                           | -100.0-                           | -100.0                            |
| SOURCE : 15<br>CFS - curing (int                               | enral)                          | - FEI                          |                                |                                  |                               |                                   |                                  |                                  |                                   |                                   |
|                                                                |                                 |                                |                                | FR                               | EQUEN                         | CY Hz_                            |                                  |                                  |                                   |                                   |
|                                                                | 31.5                            | 63                             | 125                            | 250                              | 500                           | 1k                                | 2k                               | 4k                               | 8k                                | 16k                               |
| POWER LEVEL DIRECTIVITY                                        | 84.0                            | 90.0                           | 90.0                           | 96.0                             | 88.0                          | 91.0<br>.0                        | 88.0                             | 82.0                             | 76.0<br>.0                        | .0                                |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND                       | 5.0<br>.0<br>.0                 | 5.0<br>.2<br>.0                | 5.0<br>.7<br>.0                | 77.2<br>5.0<br>2.4<br>.0<br>-3.6 | 5.0<br>6.3<br>.0              | 4.9<br>12.2<br>.0                 | 4.8<br>20.8<br>.0                | 4.3<br>40.7<br>.0                | 3.1<br>109.5<br>.0                | 1.4<br>300.0<br>.0                |
| TOTAL AWT 7.8                                                  | 5.4                             | 5.7                            | 4.2                            | 15.1                             | 1                             | 5                                 | -12.3                            | -37.9-                           | -100.0-                           | -100.0                            |
| SOURCE : 16<br>CFS - curing (int                               | enral)                          | - cor                          | nveyor                         | belt /                           | motor                         | 1                                 |                                  |                                  |                                   |                                   |
|                                                                |                                 |                                |                                | FR                               | EQUEN                         | CY Hz_                            |                                  |                                  |                                   |                                   |
|                                                                |                                 |                                |                                | 250                              |                               |                                   |                                  |                                  |                                   |                                   |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0                            | 93.0                           | 80.0                           | 74.0                             | 72.0                          | 68.0                              | 65.0<br>.0                       | 62.0                             | 58.0                              | .0                                |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 77.1<br>5.0<br>.0<br>.0<br>-3.7 | 77.1<br>4.9<br>.2<br>.0<br>1.9 | 77.1<br>4.8<br>.7<br>.0<br>3.5 | 77.1<br>4.6<br>2.3<br>.0<br>-3.6 | 77.1<br>3.5<br>6.2<br>.0<br>3 | 77.1<br>2.0<br>12.1<br>.0<br>-3.1 | 77.1<br>.3<br>20.6<br>.0<br>-1.9 | 77.1<br>.0<br>40.3<br>.0<br>-3.2 | 77.1<br>.0<br>108.5<br>.0<br>-1.9 | 77.1<br>.0<br>300.0<br>.0<br>-3.1 |
| TOTAL AWT -10.8                                                | -1.4                            | 9.0                            | -6.1                           | -6.5                             | -14.6                         | -20.1                             | -31.1                            | -52.2-                           | -100.0-                           | -100.0                            |
| SOURCE : 17<br>CFS - curing (int                               | enral)                          | - cor                          |                                |                                  |                               |                                   |                                  |                                  |                                   |                                   |
|                                                                |                                 |                                |                                | FR                               | ~                             |                                   |                                  |                                  |                                   |                                   |
|                                                                |                                 |                                |                                | 250                              |                               |                                   |                                  |                                  |                                   |                                   |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0                            | 93.0                           | 80.0                           | 74.0                             | 72.0                          | 68.0                              | 65.0                             | 62.0                             | 58.0                              | .0                                |

| GROUND                           | -3.7   | 1.8   | 3.5   | -3.6   | 3      | -3.1   | -1.9  | -3.2   | -2.2   | -3.3   |
|----------------------------------|--------|-------|-------|--------|--------|--------|-------|--------|--------|--------|
| TOTAL AWT -10.7                  | -1.3   | 9.1   | -6.0  | -6.4   | -14.4  | -19.9  | -30.8 | -51.8- | 100.0- | -100.0 |
| SOURCE : 18<br>CFS - curing (int | enral) | - con | veyor | belt / | / moto | c 3    |       |        |        |        |
|                                  |        |       |       | FI     | REQUEN | CY Hz_ |       |        |        |        |

|                                                    |                         |                         |                                | FF                               | REQUENC                       | Y Hz_                             |                                  |                                  |                                   |                                   |
|----------------------------------------------------|-------------------------|-------------------------|--------------------------------|----------------------------------|-------------------------------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|
|                                                    | 31.5                    | 63                      | 125                            | 250                              | 500                           | 1k                                | 2k                               | 4k                               | 8k                                | 16k                               |
| POWER LEVEL<br>DIRECTIVITY                         | 77.0                    | 93.0                    | 80.0                           | 74.0                             | 72.0                          | 68.0                              | 65.0<br>.0                       | 62.0                             | 58.0                              | .0                                |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND | 77.0<br>5.0<br>.0<br>.0 | 77.0<br>4.9<br>.2<br>.0 | 77.0<br>4.8<br>.7<br>.0<br>3.5 | 77.0<br>4.6<br>2.3<br>.0<br>-3.6 | 77.0<br>3.6<br>6.1<br>.0<br>3 | 77.0<br>2.1<br>11.9<br>.0<br>-3.1 | 77.0<br>.4<br>20.4<br>.0<br>-1.9 | 77.0<br>.0<br>39.8<br>.0<br>-3.2 | 77.0<br>.0<br>107.0<br>.0<br>-2.3 | 77.0<br>.0<br>300.0<br>.0<br>-3.1 |
| TOTAL AWT -10.6                                    | -1.3                    | 9.1                     | -5.9                           | -6.3                             | -14.4                         | -19.9                             | -30.7                            | -51.6                            | -100.0-                           | -100.0                            |

SOURCE : 19 CFS - curing (intenral) - conveyor belt / motor 4

|                                                                |                         |                         |                                | FF                               | REQUENC                       | CY Hz_                            |                                  |                                  |                                   |                                   |
|----------------------------------------------------------------|-------------------------|-------------------------|--------------------------------|----------------------------------|-------------------------------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|
|                                                                | 31.5                    | 63                      | 125                            | 250                              | 500                           | 1k                                | 2k                               | 4k                               | 8k                                | 16k                               |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0                    | 93.0                    | 80.0                           | 74.0                             | 72.0                          | 68.0                              | 65.0                             | 62.0                             | 58.0                              | .0                                |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 77.0<br>5.0<br>.0<br>.0 | 77.0<br>4.9<br>.2<br>.0 | 77.0<br>4.8<br>.7<br>.0<br>3.5 | 77.0<br>4.6<br>2.3<br>.0<br>-3.6 | 77.0<br>3.6<br>6.2<br>.0<br>3 | 77.0<br>2.1<br>12.0<br>.0<br>-3.1 | 77.0<br>.4<br>20.4<br>.0<br>-1.9 | 77.0<br>.0<br>39.9<br>.0<br>-3.2 | 77.0<br>.0<br>107.4<br>.0<br>-2.1 | 77.0<br>.0<br>300.0<br>.0<br>-3.4 |
| TOTAL AWT -10.7                                                | -1.3                    | 9.1                     | -6.0                           | -6.4                             | -14.4                         | -19.9                             | -30.8                            | -51.7                            | -100.0-                           | -100.0                            |

SOURCE : 20 CFS - curing (intenral) - conveyor belt / motor 5

|                                                                |                                  |                                 |                                  | FF                             | REQUEN                            | CY Hz_                             |                                    |                                    |                                     |                                     |
|----------------------------------------------------------------|----------------------------------|---------------------------------|----------------------------------|--------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|
|                                                                | 31.5                             | 63                              | 125                              | 250                            | 500                               | 1k                                 | 2k                                 | 4k                                 | 8k                                  | 16k                                 |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0                             | 93.0                            | 80.0                             | 74.0                           | 72.0                              | 68.0                               | 65.0<br>.0                         | 62.0                               | 58.0                                | .0                                  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 77.1<br>12.0<br>.0<br>.0<br>-2.7 | 77.1<br>13.8<br>.2<br>.0<br>4.1 | 77.1<br>16.8<br>.7<br>.0<br>-1.2 | 77.1<br>19.8<br>2.4<br>.0<br>9 | 77.1<br>22.8<br>6.3<br>.0<br>-2.2 | 77.1<br>25.0<br>12.2<br>.0<br>-1.8 | 77.1<br>25.0<br>20.8<br>.0<br>-2.2 | 77.1<br>25.0<br>40.5<br>.0<br>-4.1 | 77.1<br>25.0<br>109.1<br>.0<br>-1.5 | 77.1<br>25.0<br>300.0<br>.0<br>-2.1 |
| TOTAL AWT -24.7                                                | -9.4                             | -2.2                            | -13.4                            | -24.4                          | -32.0                             | -44.5                              | -55.7                              | -76.6                              | -100.0                              | -100.0                              |

SOURCE : 21 CFS - curing (intenral) - conveyor belt / motor 6

|                                                                |                          |                                 |                                  | FF                             | REQUENC                           | CY Hz_                             |                                    |       |                                     |                                     |
|----------------------------------------------------------------|--------------------------|---------------------------------|----------------------------------|--------------------------------|-----------------------------------|------------------------------------|------------------------------------|-------|-------------------------------------|-------------------------------------|
|                                                                | 31.5                     | 63                              | 125                              | 250                            | 500                               | 1k                                 | 2k                                 | 4k    | 8k                                  | 16k                                 |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0                     | 93.0                            | 80.0                             | 74.0                           | 72.0                              | 68.0                               | 65.0                               | 62.0  | 58.0                                | .0                                  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 77.3<br>11.7<br>.0<br>.0 | 77.3<br>13.4<br>.2<br>.0<br>4.1 | 77.3<br>16.3<br>.7<br>.0<br>-1.3 | 77.3<br>19.4<br>2.4<br>.0<br>9 | 77.3<br>22.4<br>6.4<br>.0<br>-2.2 | 77.3<br>25.0<br>12.4<br>.0<br>-1.8 | 77.3<br>25.0<br>21.1<br>.0<br>-2.1 | .0    | 77.3<br>25.0<br>110.9<br>.0<br>-2.0 | 77.3<br>25.0<br>300.0<br>.0<br>-2.2 |
| TOTAL AWT -24.4                                                | -9.3                     | -2.0                            | -13.1                            | -24.2                          | -31.8                             | -44.9                              | -56.2                              | -77.3 | -100.0-                             | -100.0                              |

SOURCE : 22 CFS - processing (external) - RTT manv

|                                                                |                         |                                |                                 | FI                             | REQUEN                            | CY Hz_                             |                                    |                                    |                                     |        |
|----------------------------------------------------------------|-------------------------|--------------------------------|---------------------------------|--------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|--------|
|                                                                | 31.5                    | 63                             | 125                             | 250                            | 500                               | 1k                                 | 2k                                 | 4k                                 | 8k                                  | 16k    |
| POWER LEVEL<br>DIRECTIVITY                                     | 111.0                   | 114.0                          | 103.0                           | 104.0                          | 103.0                             | 100.0                              | 98.0                               | 94.0                               | 88.0                                | .0     |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 77.7<br>6.1<br>.0<br>.0 | 77.7<br>7.2<br>.2<br>.0<br>4.7 | 77.7<br>8.8<br>.7<br>.0<br>-2.0 | 77.7<br>11.1<br>2.5<br>.0<br>4 | 77.7<br>12.8<br>6.7<br>.0<br>-1.8 | 77.7<br>15.5<br>13.0<br>.0<br>-1.8 | 77.7<br>18.5<br>22.1<br>.0<br>-2.3 | 77.7<br>21.5<br>43.0<br>.0<br>-3.2 | 77.7<br>24.6<br>116.3<br>.0<br>-2.7 | .0     |
| TOTAL AWT 9.3                                                  | 29.4                    | 24.3                           | 17.8                            | 13.1                           | 7.6                               | -4.4                               | -18.1                              | -45.1                              | -100.0-                             | -100.0 |

| CFS - processing                                   |            | rnal) ·         | - RTT :    | revers            | ing         |              |                    |              |               |               |
|----------------------------------------------------|------------|-----------------|------------|-------------------|-------------|--------------|--------------------|--------------|---------------|---------------|
|                                                    |            |                 |            | FI                | REQUEN      | CY Hz_       |                    |              |               |               |
|                                                    | 31.5       | 63              | 125        | 250               | 500         | 1k           | 2k                 | 4k           | 8k            | 16k           |
| POWER LEVEL DIRECTIVITY                            |            |                 |            |                   |             |              | 91.0               |              |               |               |
| DISTANCE<br>BARRIER                                |            |                 |            |                   |             |              | 77.3<br>5.0        |              |               |               |
| AIR ABSORPTION                                     | .0         | .2              | .7         | 2.4               | 6.4         | 12.4         | 21.2               | 41.4         | 111.5         | 300.0         |
| TEMP & WIND                                        | .0         | .0              | . 0        | .0                | .0          | . 0          | 21.2<br>.0<br>-2.5 | .0           | .0            | . 0           |
| GROUND                                             |            |                 |            |                   |             |              |                    |              |               |               |
| TOTAL AWT 2.9  SOURCE : 24                         |            | -9.7            | -10.7      | -2.1              | .7          | .7           | -10.0              | -33.6        | -100.0        | -100.0        |
| CFS - processing                                   | (exte      | rnal) ·         |            |                   |             |              |                    |              |               |               |
|                                                    | 21 5       | 63              |            |                   |             |              | 21-                |              | 01-           | 1.61-         |
| DOMED I EVEI                                       |            |                 |            |                   |             |              | 2k                 |              |               |               |
| POWER LEVEL<br>DIRECTIVITY                         | .0         | .0              | .0         | .0                | .0          | .0           | .0                 | .0           | .0            | .0            |
| DISTANCE<br>BARRIER                                | 77.4       | 77.4            | 77.4       | 77.4              | 77.4        | 77.4         | 77.4               | 77.4         | 77.4          | 77.4          |
| BARRIER<br>AIR ABSORPTION                          | TT.8       | ⊥3.6<br>.2      | ⊥6.5<br>.7 | 19.5<br>2.4       | 44.6<br>6.5 | ∠5.0<br>12.6 | 25.0<br>21.4       | ∠5.0<br>41.7 | ∠5.0<br>112.6 | ∠5.0<br>300.0 |
| TEMP & WIND                                        | .0         | .0              | .0         | .0                | .0          | .0           | .0                 | .0           | .0            | .0            |
| GROUND TOTAL AWT 5.3                               |            |                 |            |                   |             |              |                    |              |               |               |
| SOURCE : 25                                        | 13.0       | ,.2             |            | 11.0              | 3.0         | 11.0         | 27.5               | 31.1         | 100.0         | 100.0         |
| CFS - processing                                   | (exte      | rnal) ·         |            |                   |             | ~            |                    |              |               |               |
|                                                    | 31 5       | 63              |            | FI                |             |              | 2k                 | 4 k          | Ωl-           | 16k           |
|                                                    |            |                 |            |                   |             |              |                    |              |               |               |
| POWER LEVEL<br>DIRECTIVITY                         |            |                 |            |                   |             |              | 91.0               |              |               |               |
|                                                    |            |                 |            |                   |             |              | 77.3               |              |               |               |
| BARRIER<br>AIR ABSORPTION                          | 5.0        | .2              | 5.0        | 2.4               |             |              | 4.9<br>21.1        |              |               |               |
| TEMP & WIND<br>GROUND                              | .0<br>-3.6 | .2<br>.0<br>2.1 | .0<br>2.7  | .0<br>-3.7        | .0          | . 0          |                    | .0           | .0            | .0            |
| TOTAL AWT 9.5                                      | 22.2       | 15.4            | 13.3       | 16.0              | 4.8         | .9           | -9.8               | -32.3        | -100.0        | -100.0        |
| SOURCE : 26<br>CFS - processing                    | (exte      | rnal) ·         | - aggr     | egate ı           | unload      |              |                    |              |               |               |
|                                                    |            |                 |            | FI                | REQUEN      | CY Hz_       |                    |              |               |               |
|                                                    | 31.5       | 63              | 125        | 250               | 500         | 1k           | 2k                 | 4k           | 8k            | 16k           |
| POWER LEVEL<br>DIRECTIVITY                         | 110.0      | 111.0           | 102.0      | 100.0             | 101.0       | 104.0        | 101.0              | 97.0<br>.0   | 105.0         | .0            |
| DISTANCE                                           | 77.4       | 77.4            | 77.4       | 77.4              | 77.4        | 77.4         | 77.4               | 77.4         | 77.4          | 77.4          |
| BARRIER<br>AIR ARSORDTION                          | 13.2       | 16.2            | 19.2       | 22.2              | 25.0        | 25.0         | 25.0<br>21 4       | 25.0<br>41 7 | 25.0<br>112 4 | 25.0<br>300 0 |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | .0         | .0              | .0         | .0                | .0          | .0           | .0                 | .0           | .0            | .0            |
| TOTAL AWT -2.5                                     |            |                 |            |                   |             |              |                    |              |               |               |
| SOURCE : 27                                        |            |                 |            |                   |             |              |                    |              |               |               |
| CFS - processing                                   | (exte      | •               |            |                   |             |              |                    |              |               |               |
|                                                    | 31.5       |                 |            |                   |             |              | 2k                 |              | 8k            |               |
| DOMED I DITE                                       |            |                 |            |                   |             |              |                    |              |               |               |
| POWER LEVEL<br>DIRECTIVITY                         |            |                 |            |                   |             |              | 74.0               |              |               |               |
|                                                    |            |                 |            |                   |             |              | 77.4               |              |               |               |
| BARRIER<br>AIR ABSORPTION                          | 5.0<br>.0  | 5.0             | 5.0<br>.7  | 5.0<br>2.4        | 5.0<br>6.5  | 5.0<br>12.6  | 4.9<br>21.4        | 4.8          | 4.6           | 3.6           |
| TEMP & WIND                                        | .0         | .0              | .0         | 2.4<br>.0<br>-2.7 | .0          | .0           | .0                 | .0           | .0            | .0            |
| GROUND                                             |            |                 |            |                   |             |              |                    |              | -1.3          |               |
| TOTAL AWT 1.2                                      |            | -4.0            | 2.7        | 6.8               | .5          | -11.9        | -27.4              | -50.9        | -100.0        | -100.0        |
| SOURCE : 28<br>CFS - processing                    |            | rnal) ·         | - silo     | vent 2            | 2           |              |                    |              |               |               |

\_FREQUENCY Hz\_ 31.5 63 125 250 500 1k 2k 4k 8k 16k POWER LEVEL 84.0 82.0 86.0 89.0 88.0 81.0 74.0 69.0 .0 DIRECTIVITY .0 .0 .0 .0 .0 .0 .0 . 0 DISTANCE 77.4 77.4 77.4 77.4 77.4 77.4 77.4 77.4 BARRIER 5.0 5.0 5.0 5.0 2.4 5.0 5.0 5.0 5.0 5.0 5.0 21.4 41.8 112.7 300.0 AIR ABSORPTION 12.6 .0 6.5 . 0 . 0 . 0 GROUND -3.0 3.4 .0 -2.6 -1.4 -2.1 -2.4 -2.2 -3.3 -2.0 TOTAL AWT 1.1 4.5 -4.0 2.8 6.7 .5 -11.9 -27.5 -53.0-100.0-100.0 TOTAL AWT 19.9 31.2 26.2 21.5 26.6 14.7 11.5 SINGLE POINT CALCULATION .4 -22.4 -87.4 -88.0 ENM CALC MODULE FILENAMES C:\ENM\SOURCES\2118506A\506A-3 2118506A.GEN C:\ENM\MAPS\2118506A\506A OUT1 file and RNK1 file TEMP (deg C) HUMIDITY (%) 25.0 50.0 WIND SPEED (m/sec) WIND DIR (deg) .0 .0 TEMP GRAD (deg C/100m) .0 X= 3712.000 Y= 1349.000 22,200 SOURCE : 13 CFS - processing (external) - backhoe \_\_FREQUENCY Hz\_ 31.5 500 63 125 250 1k 2k 4k 8k 16k POWER LEVEL 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 .0 .0 .0 .0 DIRECTIVITY .0 .0 .0 .0 . 0 . 0 DISTANCE 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 .0 BARRIER .0 .0 . 0 .0 .0 .0 AIR ABSORPTION .0 2.2 5.9 11.5 19.6 38.4 103.0 300.0 TEMP & WIND . 0 . 0 . 0 . 0 7.2 15.0 15.0 15.0 10.5 -5 6 -3 0 4 2 -1 4 -5 3 GROUND TOTAL AWT 1.2 23.9 21.2 10.5 1.2 -2.5 -8.0 -11.7 -24.2 -83.2-100.0 14 CFS - processing (external) - FEL \_\_\_FREQUENCY Hz\_ 31 5 63 125 250 500 1k 2k4k 8k 16k POWER LEVEL 94.0 100.0 100.0 106.0 98.0 101.0 98.0 92.0 86.0 . 0 .0 .0 .0 DIRECTIVITY . 0 .0 .0 .0 .0 .0 DISTANCE 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 . 0 .0 BARRIER .0 .02.2 Ω .0 .0 19.6 5.9 11.5 38.4 102.9 300.0 AIR ABSORPTION . 0 TEMP & WIND . 0 . 0 . 0 -5.6 -1.3 GROUND -3.0 7.2 15.0 15.0 15.0 10.6 4.4 -5 2 TOTAL AWT 7.4 23.0 26.2 15.5 12.2 .5 -2.0 -8.8 -27.3 -92.3-100.0 SOURCE : 15 CFS - curing (intenral) - FEL FREQUENCY Hz\_ 31.5 63 125 250 500 1k 2k 4k 8k 16k POWER LEVEL 84.0 90.0 90.0 96.0 88.0 91.0 88.0 82.0 76.0 . 0 .0 .0 DIRECTIVITY .0 .0 .0 .0 .0 .0 .0 DISTANCE 76.5 76.5 76.5 76.5 76.5 76.5 76.5 76.5 76.5 5.1 5.9 19.4 6.8 8.3 10.4 37.9 101.7 300.0 BARRIER 5.0 5.1 5.1 5.3 5.5 AIR ABSORPTION .0 . 2 5.8 11.3 .6 TEMP & WIND

-1.5

-2.9

-2.8

-5.2

3.0 -3.0

GROUND

-5.0

-1.5

10.1 11.5

TOTAL AWT 2.6 7.5 9.8 -2.3 .7 -2.6 .7 -8.6 -37.8-100.0-100.0

SOURCE : 16 CFS - curing (intenral) - conveyor belt / motor 1

|                                                                |                         |                                 |                                 | F                                | REQUEN                          | CY Hz_            |                   |             |                                    |                     |
|----------------------------------------------------------------|-------------------------|---------------------------------|---------------------------------|----------------------------------|---------------------------------|-------------------|-------------------|-------------|------------------------------------|---------------------|
|                                                                | 31.5                    | 63                              | 125                             | 250                              | 500                             | 1k                | 2k                | 4k          | 8k                                 | 16k                 |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0                    | 93.0                            | 80.0                            | 74.0                             | 72.0                            | 68.0              | 65.0<br>.0        | 62.0        | 58.0                               | .0                  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 76.4<br>5.0<br>.0<br>.0 | 76.4<br>5.1<br>.2<br>.0<br>-1.5 | 76.4<br>5.1<br>.6<br>.0<br>10.0 | 76.4<br>5.1<br>2.2<br>.0<br>11.4 | 76.4<br>5.3<br>5.8<br>.0<br>2.9 | 5.5<br>11.2<br>.0 | 6.0<br>19.2<br>.0 | 6.8<br>37.7 | 76.4<br>8.3<br>101.1<br>.0<br>-2.8 | 10.5<br>300.0<br>.0 |
| TOTAL AWT -12.0                                                | .5                      | 12.9                            | -12.2                           | -21.2                            | -18.4                           | -22.1             | -31.4             | -57.4       | -100.0                             | -100.0              |

SOURCE : 17 CFS - curing (intenral) - conveyor belt / motor 2

|                                                                |                         |                         |                         | FF                       | EQUEN                           | CY Hz_                    |                           |                           |                    |        |
|----------------------------------------------------------------|-------------------------|-------------------------|-------------------------|--------------------------|---------------------------------|---------------------------|---------------------------|---------------------------|--------------------|--------|
|                                                                | 31.5                    | 63                      | 125                     | 250                      | 500                             | 1k                        | 2k                        | 4k                        | 8k                 | 16k    |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0<br>.0              | 93.0                    | 80.0                    | 74.0                     | 72.0                            | 68.0                      | 65.0                      | 62.0                      | 58.0               | .0     |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 76.4<br>5.0<br>.0<br>.0 | 76.4<br>5.1<br>.2<br>.0 | 76.4<br>5.1<br>.6<br>.0 | 76.4<br>5.1<br>2.2<br>.0 | 76.4<br>5.3<br>5.8<br>.0<br>2.8 | 76.4<br>5.5<br>11.2<br>.0 | 76.4<br>5.9<br>19.1<br>.0 | 76.4<br>6.8<br>37.5<br>.0 | 8.2<br>100.6<br>.0 | .0     |
| TOTAL AWT -11.9                                                | . 6                     | 12.9                    | -12.1                   | -21.0                    | -18.2                           | -21.9                     | -31.3                     | -57.0-                    | -100.0-            | -100.0 |

SOURCE : 18 CFS - curing (intenral) - conveyor belt / motor 3

|                                                    |                        |                        |                               | FF                              | REQUEN                          | CY Hz_                           |                                  |                                 |                                   |        |
|----------------------------------------------------|------------------------|------------------------|-------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|---------------------------------|-----------------------------------|--------|
|                                                    | 31.5                   | 63                     | 125                           | 250                             | 500                             | 1k                               | 2k                               | 4k                              | 8k                                | 16k    |
| POWER LEVEL<br>DIRECTIVITY                         | 77.0                   | 93.0                   | 80.0                          | 74.0                            | 72.0                            | 68.0                             | 65.0                             | 62.0                            | 58.0                              | .0     |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND | 76.4<br>.0<br>.0<br>.0 | 76.4<br>.0<br>.2<br>.0 | 76.4<br>.0<br>.6<br>.0<br>7.0 | 76.4<br>.0<br>2.2<br>.0<br>15.0 | 76.4<br>.0<br>5.8<br>.0<br>15.0 | 76.4<br>.0<br>11.2<br>.0<br>14.9 | 76.4<br>.0<br>19.1<br>.0<br>10.2 | 76.4<br>.0<br>37.5<br>.0<br>4.0 | 76.4<br>.0<br>100.6<br>.0<br>-1.6 | 300.0  |
| TOTAL AWT -6.5                                     | 6.2                    | 19.5                   | -4.1                          | -19.6                           | -25.2                           | -34.5                            | -40.8                            | -55.9                           | -100.0                            | -100.0 |

SOURCE : 19 CFS - curing (intenral) - conveyor belt / motor 4

|                                                                |                        |                                |                               | FF                              | EQUEN                           | CY Hz_                           |                          |            |                                   |        |
|----------------------------------------------------------------|------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|----------------------------------|--------------------------|------------|-----------------------------------|--------|
|                                                                | 31.5                   | 63                             | 125                           | 250                             | 500                             | 1k                               | 2k                       | 4k         | 8k                                | 16k    |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0                   | 93.0                           | 80.0                          | 74.0                            | 72.0                            | 68.0                             | 65.0<br>.0               | 62.0       | 58.0                              | .0     |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 76.4<br>.0<br>.0<br>.0 | 76.4<br>.0<br>.2<br>.0<br>-3.0 | 76.4<br>.0<br>.6<br>.0<br>7.1 | 76.4<br>.0<br>2.2<br>.0<br>15.0 | 76.4<br>.0<br>5.8<br>.0<br>15.0 | 76.4<br>.0<br>11.3<br>.0<br>14.9 | 76.4<br>.0<br>19.3<br>.0 | .0<br>37.7 | 76.4<br>.0<br>101.1<br>.0<br>-1.6 | 300.0  |
| TOTAL AWT -6.5                                                 | 6.1                    | 19.4                           | -4.2                          | -19.6                           | -25.2                           | -34.6                            | -40.9                    | -56.2-     | -100.0-                           | -100.0 |

SOURCE : 20 CFS - curing (intenral) - conveyor belt / motor 5

|                                                    |                                  |                          |                                 | FF                               | REQUENC                           | CY Hz_                             |                                    |       |                                     |                                  |
|----------------------------------------------------|----------------------------------|--------------------------|---------------------------------|----------------------------------|-----------------------------------|------------------------------------|------------------------------------|-------|-------------------------------------|----------------------------------|
|                                                    | 31.5                             | 63                       | 125                             | 250                              | 500                               | 1k                                 | 2k                                 | 4k    | 8k                                  | 16k                              |
| POWER LEVEL<br>DIRECTIVITY                         | 77.0                             | 93.0                     | 80.0                            | 74.0                             | 72.0                              | 68.0                               | 65.0<br>.0                         | 62.0  | 58.0                                | .0                               |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND | 76.5<br>12.7<br>.0<br>.0<br>-4.4 | 76.5<br>15.4<br>.2<br>.0 | 76.5<br>18.4<br>.7<br>.0<br>9.9 | 76.5<br>21.4<br>2.2<br>.0<br>1.5 | 76.5<br>24.4<br>5.9<br>.0<br>-4.3 | 76.5<br>25.0<br>11.4<br>.0<br>-1.7 | 76.5<br>25.0<br>19.5<br>.0<br>-2.8 | .0    | 76.5<br>25.0<br>102.3<br>.0<br>-2.5 | 76.5<br>25.0<br>300.0<br>.0<br>5 |
| TOTAL AWT -24.3                                    | -7.9                             | .9                       | -25.5                           | -27.6                            | -30.5                             | -43.3                              | -53.3                              | -74.4 | -100.0                              | -100.0                           |

SOURCE : 21

| CFS - curing (in                        | cenral;    | ) - COI |        |           |            |                    |            |            |            |            |
|-----------------------------------------|------------|---------|--------|-----------|------------|--------------------|------------|------------|------------|------------|
|                                         |            |         |        | FI        | REQUENC    | CY Hz_             |            |            |            |            |
|                                         |            |         |        |           |            | 1k                 |            |            |            |            |
| POWER LEVEL<br>DIRECTIVITY              | 77.0       | 93.0    | 80.0   | 74.0      | 72.0       | 68.0               | 65.0       | 62.0       | 58.0       | .0         |
| DISTANCE                                |            |         |        |           |            | 76.6               |            |            |            |            |
| BARRIER<br>AIR ABSORPTION               | .0         | 15.1    | 18.0   | 21.1      | 5.9        | 25.0<br>11.5       | 19.7       | 38.5       | 103.3      | 300.0      |
| TEMP & WIND<br>GROUND                   | .0<br>-4 4 | .0      | .0     | .0<br>1 3 | .0<br>-4 4 | 11.5<br>.0<br>-1.4 | .0<br>-2 8 | .0<br>-3 3 | .0<br>-2 4 | .0<br>-3 4 |
| TOTAL AWT -24.1                         |            |         |        |           |            |                    |            |            |            |            |
| SOURCE : 22                             |            | 7.      |        |           |            |                    |            |            |            |            |
| CFS - processing                        | (exter     | •       |        |           | PEOLIENC   | CY Hz_             |            |            |            |            |
|                                         | 31.5       |         |        |           |            | 1k                 |            |            | 8k         | 16k        |
| POWER LEVEL                             |            |         |        |           |            |                    |            |            |            |            |
| DISTANCE                                |            |         |        |           |            | .0<br>77.2         |            |            |            |            |
| BARRIER                                 | 7.1        | 8.8     | 11.0   | 12.7      | 15.4       | 18.4               | 21.4       | 24.4       | 25.0       | 25.0       |
| AIR ABSORPTION<br>TEMP & WIND           | .0         | . 2     | . 7    | 2.4       | 6.3        | 12.3<br>.0<br>-2.2 | 21.0       | 40.9       | 110.3      | 300.0      |
| GROUND                                  | -4.0       | .9      | 6.2    | -2.4      | -3.1       | -2.2               | -2.5       | -2.7       | -2.9       | -3.6       |
| TOTAL AWT 8.9                           | 30.7       | 27.0    | 7.9    | 14.0      | 7.1        | -5.7               | -19.1      | -45.9      | -100.0     | -100.0     |
| SOURCE : 23<br>CFS - processing         | (exter     | nal) ·  | - RTT  | revers    | ing        |                    |            |            |            |            |
|                                         |            |         |        | FI        | REQUEN     | CY Hz_             |            |            |            |            |
|                                         | 31.5       | 63      | 125    | 250       | 500        | 1k                 | 2k         | 4k         | 8k         | 16k        |
| POWER LEVEL<br>DIRECTIVITY              |            |         |        |           |            | 93.0               |            |            |            |            |
| DISTANCE<br>BARRIER                     |            |         |        |           |            | 76.5<br>.0         |            |            |            |            |
| AIR ABSORPTION                          |            | .2      |        |           |            | 11.4               |            |            |            |            |
| TEMP & WIND<br>GROUND                   |            |         |        |           |            | .0<br>15.0         |            |            |            |            |
| TOTAL AWT -6.6                          | -14.0      | 1.3     | -9.4   | -14.7     | -8.4       | -9.9               | -15.4      | -31.8      | -100.0     | -100.0     |
| SOURCE : 24                             | , .        | 7.      |        |           | . ,        |                    |            |            |            |            |
| CFS - processing                        | (exter     | mai) ·  |        |           |            | ran<br>CY Hz       |            |            |            |            |
|                                         | 31.5       | 63      |        |           | ~          | 1k                 |            | 4k         | 8k         | 16k        |
| POWER LEVEL<br>DIRECTIVITY              | 100.0      | 102.0   | 106.0  | 109.0     | 108.0      | 101.0              | 94.0       | 89.0       | 83.0       | .0         |
|                                         |            |         |        |           |            |                    |            |            |            |            |
| BARRIER                                 | 12.7       | 15.3    | 18.3   | 21.3      | 24.3       | 76.7<br>25.0       | 25.0       | 25.0       | 25.0       | 25.0       |
| AIR ABSORPTION<br>TEMP & WIND           | .0         | . 2     | .7     | 2.2       | 6.0        | 11.6               | 19.8       | 38.8       | 104.2      | 300.0      |
| GROUND                                  | -4.4       | .1      | 10.1   | 1.6       | -4.3       | 11.6<br>.0<br>-1.9 | -2.7       | -3.2       | -2.8       | 9          |
| TOTAL AWT 4.0                           | 15.0       | 9.7     | .3     | 7.2       | 5.3        | -10.4              | -24.8      | -48.3      | -100.0     | -100.0     |
| SOURCE : 25<br>CFS - processing         | (exter     | nal) ·  | - fork | lift      |            |                    |            |            |            |            |
|                                         |            |         |        | FI        | REQUENC    | CY Hz_             |            |            |            |            |
|                                         | 31.5       | 63      | 125    | 250       | 500        | 1k                 | 2k         | 4k         | 8k         | 16k        |
| POWER LEVEL<br>DIRECTIVITY              |            |         |        |           |            |                    |            |            |            |            |
| DISTANCE                                | 76.5       | 76.5    | 76.5   | 76.5      | 76.5       | 76.5               | 76.5       | 76.5       | 76.5       | 76.5       |
| BARRIER<br>AIR ABSORPTION               | F 0        | г 1     | г 1    | F 2       | F 3        |                    | C 1        | 7 0        | 0 (        | 100        |
| AIR ABSORPTION<br>TEMP & WIND<br>GROUND | .0         | .0      | .0     | .0        | .0         | .0                 | .0         | .0         | .0         | .0         |
|                                         |            |         |        |           |            |                    |            |            |            |            |
| TOTAL AWT 5.3                           | 24.4       | 19.7    | 6.6    | 1.4       | 2.1        | 2.4                | -5.8       | -32.5      | -100.0     | -100.0     |
| SOURCE : 26<br>CFS - processing         | (exte      | nal) -  | - aggr | egate ı   | unload     |                    |            |            |            |            |
|                                         |            |         |        | FI        | REQUEN     | CY Hz_             |            |            |            |            |

|                                                       | 31.5       | 63               | 125       | 250      | 500         | 1k          | 2k                 | 4k         | 8k         | 16k        |
|-------------------------------------------------------|------------|------------------|-----------|----------|-------------|-------------|--------------------|------------|------------|------------|
| POWER LEVEL DIRECTIVITY                               | 110.0      | 111.0            | 102.0     | 100.0    | 101.0       | 104.0       | 101.0              | 97.0<br>.0 | 105.0      | .0         |
| DISTANCE                                              | 76.6       | 76.6             | 76.6      | 76.6     | 76.6        | 76.6        | 76.6               | 76.6       | 76.6       | 76.6       |
| BARRIER<br>AIR ABSORPTION                             | .0         | .0               | .0        | 2.2      | 5.9         | 11.5        | .0<br>19.7         | 38.6       | 103.5      | 300.0      |
| TEMP & WIND<br>GROUND                                 | .0<br>-5.6 | .2<br>.0<br>-3.0 | . 0       | . 0      | . 0         | . 0         | .0<br>10.7         | . 0        | . 0        | . 0        |
| TOTAL AWT 12.5                                        |            |                  |           |          |             |             |                    |            |            |            |
| SOURCE : 27<br>CFS - processing                       |            | nal)             | - silo    | vent :   | 1           |             |                    |            |            |            |
|                                                       |            |                  |           | FI       | REQUEN      | CY Hz_      |                    |            |            |            |
|                                                       | 31.5       |                  |           |          |             |             | 2k                 | 4k         | 8k         | 16k        |
| POWER LEVEL<br>DIRECTIVITY                            |            |                  |           |          |             |             | 74.0               |            |            |            |
|                                                       | 76.7       |                  |           |          |             |             |                    |            |            |            |
| BARRIER<br>AIR ABSORPTION                             | 5.0        | 5.0              | 5.0       | 5.0      | 5.0<br>6.0  | 5.1<br>11.6 | 5.1<br>19.8        | 5.1        | 5.3        | 5.5        |
| TEMP & WIND<br>GROUND                                 | .0         | .0               | .0        | .0       | .0          | .0          | 19.8<br>.0<br>-3.1 | .0         | .0         | .0         |
| TOTAL AWT 2.7                                         |            |                  |           |          |             |             |                    |            |            |            |
| SOURCE : 28                                           |            |                  |           |          |             |             |                    |            |            |            |
| CFS - processing                                      | (exte      | rnal)            |           |          |             |             |                    |            |            |            |
|                                                       |            |                  |           | FI       | REQUEN      | CY Hz_      |                    |            |            |            |
|                                                       | 31.5       | 63               | 125       | 250      | 500         | 1k          | 2k                 | 4k         | 8k         | 16k        |
| POWER LEVEL<br>DIRECTIVITY                            |            |                  |           |          |             |             | 74.0               |            |            |            |
| DISTANCE<br>BARRIER                                   | 76.7       |                  |           |          |             |             | 76.7<br>5.1        |            |            |            |
| ATR ABSORPTION                                        | 0          | 2                | 7         | 2 2      | 6.0         | 11 6        | 19 8               | 38 7       | 103 9      | 300 0      |
| TEMP & WIND<br>GROUND                                 | .0         | .0               | .0<br>9.4 | .0<br>.6 | .0<br>-4.6  | .0<br>5     | .0<br>-3.3         | .0<br>-2.5 | .0<br>-2.5 | .0<br>-4.2 |
| TOTAL AWT 2.9                                         |            |                  |           |          |             |             |                    |            |            |            |
|                                                       |            |                  |           |          |             |             |                    |            |            |            |
| TOTAL AWT 16.5<br>SINGLE POINT CAL<br>ENM CALC MODULE |            |                  | 20.7      | 17.8     | 13.2        | 7.4         | 5                  | -19.1      | -73.3      | -88.0      |
| FILENAMES C:\ENM\SOURCES\                             | 2118500    | 5A\506           | A-3       |          |             |             |                    |            |            |            |
| 2118506A.GEN<br>C:\ENM\MAPS\211                       | 8506A\     | 506A             |           |          |             |             |                    |            |            |            |
| OUT1 file and R                                       | NK1 fil    | le               |           |          |             |             |                    |            |            |            |
| TEMP (deg C)<br>25.0                                  |            | MIDITY<br>50.0   | (%)       |          |             |             |                    |            |            |            |
| WIND SPEED (m/se                                      |            | ND DIR           | (deg)     |          |             |             |                    |            |            |            |
| TEMP GRAD (deg C                                      | /100m)     |                  |           |          |             |             |                    |            |            |            |
| X= 3827.000 Y                                         | = 1335     | 5.000            | Z=        | 31.20    | 00          |             |                    |            |            |            |
| SOURCE : 13<br>CFS - processing                       | ( avt a    | cnal \           | - baglel  | hoe      |             |             |                    |            |            |            |
| CID PIOCESSING                                        | (CALE      |                  |           |          | o ⊑r∩rama∗r | TV U~       |                    |            |            |            |
|                                                       |            |                  |           |          |             |             | 01-                |            |            |            |
|                                                       |            |                  | 125       |          |             |             | 2k                 |            |            | 16k        |
| POWER LEVEL                                           | 95 N       | 95 N             | 95 N      | 95 N     | 95 N        | 95 N        | 95 N               | 95 N       | 95 N       | Λ          |

|                                                                |                         |                              |                                 | FR                              | EQUENC                           | Y Hz                             |                                  |       |                                   |        |
|----------------------------------------------------------------|-------------------------|------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|-------|-----------------------------------|--------|
|                                                                | 31.5                    | 63                           | 125                             | 250                             | 500                              | 1k                               | 2k                               | 4k    | 8k                                | 16k    |
| POWER LEVEL DIRECTIVITY                                        | 95.0                    | 95.0                         | 95.0                            | 95.0                            | 95.0                             | 95.0                             | 95.0<br>.0                       | 95.0  | 95.0<br>.0                        | .0     |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 77.1<br>4.9<br>.0<br>.0 | 77.1<br>4.7<br>.2<br>.0<br>2 | 77.1<br>4.0<br>.7<br>.0<br>11.5 | 77.1<br>2.7<br>2.3<br>.0<br>4.4 | 77.1<br>1.0<br>6.2<br>.0<br>-2.7 | 77.1<br>.0<br>12.1<br>.0<br>-4.9 | 77.1<br>.0<br>20.6<br>.0<br>-1.7 | .0    | 77.1<br>.0<br>108.2<br>.0<br>-3.0 | .0     |
| TOTAL AWT 13.9                                                 | 17.6                    | 13.3                         | 1.7                             | 8.5                             | 13.4                             | 10.8                             | 9                                | -20.1 | -87.3                             | -100.0 |

SOURCE: 14 CFS - processing (external) - FEL

| CFS - processing                                   | (exter     | nal) -     | - FEL       |                         |           |            |            |            |            |            |
|----------------------------------------------------|------------|------------|-------------|-------------------------|-----------|------------|------------|------------|------------|------------|
|                                                    |            |            |             | FR                      | EQUENC    | CY Hz_     |            |            |            |            |
|                                                    |            |            |             | 250                     |           |            |            |            |            |            |
| POWER LEVEL<br>DIRECTIVITY                         | 94.0       | 100.0      | 100.0       | 106.0                   | 98.0      | 101.0      | 98.0       | 92.0       | 86.0       | .0         |
|                                                    |            |            |             | 77.0                    |           |            |            |            |            |            |
| BARRIER<br>AIR ABSORPTION                          | 4.9        | 4.7        | 4.0         | 2.7                     | 1.0       | .0<br>12.0 | 20.6       | .0<br>40.2 | .0         | 300.0      |
| TEMP & WIND                                        | .0         | . 0        | .0          | 2.3<br>.0<br>4.4        | .0        | .0         | .0         | .0         | .0         | .0         |
| GROUND                                             | -4.6       | 2          | 11.5        | 4.4                     | -2.7      | -4.9       | -1.7       | -2.2       | -3.0       | -3.8       |
| TOTAL AWT 19.2                                     | 16.6       | 18.3       | 6.7         | 19.5                    | 16.4      | 16.8       | 2.1        | -23.0      | -96.2-     | -100.0     |
| SOURCE : 15<br>CFS - curing (int                   | enral)     | - FEI      | Ĺ           |                         |           |            |            |            |            |            |
|                                                    |            |            |             | FR                      | EQUENC    | CY Hz_     |            |            |            |            |
|                                                    | 31.5       | 63         | 125         | 250                     | 500       | 1k         | 2k         | 4k         | 8k         | 16k        |
| POWER LEVEL<br>DIRECTIVITY                         |            |            |             | 96.0                    |           |            |            |            |            |            |
|                                                    | 76.9       | 76.9       | 76.9        | 76.9                    | 76.9      | 76.9       | 76.9       | 76.9       | 76.9       | 76.9       |
| BARRIER<br>AIR ABSORPTION                          | 5.0        | 5.0        | 5.1         | 5.1                     | 6.1       | 11.9       | 20.3       | 39.8       | 106.9      | 300.0      |
| TEMP & WIND                                        | .0         | .0         | .0          | 2.3                     | .0        | .0         | .0         | .0         | .0         | .0         |
| GROUND                                             | -4.4       | . 2        | 10.0        | 1.4                     | -4.3      | -1.7       | -2.8       | -3.3       | -2.5       | 4          |
| TOTAL AWT 5.5                                      | 6.4        | 7.7        | -2.7        | 10.2                    | 4.1       | -1.5       | -12.0      | -37.4-     | -100.0-    | -100.0     |
| SOURCE : 16<br>CFS - curing (int                   | enral)     | - COI      |             |                         |           |            |            |            |            |            |
|                                                    |            |            |             | FR                      | EQUENC    | Y Hz_      |            |            |            |            |
|                                                    | 31.5       | 63         | 125         | 250                     | 500       | 1k         | 2k         | 4k         | 8k         | 16k        |
| POWER LEVEL DIRECTIVITY                            | 77.0       | 93.0       | 80.0        | 74.0                    |           |            | 65.0<br>.0 |            | 58.0       | .0         |
| DISTANCE                                           | 76.9       | 76.9       | 76.9        | 76.9                    | 76.9      | 76.9       | 76.9       | 76.9       | 76.9       | 76.9       |
| BARRIER                                            | 5.0        | 5.0        | 5.1         | 5.1                     | 5.1       | 5.3        | 5.5        | 6.0        | 6.9        | 8.4        |
| AIR ABSORPTION<br>TEMP & WIND                      | . 0        | . 2        | . 7         | 2.3                     | 6.1       | 11.8       | 20.2       | 39.6       | .0         | 300.0      |
| GROUND                                             | -4.4       | . 2        | 10.0        | 5.1<br>2.3<br>.0<br>1.4 | -4.3      | -1.6       | -2.8       | -3.3       | -2.4       | -1.4       |
| TOTAL AWT -11.3                                    |            |            |             |                         |           |            |            |            |            |            |
| SOURCE : 17<br>CFS - curing (int                   | enral)     | - coi      | nveyor      | belt /                  | motor     | 2          |            |            |            |            |
|                                                    |            |            |             | FR                      | EQUENC    | Y Hz_      |            |            |            |            |
|                                                    | 31 5       | 63         |             | 250                     |           |            |            | 4 k-       | 8k         | 16k        |
|                                                    |            |            |             |                         |           |            |            |            |            |            |
| POWER LEVEL<br>DIRECTIVITY                         | 77.0       | 93.0       | 80.0        | 74.0                    | 72.0      | 68.0       | 65.0<br>.0 | 62.0       | 58.0       | .0         |
| DISTANCE                                           | 76.9       | 76.9       | 76.9        | 76.9                    | 76.9      | 76.9       | 76.9       | 76.9       | 76.9       | 76.9       |
| BARRIER                                            | 5.0        | 5.0        | 5.1         | 5.1                     | 5.1       | 5.3        | 5.5        | 6.0        | 6.8        | 8.3        |
| TEMP & WIND                                        | .0         | .0         | . 0         | .0                      | .0        | .0         | .0         | .0         | .0         | .0         |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | -4.4       | .1         | 9.9         | 1.3                     | -4.4      | -1.5       | -2.8       | -3.3       | -2.4       | -2.9       |
| TOTAL AWT -11.2                                    | 5          | 10.8       | -12.5       | -11.6                   | -11.7     | -24.4      | -34.7      | -56.9-     | -100.0-    | -100.0     |
| SOURCE : 18<br>CFS - curing (int                   | enral)     | - coi      | nvevor      | belt /                  | motor     | - 3        |            |            |            |            |
| J .                                                |            |            | _           | FR                      |           |            |            |            |            |            |
|                                                    | 31.5       | 63         |             | 250                     |           |            |            |            | 8k         | 16k        |
| POWER LEVEL<br>DIRECTIVITY                         | 77.0       | 93.0       | 80.0        | 74.0                    | 72.0      | 68.0       | 65.0       | 62.0       | 58.0       | . 0        |
|                                                    |            |            |             |                         |           |            |            |            |            |            |
| DISTANCE<br>BARRIER                                | .0.9       | .0.9<br>.0 | .0.9        | 76.9<br>.0              | 9.07      | .0.9       | .0.9       | .0.9       | 70.9<br>.0 | .0.9       |
| AIR ABSORPTION                                     | . 0        | . 2        | . 7         | 2.3                     | 6.1       | 11.8       | 20.2       | 39.4       | 105.9      | 300.0      |
| TEMP & WIND<br>GROUND                              | .0<br>-4.9 | .0<br>-1.1 | . 0<br>9. 9 | .0<br>2.3<br>.0<br>12.6 | .0<br>4.0 | .0<br>-2.4 | .0<br>-5.3 | .0<br>7    | .0<br>-3.6 | .0<br>-2.5 |
| TOTAL AWT -7.9                                     |            |            |             |                         |           |            |            |            |            |            |
| TOTAL AWT -7.9                                     |            | 1/.1       | - / . 4     | -1/./                   | -15.0     | -18.3      | -20./      | -53.5      | -100.0-    | -100.0     |

SOURCE : 19 CFS - curing (intenral) - conveyor belt / motor 4

|                                          |            |            |            | FF         | REQUENC    | CY Hz_             |            |            |            |            |
|------------------------------------------|------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|
|                                          | 31.5       | 63         | 125        | 250        | 500        | 1k                 | 2k         | 4k         | 8k         | 16k        |
| POWER LEVEL<br>DIRECTIVITY               | 77.0       | 93.0       | 80.0       | 74.0       | 72.0       | 68.0               | 65.0       | 62.0       | 58.0       | .0         |
| DISTANCE<br>BARRIER                      |            |            |            |            |            | 76.9<br>.0         |            |            |            |            |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND | .0         | .2         | .7         | 2.3        | 6.1        | 11.9               | 20.3       | 39.6       | 106.5      | 300.0      |
| GROUND                                   | -4.9       | -1.1       | 9.9        | 12.6       | 4.1        | -2.3               | -5.3       | 7          | -3.7       | -2.5       |
| TOTAL AWT -8.0                           | 4.9        | 17.0       | -7.5       | -17.8      | -15.1      | -18.4              | -26.8      | -53.8-     | -100.0-    | -100.0     |
| SOURCE : 20<br>CFS - curing (int         | enral)     | - cor      | nveyor     | belt /     | motor      | s 5                |            |            |            |            |
|                                          |            |            |            | FF         | REQUENC    | CY Hz_             |            |            |            |            |
|                                          | 31.5       | 63         | 125        | 250        | 500        | 1k                 | 2k         | 4k         | 8k         | 16k        |
| POWER LEVEL DIRECTIVITY                  |            |            |            |            |            | 68.0               |            |            |            |            |
| DISTANCE<br>BARRIER                      |            |            |            |            |            | 77.0<br>25.0       |            |            |            |            |
| AIR ABSORPTION                           | . 0        | . 2        | .7         | 2.3        | 6.2        | 12.0               | 20.5       | 40.0       | 107.6      | 300.0      |
| TEMP & WIND<br>GROUND                    | .0<br>-3.8 | .0<br>1.5  | 4.9        | -3.1       | .0<br>-1.6 | .0<br>-2.3         | .0<br>-2.9 | -2.4       | 8          | .0         |
| TOTAL AWT -25.3                          | -9.0       | -1.1       | -20.9      | -23.6      | -33.9      | -43.7              | -54.5      | -77.7-     | -100.0-    | -100.0     |
| SOURCE : 21<br>CFS - curing (int         | enral)     | - cor      | nveyor     | belt /     | motor      | c 6                |            |            |            |            |
|                                          |            |            |            | FF         | REQUENC    | CY Hz_             |            |            |            |            |
|                                          |            |            |            |            |            | 1k                 |            |            |            |            |
| POWER LEVEL<br>DIRECTIVITY               | 77.0       | 93.0       | 80.0       | 74.0       | 72.0       | 68.0               | 65.0       | 62.0       | 58.0       | .0         |
| DISTANCE                                 |            |            |            |            |            | 77.1               |            |            | 77.1       |            |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND | .0         | .2         | .7         | 2.3        | 6.2        | 25.0<br>12.1       | 20.6       | 40.3       | 108.5      | 300.0      |
| TEMP & WIND<br>GROUND                    | .0<br>-3.8 | .0<br>1.6  | .0<br>4.7  | .0<br>-3.2 | .0<br>-1.5 | .0<br>-2.4         | .0<br>-3.0 | .0<br>-2.2 | .0<br>-2.7 | .0<br>-3.7 |
| TOTAL AWT -25.1                          | -8.9       | 9          | -20.6      | -23.3      | -33.9      | -43.8              | -54.7      | -78.2      | -100.0-    | -100.0     |
| SOURCE : 22<br>CFS - processing          | (exter     | nal) -     | - RTT r    | nanv       |            |                    |            |            |            |            |
|                                          |            |            |            | FF         | REQUENC    | CY Hz_             |            |            |            |            |
|                                          | 31.5       | 63         | 125        | 250        | 500        | 1k                 | 2k         | 4k         | 8k         | 16k        |
| POWER LEVEL<br>DIRECTIVITY               | 111.0      | 114.0      | 103.0      | 104.0      | 103.0      | 100.0              | 98.0       | 94.0       | 88.0       | .0         |
| DISTANCE<br>BARRIER                      | 77.7       | 77.7       | 77.7       | 77.7       | 77.7       | 77.7<br>18.2       | 77.7       | 77.7       | 77.7       | 77.7       |
| AIR ABSORPTION<br>TEMP & WIND            | .0         | .2         | .7         | 2.5        | 6.6        | 12.9               | 22.0       | 42.8       | 115.6      | 300.0      |
| GROUND                                   | -3.6       | 2.0        | 3.3        | -3.6       | 3          | 12.9<br>.0<br>-3.1 | -2.1       | -3.0       | -3.3       | -2.3       |
| TOTAL AWT 8.4                            | 29.9       | 25.5       | 10.5       | 14.8       | 3.8        | -5.7               | -20.7      | -47.7-     | -100.0-    | -100.0     |
| SOURCE : 23<br>CFS - processing          | (exter     | nal) -     | - RTT 1    | reversi    | .ng        |                    |            |            |            |            |
|                                          |            |            |            | FF         | REQUENC    | CY Hz_             |            |            |            |            |
|                                          | 31.5       | 63         | 125        | 250        | 500        | 1k                 | 2k         | 4k         | 8k         | 16k        |
| POWER LEVEL<br>DIRECTIVITY               | 57.0<br>.0 | 75.0<br>.0 | 75.0<br>.0 | 79.0<br>.0 | 89.0       | 93.0               | 91.0       | 87.0       | 77.0<br>.0 | .0         |
| DISTANCE                                 | 77.0       | 77.0       | 77.0       | 77.0       | 77.0       | 77.0               | 77.0       | 77.0       | 77.0       | 77.0       |
| BARRIER<br>AIR ABSORPTION                | .0         | .2         | .7         | 2.8        | 6.2        | .0<br>12.0<br>.0   | 20.5       | 40.0       | 107.5      | 300.0      |
| TEMP & WIND<br>GROUND                    | .0<br>-4.6 | .0<br>3    | .0<br>11.4 | .0<br>4.4  | .0<br>-2.7 | .0<br>-4.8         | .0<br>-1.8 | .0<br>-2.2 | .0<br>-3.0 | .0<br>-3.8 |
| TOTAL AWT 10.4                           |            |            |            |            |            |                    |            |            |            |            |
| SOURCE : 24<br>CFS - processing          | (exter     | nal) -     | - dust     | collec     | ctor /     | fan                |            |            |            |            |
|                                          |            |            |            | FF         | REQUENC    | CY Hz_             |            |            |            |            |
|                                          | 31.5       | 63         | 125        | 250        | 500        | 1k                 | 2k         | 4k         | 8k         | 16k        |
|                                          |            |            |            |            |            |                    |            |            |            |            |

| POWER LEVEL DIRECTIVITY                            | 100.0  | 102.0     | 106.0  | 109.0  | 108.0        | 101.0       | 94.0        | 89.0         | 83.0    | .0            |
|----------------------------------------------------|--------|-----------|--------|--------|--------------|-------------|-------------|--------------|---------|---------------|
| DISTANCE                                           |        | 77.1      |        |        |              |             |             |              |         |               |
| BARRIER<br>AIR ARSORPTION                          | 12.7   | 15.3      | 18.3   | 21.3   | 24.3         | 25.0        | 25.0        | 25.0<br>40.6 | 25.0    | 25.0<br>300 0 |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND          | .0     | .0        | .0     | .0     | .0           | .0          | .0          | .0           | .0      | .0            |
| GROUND                                             | -3.8   | 1.6       | 4.9    | -3.1   | -1.8         | -2.3        | -2.9        | -2.6         | 2       | -3.3          |
| TOTAL AWT 4.5                                      |        | 7.8       | 5.0    | 11.3   | 2.1          | -11.0       | -26.1       | -51.2        | -100.0- | -100.0        |
| SOURCE : 25<br>CFS - processing                    |        | rnal) -   | - fork | lift   |              |             |             |              |         |               |
| 1 2                                                | •      |           |        | ים     | P C T T C NT | TV UP       |             |              |         |               |
|                                                    |        |           |        |        |              |             |             |              |         |               |
|                                                    | 31.5   | 63        | 125    | 250    | 500          | 1k          | 2k          | 4k           | 8k      | 16k           |
| POWER LEVEL<br>DIRECTIVITY                         | .0     | .0        | .0     | . 0    | .0           | .0          | .0          | .0           | .0      | .0            |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND | 77.0   | 77.0      | 77.0   | 77.0   | 77.0         | 77.0        | 77.0        | 77.0         | 77.0    | 77.0          |
| BARRIER<br>ATR ARSORPTION                          | 5.0    | 5.0       | 5.1    | 5.1    | 5.2          | 5.3<br>12 0 | 5.6         | 6.2<br>40 0  | 7.3     | 9.1           |
| TEMP & WIND                                        | .0     | .0        | .0     | .0     | .0           | .0          | .0          | .0           | .0      | .0            |
| GROUND                                             | -4.4   | . 2       | 10.1   | 1.5    | -4.3         | -1.8        | -2.7        | -3.2         | -2.6    | .3            |
| TOTAL AWT 8.5                                      | 23.3   | 17.6      | 6.2    | 11.1   | 9.0          | .5          | -9.4        | -32.0        | -100.0- | -100.0        |
| SOURCE : 26                                        |        |           |        |        |              |             |             |              |         |               |
| CFS - processing                                   |        |           |        | _      |              |             |             |              |         |               |
|                                                    |        |           |        | F      | REQUEN       | CY Hz_      |             |              |         |               |
|                                                    | 31.5   | 63        | 125    | 250    | 500          | 1k          | 2k          | 4k           | 8k      | 16k           |
| POWER LEVEL<br>DIRECTIVITY                         | 110.0  | 111.0     | 102.0  | 100.0  | 101.0        | 104.0       | 101.0       | 97.0         | 105.0   | .0            |
| DISTANCE                                           | 77.1   | 77.1      | 77.1   | 77.1   | 77.1         | 77.1        | 77.1        | 77.1         | 77.1    | 77.1          |
| BARRIER                                            | 4.9    | 4.7       | 4.0    | 2.8    | 1.0          | .0          | . 0         | .0           | .0      | 0.            |
| TEMP & WIND                                        | .0     | .0        | . 0    | 2.3    | .0           | .0          | 20.7        | .0           | .0      | .0            |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | -4.6   | 2         | 11.5   | 4.4    | -2.7         | -4.9        | -1.7        | -2.2         | -2.9    | -3.7          |
| TOTAL AWT 21.6                                     | 32.6   | 29.2      | 8.6    | 13.4   | 19.3         | 19.7        | 4.9         | -18.2        | -77.8   | -100.0        |
| SOURCE : 27<br>CFS - processing                    |        | rnal) -   | - gilo | went 1 | ı            |             |             |              |         |               |
| or b processing                                    | (01100 | ,         |        |        |              | 3V 11-      |             |              |         |               |
|                                                    |        |           |        |        |              |             |             |              |         |               |
|                                                    | 31.5   | 63        | 125    | 250    | 500          | 1k          | 2k          | 4k           | 8k      | 16k           |
| POWER LEVEL<br>DIRECTIVITY                         |        |           |        |        |              |             |             |              |         |               |
|                                                    |        |           |        |        |              |             |             |              |         |               |
| DISTANCE<br>BARRIER                                | 5.0    |           |        |        |              |             |             |              |         | 77.1<br>5.0   |
| AIR ABSORPTION                                     | .0     | .2        |        | 2.4    | 6.3          | 12.2        | 5.0<br>20.8 | 40.6         | 109.3   | 300.0         |
| TEMP & WIND                                        | .0     |           | .0     |        |              |             | .0          |              |         |               |
| GROUND                                             | -3.7   |           |        |        |              |             | -2.8        |              |         |               |
| TOTAL AWT 1.7                                      | 5.5    | -2.1      | -1.2   | 7.8    | .6           | -10.7       | -26.1       | -51.1        | -100.0- | -100.0        |
| SOURCE : 28<br>CFS - processing                    |        | rnal) -   | - silo | vent 2 | 2            |             |             |              |         |               |
|                                                    |        |           |        | F      | REQUEN       | CY Hz_      |             |              |         |               |
|                                                    | 31.5   | 63        | 125    | 250    | 500          | 1k          | 2k          | 4k           | 8k      | 16k           |
| POWER LEVEL<br>DIRECTIVITY                         |        | 82.0      |        |        |              |             | 74.0        |              |         |               |
| DISTANCE                                           | 77.1   | 77 1      | 77 1   | 77 1   | 77 1         | 77 1        | 77.1        | 77 1         | 77 1    | 77 1          |
| BARRIER                                            | 5.0    | 5.0       | 5.0    | 5.0    | 5.0          | 5.0         | 5.0         | 5.0          | 4.9     | 4.9           |
| AIR ABSORPTION                                     | .0     | . 2       | .7     | 2.4    | 6.3          | 12.2        | 20.8        | 40.5         | 109.1   | 300.0         |
| TEMP & WIND<br>GROUND                              | . 0    | .0<br>1.8 | .0     | .0     | .0           | .0          | .0          | .0           | .0      | .0            |
|                                                    |        |           |        |        |              |             |             |              |         |               |
| TOTAL AWT 1.7                                      | 5.5    | -2.1      | 9      | 7.9    | .3           | -10.5       | -26.5       | -51.1        | -100.0- | -100.0        |

TOTAL AWT 24.6 35.0 31.7 15.4 23.0 22.4 22.1 7.8 -14.9 -77.0 -88.0 SINGLE POINT CALCULATION ENM CALC MODULE

FILENAMES
C:\ENM\SOURCES\2118506A\506A-3
2118506A.GEN

```
C:\ENM\MAPS\2118506A\506A
```

OUT1 file and RNK1 file

TEMP (deg C) HUMIDITY (%) 25.0 50.0

WIND SPEED (m/sec) WIND DIR (deg)

TEMP GRAD (deg C/100m)

X= 4143.000 Y= 1967.000 Z= 31.200

SOURCE : 13

CFS - processing (external) - backhoe

|                                                                |                        |                                |                        | FR                              | EQUENC                         | Y Hz_                          |                                  |                                  |                                   |        |
|----------------------------------------------------------------|------------------------|--------------------------------|------------------------|---------------------------------|--------------------------------|--------------------------------|----------------------------------|----------------------------------|-----------------------------------|--------|
|                                                                | 31.5                   | 63                             | 125                    | 250                             | 500                            | 1k                             | 2k                               | 4k                               | 8k                                | 16k    |
| POWER LEVEL<br>DIRECTIVITY                                     | 95.0<br>.0             | 95.0<br>.0                     | 95.0                   | 95.0<br>.0                      | 95.0                           | 95.0                           | 95.0<br>.0                       | 95.0<br>.0                       | 95.0<br>.0                        | .0     |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 77.1<br>.0<br>.0<br>.0 | 77.1<br>.0<br>.2<br>.0<br>-1.4 | 77.1<br>.0<br>.7<br>.0 | 77.1<br>.0<br>2.3<br>.0<br>14.6 | 77.1<br>.0<br>6.2<br>.0<br>7.3 | 77.1<br>.0<br>12.1<br>.0<br>.3 | 77.1<br>.0<br>20.7<br>.0<br>-4.6 | 77.1<br>.0<br>40.4<br>.0<br>-3.8 | 77.1<br>.0<br>108.7<br>.0<br>-2.8 | .0     |
| TOTAL AWT 8                                                    | .7 22.9                | 19.1                           | 7.2                    | . 9                             | 4.4                            | 5.5                            | 1.8                              | -18.7                            | -88.0                             | -100.0 |

SOURCE : 14

CFS - processing (external) - FEL

|                                                    |                        |                                |                        | FR                              | EQUEN                          | CY Hz_                         |                                  |                                  |       |                                   |
|----------------------------------------------------|------------------------|--------------------------------|------------------------|---------------------------------|--------------------------------|--------------------------------|----------------------------------|----------------------------------|-------|-----------------------------------|
|                                                    | 31.5                   | 63                             | 125                    | 250                             | 500                            | 1k                             | 2k                               | 4k                               | 8k    | 16k                               |
| POWER LEVEL<br>DIRECTIVITY                         | 94.0                   | 100.0                          | 100.0                  | 106.0                           | 98.0                           | 101.0                          | 98.0                             | 92.0                             | 86.0  | .0                                |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND | 77.1<br>.0<br>.0<br>.0 | 77.1<br>.0<br>.2<br>.0<br>-1.4 | 77.1<br>.0<br>.7<br>.0 | 77.1<br>.0<br>2.3<br>.0<br>14.6 | 77.1<br>.0<br>6.2<br>.0<br>7.2 | 77.1<br>.0<br>12.1<br>.0<br>.3 | 77.1<br>.0<br>20.7<br>.0<br>-4.6 | 77.1<br>.0<br>40.4<br>.0<br>-3.8 | .0    | 77.1<br>.0<br>300.0<br>.0<br>-2.7 |
| TOTAL AWT 13.8                                     | 21.9                   | 24.1                           | 12.2                   | 12.0                            | 7.4                            | 11.5                           | 4.8                              | -21.7                            | -97.0 | -100.0                            |

SOURCE : 15 CFS - curing (intenral) - FEL

|                                                                |                                 |                              |                                 | FR                              | EQUENC.                          | Y Hz_                             |                                   |                                   |                                    |                                    |
|----------------------------------------------------------------|---------------------------------|------------------------------|---------------------------------|---------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|
|                                                                | 31.5                            | 63                           | 125                             | 250                             | 500                              | 1k                                | 2k                                | 4k                                | 8k                                 | 16k                                |
| POWER LEVEL<br>DIRECTIVITY                                     | 84.0                            | 90.0                         | 90.0                            | 96.0                            | 88.0                             | 91.0                              | 88.0                              | 82.0                              | 76.0<br>.0                         | .0                                 |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 77.1<br>5.0<br>.0<br>.0<br>-4.5 | 77.1<br>5.0<br>.2<br>.0<br>1 | 77.1<br>5.1<br>.7<br>.0<br>11.2 | 77.1<br>5.1<br>2.3<br>.0<br>3.5 | 77.1<br>5.2<br>6.2<br>.0<br>-3.3 | 77.1<br>5.3<br>12.1<br>.0<br>-4.3 | 77.1<br>5.6<br>20.6<br>.0<br>-2.5 | 77.1<br>6.2<br>40.3<br>.0<br>-2.2 | 77.1<br>7.2<br>108.4<br>.0<br>-2.5 | 77.1<br>8.9<br>300.0<br>.0<br>-3.2 |
| TOTAL AWT 4.9                                                  | 6.4                             | 7.8                          | -4.0                            | 8.0                             | 2.8                              | .8                                | -12.8                             | -39.3-                            | -100.0-                            | -100.0                             |

SOURCE : 16 CFS - curing (intenral) - conveyor belt / motor 1

|                                                                |                                 |                              |                                 | FF                              | REQUEN                           | CY Hz_                            |                                   |                                   |                                    |        |
|----------------------------------------------------------------|---------------------------------|------------------------------|---------------------------------|---------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|--------|
|                                                                | 31.5                            | 63                           | 125                             | 250                             | 500                              | 1k                                | 2k                                | 4k                                | 8k                                 | 16k    |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0                            | 93.0                         | 80.0                            | 74.0                            | 72.0                             | 68.0                              | 65.0<br>.0                        | 62.0                              | 58.0                               | .0     |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 77.1<br>5.0<br>.0<br>.0<br>-4.5 | 77.1<br>5.0<br>.2<br>.0<br>1 | 77.1<br>5.1<br>.7<br>.0<br>11.1 | 77.1<br>5.1<br>2.3<br>.0<br>3.5 | 77.1<br>5.2<br>6.2<br>.0<br>-3.3 | 77.1<br>5.3<br>12.1<br>.0<br>-4.3 | 77.1<br>5.6<br>20.6<br>.0<br>-2.5 | 77.1<br>6.2<br>40.2<br>.0<br>-2.2 | 77.1<br>7.2<br>108.2<br>.0<br>-2.5 | .0     |
| TOTAL AWT -11.8                                                | 6                               | 10.9                         | -14.0                           | -14.0                           | -13.2                            | -22.1                             | -35.8                             | -59.2-                            | -100.0                             | -100.0 |

SOURCE : 17 CFS - curing (intenral) - conveyor belt / motor 2

\_\_\_\_FREQUENCY Hz\_

|                                                                                                                                                                                                                                                                                               | 31 5                                                                                          | 63                                                                                                 | 125                                                                                                                             | 250                                                                                                                      | 500                                                                                                | 1k                                                                                                    | 2k                                                                               | 4k                                                                                 | 8k                                                                                    | 16k                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| POWER LEVEL DIRECTIVITY                                                                                                                                                                                                                                                                       | 77.0                                                                                          |                                                                                                    | 80.0                                                                                                                            | 74.0                                                                                                                     | 72.0                                                                                               |                                                                                                       | 65.0                                                                             | 62.0                                                                               | 58.0                                                                                  | .0                                                                                        |
|                                                                                                                                                                                                                                                                                               | 77.0                                                                                          |                                                                                                    |                                                                                                                                 |                                                                                                                          |                                                                                                    | 77.0                                                                                                  |                                                                                  | 77.0                                                                               |                                                                                       |                                                                                           |
| BARRIER                                                                                                                                                                                                                                                                                       | . 0                                                                                           | . 0                                                                                                | . 0                                                                                                                             | .0                                                                                                                       | .0                                                                                                 | .0                                                                                                    | .0                                                                               | .0                                                                                 | . 0                                                                                   | . 0                                                                                       |
| AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                                                                                                 | .0<br>.0<br>-5.0                                                                              | .2                                                                                                 | . 0                                                                                                                             | . 0                                                                                                                      | . 0                                                                                                | . 0                                                                                                   | . 0                                                                              | . 0                                                                                | . 0                                                                                   | . 0                                                                                       |
| GROUND                                                                                                                                                                                                                                                                                        | -5.0                                                                                          | -1.4                                                                                               | 10.0                                                                                                                            | 14.6                                                                                                                     | 7.2                                                                                                | . 3                                                                                                   | -4.6                                                                             | -3.7                                                                               | -2.8                                                                                  | -2.7                                                                                      |
| TOTAL AWT -8.3  SOURCE : 18                                                                                                                                                                                                                                                                   | 4.9                                                                                           | 17.2                                                                                               | -7.7                                                                                                                            | -20.0                                                                                                                    | -18.5                                                                                              | -21.4                                                                                                 | -28.0                                                                            | -51.5-                                                                             | -100.0-                                                                               | -100.0                                                                                    |
| CFS - curing (in                                                                                                                                                                                                                                                                              | tenral)                                                                                       | - cor                                                                                              | veyor                                                                                                                           | belt /                                                                                                                   | motor                                                                                              | 3                                                                                                     |                                                                                  |                                                                                    |                                                                                       |                                                                                           |
|                                                                                                                                                                                                                                                                                               |                                                                                               |                                                                                                    |                                                                                                                                 | FF                                                                                                                       | REQUENC                                                                                            | CY Hz_                                                                                                |                                                                                  |                                                                                    |                                                                                       |                                                                                           |
|                                                                                                                                                                                                                                                                                               | 31.5                                                                                          | 63                                                                                                 | 125                                                                                                                             | 250                                                                                                                      | 500                                                                                                | 1k                                                                                                    | 2k                                                                               | 4k                                                                                 | 8k                                                                                    | 16k                                                                                       |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                                                                                    | 77.0<br>.0                                                                                    | 93.0                                                                                               | 80.0                                                                                                                            | 74.0                                                                                                                     | 72.0                                                                                               | 68.0                                                                                                  | 65.0<br>.0                                                                       | 62.0                                                                               | 58.0                                                                                  | .0                                                                                        |
| DISTANCE                                                                                                                                                                                                                                                                                      |                                                                                               |                                                                                                    |                                                                                                                                 |                                                                                                                          |                                                                                                    | 77.1                                                                                                  |                                                                                  |                                                                                    |                                                                                       |                                                                                           |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                                                                                      | 5.0                                                                                           | 5.0                                                                                                | 5.0                                                                                                                             | 2.3                                                                                                                      | 6.2                                                                                                | 5.2<br>12.1                                                                                           | 20.6                                                                             | 40.3                                                                               | 6.5                                                                                   | 300.0                                                                                     |
| TEMP & WIND<br>GROUND                                                                                                                                                                                                                                                                         | .0<br>-4.5                                                                                    | .0                                                                                                 | 11 1                                                                                                                            | .0                                                                                                                       | .0                                                                                                 | .0                                                                                                    | .0                                                                               | .0                                                                                 | .0                                                                                    | .0                                                                                        |
| TOTAL AWT -11.8                                                                                                                                                                                                                                                                               |                                                                                               |                                                                                                    |                                                                                                                                 |                                                                                                                          |                                                                                                    |                                                                                                       |                                                                                  |                                                                                    |                                                                                       |                                                                                           |
| SOURCE : 19<br>CFS - curing (in                                                                                                                                                                                                                                                               |                                                                                               |                                                                                                    |                                                                                                                                 |                                                                                                                          |                                                                                                    |                                                                                                       |                                                                                  |                                                                                    |                                                                                       |                                                                                           |
|                                                                                                                                                                                                                                                                                               |                                                                                               |                                                                                                    |                                                                                                                                 | FF                                                                                                                       | REQUENC                                                                                            | CY Hz_                                                                                                |                                                                                  |                                                                                    |                                                                                       |                                                                                           |
|                                                                                                                                                                                                                                                                                               | 31.5                                                                                          | 63                                                                                                 | 125                                                                                                                             | 250                                                                                                                      | 500                                                                                                | 1k                                                                                                    | 2k                                                                               | 4k                                                                                 | 8k                                                                                    | 16k                                                                                       |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                                                                                    | 77.0                                                                                          | 93.0                                                                                               | 80.0                                                                                                                            | 74.0                                                                                                                     | 72.0                                                                                               | 68.0                                                                                                  | 65.0<br>.0                                                                       | 62.0                                                                               | 58.0                                                                                  | .0                                                                                        |
| DISTANCE                                                                                                                                                                                                                                                                                      | 77.1                                                                                          | 77.1                                                                                               | 77.1                                                                                                                            | 77.1                                                                                                                     | 77.1                                                                                               | 77.1                                                                                                  | 77.1                                                                             | 77.1                                                                               | 77.1                                                                                  | 77.1                                                                                      |
| BARRIER<br>AIR ABSORPTION                                                                                                                                                                                                                                                                     | 5.0                                                                                           | 5.0                                                                                                | 5.0                                                                                                                             | 5.0<br>2.3                                                                                                               | 5.1                                                                                                | 5.1<br>12.2<br>.0                                                                                     | 5.2                                                                              | 5.4                                                                                | 5.9                                                                                   | 6.6<br>300.0                                                                              |
| TEMP & WIND<br>GROUND                                                                                                                                                                                                                                                                         | .0<br>-4.5                                                                                    | .0                                                                                                 | .0<br>11 1                                                                                                                      | .0                                                                                                                       | .0                                                                                                 | .0<br>-4.3                                                                                            | .0<br>-2 5                                                                       | .0                                                                                 | .0<br>-2 5                                                                            | .0<br>-3.2                                                                                |
| GROOND                                                                                                                                                                                                                                                                                        | 1.5                                                                                           | . 2                                                                                                |                                                                                                                                 | 3.3                                                                                                                      | 5.5                                                                                                | 1.5                                                                                                   | 2.5                                                                              | 2.2                                                                                | 2.5                                                                                   | 5.2                                                                                       |
| TOTAL AWT -11.9                                                                                                                                                                                                                                                                               | 7                                                                                             | 10.9                                                                                               | -13.9                                                                                                                           | -14.1                                                                                                                    | -13.2                                                                                              | -22.1                                                                                                 | -35.6                                                                            | -58.9-                                                                             | -100.0-                                                                               | -100.0                                                                                    |
|                                                                                                                                                                                                                                                                                               | 7                                                                                             | 10.9                                                                                               | -13.9                                                                                                                           | -14.1                                                                                                                    | -13.2                                                                                              | -22.1                                                                                                 | -35.6                                                                            | -58.9-                                                                             | -100.0-                                                                               | -100.0                                                                                    |
| TOTAL AWT -11.9  SOURCE : 20  CFS - curing (in                                                                                                                                                                                                                                                |                                                                                               |                                                                                                    |                                                                                                                                 |                                                                                                                          |                                                                                                    |                                                                                                       | -35.6                                                                            | -58.9-                                                                             | -100.0-                                                                               | -100.0                                                                                    |
| SOURCE : 20                                                                                                                                                                                                                                                                                   |                                                                                               |                                                                                                    | nveyor                                                                                                                          | belt /                                                                                                                   | / moto:                                                                                            |                                                                                                       |                                                                                  |                                                                                    | -100.0-                                                                               | -100.0                                                                                    |
| SOURCE : 20                                                                                                                                                                                                                                                                                   | tenral)                                                                                       | - cor                                                                                              | ıveyor                                                                                                                          | belt /                                                                                                                   | / motor                                                                                            | s 5                                                                                                   |                                                                                  |                                                                                    |                                                                                       |                                                                                           |
| SOURCE : 20<br>CFS - curing (in                                                                                                                                                                                                                                                               | 31.5                                                                                          | - cor                                                                                              | 125                                                                                                                             | belt /<br>FF<br>250<br>74_0                                                                                              | / motor<br>REQUENC<br>500                                                                          | 2 5<br>CY Hz<br>1k                                                                                    | 2k                                                                               | 4k                                                                                 | 8k                                                                                    | 16k                                                                                       |
| SOURCE : 20 CFS - curing (int                                                                                                                                                                                                                                                                 | 31.5<br>77.0<br>.0                                                                            | - cor<br>63<br>93.0<br>.0                                                                          | 125<br>80.0<br>.0                                                                                                               | belt / FF 250 74.0 .0                                                                                                    | 7 motor REQUENCE 500 72.0 .0 77.2                                                                  | 1k<br>68.0<br>.0                                                                                      | 2k<br>65.0<br>.0                                                                 | 4k<br>62.0<br>.0                                                                   | 8k<br>58.0<br>.0                                                                      | 16k<br>.0<br>.0                                                                           |
| SOURCE : 20 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                                                                                                                                                          | 31.5<br>77.0<br>.0                                                                            | - cor<br>63<br>93.0<br>.0<br>77.2                                                                  | 125<br>80.0<br>.0<br>77.2                                                                                                       | belt / FF 250 74.0 .0 77.2 21.6                                                                                          | 7 motor 7 motor 700 72.0 .0 77.2 24.6                                                              | 1k<br>68.0<br>077.2                                                                                   | 2k<br>65.0<br>.0<br>77.2                                                         | 4k<br>62.0<br>.0<br>77.2<br>25.0                                                   | 8k<br>58.0<br>.0<br>77.2                                                              | 16k<br>.0<br>.0                                                                           |
| SOURCE : 20 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                                                                                                                                                               | 31.5<br>77.0<br>.0<br>77.2<br>12.8<br>.0                                                      | - cor<br>63<br>93.0<br>.0<br>77.2<br>15.6<br>.2                                                    | 125<br>80.0<br>.0<br>77.2<br>18.6<br>.7                                                                                         | FF 250 74.0 .0 77.2 21.6 2.4 .0                                                                                          | 7 motor 7 motor 7 motor 500 72.0 .0 77.2 24.6 6.3 .0                                               | 1k 68.0 .0 77.2 25.0 12.2 .0                                                                          | 2k<br>65.0<br>.0<br>77.2<br>25.0<br>20.9                                         | 4k<br>62.0<br>.0<br>77.2<br>25.0<br>40.7                                           | 8k<br>58.0<br>.0<br>77.2<br>25.0<br>109.6                                             | 16k<br>.0<br>.0<br>77.2<br>25.0<br>300.0                                                  |
| SOURCE : 20 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                                                                                        | 31.5<br>77.0<br>.0<br>77.2<br>12.8<br>.0<br>.0                                                | - cor<br>63<br>93.0<br>.0<br>77.2<br>15.6<br>.2<br>.0                                              | 125<br>80.0<br>.0<br>77.2<br>18.6<br>.7<br>.0<br>6.5                                                                            | FF 250 74.0 .0 77.2 21.6 2.4 .0 -2.2                                                                                     | 7 motor 72.0 77.2 24.6 6.3 .0 -3.6                                                                 | 1k 68.0 077.2 25.0 12.2 0-2.2                                                                         | 2k<br>65.0<br>.0<br>77.2<br>25.0<br>20.9<br>.0<br>-2.4                           | 4k 62.0 .0 77.2 25.0 40.7 .0 -2.2                                                  | 8k<br>58.0<br>.0<br>77.2<br>25.0<br>109.6<br>.0<br>-3.7                               | 16k .0 .0 77.2 25.0 300.0 .0 -3.1                                                         |
| SOURCE : 20 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                                                                                                                                                               | 31.5<br>77.0<br>.0<br>77.2<br>12.8<br>.0<br>.0                                                | - cor<br>63<br>93.0<br>.0<br>77.2<br>15.6<br>.2<br>.0                                              | 125<br>80.0<br>.0<br>77.2<br>18.6<br>.7<br>.0<br>6.5                                                                            | FF 250 74.0 .0 77.2 21.6 2.4 .0 -2.2                                                                                     | 7 motor 72.0 77.2 24.6 6.3 .0 -3.6                                                                 | 1k 68.0 077.2 25.0 12.2 0-2.2                                                                         | 2k<br>65.0<br>.0<br>77.2<br>25.0<br>20.9<br>.0<br>-2.4                           | 4k 62.0 .0 77.2 25.0 40.7 .0 -2.2                                                  | 8k<br>58.0<br>.0<br>77.2<br>25.0<br>109.6<br>.0<br>-3.7                               | 16k .0 .0 77.2 25.0 300.0 .0 -3.1                                                         |
| SOURCE : 20 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                                                                                        | 31.5<br>77.0<br>.0<br>77.2<br>12.8<br>.0<br>.0<br>-3.9                                        | - cor<br>63<br>93.0<br>.0<br>77.2<br>15.6<br>.2<br>.0<br>1.2                                       | 125<br>80.0<br>.0<br>77.2<br>18.6<br>.7<br>.0<br>6.5                                                                            | FF 250 74.0 .0 77.2 21.6 2.4 .0 .0 -2.2 -24.9 belt /                                                                     | 7 motos<br>500<br>72.0<br>.0<br>77.2<br>24.6<br>6.3<br>.0<br>-3.6                                  | 1k 68.0 .0 77.2 25.0 12.2 .0 -2.2 -44.1                                                               | 2k<br>65.0<br>.0<br>77.2<br>25.0<br>20.9<br>.0<br>-2.4                           | 4k 62.0 .0 77.2 25.0 40.7 .0 -2.2                                                  | 8k<br>58.0<br>.0<br>77.2<br>25.0<br>109.6<br>.0<br>-3.7                               | 16k .0 .0 77.2 25.0 300.0 .0 -3.1                                                         |
| SOURCE : 20 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -25.6  SOURCE : 21                                                                                                                                          | 31.5 77.0 .0 77.2 12.8 .0 .0 -3.9 -9.0                                                        | - cor 63 93.0 .0 77.2 15.6 .2 .0 1.2 -1.1 - cor                                                    | 125<br>80.0<br>.0<br>77.2<br>18.6<br>.7<br>.0<br>6.5                                                                            | FF belt /  FF 250  74.0 .0  77.2 21.6 2.4 .0 -2.2 -24.9  belt /                                                          | 7 motor 72.0 72.0 0 77.2 24.6 6.3 0 -3.6 -32.4 / motor                                             | 1k 68.0 .0 .0 .77.2 .25.0 .0 .2.2                                                                     | 2k 65.0 .0 77.2 25.0 20.9 .0 -2.4                                                | 4k 62.0 .0 77.2 25.0 40.7 .0 -2.2                                                  | 8k<br>58.0<br>.0<br>77.2<br>25.0<br>109.6<br>.0<br>-3.7                               | 16k<br>.0 .0<br>77.2<br>25.0<br>300.0<br>.0<br>-3.1                                       |
| SOURCE : 20 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -25.6  SOURCE : 21                                                                                                                                          | 31.5 77.0 .0 77.2 12.8 .0 .0 -3.9 -9.0                                                        | - cor 63 93.0 .0 77.2 15.6 .2 .0 1.2 -1.1 - cor                                                    | 125<br>80.0<br>.0<br>77.2<br>18.6<br>.7<br>.0<br>6.5                                                                            | FF belt /  FF 250  74.0 .0  77.2 21.6 2.4 .0 -2.2 -24.9  belt /                                                          | 7 motor 72.0 72.0 0 77.2 24.6 6.3 0 -3.6 -32.4 / motor                                             | 1k 68.0 .0 77.2 25.0 12.2 .0 -2.2 -44.1                                                               | 2k 65.0 .0 77.2 25.0 20.9 .0 -2.4                                                | 4k 62.0 .0 77.2 25.0 40.7 .0 -2.2                                                  | 8k<br>58.0<br>.0<br>77.2<br>25.0<br>109.6<br>.0<br>-3.7                               | 16k<br>.0 .0<br>77.2<br>25.0<br>300.0<br>.0<br>-3.1                                       |
| SOURCE : 20 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -25.6  SOURCE : 21                                                                                                                                          | 31.5 77.0 .0 77.2 12.8 .0 .0 -3.9 -9.0 tenral)                                                | - cor 63 93.0 .0 77.2 15.6 .2 .0 1.2 -1.1 - cor 63 93.0                                            | 125<br>80.0<br>.0<br>77.2<br>18.6<br>.7<br>.0<br>6.5<br>-22.9                                                                   | belt / FF  250  74.0 .0  77.2 21.6 2.4 .0 -2.2  -24.9  belt / FF  250  74.0                                              | 7 motor 72.0 72.0 77.2 24.6 6.3 .0 -3.6 -32.4 7 motor 8EQUENC                                      | 1k 68.0 0 77.2 25.0 12.2 0 0 -2.2 -44.1 1k 68.0                                                       | 2k 65.0 .0 77.2 25.0 20.9 .0 -2.4 -55.6                                          | 4k 62.0 .0 77.2 25.0 40.7 .0 -2.2 -78.7-                                           | 8k 58.0 .0 77.2 25.0 109.6 .0 -3.7 -100.0-                                            | 16k .0 .0 77.2 25.0 300.0 .0 -3.1 -100.0                                                  |
| SOURCE : 20 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -25.6  SOURCE : 21 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY                                                                                   | 31.5 77.0 .0 77.2 12.8 .0 .0 -3.9 -9.0 tenral) 31.5 77.0 .0 77.2                              | - cor  63  93.0 .0  77.2 15.6 .2 .0 1.2  -1.1  - cor  63  93.0 .0  77.2                            | 125<br>80.0<br>.0<br>77.2<br>18.6<br>.7<br>.0<br>6.5<br>-22.9<br>aveyor<br>125<br>80.0<br>.0<br>77.2                            | belt / FF  250  74.0 .0  77.2 21.6 2.4 .0 -2.2  -24.9  belt / FF  250  74.0 .0 77.2                                      | 7 motor 72.0 77.2 24.6 6.3 .0 -3.6 -32.4 7 motor 72.0 77.2 77.2 77.2 77.2 77.2 77.2                | 1k 68.0                                                                                               | 2k 65.0 .0 77.2 25.0 20.9 .0 -2.4 -55.6                                          | 4k 62.0 .0 77.2 25.0 40.7 .0 -2.2 -78.7- 4k 62.0 .0 77.2                           | 8k 58.0 .0 77.2 25.0 109.6 .0 -3.7 -100.0-                                            | 16k .0 .0 .77.2 25.0 300.0 .0 -3.1 -100.0                                                 |
| SOURCE : 20 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -25.6  SOURCE : 21 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY                                                                                   | 31.5 77.0 .0 77.2 12.8 .0 .0 -3.9 -9.0 tenral) 31.5 77.0 .0 77.2 12.7 .0                      | - cor  63  93.0  .0  77.2  15.6  .2  .0  1.2  -1.1  - cor  63  93.0  .0  77.2  15.3                | 125<br>80.0<br>.0<br>77.2<br>18.6<br>.7<br>.0<br>6.5<br>-22.9<br>1veyor<br>125<br>80.0<br>.0<br>77.2<br>18.3                    | belt /  FF  250  74.0 .0  77.2 21.6 2.4 .0 -2.2  -24.9  belt /  FF  250  74.0 .0  77.2 21.3 2.4                          | 7 motor 500 72.0 .0 77.2 24.6 6.3 .0 -3.6  -32.4  / motor 72.0 .0 72.0 .0 77.2 24.3 6.3            | 1k 68.0 77.2 25.0 12.2 -44.1 68.0 0 77.2 25.0 12.2 25.0 10.0 10.0                                     | 2k 65.0 .0 77.2 25.0 20.9 .0 -2.4 -55.6                                          | 4k 62.0 .0 77.2 25.0 40.7 .0 -2.2 -78.7-  4k 62.0 .0 77.2 25.0 40.8                | 8k 58.0 .0 77.2 25.0 109.6 .0 -3.7 -100.0-  8k 58.0 .0 77.2 25.0 109.8                | 16k .0 .0 .77.2 25.0 300.0 .0 -3.1 -100.0                                                 |
| SOURCE : 20 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -25.6  SOURCE : 21 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                 | 31.5 77.0 .0 77.2 12.8 .0 .0 -3.9 -9.0 tenral) 31.5 77.0 .0 77.2 12.7 .0                      | - cor  63  93.0  .0  77.2  15.6  .2  .0  1.2  -1.1  - cor  63  93.0  .0  77.2  15.3                | 125<br>80.0<br>.0<br>77.2<br>18.6<br>.7<br>.0<br>6.5<br>-22.9<br>1veyor<br>125<br>80.0<br>.0<br>77.2<br>18.3                    | belt /  FF  250  74.0 .0  77.2 21.6 2.4 .0 -2.2  -24.9  belt /  FF  250  74.0 .0  77.2 21.3 2.4                          | 7 motor 500 72.0 .0 77.2 24.6 6.3 .0 -3.6  -32.4  / motor 72.0 .0 72.0 .0 77.2 24.3 6.3            | 1k 68.0 .0 77.2 25.0 -2.2 -44.1 1k 68.0 .0 .77.2 25.0 .0 .0                                           | 2k 65.0 .0 77.2 25.0 20.9 .0 -2.4 -55.6                                          | 4k 62.0 .0 77.2 25.0 40.7 .0 -2.2 -78.7-  4k 62.0 .0 77.2 25.0 40.8                | 8k 58.0 .0 77.2 25.0 109.6 .0 -3.7 -100.0-                                            | 16k .0 .0 .77.2 25.0 300.0 .0 -3.1 -100.0                                                 |
| SOURCE : 20 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -25.6  SOURCE : 21 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                      | 31.5 77.0 .0 77.2 12.8 .0 .0 -3.9 -9.0 ttenral)  31.5 77.0 .0 77.2 12.7 .0 .0 .3              | - cor  63  93.0 .0  77.2 15.6 .2 .0 1.2  -1.1  - cor  63  93.0 .0  77.2 15.3 .2 .0 1.3             | 125<br>80.0<br>.0<br>77.2<br>18.6<br>.7<br>.0<br>6.5<br>-22.9<br>1veyor<br>125<br>80.0<br>.0<br>77.2<br>18.3<br>.7<br>.0<br>6.3 | belt / FF  250  74.0 .0  77.2 21.6 2.4 .0 -2.2  -24.9  belt / FF  250  74.0 .0  77.2 21.3 2.4 .0 -2.3                    | 7 motor 72.0 72.0 77.2 24.6 6.3 .0 -3.6 -32.4 7 motor 72.0 72.0 72.0 72.0 .0 77.2 24.3 6.3 .0 -3.5 | 1k 68.0 .0 77.2 25.0 .0 .2.2 -44.1 1k 68.0 .0 .0 .0 .0 .12.2 1k 68.0 0 1k 68.0 00 1k 68.0 0 1k 68.0 0 | 2k 65.0 .0 77.2 25.0 20.9 .2.4 -55.6                                             | 4k 62.0 .0 77.2 25.0 40.7 .0 -2.2 -78.7-  4k 62.0 .0 77.2 25.0 40.8 .0 -2.5        | 8k 58.0 .0 77.2 25.0 109.6 .3.7 -100.0- 8k 58.0 .0 77.2 25.0 109.8 .0 -2.9            | 16k .0 .0 77.2 25.0 300.0 .0 -3.1 -100.0  16k .0 .0 77.2 25.0 300.0 .0 -2.8               |
| SOURCE : 20 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -25.6  SOURCE : 21 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -25.4  SOURCE : 22 | 31.5 77.0 .0 77.2 12.8 .0 .0 -3.9 -9.0 tenral) 31.5 77.0 .0 77.2 12.7 .0 .0 -3.9              | - cor  63  93.0 .0  77.2 15.6 .2 .0 1.2  -1.1  - cor  63  93.0 .0  77.2 15.3 .2 .0 1.3             | 125<br>80.0<br>.0<br>77.2<br>18.6<br>.7<br>.0<br>6.5<br>-22.9<br>1veyor<br>125<br>80.0<br>.0<br>77.2<br>18.3<br>.7<br>.0<br>6.3 | belt / FF  250  74.0 .0  77.2 21.6 2.4 .0 -2.2  -24.9  belt / FF  250  74.0 .0  77.2 21.3 2.4 .0 -2.3                    | 7 motor 72.0 72.0 77.2 24.6 6.3 .0 -3.6 -32.4 7 motor 72.0 72.0 72.0 72.0 .0 77.2 24.3 6.3 .0 -3.5 | 1k 68.0 .0 77.2 25.0 .0 .2.2 -44.1 1k 68.0 .0 .0 .0 .0 .12.2 1k 68.0 0 1k 68.0 00 1k 68.0 0 1k 68.0 0 | 2k 65.0 .0 77.2 25.0 20.9 .2.4 -55.6                                             | 4k 62.0 .0 77.2 25.0 40.7 .0 -2.2 -78.7-  4k 62.0 .0 77.2 25.0 40.8 .0 -2.5        | 8k 58.0 .0 77.2 25.0 109.6 .3.7 -100.0- 8k 58.0 .0 77.2 25.0 109.8 .0 -2.9            | 16k .0 .0 77.2 25.0 300.0 .0 -3.1 -100.0  16k .0 .0 77.2 25.0 300.0 .0 -2.8               |
| SOURCE : 20 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -25.6  SOURCE : 21 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -25.4              | 31.5 77.0 .0 77.2 12.8 .0 .0 -3.9 -9.0 tenral) 31.5 77.0 .0 77.2 12.7 .0 .0 -3.9              | - cor  63  93.0 .0  77.2 15.6 .2 .0 1.2  -1.1  - cor  63  93.0 .0  77.2 15.3 .2 .0 1.3             | 125<br>80.0<br>.0<br>77.2<br>18.6<br>.7<br>.0<br>6.5<br>-22.9<br>1veyor<br>125<br>80.0<br>.0<br>77.2<br>18.3<br>.7<br>.0<br>6.3 | belt / FF  250  74.0 .0  77.2 21.6 2.4 .0 -2.2  -24.9  belt / FF  250  74.0 .0  77.2 21.3 2.4 .0 -2.3                    | 7 motor 72.0 72.0 77.2 24.6 6.3 .0 -3.6 -32.4 7 motor 72.0 72.0 72.0 72.0 .0 77.2 24.3 6.3 .0 -3.5 | 1k 68.0 .0 77.2 25.0 .0 .2.2 -44.1 1k 68.0 .0 .0 .0 .0 .12.2 1k 68.0 0 1k 68.0 00 1k 68.0 0 1k 68.0 0 | 2k 65.0 .0 77.2 25.0 20.9 .2.4 -55.6                                             | 4k 62.0 .0 77.2 25.0 40.7 .0 -2.2 -78.7-  4k 62.0 .0 77.2 25.0 40.8 .0 -2.5        | 8k 58.0 .0 77.2 25.0 109.6 .3.7 -100.0- 8k 58.0 .0 77.2 25.0 109.8 .0 -2.9            | 16k .0 .0 77.2 25.0 300.0 .0 -3.1 -100.0  16k .0 .0 77.2 25.0 300.0 .0 -2.8               |
| SOURCE : 20 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -25.6  SOURCE : 21 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -25.4  SOURCE : 22 | 31.5 77.0 .0 77.2 12.8 .0 .0 -3.9 -9.0 tenral)  31.5 77.0 .0 77.2 12.7 .0 .0 -3.9 -9.0 (exter | - cor  63  93.0  .0  77.2  15.6  .2  .0  1.2  -1.1  - cor  63  93.0  .0  77.2  15.3  .2  .0  1.3 9 | 125<br>80.0<br>.0<br>77.2<br>18.6<br>.7.0<br>6.5<br>-22.9<br>1veyor<br>125<br>80.0<br>.0<br>77.2<br>18.3<br>.7.0<br>6.3         | belt /  250  74.0 .0  77.2 21.6 2.4 .0 .0 -2.2  -24.9  belt /  FF  250  74.0 .0  77.2 21.3 2.4 .0 .0 -2.3                | 7 motor 72.0 77.2 24.6 6.3 .0 -3.6 -32.4 7 motor 72.0 .0 77.2 24.3 .0 77.2 24.3 6.3 .0 -3.5        | 1k 68.0 .0 77.2 25.0 .0 .2.2 -44.1 1k 68.0 .0 .0 .0 .0 .12.2 1k 68.0 0 1k 68.0 00 1k 68.0 0 1k 68.0 0 | 2k 65.0 .0 77.2 25.0 20.9 .0 -2.4 -55.6                                          | 4k 62.0 .0 77.2 25.0 40.7 .0 -2.2 -78.7-  4k 62.0 .0 77.2 25.0 40.8 .0 -2.5        | 8k 58.0 .0 77.2 25.0 109.6 .0 -3.7 -100.0-  8k 58.0 .0 77.2 25.0 109.8 .0 -2.9        | 16k .0 .0 77.2 25.0 300.0 .0 -3.1 -100.0  16k .0 .0 77.2 25.0 300.0 .0 -2.8               |
| SOURCE : 20 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -25.6  SOURCE : 21 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -25.4  SOURCE : 22 | 31.5 77.0 .0 77.2 12.8 .0 .0 -3.9 -9.0 tenral) 31.5 77.0 .0 77.2 12.7 .0 .0 -3.9 -9.0 (exter  | - cor  63  93.0 .0  77.2 15.6 .2 .0 1.2  -1.1  - cor  63  93.0 .0  77.2 15.3 .2 .0 1.3 9           | 125 80.0 .0 77.2 18.6 .7 .0 6.5 -22.9 aveyor  125 80.0 .0 77.2 18.3 .7 .0 6.3                                                   | belt /  FF  250  74.0 .0  77.2 21.6 2.4 .0 -2.2  -24.9  belt /  FF  250  74.0 .0  77.2 21.3 2.4 .0 .0 -2.3  -24.6        | 7 motor 72.0 77.2 24.6 6.3 .0 -3.6 -32.4 7 motor 500 72.0 .0 77.2 24.3 6.3 .0 -3.5 -32.3           | 1k 68.0 077.2 25.0 12.2 0-2.2 -44.1 1k 68.0 077.2 25.0 12.2 0.0 -2.2                                  | 2k 65.0 .0 77.2 25.0 20.9 .0 -2.4 -55.6                                          | 4k 62.0 .0 77.2 25.0 40.7 .0 -2.2 -78.7- 4k 62.0 .0 77.2 25.0 40.8 .0 -2.5 -78.5-  | 8k 58.0 .0 77.2 25.0 109.6 .0 -3.7 -100.0-                                            | 16k .0 .0 .77.2 25.0 300.0 .0 -3.1 -100.0  16k .0 .0 .0 .0 -2.8 -100.0                    |
| SOURCE : 20 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -25.6  SOURCE : 21 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -25.4  SOURCE : 22 | 31.5 77.0 .0 77.2 12.8 .0 .0 -3.9 -9.0 tenral)  31.5 77.0 .0 77.2 12.7 .0 .0 -3.9 -9.0 (exter | - cor  63  93.0 .0  77.2 15.6 .2 .0 1.2  -1.1  - cor  63  93.0 .0  77.2 15.3 .2 .0 1.3 9  nal) -   | 125 80.0 .0 77.2 18.6 .7 .0 6.5 -22.9 1veyor 125 80.0 .0 77.2 18.3 .7 .0 6.3 -22.5                                              | belt /  FF  250  74.0 .0  77.2 21.6 2.4 .0 -2.2  -24.9  belt /  FF  250  74.0 .0  77.2 21.3 2.4 .0 -2.3  -24.6  manv  FF | 7 motor 72.0 77.2 24.6 6.3 .0 -3.6 -32.4 7 motor 72.0 .0 77.2 24.3 .0 77.2 24.3 6.3 .0 -3.5        | 1k 68.0 77.2 25.0 12.2 .0 -2.2 -44.1 68.0 .0 77.2 25.0 12.2 .0 -2.3 -44.2                             | 2k 65.0 .0 77.2 25.0 20.9 .0 -2.4 -55.6  2k 65.0 .0 77.2 25.0 20.9 .0 -2.5 -55.6 | 4k 62.0 .0 77.2 25.0 40.7 .0 -2.2 -78.7-  4k 62.0 .0 77.2 25.0 40.8 .0 -2.5 -78.5- | 8k 58.0 .0 77.2 25.0 109.6 .0 -3.7 -100.0 - 8k 58.0 .0 77.2 25.0 109.8 .0 -2.9 -100.0 | 16k .0 .0 .77.2 .25.0 .300.0 .0 .3.1 -100.0  16k .0 .0 .77.2 .25.0 .300.0 .0 .0 .0 .100.0 |

| DIDDOMILLERIA                                                                                                                                                                                                 | _                                                                                                                                 |                                                                                                                           | _                                                                                                               | ^                                                                                                                         | ^                                                                                                                                    | 0                                                               | 0                                                                                                            | 0                                                                                                  | 0                                                                                                        | 0                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| DIRECTIVITY                                                                                                                                                                                                   |                                                                                                                                   |                                                                                                                           |                                                                                                                 |                                                                                                                           |                                                                                                                                      |                                                                 |                                                                                                              |                                                                                                    |                                                                                                          |                                                                           |
| BARRIER                                                                                                                                                                                                       | 6.2                                                                                                                               | 77.8<br>7.3                                                                                                               | 77.8<br>9.1                                                                                                     | 77.8<br>11.4                                                                                                              | 77.8<br>12.9                                                                                                                         | 77.8<br>15.9                                                    | 77.8<br>18.9                                                                                                 | 77.8<br>21.9                                                                                       | 77.8<br>24.9                                                                                             | 77.8<br>25.0                                                              |
| AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                 | .1                                                                                                                                | .2                                                                                                                        | .7                                                                                                              | 2.5                                                                                                                       |                                                                                                                                      | 13.0                                                            | 22.2                                                                                                         | 43.2                                                                                               | 116.8                                                                                                    | 300.0                                                                     |
| GROUND                                                                                                                                                                                                        | -3.6                                                                                                                              | 2.1                                                                                                                       | 2.8                                                                                                             | -3.7                                                                                                                      |                                                                                                                                      |                                                                 |                                                                                                              |                                                                                                    |                                                                                                          |                                                                           |
| TOTAL AWT 9.8                                                                                                                                                                                                 | 30.5                                                                                                                              | 26.6                                                                                                                      | 12.6                                                                                                            | 16.0                                                                                                                      | 6.1                                                                                                                                  | -4.0                                                            | -18.3                                                                                                        | -46.2                                                                                              | -100.0-                                                                                                  | -100.0                                                                    |
| SOURCE : 23                                                                                                                                                                                                   |                                                                                                                                   |                                                                                                                           |                                                                                                                 |                                                                                                                           |                                                                                                                                      |                                                                 |                                                                                                              |                                                                                                    |                                                                                                          |                                                                           |
| CFS - processing                                                                                                                                                                                              | (exte                                                                                                                             | rnal) -                                                                                                                   | RTT                                                                                                             | revers                                                                                                                    | ing                                                                                                                                  |                                                                 |                                                                                                              |                                                                                                    |                                                                                                          |                                                                           |
|                                                                                                                                                                                                               |                                                                                                                                   |                                                                                                                           |                                                                                                                 | F                                                                                                                         | REQUEN                                                                                                                               | CY Hz_                                                          |                                                                                                              |                                                                                                    |                                                                                                          |                                                                           |
|                                                                                                                                                                                                               | 31.5                                                                                                                              | 63                                                                                                                        | 125                                                                                                             | 250                                                                                                                       | 500                                                                                                                                  | 1k                                                              | 2k                                                                                                           | 4k                                                                                                 | 8k                                                                                                       | 16k                                                                       |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                    | 57.0<br>.0                                                                                                                        | 75.0<br>.0                                                                                                                | 75.0<br>.0                                                                                                      |                                                                                                                           |                                                                                                                                      |                                                                 | 91.0<br>.0                                                                                                   |                                                                                                    | 77.0                                                                                                     | .0                                                                        |
| DISTANCE                                                                                                                                                                                                      |                                                                                                                                   | 77.0                                                                                                                      |                                                                                                                 |                                                                                                                           | 77.0                                                                                                                                 | 77.0                                                            | 77.0                                                                                                         | 77.0                                                                                               | 77.0                                                                                                     | 77.0                                                                      |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                      | .0                                                                                                                                | .0                                                                                                                        | .0                                                                                                              | .0                                                                                                                        | .0                                                                                                                                   |                                                                 |                                                                                                              |                                                                                                    | .0<br>107.9                                                                                              |                                                                           |
| TEMP & WIND                                                                                                                                                                                                   | .0                                                                                                                                | .0                                                                                                                        | .0                                                                                                              | .0                                                                                                                        | .0                                                                                                                                   | .0                                                              | . 0                                                                                                          | .0                                                                                                 | .0                                                                                                       | .0                                                                        |
|                                                                                                                                                                                                               |                                                                                                                                   |                                                                                                                           |                                                                                                                 |                                                                                                                           |                                                                                                                                      |                                                                 |                                                                                                              |                                                                                                    |                                                                                                          |                                                                           |
| TOTAL AWT 5.5                                                                                                                                                                                                 | -15.1                                                                                                                             | 8                                                                                                                         | -12.7                                                                                                           | -14.9                                                                                                                     | -1.4                                                                                                                                 | 3.7                                                             | -2.0                                                                                                         | -26.4-                                                                                             | -100.0-                                                                                                  | -100.0                                                                    |
| SOURCE : 24<br>CFS - processing                                                                                                                                                                               |                                                                                                                                   | rnal) -                                                                                                                   | dust                                                                                                            | collec                                                                                                                    | ctor /                                                                                                                               | fan                                                             |                                                                                                              |                                                                                                    |                                                                                                          |                                                                           |
|                                                                                                                                                                                                               |                                                                                                                                   |                                                                                                                           |                                                                                                                 | FI                                                                                                                        | REQUEN                                                                                                                               | CY Hz_                                                          |                                                                                                              |                                                                                                    |                                                                                                          |                                                                           |
|                                                                                                                                                                                                               | 31.5                                                                                                                              | 63                                                                                                                        | 125                                                                                                             | 250                                                                                                                       | 500                                                                                                                                  | 1k                                                              | 2k                                                                                                           | 4k                                                                                                 | 8k                                                                                                       | 16k                                                                       |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                    |                                                                                                                                   | 102.0                                                                                                                     |                                                                                                                 |                                                                                                                           |                                                                                                                                      |                                                                 |                                                                                                              |                                                                                                    |                                                                                                          |                                                                           |
| DISTANCE                                                                                                                                                                                                      | 77.2                                                                                                                              | 77.2                                                                                                                      | 77.2                                                                                                            | 77.2                                                                                                                      | 77.2                                                                                                                                 | 77.2                                                            | 77.2                                                                                                         | 77.2                                                                                               | 77.2                                                                                                     | 77.2                                                                      |
| BARRIER<br>AIR ABSORPTION                                                                                                                                                                                     | 12.8                                                                                                                              | 77.2<br>15.5                                                                                                              | 18.5                                                                                                            | 21.5                                                                                                                      | 24.5                                                                                                                                 | 25.0                                                            | 25.0                                                                                                         | 25.0                                                                                               | 25.0                                                                                                     | 25.0                                                                      |
| TEMP & WIND                                                                                                                                                                                                   | .0                                                                                                                                | .2<br>.0<br>1.2                                                                                                           | .0                                                                                                              | .0                                                                                                                        | .0                                                                                                                                   | .0                                                              | .0                                                                                                           | .0                                                                                                 | .0                                                                                                       | .0                                                                        |
| GROUND                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                           |                                                                                                                 |                                                                                                                           |                                                                                                                                      |                                                                 |                                                                                                              |                                                                                                    |                                                                                                          |                                                                           |
| TOTAL AWT 4.2                                                                                                                                                                                                 | 13.9                                                                                                                              | 7.8                                                                                                                       | 3.1                                                                                                             | 10.1                                                                                                                      | 3.6                                                                                                                                  | -11.2                                                           | -26.7                                                                                                        | -51.9-                                                                                             | -100.0-                                                                                                  | -100.0                                                                    |
| SOURCE : 25<br>CFS - processing                                                                                                                                                                               | (exte                                                                                                                             | nal) -                                                                                                                    | fork                                                                                                            | lift                                                                                                                      |                                                                                                                                      |                                                                 |                                                                                                              |                                                                                                    |                                                                                                          |                                                                           |
|                                                                                                                                                                                                               |                                                                                                                                   |                                                                                                                           |                                                                                                                 | FI                                                                                                                        | FOIIEM                                                                                                                               | 7V H7                                                           |                                                                                                              |                                                                                                    |                                                                                                          |                                                                           |
|                                                                                                                                                                                                               | 21 5                                                                                                                              |                                                                                                                           |                                                                                                                 |                                                                                                                           |                                                                                                                                      |                                                                 |                                                                                                              |                                                                                                    | 01-                                                                                                      | 1615                                                                      |
|                                                                                                                                                                                                               |                                                                                                                                   | 63                                                                                                                        |                                                                                                                 |                                                                                                                           |                                                                                                                                      |                                                                 |                                                                                                              |                                                                                                    |                                                                                                          |                                                                           |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                    | 101.0                                                                                                                             | 100.0                                                                                                                     | 99.0                                                                                                            | 97.0                                                                                                                      | 93.0                                                                                                                                 | 93.0                                                            | 91.0                                                                                                         | .0                                                                                                 | 83.0                                                                                                     | . 0                                                                       |
|                                                                                                                                                                                                               |                                                                                                                                   |                                                                                                                           |                                                                                                                 |                                                                                                                           |                                                                                                                                      |                                                                 | 77 1                                                                                                         | 77.1                                                                                               | 77 1                                                                                                     | 77.1                                                                      |
| DISTANCE                                                                                                                                                                                                      | 77.1                                                                                                                              | 77.1                                                                                                                      | 77.1                                                                                                            | 77.1                                                                                                                      | 77.1                                                                                                                                 | 77.1                                                            | ,,,,                                                                                                         | 0                                                                                                  | //.1                                                                                                     | Ω                                                                         |
| BARRIER                                                                                                                                                                                                       | .0                                                                                                                                | .0                                                                                                                        | .0                                                                                                              | .0                                                                                                                        | .0                                                                                                                                   | .0                                                              | .0                                                                                                           | .0                                                                                                 | .0                                                                                                       | .0                                                                        |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND                                                                                                                                                | .0                                                                                                                                | .0                                                                                                                        | . 0<br>. 7<br>. 0                                                                                               | .0<br>2.3<br>.0                                                                                                           | .0<br>6.2<br>.0                                                                                                                      | .0<br>12.1<br>.0                                                | .0<br>20.6<br>.0                                                                                             | .0<br>40.3                                                                                         | .0<br>108.4<br>.0                                                                                        | .0<br>300.0<br>.0                                                         |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND                                                                                                                                                            | .0<br>.0<br>.0<br>-5.0                                                                                                            | .0<br>.2<br>.0<br>-1.4                                                                                                    | .0<br>.7<br>.0                                                                                                  | .0<br>2.3<br>.0<br>14.6                                                                                                   | .0<br>6.2<br>.0<br>7.3                                                                                                               | .0<br>12.1<br>.0<br>.3                                          | .0<br>20.6<br>.0<br>-4.6                                                                                     | .0<br>40.3<br>.0<br>-3.8                                                                           | .0<br>108.4<br>.0<br>-2.8                                                                                | .0<br>300.0<br>.0<br>-2.7                                                 |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 7.2                                                                                                                                                       | .0<br>.0<br>.0<br>-5.0                                                                                                            | .0<br>.2<br>.0<br>-1.4                                                                                                    | .0<br>.7<br>.0                                                                                                  | .0<br>2.3<br>.0<br>14.6                                                                                                   | .0<br>6.2<br>.0<br>7.3                                                                                                               | .0<br>12.1<br>.0<br>.3                                          | .0<br>20.6<br>.0<br>-4.6                                                                                     | .0<br>40.3<br>.0<br>-3.8                                                                           | .0<br>108.4<br>.0<br>-2.8                                                                                | .0<br>300.0<br>.0<br>-2.7                                                 |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND                                                                                                                                                            | .0<br>.0<br>-5.0                                                                                                                  | .0<br>.2<br>.0<br>-1.4                                                                                                    | .0<br>.7<br>.0<br>10.0                                                                                          | .0<br>2.3<br>.0<br>14.6                                                                                                   | .0<br>6.2<br>.0<br>7.3                                                                                                               | .0<br>12.1<br>.0<br>.3                                          | .0<br>20.6<br>.0<br>-4.6                                                                                     | .0<br>40.3<br>.0<br>-3.8                                                                           | .0<br>108.4<br>.0<br>-2.8                                                                                | .0<br>300.0<br>.0<br>-2.7                                                 |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 7.2 SOURCE: 26                                                                                                                                            | .0<br>.0<br>-5.0                                                                                                                  | .0<br>.2<br>.0<br>-1.4                                                                                                    | .0<br>.7<br>.0<br>10.0                                                                                          | .0<br>2.3<br>.0<br>14.6                                                                                                   | .0<br>6.2<br>.0<br>7.3<br>2.4                                                                                                        | .0<br>12.1<br>.0<br>.3                                          | .0<br>20.6<br>.0<br>-4.6                                                                                     | .0<br>40.3<br>.0<br>-3.8                                                                           | .0<br>108.4<br>.0<br>-2.8                                                                                | .0<br>300.0<br>.0<br>-2.7                                                 |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 7.2 SOURCE : 26                                                                                                                                           | .0<br>.0<br>.0<br>-5.0<br>28.9                                                                                                    | .0<br>.2<br>.0<br>-1.4                                                                                                    | .0<br>.7<br>.0<br>10.0                                                                                          | .0<br>2.3<br>.0<br>14.6<br>3.0                                                                                            | .0<br>6.2<br>.0<br>7.3<br>2.4<br>unload                                                                                              | .0<br>12.1<br>.0<br>.3<br>3.5                                   | .0<br>20.6<br>.0<br>-4.6                                                                                     | .0<br>40.3<br>.0<br>-3.8                                                                           | .0<br>108.4<br>.0<br>-2.8                                                                                | .0<br>300.0<br>.0<br>-2.7                                                 |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 7.2 SOURCE: 26                                                                                                                                            | .0<br>.0<br>.0<br>-5.0<br>28.9<br>(exter                                                                                          | .0<br>.2<br>.0<br>-1.4<br>24.2<br>rnal) -                                                                                 | .0<br>.7<br>.0<br>10.0<br>11.2<br>aggre                                                                         | .0<br>2.3<br>.0<br>14.6<br>3.0<br>egate v<br>FF<br>250                                                                    | .0<br>6.2<br>.0<br>7.3<br>2.4<br>unload<br>500                                                                                       | .0<br>12.1<br>.0<br>.3<br>3.5<br>CY Hz                          | .0<br>20.6<br>.0<br>-4.6<br>-2.1                                                                             | .0<br>40.3<br>.0<br>-3.8<br>-25.6                                                                  | .0<br>108.4<br>.0<br>-2.8<br>-99.6-                                                                      | .0<br>300.0<br>.0<br>-2.7<br>-100.0                                       |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 7.2 SOURCE: 26 CFS - processing  POWER LEVEL DIRECTIVITY                                                                                                  | .0<br>.0<br>.0<br>.0<br>-5.0<br>28.9<br>(exter<br>31.5<br>110.0<br>.0                                                             | .0<br>.2<br>.0<br>-1.4<br>24.2<br>(mal) -                                                                                 | .0<br>.7<br>.0<br>10.0<br>11.2<br>aggre<br>125                                                                  | .0<br>2.3<br>.0<br>14.6<br>3.0<br>egate v<br>FF<br>250<br>100.0<br>.0                                                     | .0<br>6.2<br>.0<br>7.3<br>2.4<br>unload<br>REQUENC<br>500<br>101.0<br>.0                                                             | .0<br>12.1<br>.0<br>.3<br>3.5<br>CY Hz                          | .0<br>20.6<br>.0<br>-4.6<br>-2.1<br>2k<br>101.0<br>.0                                                        | .0<br>40.3<br>.0<br>-3.8<br>-25.6<br>4k<br>97.0<br>.0                                              | .0<br>108.4<br>.0<br>-2.8<br>-99.6-                                                                      | .0<br>300.0<br>.0<br>-2.7<br>-100.0                                       |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 7.2 SOURCE: 26 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                               | .0<br>.0<br>.0<br>.0<br>-5.0<br>28.9<br>(exter<br>31.5<br>110.0<br>.0                                                             | .0<br>.2<br>.0<br>-1.4<br>24.2<br>(mal) -                                                                                 | .0<br>.7<br>.0<br>10.0<br>11.2<br>aggre<br>125<br>102.0<br>.0<br>77.1                                           | .0<br>2.3<br>.0<br>14.6<br>3.0<br>egate v<br>FF<br>250<br>100.0<br>.0                                                     | .0<br>6.2<br>.0<br>7.3<br>2.4<br>unload<br>seeQUENG<br>500<br>101.0<br>.0                                                            | .0<br>12.1<br>.0<br>.3<br>3.5<br>CY Hz1k<br>104.0<br>.0<br>77.1 | .0<br>20.6<br>.0<br>-4.6<br>-2.1<br>2k<br>101.0<br>.0                                                        | .0<br>40.3<br>.0<br>-3.8<br>-25.6<br>4k<br>97.0<br>.0                                              | .0<br>108.4<br>.0<br>-2.8<br>-99.6-<br>8k<br>105.0<br>.0                                                 | .0<br>300.0<br>.0<br>-2.7<br>-100.0                                       |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 7.2 SOURCE : 26 CFS - processing  POWER LEVEL DIRECTIVITY DISTANCE                                                                                       | .0<br>.0<br>.0<br>.0<br>.0<br>.28.9<br>(exter<br>31.5<br>110.0<br>.0<br>.0                                                        | .0<br>.2<br>.0<br>-1.4<br>24.2<br>rnal) -                                                                                 | .0<br>.7<br>.0<br>10.0<br>11.2<br>aggre<br>125<br>102.0<br>.0<br>77.1<br>.0                                     | .0<br>2.3<br>.0<br>14.6<br>3.0<br>egate v<br>250<br>100.0<br>.0<br>77.1<br>.0<br>2.4                                      | 0<br>6.2<br>.0<br>7.3<br>2.4<br>unload<br>500<br>101.0<br>.0<br>77.1<br>.0<br>6.3                                                    | .0<br>12.1<br>.0<br>.3<br>3.5<br>CY Hz                          | .0<br>20.6<br>.0<br>-4.6<br>-2.1<br>2k<br>101.0<br>.0<br>77.1<br>.0<br>20.7                                  | .0<br>40.3<br>.0<br>-3.8<br>-25.6<br>4k<br>97.0<br>.0<br>77.1<br>40.5                              | .0<br>108.4<br>.0<br>-2.8<br>-99.6-                                                                      | .0<br>300.0<br>.0<br>.0<br>-2.7<br>-100.0                                 |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 7.2  SOURCE : 26 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION                                                              | .0<br>.0<br>.0<br>.0<br>.0<br>.28.9<br>(exter<br>31.5<br>110.0<br>.0<br>.0                                                        | .0<br>.2<br>.0<br>-1.4<br>24.2<br>(mal) -                                                                                 | .0<br>.7<br>.0<br>10.0<br>11.2<br>aggre<br>125<br>102.0<br>.0<br>77.1<br>.0                                     | .0<br>2.3<br>.0<br>14.6<br>3.0<br>egate v<br>250<br>100.0<br>.0<br>77.1<br>.0<br>2.4                                      | 0<br>6.2<br>.0<br>7.3<br>2.4<br>unload<br>500<br>101.0<br>.0<br>77.1<br>.0<br>6.3                                                    | .0<br>12.1<br>.0<br>.3<br>3.5<br>CY Hz                          | .0<br>20.6<br>.0<br>-4.6<br>-2.1<br>2k<br>101.0<br>.0<br>77.1<br>.0<br>20.7                                  | .0<br>40.3<br>.0<br>-3.8<br>-25.6<br>4k<br>97.0<br>.0<br>77.1<br>40.5                              | .0<br>108.4<br>.0<br>-2.8<br>-99.6-                                                                      | .0<br>300.0<br>.0<br>.0<br>-2.7<br>-100.0                                 |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 7.2  SOURCE: 26 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                                   | .0<br>.0<br>.0<br>.0<br>.0<br>.5.0<br>28.9<br>(exter<br>31.5<br>110.0<br>.0<br>.0<br>.0<br>.0<br>.0                               | .0<br>.2<br>.0<br>-1.4<br>24.2<br>63<br>111.0<br>.0<br>77.1<br>.0<br>.2<br>.0                                             | .0<br>.7<br>.0<br>10.0<br>11.2<br>aggre<br>125<br>102.0<br>.0<br>77.1<br>.0<br>.7                               | .0<br>2.3<br>.0<br>14.6<br>3.0<br>egate v<br>FF<br>250<br>100.0<br>.0<br>77.1<br>.0<br>2.4<br>.0<br>14.6                  | .0<br>6.2<br>.0<br>7.3<br>2.4<br>unload<br>REQUENC<br>500<br>101.0<br>.0<br>77.1<br>.0<br>6.3<br>.0<br>7.3                           | .0 12.1 .0 .3 3.5  CY Hz                                        | 20.6<br>.0<br>.0<br>.4.6<br>-2.1<br>2k<br>101.0<br>.0<br>77.1<br>.0<br>20.7<br>.0                            | -25.6<br>4k<br>97.0<br>-77.1<br>.0<br>40.5<br>.0                                                   | .0<br>108.4<br>.0<br>-2.8<br>-99.6-<br>8k<br>105.0<br>.0<br>77.1<br>.0<br>109.1<br>.0                    | .0<br>300.0<br>.0<br>-2.7<br>-100.0                                       |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 7.2 SOURCE: 26 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 17.0 SOURCE: 27                  | .0<br>.0<br>.0<br>.0<br>.0<br>.5.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                        | .0<br>.2<br>.0<br>-1.4<br>24.2<br>(mal) -                                                                                 | .0<br>.7<br>.7<br>.0<br>10.0<br>11.2<br>aggre<br>125<br>102.0<br>.0<br>77.1<br>.0<br>.7<br>.0<br>10.1           | .0<br>2.3<br>.0<br>14.6<br>3.0<br>egate v<br>FF<br>250<br>100.0<br>.0<br>77.1<br>.0<br>2.4<br>.0<br>14.6                  | 0 6.2                                                                                                                                | .0 12.1 .0 .3 3.5  CY Hz                                        | 20.6<br>.0<br>.0<br>.4.6<br>-2.1<br>2k<br>101.0<br>.0<br>77.1<br>.0<br>20.7<br>.0                            | -25.6<br>4k<br>97.0<br>-77.1<br>.0<br>40.5<br>.0                                                   | .0<br>108.4<br>.0<br>-2.8<br>-99.6-<br>8k<br>105.0<br>.0<br>77.1<br>.0<br>109.1<br>.0                    | .0<br>300.0<br>.0<br>-2.7<br>-100.0                                       |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 7.2 SOURCE: 26 CFS - processing  POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 17.0                              | .0<br>.0<br>.0<br>.0<br>.0<br>.5.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                        | .0<br>.2<br>.0<br>-1.4<br>24.2<br>(mal) -                                                                                 | .0<br>.7<br>.0<br>10.0<br>11.2<br>aggre<br>125<br>102.0<br>.0<br>77.1<br>.0<br>.7<br>.0<br>10.1                 | .0<br>2.3<br>.0<br>14.6<br>3.0<br>14.6<br>250<br>100.0<br>.0<br>77.1<br>.0<br>2.4<br>.0<br>14.6                           | .0<br>6.2<br>.0<br>7.3<br>2.4<br>unload<br>500<br>101.0<br>.0<br>77.1<br>.0<br>6.3<br>.0<br>7.3                                      | .0<br>12.1<br>.0<br>.3<br>3.5<br>2Y Hz                          | 20.6<br>-0.0<br>-4.6<br>-2.1<br>2k<br>101.0<br>.0<br>77.1<br>.0<br>20.7<br>.0<br>-4.6                        | -25.6<br>4k<br>97.0<br>-0<br>40.5<br>-0<br>-16.9                                                   | .0<br>108.4<br>.0<br>-2.8<br>-99.6-<br>8k<br>105.0<br>.0<br>77.1<br>.0<br>109.1<br>.0                    | .0<br>300.0<br>.0<br>-2.7<br>-100.0                                       |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 7.2 SOURCE: 26 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 17.0 SOURCE: 27                  | .0<br>.0<br>.0<br>.0<br>.0<br>.5.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                        | .0<br>.2<br>.0<br>-1.4<br>24.2<br>(mal) -                                                                                 | .0<br>.7<br>.0<br>10.0<br>11.2<br>aggre<br>125<br>102.0<br>.0<br>77.1<br>.0<br>.7<br>.0<br>10.1                 | .0<br>2.3<br>.0<br>14.6<br>3.0<br>egate v<br>FF<br>250<br>100.0<br>.0<br>77.1<br>.0<br>2.4<br>.0<br>14.6                  | .0<br>6.2<br>.0<br>7.3<br>2.4<br>unload<br>500<br>101.0<br>.0<br>77.1<br>.0<br>6.3<br>.0<br>7.3                                      | .0<br>12.1<br>.0<br>.3<br>3.5<br>2Y Hz                          | 20.6<br>-0.0<br>-4.6<br>-2.1<br>2k<br>101.0<br>.0<br>77.1<br>.0<br>20.7<br>.0<br>-4.6                        | -25.6<br>4k<br>97.0<br>-0<br>40.5<br>-0<br>-16.9                                                   | .0<br>108.4<br>.0<br>-2.8<br>-99.6-<br>8k<br>105.0<br>.0<br>77.1<br>.0<br>109.1<br>.0                    | .0<br>300.0<br>.0<br>-2.7<br>-100.0                                       |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 7.2 SOURCE: 26 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 17.0 SOURCE: 27                  | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                  | .0<br>.2<br>.0<br>-1.4<br>24.2<br>(mal) -                                                                                 | .0<br>.7<br>.7<br>.0<br>10.0<br>11.2<br>aggre<br>125<br>102.0<br>.0<br>77.1<br>.0<br>.7<br>.0<br>10.1           | .0<br>2.3<br>.0<br>14.6<br>3.0<br>egate v<br>FF<br>250<br>100.0<br>.0<br>77.1<br>.0<br>2.4<br>.0<br>14.6<br>5.9           | 0 6.2                                                                                                                                | .0 12.1 .0 .3 3.5  CY Hz 1k 104.0 .0 77.1 .0 12.2 .0 .3 14.4    | 20.6<br>.0<br>.0<br>.0<br>.0<br>-4.6<br>-2.1<br>2k<br>101.0<br>.0<br>77.1<br>.0<br>20.7<br>.0<br>-4.6<br>7.7 | -25.6<br>4k<br>97.0<br>-3.8<br>-25.6<br>4k<br>97.0<br>0<br>40.5<br>0<br>-3.8                       | .0<br>108.4<br>.0<br>-2.8<br>-99.6-<br>8k<br>105.0<br>.0<br>77.1<br>.0<br>109.1<br>.0<br>-2.8            | .0<br>300.0<br>.0<br>-2.7<br>-100.0                                       |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 7.2 SOURCE: 26 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 17.0 SOURCE: 27                  | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.28.9<br>(exter<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | .0<br>.2<br>.0<br>-1.4<br>24.2<br>(mal) -<br>63<br>111.0<br>.0<br>77.1<br>.0<br>.2<br>.0<br>-1.4<br>35.1                  | .0<br>.7<br>.7<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                    | .0<br>2.3<br>.0<br>14.6<br>3.0<br>egate v<br>FF<br>250<br>100.0<br>.0<br>77.1<br>.0<br>2.4<br>.0<br>14.6<br>5.9<br>vent 1 | .0<br>6.2<br>.0<br>7.3<br>2.4<br>2.10<br>2.4<br>2.10<br>2.4<br>2.10<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>3.0<br>7.3<br>10.3<br>10.3 | .0<br>12.1<br>.0<br>.3<br>3.5<br>2Y Hz                          | 20.6<br>.0.0<br>-4.6<br>-2.1<br>2k<br>101.0<br>.0<br>77.1<br>.0<br>20.7<br>.0<br>-4.6<br>7.7                 | -25.6  4k 97.0 -3.8  -77.1 -0 -3.8  -16.9                                                          | .0<br>108.4<br>.0<br>-2.8<br>-99.6-<br>8k<br>105.0<br>.0<br>77.1<br>.0<br>109.1<br>.0<br>-2.8<br>-78.4-  | .0<br>300.0<br>.0<br>-2.7<br>-100.0<br>-16k<br>.0<br>.0<br>-2.7<br>-100.0 |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 7.2 SOURCE: 26 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 17.0 SOURCE: 27 CFS - processing | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                  | .0<br>.2<br>.0<br>.0<br>-1.4<br>24.2<br>cnal) -<br>63<br>111.0<br>.0<br>77.1<br>.0<br>.2<br>.0<br>-1.4<br>35.1<br>cnal) - | .0<br>.7<br>.0<br>10.0<br>11.2<br>aggre<br>125<br>102.0<br>.0<br>77.1<br>.0<br>.7<br>.0<br>10.1<br>14.1<br>silo | .0<br>2.3<br>.0<br>14.6<br>3.0<br>egate v<br>FF<br>250<br>100.0<br>.0<br>77.1<br>.0<br>2.4<br>.0<br>14.6<br>5.9<br>vent 1 | .0<br>6.2<br>.0<br>7.3<br>2.4<br>unload<br>REQUENC<br>500<br>101.0<br>.0<br>77.1<br>.0<br>6.3<br>.0<br>7.3<br>10.3                   | .0 12.1 .0 .3 3.5  CY Hz                                        | .0<br>20.6<br>.0<br>-4.6<br>-2.1<br>2k<br>101.0<br>.0<br>77.1<br>.0<br>20.7<br>.0<br>-4.6<br>7.7             | .0<br>40.3<br>.0<br>-3.8<br>-25.6<br>4k<br>97.0<br>.0<br>77.1<br>.0<br>40.5<br>.0<br>-3.8<br>-16.9 | .0<br>108.4<br>.0<br>-2.8<br>-99.6-<br>-8k<br>105.0<br>.0<br>77.1<br>.0<br>109.1<br>.0<br>-2.8<br>-78.4- | .0<br>300.0<br>.0<br>-2.7<br>-100.0<br>-16k<br>.0<br>.0<br>-2.7<br>-100.0 |

| BARRIER                                                                                                                                                                                                                                                                      | 5.0                                                                                                                                    | 5.0                                                                             | 5.0                                                                                                                                                                 | 5.0                                                                          | 5.0                                                                                                                             | 5.0                                                                          | 5.0                                                  | 5.0                                                                                                    | 5.0                                                      | 5.0                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|
| AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                                                                                | .0                                                                                                                                     | .0                                                                              | . 0                                                                                                                                                                 | 5.0<br>2.4<br>.0<br>-3.7                                                     | 6.3                                                                                                                             | .0                                                                           | .0                                                   | .0                                                                                                     | .0                                                       | .0                                                                         |
| GROUND                                                                                                                                                                                                                                                                       | -3.6                                                                                                                                   | 2.1                                                                             | 3.0                                                                                                                                                                 | -3.7                                                                         | 3                                                                                                                               | -3.0                                                                         | -2.4                                                 | -1.8                                                                                                   | -2.8                                                     | -2.1                                                                       |
| TOTAL AWT 1.6                                                                                                                                                                                                                                                                | 5.3                                                                                                                                    | -2.5                                                                            | .1                                                                                                                                                                  | 8.1                                                                          | 2                                                                                                                               | -10.5                                                                        | -26.7                                                | -52.2-                                                                                                 | -100.0-                                                  | -100.0                                                                     |
| SOURCE : 28                                                                                                                                                                                                                                                                  | , .                                                                                                                                    |                                                                                 |                                                                                                                                                                     |                                                                              |                                                                                                                                 |                                                                              |                                                      |                                                                                                        |                                                          |                                                                            |
| CFS - processing                                                                                                                                                                                                                                                             | (exter                                                                                                                                 | nal) -                                                                          | - silo                                                                                                                                                              | vent 2                                                                       |                                                                                                                                 |                                                                              |                                                      |                                                                                                        |                                                          |                                                                            |
|                                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                                 |                                                                                                                                                                     | FR                                                                           | EQUEN                                                                                                                           | CY Hz_                                                                       |                                                      |                                                                                                        |                                                          |                                                                            |
|                                                                                                                                                                                                                                                                              | 31.5                                                                                                                                   | 63                                                                              | 125                                                                                                                                                                 | 250                                                                          | 500                                                                                                                             | 1k                                                                           | 2k                                                   | 4k                                                                                                     | 8k                                                       | 16k                                                                        |
| POWER LEVEL                                                                                                                                                                                                                                                                  | 84.0                                                                                                                                   | 82.0                                                                            | 86.0                                                                                                                                                                | 89.0                                                                         | 88.0                                                                                                                            | 81.0                                                                         | 74.0                                                 | 69.0                                                                                                   | 63.0                                                     | .0                                                                         |
| DIRECTIVITY                                                                                                                                                                                                                                                                  |                                                                                                                                        |                                                                                 |                                                                                                                                                                     |                                                                              |                                                                                                                                 |                                                                              |                                                      |                                                                                                        |                                                          |                                                                            |
| DISTANCE<br>BARRIER                                                                                                                                                                                                                                                          | 77.2                                                                                                                                   | 77.2                                                                            | 77.2                                                                                                                                                                | 77.2                                                                         | 77.2                                                                                                                            | 77.2                                                                         | 77.2                                                 | 77.2                                                                                                   | 77.2                                                     | 77.2<br>.0                                                                 |
| AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                                                                                | .0                                                                                                                                     | .2                                                                              | .7                                                                                                                                                                  | .0<br>2.4<br>.0<br>6.3                                                       | 6.3                                                                                                                             | 12.2                                                                         | 20.8                                                 | 40.7                                                                                                   | 109.6                                                    | 300.0                                                                      |
| GROUND                                                                                                                                                                                                                                                                       | -4.5                                                                                                                                   | 4                                                                               | 8.6                                                                                                                                                                 | 6.3                                                                          | -1.6                                                                                                                            | -5.0                                                                         | 6                                                    | -3.4                                                                                                   | -2.7                                                     | -2.1                                                                       |
| TOTAL AWT 4.4                                                                                                                                                                                                                                                                | 11.2                                                                                                                                   | 5.1                                                                             | 5                                                                                                                                                                   | 3.2                                                                          | 6.1                                                                                                                             | -3.4                                                                         | -23.4                                                | -45.5-                                                                                                 | -100.0-                                                  | -100.0                                                                     |
|                                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                                 |                                                                                                                                                                     |                                                                              |                                                                                                                                 |                                                                              |                                                      |                                                                                                        |                                                          |                                                                            |
| TOTAL AWT 20.4                                                                                                                                                                                                                                                               | 39.2                                                                                                                                   | 36.4                                                                            | 19.2                                                                                                                                                                | 19.5                                                                         | 15.4                                                                                                                            | 17.2                                                                         | 10.7                                                 | -13.4                                                                                                  | -77.5                                                    | -88.0                                                                      |
| SINGLE POINT CALC                                                                                                                                                                                                                                                            |                                                                                                                                        |                                                                                 | 27.2                                                                                                                                                                | 17.0                                                                         | 10.1                                                                                                                            |                                                                              | 10.7                                                 | 10.1                                                                                                   | ,,,,                                                     | 00.0                                                                       |
| ENM CALC MODULE                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                                 |                                                                                                                                                                     |                                                                              |                                                                                                                                 |                                                                              |                                                      |                                                                                                        |                                                          |                                                                            |
| FILENAMES C:\ENM\SOURCES\2                                                                                                                                                                                                                                                   | 2118506                                                                                                                                | SA\506 <i>I</i>                                                                 | A-3                                                                                                                                                                 |                                                                              |                                                                                                                                 |                                                                              |                                                      |                                                                                                        |                                                          |                                                                            |
| 2118506A.GEN<br>C:\ENM\MAPS\2118                                                                                                                                                                                                                                             | 3506A\5                                                                                                                                | 06A                                                                             |                                                                                                                                                                     |                                                                              |                                                                                                                                 |                                                                              |                                                      |                                                                                                        |                                                          |                                                                            |
| OUT1 file and R                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                                 |                                                                                                                                                                     |                                                                              |                                                                                                                                 |                                                                              |                                                      |                                                                                                        |                                                          |                                                                            |
|                                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                                 |                                                                                                                                                                     |                                                                              |                                                                                                                                 |                                                                              |                                                      |                                                                                                        |                                                          |                                                                            |
| TEMP (deg C)<br>25.0                                                                                                                                                                                                                                                         |                                                                                                                                        | 50.0                                                                            | (%)                                                                                                                                                                 |                                                                              |                                                                                                                                 |                                                                              |                                                      |                                                                                                        |                                                          |                                                                            |
| WIND SPEED (m/sec                                                                                                                                                                                                                                                            |                                                                                                                                        |                                                                                 | (deg)                                                                                                                                                               |                                                                              |                                                                                                                                 |                                                                              |                                                      |                                                                                                        |                                                          |                                                                            |
|                                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                                 |                                                                                                                                                                     |                                                                              |                                                                                                                                 |                                                                              |                                                      |                                                                                                        |                                                          |                                                                            |
| TEMP GRAD (deg C,                                                                                                                                                                                                                                                            | /100m)                                                                                                                                 |                                                                                 |                                                                                                                                                                     |                                                                              |                                                                                                                                 |                                                                              |                                                      |                                                                                                        |                                                          |                                                                            |
| TEMP GRAD (deg C, .0 X= 3948.000 Y=                                                                                                                                                                                                                                          |                                                                                                                                        | 1.000                                                                           | Z=                                                                                                                                                                  | 22.20                                                                        | 10                                                                                                                              |                                                                              |                                                      |                                                                                                        |                                                          |                                                                            |
| .0<br>X= 3948.000 Y=                                                                                                                                                                                                                                                         |                                                                                                                                        | 1.000                                                                           | Z=                                                                                                                                                                  | 22.20                                                                        | 0                                                                                                                               |                                                                              |                                                      |                                                                                                        |                                                          |                                                                            |
| .0                                                                                                                                                                                                                                                                           | = 2044                                                                                                                                 |                                                                                 |                                                                                                                                                                     |                                                                              | 00                                                                                                                              |                                                                              |                                                      |                                                                                                        |                                                          |                                                                            |
| .0<br>X= 3948.000 Y=<br>SOURCE : 13                                                                                                                                                                                                                                          | = 2044                                                                                                                                 |                                                                                 | - backl                                                                                                                                                             | hoe                                                                          |                                                                                                                                 | CY Hz                                                                        |                                                      |                                                                                                        |                                                          |                                                                            |
| .0<br>X= 3948.000 Y=<br>SOURCE : 13                                                                                                                                                                                                                                          | = 2044<br>(exter                                                                                                                       | rnal) -                                                                         | - backl                                                                                                                                                             | hoe<br>FR                                                                    | REQUENC                                                                                                                         |                                                                              |                                                      |                                                                                                        | <br>8k                                                   |                                                                            |
| .0<br>X= 3948.000 Y:<br>SOURCE : 13<br>CFS - processing                                                                                                                                                                                                                      | = 2044<br>(exter                                                                                                                       | rnal) -                                                                         | - backl                                                                                                                                                             | noe<br>FR<br>250                                                             | EQUENC<br>500                                                                                                                   | 1k                                                                           | 2k                                                   |                                                                                                        |                                                          |                                                                            |
| .0<br>X= 3948.000 Y=<br>SOURCE : 13                                                                                                                                                                                                                                          | = 2044<br>(exter<br>31.5<br>95.0                                                                                                       | 63<br>95.0                                                                      | - backl<br>125<br>95.0                                                                                                                                              | noe<br>FR<br>250                                                             | EQUENC<br>500<br>95.0                                                                                                           | 1k<br>95.0                                                                   | 2k<br>95.0                                           | 95.0                                                                                                   | 95.0                                                     | .0                                                                         |
| .0  X= 3948.000 Y:  SOURCE : 13 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE                                                                                                                                                                                          | = 2044<br>(exter<br>31.5<br>95.0<br>.0                                                                                                 | 63<br>95.0<br>.0                                                                | 125<br>95.0<br>.0                                                                                                                                                   | 250<br>95.0<br>.0                                                            | 500<br>95.0<br>.0                                                                                                               | 1k<br>95.0<br>.0                                                             | 2k<br>95.0<br>.0                                     | 95.0<br>.0                                                                                             | 95.0<br>.0                                               | .0<br>.0                                                                   |
| .0  X= 3948.000 Y:  SOURCE : 13 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE                                                                                                                                                                                          | = 2044<br>(exter<br>31.5<br>95.0<br>.0                                                                                                 | 63<br>95.0<br>.0                                                                | 125<br>95.0<br>.0                                                                                                                                                   | 250<br>95.0<br>.0                                                            | 500<br>95.0<br>.0                                                                                                               | 1k<br>95.0<br>.0                                                             | 2k<br>95.0<br>.0                                     | 95.0<br>.0                                                                                             | 95.0<br>.0                                               | .0<br>.0                                                                   |
| .0  X= 3948.000 Y:  SOURCE : 13 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE                                                                                                                                                                                          | = 2044<br>(exter<br>31.5<br>95.0<br>.0                                                                                                 | 63<br>95.0<br>.0                                                                | 125<br>95.0<br>.0                                                                                                                                                   | 250<br>95.0<br>.0                                                            | 500<br>95.0<br>.0                                                                                                               | 1k<br>95.0<br>.0                                                             | 2k<br>95.0<br>.0                                     | 95.0<br>.0                                                                                             | 95.0<br>.0                                               | .0<br>.0                                                                   |
| .0  X= 3948.000 Y:  SOURCE: 13  CFS - processing  POWER LEVEL  DIRECTIVITY  DISTANCE  BARRIER  AIR ABSORPTION  TEMP & WIND  GROUND                                                                                                                                           | 31.5<br>95.0<br>.0<br>76.1<br>.0<br>.0                                                                                                 | 63<br>95.0<br>.0<br>76.1<br>.0<br>.2<br>.0                                      | 125<br>95.0<br>.0<br>76.1<br>.0<br>.6                                                                                                                               | 95.0<br>95.0<br>.0<br>76.1<br>.0<br>2.1<br>.0                                | 500<br>95.0<br>.0<br>76.1<br>.0<br>5.6<br>.0                                                                                    | 1k  95.0 .0  76.1 .0 10.9 .0 15.0                                            | 2k 95.0 .0 76.1 .0 18.7 .0 10.8                      | 95.0<br>.0<br>76.1<br>.0<br>36.6<br>.0<br>4.5                                                          | 95.0<br>.0<br>76.1<br>.0<br>98.0<br>.0                   | .0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2                              |
| .0  X= 3948.000 Y:  SOURCE: 13 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE                                                                                                                                                                                           | 31.5<br>95.0<br>.0<br>76.1<br>.0<br>.0                                                                                                 | 63<br>95.0<br>.0<br>76.1<br>.0<br>.2<br>.0                                      | 125<br>95.0<br>.0<br>76.1<br>.0<br>.6                                                                                                                               | 95.0<br>95.0<br>.0<br>76.1<br>.0<br>2.1<br>.0                                | 500<br>95.0<br>.0<br>76.1<br>.0<br>5.6<br>.0                                                                                    | 1k  95.0 .0  76.1 .0 10.9 .0 15.0                                            | 2k 95.0 .0 76.1 .0 18.7 .0 10.8                      | 95.0<br>.0<br>76.1<br>.0<br>36.6<br>.0<br>4.5                                                          | 95.0<br>.0<br>76.1<br>.0<br>98.0<br>.0                   | .0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2                              |
| .0  X= 3948.000 Y:  SOURCE: 13 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 2.0  SOURCE: 14                                                                                                                      | 31.5<br>95.0<br>.0<br>76.1<br>.0<br>.0<br>-5.6                                                                                         | 63<br>95.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1                              | 125<br>95.0<br>.0<br>76.1<br>.0<br>.6<br>.0                                                                                                                         | 95.0<br>95.0<br>.0<br>76.1<br>.0<br>2.1<br>.0                                | 500<br>95.0<br>.0<br>76.1<br>.0<br>5.6<br>.0                                                                                    | 1k  95.0 .0  76.1 .0 10.9 .0 15.0                                            | 2k 95.0 .0 76.1 .0 18.7 .0 10.8                      | 95.0<br>.0<br>76.1<br>.0<br>36.6<br>.0<br>4.5                                                          | 95.0<br>.0<br>76.1<br>.0<br>98.0<br>.0                   | .0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2                              |
| .0  X= 3948.000 Y:  SOURCE: 13 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 2.0                                                                                                                                  | 31.5<br>95.0<br>.0<br>76.1<br>.0<br>.0<br>.0<br>-5.6<br>24.4                                                                           | 63<br>95.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1<br>21.8                      | 125<br>95.0<br>0<br>76.1<br>0<br>6.0<br>6.7<br>11.5                                                                                                                 | 95.0<br>95.0<br>0<br>76.1<br>.0<br>2.1<br>.0<br>15.0                         | 500<br>95.0<br>.0<br>76.1<br>.0<br>5.6<br>.0<br>15.0                                                                            | 1k 95.0 .0 76.1 .0 10.9 .0 15.0                                              | 2k 95.0 .0 76.1 .0 18.7 .0 10.8                      | 95.0<br>.0<br>76.1<br>.0<br>36.6<br>.0<br>4.5                                                          | 95.0<br>.0<br>76.1<br>.0<br>98.0<br>.0<br>-1.1           | .0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2                              |
| .0  X= 3948.000 Y:  SOURCE: 13 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 2.0  SOURCE: 14                                                                                                                      | 31.5<br>95.0<br>.0<br>76.1<br>.0<br>.0<br>-5.6<br>24.4                                                                                 | 63 95.0 .0 76.1 .0 .2 .0 -3.1 21.8                                              | 125<br>95.0<br>.0<br>76.1<br>.0<br>.6<br>.0<br>6.7                                                                                                                  | FF 250 95.0 .0 76.1 .0 2.1 .0 15.0 1.7                                       | 95.0<br>95.0<br>.0<br>76.1<br>.0<br>5.6<br>.0<br>15.0                                                                           | 1k 95.0 .0 76.1 .0 10.9 .0 15.0 -7.0                                         | 2k<br>95.0<br>.0<br>76.1<br>.0<br>18.7<br>.0<br>10.8 | 95.0<br>.0<br>76.1<br>.0<br>36.6<br>.0<br>4.5                                                          | 95.0<br>.0<br>76.1<br>.0<br>98.0<br>.0<br>-1.1           | .0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2                              |
| .0  X= 3948.000 Y:  SOURCE: 13  CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 2.0  SOURCE: 14  CFS - processing                                                                                                   | 31.5<br>95.0<br>.0<br>76.1<br>.0<br>.0<br>-5.6<br>24.4<br>(exter                                                                       | 63<br>95.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1<br>21.8                      | 125<br>95.0<br>.0<br>76.1<br>.0<br>.6.0<br>6.7<br>11.5                                                                                                              | 750<br>95.0<br>95.0<br>76.1<br>.0<br>2.1<br>.0<br>15.0                       | 500<br>95.0<br>95.0<br>76.1<br>.0<br>5.0<br>15.0<br>-1.8                                                                        | 1k 95.0 .0 76.1 .0 10.9 .0 15.0 -7.0                                         | 2k 95.0 .0 76.1 .0 18.7 .0 10.8 -10.6                | 95.0<br>.0<br>76.1<br>.0<br>36.6<br>.0<br>4.5<br>-22.3                                                 | 95.0<br>.0<br>76.1<br>.0<br>98.0<br>.0<br>-1.1<br>-78.0- | .0<br>.0<br>76.1<br>.0<br>300.0<br>-5.2<br>-100.0                          |
| .0  X= 3948.000 Y:  SOURCE: 13 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 2.0  SOURCE: 14                                                                                                                      | 31.5<br>95.0<br>.0<br>76.1<br>.0<br>.0<br>-5.6<br>24.4<br>(exter                                                                       | 63<br>95.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1<br>21.8                      | 125<br>95.0<br>.0<br>76.1<br>.0<br>.6.0<br>6.7<br>11.5                                                                                                              | 750<br>95.0<br>95.0<br>76.1<br>.0<br>2.1<br>.0<br>15.0                       | 500<br>95.0<br>95.0<br>76.1<br>.0<br>5.0<br>15.0<br>-1.8                                                                        | 1k 95.0 .0 76.1 .0 10.9 .0 15.0 -7.0                                         | 2k 95.0 .0 76.1 .0 18.7 .0 10.8 -10.6                | 95.0<br>.0<br>76.1<br>.0<br>36.6<br>.0<br>4.5<br>-22.3                                                 | 95.0<br>.0<br>76.1<br>.0<br>98.0<br>.0<br>-1.1<br>-78.0- | .0<br>.0<br>76.1<br>.0<br>300.0<br>-5.2<br>-100.0                          |
| .0  X= 3948.000 Y:  SOURCE: 13 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 2.0  SOURCE: 14 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE                                                                  | = 2044<br>(exter<br>31.5<br>95.0<br>.0<br>.0<br>.0<br>.5.6<br>24.4<br>(exter<br>31.5<br>94.0<br>.0                                     | 63<br>95.0<br>0<br>76.1<br>0<br>22<br>0<br>-3.1<br>21.8<br>cnal) -              | 125<br>95.0<br>0<br>76.1<br>0<br>6.7<br>11.5<br>- FEL<br>125<br>100.0<br>0                                                                                          | 76.1<br>.0<br>25.0<br>76.1<br>.0<br>15.0<br>1.7<br>FF<br>250<br>106.0<br>.0  | 76.1<br>.0<br>5.0<br>76.1<br>.0<br>5.6<br>.0<br>15.0<br>-1.8<br>REQUENC<br>98.0<br>.0                                           | 1k 95.0 .0 76.1 .0 10.9 .0 15.0 -7.0  CY Hz 1k 101.0 .0 76.2                 | 2k 95.0 .0 76.1 .0 18.7 .0 10.8 -10.6                | 95.0<br>.0<br>76.1<br>.0<br>36.6<br>.0<br>4.5<br>-22.3                                                 | 95.0<br>.0<br>76.1<br>.0<br>98.0<br>.0<br>-1.1<br>-78.0- | .0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2<br>-100.0                    |
| .0  X= 3948.000 Y:  SOURCE: 13 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 2.0  SOURCE: 14 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE                                                                  | = 2044<br>(exter<br>31.5<br>95.0<br>.0<br>.0<br>.0<br>.5.6<br>24.4<br>(exter<br>31.5<br>94.0<br>.0                                     | 63<br>95.0<br>0<br>76.1<br>0<br>22<br>0<br>-3.1<br>21.8<br>cnal) -              | 125<br>95.0<br>0<br>76.1<br>0<br>6.7<br>11.5<br>- FEL<br>125<br>100.0<br>0                                                                                          | 76.1<br>.0<br>25.0<br>76.1<br>.0<br>15.0<br>1.7<br>FF<br>250<br>106.0<br>.0  | 76.1<br>.0<br>5.0<br>76.1<br>.0<br>5.6<br>.0<br>15.0<br>-1.8<br>REQUENC<br>98.0<br>.0                                           | 1k 95.0 .0 76.1 .0 10.9 .0 15.0 -7.0  CY Hz 1k 101.0 .0 76.2                 | 2k 95.0 .0 76.1 .0 18.7 .0 10.8 -10.6                | 95.0<br>.0<br>76.1<br>.0<br>36.6<br>.0<br>4.5<br>-22.3                                                 | 95.0<br>.0<br>76.1<br>.0<br>98.0<br>.0<br>-1.1<br>-78.0- | .0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2<br>-100.0                    |
| .0  X= 3948.000 Y:  SOURCE: 13 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 2.0  SOURCE: 14 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE                                                                  | = 2044<br>(exter<br>31.5<br>95.0<br>.0<br>.0<br>.0<br>.5.6<br>24.4<br>(exter<br>31.5<br>94.0<br>.0                                     | 63<br>95.0<br>0<br>76.1<br>0<br>22<br>0<br>-3.1<br>21.8<br>cnal) -              | 125<br>95.0<br>0<br>76.1<br>0<br>6.7<br>11.5<br>- FEL<br>125<br>100.0<br>0                                                                                          | 76.1<br>.0<br>25.0<br>76.1<br>.0<br>15.0<br>1.7<br>FF<br>250<br>106.0<br>.0  | 76.1<br>.0<br>5.0<br>76.1<br>.0<br>5.6<br>.0<br>15.0<br>-1.8<br>REQUENC<br>98.0<br>.0                                           | 1k 95.0 .0 76.1 .0 10.9 .0 15.0 -7.0  CY Hz 1k 101.0 .0 76.2                 | 2k 95.0 .0 76.1 .0 18.7 .0 10.8 -10.6                | 95.0<br>.0<br>76.1<br>.0<br>36.6<br>.0<br>4.5<br>-22.3                                                 | 95.0<br>.0<br>76.1<br>.0<br>98.0<br>.0<br>-1.1<br>-78.0- | .0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2<br>-100.0                    |
| X= 3948.000 Y:  SOURCE: 13 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 2.0  SOURCE: 14 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                            | 31.5<br>95.0<br>.0<br>76.1<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                 | 63 95.0 .0 76.1 .0 .2 .0 -3.1 21.8  63 100.0 .0 76.2 .0 .2 .0 -3.1              | 125<br>95.0<br>0.0<br>76.1<br>0.0<br>6.7<br>11.5<br>- FEL<br>125<br>100.0<br>0.6<br>0.0<br>6.2<br>0.0<br>6.7                                                        | FF 250 95.0 .0 2.1 .0 15.0 1.7 FF 250 106.0 .0 .0 2.1 .0 15.0 15.0 15.0 15.0 | 500<br>95.0<br>.0<br>76.1<br>.0<br>5.6<br>.0<br>15.0<br>-1.8<br>REQUENC<br>500<br>98.0<br>.0<br>76.2<br>.0<br>5.6<br>.0<br>15.0 | 1k 95.0 .0 76.1 .0 10.9 .0 15.0 -7.0  CY Hz 1k 101.0 .0 76.2 .0 10.9 .0 15.0 | 2k 95.0 .0 76.1 .0 18.7 .0 10.8 -10.6                | 95.0<br>.0<br>76.1<br>.0<br>36.6<br>.0<br>4.5<br>-22.3<br>4k<br>92.0<br>.0<br>76.2<br>.0<br>36.6<br>.0 | 95.0<br>.0<br>76.1<br>.0<br>98.0<br>-1.1<br>-78.0-       | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |
| X= 3948.000 Y:  SOURCE: 13 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TOTAL AWT 2.0  SOURCE: 14 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TOTAL AWT 8.1                                                     | 31.5<br>95.0<br>.0<br>76.1<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                 | 63 95.0 .0 76.1 .0 .2 .0 -3.1 21.8  63 100.0 .0 76.2 .0 .2 .0 -3.1              | 125<br>95.0<br>0.0<br>76.1<br>0.0<br>6.7<br>11.5<br>- FEL<br>125<br>100.0<br>0.6<br>0.0<br>6.2<br>0.0<br>6.7                                                        | FF 250 95.0 .0 2.1 .0 15.0 1.7 FF 250 106.0 .0 .0 2.1 .0 15.0 15.0 15.0 15.0 | 500<br>95.0<br>.0<br>76.1<br>.0<br>5.6<br>.0<br>15.0<br>-1.8<br>REQUENC<br>500<br>98.0<br>.0<br>76.2<br>.0<br>5.6<br>.0<br>15.0 | 1k 95.0 .0 76.1 .0 10.9 .0 15.0 -7.0  CY Hz 1k 101.0 .0 76.2 .0 10.9 .0 15.0 | 2k 95.0 .0 76.1 .0 18.7 .0 10.8 -10.6                | 95.0<br>.0<br>76.1<br>.0<br>36.6<br>.0<br>4.5<br>-22.3<br>4k<br>92.0<br>.0<br>76.2<br>.0<br>36.6<br>.0 | 95.0<br>.0<br>76.1<br>.0<br>98.0<br>-1.1<br>-78.0-       | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |
| X= 3948.000 Y:  SOURCE: 13 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 2.0  SOURCE: 14 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AGRIER AGRIER AIR ABSORPTION TEMP & WIND GROUND              | 31.5<br>95.0<br>.0<br>76.1<br>.0<br>.0<br>-5.6<br>24.4<br>(exter<br>31.5<br>94.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | 63 95.0 .0 76.1 .0 .2 .0 -3.1 21.8 enal) - 63 100.0 .0 76.2 .0 .2 .0 .3 .1 26.8 | 125<br>95.0<br>0<br>76.1<br>.0<br>6.0<br>6.7<br>11.5<br>- FEL<br>125<br>100.0<br>.0<br>76.2<br>.0<br>.6<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | FF 250 95.0 .0 2.1 .0 15.0 1.7 FF 250 106.0 .0 .0 2.1 .0 15.0 15.0 15.0 15.0 | 500<br>95.0<br>.0<br>76.1<br>.0<br>5.6<br>.0<br>15.0<br>-1.8<br>REQUENC<br>500<br>98.0<br>.0<br>76.2<br>.0<br>5.6<br>.0<br>15.0 | 1k 95.0 .0 76.1 .0 10.9 .0 15.0 -7.0  CY Hz 1k 101.0 .0 76.2 .0 10.9 .0 15.0 | 2k 95.0 .0 76.1 .0 18.7 .0 10.8 -10.6                | 95.0<br>.0<br>76.1<br>.0<br>36.6<br>.0<br>4.5<br>-22.3<br>4k<br>92.0<br>.0<br>76.2<br>.0<br>36.6<br>.0 | 95.0<br>.0<br>76.1<br>.0<br>98.0<br>-1.1<br>-78.0-       | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |
| X= 3948.000 Y:  SOURCE: 13 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 2.0  SOURCE: 14 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 8.1  SOURCE: 15 | 31.5<br>95.0<br>.0<br>76.1<br>.0<br>.0<br>-5.6<br>24.4<br>(exter<br>31.5<br>94.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | 63 95.0 .0 76.1 .0 .2 .0 -3.1 21.8 enal) - 63 100.0 .0 76.2 .0 .2 .0 .3 .1 26.8 | 125<br>95.0<br>06.1<br>06.7<br>11.5<br>- FEL<br>125<br>100.0<br>76.2<br>06.7<br>16.5                                                                                | FF 250 95.0 .0 2.1 .0 15.0 1.7 FF 250 106.0 .0 .0 2.1 .0 15.0 15.0 15.0 15.0 | 500<br>95.0<br>.0<br>76.1<br>.0<br>5.6<br>.0<br>15.0<br>-1.8<br>REQUENC<br>500<br>98.0<br>.0<br>76.2<br>.0<br>5.6<br>.0<br>15.0 | 1k 95.0 .0 76.1 .0 10.9 .0 15.0 -7.0  CY Hz 1k 101.0 .0 10.9 .0 10.9 .0 15.0 | 2k 95.0 .0 76.1 .0 18.7 .0 10.8 -10.6                | 95.0<br>.0<br>76.1<br>.0<br>36.6<br>.0<br>4.5<br>-22.3<br>4k<br>92.0<br>.0<br>76.2<br>.0<br>36.6<br>.0 | 95.0<br>.0<br>76.1<br>.0<br>98.0<br>-1.1<br>-78.0-       | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |

31.5 63 125 250 500 1k 2k 4k 8k 16k

| POWER LEVEL DIRECTIVITY                 | 84.0                    |       |        | 96.0<br>.0          |                        |                  |             |        |        |       |
|-----------------------------------------|-------------------------|-------|--------|---------------------|------------------------|------------------|-------------|--------|--------|-------|
| DISTANCE                                | 76.1                    | 76.1  | 76.1   | 76.1                | 76.1                   | 76.1             | 76.1        | 76.1   | 76.1   | 76.1  |
| BARRIER<br>AIR ABSORPTION               | 5.0                     | 5.1   | 5.1    | 5.2                 | 5.3                    | 5.6              | 6.1         | 7.0    | 8.6    | 10.8  |
| TEMP & WIND                             | .0<br>.0<br>-5.1        | .0    | .0     | .0                  | .0                     | .0               | .0          | .0     | .0     | .0    |
| GROUND                                  | -5.1                    | -1.6  | 9.7    | 11.4                | 2.9                    | -3.1             | -5.2        | -1.6   | -2.7   | -2.8  |
| TOTAL AWT 3.4                           | 7.9                     | 10.3  | -1.6   | 1.2                 | -1.9                   | 1.6              | -7.6        | -36.0- | 100.0- | 100.0 |
| SOURCE : 16<br>CFS - curing (int        | enral)                  | - cor | vevor  | belt /              | motor                  | 1                |             |        |        |       |
|                                         |                         |       | =      | FR                  |                        |                  |             |        |        |       |
|                                         | 31.5                    | 63    | 125    | 250                 | 500                    | 1k               | 2k          | 4k     | 8k     | 16k   |
| POWER LEVEL<br>DIRECTIVITY              | 77.0                    | 93.0  | 80.0   | 74.0                | 72.0                   | 68.0             | 65.0        | 62.0   | 58.0   | .0    |
|                                         | 76.1                    |       |        |                     |                        |                  |             |        |        |       |
| BARRIER                                 | 5.0                     | 5.1   | 5.1    | 5.2                 |                        |                  | 6.1<br>18.6 |        |        | 10.8  |
| BARRIER AIR ABSORPTION TEMP & WIND      | .0                      | .0    | .0     | .0                  | . 0                    | . 0              | . 0         | . 0    | .0     | .0    |
| GROUND                                  | -5.1                    | -1.6  | 9.7    | 11.4                | 2.9                    | -3.1             | -5.2        | -1.6   | -2.7   | -2.8  |
| TOTAL AWT -11.5                         | .9                      | 13.3  | -11.5  | -20.8               | -17.9                  | -21.4            | -30.6       | -56.0- | 100.0- | 100.0 |
| SOURCE : 17<br>CFS - curing (int        | enral)                  | - cor | nveyor | belt /              | motor                  | 2                |             |        |        |       |
|                                         |                         |       |        | FR                  | EQUENC                 | Y Hz_            |             |        |        |       |
|                                         | 31.5                    | 63    | 125    | 250                 | 500                    | 1k               | 2k          | 4k     | 8k     | 16k   |
| POWER LEVEL<br>DIRECTIVITY              | 77.0                    | 93.0  | 80.0   | 74.0                | 72.0                   | 68.0             | 65.0        | 62.0   | 58.0   | .0    |
| DISTANCE                                | 76.1                    | 76.1  | 76.1   | 76.1                | 76.1                   | 76.1             | 76.1        | 76.1   | 76.1   | 76.1  |
| BARRIER<br>AIR ABSORPTION               | 5.0                     | 5.1   | 5.1    | 2.1                 | 5.3                    | 10.8             | 18.6        | 36.4   | 97.5   | 300.0 |
| TEMP & WIND                             | 5.0<br>.0<br>.0<br>-5.1 | .0    | .0     | .0                  | .0                     | .0               | .0          | .0     | .0     | .0    |
| GROUND                                  | -5.1                    | -1.6  | 9.8    | 11.5                | 3.0                    | -3.0             | -5.2        | -1.5   | -2.8   | -2.8  |
| TOTAL AWT -11.5                         | . 9                     | 13.3  | -11.6  | -20.9               | -18.0                  | -21.5            | -30.5       | -56.1- | 100.0- | 100.0 |
| SOURCE : 18<br>CFS - curing (int        | enral)                  | - cor | nveyor | belt /              | motor                  | . 3              |             |        |        |       |
|                                         |                         |       |        | FR                  | EQUENC                 | Y Hz_            |             |        |        |       |
|                                         | 31.5                    | 63    | 125    | 250                 | 500                    | 1k               | 2k          | 4k     | 8k     | 16k   |
| POWER LEVEL<br>DIRECTIVITY              | 77.0<br>.0              | 93.0  | 80.0   | 74.0                | 72.0                   | 68.0             | 65.0<br>.0  | 62.0   | 58.0   | .0    |
| DISTANCE                                | 76.1                    | 76.1  | 76.1   | 76.1                | 76.1                   | 76.1             | 76.1        | 76.1   | 76.1   | 76.1  |
| BARRIER                                 | 5.0                     | 5.0   | 5.1    | 5.1                 | 5.2                    | 5.4              | 5.8         | 6.6    | 7.9    | 10.0  |
| AIR ABSORPTION TEMP & WIND              | . 0                     | . 2   | . 6    | 2.1                 | 5.6                    | 10.9             | 18.6        | 36.6   | 97.8   | 300.0 |
| AIR ABSORPTION<br>TEMP & WIND<br>GROUND | -5.1                    | -1.6  | 9.7    | 11.3                | 2.8                    | -3.2             | -5.1        | -1.7   | -2.5   | -2.9  |
| TOTAL AWT -11.5                         | .8                      | 13.3  | -11.5  | -20.7               | -17.8                  | -21.3            | -30.5       | -55.6- | 100.0- | 100.0 |
| SOURCE : 19<br>CFS - curing (int        | enral)                  | - cor | wever  | helt /              | motor                  | . Д              |             |        |        |       |
| ers curing (in                          | .cmai,                  |       |        | FR                  |                        |                  |             |        |        |       |
|                                         | 31.5                    |       |        | 250                 |                        |                  |             |        |        | 16k   |
| POWER LEVEL<br>DIRECTIVITY              | 77.0                    | 93.0  | 80.0   | 74.0                | 72.0                   | 68.0             | 65.0<br>.0  | 62.0   | 58.0   | .0    |
| DISTANCE                                | 76.2                    | 76.2  | 76.2   | 76.2                | 76.2                   | 76.2             | 76.2        | 76.2   | 76.2   | 76.2  |
| BARRIER<br>AIR ABSORPTION               | 5.0<br>.0<br>.0<br>-5.1 | 5.0   | 5.1    | 5.1                 | 5.2                    | 5.3              | 5.7         | 6.3    | 7.4    | 9.2   |
| TEMP & WIND                             | .0                      | . 2   | . 0    | .0                  | .0                     | .0               | .0          | 36.8   | 98.4   | .0    |
| GROUND                                  | -5.1                    | -1.7  | 9.6    | 11.3                | 2.8                    | -3.2             | -5.1        | -1.7   | -2.5   | -2.9  |
| TOTAL AWT -11.5                         |                         |       |        |                     |                        | 01 0             | -30 5       | -55 5- | 100 0- | 100 0 |
| 1011111 1111 111.5                      | .8                      | 13.3  | -11.5  | -20.7               | -17.8                  | -21.3            | 30.3        | 55.5   | 100.0- | 100.0 |
| SOURCE : 20<br>CFS - curing (int        |                         |       |        |                     |                        |                  | 30.3        | 33.3   | 100.0  | 100.0 |
| SOURCE : 20                             | enral)                  | - cor | ıveyor |                     | motor                  | 5                |             |        |        |       |
| SOURCE : 20                             | enral)                  | - cor | nveyor | belt /              | motor<br>EQUENC        | 5<br>Y Hz        |             |        |        |       |
| SOURCE : 20                             | 31.5                    | - cor | nveyor | belt /<br>FR<br>250 | motor<br>EQUENC<br>500 | 5<br>Y Hz_<br>1k | 2k          | 4k     | 8k     |       |

| DISTANCE                                                                                                                                                                                                                              | 76 2                                                                                                                                                               | 76.2                                                                                                       | 76 2                                                                                   | 76 2                                                                                           | 76.2                                                                                                            | 76 2                                                                                    | 76 2                                                                           | 76 2                                                                          | 76.2                                                                                                                                       | 76 2                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| BARRIER                                                                                                                                                                                                                               | 76.2<br>12.8                                                                                                                                                       | 15.6                                                                                                       | 18.6                                                                                   | 21.6                                                                                           | 24.6                                                                                                            | 25.0                                                                                    | 25.0                                                                           | 25.0                                                                          | 25.0                                                                                                                                       | 25.0                                                           |
| AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                                         | .0                                                                                                                                                                 | .2                                                                                                         | .6                                                                                     | 2.1                                                                                            | 5.7                                                                                                             | 11.0                                                                                    | 18.8                                                                           | 37.0                                                                          | 99.0                                                                                                                                       | 300.0                                                          |
|                                                                                                                                                                                                                                       | .0                                                                                                                                                                 | .0                                                                                                         | .0                                                                                     | .0                                                                                             | .0                                                                                                              | .0                                                                                      | . 0                                                                            | .0                                                                            | . 0                                                                                                                                        | . 0                                                            |
| GROUND                                                                                                                                                                                                                                | -4.4                                                                                                                                                               | 1                                                                                                          | 9.9                                                                                    | 1.6                                                                                            | -4.3                                                                                                            | -1./                                                                                    | -2.7                                                                           | -3.2                                                                          | -2.6                                                                                                                                       | . 2                                                            |
| TOTAL AWT -24.1                                                                                                                                                                                                                       | -7.6                                                                                                                                                               | 1.1                                                                                                        | -25.3                                                                                  | -27.5                                                                                          | -30.2                                                                                                           | -42.5                                                                                   | -52.4                                                                          | -73.0-                                                                        | -100.0-                                                                                                                                    | -100.0                                                         |
|                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                            |                                                                                        |                                                                                                |                                                                                                                 |                                                                                         |                                                                                |                                                                               |                                                                                                                                            |                                                                |
| SOURCE : 21                                                                                                                                                                                                                           |                                                                                                                                                                    |                                                                                                            |                                                                                        | 11                                                                                             |                                                                                                                 |                                                                                         |                                                                                |                                                                               |                                                                                                                                            |                                                                |
| CFS - curing (in                                                                                                                                                                                                                      | tenral                                                                                                                                                             | ) – cor                                                                                                    | iveyor                                                                                 | pelt /                                                                                         | motor                                                                                                           | : b                                                                                     |                                                                                |                                                                               |                                                                                                                                            |                                                                |
|                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                            |                                                                                        | FI                                                                                             | REQUENC                                                                                                         | CY Hz_                                                                                  |                                                                                |                                                                               |                                                                                                                                            |                                                                |
|                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                            |                                                                                        |                                                                                                |                                                                                                                 |                                                                                         |                                                                                |                                                                               |                                                                                                                                            |                                                                |
|                                                                                                                                                                                                                                       | 31.5                                                                                                                                                               | 63                                                                                                         | 125                                                                                    | 250                                                                                            | 500                                                                                                             | 1k                                                                                      | 2k                                                                             | 4k                                                                            | 8k                                                                                                                                         | 16k                                                            |
| POWER LEVEL                                                                                                                                                                                                                           | 77 0                                                                                                                                                               | 93 N                                                                                                       | 80 N                                                                                   | 74 0                                                                                           | 72 0                                                                                                            | 68 N                                                                                    | 65 N                                                                           | 62 N                                                                          | 58.0                                                                                                                                       | Ο                                                              |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                            | .0                                                                                                                                                                 | .0                                                                                                         | .0                                                                                     | .0                                                                                             | .0                                                                                                              | .0                                                                                      | .0                                                                             | .0                                                                            | .0                                                                                                                                         | .0                                                             |
|                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                            |                                                                                        |                                                                                                |                                                                                                                 |                                                                                         |                                                                                |                                                                               |                                                                                                                                            |                                                                |
| DISTANCE                                                                                                                                                                                                                              | 76.3                                                                                                                                                               | 76.3                                                                                                       | 76.3                                                                                   | 76.3                                                                                           | 76.3                                                                                                            | 76.3                                                                                    | 76.3                                                                           | 76.3                                                                          | 76.3                                                                                                                                       | 76.3                                                           |
| BARKIEK<br>ATR ARSORPTION                                                                                                                                                                                                             | 12.7                                                                                                                                                               | 15.3                                                                                                       | 18.3                                                                                   | 21.3<br>2.1                                                                                    | 24.3<br>5.7                                                                                                     | 25.0<br>11 0                                                                            | 25.0<br>18 9                                                                   | 25.0<br>37.0                                                                  | 25.U<br>99.1                                                                                                                               | 25.0<br>300 0                                                  |
| TEMP & WIND                                                                                                                                                                                                                           | .0                                                                                                                                                                 | .0                                                                                                         | .0                                                                                     | .0                                                                                             | .0                                                                                                              | .0                                                                                      | .0                                                                             | .0                                                                            | .0                                                                                                                                         | .0                                                             |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND                                                                                                                                                                        | -4.4                                                                                                                                                               | .0                                                                                                         | 9.7                                                                                    | 1.3                                                                                            | -4.4                                                                                                            | -1.4                                                                                    | -2.9                                                                           | -3.3                                                                          | -2.4                                                                                                                                       | -4.1                                                           |
|                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                            |                                                                                        |                                                                                                |                                                                                                                 |                                                                                         |                                                                                |                                                                               |                                                                                                                                            |                                                                |
| TOTAL AWT -23.8                                                                                                                                                                                                                       | -7.6                                                                                                                                                               | 1.3                                                                                                        | -24.9                                                                                  | -27.1                                                                                          | -29.9                                                                                                           | -42.9                                                                                   | -52.3                                                                          | -73.0-                                                                        | -100.0-                                                                                                                                    | -100.0                                                         |
| SOURCE : 22                                                                                                                                                                                                                           |                                                                                                                                                                    |                                                                                                            |                                                                                        |                                                                                                |                                                                                                                 |                                                                                         |                                                                                |                                                                               |                                                                                                                                            |                                                                |
| CFS - processing                                                                                                                                                                                                                      | (exte                                                                                                                                                              | rnal) -                                                                                                    | - RTT ı                                                                                | manv                                                                                           |                                                                                                                 |                                                                                         |                                                                                |                                                                               |                                                                                                                                            |                                                                |
|                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                            |                                                                                        |                                                                                                |                                                                                                                 |                                                                                         |                                                                                |                                                                               |                                                                                                                                            |                                                                |
|                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                            |                                                                                        | FI                                                                                             | KEQUENC                                                                                                         | Y Hz_                                                                                   |                                                                                |                                                                               |                                                                                                                                            |                                                                |
|                                                                                                                                                                                                                                       | 31.5                                                                                                                                                               | 63                                                                                                         | 125                                                                                    | 250                                                                                            | 500                                                                                                             | 1k                                                                                      | 2k                                                                             | 4k                                                                            | 8k                                                                                                                                         | 16k                                                            |
|                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                            |                                                                                        |                                                                                                |                                                                                                                 |                                                                                         |                                                                                |                                                                               |                                                                                                                                            |                                                                |
| POWER LEVEL                                                                                                                                                                                                                           | 111.0                                                                                                                                                              | 114.0                                                                                                      | 103.0                                                                                  | 104.0                                                                                          | 103.0                                                                                                           | 100.0                                                                                   | 98.0                                                                           | 94.0                                                                          | 88.0                                                                                                                                       | .0                                                             |
| DIRECTIVITY                                                                                                                                                                                                                           | . 0                                                                                                                                                                | .0                                                                                                         | .0                                                                                     | . 0                                                                                            | . 0                                                                                                             | . 0                                                                                     | .0                                                                             | .0                                                                            | . 0                                                                                                                                        | . 0                                                            |
| DISTANCE                                                                                                                                                                                                                              | 76.9                                                                                                                                                               | 76.9                                                                                                       | 76.9                                                                                   | 76.9                                                                                           | 76.9                                                                                                            | 76.9                                                                                    | 76.9                                                                           | 76.9                                                                          | 76.9                                                                                                                                       | 76.9                                                           |
| BARRIER                                                                                                                                                                                                                               | 76.9<br>6.4                                                                                                                                                        | 7.6                                                                                                        | 9.4                                                                                    | 11.7                                                                                           | 13.4                                                                                                            | 16.4                                                                                    | 19.4                                                                           | 22.4                                                                          | 25.0                                                                                                                                       | 25.0                                                           |
| AIR ABSORPTION                                                                                                                                                                                                                        | .0                                                                                                                                                                 | .2                                                                                                         | .7                                                                                     | 2.3                                                                                            | 6.1                                                                                                             | 11.8                                                                                    | 20.2                                                                           | 39.5                                                                          | 106.1                                                                                                                                      | 300.0                                                          |
| TEMP & WIND                                                                                                                                                                                                                           | .0                                                                                                                                                                 | .0                                                                                                         | .0                                                                                     | .0                                                                                             | .0                                                                                                              | .0                                                                                      | .0                                                                             | .0                                                                            | . 0                                                                                                                                        | .0                                                             |
| GROUND                                                                                                                                                                                                                                | -4.0                                                                                                                                                               | .8                                                                                                         | 5.8                                                                                    | -2.6                                                                                           | -2.5                                                                                                            | -2.2                                                                                    | -2.5                                                                           | -2.7                                                                          | 4                                                                                                                                          | -2.1                                                           |
| TOTAL AWT 10.7                                                                                                                                                                                                                        | 31.7                                                                                                                                                               | 28.6                                                                                                       | 10.2                                                                                   | 15.7                                                                                           | 9.1                                                                                                             | -2.9                                                                                    | -15.9                                                                          | -42.0-                                                                        | -100.0-                                                                                                                                    | -100.0                                                         |
|                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                            |                                                                                        |                                                                                                |                                                                                                                 |                                                                                         |                                                                                |                                                                               |                                                                                                                                            |                                                                |
| SOURCE : 23                                                                                                                                                                                                                           |                                                                                                                                                                    | 1\                                                                                                         | D.M.M.                                                                                 |                                                                                                |                                                                                                                 |                                                                                         |                                                                                |                                                                               |                                                                                                                                            |                                                                |
| CFS - processing                                                                                                                                                                                                                      | (exte                                                                                                                                                              | rnal) -                                                                                                    | - RTT                                                                                  | revers                                                                                         | ıng                                                                                                             |                                                                                         |                                                                                |                                                                               |                                                                                                                                            |                                                                |
|                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                            |                                                                                        |                                                                                                | DECLERA                                                                                                         | 7V 11-                                                                                  |                                                                                |                                                                               |                                                                                                                                            |                                                                |
|                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                            |                                                                                        | PT                                                                                             | くにひひにいく                                                                                                         | .I DZ                                                                                   |                                                                                |                                                                               |                                                                                                                                            |                                                                |
|                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                            |                                                                                        | FI                                                                                             |                                                                                                                 |                                                                                         |                                                                                |                                                                               |                                                                                                                                            |                                                                |
|                                                                                                                                                                                                                                       | 31.5                                                                                                                                                               | 63                                                                                                         |                                                                                        | F                                                                                              |                                                                                                                 |                                                                                         |                                                                                |                                                                               | 8k                                                                                                                                         | 16k                                                            |
| POWER LEVEL                                                                                                                                                                                                                           |                                                                                                                                                                    |                                                                                                            | 125                                                                                    | 250                                                                                            | 500                                                                                                             | 1k                                                                                      | 2k                                                                             | 4k                                                                            |                                                                                                                                            |                                                                |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                            | 57.0                                                                                                                                                               | 75.0                                                                                                       | 125<br>75.0                                                                            | 250<br>79.0                                                                                    | 500<br>89.0                                                                                                     | 1k<br>93.0                                                                              | 2k<br>91.0                                                                     | 4k<br>87.0                                                                    | 77.0                                                                                                                                       | . 0                                                            |
| DIRECTIVITY                                                                                                                                                                                                                           | 57.0<br>.0                                                                                                                                                         | 75.0<br>.0                                                                                                 | 125<br>75.0<br>.0                                                                      | 250<br>79.0<br>.0                                                                              | 500<br>89.0<br>.0                                                                                               | 1k<br>93.0<br>.0                                                                        | 2k<br>91.0<br>.0                                                               | 4k<br>87.0<br>.0                                                              | 77.0                                                                                                                                       | .0                                                             |
| DIRECTIVITY                                                                                                                                                                                                                           | 57.0<br>.0<br>76.1                                                                                                                                                 | 75.0<br>.0<br>76.1                                                                                         | 125<br>75.0<br>.0<br>76.1                                                              | 250<br>79.0<br>.0<br>76.1                                                                      | 500<br>89.0<br>.0<br>76.1                                                                                       | 1k<br>93.0<br>.0                                                                        | 2k<br>91.0<br>.0                                                               | 4k<br>87.0<br>.0                                                              | 77.0<br>.0<br>76.1                                                                                                                         | .0<br>.0<br>76.1                                               |
| DIRECTIVITY                                                                                                                                                                                                                           | 57.0<br>.0<br>76.1                                                                                                                                                 | 75.0<br>.0<br>76.1                                                                                         | 125<br>75.0<br>.0<br>76.1                                                              | 250<br>79.0<br>.0<br>76.1                                                                      | 500<br>89.0<br>.0<br>76.1                                                                                       | 1k<br>93.0<br>.0                                                                        | 2k<br>91.0<br>.0                                                               | 4k<br>87.0<br>.0                                                              | 77.0<br>.0<br>76.1                                                                                                                         | .0<br>.0<br>76.1                                               |
| DIRECTIVITY                                                                                                                                                                                                                           | 57.0<br>.0<br>76.1                                                                                                                                                 | 75.0<br>.0<br>76.1                                                                                         | 125<br>75.0<br>.0<br>76.1                                                              | 250<br>79.0<br>.0<br>76.1                                                                      | 500<br>89.0<br>.0<br>76.1                                                                                       | 1k<br>93.0<br>.0                                                                        | 2k<br>91.0<br>.0                                                               | 4k<br>87.0<br>.0                                                              | 77.0<br>.0<br>76.1                                                                                                                         | .0<br>.0<br>76.1                                               |
| DIRECTIVITY                                                                                                                                                                                                                           | 57.0<br>.0<br>76.1<br>.0<br>.0                                                                                                                                     | 75.0<br>.0<br>76.1<br>.0<br>.2                                                                             | 125<br>75.0<br>.0<br>76.1<br>.0<br>.6                                                  | 250<br>79.0<br>.0<br>76.1                                                                      | 500<br>89.0<br>.0<br>76.1<br>.0<br>5.6<br>.0                                                                    | 1k 93.0 .0 76.1 .0 10.8 .0                                                              | 2k 91.0 .0 76.1 .0 18.5                                                        | 4k<br>87.0<br>.0<br>76.1<br>.0<br>36.3                                        | 77.0<br>.0<br>76.1<br>.0<br>97.2                                                                                                           | .0<br>.0<br>76.1<br>.0<br>300.0                                |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                                                                                                    | 57.0<br>.0<br>76.1<br>.0<br>.0                                                                                                                                     | 75.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1                                                               | 125<br>75.0<br>.0<br>76.1<br>.0<br>.6<br>.0                                            | 250<br>79.0<br>.0<br>76.1<br>.0<br>2.1<br>.0<br>15.0                                           | 500<br>89.0<br>.0<br>76.1<br>.0<br>5.6<br>.0<br>15.0                                                            | 1k 93.0 .0 76.1 .0 10.8 .0 15.0                                                         | 2k 91.0 .0 76.1 .0 18.5 .0 10.6                                                | 4k 87.0 .0 76.1 .0 36.3 .0 4.4                                                | 77.0<br>.0<br>76.1<br>.0<br>97.2<br>.0<br>-1.3                                                                                             | .0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2                  |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                                                                                                                                                              | 57.0<br>.0<br>76.1<br>.0<br>.0                                                                                                                                     | 75.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1                                                               | 125<br>75.0<br>.0<br>76.1<br>.0<br>.6<br>.0                                            | 250<br>79.0<br>.0<br>76.1<br>.0<br>2.1<br>.0<br>15.0                                           | 500<br>89.0<br>.0<br>76.1<br>.0<br>5.6<br>.0<br>15.0                                                            | 1k 93.0 .0 76.1 .0 10.8 .0 15.0                                                         | 2k 91.0 .0 76.1 .0 18.5 .0 10.6                                                | 4k 87.0 .0 76.1 .0 36.3 .0 4.4                                                | 77.0<br>.0<br>76.1<br>.0<br>97.2<br>.0<br>-1.3                                                                                             | .0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2                  |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6                                                                                                                                                       | 57.0<br>.0<br>76.1<br>.0<br>.0<br>.5.6                                                                                                                             | 75.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1                                                               | 125<br>75.0<br>.0<br>76.1<br>.0<br>.6<br>.0                                            | 250<br>79.0<br>.0<br>76.1<br>.0<br>2.1<br>.0<br>15.0                                           | 500<br>89.0<br>.0<br>76.1<br>.0<br>5.6<br>.0<br>15.0                                                            | 1k 93.0 .0 76.1 .0 10.8 .0 15.0                                                         | 2k 91.0 .0 76.1 .0 18.5 .0 10.6                                                | 4k 87.0 .0 76.1 .0 36.3 .0 4.4                                                | 77.0<br>.0<br>76.1<br>.0<br>97.2<br>.0<br>-1.3                                                                                             | .0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2                  |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                                                                                                    | 57.0<br>.0<br>76.1<br>.0<br>.0<br>-5.6                                                                                                                             | 75.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1                                                               | 125<br>75.0<br>.0<br>76.1<br>.0<br>.6<br>.0<br>6.7                                     | 250<br>79.0<br>.0<br>76.1<br>.0<br>2.1<br>.0<br>15.0                                           | 500<br>89.0<br>.0<br>76.1<br>.0<br>5.6<br>.0<br>15.0                                                            | 1k 93.0 .0 76.1 .0 10.8 .0 15.0                                                         | 2k 91.0 .0 76.1 .0 18.5 .0 10.6                                                | 4k 87.0 .0 76.1 .0 36.3 .0 4.4                                                | 77.0<br>.0<br>76.1<br>.0<br>97.2<br>.0<br>-1.3                                                                                             | .0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2                  |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE : 24                                                                                                                                          | 57.0<br>.0<br>76.1<br>.0<br>.0<br>-5.6                                                                                                                             | 75.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1                                                               | 125 75.0 .0 76.1 .0 .6 .6 .7 -8.4                                                      | 250 79.0 .0 76.1 .0 2.1 .0 15.0 -14.2 collect                                                  | 500<br>89.0<br>.0<br>76.1<br>.0<br>5.6<br>.0<br>15.0<br>-7.6                                                    | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9                                                    | 2k 91.0 .0 76.1 .0 18.5 .0 10.6                                                | 4k<br>87.0<br>.0<br>76.1<br>.0<br>36.3<br>.0<br>4.4                           | 77.0<br>.0<br>76.1<br>.0<br>97.2<br>.0<br>-1.3                                                                                             | .0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2                  |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE : 24                                                                                                                                          | 57.0<br>.0<br>76.1<br>.0<br>.0<br>-5.6                                                                                                                             | 75.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1                                                               | 125 75.0 .0 76.1 .0 .6 .6 .7 -8.4                                                      | 250<br>79.0<br>.0<br>76.1<br>.0<br>2.1<br>.0<br>15.0                                           | 500<br>89.0<br>.0<br>76.1<br>.0<br>5.6<br>.0<br>15.0<br>-7.6                                                    | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9                                                    | 2k 91.0 .0 76.1 .0 18.5 .0 10.6                                                | 4k<br>87.0<br>.0<br>76.1<br>.0<br>36.3<br>.0<br>4.4                           | 77.0<br>.0<br>76.1<br>.0<br>97.2<br>.0<br>-1.3                                                                                             | .0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2                  |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE : 24                                                                                                                                          | 57.0<br>.0<br>76.1<br>.0<br>.0<br>.0<br>-5.6                                                                                                                       | 75.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1                                                               | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4                                                     | 250 79.0 .0 76.1 .0 2.1 .0 15.0 -14.2 collect                                                  | 500  89.0 .0  76.1 .0 5.6 .0 15.0  -7.6  REQUENCE                                                               | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan                                                | 2k 91.0 .0 76.1 .0 18.5 .0 10.6                                                | 4k<br>87.0<br>.0<br>76.1<br>.0<br>36.3<br>.0<br>4.4                           | 77.0<br>.0<br>76.1<br>.0<br>97.2<br>.0<br>-1.3                                                                                             | .0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2                  |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE : 24 CFS - processing                                                                                                                         | 57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-5.6<br>-13.5                                                                                                          | 75.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1<br>1.9                                                        | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust                                              | 250 79.0 .0 76.1 .0 2.1 .0 15.0 -14.2 collect                                                  | 500  89.0 .0  76.1 .0 5.6 .0 15.0  -7.6  Extor /  REQUENCE 500                                                  | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan 2Y Hz                                          | 2k 91.0 .0 76.1 .0 18.5 .0 10.6                                                | 4k<br>87.0<br>.0<br>76.1<br>.0<br>36.3<br>.0<br>4.4                           | 77.0<br>.0<br>76.1<br>.0<br>97.2<br>.0<br>-1.3<br>-95.0-                                                                                   | .0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2                  |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE : 24 CFS - processing                                                                                                                         | 57.0<br>.0<br>76.1<br>.0<br>.0<br>.0<br>-5.6<br>-13.5<br>(exter                                                                                                    | 75.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1<br>1.9                                                        | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust                                              | 250 79.0 .0 76.1 .0 2.1 .0 15.0 -14.2 collect FF 250 109.0                                     | 500  89.0  76.1 .0 5.6 .0 15.0  -7.6  etor /  REQUENCE 500  108.0                                               | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan CY Hz                                          | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2                                          | 4k<br>87.0<br>.0<br>76.1<br>.0<br>36.3<br>.0<br>4.4<br>-29.8                  | 77.0<br>.0<br>76.1<br>.0<br>97.2<br>.0<br>-1.3<br>-95.0-                                                                                   | .0<br>.0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2<br>-100.0  |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE : 24 CFS - processing                                                                                                                         | 57.0<br>.0<br>76.1<br>.0<br>.0<br>.0<br>-5.6<br>-13.5<br>(exter                                                                                                    | 75.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1<br>1.9                                                        | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust                                              | 250 79.0 .0 76.1 .0 2.1 .0 15.0 -14.2 collect FF 250 109.0                                     | 500  89.0  76.1 .0 5.6 .0 15.0  -7.6  etor /  REQUENCE 500  108.0                                               | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan CY Hz                                          | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2                                          | 4k<br>87.0<br>.0<br>76.1<br>.0<br>36.3<br>.0<br>4.4<br>-29.8                  | 77.0<br>.0<br>76.1<br>.0<br>97.2<br>.0<br>-1.3<br>-95.0-                                                                                   | .0<br>.0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2<br>-100.0  |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE : 24 CFS - processing                                                                                                                         | 57.0<br>.0<br>76.1<br>.0<br>.0<br>.0<br>-5.6<br>-13.5<br>(exter                                                                                                    | 75.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1<br>1.9<br>cnal) -                                             | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust  125 106.0 .0                                | 250 79.0 .0 76.1 .0 2.1 .0 15.0 -14.2 collect FF 250 109.0 .0                                  | 500  89.0  76.1 .0 5.6 .0 15.0  -7.6  EXECUTENCY  500  108.0 .0                                                 | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan CY Hz 1k 101.0 .0                              | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2 2k 94.0 .0                               | 4k 87.0 .0 76.1 .0 36.3 .0 4.4 -29.8                                          | 77.0<br>.0<br>76.1<br>.0<br>97.2<br>.0<br>-1.3<br>-95.0-                                                                                   | .0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2<br>-100.0        |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE : 24 CFS - processing                                                                                                                         | 57.0<br>.0<br>76.1<br>.0<br>.0<br>.0<br>.0<br>-5.6<br>-13.5<br>(exter                                                                                              | 75.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1<br>1.9<br>cnal) -                                             | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust 125 106.0 .0 76.3                            | 250 79.0 .0 76.1 .0 2.1 .0 15.0 -14.2 collect FF 250 109.0 .0                                  | 500  89.0 .0  76.1 .0 5.6 .0 15.0 -7.6  REQUENCE 500  108.0 .0 76.3                                             | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan CY Hz 1k 101.0 .0 76.3                         | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2 2k 94.0 .0 76.3                          | 4k<br>87.0<br>.0<br>76.1<br>.0<br>36.3<br>.0<br>4.4<br>-29.8                  | 77.0<br>.0<br>76.1<br>.0<br>97.2<br>.0<br>-1.3<br>-95.0-                                                                                   | .0<br>.0<br>76.1<br>.0<br>300.0<br>.0<br>-5.2<br>-100.0        |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE : 24 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION                                                               | 57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.6<br>-13.5<br>(exter<br>                                                                                            | 75.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1<br>1.9<br>enal) -                                             | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust  125 106.0 .0 76.3 18.6                      | 250 79.0 .0 76.1 .0 2.1 .0 15.0 -14.2 collect _FF 250 109.0 .0 76.3 21.6                       | 500  89.0 .0  76.1 .0 5.6 .0 15.0  -7.6  Ettor /  REQUENCE 500  108.0 .0  76.3 24.6                             | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan CY Hz .0 101.0 .0 76.3 25.0                    | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2  2k 94.0 .0 76.3 25.0                    | 4k 87.0 .0 76.1 .0 36.3 .0 4.4 -29.8 4k 89.0 .0 76.3 25.0                     | 77.0<br>.0<br>76.1<br>.0<br>97.2<br>.0<br>-1.3<br>-95.0-                                                                                   | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.2<br>-100.0       |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE : 24 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                                   | 57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-5.6<br>-13.5<br>(exter<br>31.5<br>100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0       | 75.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1<br>1.9<br>cnal) -                                             | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust  125 106.0 .0 76.3 18.6 .6 .0                | 250 79.0 .0 76.1 .0 2.1 .0 15.0 -14.2 collect FF 250 109.0 .0 76.3 21.6 2.11 .0                | 500  89.0  76.1 .0 5.6 .0 15.0  -7.6  ELLOY /  SOU  76.3 24.6 5.7 .0                                            | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan CY Hz 1k 101.0 .0 76.3 25.0 11.0 .0            | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2  2k 94.0 .0 76.3 25.0 18.9 .0            | 4k 87.0 .0 76.1 .0 36.3 .0 4.4 -29.8 4k 89.0 .0 76.3 25.0 37.1 .0             | 77.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-1.3<br>-95.0-<br>8k<br>83.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.2<br>-100.0       |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE : 24 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION                                                               | 57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-5.6<br>-13.5<br>(exter<br>31.5<br>100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0       | 75.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1<br>1.9<br>cnal) -                                             | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust  125 106.0 .0 76.3 18.6 .6 .0                | 250 79.0 .0 76.1 .0 2.1 .0 15.0 -14.2 collect _FF 250 109.0 .0 76.3 21.6                       | 500  89.0  76.1 .0 5.6 .0 15.0  -7.6  ELLOY /  SOU  76.3 24.6 5.7 .0                                            | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan CY Hz 1k 101.0 .0 76.3 25.0 11.0 .0            | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2  2k 94.0 .0 76.3 25.0 18.9 .0            | 4k 87.0 .0 76.1 .0 36.3 .0 4.4 -29.8 4k 89.0 .0 76.3 25.0 37.1 .0             | 77.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-1.3<br>-95.0-<br>8k<br>83.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.2<br>-100.0       |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE : 24 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                            | 57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.6<br>-13.5<br>(exter<br>                                                                                      | 75.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1<br>1.9<br>63<br>102.0<br>.0<br>76.3<br>15.6<br>.2<br>.0<br>.0 | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust  125  106.0 .0 76.3 18.6 .6 .0 9.9           | 250 79.0 .0 76.1 .0 2.1 .0 15.0 -14.2 collect FF  250 109.0 .0 76.3 21.6 2.1 .0 1.6            | 500  89.0  76.1 .0 5.6 .0 15.0  -7.6  Etor /  SETOR /  108.0 .0  76.3 24.6 5.7 .0 .4.3                          | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan CY Hz 1k 101.0 .0 76.3 25.0 11.0 .0 -1.8       | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2  2k 94.0 .0 76.3 25.0 18.9 .0 -2.7       | 4k 87.0 .0 76.1 .0 36.3 .0 4.4 -29.8 4k 89.0 .0 76.3 25.0 37.1 .0 -3.2        | 77.0<br>.0<br>76.1<br>.0<br>97.2<br>.0<br>-1.3<br>-95.0-                                                                                   | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.2<br>-100.0       |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE: 24 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 4.4                              | 57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-5.6<br>-13.5<br>(exter<br>31.5<br>100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-13.5                                  | 75.0<br>.0<br>76.1<br>.0<br>.2<br>.0<br>-3.1<br>1.9<br>63<br>102.0<br>.0<br>76.3<br>15.6<br>.2<br>.0<br>.0 | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust  125  106.0 .0 76.3 18.6 .6 .0 9.9           | 250 79.0 .0 76.1 .0 2.1 .0 15.0 -14.2 collect FF  250 109.0 .0 76.3 21.6 2.1 .0 1.6            | 500  89.0  76.1 .0 5.6 .0 15.0  -7.6  Etor /  SETOR /  108.0 .0  76.3 24.6 5.7 .0 .4.3                          | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan CY Hz 1k 101.0 .0 76.3 25.0 11.0 .0 -1.8       | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2  2k 94.0 .0 76.3 25.0 18.9 .0 -2.7       | 4k 87.0 .0 76.1 .0 36.3 .0 4.4 -29.8 4k 89.0 .0 76.3 25.0 37.1 .0 -3.2        | 77.0<br>.0<br>76.1<br>.0<br>97.2<br>.0<br>-1.3<br>-95.0-                                                                                   | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.2<br>-100.0       |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE: 24 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 4.4  SOURCE: 25                  | 57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-5.6<br>-13.5<br>(exter<br>31.5<br>100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | 75.0<br>.0<br>.0<br>.0<br>.2<br>.0<br>.3.1<br>1.9<br>cnal) -                                               | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust 125 106.0 .0 76.3 18.6 .0 9.9 .7             | 250 79.0 .0 76.1 .0 2.1 .0 15.0 15.0 16.1 250 109.0 .0 76.3 21.6 2.1 .0 1.6 7.4                | 500  89.0  76.1 .0 5.6 .0 15.0  -7.6  Etor /  SETOR /  108.0 .0  76.3 24.6 5.7 .0 .4.3                          | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan CY Hz 1k 101.0 .0 76.3 25.0 11.0 .0 -1.8       | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2  2k 94.0 .0 76.3 25.0 18.9 .0 -2.7       | 4k 87.0 .0 76.1 .0 36.3 .0 4.4 -29.8 4k 89.0 .0 76.3 25.0 37.1 .0 -3.2        | 77.0<br>.0<br>76.1<br>.0<br>97.2<br>.0<br>-1.3<br>-95.0-                                                                                   | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.2<br>-100.0       |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE: 24 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 4.4                              | 57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-5.6<br>-13.5<br>(exter<br>31.5<br>100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | 75.0<br>.0<br>.0<br>.0<br>.2<br>.0<br>.3.1<br>1.9<br>cnal) -                                               | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust 125 106.0 .0 76.3 18.6 .0 9.9 .7             | 250 79.0 .0 76.1 .0 2.1 .0 15.0 15.0 16.1 250 109.0 .0 76.3 21.6 2.1 .0 1.6 7.4                | 500  89.0  76.1 .0 5.6 .0 15.0  -7.6  Etor /  SETOR /  108.0 .0  76.3 24.6 5.7 .0 .4.3                          | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan CY Hz 1k 101.0 .0 76.3 25.0 11.0 .0 -1.8       | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2  2k 94.0 .0 76.3 25.0 18.9 .0 -2.7       | 4k 87.0 .0 76.1 .0 36.3 .0 4.4 -29.8 4k 89.0 .0 76.3 25.0 37.1 .0 -3.2        | 77.0<br>.0<br>76.1<br>.0<br>97.2<br>.0<br>-1.3<br>-95.0-                                                                                   | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.2<br>-100.0       |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE: 24 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 4.4  SOURCE: 25                  | 57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-5.6<br>-13.5<br>(exter<br>31.5<br>100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | 75.0<br>.0<br>.0<br>.0<br>.2<br>.0<br>.3.1<br>1.9<br>cnal) -                                               | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust  125 106.0 .0 76.3 18.6 .6 .0 9.9            | 250 79.0 .0 76.1 .0 2.1 .0 15.0 15.0 16.1 250 109.0 .0 76.3 21.6 2.1 .0 1.6 7.4                | 500  89.0  76.1 .0 5.6 .0 15.0  -7.6  ettor /  REQUENC  500  108.0 .0  76.3 24.6 5.7 .0 -4.3                    | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan CY Hz 1k 101.0 .0 76.3 25.0 11.0 .0 -1.8       | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2  2k 94.0 .0 76.3 25.0 18.9 .0 -2.7       | 4k 87.0 .0 76.1 .0 36.3 .0 4.4 -29.8  4k 89.0 .0 76.3 25.0 37.1 .0 -3.2       | 77.0<br>.0<br>76.1<br>.0<br>97.2<br>.0<br>-1.3<br>-95.0-                                                                                   | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.2<br>-100.0       |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE: 24 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 4.4  SOURCE: 25                  | 57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.6<br>-13.5<br>(externos)<br>100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0     | 75.0 .0 .0 .0 .0 .0 .0 .2 .0 .0 .3.1 .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                             | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust  125 106.0 .0 76.3 18.6 .6 .0 9.9 .7 - fork  | 250 79.0 .0 76.1 .0 2.1 .0 15.0 -14.2 collectFF 250 109.0 .0 76.3 21.6 2.1 .0 1.6 7.4 liftFF   | 500  89.0 .0  76.1 .0 5.6 .0 15.0 -7.6  Stor /  REQUENC 500  108.0 .0  76.3 24.6 5.7 .0 -4.3 5.7                | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan CY Hz 1k 101.0 .0 76.3 25.0 11.0 .0 -1.8       | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2  2k 94.0 .0 76.3 25.0 18.9 .0 -2.7       | 4k 87.0 .0 76.1 .0 36.3 .0 4.4 -29.8  4k 89.0 .0 76.3 25.0 37.1 .0 -3.2 -46.1 | 77.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-1.3<br>-95.0-<br>8k<br>83.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.2<br>-100.0       |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE: 24 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 4.4  SOURCE: 25                  | 57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.6<br>-13.5<br>(externos)<br>100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0     | 75.0 .0 .0 .0 .0 .0 .0 .2 .0 .0 .3.1 .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                             | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust  125 106.0 .0 76.3 18.6 .6 .0 9.9 .7 - fork  | 250 79.0 .0 76.1 .0 2.1 .0 15.0 -14.2 collect FF 250 109.0 .0 76.3 21.6 2.1 .0 1.6             | 500  89.0 .0  76.1 .0 5.6 .0 15.0 -7.6  Stor /  REQUENC 500  108.0 .0  76.3 24.6 5.7 .0 -4.3 5.7                | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan CY Hz 1k 101.0 .0 76.3 25.0 11.0 .0 -1.8       | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2  2k 94.0 .0 76.3 25.0 18.9 .0 -2.7       | 4k 87.0 .0 76.1 .0 36.3 .0 4.4 -29.8  4k 89.0 .0 76.3 25.0 37.1 .0 -3.2 -46.1 | 77.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-1.3<br>-95.0-<br>8k<br>83.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.2<br>-100.0       |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE: 24 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 4.4  SOURCE: 25 CFS - processing | 57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                         | 75.0 .0 .0 .0 .0 .2 .0 .3.1 .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                      | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust  125  106.0 .0 76.3 18.6 .6 .0 9.9 .7 - fork | 250 79.0 .0 76.1 .0 2.1 .0 15.0 -14.2 collect FF 250 109.0 .0 76.3 21.6 2.1 .0 1.6 7.4 lift FF | 500  89.0 .0  76.1 .0 5.6 .0 15.0  -7.6  REQUENC 500  76.3 24.6 5.7 .0 -4.3  5.7                                | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan CY Hz 1k 101.0 .0 76.3 25.0 11.0 .0 -1.8 -9.5  | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2  2k 94.0 .0 76.3 25.0 18.9 .2.7 -23.4    | 4k 87.0 .0 76.1 .0 36.3 .4.4 -29.8  4k 89.0 .0 76.3 25.0 37.1 .0 -3.2 -46.1   | 77.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-1.3<br>-95.0-<br>8k<br>83.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.2<br>-100.0       |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE: 24 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 4.4  SOURCE: 25                  | 57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                         | 75.0 .0 .0 .0 .0 .2 .0 .3.1 .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                      | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 -dust 125 106.0 .0 76.3 18.6 .6 .0 9.9 .7 -fork     | 250 79.0 .0 76.1 .0 2.1 .0 15.0 -14.2 collect FF 250 109.0 .0 76.3 21.6 2.1 .0 1.6 7.4 lift FF | 500  89.0 .0  76.1 .0 5.6 .0 15.0 -7.6  ELOY / REQUENC 500  108.0 .0  76.3 24.6 5.7 .0 -4.3 5.7                 | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan CY Hz 1k 101.0 .0 76.3 25.0 11.0 .0 -1.8 -9.5  | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2  2k 94.0 .0 76.3 25.0 18.9 .0 -2.7 -23.4 | 4k 87.0 .0 76.1 .0 36.3 .0 4.4 -29.8  4k 89.0 .0 76.3 25.0 37.1 .0 -3.2 -46.1 | 77.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-1.3<br>-95.0-<br>8k<br>83.0<br>.0<br>.0<br>.0<br>-2.6<br>-100.0-                                    | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.2<br>-100.0 |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE: 24 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 4.4  SOURCE: 25 CFS - processing | 57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                         | 75.0 .0 .0 .0 .0 .2 .0 .3.1 .9 cnal)0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                  | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust  125 106.0 .0 76.3 18.6 .6 .0 9.9 .7 - fork  | 250 79.0 .0 76.1 .0 2.1 .0 15.0  -14.2  collece                                                | 500  89.0 .0  76.1 .0 5.6 .0 15.0  -7.6  Ettor /  REQUENC 500  76.3 24.6 5.7 .0 -4.3  5.7  REQUENC 500  93.0 .0 | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan  CY Hz 1k 101.0 .0 76.3 25.0 11.0 .0 -1.8 -9.5 | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2  2k 94.0 .0 76.3 25.0 18.9 .0 -2.7 -23.4 | 4k 87.0 .0 76.1 .0 36.3 .0 4.4 -29.8  4k 89.0 .0 76.3 25.0 37.1 .0 -3.2 -46.1 | 77.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-1.3<br>-95.0-<br>8k<br>83.0<br>.0<br>.0<br>-2.6<br>-100.0-                                          | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.2<br>-100.0       |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE: 24 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 4.4  SOURCE: 25 CFS - processing | 57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                         | 75.0 .0 .0 .0 .0 .2 .0 .3.1 .9 cnal)0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                  | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust  125 106.0 .0 76.3 18.6 .6 .0 9.9 .7 - fork  | 250 79.0 .0 76.1 .0 2.1 .0 15.0  -14.2  collece                                                | 500  89.0 .0  76.1 .0 5.6 .0 15.0  -7.6  Ettor /  REQUENC 500  76.3 24.6 5.7 .0 -4.3  5.7  REQUENC 500  93.0 .0 | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan  CY Hz 1k 101.0 .0 76.3 25.0 11.0 .0 -1.8 -9.5 | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2  2k 94.0 .0 76.3 25.0 18.9 .0 -2.7 -23.4 | 4k 87.0 .0 76.1 .0 36.3 .0 4.4 -29.8  4k 89.0 .0 76.3 25.0 37.1 .0 -3.2 -46.1 | 77.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-1.3<br>-95.0-<br>8k<br>83.0<br>.0<br>.0<br>-2.6<br>-100.0-                                          | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.2<br>-100.0       |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE: 24 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 4.4  SOURCE: 25 CFS - processing | 57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                         | 75.0 .0 .0 .0 .0 .2 .0 .3.1 .9 cnal)0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                  | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust  125 106.0 .0 76.3 18.6 .6 .0 9.9 .7 - fork  | 250 79.0 .0 76.1 .0 2.1 .0 15.0  -14.2  collece                                                | 500  89.0 .0  76.1 .0 5.6 .0 15.0  -7.6  Ettor /  REQUENC 500  76.3 24.6 5.7 .0 -4.3  5.7  REQUENC 500  93.0 .0 | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan  CY Hz 1k 101.0 .0 76.3 25.0 11.0 .0 -1.8 -9.5 | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2  2k 94.0 .0 76.3 25.0 18.9 .0 -2.7 -23.4 | 4k 87.0 .0 76.1 .0 36.3 .0 4.4 -29.8  4k 89.0 .0 76.3 25.0 37.1 .0 -3.2 -46.1 | 77.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-1.3<br>-95.0-<br>8k<br>83.0<br>.0<br>.0<br>-2.6<br>-100.0-                                          | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.2<br>-100.0       |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -5.6  SOURCE: 24 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 4.4  SOURCE: 25 CFS - processing | 57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                         | 75.0 .0 .0 .0 .0 .2 .0 .3.1 .9 cnal)0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                  | 125 75.0 .0 76.1 .0 .6 .0 6.7 -8.4 - dust  125 106.0 .0 76.3 18.6 .6 .0 9.9 .7 - fork  | 250 79.0 .0 76.1 .0 2.1 .0 15.0  -14.2  collece                                                | 500  89.0 .0  76.1 .0 5.6 .0 15.0  -7.6  Ettor /  REQUENC 500  76.3 24.6 5.7 .0 -4.3  5.7  REQUENC 500  93.0 .0 | 1k 93.0 .0 76.1 .0 10.8 .0 15.0 -8.9 fan  CY Hz 1k 101.0 .0 76.3 25.0 11.0 .0 -1.8 -9.5 | 2k 91.0 .0 76.1 .0 18.5 .0 10.6 -14.2  2k 94.0 .0 76.3 25.0 18.9 .0 -2.7 -23.4 | 4k 87.0 .0 76.1 .0 36.3 .0 4.4 -29.8  4k 89.0 .0 76.3 25.0 37.1 .0 -3.2 -46.1 | 77.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-1.3<br>-95.0-<br>8k<br>83.0<br>.0<br>.0<br>-2.6<br>-100.0-                                          | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.2<br>-100.0       |

TEMP & WIND .0 .0 -5.6 -3.1 .0 .0 .0 .0 .0 .0 6.7 15.0 15.0 15.0 10.5 .0 .0 .0 4.3 -1.4 -5.3 GROUND TOTAL AWT 4.6 30.5 26.9 15.5 3 8 -3 7 -9 0 -14 2 -28 9 -89 4-100 0 26 CFS - processing (external) - aggregate unload \_\_\_FREQUENCY Hz\_ 31.5 63 125 250 500 16k 1k 2k 4k 8k POWER LEVEL 110.0 111.0 102.0 100.0 101.0 104.0 101.0 97.0 105.0 DIRECTIVITY .0 .0 .0 .0 .0 .0 . 0 . 0 . 0 . 0 76.2 DISTANCE 76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2 .0 .0 . 0 . 6 . 0 .0 BARRIER .0 .0 2.1 AIR ABSORPTION 5.6 10.9 18.7 36.8 98.3 300.0 TEMP & WIND Ω Ω Ω Ω Ω Ω GROUND 6.8 15.0 15.0 15.0 10.6 -1.3 -5.2 -5.6 -3.1 4.4 TOTAL AWT 13.2 39.4 37.8 18.4 6.7 4.2 1.9 -4.5 -20.3 -68.3-100.0 SOURCE : 27 CFS - processing (external) - silo vent 1 \_\_FREQUENCY Hz\_ 31.5 63 125 250 500 1k 2k 4k 8k 16k POWER LEVEL 84.0 82.0 86.0 89.0 88.0 81.0 74.0 69.0 63.0 .0 DIRECTIVITY .0 . 0 .0 .0 .0 .0 .0 .0 . 0 76.2 DISTANCE 76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2 BARRIER 5.0 5.0 5.0 5.0 5.0 5.1 5.1 5.1 5.3 5.5 AIR ABSORPTION . 0 . 6 2.1 5.7 11.0 18.9 37.0 99.1 300.0 .0 TEMP & WIND Ω . 0 . 0 . 0 6.3 -2.3 -3.2 -2.2 -2.5 -2.7 -1.1 -2.3 GROUND -4.0 . 8 -.3 4.2 -9.1 -23.6 -46.7-100.0-100.0 6.7 -2.2 7 9 TOTAL AWT 3.5 CFS - processing (external) - silo vent 2 \_\_FREQUENCY Hz\_ 31.5 16k 63 125 250 500 1k 2k 4k 8k POWER LEVEL 84.0 82.0 86.0 89.0 88.0 81.0 74.0 69.0 63.0 .0 .0 DIRECTIVITY .0 .0 .0 .0 .0 .0 .0 . 0 DISTANCE 76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2 . 0 .0 BARRIER .0 . 0 .0 .0 AIR ABSORPTION 2.1 5.7 11.0 18.8 36.9 98.9 300.0 . 0 .6 TEMP & WIND . 0 . 0 . 0 9.1 11.7 3.0 -3.1 -5.0 -1 3 -1 8 -2 3 GROUND -4 9 -3 0 TOTAL AWT 2.1 12.6 6.9 .0 -1.0 3.1 -3.1 -16.0 -42.4-100.0-100.0 TOTAL AWT 17.3 40.7 39.0 22.5 19.0 13.5 7.4 -.3 -16.8 -67.7 -88.0 SINGLE POINT CALCULATION ENM CALC MODULE FILENAMES C:\ENM\SOURCES\2118506A\506A-3 2118506A GEN C:\ENM\MAPS\2118506A\506A OUT1 file and RNK1 file TEMP (deg C) HUMIDITY (%) 50.0 25.0 WIND SPEED (m/sec) WIND DIR (deg) .0 .0 TEMP GRAD (deg C/100m) .0 X= 3985.000 Y= 2886.000 Z= 22.200 SOURCE : 13 CFS - processing (external) - backhoe \_FREQUENCY Hz\_

31.5 63

. 0

95.0 95.0

. 0

POWER LEVEL

DIRECTIVITY

125 250

. 0

.0

500

. 0

1k

. 0

95.0 95.0 95.0 95.0 95.0 95.0

2k

. 0

4k

.0

8k

95.0

. 0

16k

Ω

. 0

|                                                      | 76.2        | 76.2        | 76.2        | 76.2            | 76.2        | 76.2        | 76.2        | 76.2        | 76.2        | 76.2         |
|------------------------------------------------------|-------------|-------------|-------------|-----------------|-------------|-------------|-------------|-------------|-------------|--------------|
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND             | .0          | .0          | .6          | .0<br>2.1<br>.0 | 5.7         | 11.0        | 18.8        | 36.9        | 98.7        | 300.0        |
| GROUND                                               | -5.6        | -3.1        | 6.9         | 15.0            | 15.0        | 14.9        | 10.0        | 3.8         | -1.8        | -5.4         |
| TOTAL AWT 1.9                                        | 24.3        | 21.7        | 11.3        | 1.7             | -1.9        | -7.1        | -10.0       | -21.9       | -78.1       | -100.0       |
| SOURCE : 14<br>CFS - processing                      |             | nal) -      |             | FF              | PEOLIENI    | av II-      |             |             |             |              |
|                                                      | 31 5        | 63          |             | FF              |             |             |             | 4 k-        | 8 k-        | 16k          |
| POWER LEVEL                                          |             |             |             |                 |             |             |             |             |             |              |
| DIRECTIVITY                                          | . 0         | .0          | . 0         | .0              | .0          | .0          | . 0         | .0          | . 0         | . 0          |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND | 76.2<br>.0  | 76.2<br>.0  | 76.2<br>.0  | 76.2<br>.0      | 76.2<br>.0  | 76.2<br>.0  | 76.2<br>.0  | 76.2<br>.0  | 76.2<br>.0  | 76.2<br>.0   |
| AIR ABSORPTION<br>TEMP & WIND                        | .0          | .2          | .6<br>.0    | 2.1             | 5.7         | 11.0        | 18.8        | 36.9<br>.0  | 98.9        | 300.0        |
| GROUND                                               | -5.6        | -3.1        | 6.9         | 15.0            | 15.0        | 14.9        | 10.0        | 3.8         | -1.8        | -5.4         |
| TOTAL AWT 8.0                                        | 23.3        | 26.7        | 16.2        | 12.6            | 1.1         | -1.1        | -7.0        | -24.9       | -87.3-      | -100.0       |
| SOURCE : 15<br>CFS - curing (int                     | enral)      | - FEI       | ь           |                 |             |             |             |             |             |              |
|                                                      |             |             |             | FF              | REQUEN      | CY Hz_      |             |             |             |              |
|                                                      | 31.5        | 63          | 125         | 250             | 500         | 1k          | 2k          | 4k          | 8k          | 16k          |
| DIRECTIVITY                                          | .0          | .0          | .0          |                 | .0          | .0          | .0          | .0          | .0          | .0           |
| BARRIER                                              | 5 ()        | 76.3<br>5.1 | 5.1         | 76.3<br>5.1     | 5.3         | 5.5         | 6.0         | 6.9         | 8.4         | 10.6         |
| AIR ABSORPTION<br>TEMP & WIND                        | .0          | .2          | .6<br>.0    | 2.1             | 5.7         | 11.1        | 19.0<br>.0  | 37.2        | 99.6        | 300.0        |
| GROUND                                               | -5.0        | -1.6        | 10.0        | 11.3            | 2.8         | -3.1        | -5.2        | -1.7        | -2.6        | -2.8         |
| TOTAL AWT 3.1                                        | 7.7         | 10.0        | -2.0        | 1.1             | -2.1        | 1.2         | -8.1        | -36.7-      | -100.0-     | -100.0       |
| SOURCE : 16<br>CFS - curing (int                     | enral)      | - cor       | nveyor      | belt /          | / moto      | r 1         |             |             |             |              |
|                                                      |             |             |             | FF              | REQUEN      | CY Hz_      |             |             |             |              |
|                                                      | 31.5        | 63          | 125         | 250             | 500         | 1k          | 2k          | 4k          | 8k          | 16k          |
| POWER LEVEL<br>DIRECTIVITY                           | . 0         | .0          | . 0         | . 0             | .0          | . 0         | . 0         | .0          | . 0         | . 0          |
| DISTANCE<br>BARRIER                                  | 76.3<br>5.0 | 76.3<br>5.1 | 76.3<br>5.1 | 76.3<br>5.1     | 76.3<br>5.3 | 76.3<br>5.5 | 76.3<br>6.0 | 76.3<br>6.9 | 76.3<br>8.4 | 76.3<br>10.6 |
| AIR ABSORPTION                                       | .0          | .2          | . 6         | 2.2             | 5.7         | 11.1        | 19.1        | 37.4        | 100.1       | 300.0        |
| GROUND                                               | -5.0        | -1.6        | 10.0        | 11.4            | 2.8         | -3.1        | -5.2        | -1.6        | -2.6        | -2.8         |
| TOTAL AWT -11.9                                      | . 6         | 13.0        | -12.0       | -21.0           | -18.2       | -21.9       | -31.2       | -57.0-      | -100.0-     | -100.0       |
| SOURCE : 17<br>CFS - curing (int                     | enral)      |             | _           | belt /          |             |             |             |             |             |              |
|                                                      | 31 5        |             |             | FF              |             |             |             |             | 8k          | 16k          |
| POWER LEVEL                                          | 77 N        |             |             | 74.0            |             |             |             |             |             |              |
| DIRECTIVITY                                          | .0          | .0          | .0          | .0              | .0          | .0          | .0          | .0          | .0          | . 0          |
| DISTANCE<br>BARRIER                                  |             |             |             | 76.4<br>5.1     |             |             | 76.4<br>6.0 |             |             |              |
| AIR ABSORPTION<br>TEMP & WIND                        | .0          |             |             | 2.2             |             |             |             |             |             |              |
| GROUND                                               | -5.0        | -1.5        | 10.0        | 11.4            | 2.9         | -3.1        | -5.2        | -1.6        | -2.7        | -2.8         |
| TOTAL AWT -11.9                                      | .6          | 12.9        | -12.1       | -21.1           | -18.3       | -22.0       | -31.3       | -57.2       | -100.0-     | -100.0       |
| SOURCE : 18<br>CFS - curing (int                     | enral)      | - cor       | nveyor      | belt /          | / moto      | r 3         |             |             |             |              |
|                                                      |             |             |             |                 |             | ~~ **       |             |             |             |              |
|                                                      |             |             |             | FF              | KEÕOEM      | YY HZ_      |             |             |             |              |
|                                                      | 31.5        | 63          |             | FF              |             |             |             |             | 8k          | 16k          |
| POWER LEVEL<br>DIRECTIVITY                           | 77.0        | 93.0        | 125<br>80.0 | 250             | 500<br>72.0 | 1k<br>68.0  | 2k<br>65.0  | 4k<br>62.0  | 58.0        | . 0          |

| AIR ABSORPTION<br>TEMP & WIND<br>GROUND                   | .0<br>.0<br>-5.0 | .2<br>.0<br>-1.5 | .6<br>.0<br>10.0 | 2.2<br>.0<br>11.3 | 5.8<br>.0<br>2.8 | 11.3<br>.0<br>-3.1 | 19.3<br>.0<br>-5.2 | 37.8<br>.0<br>-1.7 | 101.2<br>.0<br>-2.6 | 300.0         |
|-----------------------------------------------------------|------------------|------------------|------------------|-------------------|------------------|--------------------|--------------------|--------------------|---------------------|---------------|
| TOTAL AWT -12.0                                           | .5               | 12.9             | -12.2            | -21.1             | -18.3            | -22.0              | -31.4              | -57.1              | -100.0              | -100.0        |
| SOURCE : 19                                               |                  |                  |                  |                   |                  |                    |                    |                    |                     |               |
| CFS - curing (int                                         | cenral)          | - cor            | nveyor           | belt /            | / motor          | 4                  |                    |                    |                     |               |
|                                                           |                  |                  |                  | FF                | REQUENC          | CY Hz_             |                    |                    |                     |               |
|                                                           | 31.5             | 63               | 125              | 250               | 500              | 1k                 | 2k                 | 4k                 | 8k                  | 16k           |
| POWER LEVEL<br>DIRECTIVITY                                | 77.0             | 93.0             | 80.0             | 74.0              | 72.0             | 68.0               | 65.0               | 62.0               | 58.0                | .0            |
| DISTANCE                                                  | 76.5<br>11.3     | 76.5             | 76.5             | 76.5              | 76.5             | 76.5               | 76.5               | 76.5               | 76.5                | 76.5          |
| BARRIER<br>AIR ARSORPTION                                 | 11.3             | 12.9             | 15.8             | 18.8              | 21.9             | 24.9               | 25.0               | 25.0               | 25.0                | 25.0          |
| AIR ABSORPTION<br>TEMP & WIND<br>GROUND                   | .0               | .0               | .0               | .0                | .0               | .0                 | .0                 | .0                 | .0                  | .0            |
| GROUND                                                    | -4.3             | . 3              | 8.8              | .0                | -4.6             | 3                  | -3.4               | -2.3               | -2.8                | -3.4          |
| TOTAL AWT -21.8                                           | -6.6             | 3.1              | -21.8            | -23.5             | -27.6            | -44.4              | -52.5              | -75.1              | -100.0              | -100.0        |
| SOURCE : 20<br>CFS - curing (int                          | - 02201          | 901              |                  | hol+              | / mata           | . E                |                    |                    |                     |               |
| CFS - Curing (in                                          | Jenrai)          | - 601            |                  |                   |                  |                    |                    |                    |                     |               |
|                                                           |                  |                  |                  | FF                | REQUENC          | CY Hz_             |                    |                    |                     |               |
|                                                           | 31.5             | 63               | 125              | 250               | 500              | 1k                 | 2k                 | 4k                 | 8k                  | 16k           |
| POWER LEVEL DIRECTIVITY                                   | 77.0             | 93.0             | 80.0             | 74.0              | 72.0             | 68.0               | 65.0               | 62.0               | 58.0                | .0            |
| DIRECTIVITY                                               | . 0              | .0               | . 0              | .0                | .0               | .0                 | .0                 | .0                 | . 0                 | .0            |
| DISTANCE                                                  | 76.5<br>12.7     | 76.5             | 76.5             | 76.5              | 76.5             | 76.5               | 76.5               | 76.5               | 76.5                | 76.5          |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND        | .0               | 15.4             | 18.4             | 21.4              | 5.8              | 11.3               | 19.3               | 37.8               | 101.5               | 300.0         |
| TEMP & WIND                                               | .0               | .0               | .0               | .0                | .0               | .0                 | .0                 | .0                 | .0                  | .0            |
|                                                           |                  |                  |                  |                   |                  |                    |                    |                    |                     |               |
| TOTAL AWT -24.2                                           | -7.8             | .9               | -25.4            | -27.5             | -30.4            | -43.1              | -53.0              | -74.0              | -100.0              | -100.0        |
| SOURCE : 21<br>CFS - curing (int                          | enral)           | - cor            | nveyor           | belt /            | / motor          | c 6                |                    |                    |                     |               |
|                                                           |                  |                  |                  | FF                | REQUENC          | CY Hz_             |                    |                    |                     |               |
|                                                           | 31.5             | 63               | 125              | 250               | 500              | 1k                 | 2k                 | 4k                 | 8k                  | 16k           |
| POWER LEVEL                                               | 77.0             |                  |                  |                   |                  |                    |                    |                    |                     |               |
| DIRECTIVITY                                               | .0               | .0               | .0               | .0                | .0               | .0                 | .0                 | .0                 | .0                  | .0            |
| DISTANCE<br>BARRIER                                       | 76.4             | 76.4             | 76.4             | 76.4              | 76.4             | 76.4               | 76.4               | 76.4               | 76.4                | 76.4          |
| BARRIER<br>AIR ABSORPTION                                 | 12.6             | 15.2             | 18.1             | 21.2              | 24.2             | 25.0<br>11.2       | 25.0<br>19.2       | 25.0<br>37.6       | 25.0                | 25.0<br>300 0 |
| TEMP & WIND                                               | .0               | .0               | .0               | .0                | .0               | .0                 | .0                 | .0                 | .0                  | .0            |
| BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT -23.9 | -4.4             | .0               | 9.7              | 1.2               | -4.4             | -1.1               | -2.9               | -3.3               | -2.6                | -4.4          |
| TOTAL AWT -23.9                                           | -7.7             | 1.2              | -24.9            | -26.9             | -29.9            | -43.5              | -52.6              | -73.7              | -100.0              | -100.0        |
| SOURCE : 22                                               | , .              |                  |                  |                   |                  |                    |                    |                    |                     |               |
| CFS - processing                                          | (exter           | nal) -           | - RTT 1          | manv              |                  |                    |                    |                    |                     |               |
|                                                           |                  |                  |                  | FF                | REQUENC          | CY Hz_             |                    |                    |                     |               |
|                                                           | 31.5             | 63               | 125              | 250               | 500              | 1k                 | 2k                 | 4k                 | 8k                  | 16k           |
| POWER LEVEL DIRECTIVITY                                   | 111.0            | 114.0            | 103.0            | 104.0             | 103.0            | 100.0              | 98.0               | 94.0               | 88.0                | .0            |
| DISTANCE                                                  | 76.9             | 76.9             | 76.9             | 76.9              | 76.9             | 76.9               | 76.9               | 76.9               | 76.9                | 76.9          |
| BARRIER                                                   | . 0              | .0               | .0               | .0                | . 0              | .0                 | .0                 | .0                 | .0                  | .0            |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND                  | .0               | . 2              | . 0              | 2.3               | .0               | .0                 | .0                 | 39.6               | .0                  | .0            |
| GROUND                                                    | -5.6             | -2.9             | 7.5              | 15.0              | 15.0             | 15.0               | 10.6               | 4.4                | -1.3                | -5.2          |
| TOTAL AWT 14.6                                            | 39.6             | 39.8             | 17.9             | 9.8               | 5.0              | -3.7               | -9.7               | -26.8              | -94.0               | -100.0        |
| SOURCE : 23<br>CFS - processing                           | (exter           | nal) -           | - RTT :          | reversi           | ing              |                    |                    |                    |                     |               |
|                                                           |                  |                  |                  | FF                | REQUENC          | CY Hz_             |                    |                    |                     |               |
|                                                           | 31.5             | 63               | 125              | 250               | 500              | 1k                 | 2k                 | 4k                 | 8k                  | 16k           |
| POWER LEVEL<br>DIRECTIVITY                                | 57.0             | 75.0             | 75.0             |                   | 89.0             | 93.0               | 91.0               | 87.0               | 77.0                | .0            |
|                                                           |                  |                  |                  |                   |                  |                    |                    |                    |                     |               |
| DISTANCE<br>BARRIER                                       | .0.1             | .0.1             | .0.1             | .0                | .0.1             | .0.1               | .0.1               | .0                 | .0                  | .0            |
| AIR ABSORPTION                                            | . 0              | . 2              | .6               | 2.1               | 5.6              | 10.9               | 18.6               | 36.6               | 97.9                | 300.0         |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND        | -5.6             | -3.1             | 6.8              | 15.0              | 15.0             | 14.8               | 9.6                | 3.4                | -2.1                | -5.5          |
|                                                           |                  |                  |                  |                   |                  |                    |                    |                    |                     |               |

TOTAL AWT -5.5 -13.6 1.8 -8.6 -14.2 -7.8 -8.9 -13.4 -29.2 -95.0-100.0

SOURCE : 24 CFS - processing (external) - dust collector / fan

|                                                                | FREQUENCY Hz                     |                          |                                 |                                  |                                   |                                    |                                    |                                    |                                    |                                     |
|----------------------------------------------------------------|----------------------------------|--------------------------|---------------------------------|----------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|
|                                                                | 31.5                             | 63                       | 125                             | 250                              | 500                               | 1k                                 | 2k                                 | 4k                                 | 8k                                 | 16k                                 |
| POWER LEVEL<br>DIRECTIVITY                                     | 100.0                            | 102.0                    | 106.0                           | 109.0                            | 108.0                             | 101.0                              | 94.0                               | 89.0                               | 83.0                               | .0                                  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 76.3<br>12.7<br>.0<br>.0<br>-4.4 | 76.3<br>15.5<br>.2<br>.0 | 76.3<br>18.4<br>.6<br>.0<br>9.8 | 76.3<br>21.5<br>2.1<br>.0<br>1.4 | 76.3<br>24.5<br>5.7<br>.0<br>-4.3 | 76.3<br>25.0<br>11.1<br>.0<br>-1.5 | 76.3<br>25.0<br>19.0<br>.0<br>-2.8 | 76.3<br>25.0<br>37.3<br>.0<br>-3.3 | 76.3<br>25.0<br>99.9<br>.0<br>-2.4 | 76.3<br>25.0<br>300.0<br>.0<br>-2.6 |
| TOTAL AWT 4.5                                                  | 15.3                             | 10.0                     | .8                              | 7.7                              | 5.8                               | -9.9                               | -23.6                              | -46.3-                             | 100.0                              | -100.0                              |

SOURCE : 25 CFS - processing (external) - forklift

|                                                                |                        | FREQUENCY Hz                   |                        |                                 |                                 |                                  |                                 |                                 |                                  |                                   |  |
|----------------------------------------------------------------|------------------------|--------------------------------|------------------------|---------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|----------------------------------|-----------------------------------|--|
|                                                                | 31.5                   | 63                             | 125                    | 250                             | 500                             | 1k                               | 2k                              | 4k                              | 8k                               | 16k                               |  |
| POWER LEVEL<br>DIRECTIVITY                                     | 101.0                  | 100.0                          | 99.0                   | 97.0                            | 93.0                            | 93.0                             | 91.0<br>.0                      | 88.0                            | 83.0                             | .0                                |  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 76.2<br>.0<br>.0<br>.0 | 76.2<br>.0<br>.2<br>.0<br>-3.1 | 76.2<br>.0<br>.6<br>.0 | 76.2<br>.0<br>2.1<br>.0<br>15.0 | 76.2<br>.0<br>5.7<br>.0<br>15.0 | 76.2<br>.0<br>11.0<br>.0<br>14.9 | 76.2<br>.0<br>18.8<br>.0<br>9.9 | 76.2<br>.0<br>36.9<br>.0<br>3.7 | 76.2<br>.0<br>98.9<br>.0<br>-1.9 | 76.2<br>.0<br>300.0<br>.0<br>-5.4 |  |
| TOTAL AWT 4.4                                                  | 30.3                   | 26.7                           | 15.2                   | 3.6                             | -3.9                            | -9.1                             | -13.9                           | -28.8                           | -90.2                            | -100.0                            |  |

SOURCE : 26 CFS - processing (external) - aggregate unload

|                                                    |                        | FREQUENCY Hz |                        |                 |                                 |                                  |                                  |                                 |                                  |                                   |
|----------------------------------------------------|------------------------|--------------|------------------------|-----------------|---------------------------------|----------------------------------|----------------------------------|---------------------------------|----------------------------------|-----------------------------------|
|                                                    | 31.5                   | 63           | 125                    | 250             | 500                             | 1k                               | 2k                               | 4k                              | 8k                               | 16k                               |
| POWER LEVEL<br>DIRECTIVITY                         | 110.0                  | 111.0        | 102.0                  | 100.0           | 101.0                           | 104.0                            | 101.0                            | 97.0<br>.0                      | 105.0                            | .0                                |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND | 76.2<br>.0<br>.0<br>.0 | .0           | 76.2<br>.0<br>.6<br>.0 | .0<br>2.1<br>.0 | 76.2<br>.0<br>5.7<br>.0<br>15.0 | 76.2<br>.0<br>11.0<br>.0<br>14.9 | 76.2<br>.0<br>18.8<br>.0<br>10.0 | 76.2<br>.0<br>36.9<br>.0<br>3.8 | 76.2<br>.0<br>98.9<br>.0<br>-1.8 | 76.2<br>.0<br>300.0<br>.0<br>-5.4 |
| TOTAL AWT 13.1                                     | 39.3                   | 37.7         | 18.2                   | 6.6             | 4.1                             | 1.9                              | -4.0                             | -19.9                           | -68.3                            | -100.0                            |

SOURCE : 27 CFS - processing (external) - silo vent 1

|                                                    |                        | FREQUENCY Hz                   |                               |                                 |                                |                                  |                                  |                                  |                                  |                                   |
|----------------------------------------------------|------------------------|--------------------------------|-------------------------------|---------------------------------|--------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|
|                                                    | 31.5                   | 63                             | 125                           | 250                             | 500                            | 1k                               | 2k                               | 4k                               | 8k                               | 16k                               |
| POWER LEVEL<br>DIRECTIVITY                         | 84.0                   | 82.0                           | 86.0                          | 89.0                            | 88.0                           | 81.0                             | 74.0                             | 69.0                             | 63.0                             | .0                                |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND | 76.3<br>.0<br>.0<br>.0 | 76.3<br>.0<br>.2<br>.0<br>-1.2 | 76.3<br>.0<br>.6<br>.0<br>9.1 | 76.3<br>.0<br>2.1<br>.0<br>11.6 | 76.3<br>.0<br>5.7<br>.0<br>2.9 | 76.3<br>.0<br>11.1<br>.0<br>-3.2 | 76.3<br>.0<br>19.0<br>.0<br>-5.0 | 76.3<br>.0<br>37.2<br>.0<br>-1.9 | 76.3<br>.0<br>99.6<br>.0<br>-2.2 | 76.3<br>.0<br>300.0<br>.0<br>-3.1 |
| TOTAL AWT 2.1                                      | 12.5                   | 6.8                            | . 0                           | -1.0                            | 3.1                            | -3.2                             | -16.3                            | -42.5-                           | 100.0-                           | -100.0                            |

SOURCE : 28 CFS - processing (external) - silo vent 2

|                                                                |     |                        | _FREQUENCY Hz                  |                               |                                 |                                |                                  |                                  |                                  |                                  |                                   |
|----------------------------------------------------------------|-----|------------------------|--------------------------------|-------------------------------|---------------------------------|--------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|
|                                                                |     | 31.5                   | 63                             | 125                           | 250                             | 500                            | 1k                               | 2k                               | 4k                               | 8k                               | 16k                               |
| POWER LEVEL<br>DIRECTIVITY                                     |     | 84.0                   | 82.0                           | 86.0                          | 89.0                            | 88.0                           | 81.0                             | 74.0<br>.0                       | 69.0                             | 63.0                             | .0                                |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | ON  | 76.3<br>.0<br>.0<br>.0 | 76.3<br>.0<br>.2<br>.0<br>-1.2 | 76.3<br>.0<br>.6<br>.0<br>9.1 | 76.3<br>.0<br>2.1<br>.0<br>11.6 | 76.3<br>.0<br>5.7<br>.0<br>2.9 | 76.3<br>.0<br>11.1<br>.0<br>-3.2 | 76.3<br>.0<br>18.9<br>.0<br>-5.0 | 76.3<br>.0<br>37.1<br>.0<br>-1.9 | 76.3<br>.0<br>99.4<br>.0<br>-2.2 | 76.3<br>.0<br>300.0<br>.0<br>-3.1 |
| TOTAL AWT                                                      | 2.2 | 12.5                   | 6.8                            | . 0                           | -1.0                            | 3.1                            | -3.1                             | -16.2                            | -42.4-                           | 100.0                            | -100.0                            |

```
TOTAL AWT 18.4 42.9 42.2 23.4 16.5 12.2 7.5 .4 -16.1 -67.8 -88.0 SINGLE POINT CALCULATION ENM CALC MODULE
FILENAMES
C:\ENM\SOURCES\2118506A\506A-3
2118506A.GEN
C:\ENM\MAPS\2118506A\506A
OUT1 file and RNK1 file
TEMP (deg C)
              HUMIDITY (%)
WIND SPEED (m/sec) WIND DIR (deg)
TEMP GRAD (deg C/100m)
X= 3971.000 Y= 3280.000 Z= 22.200
SOURCE : 13
CFS - processing (external) - backhoe
                                ___FREQUENCY Hz___
               31.5 63 125 250 500 1k 2k 4k 8k 16k
                                                                .0
POWER LEVEL
               95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0
DIRECTIVITY
                .0
                     .0
                           .0
                                .0
                                     .0
                                          .0
DISTANCE
                .0
                     .0
                          .0
                                .0
                                     .0 .0 .0 .0 .0 .0
6.0 11.6 19.8 38.8 104.2 300.0
BARRIER
AIR ABSORPTION
TEMP & WIND
                 . 0
                                      .0
                          7.4 15.0 15.0 15.0 10.5
                                                     4.3 -1.4 -5.3
GROUND
                -5.6 -2.9
          1.0 23.8 21.0 10.2
                               1.0 -2.7 -8.3 -12.0 -24.8 -84.5-100.0
SOURCE : 14
CFS - processing (external) - FEL
```

|                                                                |               |                                                | FR              | EQUENC          | CY Hz                            |                                  |       |                                   |        |
|----------------------------------------------------------------|---------------|------------------------------------------------|-----------------|-----------------|----------------------------------|----------------------------------|-------|-----------------------------------|--------|
|                                                                | 31.5          | 63 125                                         | 250             | 500             | 1k                               | 2k                               | 4k    | 8k                                | 16k    |
| POWER LEVEL<br>DIRECTIVITY                                     | 94.0 10<br>.0 | 0.0 100.0                                      | 106.0           | 98.0            | 101.0                            | 98.0                             | 92.0  | 86.0                              | .0     |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | .0            | 6.7 76.7<br>.0 .0<br>.2 .7<br>.0 .0<br>2.9 7.4 | .0<br>2.2<br>.0 | .0<br>6.0<br>.0 | 76.7<br>.0<br>11.6<br>.0<br>15.0 | 76.7<br>.0<br>19.9<br>.0<br>10.3 | .0    | 76.7<br>.0<br>104.4<br>.0<br>-1.5 | .0     |
| TOTAL AWT 7.2  SOURCE : 15                                     | 22.8 2        | 6.0 15.2                                       | 12.0            | .3              | -2.3                             | -8.9                             | -27.7 | -93.6-                            | -100.0 |

| DOULCE |        | 13         |   |     |
|--------|--------|------------|---|-----|
| CFS -  | curing | (intenral) | - | FEL |

|                                                    |                         | FREQUENCY Hz                    |                                 |                                  |                                 |                                   |                                   |                                   |                                    |                                     |
|----------------------------------------------------|-------------------------|---------------------------------|---------------------------------|----------------------------------|---------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|-------------------------------------|
|                                                    | 31.5                    | 63                              | 125                             | 250                              | 500                             | 1k                                | 2k                                | 4k                                | 8k                                 | 16k                                 |
| POWER LEVEL<br>DIRECTIVITY                         | 84.0                    | 90.0                            | 90.0                            | 96.0                             | 88.0                            | 91.0                              | 88.0                              | 82.0                              | 76.0<br>.0                         | .0                                  |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND | 76.8<br>5.0<br>.0<br>.0 | 76.8<br>5.0<br>.2<br>.0<br>-1.4 | 76.8<br>5.1<br>.7<br>.0<br>10.5 | 76.8<br>5.1<br>2.3<br>.0<br>11.7 | 76.8<br>5.3<br>6.1<br>.0<br>3.2 | 76.8<br>5.5<br>11.8<br>.0<br>-2.8 | 76.8<br>5.9<br>20.1<br>.0<br>-5.3 | 76.8<br>6.7<br>39.3<br>.0<br>-1.2 | 76.8<br>8.2<br>105.6<br>.0<br>-3.2 | 76.8<br>10.3<br>300.0<br>.0<br>-2.8 |
| TOTAL AWT 1.7                                      | 7.1                     | 9.3                             | -3.1                            | .1                               | -3.4                            | 2                                 | -9.5                              | -39.7                             | -100.0-                            | -100.0                              |

SOURCE: 16
CFS - curing (internal) - conveyor belt / motor 1

|                                                      |                   | FREQUENCY Hz            |                   |                          |                          |                           |                           |      |                            |      |  |
|------------------------------------------------------|-------------------|-------------------------|-------------------|--------------------------|--------------------------|---------------------------|---------------------------|------|----------------------------|------|--|
|                                                      | 31.5              | 63                      | 125               | 250                      | 500                      | 1k                        | 2k                        | 4k   | 8k                         | 16k  |  |
| POWER LEVEL<br>DIRECTIVITY                           | 77.0              | 93.0                    | 80.0              | 74.0                     | 72.0                     | 68.0                      | 65.0                      | 62.0 | 58.0                       | .0   |  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND | 76.9<br>5.0<br>.0 | 76.9<br>5.0<br>.2<br>.0 | 76.9<br>5.1<br>.7 | 76.9<br>5.1<br>2.3<br>.0 | 76.9<br>5.3<br>6.1<br>.0 | 76.9<br>5.5<br>11.8<br>.0 | 76.9<br>5.9<br>20.2<br>.0 | 6.7  | 76.9<br>8.2<br>106.3<br>.0 | 10.3 |  |

```
-5.0 -1.4 10.5 11.7 3.2 -2.9 -5.3 -1.2 -3.2 -2.8
GROUND
TOTAL AWT -12.7 .0 12.3 -13.1 -22.0 -19.4 -23.3 -32.7 -60.0-100.0-100.0
SOURCE : 17
CFS - curing (intenral) - conveyor belt / motor 2
                               FREOUENCY Hz
               31.5 63 125 250 500
                                            2k
                                                 4k
                                                      8k 16k
                                       1k
                                                            .0
POWER LEVEL
               77.0 93.0 80.0 74.0 72.0 68.0 65.0 62.0 58.0
                .0
                                    .0
                                                   .0
DIRECTIVITY
                     .0
                         .0
                              .0
                                        .0
                                             .0
```

5.0 5.1 5.1 .7 2.3 .0 .0 .0 . 0 -5.0 -1.4 10.5 11.7 3.2 -2.8 -5.3 -1.1 -3.2 -2.8 GROUND TOTAL AWT -12.8 .0 12.2 -13.2 -22.1 -19.6 -23.5 -32.9 -60.3-100.0-100.0

6.1 11.9

5.5

5.9

20.3

6.7

8.1

39.8 106.9 300.0

10 3

5.2

SOURCE : 18 CFS - curing (intenral) - conveyor belt / motor 3

5.0

DISTANCE

BARRIER

AIR ABSORPTION

FREOUENCY Hz 31.5 63 125 250 500 8k 16k 2k 1k 4k .0 POWER LEVEL 77.0 93.0 80.0 74.0 72.0 68.0 65.0 62.0 58.0 .0 .0 .0 .0 .0 .0 .0 DIRECTIVITY DISTANCE 77.0 77.0 77.0 77.0 77.0 77.0 5.0 5.1 5.1 .7 2.3 .0 .0 5.2 6.2 BARRIER 5.0 5.<sub>+</sub> .7 .0 5.4 5.7 6.4 9.5 40.0 107.7 300.0 AIR ABSORPTION .0 12.0 20.5 . 0 TEMP & WIND -5.0 -1.4 10.5 11.7 3.2 -2.8 -5.3 -1.2 -3.2 -2.8GROUND -.1 12.2 -13.2 -22.1 -19.6 -23.5 -32.9 -60.3-100.0-100.0

SOURCE : 19 CFS - curing (intenral) - conveyor belt / motor 4

FREOUENCY Hz 8k 16k 31.5 63 125 250 500 2k 1k 4k .0 POWER LEVEL 77.0 93.0 80.0 74.0 72.0 68.0 65.0 62.0 58.0 .0 .0 .0 DIRECTIVITY .0 .0 .0 .0 .0 77.0 77.0 77.0 77.0 77.0 77.0 77.0 17.1 20.2 23.2 25.0 .7 2.3 6.2 12.0 .0 .0 .0 25.0 BARRIER 12.2 14.2 25.0 25.0 40.2 108.1 300.0 AIR ABSORPTION 20.6 .0 .2 TEMP & WIND .4 9.8 1.0 -4.5 -1.1 -3.0 -3.3 -2.7 -4.1 GROUND -4.3 TOTAL AWT -23.8 -8.0 1.2 -24.7 -26.6 -30.0 -45.0 -54.6 -76.9-100.0-100.0

SOURCE : 2.0 CFS - curing (intenral) - conveyor belt / motor 5

FRECIIENCY Hz 31.5 63 125 250 500 2k 8k 16k 1k 4k POWER LEVEL 77.0 93.0 80.0 74.0 72.0 68.0 65.0 62.0 58.0 DIRECTIVITY .0 .0 .0 .0 .0 .0 77.0 77.0 77.0 77.0 77.0 77.0 77.0 77.0 77.0 77.0 15.2 24.2 BARRIER 12.6 18.1 21.2 25.0 25.0 25.0 25.0 ATR ABSORPTION .2 .7 2.3 6.2 12.0 .0 .0 .0 .0 .0 20.5 40.0 107.5 300.0 TEMP & WIND . 0 . 0 .2 10.2 1.6 -4.3 -2.0 -2.7 -3.1 -3.0 -2.8 GROUND -4.4 .4 -26.0 -28.1 -31.1 -44.0 -54.8 -76.9-100.0-100.0 TOTAL AWT -24.7 -8.3

SOURCE : 21 CFS - curing (intenral) - conveyor belt / motor 6

\_\_\_FREQUENCY Hz\_ 8k 16k 31.5 63 125 250 500 1k 2k POWER LEVEL 77.0 93.0 80.0 74.0 72.0 68.0 65.0 62.0 58.0 DIRECTIVITY .0 DISTANCE 76.9 76.9 76.9 76.9 76.9 76.9 76.9 76.9 76.9 76.9 12.5 14.9 17.9 20.9 23.9 25.0 BARRIER . 7 AIR ABSORPTION .0 . 2 2.3 6.1 11.9 20.2 39.6 106.4 300.0 TEMP & WIND .0 . 0 . 0 . 0 . 0 . 0 . 0 -4.4 9.9 1.3 -4.4 -1.5 -2.8 -3.3 -2.4 -3.1 GROUND .8 -25.4 -27.4 -30.5 -44.3 -54.3 -76.1-100.0-100.0 TOTAL AWT -24.3 -8.1

| 31.5 63 125 250 500 1k 2k 4k 8k 160  POWER LEVEL DIRECTIVITY                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DIRECTIVITY                                                                                                                                                                                                                                                                                    |
| ### PROPRIET STANCE   10                                                                                                                                                                                                                                                                       |
| AIR ABSORPTION                                                                                                                                                                                                                                                                                 |
| FROUND                                                                                                                                                                                                                                                                                         |
| TOTAL AWT 14.1 39.2 39.3 17.0 9.3 4.3 -4.7 -11.3 -29.2 -99.4-100  SOURCE : 23  CFS - processing (external) - RTT reversing  FREQUENCY Hz  31.5 63 125 250 500 1k 2k 4k 8k 160  COWER LEVEL 57.0 75.0 75.0 79.0 89.0 93.0 91.0 87.0 77.0 000  DIRECTIVITY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| SOURCE : 23  OFS - processing (external) - RTT reversing  FREQUENCY Hz  31.5 63 125 250 500 1k 2k 4k 8k 16  OURECTIVITY .0 .0 .0 .0 .0 .0 .0 .0 .0  OISTANCE 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.                                                                                            |
| PREQUENCY Hz  31.5 63 125 250 500 1k 2k 4k 8k 165  POWER LEVEL 57.0 75.0 75.0 79.0 89.0 93.0 91.0 87.0 77.0 000000000000000000000000000                                                                                                                                                        |
| 31.5 63 125 250 500 1k 2k 4k 8k 16.  POWER LEVEL 57.0 75.0 75.0 79.0 89.0 93.0 91.0 87.0 77.0 OUR CITY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                                                                  |
| POWER LEVEL 57.0 75.0 75.0 79.0 89.0 93.0 91.0 87.0 77.0 DIRECTIVITY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                                                                                                    |
| DISTANCE 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.                                                                                                                                                                                                                                                |
| O. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.                                                                                                                                                                                                                                                      |
| O. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.                                                                                                                                                                                                                                                      |
| O. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.                                                                                                                                                                                                                                                      |
| FROUND -5.6 -2.9 7.3 15.0 15.0 14.9 10.2 4.0 -1.6 -5                                                                                                                                                                                                                                           |
| TOTAL AWT -6.7 -14.1 1.1 -9.6 -14.9 -8.6 -10.1 -15.6 -32.2-100.0-100                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                |
| SOURCE : 24<br>CFS - processing (external) - dust collector / fan                                                                                                                                                                                                                              |
| FREQUENCY Hz                                                                                                                                                                                                                                                                                   |
| 31.5 63 125 250 500 1k 2k 4k 8k 16                                                                                                                                                                                                                                                             |
| POWER LEVEL 100.0 102.0 106.0 109.0 108.0 101.0 94.0 89.0 83.0 DIRECTIVITY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                                                                                                       |
| DISTANCE 76.8 76.8 76.8 76.8 76.8 76.8 76.8 76.8                                                                                                                                                                                                                                               |
| BARRIER 12.7 15.2 18.2 21.2 24.2 25.0 25.0 25.0 25.0 25<br>AIR ABSORPTION .0 .2 .7 2.3 6.0 11.7 20.0 39.2 105.3 300                                                                                                                                                                            |
| TEMP & WIND .0 .0 .0 .0 .0 .0 .0                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                |
| TOTAL AWT 3.9 14.9 9.6 .2 7.2 5.2 -10.7 -25.1 -48.8-100.0-100                                                                                                                                                                                                                                  |
| SOURCE : 25<br>IFS - processing (external) - forklift                                                                                                                                                                                                                                          |
| FREQUENCY Hz                                                                                                                                                                                                                                                                                   |
| 31.5 63 125 250 500 1k 2k 4k 8k 16                                                                                                                                                                                                                                                             |
| POWER LEVEL 101.0 100.0 99.0 97.0 93.0 93.0 91.0 88.0 83.0 DIRECTIVITY .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                |
| DISTANCE 76.7 76.7 76.7 76.7 76.7 76.7 76.7 76.                                                                                                                                                                                                                                                |
| AIR ABSORPTION .0 .2 .7 2.3 6.0 11.6 19.9 38.9 104.6 300 CEMP & WIND .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                                                                                                                |
| FROUND -5.6 -2.9 7.4 15.0 15.0 14.9 10.2 4.0 -1.6 -5                                                                                                                                                                                                                                           |
| TOTAL AWT 3.6 29.8 26.0 14.2 3.0 -4.8 -10.3 -15.9 -31.7 -96.7-100                                                                                                                                                                                                                              |
| SOURCE : 26                                                                                                                                                                                                                                                                                    |
| CFS - processing (external) - aggregate unload FREQUENCY Hz                                                                                                                                                                                                                                    |
| 31.5 63 125 250 500 1k 2k 4k 8k 16                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                |
| POWER LEVEL 110.0 111.0 102.0 100.0 101.0 104.0 101.0 97.0 105.0                                                                                                                                                                                                                               |
| DIRECTIVITY .0 .0 .0 .0 .0 .0 .0 .0                                                                                                                                                                                                                                                            |
| DIRECTIVITY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                                                                                                                                                             |
| DIRECTIVITY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                                                                                                                                                             |
| DISTANCE 76.7 76.7 76.7 76.7 76.7 76.7 76.7 76.                                                                                                                                                                                                                                                |
| DIRECTIVITY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                                                                                                                                                             |
| DISTANCE 76.7 76.7 76.7 76.7 76.7 76.7 76.7 76.                                                                                                                                                                                                                                                |

\_FREQUENCY Hz\_ 31.5 63 125 250 500 1k 2k 4k 8k 16k POWER LEVEL 84.0 82.0 86.0 89.0 88.0 81.0 74.0 69.0 .0 .0 DIRECTIVITY . 0 .0 .0 .0 .0 .0 . 0 DISTANCE 76.8 76.8 76.8 76.8 76.8 76.8 76.8 76.8 76.8 76.8 .0 BARRIER .0 .0 . 0 . 7 .0 Ω .0 11.7 . 0 Ω AIR ABSORPTION . 0 6.0 20.0 39.1 104.9 300.0 . 2 .0 .0 . 0 . 0 . 0 GROUND -4.8 -1.1 9.6 11.9 3.2 -3.0 -5.1 -1.5 -2.7 -2.8 1.0 12.0 6.1 -1.0 -1.9 2.0 -4.5 -17.6 -45.3-100.0-100.0 SOURCE : 28 CFS - processing (external) - silo vent 2 FREOUENCY Hz 31.5 63 125 250 500 1k 2k 4k 8k 16k POWER LEVEL 84.0 82.0 89.0 81.0 74.0 86.0 88.0 .0 .0 .0 .0 DIRECTIVITY .0 .0 . 0 .0 . 0 76.8 DISTANCE 76.8 76.8 76.8 76.8 76.8 76.8 76.8 76.8 76.8 .0 .0 .0 11.7 BARRIER .0 .0 .0 . 0 Ω 2.3 AIR ABSORPTION 6.0 19.9 39.0 104.7 300.0 .0 . 2 . 7 TEMP & WIND .0 GROUND -4.8 -1.1 9.6 11.8 3.2 -3.0 -5.1 -1.6 -2.6 -2.8 6.1 1.0 12.0 -1.0 -1.9 2.0 -4.4 -17.6 -45.2-100.0-100.0 TOTAL AWT 17.7 42.4 41.6 22.5 15.9 11.4 6.3 -1.3 -18.7 -73.7 -88.0 SINGLE POINT CALCULATION ENM CALC MODULE FILENAMES C:\ENM\SOURCES\2118506A\506A-3 2118506A GEN C:\ENM\MAPS\2118506A\506A OUT1 file and RNK1 file TEMP (deg C) HUMIDITY (%) 25.0 50.0 WIND SPEED (m/sec) WIND DIR (deg) .0 TEMP GRAD (deg C/100m) .0 X= 4129.000 Y= 3329.000 Z= SOURCE : 13 CFS - processing (external) - backhoe \_\_FREQUENCY Hz\_ 31 5 63 125 250 500 1k 2k4k 8k 16k POWER LEVEL 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 . 0 .0 .0 .0 .0 DIRECTIVITY . 0 .0 .0 .0 . 0 DISTANCE 77.4 77.4 77.4 77.4 77.4 77.4 77.4 77.4 77.4 77.4 .0 BARRIER .0 .0 .0 2.4 0 Ω .0 21.4 6.5 12.6 41.8 112.7 300.0 AIR ABSORPTION . 0 TEMP & WIND . 0 . 0 . 0 GROUND -4.9 -1.1 10.4 13.6 5.4 -1.3 -5.2 -1.3 -3.1 -3.5 TOTAL AWT 9.2 22.4 18.5 6.4 1.5 5.7 6.3 1.4 -22.9 -91.9-100.0 SOURCE : 14 CFS - processing (external) - FEL \_FREQUENCY Hz\_ 31.5 63 125 250 500 1k 2k 4k 8k 16k POWER LEVEL 94.0 100.0 100.0 106.0 98.0 101.0 98.0 92.0 86.0 . 0 .0 .0 .0 DIRECTIVITY .0 .0 .0 .0 .0 . 0 77.4 77.4 DISTANCE 77.4 77.4 77.4 77.4 77.4 77.4 77.4 77.4 . 0 .0 . 0 .0 .02.4 .0 . 0 BARRIER Ω AIR ABSORPTION 12.6 21.5 41.8 112.9 300.0 . 0 . 2 6.5

-1.3

-3.1 -3.5

-5.2

5.4 -1.3

TEMP & WIND

-4.9

-1.1 10.4 13.6

GROUND

TOTAL AWT 14.4 21.4 23.4 11.4 12.5 8.7 12.2 4.3 -26.0-100.0-100.0

SOURCE : 15 CFS - curing (intenral) - FEL

|                                                                | FREQUENCY Hz                    |                         |                                 |                                 |                                  |                                   |                                   |        |                                    |                                    |  |
|----------------------------------------------------------------|---------------------------------|-------------------------|---------------------------------|---------------------------------|----------------------------------|-----------------------------------|-----------------------------------|--------|------------------------------------|------------------------------------|--|
|                                                                | 31.5                            | 63                      | 125                             | 250                             | 500                              | 1k                                | 2k                                | 4k     | 8k                                 | 16k                                |  |
| POWER LEVEL<br>DIRECTIVITY                                     | 84.0                            | 90.0                    | 90.0                            | 96.0                            | 88.0                             | 91.0<br>.0                        | 88.0                              | 82.0   | 76.0<br>.0                         | .0                                 |  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 77.5<br>5.0<br>.0<br>.0<br>-4.4 | 77.5<br>5.0<br>.2<br>.0 | 77.5<br>5.1<br>.7<br>.0<br>10.9 | 77.5<br>5.1<br>2.5<br>.0<br>2.4 | 77.5<br>5.2<br>6.6<br>.0<br>-3.9 | 77.5<br>5.3<br>12.7<br>.0<br>-3.2 | 77.5<br>5.5<br>21.7<br>.0<br>-2.6 | .0     | 77.5<br>7.0<br>114.1<br>.0<br>-2.9 | 77.5<br>8.5<br>300.0<br>.0<br>-4.1 |  |
| TOTAL AWT 4.3                                                  | 5.8                             | 7.0                     | -4.2                            | 8.5                             | 2.7                              | -1.3                              | -14.1                             | -41.2- | -100.0-                            | -100.0                             |  |

SOURCE : 16 CFS - curing (intenral) - conveyor belt / motor 1

|                                                                | FREQUENCY Hz                    |                         |                                 |                                 |                                  |                                   |                                   |                                   |                                    |                    |  |
|----------------------------------------------------------------|---------------------------------|-------------------------|---------------------------------|---------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|--------------------|--|
|                                                                | 31.5                            | 63                      | 125                             | 250                             | 500                              | 1k                                | 2k                                | 4k                                | 8k                                 | 16k                |  |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0                            | 93.0                    | 80.0                            | 74.0                            | 72.0                             | 68.0                              | 65.0                              | 62.0                              | 58.0                               | .0                 |  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 77.6<br>5.0<br>.0<br>.0<br>-4.4 | 77.6<br>5.0<br>.2<br>.0 | 77.6<br>5.1<br>.7<br>.0<br>10.9 | 77.6<br>5.1<br>2.5<br>.0<br>2.5 | 77.6<br>5.1<br>6.6<br>.0<br>-3.9 | 77.6<br>5.3<br>12.8<br>.0<br>-3.3 | 77.6<br>5.5<br>21.8<br>.0<br>-2.7 | 77.6<br>6.0<br>42.5<br>.0<br>-2.6 | 77.6<br>6.8<br>114.7<br>.0<br>-2.9 | 8.3<br>300.0<br>.0 |  |
| MOMAI AWM 10 F                                                 | 1 2                             | 0 0                     | 1/1 2                           | 12 6                            | 12 5                             | 24.2                              | 27 2                              | C1 1                              | 100 0                              | 100 0              |  |

TOTAL AWT -12.5 -1.3 9.9 -14.3 -13.6 -13.5 -24.3 -37.2 -61.4-100.0-100.0

SOURCE : 17 CFS - curing (intenral) - conveyor belt / motor 2

|                                                                | FREQUENCY Hz                    |                         |                                 |                                 |                                  |                                   |                                   |                                   |                                    |                    |  |
|----------------------------------------------------------------|---------------------------------|-------------------------|---------------------------------|---------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|--------------------|--|
|                                                                | 31.5                            | 63                      | 125                             | 250                             | 500                              | 1k                                | 2k                                | 4k                                | 8k                                 | 16k                |  |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0                            | 93.0                    | 80.0                            | 74.0                            | 72.0                             | 68.0                              | 65.0<br>.0                        | 62.0                              | 58.0                               | .0                 |  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 77.6<br>5.0<br>.0<br>.0<br>-4.4 | 77.6<br>5.0<br>.2<br>.0 | 77.6<br>5.1<br>.7<br>.0<br>11.0 | 77.6<br>5.1<br>2.5<br>.0<br>2.5 | 77.6<br>5.1<br>6.6<br>.0<br>-3.8 | 77.6<br>5.3<br>12.9<br>.0<br>-3.4 | 77.6<br>5.5<br>21.9<br>.0<br>-2.7 | 77.6<br>6.0<br>42.7<br>.0<br>-2.6 | 77.6<br>6.8<br>115.3<br>.0<br>-2.9 | 8.4<br>300.0<br>.0 |  |
| TOTAL AWT -12.6                                                | -1.3                            | 9.9                     | -14.4                           | -13.7                           | -13.6                            | -24.4                             | -37.4                             | -61.7                             | -100.0                             | -100.0             |  |

9.9 -14.4 -13.7 -13.6 -24.4 -37.4 -61.7-100.0-100.0

CFS - curing (intenral) - conveyor belt / motor 3

|                                                                | FREQUENCY Hz                    |                               |                                 |                                 |                                  |                                   |                                   |        |                                    |                                    |  |
|----------------------------------------------------------------|---------------------------------|-------------------------------|---------------------------------|---------------------------------|----------------------------------|-----------------------------------|-----------------------------------|--------|------------------------------------|------------------------------------|--|
|                                                                | 31.5                            | 63                            | 125                             | 250                             | 500                              | 1k                                | 2k                                | 4k     | 8k                                 | 16k                                |  |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0                            | 93.0                          | 80.0                            | 74.0                            | 72.0                             | 68.0                              | 65.0<br>.0                        | 62.0   | 58.0                               | .0                                 |  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 77.7<br>5.0<br>.0<br>.0<br>-4.4 | 77.7<br>5.0<br>.2<br>.0<br>.3 | 77.7<br>5.0<br>.7<br>.0<br>11.0 | 77.7<br>5.1<br>2.5<br>.0<br>2.5 | 77.7<br>5.1<br>6.7<br>.0<br>-3.8 | 77.7<br>5.2<br>13.0<br>.0<br>-3.4 | 77.7<br>5.3<br>22.1<br>.0<br>-2.7 | .0     | 77.7<br>6.1<br>116.1<br>.0<br>-2.9 | 77.7<br>7.1<br>300.0<br>.0<br>-1.9 |  |
| TOTAL AWT -12.6                                                | -1.4                            | 9.8                           | -14.4                           | -13.8                           | -13.6                            | -24.4                             | -37.4                             | -61.6- | -100.0-                            | -100.0                             |  |

SOURCE : 19 CFS - curing (intenral) - conveyor belt / motor 4

|                                                                | FREQUENCY Hz             |                                 |                                 |                                   |                                   |                                    |                                    |                                    |         |                                     |
|----------------------------------------------------------------|--------------------------|---------------------------------|---------------------------------|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|---------|-------------------------------------|
|                                                                | 31.5                     | 63                              | 125                             | 250                               | 500                               | 1k                                 | 2k                                 | 4k                                 | 8k      | 16k                                 |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0                     | 93.0                            | 80.0                            | 74.0                              | 72.0                              | 68.0                               | 65.0<br>.0                         | 62.0                               | 58.0    | .0                                  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 77.7<br>12.1<br>.0<br>.0 | 77.7<br>14.1<br>.2<br>.0<br>1.8 | 77.7<br>17.0<br>.7<br>.0<br>5.1 | 77.7<br>20.1<br>2.5<br>.0<br>-3.0 | 77.7<br>23.1<br>6.7<br>.0<br>-2.2 | 77.7<br>25.0<br>13.0<br>.0<br>-2.2 | 77.7<br>25.0<br>22.1<br>.0<br>-2.7 | 77.7<br>25.0<br>43.1<br>.0<br>-3.0 | .0      | 77.7<br>25.0<br>300.0<br>.0<br>-2.5 |
| TOTAL AWT -25.0                                                | -9.2                     | 8                               | -20.6                           | -23.3                             | -33.3                             | -45.5                              | -57.2                              | -80.9                              | -100.0- | -100.0                              |

SOURCE : 20

| CFS - curing (in                        | tenral)    | - cor  |         |           |           |               |       |            |             |        |
|-----------------------------------------|------------|--------|---------|-----------|-----------|---------------|-------|------------|-------------|--------|
|                                         |            |        |         | FI        | REQUEN    | CY Hz_        |       |            |             |        |
|                                         | 31.5       | 63     | 125     | 250       | 500       | 1k            | 2k    | 4k         | 8k          | 16k    |
| POWER LEVEL<br>DIRECTIVITY              | 77.0<br>.0 | 93.0   | 80.0    | 74.0      | 72.0      | 68.0          | 65.0  | 62.0<br>.0 | 58.0        | .0     |
|                                         | 77.7       |        |         |           |           |               |       |            |             |        |
| BARRIER<br>AIR ABSORPTION               | .0         | . 2    |         |           | 6.7       | 25.0<br>12.9  | 22.0  | 42.9       |             | 300.0  |
| TEMP & WIND<br>GROUND                   |            |        |         |           |           | .0<br>-2.3    |       |            | .0<br>-4 0  |        |
| TOTAL AWT -26.0                         |            |        |         |           |           |               |       |            |             |        |
| SOURCE : 21                             |            |        |         |           | , .       | _             |       |            |             |        |
| CFS - curing (in                        | tenral)    |        | _       |           |           | c 6<br>CY Hz_ |       |            |             |        |
|                                         | 31.5       |        |         |           |           | 1k            |       |            | 8k          | 16k    |
| POWER LEVEL                             |            |        |         |           |           |               |       |            |             |        |
| DIRECTIVITY                             | .0         | .0     | .0      | .0        | .0        | .0            | .0    | .0         | .0          | .0     |
| DISTANCE<br>BARRIER                     | 77.6       |        |         |           |           | 77.6<br>25.0  |       |            |             |        |
| AIR ABSORPTION                          |            |        |         |           |           | 12.8          |       |            |             |        |
|                                         | .0<br>-3.8 |        |         |           |           |               |       |            |             |        |
|                                         |            |        |         |           |           |               |       |            |             |        |
| TOTAL AWT -25.6  SOURCE : 22            |            | -1.3   | -21.6   | -24.1     | -33.5     | -45.2         | -56.8 | -80.4      | -100.0      | -100.0 |
| CFS - processing                        |            | nal) - | - RTT r | nanv      |           |               |       |            |             |        |
|                                         |            |        |         | FI        | REQUEN    | CY Hz_        |       |            |             |        |
|                                         | 31.5       | 63     | 125     | 250       | 500       | 1k            | 2k    | 4k         | 8k          | 16k    |
| POWER LEVEL DIRECTIVITY                 |            |        |         |           |           |               |       |            |             |        |
|                                         | 78.0       |        |         |           |           |               |       |            |             |        |
| BARRIER<br>AIR ABSORPTION               |            |        |         |           |           | .0<br>13.4    |       |            | .0<br>119.7 |        |
| TEMP & WIND                             | .0         | . 2    |         |           | .0        | .0            | .0    | .0         | .0          | .0     |
| GROUND                                  |            |        |         |           |           | -1.1          |       |            |             |        |
| TOTAL AWT 15.3                          |            | 36.7   | 13.3    | 9.7       | 12.6      | 9.8           | 2.5   | -26.5      | -100.0      | -100.0 |
| SOURCE : 23<br>CFS - processing         |            | nal) - | - RTT   | revers    | ing       |               |       |            |             |        |
|                                         |            |        |         | FI        | REQUEN    | CY Hz_        |       |            |             |        |
|                                         |            |        |         |           |           | 1k            |       |            |             |        |
| POWER LEVEL DIRECTIVITY                 |            |        |         |           |           | 93.0          |       |            |             |        |
| DISTANCE                                | 77.4       | 77.4   | 77.4    | 77.4      | 77.4      | 77.4          | 77.4  | 77.4       | 77.4        | 77.4   |
| BARRIER<br>AIR ABSORPTION               | .0.0       | .0     | . 0     | 2.4       | .0<br>6 4 | .0<br>12 5    | 21 3  | .0<br>41 5 | 111 9       | 300 0  |
| TEMP & WIND                             | .0         | .0     | .0      | .0        | .0        | .0            | .0    | .0         | .0          | .0     |
|                                         | .0<br>-4.9 |        |         |           |           |               |       |            |             |        |
| TOTAL AWT 6.0                           |            | -1.5   | -13.4   | -14.4     | 2         | 4.4           | -2.4  | -30.6      | -100.0      | -100.0 |
| SOURCE : 24<br>CFS - processing         |            | nal) - | - dust  | collec    | ctor /    | fan           |       |            |             |        |
|                                         |            |        |         | FI        | REQUEN    | CY Hz_        |       |            |             |        |
|                                         | 31.5       | 63     | 125     | 250       | 500       | 1k            | 2k    | 4k         | 8k          | 16k    |
| POWER LEVEL<br>DIRECTIVITY              | 100.0      | 102.0  | 106.0   | 109.0     | 108.0     | 101.0         | 94.0  | 89.0       | 83.0        | .0     |
| DISTANCE                                | 77.5       | 77.5   | 77.5    | 77.5      | 77.5      | 77.5<br>25.0  | 77.5  | 77.5       | 77.5        | 77.5   |
| BARRIER<br>AIR ABSORPTION               | 12.7       | 15.2   | 18.2    | 21.2      | 24.2      | 25.0          | 25.0  | 25.0       | 25.0        | 25.0   |
| AIR ABSORPTION<br>TEMP & WIND<br>GROUND | .0         | . 2    | . 0     | ∠.5<br>.0 | .0        | .0            | .0    | .0         | .0          | .0     |
| GROUND                                  | -3.8       | 1.6    | 5.5     | -2.8      | -2.7      | -2.2          | -2.6  | -2.6       | -1.5        | -3.0   |
| TOTAL AWT 4.1                           |            | 7.5    | 4.1     | 10.6      | 2.4       | -12.0         | -27.6 | -53.0      | -100.0      | -100.0 |
| SOURCE : 25<br>CFS - processing         |            | nal) - | - fork  | lift      |           |               |       |            |             |        |
|                                         |            |        |         |           |           |               |       |            |             |        |
|                                         |            |        |         | FI        | REQUEN    | CY Hz_        |       |            |             |        |

|                                                                | 31.5              | 63             | 125                           | 250             | 500             | 1k               | 2k               | 4k               | 8k                | 16k               |
|----------------------------------------------------------------|-------------------|----------------|-------------------------------|-----------------|-----------------|------------------|------------------|------------------|-------------------|-------------------|
| POWER LEVEL DIRECTIVITY                                        | 101.0             | 100.0          | 99.0                          | 97.0            | 93.0            | 93.0             | 91.0             | 88.0             | 83.0              | .0                |
| BARRIER AIR ABSORPTION TEMP & WIND                             | . 0<br>. 0<br>. 0 | .0<br>.2<br>.0 | 77.4<br>.0<br>.7<br>.0        | .0<br>2.4<br>.0 | .0<br>6.5<br>.0 | .0<br>12.6<br>.0 | .0<br>21.5<br>.0 | .0<br>41.9<br>.0 | .0<br>113.0<br>.0 | .0<br>300.0<br>.0 |
| TOTAL AWT 7.5                                                  | 28.4              | 23.4           | 10.4                          | 3.5             | 3.6             | 4.2              | -2.7             | -30.0-           | -100.0-           | -100.0            |
| SOURCE : 26<br>CFS - processing                                | (exter            | rnal) -        |                               |                 |                 |                  |                  |                  |                   |                   |
|                                                                |                   |                |                               |                 | EQUENC          |                  |                  |                  |                   |                   |
| DOMED I THE                                                    |                   |                | 125                           |                 |                 |                  |                  |                  |                   |                   |
| POWER LEVEL<br>DIRECTIVITY                                     |                   |                |                               |                 |                 |                  |                  |                  |                   |                   |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND |                   |                | 77.4<br>.0<br>.7<br>.0        |                 |                 |                  |                  |                  |                   |                   |
| TOTAL AWT 17.5                                                 | 37.4              | 34.5           | 13.4                          | 6.5             | 11.7            | 15.2             | 7.4              | -20.9            | -82.0-            | -100.0            |
| SOURCE : 27<br>CFS - processing                                | (exter            | nal) -         | - silo                        | vent 1          | -               |                  |                  |                  |                   |                   |
|                                                                |                   |                |                               | FR              | EQUENC          | Y Hz_            |                  |                  |                   |                   |
|                                                                |                   |                | 125                           |                 |                 |                  |                  |                  |                   |                   |
| POWER LEVEL<br>DIRECTIVITY                                     | . 0               | . 0            | . 0                           | . 0             | . 0             | . 0              | . 0              | . 0              | . 0               | . 0               |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | . 0               | . 2            | 77.5<br>.0<br>.7<br>.0<br>8.5 | 2.4             | 6.5             | 12.6             | 21.6             | 42.0             | 113.4             | 300.0             |
| TOTAL AWT 4.2                                                  | 10.9              | 4.6            | 7                             | 3.4             | 6.0             | -4.2             | -23.8            | -47.9-           | -100.0-           | -100.0            |
| SOURCE : 28<br>CFS - processing                                | (exter            | nal) -         | - silo                        | vent 2          | !               |                  |                  |                  |                   |                   |
|                                                                |                   |                |                               | FR              | EQUENC          | Y Hz_            |                  |                  |                   |                   |
|                                                                |                   |                | 125                           |                 |                 |                  |                  |                  |                   |                   |
| POWER LEVEL<br>DIRECTIVITY                                     |                   |                |                               |                 |                 |                  |                  |                  |                   |                   |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | .0.0              | .0             | .7                            | .0<br>2.4<br>.0 | .0              | .0<br>12.6<br>.0 | .0<br>21.5<br>.0 | .0<br>41.9<br>.0 | 113.2             | .0<br>300.0<br>.0 |
| TOTAL AWT 4.2                                                  | 10.9              | 4.6            | 7                             | 3.4             | 6.1             | -4.2             | -23.8            | -47.8-           | -100.0-           | -100.0            |
| TOTAL AWT 21.6<br>SINGLE POINT CALC<br>ENM CALC MODULE         |                   |                | 18.9                          | 17.7            | 17.7            | 18.5             | 11.0             | -17.0            | -80.8             | -88.0             |
| FILENAMES C:\ENM\SOURCES\2 2118506A.GEN C:\ENM\MAPS\2118       |                   |                | 4-3                           |                 |                 |                  |                  |                  |                   |                   |
| OUT1 file and RM                                               | NK1 fil           | e              |                               |                 |                 |                  |                  |                  |                   |                   |
| TEMP (deg C)<br>25.0                                           | HUN               | MIDITY<br>50.0 | (%)                           |                 |                 |                  |                  |                  |                   |                   |
| WIND SPEED (m/sec                                              | e) WII            | ND DIR         | (deg)                         |                 |                 |                  |                  |                  |                   |                   |

TEMP GRAD (deg C/100m)

X= 3079.000 Y= 3574.000 Z= 22.200

| SOURCE : 13 |  |
|-------------|--|
|-------------|--|

| orb processing                                                 | (011001                | enegriar, backing |      |                         |                 |                 |                  |                  |                                  |                   |  |  |
|----------------------------------------------------------------|------------------------|-------------------|------|-------------------------|-----------------|-----------------|------------------|------------------|----------------------------------|-------------------|--|--|
|                                                                |                        | _FREQUENCY Hz     |      |                         |                 |                 |                  |                  |                                  |                   |  |  |
|                                                                | 31.5                   | 63                | 125  | 250                     | 500             | 1k              | 2k               | 4k               | 8k                               | 16k               |  |  |
| POWER LEVEL<br>DIRECTIVITY                                     | 95.0                   | 95.0              | 95.0 | 95.0                    | 95.0            | 95.0            |                  | 95.0<br>.0       | 95.0                             | .0                |  |  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 73.8<br>.0<br>.0<br>.0 | .0                | .0   | 73.8<br>.0<br>1.6<br>.0 | .0<br>4.3<br>.0 | .0<br>8.3<br>.0 | .0<br>14.4<br>.0 | .0<br>28.7<br>.0 | 73.8<br>.0<br>75.8<br>.0<br>-3.3 | .0<br>250.6<br>.0 |  |  |
| TOTAL AWT 6.7                                                  | 26.9                   | 24.7              | 15.9 | 4.6                     | 1.9             | -1.4            | -1.3             | -9.5             | -51.3-                           | -100.0            |  |  |
| SOURCE : 14<br>CFS - processing                                | (exter                 | nal) -            | FEL  |                         |                 |                 |                  |                  |                                  |                   |  |  |
|                                                                |                        |                   |      | FR                      | EQUENC          | Y Hz_           |                  |                  |                                  |                   |  |  |

31.5 63 125 250 500 1k 16k POWER LEVEL 94.0 100.0 100.0 106.0 98.0 101.0 98.0 92.0 86.0 .0 DIRECTIVITY DISTANCE 73.8 73.8 73.8 73.8 73.8 73.8 73.8 73.8 73.8 73.8 .0 BARRIER . 0 .0 .5 1.6 4.3 8.4 76.0 251.5 AIR ABSORPTION .0 14.5 28.8 .0 TEMP & WIND .0 .0 .0 . 0 .0 . 0 .0 . 0 15.0 -3.6 4.8 15.0 TOTAL AWT 12.2 25.8 29.7 20.9 15.6 4.9 4.5 1.5 -12.7 -60.6-100.0

SOURCE : 15 CFS - curing (intenral) - FEL

\_FREQUENCY Hz\_ 31.5 63 125 250 500 16k 2k 4k 8k 84.0 90.0 POWER LEVEL 90.0 96.0 88.0 91.0 88.0 82.0 76.0 .0 DIRECTIVITY .0 . 0 .0 .0 .0 . 0 . 0 .0 .0 DISTANCE 74.1 74.1 74.1 74.1 74.1 74.1 74.1 74.1 74.1 74.1 . 0 .0 .0 BARRIER .0 .0 .0 .0 .0 .0 4.5 .1 .5 AIR ABSORPTION .0 8.6 14.8 29.6 78.1 258.6 TEMP & WIND .0 .0 .0 .0 .0 . 0 .0 GROUND -5.7 -3.6 5.0 15.0 15.0 14.5 8.5 -3.0 1.7 15.6 19.4 10.4 5.3 -5.5 -6.1 -9.4 -23.9 -73.1-100.0 TOTAL AWT

SOURCE : 16 CFS - curing (intenral) - conveyor belt / motor 1

|                                                                | _FREQUENCY Hz          |                                |                        |                                 |                         |                                 |                                 |                                 |                  |                   |  |
|----------------------------------------------------------------|------------------------|--------------------------------|------------------------|---------------------------------|-------------------------|---------------------------------|---------------------------------|---------------------------------|------------------|-------------------|--|
|                                                                | 31.5                   | 63                             | 125                    | 250                             | 500                     | 1k                              | 2k                              | 4k                              | 8k               | 16k               |  |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0                   | 93.0                           | 80.0                   | 74.0<br>.0                      | 72.0<br>.0              | 68.0                            | 65.0<br>.0                      | 62.0                            | 58.0             | .0                |  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 74.2<br>.0<br>.0<br>.0 | 74.2<br>.0<br>.1<br>.0<br>-3.5 | 74.2<br>.0<br>.5<br>.0 | 74.2<br>.0<br>1.7<br>.0<br>15.0 | 74.2<br>.0<br>4.5<br>.0 | 74.2<br>.0<br>8.7<br>.0<br>14.5 | 74.2<br>.0<br>15.1<br>.0<br>8.7 | 74.2<br>.0<br>30.0<br>.0<br>2.5 | .0<br>79.1<br>.0 | .0<br>262.2<br>.0 |  |
| TOTAL AWT -3.6                                                 | 8.4                    | 22.2                           | . 2                    | -16.9                           | -21.7                   | -29.5                           | -32.9                           | -44.6                           | -92.5            | -100.0            |  |
| SOURCE : 17                                                    |                        |                                |                        |                                 |                         |                                 |                                 |                                 |                  |                   |  |

CFS - curing (intenral) - conveyor belt / motor 2

|                                                                | FREQUENCY Hz            |                                 |                                |                                  |                                 |                                  |                                   |                                   |                                   |                                    |  |
|----------------------------------------------------------------|-------------------------|---------------------------------|--------------------------------|----------------------------------|---------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|--|
|                                                                | 31.5                    | 63                              | 125                            | 250                              | 500                             | 1k                               | 2k                                | 4k                                | 8k                                | 16k                                |  |
| POWER LEVEL<br>DIRECTIVITY                                     | 77.0                    | 93.0                            | 80.0                           | 74.0                             | 72.0                            | 68.0                             | 65.0<br>.0                        | 62.0                              | 58.0                              | .0                                 |  |
| DISTANCE<br>BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND | 74.3<br>5.0<br>.0<br>.0 | 74.3<br>5.0<br>.1<br>.0<br>-2.2 | 74.3<br>5.1<br>.5<br>.0<br>7.8 | 74.3<br>5.1<br>1.7<br>.0<br>10.5 | 74.3<br>5.2<br>4.6<br>.0<br>1.8 | 74.3<br>5.3<br>8.9<br>.0<br>-3.9 | 74.3<br>5.6<br>15.2<br>.0<br>-4.3 | 74.3<br>6.1<br>30.3<br>.0<br>-2.6 | 74.3<br>7.1<br>80.1<br>.0<br>-2.4 | 74.3<br>8.7<br>265.7<br>.0<br>-2.3 |  |
| TOTAL AWT -8.5                                                 | 2.8                     | 15.8                            | -7.6                           | -17.6                            | -13.9                           | -16.6                            | -25.8                             | -46.1-                            | 100.0-                            | -100.0                             |  |

CFS - curing (intenral) - conveyor belt / motor 3

|                                          |            |            |           | FF         | REQUEN     | CY Hz_            |            |            |            |              |
|------------------------------------------|------------|------------|-----------|------------|------------|-------------------|------------|------------|------------|--------------|
|                                          | 31.5       | 63         | 125       | 250        | 500        | 1k                | 2k         | 4k         | 8k         | 16k          |
| POWER LEVEL<br>DIRECTIVITY               | 77.0       | 93.0       |           |            |            | 68.0              |            |            |            |              |
| DISTANCE<br>BARRIER                      | 12.4       | 14.6       | 17.6      | 20.6       | 23.6       | 74.4<br>25.0      | 25.0       | 25.0       | 25.0       | 74.4<br>25.0 |
| AIR ABSORPTION<br>TEMP & WIND            | .0         | .1         | .5        | 1.7        | 4.6        | 9.0               | 15.4       | 30.6       | 81.0       | 268.7        |
| GROUND                                   | -4.7       | 9          | 9.1       | 2.2        | -4.0       | -2.2              | -2.6       | -2.9       | -3.1       | -4.5         |
| TOTAL AWT -20.4                          | -5.2       | 4.8        | -21.6     | -24.9      | -26.6      | -38.2             | -47.2      | -65.1-     | 100.0      | -100.0       |
| SOURCE : 19<br>CFS - curing (int         | cenral)    | - cor      | nveyor    | belt /     | / moto     | r 4               |            |            |            |              |
|                                          |            |            |           | FF         | REQUEN     | CY Hz_            |            |            |            |              |
|                                          | 31.5       | 63         | 125       | 250        | 500        | 1k                | 2k         | 4k         | 8k         | 16k          |
| POWER LEVEL<br>DIRECTIVITY               |            |            |           |            |            | 68.0              |            |            |            |              |
| DISTANCE<br>BARRIER                      |            |            |           |            |            | 74.4<br>25.0      |            |            |            |              |
| AIR ABSORPTION                           | .0         | .1         | .5        | 1.7        | 4.6        | 9.0               | 15.5       | 30.7       | 81.2       | 269.5        |
| TEMP & WIND<br>GROUND                    | -4.5       | 5          | 8.3       | .1         | -4.5       | .0<br>4           | -3.1       | -2.5       | -1.9       | -2.5         |
| TOTAL AWT -21.4                          | -5.7       | 3.5        | -21.6     | -23.7      | -27.0      | -40.0             | -46.8      | -65.6-     | 100.0      | -100.0       |
| SOURCE : 20<br>CFS - curing (int         | cenral)    | - cor      | nveyor    | belt /     | / moto     | r 5               |            |            |            |              |
|                                          |            |            |           | FF         | REQUEN     | CY Hz_            |            |            |            |              |
|                                          | 31.5       | 63         | 125       | 250        | 500        | 1k                | 2k         | 4k         | 8k         | 16k          |
| POWER LEVEL DIRECTIVITY                  | 77.0       |            |           |            |            | 68.0              |            |            |            |              |
| DISTANCE                                 | 74.3       |            |           |            |            | 74.3              |            |            |            |              |
| BARRIER<br>AIR ABSORPTION                |            |            |           |            |            | 25.0<br>8.8<br>.0 |            |            |            |              |
| TEMP & WIND<br>GROUND                    | .0<br>-4.4 | .0<br>3    | .0<br>7.4 | .0<br>-1.1 | .0<br>-4.1 | .0<br>-1.7        | .0<br>-1.6 | .0<br>-3.1 | .0<br>-1.7 | .0<br>-1.7   |
| TOTAL AWT -19.5                          | -4.8       | 5.2        | -18.8     | -20.6      | -25.5      | -38.4             | -47.9      | -64.5-     | 100.0      | -100.0       |
| SOURCE : 21<br>CFS - curing (int         | cenral)    | - cor      | nveyor    | belt /     | / moto     | r 6               |            |            |            |              |
|                                          |            |            |           | FF         | REQUEN     | CY Hz_            |            |            |            |              |
|                                          | 31.5       | 63         | 125       | 250        | 500        | 1k                | 2k         | 4k         | 8k         | 16k          |
| POWER LEVEL DIRECTIVITY                  | 77.0<br>.0 | 93.0       | 80.0      | 74.0       | 72.0<br>.0 | 68.0              | 65.0       | 62.0       | 58.0       | .0           |
|                                          | 74.1       | 74.1       | 74.1      | 74.1       | 74.1       | 74.1              | 74.1       | 74.1       | 74.1       | 74.1         |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND | .0         | .1         | .5        | 19.4       | 4.5        | 25.0<br>8.6       | 14.9       | 29.6       | 78.2       | 258.9        |
| TEMP & WIND<br>GROUND                    | .0<br>-4.4 | 3          | 7.1       | .0<br>-1.3 | .0<br>-3.8 | 8.6<br>.0<br>-2.0 | .0<br>-1.9 | .0<br>-2.3 | .0<br>-2.9 | .0<br>-3.1   |
| TOTAL AWT -19.0                          | -4.4       | 5.8        | -18.0     | -19.8      | -25.1      | -37.7             | -47.0      | -64.4-     | 100.0-     | -100.0       |
| SOURCE : 22<br>CFS - processing          | (exter     | nal) -     | - RTT r   | manv       |            |                   |            |            |            |              |
|                                          |            |            |           | FF         | REQUEN     | CY Hz_            |            |            |            |              |
|                                          | 31.5       | 63         | 125       | 250        | 500        | 1k                | 2k         | 4k         | 8k         | 16k          |
| POWER LEVEL<br>DIRECTIVITY               | 111.0      | 114.0      | 103.0     | 104.0      | 103.0      | 100.0             | 98.0       | 94.0       | 88.0       | .0           |
|                                          | 74.3       | 74.3       | 74.3      | 74.3       | 74.3       | 74.3              | 74.3       | 74.3       | 74.3       | 74.3         |
| BARRIER<br>AIR ABSORPTION                | .0         | .0         | .0        | .0<br>1.7  | .0<br>4.6  | .0<br>8.9<br>.0   | .0<br>15.3 | .0<br>30.3 | .0<br>80.2 | .0<br>266.0  |
| TEMP & WIND                              | .0         | .0<br>-3.5 | .0        | .0<br>15.0 | .0         | .0<br>14.6        | .0         | .0         | .0<br>-2.8 | .0<br>-5.5   |
| TOTAL AWT 18.1                           |            |            |           |            |            |                   |            |            |            |              |
| SOURCE : 23                              |            |            |           |            |            | 2.2               | • •        | -2.3       |            |              |
| CFS - processing                         | (exter     | .nal) -    |           |            |            | -יו ער            |            |            |            |              |
|                                          | 21 5       |            |           |            |            | CY Hz             |            |            |            | 1.61         |
|                                          | 31.5       | 63         | 125       | 250        | 500        | 1k                | 2k         | 4k         | 8k         | 16k          |

| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                                  | 57.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75.0<br>.0                                                                                                | 75.0<br>.0                                                                     | 79.0<br>.0                                                                                                                          | 89.0                                                                                                                                           | 93.0                                                                       | 91.0<br>.0                                                                 | 87.0<br>.0                                                                                                    | 77.0<br>.0                                                                                                       | .0                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| DISTANCE                                                                                                                                                                                                                                    | 73.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73.7                                                                                                      | 73.7                                                                           | 73.7                                                                                                                                | 73.7                                                                                                                                           | 73.7                                                                       | 73.7                                                                       | 73.7                                                                                                          | 73.7                                                                                                             | 73.7                                                    |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                                    | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 0                                                                                                       | . 0                                                                            | .0                                                                                                                                  | .0                                                                                                                                             | . 0                                                                        | . 0                                                                        | .0                                                                                                            | . 0                                                                                                              | .0                                                      |
| AIR ABSORPTION                                                                                                                                                                                                                              | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .1                                                                                                        | .5                                                                             | 1.6                                                                                                                                 | 4.3                                                                                                                                            | 8.3                                                                        | 14.3                                                                       | 28.6                                                                                                          | 75.3                                                                                                             | 248.9                                                   |
| GROUND                                                                                                                                                                                                                                      | -5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.6                                                                                                      | 4.8                                                                            | 15.0                                                                                                                                | 15.0                                                                                                                                           | 14.3                                                                       | 8.1                                                                        | 1.9                                                                                                           | -3.3                                                                                                             | -5.4                                                    |
| momar aum E                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                                                                |                                                                                                                                     |                                                                                                                                                |                                                                            |                                                                            |                                                                                                               |                                                                                                                  |                                                         |
| TOTAL AWT .5                                                                                                                                                                                                                                | -11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.8                                                                                                       | -4.0                                                                           | -11.3                                                                                                                               | -4.0                                                                                                                                           | -3.3                                                                       | -5.1                                                                       | -17.2                                                                                                         | -68.7                                                                                                            | -100.0                                                  |
| SOURCE : 24                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                                                                |                                                                                                                                     |                                                                                                                                                |                                                                            |                                                                            |                                                                                                               |                                                                                                                  |                                                         |
| CFS - processing                                                                                                                                                                                                                            | (exte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rnal) ·                                                                                                   | - dust                                                                         | colle                                                                                                                               | ctor /                                                                                                                                         | ian                                                                        |                                                                            |                                                                                                               |                                                                                                                  |                                                         |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                                                                | FI                                                                                                                                  | REQUEN                                                                                                                                         | CY Hz_                                                                     |                                                                            |                                                                                                               |                                                                                                                  |                                                         |
|                                                                                                                                                                                                                                             | 31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63                                                                                                        | 125                                                                            | 250                                                                                                                                 | 500                                                                                                                                            | 1k                                                                         | 2k                                                                         | 4k                                                                                                            | 8k                                                                                                               | 16k                                                     |
| POWER LEVEL                                                                                                                                                                                                                                 | 100 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 102 0                                                                                                     | 106 0                                                                          | 100 0                                                                                                                               | 100 0                                                                                                                                          | 101 0                                                                      | 04.0                                                                       | 90 0                                                                                                          | 02 0                                                                                                             | 0                                                       |
| DIRECTIVITY                                                                                                                                                                                                                                 | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .0                                                                                                        | .0                                                                             | .0                                                                                                                                  | .0                                                                                                                                             | .0                                                                         | .0                                                                         | .0                                                                                                            | .0                                                                                                               | . 0                                                     |
| DISTANCE                                                                                                                                                                                                                                    | 73.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73 9                                                                                                      | 73 9                                                                           | 73 0                                                                                                                                | 73 9                                                                                                                                           | 73 9                                                                       | 73 9                                                                       | 73 9                                                                                                          | 73 0                                                                                                             | 73 9                                                    |
| BARRIER                                                                                                                                                                                                                                     | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .0                                                                                                        | .0                                                                             | .0                                                                                                                                  | .0                                                                                                                                             | .0                                                                         | .0                                                                         | .0                                                                                                            | .0                                                                                                               | .0                                                      |
| AIR ABSORPTION                                                                                                                                                                                                                              | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .1                                                                                                        | . 5                                                                            | 1.6                                                                                                                                 | 4.4                                                                                                                                            | 8.4                                                                        | 14.5                                                                       | 29.0                                                                                                          | 76.4                                                                                                             | 252.9                                                   |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND                                                                                                                                                                                          | -5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.6                                                                                                      | 4.9                                                                            | 15.0                                                                                                                                | 15.0                                                                                                                                           | 14.4                                                                       | 8.3                                                                        | 2.1                                                                                                           | -3.1                                                                                                             | -5.5                                                    |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                                                                |                                                                                                                                     |                                                                                                                                                |                                                                            |                                                                            |                                                                                                               |                                                                                                                  |                                                         |
| TOTAL AWT 16.3                                                                                                                                                                                                                              | 31.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.6                                                                                                      | 26.8                                                                           | 18.5                                                                                                                                | 14.8                                                                                                                                           | 4.3                                                                        | -2.7                                                                       | -16.0                                                                                                         | -64.2                                                                                                            | -100.0                                                  |
| SOURCE : 25<br>CFS - processing                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rnal).                                                                                                    | - fork                                                                         | 1;f+                                                                                                                                |                                                                                                                                                |                                                                            |                                                                            |                                                                                                               |                                                                                                                  |                                                         |
| CFS - processing                                                                                                                                                                                                                            | (excel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                |                                                                                                                                     |                                                                                                                                                |                                                                            |                                                                            |                                                                                                               |                                                                                                                  |                                                         |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                                                                | FI                                                                                                                                  | REQUEN                                                                                                                                         | CY Hz_                                                                     |                                                                            |                                                                                                               |                                                                                                                  |                                                         |
|                                                                                                                                                                                                                                             | 31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63                                                                                                        | 125                                                                            | 250                                                                                                                                 | 500                                                                                                                                            | 1k                                                                         | 2k                                                                         | 4k                                                                                                            | 8k                                                                                                               | 16k                                                     |
| POWER LEVEL                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                                                                |                                                                                                                                     |                                                                                                                                                |                                                                            |                                                                            |                                                                                                               |                                                                                                                  |                                                         |
| DIRECTIVITY                                                                                                                                                                                                                                 | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .0                                                                                                        | .0                                                                             | .0                                                                                                                                  | .0                                                                                                                                             | .0                                                                         | .0                                                                         | .0                                                                                                            | .0                                                                                                               | .0                                                      |
| DISTANCE                                                                                                                                                                                                                                    | 73.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73.9                                                                                                      | 73.9                                                                           | 73.9                                                                                                                                | 73.9                                                                                                                                           | 73.9                                                                       | 73.9                                                                       | 73.9                                                                                                          | 73.9                                                                                                             | 73.9                                                    |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                                    | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .0                                                                                                        | . 0                                                                            | .0                                                                                                                                  | .0                                                                                                                                             | .0                                                                         | .0                                                                         | .0                                                                                                            | .0                                                                                                               | .0                                                      |
| AIR ABSORPTION                                                                                                                                                                                                                              | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .1                                                                                                        | .5                                                                             | 1.6                                                                                                                                 | 4.4                                                                                                                                            | 8.4                                                                        | 14.6                                                                       | 29.0                                                                                                          | 76.6                                                                                                             | 253.4                                                   |
| GROUND                                                                                                                                                                                                                                      | -5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.6                                                                                                      | 4.9                                                                            | 15.0                                                                                                                                | 15.0                                                                                                                                           | 14.4                                                                       | 8.4                                                                        | 2.2                                                                                                           | -3.1                                                                                                             | -5.5                                                    |
| TOTAL AWT 8.2                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                                                                |                                                                                                                                     |                                                                                                                                                |                                                                            |                                                                            |                                                                                                               |                                                                                                                  |                                                         |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                                                                |                                                                                                                                     |                                                                                                                                                |                                                                            |                                                                            |                                                                                                               |                                                                                                                  |                                                         |
| COLLDOE . 36                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                                                                |                                                                                                                                     |                                                                                                                                                |                                                                            |                                                                            |                                                                                                               |                                                                                                                  |                                                         |
| SOURCE : 26<br>CFS - processing                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rnal) ·                                                                                                   | - aggr                                                                         | egate 1                                                                                                                             | unload                                                                                                                                         |                                                                            |                                                                            |                                                                                                               |                                                                                                                  |                                                         |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rnal) ·                                                                                                   |                                                                                |                                                                                                                                     |                                                                                                                                                |                                                                            |                                                                            |                                                                                                               |                                                                                                                  |                                                         |
|                                                                                                                                                                                                                                             | (exter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                | FI                                                                                                                                  | REQUEN                                                                                                                                         | CY Hz_                                                                     |                                                                            |                                                                                                               |                                                                                                                  |                                                         |
|                                                                                                                                                                                                                                             | (exter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                |                                                                                                                                     | REQUEN                                                                                                                                         | CY Hz_                                                                     |                                                                            | 4k                                                                                                            | 8k                                                                                                               |                                                         |
| CFS - processing                                                                                                                                                                                                                            | 31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63<br>111.0                                                                                               | 125<br>102.0                                                                   | FI<br>250<br>100.0                                                                                                                  | 500<br>500                                                                                                                                     | CY Hz_<br>1k<br>104.0                                                      | 2k<br>101.0                                                                | 97.0                                                                                                          | 105.0                                                                                                            | .0                                                      |
| CFS - processing                                                                                                                                                                                                                            | 31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63<br>111.0                                                                                               | 125<br>102.0                                                                   | FI                                                                                                                                  | 500<br>500                                                                                                                                     | CY Hz_<br>1k<br>104.0                                                      | 2k<br>101.0                                                                | 97.0                                                                                                          | 105.0                                                                                                            | .0                                                      |
| CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE                                                                                                                                                                                         | 31.5<br>110.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63<br>111.0<br>.0                                                                                         | 125<br>102.0<br>.0<br>73.8                                                     | 250<br>100.0<br>.0                                                                                                                  | 500<br>101.0<br>.0                                                                                                                             | 1k 104.0 .0 73.8                                                           | 2k<br>101.0<br>.0<br>73.8                                                  | 97.0<br>.0<br>73.8                                                                                            | 105.0<br>.0<br>73.8                                                                                              | .0<br>.0                                                |
| CFS - processing  POWER LEVEL  DIRECTIVITY  DISTANCE  BAPPIEP                                                                                                                                                                               | 31.5<br>110.0<br>.0<br>73.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63<br>111.0<br>.0                                                                                         | 125<br>102.0<br>.0                                                             | 250<br>100.0<br>.0                                                                                                                  | 500<br>101.0<br>.0                                                                                                                             | 1k 104.0 .0 73.8                                                           | 2k<br>101.0<br>.0                                                          | 97.0<br>.0<br>73.8                                                                                            | 105.0<br>.0                                                                                                      | .0<br>.0<br>73.8                                        |
| CFS - processing  POWER LEVEL  DIRECTIVITY  DISTANCE  BAPPIEP                                                                                                                                                                               | 31.5<br>110.0<br>.0<br>73.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63<br>111.0<br>.0                                                                                         | 125<br>102.0<br>.0                                                             | 250<br>100.0<br>.0                                                                                                                  | 500<br>101.0<br>.0                                                                                                                             | 1k 104.0 .0 73.8                                                           | 2k<br>101.0<br>.0                                                          | 97.0<br>.0<br>73.8                                                                                            | 105.0<br>.0                                                                                                      | .0<br>.0<br>73.8                                        |
| CFS - processing  POWER LEVEL DIRECTIVITY DISTANCE                                                                                                                                                                                          | 31.5<br>110.0<br>.0<br>73.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63<br>111.0<br>.0                                                                                         | 125<br>102.0<br>.0                                                             | 250<br>100.0<br>.0                                                                                                                  | 500<br>101.0<br>.0                                                                                                                             | 1k 104.0 .0 73.8                                                           | 2k<br>101.0<br>.0                                                          | 97.0<br>.0<br>73.8                                                                                            | 105.0<br>.0                                                                                                      | .0<br>.0<br>73.8                                        |
| CFS - processing  POWER LEVEL  DIRECTIVITY  DISTANCE  BARRIER                                                                                                                                                                               | 73.8<br>.0<br>.0<br>-5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 63<br>111.0<br>.0<br>73.8<br>.0<br>.1<br>.0<br>-3.6                                                       | 125<br>102.0<br>.0<br>73.8<br>.0<br>.5<br>.0<br>4.8                            | 73.8<br>.0<br>1.6<br>.0                                                                                                             | 73.8<br>0 4.3<br>.0                                                                                                                            | 1k 104.0 0 73.8 0 8.3 0 14.2                                               | 2k 101.0 .0 73.8 .0 14.4 .0 7.9                                            | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0                                                                        | 105.0<br>.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4                                                                  | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4           |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 17.0                                                                                                                                                   | 31.5<br>110.0<br>.0<br>73.8<br>.0<br>.0<br>.0<br>-5.7<br>41.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63<br>111.0<br>.0<br>73.8<br>.0<br>.1<br>.0<br>-3.6                                                       | 125<br>102.0<br>.0<br>73.8<br>.0<br>.5<br>.0<br>4.8                            | 73.8<br>.0<br>1.6<br>.0                                                                                                             | 73.8<br>0 4.3<br>.0                                                                                                                            | 1k 104.0 0 73.8 0 8.3 0 14.2                                               | 2k 101.0 .0 73.8 .0 14.4 .0 7.9                                            | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0                                                                        | 105.0<br>.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4                                                                  | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4           |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                                                                                  | 31.5<br>110.0<br>.0<br>73.8<br>.0<br>.0<br>.0<br>-5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63<br>111.0<br>.0<br>73.8<br>.0<br>.1<br>.0<br>-3.6                                                       | 125<br>102.0<br>.0<br>73.8<br>.0<br>.5<br>.0<br>4.8                            | 73.8<br>0.0<br>1.6<br>0.0<br>15.0                                                                                                   | 500<br>101.0<br>.0<br>73.8<br>.0<br>4.3<br>.0<br>15.0                                                                                          | 1k 104.0 0 73.8 0 8.3 0 14.2                                               | 2k 101.0 .0 73.8 .0 14.4 .0 7.9                                            | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0                                                                        | 105.0<br>.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4                                                                  | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4           |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 17.0 SOURCE: 27                                                                                                                                        | 31.5<br>110.0<br>.0<br>73.8<br>.0<br>.0<br>.0<br>-5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63 111.0 .0 73.8 .0 .1 .0 -3.6 40.7                                                                       | 125 102.0 .0 73.8 .0 .5 .0 4.8 23.0                                            | 73.8 .0 1.6 .0 15.0 9.6 vent                                                                                                        | 73.8<br>.0<br>4.3<br>.0<br>7.9                                                                                                                 | 1k 104.0 .0 73.8 .0 8.3 .0 14.2                                            | 2k 101.0 .0 73.8 .0 14.4 .0 7.9                                            | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0<br>1.8                                                                 | 105.0<br>.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4                                                                  | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4           |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 17.0 SOURCE: 27                                                                                                                                        | 31.5<br>110.0<br>.0<br>73.8<br>.0<br>.0<br>.0<br>-5.7<br>41.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63 111.0 .0 73.8 .0 .1 .0 -3.6 40.7                                                                       | 125<br>102.0<br>.0<br>73.8<br>.0<br>.5<br>.0<br>4.8<br>23.0                    | 73.8<br>.0<br>1.66<br>.0<br>15.0<br>9.6                                                                                             | 73.8<br>0.15.0<br>7.9                                                                                                                          | 1k 104.0 .0 73.8 .0 8.3 .0 14.2                                            | 2k 101.0 .0 73.8 .0 14.4 .0 7.9                                            | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0<br>1.8                                                                 | 105.0<br>.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4                                                                  | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4           |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 17.0 SOURCE: 27                                                                                                                                        | 31.5<br>110.0<br>.0<br>73.8<br>.0<br>.0<br>.0<br>.0<br>-5.7<br>41.9<br>(extendal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63 111.0 .0 73.8 .0 .1 .0 -3.6 40.7                                                                       | 125 102.0 .0 73.8 .0 .5 .0 4.8 23.0 - silo                                     | 73.8 .0 1.6 .0 15.0 9.6 vent 1                                                                                                      | 73.8<br>.0<br>4.3<br>.0<br>15.0<br>7.9                                                                                                         | 1k 104.0 .0 73.8 .0 8.3 .0 14.2 7.8                                        | 2k 101.0 .0 73.8 .0 14.4 .0 7.9 5.0                                        | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0<br>1.8<br>-7.2                                                         | 105.0<br>.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4<br>-40.9                                                         | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4           |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 17.0  SOURCE: 27 CFS - processing                                                                                                                    | 31.5<br>110.0<br>.0<br>73.8<br>.0<br>.0<br>.0<br>-5.7<br>41.9<br>(exten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63 111.0 .0 73.8 .0 .1 .0 -3.6 40.7 cnal)                                                                 | 125 102.0 .0 73.8 .0 .5 .0 4.8 23.0 - silo                                     | 73.8 .0 1.6 .0 15.0 9.6 vent : 250 89.0                                                                                             | 73.8<br>0.0<br>15.0<br>73.8<br>0.0<br>73.8<br>7.9<br>15.0<br>7.9                                                                               | 1k 104.0 .0 73.8 .0 8.3 .0 14.2 7.8 CY Hz 1k 81.0                          | 2k 101.0 .0 73.8 .0 14.4 .0 7.9 5.0                                        | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0<br>1.8<br>-7.2                                                         | 105.0<br>.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4<br>-40.9                                                         | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4<br>-100.0 |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 17.0 SOURCE: 27 CFS - processing                                                                                                                       | 31.5<br>110.0<br>.0<br>73.8<br>.0<br>.0<br>.0<br>-5.7<br>41.9<br>(external control of the control o | 63 111.0 .0 73.8 .0 .1 .0 -3.6 40.7 cnal)                                                                 | 125 102.0 0 73.8 0 0 5 0 4.8 23.0 - silo 125 86.0 0                            | 73.8 .0 1.6 .0 15.0 9.6 vent : 250 89.0 .0                                                                                          | 73.8<br>00<br>101.0<br>73.8<br>0<br>4.3<br>0<br>15.0<br>7.9                                                                                    | 1k 104.0 0 73.8 0 8.3 0 14.2 7.8  CY Hz 1k 81.0 0                          | 2k 101.0 .0 73.8 .0 14.4 .0 7.9 5.0                                        | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0<br>1.8<br>-7.2                                                         | 105.0<br>.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4<br>-40.9                                                         | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4<br>-100.0 |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 17.0 SOURCE: 27 CFS - processing  POWER LEVEL DIRECTIVITY DISTANCE                                                                                     | 31.5<br>110.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-5.7<br>41.9<br>(exter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63 111.0 .0 73.8 .0 .1 .0 .3.6 40.7 cnal) 63 82.0 .0 73.8                                                 | 125 102.0 .0 73.8 .0 .5 .0 4.8 23.0 - silo 125 86.0 .0 73.8                    | F1 250 F1 250 F1 250 F1 250 F1 250 F1 3.8                                                                                           | 73.8<br>.0<br>4.3<br>.0<br>15.0<br>7.9<br>1<br>REQUENC<br>500<br>88.0<br>.0                                                                    | 1k 104.0 .0 73.8 .0 8.3 .0 14.2 7.8 CY Hz 1k 81.0 .0 73.8                  | 2k 101.0 .0 73.8 .0 14.4 .0 7.9 5.0                                        | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0<br>1.8<br>-7.2<br>4k<br>69.0<br>.0                                     | 105.0<br>.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4<br>-40.9                                                         | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4<br>-100.0 |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 17.0  SOURCE: 27 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                         | 31.5<br>110.0<br>.0<br>73.8<br>.0<br>.0<br>.0<br>-5.7<br>41.9<br>(external state of the  | 63 111.0 .0 73.8 .0 .0 .1 .0 -3.6 40.7  63 82.0 .0 73.8 .0 73.8                                           | 125 102.0 0 73.8 0 0 55 0 4.8 23.0 - silo 125 86.0 0 73.8 0 73.8               | FI 250 100.0 .0 1.66 .0 15.0 9.6 vent : FI 250 89.0 .0 73.8 .0 .0 73.8 .0 .0                                                        | 73.8<br>0.0<br>101.0<br>0.0<br>73.8<br>0.0<br>15.0<br>7.9<br>1<br>1<br>REQUENC<br>500<br>88.0<br>0.0<br>73.8                                   | 1k 104.0 0 73.8 0 8.3 0 14.2 7.8  EY Hz 1k 81.0 0 73.8 0 73.8              | 2k 101.0 .0 73.8 .0 14.4 .0 7.9 5.0  2k 74.0 .0 73.8 .0                    | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0<br>1.8<br>-7.2<br>4k<br>69.0<br>.0                                     | 105.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4<br>-40.9                                                               | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4<br>-100.0 |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 17.0  SOURCE: 27 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                         | 31.5<br>110.0<br>.0<br>73.8<br>.0<br>.0<br>.0<br>-5.7<br>41.9<br>(external state of the  | 63 111.0 .0 73.8 .0 .0 .1 .0 -3.6 40.7  63 82.0 .0 73.8 .0 73.8                                           | 125 102.0 0 73.8 0 0 55 0 4.8 23.0 - silo 125 86.0 0 73.8 0 73.8               | FI 250 100.0 .0 1.66 .0 15.0 9.6 vent : FI 250 89.0 .0 73.8 .0 .0 73.8 .0 .0                                                        | 73.8<br>0.0<br>101.0<br>0.0<br>73.8<br>0.0<br>15.0<br>7.9<br>1<br>1<br>REQUENC<br>500<br>88.0<br>0.0<br>73.8                                   | 1k 104.0 0 73.8 0 8.3 0 14.2 7.8  EY Hz 1k 81.0 0 73.8 0 73.8              | 2k 101.0 .0 73.8 .0 14.4 .0 7.9 5.0  2k 74.0 .0 73.8 .0                    | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0<br>1.8<br>-7.2<br>4k<br>69.0<br>.0                                     | 105.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4<br>-40.9                                                               | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4<br>-100.0 |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 17.0 SOURCE: 27 CFS - processing  POWER LEVEL DIRECTIVITY DISTANCE                                                                                     | 31.5<br>110.0<br>.0<br>73.8<br>.0<br>.0<br>.0<br>-5.7<br>41.9<br>(external state of the  | 63 111.0 .0 73.8 .0 .0 .1 .0 -3.6 40.7  63 82.0 .0 73.8 .0 73.8                                           | 125 102.0 0 73.8 0 0 55 0 4.8 23.0 - silo 125 86.0 0 73.8 0 73.8               | FI 250 100.0 .0 1.66 .0 15.0 9.6 vent : FI 250 89.0 .0 73.8 .0 .0 73.8 .0 .0                                                        | 73.8<br>0.0<br>101.0<br>0.0<br>73.8<br>0.0<br>15.0<br>7.9<br>1<br>1<br>REQUENC<br>500<br>88.0<br>0.0<br>73.8                                   | 1k 104.0 0 73.8 0 8.3 0 14.2 7.8  EY Hz 1k 81.0 0 73.8 0 73.8              | 2k 101.0 .0 73.8 .0 14.4 .0 7.9 5.0  2k 74.0 .0 73.8 .0                    | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0<br>1.8<br>-7.2<br>4k<br>69.0<br>.0                                     | 105.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4<br>-40.9                                                               | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4<br>-100.0 |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 17.0  SOURCE: 27 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                         | 31.5<br>110.0<br>.0<br>73.8<br>.0<br>.0<br>.0<br>-5.7<br>41.9<br>(exter<br>31.5<br>84.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63 111.0 .0 73.8 .0 .0 .1 .0 -3.6 40.7 63 82.0 .0 73.8 .0 .0 .1 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 | 125 102.0 0 73.8 0 0 5 0 4.8 23.0 - silo  73.8 0 73.8 0 6.9                    | FI 250 100.0 .0 1.66 .0 15.0 P.6   Vent : FI 250 89.0 .0 1.66 .0 15.0 P.6    73.8 .0 .0 9.5 P.6 | 73.8<br>0.0<br>101.0<br>0.0<br>73.8<br>0.0<br>15.0<br>7.9<br>1<br>1<br>REQUENC<br>88.0<br>0.0<br>73.8<br>0.0<br>4.3<br>0.0                     | 1k 104.0 0 73.8 8.3 0 14.2 7.8  CY Hz 1k 81.0 0 73.8 81.0 0 8.4 0 -4.4     | 2k 101.0 .0 73.8 .0 14.4 .0 7.9 5.0  2k 74.0 .0 73.8 .0 14.4 .0 -2.6       | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0<br>1.8<br>-7.2<br>4k<br>69.0<br>.0<br>73.8<br>.0<br>28.8<br>.0         | 105.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4<br>-40.9<br>8k<br>63.0<br>.0<br>76.0<br>.0<br>-2.8                     | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4<br>-100.0 |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 17.0  SOURCE: 27  CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 8.1  SOURCE: 28           | 31.5 110.0 .0 73.8 .0 .0 .0 -5.7 41.9 (exter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63 111.0 .0 73.8 .0 .1 .0 -3.6 40.7 cnal) 63 82.0 .0 73.8 .0 .0 -1.9                                      | 125 102.0 .0 73.8 .0 .5 .0 4.8 23.0 - silo  125 86.0 .0 73.8 .0 .0 6.9 4.9     | FI 250 100.0 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6                                                                                | 73.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                    | 1k 104.0 0 73.8 8.3 0 14.2 7.8  CY Hz 1k 81.0 0 73.8 81.0 0 8.4 0 -4.4     | 2k 101.0 .0 73.8 .0 14.4 .0 7.9 5.0  2k 74.0 .0 73.8 .0 14.4 .0 -2.6       | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0<br>1.8<br>-7.2<br>4k<br>69.0<br>.0<br>73.8<br>.0<br>28.8<br>.0         | 105.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4<br>-40.9<br>8k<br>63.0<br>.0<br>76.0<br>.0<br>-2.8                     | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4<br>-100.0 |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 17.0 SOURCE: 27 CFS - processing  POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 8.1                             | 31.5 110.0 0 0 73.8 0 0 0 -5.7 41.9 (externormal state of the state of                   | 63 111.0 .0 73.8 .0 .1 .0 -3.6 40.7 cnal) 63 82.0 .0 73.8 .0 .0 -1.9                                      | 125 102.0 .0 73.8 .0 .5 .0 4.8 23.0 - silo  125 86.0 .0 73.8 .0 .0 6.9 4.9     | FI 250                                                                                                                              | 73.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                    | 1k 104.0 0 73.8 8.3 0 14.2 7.8  CY Hz 1k 81.0 0 73.8 81.0 0 8.4 0 -4.4     | 2k 101.0 .0 73.8 .0 14.4 .0 7.9 5.0  2k 74.0 .0 73.8 .0 14.4 .0 -2.6       | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0<br>1.8<br>-7.2<br>4k<br>69.0<br>.0<br>73.8<br>.0<br>28.8<br>.0         | 105.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4<br>-40.9<br>8k<br>63.0<br>.0<br>76.0<br>.0<br>-2.8                     | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4<br>-100.0 |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 17.0  SOURCE: 27  CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 8.1  SOURCE: 28           | 31.5 110.0 0 0 73.8 0 0 0 -5.7 41.9 (externormal state of the state of                   | 63 111.0                                                                                                  | 125 102.0 0 73.8 0 0 55 0 4.8 23.0 - silo 73.8 0 0 5 0 4.9 - silo              | FI 250                                                                                                                              | 73.8<br>0.0<br>101.0<br>73.8<br>0.0<br>4.3<br>0.0<br>15.0<br>7.9<br>1<br>1<br>88.0<br>0.0<br>73.8<br>0.0<br>15.0<br>88.0<br>0.0<br>9.0<br>88.9 | 1k 104.0 0 73.8 0 8.0 14.2 7.8 2Y Hz 1k 81.0 0 73.8 0 8.4 0 -4.4 3.2       | 2k 101.0 .0 73.8 .0 14.4 .0 7.9 5.0  2k 74.0 .0 14.4 .0 -2.6               | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0<br>1.8<br>-7.2<br>4k<br>69.0<br>.0<br>73.8<br>.0<br>28.8<br>.0<br>-2.6 | 105.0<br>.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4<br>-40.9                                                         | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4<br>-100.0 |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 17.0  SOURCE: 27  CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 8.1  SOURCE: 28           | 31.5 110.0 .0 73.8 .0 .0 .0 -5.7 41.9 (exter  31.5 84.0 .0 .0 .0 .0 -5.0  15.1 (exter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63 111.0 .0 73.8 .0 0 .1 .0 -3.6 40.7  63 82.0 .0 73.8 .0 0 -1.9 9.9 cmal)                                | 125 102.0 0 73.8 0 0 5 0 4.8 23.0 - silo  73.8 0 6.9 4.9                       | FI 250 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                        | 73.8<br>0.0<br>101.0<br>0.0<br>73.8<br>0.0<br>15.0<br>7.9<br>1<br>1<br>88.0<br>0.0<br>73.8<br>0.0<br>4.3<br>0.0<br>9.8<br>9.9                  | 1k 104.0 0 73.8 0 8.3 0 14.2 7.8  EY Hz  1k 81.0 0 73.8 0 0 8.4 0 -4.4 3.2 | 2k 101.0 .0 73.8 .0 14.4 .0 7.9 5.0  2k 74.0 .0 73.8 .0 14.4 .0 -2.6 -11.7 | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0<br>1.8<br>-7.2<br>4k<br>69.0<br>.0<br>73.8<br>.0<br>28.8<br>.0<br>-2.6 | 105.0<br>.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4<br>-40.9<br>8k<br>63.0<br>.0<br>76.0<br>.0<br>-2.8               | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4<br>-100.0 |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 17.0 SOURCE: 27 CFS - processing  POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 8.1 SOURCE: 28 CFS - processing | 31.5 110.0 0.0 73.8 0.0 0.0 -5.7 41.9 (externormal state of the state                    | 63 111.0 0 73.8 0 11.0 0 73.8 1.0 0 -3.6 40.7  63 82.0 0 73.8 0 -1.9 9.9  cnal)                           | 125 102.0 .0 73.8 .0 .5 .0 4.8 23.0 - silo  125 86.0 .0 73.8 .0 6.9 4.9 - silo | FI 250 FI 250 FI 250 FI 250 FI 250 FI 250                                                                                           | 73.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                    | 1k 104.0 .0 .0 .0 .0 .0 .0 .0 .14.2                                        | 2k 101.0 .0 73.8 .0 14.4 .0 7.9 5.0  2k 74.0 .0 73.8 .0 14.4 .0 -2.6 -11.7 | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0<br>1.8<br>-7.2<br>4k<br>69.0<br>.0<br>73.8<br>.0<br>28.8<br>.0<br>-2.6 | 105.0<br>.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4<br>-40.9<br>8k<br>63.0<br>.0<br>73.8<br>.0<br>76.0<br>.0<br>-2.8 | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4<br>-100.0 |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 17.0  SOURCE: 27  CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 8.1  SOURCE: 28           | 31.5 110.0 0.0 73.8 0.0 0.0 -5.7 41.9 (externormal state of the state                    | 63 111.0 .0 73.8 .0 .1 .0 -3.6 40.7 cnal) 63 82.0 .0 73.8 .0 .1 .0 -1.9 9.9 cnal) 63 82.0                 | 125 102.0                                                                      | FI 250 FI 250 FI 250 FI 250 FI 250 FI 250                                                                                           | 73.8 .0 4.3 .0 15.0 73.8 .0 4.3 .0 .0 9 8.9 2 REQUENCE 500 88.0 .9 8.9 2                                                                       | 1k 104.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .                             | 2k 101.0 .0 73.8 .0 14.4 .0 7.9 5.0  2k 74.0 .0 73.8 .0 14.4 .0 -2.6 -11.7 | 97.0<br>.0<br>73.8<br>.0<br>28.7<br>.0<br>1.8<br>-7.2<br>4k<br>69.0<br>.0<br>73.8<br>.0<br>28.8<br>.0<br>-2.6 | 105.0<br>.0<br>73.8<br>.0<br>75.6<br>.0<br>-3.4<br>-40.9<br>8k<br>63.0<br>.0<br>73.8<br>.0<br>76.0<br>.0<br>-2.8 | .0<br>.0<br>73.8<br>.0<br>249.9<br>.0<br>-5.4<br>-100.0 |

```
DISTANCE
                 73.8 73.8 73.8 73.8 73.8
                                            73.8 73.8 73.8 73.8 73.8
BARRIER
                                   .0
                                        .04.3
AIR ABSORPTION
                  .0
                        .1
                             . 5
                                  1.6
                                              8.4 14.4 28.8 75.9 250.9
                   . 0
                               . 0
TEMP & WIND
                         .0
                                    . 0
                                         . 0
                                               .0
                                                     . 0
                                                           . 0
                                                   -2.6 -2.6
                                   9.5
                                             -4.4
                                                              -2.8
                 -5.0
                     -1.9
                             6.8
                                         . 9
TOTAL AWT 8.1 15.1 10.0
                                              3.3 -11.6 -31.0 -83.9-100.0
                             4.9
                                   4.1
                                         9.0
TOTAL AWT 23.0 45.7 45.6 30.6 21.8 18.2 12.9 8.8 -3.2 -40.4 -88.0 SINGLE POINT CALCULATION ENM CALC MODULE
FILENAMES
 C:\ENM\SOURCES\2118506A\506A-3
 2118506A.GEN
 C:\ENM\MAPS\2118506A\506A
 OUT1 file and RNK1 file
TEMP (deg C)
                 HUMIDITY (%)
WIND SPEED (m/sec) WIND DIR (deg)
TEMP GRAD (deg C/100m)
X= 2719.000 Y= 3953.000 Z= 22.200
SOURCE :
            13
CFS - processing (external) - backhoe
                                    FREOUENCY Hz
                                                               8k 16k
                31.5 63 125 250 500
                                             1k
                                                    2k
                                                         4k
POWER LEVEL
                 95.0 95.0 95.0 95.0 95.0
                                             95.0
                                                  95.0
                        .0
DIRECTIVITY
                  .0
                             .0
                                   .0
                                         . 0
                                              .0
                                                          .0
                                                                      . 0
                            74.7
                                       74.7
                                             74.7
                 74.7 74.7
                                  74.7
                                                   74.7
                      .0
                             .0
                                  .0
1.8
BARRIER
                                          .0
                                                .0
                                        4.8
AIR ABSORPTION
                  . 0
                                              9.3
                                                   15.9
                                                        31.6
                                                              83.6 277.8
                              . 5
TEMP & WIND
                   .0
                              .0
                                    .0
                                         .0
GROUND
                 -5.7 -3.5
                            5.5 15.0 15.0 14.8
                                                    9.4
                                                         3.2
                                                             -2.2 -5.5
TOTAL AWT
           4.8 25.9 23.6 14.3 3.5
                                         .5 -3.7 -5.1 -14.5 -61.1-100.0
SOURCE :
             14
CFS - processing (external) - FEL
                                   ___FREQUENCY Hz
                31.5 63 125 250 500
                                                               8k 16k
                                            1k
                                                    2k
                                                          4k
                 94.0 100.0 100.0 106.0 98.0 101.0 98.0
POWER LEVEL
                                                        92.0
                      .0
                            .0
                                         .0
DIRECTIVITY
                  .0
                                  .0
                                              . 0
                                                                     . 0
                 74.7 74.7 74.7 74.7
                                       74.7
                                             74.7
                                                   74.7
                                                         74.7
                      .0
                             .0
                                  1.8
                                        .0
BARRIER
                                               .0
                  . 0
                                                   16.0
                                              9.3
ATR ABSORPTION
                                                        31 7
                                                              83 9 278 7
                              . 5
TEMP & WIND
                        . 0
                              . 0
                   .0
                                    .0
                                         .0
GROUND
                 -5.7 -3.5
                            5.5 15.0 15.0 14.8
                                                    9.6
                                                         3.3 -2.2 -5.5
TOTAL AWT 10.5 24.9 28.6 19.3 14.5
                                        3.5
                                              2.2 -2.3 -17.7 -70.5-100.0
SOURCE :
             15
CFS - curing (intenral) - FEL
                                   ___FREQUENCY Hz___
                 31.5 63 125 250 500
                                                               8k 16k
                                             1k
POWER LEVEL
                 84.0 90.0
                                 96.0 88.0
                                                  88.0
                            90.0
                                             91.0
                                                        82.0
                                                              76.0
DIRECTIVITY
                        .0
                                         .0
DISTANCE
                 75.0
                     75.0
                            75.0
                                 75.0
                                                              75.0 75.0
                                       75.0
                                             75.0
                                                   75.0
                                                        75.0
                      .0
BARRIER
                             . 5
AIR ABSORPTION
                  .0
                                  1.8
                                        4.9
                                              9.6
                                                   16.4 32.5
                                                              86.3 286.8
TEMP & WIND
                         .0
                               . 0
                   . 0
                                    . 0
                                          . 0
GROUND
                 -5.7 -3.4
                             5.7 15.0 15.0 14.9
                                                    9.9
                                                         3.7
                                                              -1.9 -5.4
                                  4.2 -6.9 -8.4 -13.3 -29.1 -83.4-100.0
TOTAL AWT
             .1 14.6 18.3
                            8.8
SOURCE :
             16
CFS - curing (intenral) - conveyor belt / motor 1
```

\_\_FREQUENCY Hz\_

|                                                                                                                                                                                                                                                                       | 31.5                                                                                            | 63                                                                                              | 125                                                                                                                                 | 250                                                                                                                  | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1k                                                                         | 2k                                                                               | 4k                                                                                 | 8k                                                               | 16k                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                                                            | 77.0                                                                                            | 93.0                                                                                            | 80.0                                                                                                                                | 74.0                                                                                                                 | 72.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68.0                                                                       | 65.0                                                                             |                                                                                    | 58.0                                                             | .0                                                                    |
| DISTANCE                                                                                                                                                                                                                                                              | 75.1                                                                                            |                                                                                                 |                                                                                                                                     | 75.1                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                  | 75.1                                                                               |                                                                  | 75.1                                                                  |
| BARRIER<br>AIR ABSORPTION                                                                                                                                                                                                                                             | . 0                                                                                             | . 0                                                                                             | .0                                                                                                                                  | .0<br>1.9                                                                                                            | .0<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0                                                                         | .0<br>16.7                                                                       | .0<br>32.9                                                                         | .0<br>87.5                                                       | .0                                                                    |
| TEMP & WIND<br>GROUND                                                                                                                                                                                                                                                 | .0<br>-5.7                                                                                      | .0                                                                                              | .0                                                                                                                                  | .0                                                                                                                   | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            |                                                                                  | 32.9<br>.0<br>3.8                                                                  | .0                                                               | .0                                                                    |
| TOTAL AWT -4.7                                                                                                                                                                                                                                                        |                                                                                                 |                                                                                                 |                                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                  |                                                                                    |                                                                  |                                                                       |
| SOURCE : 17                                                                                                                                                                                                                                                           | 7.3                                                                                             | 21.1                                                                                            | 1.1                                                                                                                                 | 10.0                                                                                                                 | 23.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31.7                                                                       | 30.0                                                                             | 40.0                                                                               | 100.0                                                            | 100.0                                                                 |
| CFS - curing (int                                                                                                                                                                                                                                                     | enral)                                                                                          | - con                                                                                           | veyor                                                                                                                               | belt /                                                                                                               | motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                          |                                                                                  |                                                                                    |                                                                  |                                                                       |
|                                                                                                                                                                                                                                                                       |                                                                                                 |                                                                                                 |                                                                                                                                     | FR                                                                                                                   | EQUENC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y Hz_                                                                      |                                                                                  |                                                                                    |                                                                  |                                                                       |
|                                                                                                                                                                                                                                                                       | 31.5                                                                                            | 63                                                                                              | 125                                                                                                                                 | 250                                                                                                                  | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1k                                                                         | 2k                                                                               | 4k                                                                                 | 8k                                                               | 16k                                                                   |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                                                            | 77.0                                                                                            | 93.0                                                                                            | 80.0                                                                                                                                | 74.0                                                                                                                 | 72.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68.0                                                                       | 65.0<br>.0                                                                       | 62.0                                                                               | 58.0                                                             | .0                                                                    |
| DISTANCE<br>BARRIER                                                                                                                                                                                                                                                   | 0                                                                                               | 0                                                                                               | 0                                                                                                                                   |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                  | 75.2<br>.0                                                                         |                                                                  |                                                                       |
| AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                                                                         | .0                                                                                              | .1                                                                                              | .6                                                                                                                                  | 1.9                                                                                                                  | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.8                                                                        | 16.9                                                                             | 33.3                                                                               | 88.6                                                             | 294.2                                                                 |
| TEMP & WIND<br>GROUND                                                                                                                                                                                                                                                 | .0<br>-5.7                                                                                      | .0<br>-3.4                                                                                      | .0<br>5.9                                                                                                                           |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                  | .0<br>4.0                                                                          |                                                                  |                                                                       |
| TOTAL AWT -4.9                                                                                                                                                                                                                                                        | 7.4                                                                                             | 21.0                                                                                            | -1.7                                                                                                                                | -18.1                                                                                                                | -23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -32.0                                                                      | -37.4                                                                            | -50.6-                                                                             | 100.0-                                                           | -100.0                                                                |
| SOURCE : 18<br>CFS - curing (int                                                                                                                                                                                                                                      | enral)                                                                                          | - con                                                                                           | veyor                                                                                                                               | belt /                                                                                                               | motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                          |                                                                                  |                                                                                    |                                                                  |                                                                       |
|                                                                                                                                                                                                                                                                       |                                                                                                 |                                                                                                 |                                                                                                                                     | FR                                                                                                                   | EQUENC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y Hz_                                                                      |                                                                                  |                                                                                    |                                                                  |                                                                       |
|                                                                                                                                                                                                                                                                       | 31.5                                                                                            | 63                                                                                              | 125                                                                                                                                 | 250                                                                                                                  | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1k                                                                         | 2k                                                                               | 4k                                                                                 | 8k                                                               | 16k                                                                   |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                                                            |                                                                                                 | 93.0                                                                                            |                                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                  | 62.0                                                                               |                                                                  |                                                                       |
|                                                                                                                                                                                                                                                                       |                                                                                                 |                                                                                                 |                                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                  |                                                                                    |                                                                  |                                                                       |
|                                                                                                                                                                                                                                                                       |                                                                                                 |                                                                                                 |                                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                  | 75.3<br>25.0                                                                       |                                                                  |                                                                       |
| AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                                                                         |                                                                                                 |                                                                                                 |                                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                  | 33.6<br>.0<br>-2.0                                                                 |                                                                  |                                                                       |
| GROUND                                                                                                                                                                                                                                                                |                                                                                                 |                                                                                                 |                                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                  |                                                                                    |                                                                  |                                                                       |
|                                                                                                                                                                                                                                                                       |                                                                                                 |                                                                                                 |                                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                  |                                                                                    |                                                                  |                                                                       |
| TOTAL AWT -22.1                                                                                                                                                                                                                                                       | -6.5                                                                                            | 2.8                                                                                             | -22.7                                                                                                                               | -24.7                                                                                                                | -27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -41.9                                                                      | -49.0                                                                            | -69.9-                                                                             | 100.0-                                                           | -100.0                                                                |
| TOTAL AWT -22.1  SOURCE : 19  CFS - curing (int                                                                                                                                                                                                                       |                                                                                                 |                                                                                                 |                                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | -49.0                                                                            | -69.9-                                                                             | 100.0-                                                           | -100.0                                                                |
| SOURCE : 19                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                 | veyor                                                                                                                               |                                                                                                                      | motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 4                                                                        |                                                                                  |                                                                                    | 100.0-                                                           | -100.0                                                                |
| SOURCE : 19                                                                                                                                                                                                                                                           | enral)                                                                                          | - con                                                                                           | veyor                                                                                                                               | belt /                                                                                                               | motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4<br>CY Hz                                                                 |                                                                                  |                                                                                    |                                                                  |                                                                       |
| SOURCE : 19<br>CFS - curing (int                                                                                                                                                                                                                                      | 31.5                                                                                            | - con                                                                                           | 125                                                                                                                                 | belt /<br>FF<br>250                                                                                                  | motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14 Y Hz                                                                    | 2k                                                                               | 4k                                                                                 | 8k                                                               | 16k                                                                   |
| SOURCE : 19 CFS - curing (int  POWER LEVEL DIRECTIVITY DISTANCE                                                                                                                                                                                                       | 31.5<br>77.0<br>.0                                                                              | - con 63 93.0 .0                                                                                | 125<br>80.0<br>.0                                                                                                                   | belt / FR 250 74.0 .0 75.3                                                                                           | motor<br>EEQUENC<br>500<br>72.0<br>.0<br>75.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1k<br>68.0<br>.0                                                           | 2k<br>65.0<br>.0                                                                 | 4k<br>62.0<br>.0                                                                   | 8k<br>58.0<br>.0                                                 | 16k<br>.0<br>.0                                                       |
| SOURCE: 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                                                                                                                                               | 31.5<br>77.0<br>.0                                                                              | - con 63 93.0 .0 75.3                                                                           | 125<br>80.0<br>.0                                                                                                                   | belt /FF 250 74.0 .0 75.3 21.7                                                                                       | motor<br>500<br>72.0<br>.0<br>75.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1k<br>68.0<br>.0                                                           | 2k<br>65.0<br>.0<br>75.3                                                         | 4k<br>62.0<br>.0<br>75.3                                                           | 8k<br>58.0<br>.0                                                 | 16k<br>.0<br>.0                                                       |
| SOURCE: 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                                                                                                                                               | 31.5<br>77.0<br>.0                                                                              | - con 63 93.0 .0 75.3                                                                           | 125<br>80.0<br>.0                                                                                                                   | belt /FF 250 74.0 .0 75.3 21.7                                                                                       | motor<br>500<br>72.0<br>.0<br>75.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1k<br>68.0<br>.0                                                           | 2k<br>65.0<br>.0<br>75.3                                                         | 4k<br>62.0<br>.0<br>75.3                                                           | 8k<br>58.0<br>.0                                                 | 16k<br>.0<br>.0                                                       |
| SOURCE : 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                                                                            | 31.5<br>77.0<br>.0<br>75.3<br>12.8<br>.0<br>.0                                                  | - con 63 93.0 .0 75.3 15.7 .1 .04                                                               | 125<br>80.0<br>.0<br>75.3<br>18.7<br>.6<br>.0                                                                                       | FR 250 74.0 .0 75.3 21.7 1.9 .0 .9                                                                                   | 72.0<br>.0<br>75.3<br>24.7<br>5.1<br>.0<br>-4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1k 68.0 .0 75.3 25.0 9.9 .05                                               | 2k<br>65.0<br>.0<br>75.3<br>25.0<br>17.0<br>.0                                   | 4k<br>62.0<br>.0<br>75.3<br>25.0<br>33.6<br>.0                                     | 8k<br>58.0<br>.0<br>75.3<br>25.0<br>89.5<br>.0                   | 16k<br>.0<br>.0<br>75.3<br>25.0<br>296.6<br>.0<br>-4.3                |
| SOURCE: 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                                                                                                                                               | 31.5<br>77.0<br>.0<br>75.3<br>12.8<br>.0<br>.0                                                  | - con 63 93.0 .0 75.3 15.7 .1 .04                                                               | 125<br>80.0<br>.0<br>75.3<br>18.7<br>.6<br>.0                                                                                       | FR 250 74.0 .0 75.3 21.7 1.9 .0 .9                                                                                   | 72.0<br>.0<br>75.3<br>24.7<br>5.1<br>.0<br>-4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1k 68.0 .0 75.3 25.0 9.9 .05                                               | 2k<br>65.0<br>.0<br>75.3<br>25.0<br>17.0<br>.0                                   | 4k<br>62.0<br>.0<br>75.3<br>25.0<br>33.6<br>.0                                     | 8k<br>58.0<br>.0<br>75.3<br>25.0<br>89.5<br>.0                   | 16k<br>.0<br>.0<br>75.3<br>25.0<br>296.6<br>.0<br>-4.3                |
| SOURCE : 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -22.8                                                                                                                                           | 31.5<br>77.0<br>.0<br>75.3<br>12.8<br>.0<br>.0<br>-4.5                                          | - con 63 93.0 .0 75.3 15.7 .1 .04                                                               | 125<br>80.0<br>.0<br>75.3<br>18.7<br>.0<br>8.9                                                                                      | FF 250 74.0 .0 75.3 21.7 1.9 .0 9                                                                                    | 72.0<br>.0<br>72.3<br>24.7<br>5.1<br>.0<br>-4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1k 68.0 .0 75.3 25.0 9.9 .05                                               | 2k<br>65.0<br>.0<br>75.3<br>25.0<br>17.0<br>.0                                   | 4k<br>62.0<br>.0<br>75.3<br>25.0<br>33.6<br>.0                                     | 8k<br>58.0<br>.0<br>75.3<br>25.0<br>89.5<br>.0                   | 16k<br>.0<br>.0<br>75.3<br>25.0<br>296.6<br>.0<br>-4.3                |
| SOURCE : 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -22.8  SOURCE : 20                                                                                                                              | 31.5<br>77.0<br>.0<br>75.3<br>12.8<br>.0<br>.0<br>-4.5                                          | - con 63 93.0 .0 75.3 15.7 .1 .04 2.2                                                           | 125<br>80.0<br>.0<br>75.3<br>18.7<br>.6<br>.0<br>8.9                                                                                | pelt / FF  250  74.0 .0  75.3 21.7 1.9 .0 .9                                                                         | 72.0<br>500<br>72.0<br>.0<br>75.3<br>24.7<br>5.1<br>.0<br>-4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1k 68.0 .0 75.3 25.0 9.9 .05                                               | 2k<br>65.0<br>.0<br>75.3<br>25.0<br>17.0<br>.0<br>-3.3                           | 4k 62.0 .0 75.3 25.0 33.6 .0 -2.4                                                  | 8k<br>58.0<br>.0<br>75.3<br>25.0<br>89.5<br>.0                   | 16k<br>.0<br>.0<br>75.3<br>25.0<br>296.6<br>.0<br>-4.3                |
| SOURCE : 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -22.8  SOURCE : 20                                                                                                                              | 31.5<br>77.0<br>.0<br>75.3<br>12.8<br>.0<br>.0<br>-4.5<br>-6.7                                  | - con 63 93.0 .0 75.3 15.7 .1 .0 .4 2.2 - con                                                   | 125<br>80.0<br>.0<br>75.3<br>18.7<br>.6<br>.0<br>8.9                                                                                | belt / FF  250  74.0 .0  75.3 21.7 1.9 .0 .9  -25.8  belt /                                                          | 72.0<br>.0<br>72.3<br>24.7<br>5.1<br>.0<br>-4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1k 68.0 .0 75.3 25.0 9.9 .05 -41.8                                         | 2k 65.0 .0 75.3 25.0 17.0 .3 -49.1                                               | 4k 62.0 .0 75.3 25.0 33.6 .0 -2.4                                                  | 8k<br>58.0<br>.0<br>75.3<br>25.0<br>89.5<br>.0<br>-2.4           | 16k<br>.0<br>.0<br>75.3<br>25.0<br>296.6<br>.0<br>-4.3                |
| SOURCE : 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -22.8  SOURCE : 20 CFS - curing (int                                                                                                            | 31.5<br>77.0<br>.0<br>75.3<br>12.8<br>.0<br>.0<br>-4.5<br>-6.7                                  | - con 63 93.0 .0 75.3 15.7 .1 .0 .4 2.2 - con 63 93.0                                           | 125<br>80.0<br>.0<br>75.3<br>18.7<br>.6<br>.0<br>8.9<br>-23.5                                                                       | belt / FF  250  74.0 .0  75.3 21.7 1.9 .0 .9  -25.8  belt / FF  250  74.0                                            | 72.0<br>.0<br>72.0<br>.0<br>75.3<br>24.7<br>5.1<br>.0<br>-4.5<br>-28.7<br>motor<br>500<br>72.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1k 68.0 .0 75.3 25.0 9.95 -41.8 27 Hz_1k 68.0                              | 2k 65.0 .0 75.3 25.0 17.0 .0 -3.3 -49.1                                          | 4k 62.0 .0 75.3 25.0 33.6 .0 -2.4 -69.6-                                           | 8k 58.0 .0 75.3 25.0 89.5 .0 -2.4 100.0-                         | 16k<br>.0 .0<br>75.3<br>25.0<br>296.6<br>.0 -4.3                      |
| SOURCE : 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -22.8  SOURCE : 20 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE                                                                         | 31.5<br>77.0<br>.0<br>75.3<br>12.8<br>.0<br>.0<br>-4.5<br>-6.7<br>tenral)<br>31.5<br>77.0<br>.0 | - con  63  93.0 .0  75.3 15.7 .1 .04  2.2 - con  63  93.0 .0  75.2                              | 125<br>80.0<br>.0<br>75.3<br>18.7<br>.6<br>.0<br>8.9<br>-23.5<br>veyor<br>125<br>80.0<br>.0<br>75.2                                 | belt / FF  250  74.0 .0  75.3 21.7 1.9 .0 .9  -25.8  belt / FF  250  74.0 .0  75.2                                   | 72.0<br>.0<br>72.0<br>.0<br>75.3<br>24.7<br>5.1<br>.0<br>-4.5<br>-28.7<br>motor<br>500<br>72.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1k 68.0 .0 75.3 25.0 9.9 .05 -41.8 1k 68.0 .0 75.2                         | 2k 65.0 .0 75.3 25.0 17.0 .0 -3.3 -49.1  2k 65.0 .0 75.2                         | 4k 62.0 .0 75.3 25.0 33.6 .0 -2.4 -69.6-                                           | 8k 58.0 .0 75.3 25.0 89.5 .0 -2.4 100.0-                         | 16k .0 .0 75.3 25.0 296.6 .0 -4.3 -100.0                              |
| SOURCE : 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -22.8  SOURCE : 20 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION                                                  | 31.5 77.0 .0 75.3 12.8 .0 .0 -4.5 -6.7  cenral) 31.5 77.0 .0 75.2 9.2 .0                        | - con  63  93.0  .0  75.3  15.7  .1  .0 4  2.2  - con  63  93.0  .0  75.2  11.5  .1             | 125<br>80.0<br>.0<br>75.3<br>18.7<br>.6<br>.0<br>8.9<br>-23.5<br>veyor<br>125<br>80.0<br>.0<br>75.2<br>13.0                         | belt /  250  74.0 .0  75.3 21.7 1.9 .0 .9  -25.8 belt /  FF  250  74.0 .0  75.2 16.0 1.9                             | 72.0<br>72.0<br>75.3<br>24.7<br>5.1<br>0<br>-4.5<br>-28.7<br>motor<br>500<br>72.0<br>0<br>75.2<br>19.1<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1k 68.0 .0 75.3 25.0 9.9 .05 -41.8 5 5 1k 68.0 .0 75.2 222.1 9.7           | 2k 65.0 .0 75.3 25.0 17.0 .0 -3.3 -49.1  2k 65.0 .0 75.2 25.0 16.7               | 4k 62.0 .0 75.3 25.0 33.6 .0 -2.4 -69.6-                                           | 8k<br>58.0<br>.0<br>75.3<br>25.0<br>89.5<br>.0<br>-2.4<br>100.0- | 16k .0 .0 .25.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .                 |
| SOURCE : 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -22.8  SOURCE : 20 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                 | 31.5 77.0 .0 75.3 12.8 .0 .0 -4.5 -6.7  cenral) 31.5 77.0 .0 75.2 9.2 .0                        | - con  63  93.0  .0  75.3  15.7  .1  .0 4  2.2  - con  63  93.0  .0  75.2  11.5  .1             | 125<br>80.0<br>.0<br>75.3<br>18.7<br>.6<br>.0<br>8.9<br>-23.5<br>veyor<br>125<br>80.0<br>.0<br>75.2<br>13.0                         | belt /  250  74.0 .0  75.3 21.7 1.9 .0 .9  -25.8 belt /  FF  250  74.0 .0  75.2 16.0 1.9                             | 72.0<br>72.0<br>75.3<br>24.7<br>5.1<br>0<br>-4.5<br>-28.7<br>motor<br>500<br>72.0<br>0<br>75.2<br>19.1<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1k 68.0 .0 75.3 25.0 9.9 .05 -41.8 5 5 1k 68.0 .0 75.2 222.1 9.7           | 2k 65.0 .0 75.3 25.0 17.0 .0 -3.3 -49.1  2k 65.0 .0 75.2 25.0 16.7               | 4k 62.0 .0 75.3 25.0 33.6 .0 -2.4 -69.6-                                           | 8k<br>58.0<br>.0<br>75.3<br>25.0<br>89.5<br>.0<br>-2.4<br>100.0- | 16k .0 .0 .25.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .                 |
| SOURCE : 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -22.8  SOURCE : 20 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                      | 31.5 77.0 .0 75.3 12.8 .0 .0 -4.5 -6.7  cenral)  31.5 77.0 .0 75.2 9.2 .0 .0 -4.3               | - con  63  93.0  .0  75.3  15.7  .1  .0 4  2.2  - con  63  93.0  .0  75.2  11.5  .1 .0 .0       | 125<br>80.0<br>.0<br>75.3<br>18.7<br>.6<br>.0<br>8.9<br>-23.5<br>eveyor<br>125<br>80.0<br>.0<br>75.2<br>13.0<br>6.9                 | belt /  250  74.0 .0  75.3 21.7 1.9 .0 .9  -25.8  belt /  FF  250  74.0 .0  75.2 16.0 0 1.9 .0 -1.7                  | 72.0<br>500<br>72.0<br>.0<br>75.3<br>24.7<br>5.1<br>.0<br>-4.5<br>-28.7<br>motor<br>500<br>72.0<br>.0<br>75.2<br>19.1<br>5.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1k 68.0 .0 75.3 25.0 9.9 .05 -41.8 5 Y Hz 1k 68.0 .0 75.2 22.1 9.7 .0 -2.1 | 2k 65.0 .0 75.3 25.0 17.0 .0 -3.3 -49.1  2k 65.0 .0 75.2 25.0 16.7 .0 -2.3       | 4k 62.0 .0 75.3 25.0 33.6 .0 -2.4 -69.6-  4k 62.0 .0 75.2 25.0 33.1 .0 -2.0        | 8k 58.0 .0 75.3 25.0 89.5 .0 -2.4 100.0-                         | 16k .0 .0 .25.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .                 |
| SOURCE : 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -22.8  SOURCE : 20 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -18.1  SOURCE : 21 | 31.5 77.0 .0 75.3 12.8 .0 .0 -4.5 -6.7  tenral)  31.5 77.0 .0 75.2 9.2 .0 .0 -4.3 -3.1          | - con  63  93.0 .0  75.3 15.7 .1 .0 .4  2.2  - con  63  93.0 .0  75.2 11.5 .1 .0 .0 6.2         | 125<br>80.0<br>.0<br>75.3<br>18.7<br>.6<br>.0<br>8.9<br>-23.5<br>eveyor<br>125<br>80.0<br>.0<br>75.2<br>13.0<br>.6<br>.9            | belt / FF  250  74.0 .0  75.3 21.7 1.9 .0 .9  -25.8  belt / FF  250  74.0 .0  75.2 16.0 1.9 .0 -1.7                  | Tool motor m | 1k 68.0 .0 75.3 25.0 9.9 5 -41.8 1k 68.0 .0 75.2 22.1 9.7 0 -2.1 -36.8     | 2k 65.0 .0 75.3 25.0 17.0 .0 -3.3 -49.1  2k 65.0 .0 75.2 25.0 16.7 .0 -2.3       | 4k 62.0 .0 75.3 25.0 33.6 .0 -2.4 -69.6-  4k 62.0 .0 75.2 25.0 33.1 .0 -2.0        | 8k 58.0 .0 75.3 25.0 89.5 .0 -2.4 100.0-                         | 16k .0 .0 .25.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .                 |
| SOURCE : 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -22.8  SOURCE : 20 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -18.1              | 31.5 77.0 .0 75.3 12.8 .0 .0 -4.5 -6.7  cenral)  31.5 77.0 .0 75.2 9.2 .0 .0 -4.3 -3.1          | - con  63  93.0 .0  75.3 15.7 .1 .0 .4  2.2  - con  63  93.0 .0  75.2 11.5 .1 .0 .0  6.2  - con | 125 80.0 .0 75.3 18.7 .6 .0 8.9 -23.5 veyor  125 80.0 .0 75.2 13.0 .6 .0 6.9 -15.6 veyor                                            | belt /  FF 250  74.0 .0  75.3 21.7 1.9 .0 .9  -25.8  belt /  FF 250  74.0 .0  75.2 16.0 1.9 .0 -1.7  -17.4           | 72.0<br>72.0<br>72.0<br>75.3<br>24.7<br>51.0<br>74.5<br>-28.7<br>motor<br>500<br>72.0<br>0<br>75.2<br>19.1<br>50.0<br>-3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1k 68.0 0 75.3 25.0 9.9 05 -41.8 1k 68.0 0 75.2 22.1 9.7 0 -2.1 -36.8      | 2k 65.0 .0 75.3 25.0 17.0 .0 -3.3 -49.1  2k 65.0 .0 75.2 25.0 16.7 .0 -2.3       | 4k 62.0 .0 75.3 25.0 33.6 .0 -2.4 -69.6-  4k 62.0 .0 75.2 25.0 33.1 .0 -2.0        | 8k 58.0 .0 75.3 25.0 89.5 .0 -2.4 100.0-                         | 16k .0 .0 .25.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .                 |
| SOURCE : 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -22.8  SOURCE : 20 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -18.1  SOURCE : 21 | 31.5 77.0 .0 75.3 12.8 .0 .0 -4.5 -6.7  denral)  31.5 77.0 .0 75.2 9.2 .0 .0 -4.3 -3.1          | - con  63  93.0 .0  75.3 15.7 .1 .0 .4  2.2 - con  63  93.0 .0  75.2 11.5 .1 .0 .0 6.2 - con    | 125 80.0 .0 75.3 18.7 .6 .0 8.9 -23.5  Eveyor  125 80.0 .0 75.2 13.0 .6 .0 6.9 -15.6                                                | belt / FF  250  74.0 .0  75.3 21.7 1.9 .0 .9  -25.8  belt / FF  250  74.0 .0  75.2 16.0 1.9 .0 -1.7 -17.4  belt / FF | To motor mot | 1k 68.0 .0 75.3 25.0 9.9 5 -41.8 68.0 .0 75.2 22.1 9.7 .0 -2.1 -36.8       | 2k 65.0 .0 75.3 25.0 17.0 .0 -3.3 -49.1  2k 65.0 .0 75.2 25.0 16.7 .0 -2.3 -49.6 | 4k 62.0 .0 75.3 25.0 33.6 .0 -2.4 -69.6-  4k 62.0 .0 75.2 25.0 33.1 .0 -2.0        | 8k 58.0 .0 75.3 25.0 89.5 .0 -2.4 100.0-                         | 16k .0 .0 75.3 25.0 296.6 .0 -4.3 -100.0                              |
| SOURCE : 19 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -22.8  SOURCE : 20 CFS - curing (int  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -18.1  SOURCE : 21 | 31.5 77.0 .0 75.3 12.8 .0 .0 -4.5 -6.7  cenral)  31.5 77.0 .0 75.2 .0 .0 -4.3 -3.1 cenral)      | - con  63  93.0 .0  75.3 15.7 .1 .0 .4  2.2  - con  63  93.0 .0  75.2 11.5 .1 .0 .0  6.2  - con | 125<br>80.0<br>.0<br>75.3<br>18.7<br>.6<br>.0<br>8.9<br>-23.5<br>veyor<br>125<br>80.0<br>.0<br>75.2<br>13.0<br>.6<br>.0<br>.0<br>.0 | belt / FF  250  74.0 .0  75.3 21.7 1.9 .0 .9  -25.8  belt / FF  250  74.0 .0 75.2 16.0 1.9 .0 -1.7 -17.4  belt / FF  | Two tor to the control of the contro | 1k 68.0 .0 .75.3 .25.0 .05                                                 | 2k 65.0 .0 75.3 25.0 17.0 .0 -3.3 -49.1  2k 65.0 .0 75.2 25.0 16.7 .0 -2.3 -49.6 | 4k 62.0 .0 75.3 25.0 33.6 .0 -2.4 -69.6-  4k 62.0 .0 75.2 25.0 33.1 .0 -2.0 -69.2- | 8k 58.0 .0 75.3 25.0 89.5 .0 -2.4 100.0-                         | 16k .0 .0 .75.3 .25.0 .296.6 .0 .4.3 -100.0  16k .0 .0 .0 -4.1 -100.0 |

| DIRECTIVITY                                                                                                                                                                                                                                 | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .0                                                                               | .0                                                                                                 | .0                                                                                                           | .0                                                                                                  | .0                                                                               | .0                                                                       | .0                                                                                                            | .0                                                                                                               | .0                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| DISTANCE<br>BARRIER                                                                                                                                                                                                                         | 74.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74.9                                                                             | 74.9                                                                                               | 74.9                                                                                                         | 74.9                                                                                                | 74.9                                                                             | 74.9<br>24.5                                                             | 74.9                                                                                                          | 74.9                                                                                                             | 74.9                                                          |
| AIR ABSURPTION                                                                                                                                                                                                                              | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .1                                                                               | . 5                                                                                                | 1.8                                                                                                          | 4.9                                                                                                 | 9.5                                                                              | 16.3                                                                     | 32.3                                                                                                          | 85.8                                                                                                             | 285.3                                                         |
| TEMP & WIND<br>GROUND                                                                                                                                                                                                                       | .0<br>-4 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0                                                                               | .0<br>6.4                                                                                          | .0<br>-2 1                                                                                                   | .0<br>-3.0                                                                                          | .0<br>-2 1                                                                       | .0<br>-2.5                                                               | .0<br>-2 7                                                                                                    | .0<br>-2 9                                                                                                       | .0<br>-3 6                                                    |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |                                                                                                    |                                                                                                              |                                                                                                     |                                                                                  |                                                                          |                                                                                                               |                                                                                                                  |                                                               |
| TOTAL AWT -17.4                                                                                                                                                                                                                             | -2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.7                                                                              | -14.6                                                                                              | -16.1                                                                                                        | -23.3                                                                                               | -35.8                                                                            | -48.3                                                                    | -67.6-                                                                                                        | -100.0-                                                                                                          | -100.0                                                        |
| SOURCE : 22<br>CFS - processing                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 \                                                                              | DMM -                                                                                              |                                                                                                              |                                                                                                     |                                                                                  |                                                                          |                                                                                                               |                                                                                                                  |                                                               |
| Crs - processing                                                                                                                                                                                                                            | (excel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lilai)                                                                           |                                                                                                    |                                                                                                              |                                                                                                     |                                                                                  |                                                                          |                                                                                                               |                                                                                                                  |                                                               |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |                                                                                                    | FI                                                                                                           | REQUEN                                                                                              | CY Hz_                                                                           |                                                                          |                                                                                                               |                                                                                                                  |                                                               |
|                                                                                                                                                                                                                                             | 31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63                                                                               | 125                                                                                                | 250                                                                                                          | 500                                                                                                 | 1k                                                                               | 2k                                                                       | 4k                                                                                                            | 8k                                                                                                               | 16k                                                           |
| POWER LEVEL                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |                                                                                                    |                                                                                                              |                                                                                                     |                                                                                  |                                                                          |                                                                                                               |                                                                                                                  |                                                               |
| DIRECTIVITY                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |                                                                                                    |                                                                                                              |                                                                                                     |                                                                                  |                                                                          |                                                                                                               |                                                                                                                  |                                                               |
| DISTANCE<br>BARRIER                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |                                                                                                    |                                                                                                              |                                                                                                     |                                                                                  | 74.9<br>.0                                                               |                                                                                                               |                                                                                                                  |                                                               |
| AIR ABSORPTION                                                                                                                                                                                                                              | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .1                                                                               | .5                                                                                                 | 1.8                                                                                                          | 4.9                                                                                                 | 9.5                                                                              | 16.3                                                                     | 32.2                                                                                                          | 85.5                                                                                                             | 284.2                                                         |
| TEMP & WIND<br>GROUND                                                                                                                                                                                                                       | .0<br>-5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0<br>-3.4                                                                       | .0<br>5.6                                                                                          | .0<br>15.0                                                                                                   |                                                                                                     |                                                                                  | .0<br>9.7                                                                |                                                                                                               | .0<br>-2.1                                                                                                       | .0<br>-5.5                                                    |
| TOTAL AWT 17.4                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |                                                                                                    |                                                                                                              |                                                                                                     |                                                                                  |                                                                          |                                                                                                               | -70 4-                                                                                                           | 100 0                                                         |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12,1                                                                             | 21.7                                                                                               | 12.5                                                                                                         | 0.2                                                                                                 | .0                                                                               | 2.0                                                                      | 10.0                                                                                                          | 70.1                                                                                                             | 100.0                                                         |
| SOURCE: 23<br>CFS - processing                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rnal) -                                                                          | - RTT 1                                                                                            | reversi                                                                                                      | ing                                                                                                 |                                                                                  |                                                                          |                                                                                                               |                                                                                                                  |                                                               |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |                                                                                                    |                                                                                                              |                                                                                                     | CY Hz                                                                            |                                                                          |                                                                                                               |                                                                                                                  |                                                               |
|                                                                                                                                                                                                                                             | 21 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  | 105                                                                                                |                                                                                                              | ~                                                                                                   |                                                                                  |                                                                          | 47                                                                                                            | 03                                                                                                               | 1.61                                                          |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |                                                                                                    |                                                                                                              |                                                                                                     |                                                                                  | 2k                                                                       |                                                                                                               |                                                                                                                  |                                                               |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |                                                                                                    |                                                                                                              |                                                                                                     |                                                                                  | 91.0<br>.0                                                               |                                                                                                               |                                                                                                                  |                                                               |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |                                                                                                    |                                                                                                              |                                                                                                     |                                                                                  |                                                                          |                                                                                                               |                                                                                                                  |                                                               |
| DISTANCE<br>BARRIER                                                                                                                                                                                                                         | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .0                                                                               | .0                                                                                                 | .0                                                                                                           | 74.7                                                                                                | 74.7                                                                             | 74.7<br>.0                                                               | .0                                                                                                            | .0                                                                                                               | .0                                                            |
| AIR ABSORPTION                                                                                                                                                                                                                              | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .1                                                                               | . 5                                                                                                | 1.8                                                                                                          | 4.8                                                                                                 | 9.2                                                                              | 15.9                                                                     | 31.5                                                                                                          | 83.4                                                                                                             | 277.0                                                         |
| TEMP & WIND<br>GROUND                                                                                                                                                                                                                       | -5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.5                                                                             | 5.4                                                                                                | 15.0                                                                                                         | 15.0                                                                                                | 14.8                                                                             | .0<br>9.4                                                                | 3.2                                                                                                           | -2.2                                                                                                             | .0<br>-5.5                                                    |
| TOTAL AWT -2.2                                                                                                                                                                                                                              | -12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.7                                                                              | -5.6                                                                                               | -12.5                                                                                                        | -5.4                                                                                                | -5.7                                                                             | -9.0                                                                     | -22.4                                                                                                         | -78.8-                                                                                                           | -100.0                                                        |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |                                                                                                    |                                                                                                              |                                                                                                     |                                                                                  |                                                                          |                                                                                                               |                                                                                                                  |                                                               |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |                                                                                                    |                                                                                                              |                                                                                                     |                                                                                  |                                                                          |                                                                                                               |                                                                                                                  |                                                               |
| SOURCE : 24<br>CFS - processing                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rnal) ·                                                                          | - dust                                                                                             | collec                                                                                                       | ctor /                                                                                              | fan                                                                              |                                                                          |                                                                                                               |                                                                                                                  |                                                               |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rnal) ·                                                                          |                                                                                                    |                                                                                                              |                                                                                                     |                                                                                  |                                                                          |                                                                                                               |                                                                                                                  |                                                               |
|                                                                                                                                                                                                                                             | (exter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |                                                                                                    | FI                                                                                                           | REQUEN                                                                                              | CY Hz_                                                                           |                                                                          | 415                                                                                                           | 01r                                                                                                              |                                                               |
| CFS - processing                                                                                                                                                                                                                            | 31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63                                                                               | 125                                                                                                | FI                                                                                                           | REQUENC<br>500                                                                                      | CY Hz_                                                                           | 2k                                                                       |                                                                                                               |                                                                                                                  |                                                               |
| CFS - processing                                                                                                                                                                                                                            | 31.5<br>100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63<br>102.0                                                                      | 125<br>106.0                                                                                       | FF 250                                                                                                       | 500<br>108.0                                                                                        | CY Hz_<br>1k<br>101.0                                                            | 2k<br>94.0                                                               | 89.0                                                                                                          | 83.0                                                                                                             | .0                                                            |
| CFS - processing  POWER LEVEL  DIRECTIVITY                                                                                                                                                                                                  | 31.5<br>100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63<br>102.0<br>.0                                                                | 125<br>106.0<br>.0                                                                                 | 250<br>109.0                                                                                                 | 500<br>108.0                                                                                        | 1k<br>101.0                                                                      | 2k<br>94.0<br>.0                                                         | 89.0                                                                                                          | 83.0                                                                                                             | .0                                                            |
| CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                                                                                                                                 | 31.5<br>100.0<br>.0<br>74.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63<br>102.0<br>.0<br>74.7                                                        | 125<br>106.0<br>.0                                                                                 | 250<br>109.0<br>.0<br>74.7                                                                                   | 500<br>108.0<br>.0<br>74.7                                                                          | 1k 101.0 .0 74.7                                                                 | 2k<br>94.0<br>.0<br>74.7                                                 | 89.0<br>.0<br>74.7                                                                                            | 83.0<br>.0<br>74.7                                                                                               | .0<br>.0<br>74.7                                              |
| CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION                                                                                                                                                                  | 31.5<br>100.0<br>.0<br>74.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63<br>102.0<br>.0<br>74.7                                                        | 125<br>106.0<br>.0<br>74.7                                                                         | 250<br>109.0<br>.0<br>74.7                                                                                   | 500<br>108.0<br>.0<br>74.7<br>.0                                                                    | 1k 101.0 .0 74.7 .0 9.3                                                          | 2k 94.0 .0 74.7 .0 16.0                                                  | 89.0<br>.0<br>74.7<br>.0<br>31.6                                                                              | 83.0<br>.0<br>74.7<br>.0<br>83.9                                                                                 | .0<br>.0<br>74.7<br>.0<br>278.6                               |
| CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                                                                                                                                 | 31.5<br>100.0<br>.0<br>74.7<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63<br>102.0<br>.0<br>74.7<br>.0<br>.1                                            | 125<br>106.0<br>.0<br>74.7<br>.0<br>.5                                                             | 250<br>109.0<br>.0<br>74.7<br>.0<br>1.8                                                                      | 500<br>108.0<br>.0<br>74.7<br>.0<br>4.8                                                             | 1k 101.0 .0 74.7 .0 9.3 .0                                                       | 2k<br>94.0<br>.0<br>74.7                                                 | 89.0<br>.0<br>74.7<br>.0<br>31.6                                                                              | 83.0<br>.0<br>74.7<br>.0<br>83.9                                                                                 | .0<br>.0<br>74.7<br>.0<br>278.6                               |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                                                                                  | 31.5<br>100.0<br>.0<br>74.7<br>.0<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63<br>102.0<br>.0<br>74.7<br>.0<br>.1<br>.0<br>-3.5                              | 125<br>106.0<br>.0<br>74.7<br>.0<br>.5<br>.0                                                       | 74.7<br>.0<br>1.8<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                            | 500<br>108.0<br>.0<br>74.7<br>.0<br>4.8<br>.0                                                       | 1k 101.0 0 74.7 0 9.3 .0 14.8                                                    | 2k 94.0 .0 74.7 .0 16.0 .0 9.6                                           | 89.0<br>.0<br>74.7<br>.0<br>31.6<br>.0<br>3.3                                                                 | 83.0<br>.0<br>74.7<br>.0<br>83.9<br>.0<br>-2.2                                                                   | .0<br>.0<br>74.7<br>.0<br>278.6<br>.0<br>-5.5                 |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 15.0                                                                                                                                                   | 31.5<br>100.0<br>.0<br>74.7<br>.0<br>.0<br>.0<br>.0<br>-5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63<br>102.0<br>.0<br>74.7<br>.0<br>.1<br>.0<br>-3.5                              | 125<br>106.0<br>.0<br>74.7<br>.0<br>.5<br>.0                                                       | 74.7<br>.0<br>1.8<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                            | 500<br>108.0<br>.0<br>74.7<br>.0<br>4.8<br>.0                                                       | 1k 101.0 0 74.7 0 9.3 .0 14.8                                                    | 2k 94.0 .0 74.7 .0 16.0 .0 9.6                                           | 89.0<br>.0<br>74.7<br>.0<br>31.6<br>.0<br>3.3                                                                 | 83.0<br>.0<br>74.7<br>.0<br>83.9<br>.0<br>-2.2                                                                   | .0<br>.0<br>74.7<br>.0<br>278.6<br>.0<br>-5.5                 |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                                                                                  | 31.5<br>100.0<br>.0<br>74.7<br>.0<br>.0<br>.0<br>-5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63<br>102.0<br>.0<br>74.7<br>.0<br>.1<br>.0<br>-3.5                              | 125<br>106.0<br>.0<br>74.7<br>.0<br>.5<br>.0<br>5.5                                                | 74.7<br>.00<br>.01.8<br>.015.0                                                                               | 500<br>108.0<br>.0<br>74.7<br>.0<br>4.8<br>.0                                                       | 1k 101.0 0 74.7 0 9.3 .0 14.8                                                    | 2k 94.0 .0 74.7 .0 16.0 .0 9.6                                           | 89.0<br>.0<br>74.7<br>.0<br>31.6<br>.0<br>3.3                                                                 | 83.0<br>.0<br>74.7<br>.0<br>83.9<br>.0<br>-2.2                                                                   | .0<br>.0<br>74.7<br>.0<br>278.6<br>.0<br>-5.5                 |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 15.0 SOURCE : 25                                                                                                                                       | 31.5<br>100.0<br>.0<br>74.7<br>.0<br>.0<br>.0<br>-5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63 102.0 .0 74.7 .0 .1 .0 -3.5 30.6                                              | 125 106.0 .0 74.7 .0 .5 .0 5.5 25.3                                                                | 74.7<br>.0<br>1.8<br>.0<br>15.0                                                                              | 500<br>108.0<br>.0<br>74.7<br>.0<br>4.8<br>.0<br>15.0                                               | 1k 101.0 0 74.7 0 9.3 0 14.8                                                     | 2k 94.0 .0 74.7 .0 16.0 .0 9.6                                           | 89.0<br>.0<br>74.7<br>.0<br>31.6<br>.0<br>3.3                                                                 | 83.0<br>.0<br>74.7<br>.0<br>83.9<br>.0<br>-2.2                                                                   | .0<br>.0<br>74.7<br>.0<br>278.6<br>.0<br>-5.5                 |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 15.0 SOURCE : 25                                                                                                                                       | 31.5<br>100.0<br>.0<br>74.7<br>.0<br>.0<br>.0<br>-5.7<br>30.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63 102.0 .0 74.7 .0 .1 .0 -3.5 30.6                                              | 125 106.0 .0 74.7 .0 .5 .0 5.5 25.3                                                                | FF 250  109.0  .0  74.7 .0 1.8 .0 15.0  17.5                                                                 | 500<br>108.0<br>.0<br>74.7<br>.0<br>4.8<br>.0<br>15.0<br>13.5                                       | 1k 101.0 .0 74.7 .0 9.3 .0 14.8 2.2                                              | 2k 94.0 .0 74.7 .00 16.0 .0 9.6                                          | 89.0<br>.0<br>74.7<br>.0<br>31.6<br>.0<br>3.3                                                                 | 83.0<br>.0<br>74.7<br>.0<br>83.9<br>.0<br>-2.2                                                                   | .0<br>.0<br>74.7<br>.0<br>278.6<br>.0<br>-5.5                 |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 15.0 SOURCE: 25 CFS - processing                                                                                                                       | 31.5<br>100.0<br>.0<br>74.7<br>.0<br>.0<br>.0<br>-5.7<br>30.9<br>(exter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63 102.0 .0 74.7 .0 .1 .0 -3.5 30.6                                              | 125 106.0 .0 74.7 .0 .5 .0 5.5 25.3                                                                | F1 250 109.0 .0 74.7 .0 1.8 .0 15.0 17.5 lift F1 250                                                         | 500<br>108.0<br>.0<br>74.7<br>.0<br>4.8<br>.0<br>15.0<br>13.5                                       | 1k 101.0 .0 74.7 .0 9.3 .0 14.8 2.2                                              | 2k 94.0 .0 74.7 .0 16.0 .0 9.6 -6.2                                      | 89.0<br>.0<br>74.7<br>.0<br>31.6<br>.0<br>3.3<br>-20.7                                                        | 83.0<br>.0<br>74.7<br>.0<br>83.9<br>.0<br>-2.2<br>-73.5-                                                         | .0<br>.0<br>74.7<br>.0<br>278.6<br>.0<br>-5.5<br>-100.0       |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 15.0 SOURCE: 25                                                                                                                                        | 31.5<br>100.0<br>0<br>74.7<br>0<br>0<br>0<br>-5.7<br>30.9<br>(external states of the state | 63 102.0 .0 74.7 .0 .1 .0 -3.5 30.6 rnal)                                        | 125 106.0 .0 74.7 .0 .5 .0 5.5 25.3 - fork:                                                        | FF 250 109.0 109.0 109.0 109.0 109.0 15.0 17.5 11ft FF 250 97.0                                              | 74.7<br>.0<br>4.8<br>.0<br>15.0<br>13.5                                                             | 1k 101.0 .0 74.7 .0 9.3 .0 14.8 2.2                                              | 2k 94.0 .0 74.7 .0 16.0 .0 9.6 -6.2                                      | 89.0<br>.0<br>74.7<br>.0<br>31.6<br>.0<br>3.3<br>-20.7                                                        | 83.0<br>.0<br>74.7<br>.0<br>83.9<br>.0<br>-2.2<br>-73.5-                                                         | .0<br>.0<br>74.7<br>.0<br>278.6<br>.0<br>-5.5<br>-100.0       |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.0  SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY                                                                                           | 31.5<br>100.0<br>.0<br>74.7<br>.0<br>.0<br>.0<br>-5.7<br>30.9<br>(exter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63 102.0 .0 74.7 .0 .1 .0 -3.5 30.6 rnal)                                        | 125 106.0 .0 74.7 .0 .5 .0 5.5 25.3 - fork: 125 99.0 .0                                            | FF 250 109.0 .0 .0 .0 .1.8 .0 .0 .15.0 17.5 liftFF 250 97.0 .0                                               | 74.7<br>.0 4.8<br>.0 15.0 13.5                                                                      | 1k 101.0 0 74.7 0.0 14.8 2.2 CY Hz 1k                                            | 2k 94.0 .0 74.7 .0 16.0 .0 9.6 -6.2  2k 91.0 .0                          | 89.0<br>.0<br>74.7<br>.0<br>31.6<br>.0<br>3.3<br>-20.7                                                        | 83.0<br>.0<br>74.7<br>.0<br>83.9<br>.0<br>-2.2<br>-73.5-                                                         | .0<br>.0<br>74.7<br>.0<br>278.6<br>.0<br>-5.5<br>-100.0       |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 15.0 SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY DISTANCE BARRIER                                                                             | 31.5<br>100.0<br>.0<br>74.7<br>.0<br>.0<br>.0<br>-5.7<br>30.9<br>(exter<br>31.5<br>101.0<br>.0<br>74.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63 102.0 .0 74.7 .0 .1 .0 -3.5 30.6  rnal) 63 100.0 .0 74.8 .0                   | 125 106.0 .0 74.7 .0 .5 .0 5.5 25.3 - fork: 125 99.0 .0 74.8                                       | FF 250 109.0 .0 .0 .0 .1.8 .0 .0 .15.0 17.5 lift FF 250 97.0 .0 .74.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | 74.7<br>0.0<br>108.0<br>0.0<br>74.7<br>4.8<br>0.0<br>15.0<br>13.5<br>REQUENC<br>93.0<br>0.0<br>74.8 | 1k 101.0 0 74.7 0.0 14.8 2.2 CY Hz 1k 93.0 0 74.8                                | 2k 94.0 .0 74.7 .0 16.0 .0 9.6 -6.2  2k 91.0 .0 74.8                     | 89.0<br>.0<br>74.7<br>.0<br>31.6<br>.0<br>3.3<br>-20.7<br>4k<br>88.0<br>.0                                    | 83.0<br>.0<br>74.7<br>.0<br>83.9<br>.0<br>-2.2<br>-73.5-                                                         | .0<br>.0<br>74.7<br>.0<br>278.6<br>.0<br>-5.5<br>-100.0       |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 15.0 SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY DISTANCE BARRIER                                                                             | 31.5<br>100.0<br>.0<br>74.7<br>.0<br>.0<br>.0<br>-5.7<br>30.9<br>(exter<br>31.5<br>101.0<br>.0<br>74.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63 102.0 .0 74.7 .0 .1 .0 -3.5 30.6  rnal) 63 100.0 .0 74.8 .0                   | 125 106.0 .0 74.7 .0 .5 .0 5.5 25.3 - fork: 125 99.0 .0 74.8                                       | FF 250 109.0 .0 .0 .0 .1.8 .0 .0 .15.0 .0 .17.5 lift                                                         | 74.7<br>0.0<br>108.0<br>0.0<br>74.7<br>4.8<br>0.0<br>15.0<br>13.5<br>REQUENC<br>93.0<br>0.0<br>74.8 | 1k 101.0 0 74.7 0.0 14.8 2.2 CY Hz 1k 93.0 0 74.8                                | 2k 94.0 .0 74.7 .0 16.0 .0 9.6 -6.2  2k 91.0 .0 74.8                     | 89.0<br>.0<br>74.7<br>.0<br>31.6<br>.0<br>3.3<br>-20.7<br>4k<br>88.0<br>.0                                    | 83.0<br>.0<br>74.7<br>.0<br>83.9<br>.0<br>-2.2<br>-73.5-                                                         | .0<br>.0<br>74.7<br>.0<br>278.6<br>.0<br>-5.5<br>-100.0       |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 15.0 SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY DISTANCE                                                                                     | 31.5<br>100.0<br>.0<br>74.7<br>.0<br>.0<br>.0<br>-5.7<br>30.9<br>(exter<br>31.5<br>101.0<br>.0<br>74.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63 102.0 .0 74.7 .0 .1 .0 -3.5 30.6  rnal) 63 100.0 .0 74.8 .0                   | 125 106.0 .0 74.7 .0 .5 .0 5.5 25.3 - fork: 125 99.0 .0 74.8                                       | FF 250 109.0 .0 .0 .0 .1.8 .0 .0 .15.0 .0 .17.5 lift                                                         | 74.7<br>0.0<br>108.0<br>0.0<br>74.7<br>4.8<br>0.0<br>15.0<br>13.5<br>REQUENC<br>93.0<br>0.0<br>74.8 | 1k 101.0 0 74.7 0.0 14.8 2.2 CY Hz 1k 93.0 0 74.8                                | 2k 94.0 .0 74.7 .0 16.0 .0 9.6 -6.2  2k 91.0 .0 74.8                     | 89.0<br>.0<br>74.7<br>.0<br>31.6<br>.0<br>3.3<br>-20.7<br>4k<br>88.0<br>.0                                    | 83.0<br>.0<br>74.7<br>.0<br>83.9<br>.0<br>-2.2<br>-73.5-                                                         | .0<br>.0<br>74.7<br>.0<br>278.6<br>.0<br>-5.5<br>-100.0       |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 15.0 SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY DISTANCE BARRIER                                                                             | 31.5<br>100.0<br>.0<br>74.7<br>.0<br>.0<br>.0<br>-5.7<br>30.9<br>(exter<br>31.5<br>101.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63 102.0 .0 74.7 .0 .1 .0 -3.5 30.6  rnal)  63 100.0 .0 74.8 .0 .0 .1 .0 -3.4    | 125 106.0 .0 74.7 .0 .5 .0 5.5 25.3 - fork: 125 99.0 .0 74.8 .0 .5 .0 5.5                          | FF 250 109.0 .0 .0 .0 .1.80                                                                                  | 74.7 .0 108.0 .0 74.7 .0 4.8 .0 15.0 13.5  REQUENC 93.0 .0 74.8 .0 4.8 .0 15.0                      | 2Y Hz                                                                            | 2k 94.0 .0 74.7 .0 16.0 .0 9.6 -6.2  2k 91.0 .0 74.8 .0 16.1 .0 9.8      | 89.0<br>.0<br>74.7<br>.0<br>31.6<br>.0<br>3.3<br>-20.7<br>4k<br>88.0<br>.0<br>74.8<br>.0<br>31.9<br>.0<br>3.6 | 83.0<br>.0<br>74.7<br>.0<br>83.9<br>.0<br>-2.2<br>-73.5-<br>8k<br>83.0<br>.0<br>74.8<br>.0<br>84.6<br>.0<br>-2.0 | .0<br>.0<br>74.7<br>.0<br>278.6<br>.0<br>-5.5<br>-100.0       |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 15.0 SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 6.7                             | 31.5<br>100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63 102.0 .0 74.7 .0 .1 .0 -3.5 30.6  rnal)  63 100.0 .0 74.8 .0 .0 .1 .0 -3.4    | 125 106.0 .0 74.7 .0 .5 .0 5.5 25.3 - fork: 125 99.0 .0 74.8 .0 .5 .0 5.5                          | FF 250 109.0 .0 .0 .0 .1.80                                                                                  | 74.7 .0 108.0 .0 74.7 .0 4.8 .0 15.0 13.5  REQUENC 93.0 .0 74.8 .0 4.8 .0 15.0                      | 2Y Hz                                                                            | 2k 94.0 .0 74.7 .0 16.0 .0 9.6 -6.2  2k 91.0 .0 74.8 .0 16.1 .0 9.8      | 89.0<br>.0<br>74.7<br>.0<br>31.6<br>.0<br>3.3<br>-20.7<br>4k<br>88.0<br>.0<br>74.8<br>.0<br>31.9<br>.0<br>3.6 | 83.0<br>.0<br>74.7<br>.0<br>83.9<br>.0<br>-2.2<br>-73.5-<br>8k<br>83.0<br>.0<br>74.8<br>.0<br>84.6<br>.0<br>-2.0 | .0<br>.0<br>74.7<br>.0<br>278.6<br>.0<br>-5.5<br>-100.0       |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.0  SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                       | 31.5 100.0 .0 74.7 .0 .0 .0 -5.7 30.9 (exten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63 102.0 .0 74.7 .0 .1 .0 -3.5 30.6 rnal)  63 100.0 .0 74.8 .0 .1 .0 -3.4        | 125 106.0 .0 74.7 .0 .5 .0 5.5 25.3 - forki                                                        | FF 250 109.0 .0 74.7 .0 1.8 .0 15.0 74.8 .0 15.0 15.0 15.0 15.0 74.8 .0 15.0 15.0 15.4                       | 74.7<br>.0<br>4.8<br>.0<br>15.0<br>13.5<br>REQUENO<br>93.0<br>.0<br>74.8<br>.0<br>15.0              | 2 Hz_ 1k 101.0 .0 .0 .0 .0 .0 .0 .0 .14.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | 2k 94.0 .0 74.7 .0 16.0 .0 9.6 -6.2  2k 91.0 .0 74.8 .0 16.1 .0 9.8      | 89.0<br>.0<br>74.7<br>.0<br>31.6<br>.0<br>3.3<br>-20.7<br>4k<br>88.0<br>.0<br>74.8<br>.0<br>31.9<br>.0<br>3.6 | 83.0<br>.0<br>74.7<br>.0<br>83.9<br>.0<br>-2.2<br>-73.5-<br>8k<br>83.0<br>.0<br>74.8<br>.0<br>84.6<br>.0<br>-2.0 | .0<br>.0<br>74.7<br>.0<br>278.6<br>.0<br>-5.5<br>-100.0       |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 15.0 SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 6.7 SOURCE: 26                  | 31.5 100.0 .0 74.7 .0 .0 .0 -5.7 30.9 (exten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63 102.0 .0 74.7 .0 .1 .0 -3.5 30.6  rnal) - 63 100.0 .0 .1 .0 -3.4 28.5         | 125 106.0 .0 74.7 .0 5.5 .0 5.5 25.3 - fork:  125 99.0 .0 74.8 .0 .5 .0 5.5 18.1                   | FI 250 109.0 .0 .0                                                                                           | 74.7 .0 15.0 13.5  REQUENCE 500 93.0 .0 74.8 .0 15.0 -1.6                                           | 1k 101.0 .0 74.7 .0 .0 14.8 2.2 2Y Hz 1k 93.0 .0 74.8 .0 9.4 .0 14.9             | 2k 94.0 .0 74.7 .0 16.0 .0 9.6 -6.2  2k 91.0 .0 74.8 .0 16.1 .0 9.8      | 89.0<br>.0<br>74.7<br>.0<br>31.6<br>.0<br>3.3<br>-20.7<br>4k<br>88.0<br>.0<br>74.8<br>.0<br>31.9<br>.0<br>3.6 | 83.0<br>.0<br>74.7<br>.0<br>83.9<br>.0<br>-2.2<br>-73.5-<br>8k<br>83.0<br>.0<br>74.8<br>.0<br>84.6<br>.0<br>-2.0 | .0<br>.0<br>74.7<br>.0<br>278.6<br>.0<br>-5.5<br>-100.0       |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 15.0 SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 6.7 SOURCE: 26                  | 31.5 100.0 .0 74.7 .0 .0 .0 .0 -5.7 30.9 (exter  31.5 101.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63 102.0 .0 74.7 .0 .1 .0 -3.5 30.6  rnal)  63 100.0 .0 74.8 .0 .1 .0 .3.4 28.5  | 125 106.0 .0 74.7 .0 .5 .0 5.5 25.3 - fork:  125 99.0 .0 74.8 .0 .5 .0 5.5 18.1 - aggre            | FF 250 109.0 .0 .0 .0 .1.8 .0 .0 .15.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .                                 | 74.7 .0 15.0 13.5  REQUENC 500 74.7 .0 15.0 15.0 13.5                                               | 2Y Hz_1k  101.0                                                                  | 2k 94.0 .0 74.7 .0 16.0 .0 9.6 -6.2  2k 91.0 .0 74.8 .0 16.1 .0 9.8      | 89.0<br>.0<br>74.7<br>.0<br>31.6<br>.0<br>3.3<br>-20.7<br>4k<br>88.0<br>.0<br>74.8<br>.0<br>31.9<br>.0<br>3.6 | 83.0<br>.0<br>74.7<br>.0<br>83.9<br>.0<br>-2.2<br>-73.5-<br>8k<br>83.0<br>.0<br>74.8<br>.0<br>84.6<br>.0<br>-2.0 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.5<br>-100.0      |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 15.0 SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 6.7 SOURCE: 26 CFS - processing | 31.5 100.0 74.7 .0 .0 .0 -5.7 30.9 (exter  31.5 101.0 .0 74.8 .0 .0 .0 -5.7 31.8 (exter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63 102.0 .0 74.7 .0 .1 .0 -3.5 30.6  rnal)  63 100.0 .0 74.8 .0 .1 .0 -3.4 28.5  | 125 106.0 0 74.7 0 5.5 0 5.5 25.3 - fork:  125 99.0 0 74.8 0 5.5 18.1 - aggre                      | FF 250 109.0 .0 .0 .1.8 .0 .0 .15.0 .0 .0 .0 .0 .0 .0 .0 .15.0 .0 .15.0 .0 .15.0 .0 .15.0 .0 .15.0           | 74.7<br>.0<br>4.8<br>.0<br>15.0<br>13.5<br>REQUENC<br>500<br>93.0<br>.0<br>74.8<br>.0<br>15.0       | 1k 101.0 .0 74.7 .0 9.3 .0 14.8 2.2 2Y Hz 1k 93.0 .0 74.8 .0 9.4 .0 14.9 -6.1    | 2k 94.0 .0 74.7 .0 16.0 .0 9.6 -6.2  2k 91.0 .0 74.8 .0 16.1 .0 9.8 -9.7 | 89.0<br>.0<br>74.7<br>.0<br>31.6<br>.0<br>3.3<br>-20.7<br>4k<br>88.0<br>.0<br>74.8<br>.0<br>31.9<br>.0<br>3.6 | 83.0<br>.0<br>74.7<br>.0<br>83.9<br>.0<br>-2.2<br>-73.5<br>8k<br>83.0<br>.0<br>74.8<br>.0<br>84.6<br>.0<br>-2.0  | .0<br>.0<br>.0<br>74.7<br>.0<br>278.6<br>.0<br>-5.5<br>-100.0 |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 15.0 SOURCE: 25 CFS - processing  POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT 6.7 SOURCE: 26                  | 31.5 100.0 74.7 .0 .0 .0 -5.7 30.9 (externormal state of the content of the conte                   | 63 102.0 74.7 .0 .1 .0 -3.5 30.6 rnal) 63 100.0 74.8 .0 .1 .0 -3.4 28.5 rnal) 63 | 125 106.0 .0 74.7 .0 .5.5 .0 5.5 25.3 - forki  125 99.0 .0 74.8 .0 .5.5 .0 18.1 - aggree 125 102.0 | FF 250 100.0 FF 250 FF 250 100.0                                                                             | 500  108.0  .0  74.7 .0 4.8 .0 15.0  74.8 .0 15.0  74.8 .0 15.0  74.8 .0 15.0  13.5                 | CY Hz                                                                            | 2k 94.0 .0 74.7 .0 16.0 .0 9.6 -6.2  2k 91.0 .0 74.8 .0 16.1 .0 9.8 -9.7 | 89.0<br>.0<br>74.7<br>.0<br>31.6<br>.0<br>3.3<br>-20.7<br>4k<br>88.0<br>.0<br>74.8<br>.0<br>31.9<br>.0<br>3.6 | 83.0<br>.0<br>74.7<br>.0<br>83.9<br>.0<br>-2.2<br>-73.5<br>8k<br>83.0<br>.0<br>74.8<br>.0<br>84.6<br>.0<br>-2.0  | .0<br>.0<br>.0<br>74.7<br>.0<br>278.6<br>.0<br>-5.5<br>-100.0 |

| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND<br>GROUND       | .0 .<br>.0 .<br>.0 .                     | 0 .0<br>1 .5<br>0 .0<br>5 5.4 | .0<br>1.8<br>.0<br>15.0 | .0<br>4.8<br>.0<br>15.0 | .0<br>9.2<br>.0<br>14.8 | .0<br>15.9<br>.0<br>9.4 | .0<br>31.4<br>.0<br>3.2 | .0<br>83.3<br>.0<br>-2.2         | .0<br>276.6<br>.0<br>-5.5 |
|----------------------------------------------------------|------------------------------------------|-------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------------------------|---------------------------|
| TOTAL AWT 15.5                                           | 41.0 39.                                 | 7 21.4                        | 8.6                     | 6.6                     | 5.3                     | 1.1                     | -12.3                   | -50.7-                           | -100.0                    |
| SOURCE : 27<br>CFS - processing                          | (external)                               | - silo                        | vent 1                  |                         |                         |                         |                         |                                  |                           |
|                                                          |                                          |                               | FR                      | REQUENC                 | Y Hz_                   |                         |                         |                                  |                           |
|                                                          | 31.5 63                                  | 125                           | 250                     | 500                     | 1k                      | 2k                      | 4k                      | 8k                               | 16k                       |
| POWER LEVEL<br>DIRECTIVITY                               | 84.0 82.                                 |                               |                         |                         |                         |                         |                         |                                  |                           |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND       | 74.7 74.<br>.0 .<br>.0 .<br>.0 .<br>.0 . | 0.0                           | . 0                     | . 0                     | . 0                     | . 0                     | . 0                     | 74.7<br>.0<br>83.5<br>.0<br>-2.6 | . 0                       |
| TOTAL AWT 5.9                                            | 14.2 8.                                  | 9 3.2                         | 2.1                     | 6.7                     | 1.0                     | -12.6                   | -34.5                   | -92.6-                           | -100.0                    |
| SOURCE : 28<br>CFS - processing                          | (external)                               | - silo                        | vent 2                  | 2                       |                         |                         |                         |                                  |                           |
|                                                          |                                          |                               |                         |                         |                         |                         |                         |                                  |                           |
|                                                          | 31.5 63                                  |                               |                         |                         |                         |                         |                         |                                  |                           |
| POWER LEVEL<br>DIRECTIVITY                               | 84.0 82.                                 | 0 86.0                        | 89.0                    | .0                      | 81.0                    | 74.0                    | 69.0                    | 63.0                             | .0                        |
| BARRIER                                                  | 74.7 74.<br>.0 .                         | 0.0                           | . 0                     | .0                      | .0                      | .0                      | .0                      | . 0                              | . 0                       |
| AIR ABSORPTION<br>TEMP & WIND                            | .0 .                                     | 1 .5<br>0 .0                  | 1.8                     | 4.8                     | 9.2                     | 15.9<br>.0              | 31.5                    | 83.4                             | 277.0<br>.0               |
| GROUND                                                   | -4.9 -1.                                 | / /.6                         | 10.4                    | 1.8                     | -4.0                    | -3.9                    | -2.7                    | -2.6                             | -2.4                      |
| TOTAL AWT 5.9                                            | 14.2 8.                                  | 9 3.2                         | 2.1                     | 6.7                     | 1.1                     | -12.6                   | -34.5                   | -92.5-                           | -100.0                    |
| TOTAL AWT 21.8<br>SINGLE POINT CALC<br>ENM CALC MODULE   |                                          | 7 29.1                        | 20.8                    | 16.8                    | 10.6                    | 5.2                     | -8.1                    | -50.2                            | -88.0                     |
| FILENAMES C:\ENM\SOURCES\2 2118506A.GEN C:\ENM\MAPS\2118 |                                          | 6A-3                          |                         |                         |                         |                         |                         |                                  |                           |
| OUT1 file and RN                                         | JK1 file                                 |                               |                         |                         |                         |                         |                         |                                  |                           |
| TEMP (deg C)<br>25.0                                     | HUMIDIT                                  | Y (%)                         |                         |                         |                         |                         |                         |                                  |                           |
| WIND SPEED (m/sec                                        | e) WIND DI                               | R (deg)                       |                         |                         |                         |                         |                         |                                  |                           |
| TEMP GRAD (deg C/                                        | 100m)                                    |                               |                         |                         |                         |                         |                         |                                  |                           |
| X= 2366.000 Y=                                           | 4471.000                                 | Z=                            | 22.20                   | 0                       |                         |                         |                         |                                  |                           |
| SOURCE : 13<br>CFS - processing                          | (external)                               | - backl                       | noe                     |                         |                         |                         |                         |                                  |                           |
|                                                          |                                          |                               | FR                      | EQUENC                  | Y Hz_                   |                         |                         |                                  |                           |
|                                                          | 31.5 63                                  | 125                           | 250                     | 500                     | 1k                      | 2k                      | 4k                      | 8k                               | 16k                       |
| POWER LEVEL<br>DIRECTIVITY                               | 95.0 95.<br>.0 .                         |                               |                         |                         |                         |                         |                         |                                  |                           |
|                                                          | 76.9 76.                                 | 9 76.9                        | 76.9                    | 76.9                    | 76.9                    | 76.9                    | 76.9                    |                                  |                           |
| BARRIER<br>AIR ABSORPTION                                | .0 .                                     | 2 .7                          | 2.3                     | 6.1                     | 11.8                    | 20.2                    | .0<br>39.4              |                                  | 300.0                     |
| TEMP & WIND<br>GROUND                                    | -5.7 -3.                                 | 3 6.6                         | 15.0                    | 15.0                    | 15.0                    | 15.0                    | .0<br>11.7              | .0<br>5.6                        | .0                        |
| TOTAL AWT .9                                             | 23.8 21.                                 | 3 10.9                        | .9                      | -3.0                    | -8.7                    | -17.0                   | -33.0                   | -93.5-                           | -100.0                    |
| SOURCE : 14<br>CFS - processing                          | (external)                               | - FEL                         |                         |                         |                         |                         |                         |                                  |                           |
|                                                          |                                          |                               | FR                      | EQUENC                  | Y Hz_                   |                         |                         |                                  |                           |
|                                                          |                                          |                               |                         |                         |                         |                         |                         |                                  |                           |

31.5 63 125 250 500 1k 2k 4k 8k 16k

| POWER LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 94 0                                                                                         | 100 0                                                                           | 100 0                                                                                         | 106 0                                                                                               | 98 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 101 0                                                                         | 98 0                                                                             | 92 0                                                                                   | 86 N                                                                                                                                  | 0                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| DIRECTIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0                                                                                           | .0                                                                              | .0                                                                                            | .0                                                                                                  | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0                                                                            | .0                                                                               | .0                                                                                     | .0                                                                                                                                    | .0                                                                                                                        |
| DISTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76.9                                                                                         | 76.9                                                                            | 76.9                                                                                          | 76.9                                                                                                | 76.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76.9                                                                          | 76.9                                                                             | 76.9                                                                                   | 76.9                                                                                                                                  | 76.9                                                                                                                      |
| BARRIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .0                                                                                           | .0                                                                              | .0                                                                                            | .0                                                                                                  | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0                                                                            | . 0                                                                              | .0                                                                                     | .0                                                                                                                                    | .0                                                                                                                        |
| AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .0                                                                                           | .2                                                                              | . 0                                                                                           | 2.3<br>.0                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.8                                                                          | .0                                                                               | 39.5                                                                                   | 106.2                                                                                                                                 | 300.0                                                                                                                     |
| GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -5.7                                                                                         | -3.3                                                                            | 6.6                                                                                           | 15.0                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               |                                                                                  |                                                                                        |                                                                                                                                       |                                                                                                                           |
| TOTAL AWT 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.8                                                                                         | 26.2                                                                            | 15.8                                                                                          | 11.8                                                                                                | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.7                                                                          | -14.1                                                                            | -35.8-                                                                                 | -100.0-                                                                                                                               | -100.0                                                                                                                    |
| SOURCE : 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |                                                                                 |                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               |                                                                                  |                                                                                        |                                                                                                                                       |                                                                                                                           |
| CFS - curing (int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cenral)                                                                                      | - FEL                                                                           |                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               |                                                                                  |                                                                                        |                                                                                                                                       |                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                 |                                                                                               | FR                                                                                                  | REQUENC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CY Hz_                                                                        |                                                                                  |                                                                                        |                                                                                                                                       |                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.5                                                                                         | 63                                                                              | 125                                                                                           | 250                                                                                                 | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1k                                                                            | 2k                                                                               | 4k                                                                                     | 8k                                                                                                                                    | 16k                                                                                                                       |
| POWER LEVEL DIRECTIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84.0                                                                                         | 90.0                                                                            | 90.0                                                                                          | 96.0                                                                                                | 88.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 91.0<br>.0                                                                    | 88.0                                                                             | 82.0                                                                                   | 76.0<br>.0                                                                                                                            | .0                                                                                                                        |
| DISTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77.1                                                                                         | 77.1                                                                            | 77.1                                                                                          | 77.1                                                                                                | 77.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 77.1                                                                          | 77.1                                                                             | 77.1                                                                                   | 77.1                                                                                                                                  | 77.1                                                                                                                      |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 0                                                                                          | . 0                                                                             | .0                                                                                            | .0                                                                                                  | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0                                                                            | .0                                                                               | .0                                                                                     | .0                                                                                                                                    | .0                                                                                                                        |
| TEMP & WIND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0                                                                                           | .0                                                                              | . 0                                                                                           | .0                                                                                                  | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0                                                                            | .0                                                                               | .0                                                                                     | .0                                                                                                                                    | .0                                                                                                                        |
| GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0<br>-5.7                                                                                   | -3.3                                                                            | 6.8                                                                                           | 15.0                                                                                                | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.0                                                                          | 15.0                                                                             | 12.0                                                                                   | 6.0                                                                                                                                   | . 2                                                                                                                       |
| TOTAL AWT -3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.6                                                                                         | 16.0                                                                            | 5.4                                                                                           | 1.6                                                                                                 | -10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -13.2                                                                         | -24.8                                                                            | -47.5                                                                                  | -100.0-                                                                                                                               | -100.0                                                                                                                    |
| SOURCE : 16<br>CFS - curing (int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cenral)                                                                                      | - con                                                                           | veyor                                                                                         | belt /                                                                                              | motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : 1                                                                           |                                                                                  |                                                                                        |                                                                                                                                       |                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                 | _                                                                                             | FR                                                                                                  | REQUENC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CY Hz_                                                                        |                                                                                  |                                                                                        |                                                                                                                                       |                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.5                                                                                         | 63                                                                              |                                                                                               |                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               |                                                                                  | 4k                                                                                     | 8k                                                                                                                                    | 16k                                                                                                                       |
| POWER LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |                                                                                 |                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               |                                                                                  |                                                                                        |                                                                                                                                       |                                                                                                                           |
| DIRECTIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0                                                                                           | .0                                                                              | .0                                                                                            | .0                                                                                                  | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0                                                                            | .0                                                                               | .0                                                                                     | .0                                                                                                                                    | .0                                                                                                                        |
| DISTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77.2                                                                                         | 77.2                                                                            | 77.2                                                                                          | 77.2                                                                                                | 77.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 77.2                                                                          | 77.2                                                                             | 77.2                                                                                   | 77.2                                                                                                                                  | 77.2                                                                                                                      |
| BARRIER<br>ATR ABSORPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0                                                                                           | .0                                                                              | .0                                                                                            | 2 4                                                                                                 | .0<br>6 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12 3                                                                          | 20 9                                                                             | .0                                                                                     | 109 9                                                                                                                                 | 300 0                                                                                                                     |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 0                                                                                          | . 0                                                                             | .0                                                                                            | .0                                                                                                  | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0                                                                            | .0                                                                               | .0                                                                                     | .0                                                                                                                                    | .0                                                                                                                        |
| GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -5.7                                                                                         | -3.2                                                                            | 6.9                                                                                           | 15.0                                                                                                | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.0                                                                          | 15.0                                                                             | 12.0                                                                                   | 6.0                                                                                                                                   | . 2                                                                                                                       |
| TOTAL AWT -7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.5                                                                                          | 18.8                                                                            | -4.8                                                                                          | -20.6                                                                                               | -26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -36.4                                                                         | -48.1                                                                            | -68.0-                                                                                 | -100.0-                                                                                                                               | -100.0                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                 |                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               |                                                                                  |                                                                                        |                                                                                                                                       |                                                                                                                           |
| SOURCE : 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | enral)                                                                                       | - cons                                                                          | vevor                                                                                         | helt /                                                                                              | motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 2                                                                           |                                                                                  |                                                                                        |                                                                                                                                       |                                                                                                                           |
| SOURCE: 17<br>CFS - curing (int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cenral)                                                                                      | - con                                                                           |                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               |                                                                                  |                                                                                        |                                                                                                                                       |                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                 |                                                                                               | FR                                                                                                  | REQUENC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CY Hz_                                                                        |                                                                                  |                                                                                        | 01-                                                                                                                                   | 161-                                                                                                                      |
| CFS - curing (int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.5                                                                                         | 63                                                                              | 125                                                                                           | FR                                                                                                  | REQUENC<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CY Hz_                                                                        | 2k                                                                               | 4k                                                                                     |                                                                                                                                       |                                                                                                                           |
| CFS - curing (int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.5<br>77.0<br>.0                                                                           | 63<br>93.0<br>.0                                                                | 125<br>80.0<br>.0                                                                             | FF 250 74.0                                                                                         | 500<br>72.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1k<br>68.0                                                                    | 2k<br>65.0<br>.0                                                                 | 4k<br>62.0<br>.0                                                                       | 58.0                                                                                                                                  |                                                                                                                           |
| CFS - curing (int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.5<br>77.0<br>.0                                                                           | 63<br>93.0<br>.0                                                                | 125<br>80.0<br>.0                                                                             | FF 250 74.0                                                                                         | 500<br>72.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1k<br>68.0                                                                    | 2k<br>65.0<br>.0                                                                 | 4k<br>62.0<br>.0                                                                       | 58.0                                                                                                                                  |                                                                                                                           |
| CFS - curing (interpretation of the control of the  | 31.5<br>77.0<br>.0<br>77.3<br>6.9                                                            | 63<br>93.0<br>.0<br>77.3<br>8.4                                                 | 125<br>80.0<br>.0<br>77.3<br>10.5                                                             | 250 74.0 .0 77.3 12.5                                                                               | 500<br>72.0<br>.0<br>77.3<br>14.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1k 68.0 .0 77.3 17.8                                                          | 2k<br>65.0<br>.0<br>77.3<br>20.8                                                 | 4k 62.0 .0 77.3 23.8                                                                   | 58.0<br>.0<br>77.3<br>25.0                                                                                                            | .0<br>.0<br>77.3<br>25.0                                                                                                  |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31.5<br>77.0<br>.0<br>77.3<br>6.9                                                            | 63<br>93.0<br>.0<br>77.3<br>8.4<br>.2                                           | 125<br>80.0<br>.0<br>77.3<br>10.5                                                             | 250 74.0 .0 77.3 12.5 2.4                                                                           | 500<br>72.0<br>.0<br>77.3<br>14.8<br>6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1k 68.0 .0 77.3 17.8 12.4                                                     | 2k 65.0 .0 77.3 20.8 21.1                                                        | 4k 62.0 .0 77.3 23.8 41.2                                                              | 58.0<br>.0<br>77.3<br>25.0<br>111.1                                                                                                   | .0<br>.0<br>77.3<br>25.0<br>300.0                                                                                         |
| CFS - curing (interpretation of the control of the  | 31.5<br>77.0<br>.0<br>77.3<br>6.9                                                            | 63<br>93.0<br>.0<br>77.3<br>8.4<br>.2                                           | 125<br>80.0<br>.0<br>77.3<br>10.5<br>.7                                                       | 74.0<br>.0<br>77.3<br>12.5<br>2.4                                                                   | 72.0<br>.0<br>77.3<br>14.8<br>6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1k 68.0 .0 77.3 17.8 12.4                                                     | 2k 65.0 .0 77.3 20.8 21.1 .0                                                     | 4k 62.0 .0 77.3 23.8 41.2 .0                                                           | 58.0<br>.0<br>77.3<br>25.0<br>111.1                                                                                                   | .0<br>.0<br>77.3<br>25.0<br>300.0                                                                                         |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.5<br>77.0<br>.0<br>77.3<br>6.9<br>.0<br>.0                                                | 63<br>93.0<br>.0<br>77.3<br>8.4<br>.2<br>.0                                     | 125<br>80.0<br>.0<br>77.3<br>10.5<br>.7<br>.0<br>9.1                                          | 74.0<br>.0<br>77.3<br>12.5<br>2.4<br>.0                                                             | 72.0<br>.0<br>77.3<br>14.8<br>6.4<br>.0<br>-4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1k 68.0 .0 77.3 17.8 12.4 .03                                                 | 2k 65.0 .0 77.3 20.8 21.1 .0 -3.4                                                | 4k 62.0 .0 77.3 23.8 41.2 .0 -2.1                                                      | 58.0<br>.0<br>77.3<br>25.0<br>111.1<br>.0<br>-3.3                                                                                     | .0<br>.0<br>77.3<br>25.0<br>300.0<br>.0<br>-1.9                                                                           |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31.5<br>77.0<br>.0<br>77.3<br>6.9<br>.0<br>.0                                                | 63<br>93.0<br>.0<br>77.3<br>8.4<br>.2<br>.0                                     | 125<br>80.0<br>.0<br>77.3<br>10.5<br>.7<br>.0<br>9.1                                          | 74.0<br>.0<br>77.3<br>12.5<br>2.4<br>.0                                                             | 72.0<br>.0<br>77.3<br>14.8<br>6.4<br>.0<br>-4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1k 68.0 .0 77.3 17.8 12.4 .03                                                 | 2k 65.0 .0 77.3 20.8 21.1 .0 -3.4                                                | 4k 62.0 .0 77.3 23.8 41.2 .0 -2.1                                                      | 58.0<br>.0<br>77.3<br>25.0<br>111.1<br>.0<br>-3.3                                                                                     | .0<br>.0<br>77.3<br>25.0<br>300.0<br>.0<br>-1.9                                                                           |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT -17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31.5<br>77.0<br>.0<br>77.3<br>6.9<br>.0<br>.0<br>-4.3                                        | 63<br>93.0<br>.0<br>77.3<br>8.4<br>.2<br>.0<br>.3                               | 125<br>80.0<br>.0<br>77.3<br>10.5<br>.7<br>.0<br>9.1                                          | 74.0<br>.0<br>77.3<br>12.5<br>2.4<br>.0<br>.2                                                       | 500<br>72.0<br>.0<br>77.3<br>14.8<br>6.4<br>.0<br>-4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1k 68.0 .0 77.3 17.8 12.4 .03                                                 | 2k 65.0 .0 77.3 20.8 21.1 .0 -3.4                                                | 4k 62.0 .0 77.3 23.8 41.2 .0 -2.1                                                      | 58.0<br>.0<br>77.3<br>25.0<br>111.1<br>.0<br>-3.3                                                                                     | .0<br>.0<br>77.3<br>25.0<br>300.0<br>.0<br>-1.9                                                                           |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT -17.6 SOURCE: 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.5<br>77.0<br>.0<br>77.3<br>6.9<br>.0<br>.0<br>-4.3                                        | 63<br>93.0<br>.0<br>77.3<br>8.4<br>.2<br>.0<br>.3                               | 125<br>80.0<br>.0<br>77.3<br>10.5<br>.7<br>.0<br>9.1                                          | 74.0<br>.0<br>77.3<br>12.5<br>2.4<br>.0<br>.2                                                       | 500<br>72.0<br>.0<br>77.3<br>14.8<br>6.4<br>.0<br>-4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1k 68.0 .0 77.3 17.8 12.4 .03 -39.2                                           | 2k 65.0 .0 77.3 20.8 21.1 .0 -3.4                                                | 4k 62.0 .0 77.3 23.8 41.2 .0 -2.1                                                      | 58.0<br>.0<br>77.3<br>25.0<br>111.1<br>.0<br>-3.3                                                                                     | .0<br>.0<br>77.3<br>25.0<br>300.0<br>.0<br>-1.9                                                                           |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT -17.6 SOURCE: 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.5<br>77.0<br>.0<br>77.3<br>6.9<br>.0<br>.0<br>-4.3<br>-2.9                                | 63<br>93.0<br>.0<br>77.3<br>8.4<br>.2<br>.0<br>.3                               | 125<br>80.0<br>.0<br>77.3<br>10.5<br>.7<br>.0<br>9.1<br>-17.6                                 | 74.0<br>.0<br>77.3<br>12.5<br>2.4<br>.0<br>.2<br>-18.4<br>belt /                                    | 500 72.0 .0 77.3 14.8 6.4 .0 -4.6 -21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1k 68.0 .0 77.3 17.8 12.4 .0 .3 -39.2                                         | 2k 65.0 .0 77.3 20.8 21.1 .0 -3.4                                                | 4k 62.0 .0 77.3 23.8 41.2 .0 -2.1                                                      | 58.0<br>.0<br>77.3<br>25.0<br>111.1<br>.0<br>-3.3                                                                                     | .0<br>.0<br>77.3<br>25.0<br>300.0<br>-1.9                                                                                 |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT -17.6 SOURCE: 18 CFS - curing (interpretation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.5 77.0 .0 77.3 6.9 .0 .0 -4.3 -2.9 cenral)                                                | 63<br>93.0<br>.0<br>77.3<br>8.4<br>.2<br>.0<br>.3<br>6.8                        | 125<br>80.0<br>.0<br>77.3<br>10.5<br>.0<br>9.1<br>-17.6<br>veyor                              | 74.0<br>.0<br>77.3<br>12.5<br>2.4<br>.0<br>.2<br>-18.4<br>belt /                                    | 500 72.0 .0 77.3 14.8 6.4 .0 -4.6 -21.8 / motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1k 68.0 .0 77.3 17.8 12.4 .0 .3 -39.2 24 3                                    | 2k 65.0 .0 77.3 20.8 21.1 .0 -3.4 -50.8                                          | 4k 62.0 .0 77.3 23.8 41.2 .0 -2.1 -78.3                                                | 58.0<br>.0<br>77.3<br>25.0<br>111.1<br>.0<br>-3.3                                                                                     | .0<br>.0<br>.0<br>77.3<br>25.0<br>300.0<br>-1.9<br>-100.0                                                                 |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT -17.6 SOURCE: 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.5<br>77.0<br>.0<br>77.3<br>6.9<br>.0<br>.0<br>-4.3<br>-2.9<br>cenral)                     | 63<br>93.0<br>.0<br>77.3<br>8.4<br>.2<br>.0<br>.3<br>6.8                        | 125<br>80.0<br>.0<br>77.3<br>10.5<br>.7<br>.0<br>9.1<br>-17.6<br>veyor                        | 74.0<br>.0<br>77.3<br>12.5<br>2.4<br>.0<br>.2<br>-18.4<br>belt /                                    | 72.0<br>72.0<br>77.3<br>14.8<br>6.4<br>.0<br>-4.6<br>-21.8<br>/ motor<br>REQUENC<br>500<br>72.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1k 68.0 .0 77.3 17.8 12.4 .0 .3 -39.2 1k 68.0                                 | 2k 65.0 .0 77.3 20.8 21.1 .0 -3.4 -50.8                                          | 4k 62.0 .0 77.3 23.8 41.2 .0 -2.1 -78.3                                                | 58.0<br>.0<br>77.3<br>25.0<br>111.1<br>.0<br>-3.3<br>-100.0-                                                                          | .0<br>.0<br>77.3<br>25.0<br>300.0<br>-1.9<br>-100.0                                                                       |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT -17.6 SOURCE: 18 CFS - curing (interpretation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.5 77.0 .0 77.3 6.9 .0 .0 -4.3 -2.9 cenral) 31.5 77.0 .0 77.4                              | 63 93.0 .0 77.3 8.4 .2 .0 .3 6.8 - conv                                         | 125<br>80.0<br>.0<br>77.3<br>10.5<br>.0<br>9.1<br>-17.6<br>veyor<br>125<br>80.0<br>.0<br>77.4 | 74.0<br>.0<br>77.3<br>12.5<br>2.4<br>.0<br>.2<br>-18.4<br>belt /<br>FF<br>250<br>74.0<br>.0         | 72.0<br>.0<br>77.3<br>14.8<br>6.4<br>.0<br>-4.6<br>-21.8<br>(motor<br>500<br>72.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1k 68.0 .0 77.3 17.8 12.4 .0 .3 -39.2 1k 68.0 .0 77.4                         | 2k 65.0 .0 77.3 20.8 21.1 .0 -3.4 -50.8                                          | 4k 62.0 .0 77.3 23.8 41.2 .0 -2.1 -78.3 4k 62.0 .0 77.4                                | 58.0<br>.0<br>77.3<br>25.0<br>111.1<br>.0<br>-3.3<br>-100.0-                                                                          | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-1.9<br>-100.0                                                                        |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -17.6  SOURCE : 18 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.5 77.0 .0 77.3 6.9 .0 .0 -4.3 -2.9 seenral) 31.5 77.0 .0 77.4 12.6                        | 63 93.0 .0 77.3 8.4 .2 .0 .3 6.8 - conv                                         | 125 80.0 .0 77.3 10.5 .7 .0 9.1 -17.6 veyor  125 80.0 .0 77.4 18.0                            | 74.0<br>.0<br>77.3<br>12.5<br>2.4<br>.0<br>.2<br>-18.4<br>belt /<br>FF<br>250<br>74.0<br>.0         | 72.0<br>.0<br>.0<br>.77.3<br>14.8<br>.6.4<br>.0<br>.4.6<br>-21.8<br>/ motor<br>500<br>.0<br>.0<br>.77.4<br>24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1k 68.0 .0 77.3 17.8 12.4 .0 .3 -39.2 1k 68.0 .0 77.4 25.0                    | 2k 65.0 .0 77.3 20.8 21.1 .0 -3.4 -50.8                                          | 4k 62.0 .0 77.3 23.8 41.2 .0 -2.1 -78.3                                                | 58.0<br>.0<br>77.3<br>25.0<br>111.1<br>.0<br>-3.3<br>-100.0-                                                                          | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1.9<br>-100.0                                                                        |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT -17.6 SOURCE : 18 CFS - curing (interpretails) POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31.5 77.0 .0 77.3 6.9 .0 .0 -4.3 -2.9 seenral) 31.5 77.0 .0 77.4 12.6                        | 63 93.0 .0 77.3 8.4 .2 .0 .3 6.8 - conv                                         | 125 80.0 .0 77.3 10.5 .7 .0 9.1 -17.6 veyor  125 80.0 .0 77.4 18.0                            | 74.0<br>.0<br>77.3<br>12.5<br>2.4<br>.0<br>.2<br>-18.4<br>belt /<br>FF<br>250<br>74.0<br>.0         | 72.0<br>.0<br>.0<br>.77.3<br>14.8<br>.6.4<br>.0<br>.4.6<br>-21.8<br>/ motor<br>500<br>.0<br>.0<br>.77.4<br>24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1k 68.0 .0 77.3 17.8 12.4 .0 .3 -39.2 1k 68.0 .0 77.4 25.0                    | 2k 65.0 .0 77.3 20.8 21.1 .0 -3.4 -50.8                                          | 4k 62.0 .0 77.3 23.8 41.2 .0 -2.1 -78.3                                                | 58.0<br>.0<br>77.3<br>25.0<br>111.1<br>.0<br>-3.3<br>-100.0-                                                                          | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1.9<br>-100.0                                                                        |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -17.6  SOURCE : 18 CFS - curing (interpretation)  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.5 77.0 .0 77.3 6.9 .0 .0 -4.3 -2.9 cenral) 31.5 77.0 .0 77.4                              | 63 93.0 .0 77.3 8.4 .2 .0 .3 6.8 - conv                                         | 125 80.0 .0 77.3 10.5 .7 .0 9.1 -17.6 veyor  125 80.0 .0 77.4 18.0                            | 74.0<br>.0<br>77.3<br>12.5<br>2.4<br>.0<br>.2<br>-18.4<br>belt /<br>FF<br>250<br>74.0<br>.0         | 72.0<br>.0<br>.0<br>.77.3<br>14.8<br>.6.4<br>.0<br>.4.6<br>-21.8<br>/ motor<br>500<br>.0<br>.0<br>.77.4<br>24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1k 68.0 .0 77.3 17.8 12.4 .0 .3 -39.2 1k 68.0 .0 77.4 25.0                    | 2k 65.0 .0 77.3 20.8 21.1 .0 -3.4 -50.8                                          | 4k 62.0 .0 77.3 23.8 41.2 .0 -2.1 -78.3 4k 62.0 .0 77.4 25.0                           | 58.0<br>.0<br>77.3<br>25.0<br>111.1<br>.0<br>-3.3<br>-100.0-                                                                          | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1.9<br>-100.0                                                                        |
| POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND TOTAL AWT -17.6 SOURCE: 18 CFS - curing (interpretation) POWER LEVEL DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31.5 77.0 .0 77.3 6.9 .0 .0 -4.3 -2.9 seenral) 31.5 77.0 .0 77.4 12.6 .0 .0 -4.5             | 63 93.0 .0 77.3 8.4 .2 .0 .3 6.8 - conv 63 93.0 .0 77.4 15.0 .2 .0 .0           | 125 80.0 .0 77.3 10.5 .7 .0 9.1 -17.6 veyor  125 80.0 .0 77.4 18.0 .7 .0 10.9                 | FF 250 74.0 .0 .0 .2 .4 .0 .0 .2 .4 .0 .0 .77.4 .250 .77.4 .21.0 .2.4 .0 .2.8                       | 72.0<br>.0<br>.0<br>.77.3<br>14.8<br>6.4<br>.0<br>-4.6<br>-21.8<br>/ motor<br>500<br>72.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1k 68.0 .0 77.3 17.8 12.4 .0 .3 -39.2 1k 68.0 .0 77.4 25.0 12.5 .0 -3.7       | 2k 65.0 .0 77.3 20.8 21.1 .0 -3.4 -50.8                                          | 4k 62.0 .0 77.3 23.8 41.2 .0 -2.1 -78.3  4k 62.0 .0 77.4 25.0 41.5 .0 -2.6             | 58.0<br>.0<br>.0<br>.77.3<br>.25.0<br>.111.1<br>.0<br>.3.3<br>-100.0-<br>.8k<br>.58.0<br>.0<br>.77.4<br>.25.0<br>.111.8<br>.0<br>.2.7 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-1.9<br>-100.0                                                                  |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -17.6  SOURCE : 18 CFS - curing (interpretation of the control of the | 31.5 77.0 .0 77.3 6.9 .0 .0 -4.3 -2.9  cenral) 31.5 77.0 .0 77.4 12.6 .0 .0 -4.5             | 63 93.0 .0 77.3 8.4 .2 .0 .3 6.8 - conv 63 93.0 .0 77.4 15.0 .2 .0 .0 .5        | 125 80.0 .0 77.3 10.5 .7 .0 9.1 -17.6 veyor  125 80.0 .0 77.4 18.0 .7 .0 10.9 -26.9           | FF 250 74.0 .0 .77.3 12.5 2.4 4 .0 .0 .2 .4 .1 .0 .0 .77.4 21.0 2.8 -29.6                           | 72.0<br>72.0<br>77.3<br>14.8<br>6.4<br>.0<br>-4.6<br>-21.8<br>Motor<br>72.0<br>.0<br>77.4<br>24.0<br>6.4<br>.0<br>-3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1k 68.0 .0 77.3 17.8 12.4 .0 .3 -39.2 1k 68.0 .0 77.4 25.0 12.5 .0 -3.7       | 2k 65.0 .0 77.3 20.8 21.1 .0 -3.4 -50.8                                          | 4k 62.0 .0 77.3 23.8 41.2 .0 -2.1 -78.3  4k 62.0 .0 77.4 25.0 41.5 .0 -2.6             | 58.0<br>.0<br>.0<br>.77.3<br>.25.0<br>.111.1<br>.0<br>.3.3<br>-100.0-<br>.8k<br>.58.0<br>.0<br>.77.4<br>.25.0<br>.111.8<br>.0<br>.2.7 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-1.9<br>-100.0                                                                  |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -17.6  SOURCE: 18 CFS - curing (interpretation) POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -24.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.5 77.0 .0 77.3 6.9 .0 .0 -4.3 -2.9  cenral) 31.5 77.0 .0 77.4 12.6 .0 .0 -4.5             | 63 93.0 .0 77.3 8.4 .2 .0 .3 6.8 - conv 63 93.0 .0 77.4 15.0 .2 .0 .0 .5        | 125 80.0 .0 77.3 10.5 .7 .0 9.1 -17.6 veyor  125 80.0 .0 77.4 18.0 .7 .0 10.9 -26.9           | FF 250 74.0 .0 .2 .4 .0 .2 .5 .0 .7 .4 .0 .0 .0 .7 .4 .0 .0 .2 .8                                   | 72.0<br>.0<br>77.3<br>14.8<br>6.4<br>.0<br>-4.6<br>-21.8<br>7 motor<br>72.0<br>.0<br>77.4<br>24.0<br>6.4<br>.0<br>-3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1k 68.0 .0 77.3 17.8 12.4 .0 .3 -39.2 1k 68.0 .0 77.4 25.0 12.5 .0 -3.7       | 2k 65.0 .0 77.3 20.8 21.1 .0 -3.4 -50.8  2k 65.0 .0 77.4 25.0 21.3 .0 -2.6       | 4k 62.0 .0 77.3 23.8 41.2 .0 -2.1 -78.3  4k 62.0 .0 77.4 25.0 41.5 .0 -2.6             | 58.0<br>.0<br>.0<br>.77.3<br>.25.0<br>.111.1<br>.0<br>.3.3<br>-100.0-<br>.8k<br>.58.0<br>.0<br>.77.4<br>.25.0<br>.111.8<br>.0<br>.2.7 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-1.9<br>-100.0                                                                  |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -17.6  SOURCE : 18 CFS - curing (interpretation of the control of the | 31.5 77.0 .0 77.3 6.9 .0 .0 -4.3 -2.9  cenral) 31.5 77.0 .0 77.4 12.6 .0 .0 -4.5             | 63 93.0 .0 77.3 8.4 .2 .0 .3 6.8 - conv 63 93.0 .0 77.4 15.0 .2 .0 .0 .5        | 125 80.0 .0 77.3 10.5 .7 .0 9.1 -17.6 veyor  125 80.0 .0 77.4 18.0 .7 .0 10.9 -26.9           | FF 250 74.0 .0 .77.3 12.5 2.4 4 .0 .0 .2 .4 .1 .0 .0 .77.4 21.0 2.8 -29.6                           | 72.0<br>.0<br>77.3<br>14.8<br>6.4<br>.0<br>-4.6<br>-21.8<br>7 motor<br>72.0<br>.0<br>77.4<br>24.0<br>6.4<br>.0<br>-3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1k 68.0 .0 77.3 17.8 12.4 .0 .3 -39.2 1k 68.0 .0 77.4 25.0 12.5 .0 -3.7       | 2k 65.0 .0 77.3 20.8 21.1 .0 -3.4 -50.8  2k 65.0 .0 77.4 25.0 21.3 .0 -2.6       | 4k 62.0 .0 77.3 23.8 41.2 .0 -2.1 -78.3  4k 62.0 .0 77.4 25.0 41.5 .0 -2.6             | 58.0<br>.0<br>.0<br>.77.3<br>.25.0<br>.111.1<br>.0<br>.3.3<br>-100.0-<br>.8k<br>.58.0<br>.0<br>.77.4<br>.25.0<br>.111.8<br>.0<br>.2.7 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>-1.9<br>-100.0                                                                  |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -17.6  SOURCE : 18 CFS - curing (interpretation of the control of the | 31.5 77.0 .0 77.3 6.9 .0 -4.3 -2.9 seenral) 31.5 77.0 .0 77.4 12.6 .0 .0 -4.5 -8.5           | 63 93.0 .0 77.3 8.4 .2 .0 .3 6.8 - conv 63 93.0 .0 77.4 15.0 .2 .0 .0 .5        | 125 80.0 .0 77.3 10.5 .7 .0 9.1 -17.6 veyor  125 80.0 .0 77.4 18.0 .7 .0 10.9 -26.9           | FF 250 74.0 .0 .0 .2 .4 .0 .0 .2 .4 .0 .0 .0 .77.4 .250 .77.4 .0 .0 .2.8 .29.6 belt /               | 72.0 .0 77.3 14.8 6.4 .0 -4.6 -21.8 / motor 72.0 .0 77.4 24.0 6.4 .0 -3.7 -32.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1k 68.0 .0 77.3 17.8 12.4 .0 .3 -39.2 1k 68.0 .0 77.4 25.0 12.5 .0 -3.7 -43.2 | 2k 65.0 .0 77.3 20.8 21.1 .0 -3.4 -50.8  2k 65.0 .0 77.4 25.0 21.3 .0 -2.6 -56.0 | 4k 62.0 .0 77.3 23.8 41.2 .0 -2.1 -78.3 -78.3 -4k 62.0 .0 77.4 25.0 41.5 .0 -2.6 -79.2 | 58.0<br>.0<br>.77.3<br>25.0<br>111.1<br>.0<br>.3.3<br>-100.0-                                                                         | .0<br>.0<br>.0<br>.77.3<br>25.0<br>300.0<br>.0<br>-1.9<br>-100.0                                                          |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -17.6  SOURCE : 18 CFS - curing (interpretation of the control of the | 31.5 77.0 .0 77.3 6.9 .0 .0 -4.3 -2.9 cenral) 31.5 77.0 .0 77.4 12.6 .0 .0 -4.5 -8.5 cenral) | 63 93.0 .0 77.3 8.4 .2 .0 .3 6.8 - conv 63 93.0 .0 77.4 15.0 .2 .0 .0 .5 - conv | 125 80.0 .0 77.3 10.5 .7 .0 9.1 -17.6 veyor  125 80.0 .0 77.4 18.0 .0 10.9 -26.9 veyor        | FF 250 74.0 .0 77.3 12.5 2.4 .0 .2 -18.4 belt / FF 250 74.0 .0 77.4 21.0 .0 2.8 -29.6 belt / FF 250 | 72.0<br>72.0<br>72.0<br>77.3<br>14.8<br>6.4<br>0.0<br>-4.6<br>72.0<br>72.0<br>72.0<br>72.0<br>77.4<br>24.0<br>6.4<br>.0<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3 | 1k 68.0 .0 77.3 17.8 12.4 .0 .3 -39.2 1k 68.0 .0 77.4 25.0 12.5 .0 -3.7 -43.2 | 2k 65.0 .0 77.3 20.8 21.1 .0 -3.4 -50.8  2k 65.0 .0 77.4 25.0 21.3 .0 -2.6       | 4k 62.0 .0 77.3 23.8 41.2 .0 -2.1 -78.3 -78.3 -4k 62.0 .0 77.4 25.0 41.5 .0 -2.6 -79.2 | 58.0<br>.0<br>.77.3<br>25.0<br>111.1<br>.0<br>.3.3<br>-100.0-<br>8k<br>58.0<br>.0<br>.0<br>.0<br>.111.8<br>.0<br>.0<br>.2.7           | .0<br>.0<br>.0<br>.77.3<br>25.0<br>300.0<br>-1.9<br>-100.0<br>16k<br>.0<br>.0<br>.77.4<br>25.0<br>300.0<br>-2.1<br>-100.0 |
| POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -17.6  SOURCE : 18 CFS - curing (interpretation of the control of the | 31.5 77.0 .0 77.3 6.9 .0 .0 -4.3 -2.9 cenral) 31.5 77.0 .0 77.4 12.6 .0 .0 -4.5 -8.5 cenral) | 63 93.0 .0 77.3 8.4 .2 .0 .3 6.8 - conv 63 93.0 .0 77.4 15.0 .2 .0 .0 .5 - conv | 125 80.0 .0 77.3 10.5 .7 .0 9.1 -17.6 veyor  125 80.0 .0 77.4 18.0 .0 10.9 -26.9 veyor        | FF 250 74.0 .0 77.3 12.5 2.4 .0 .2 -18.4 belt / FF 250 74.0 .0 77.4 21.0 .0 2.8 -29.6 belt / FF 250 | 72.0<br>72.0<br>72.0<br>77.3<br>14.8<br>6.4<br>0.0<br>-4.6<br>72.0<br>72.0<br>72.0<br>72.0<br>77.4<br>24.0<br>6.4<br>.0<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3<br>77.3 | 1k 68.0 .0 77.3 17.8 12.4 .0 .3 -39.2 1k 68.0 .0 77.4 25.0 12.5 .0 -3.7 -43.2 | 2k 65.0 .0 77.3 20.8 21.1 .0 -3.4 -50.8  2k 65.0 .0 77.4 25.0 21.3 .0 -2.6       | 4k 62.0 .0 77.3 23.8 41.2 .0 -2.1 -78.3 -78.3 -4k 62.0 .0 77.4 25.0 41.5 .0 -2.6 -79.2 | 58.0<br>.0<br>.77.3<br>25.0<br>111.1<br>.0<br>.3.3<br>-100.0-<br>8k<br>58.0<br>.0<br>.0<br>.0<br>.111.8<br>.0<br>.0<br>.2.7           | .0<br>.0<br>.0<br>.77.3<br>25.0<br>300.0<br>-1.9<br>-100.0<br>16k<br>.0<br>.0<br>.77.4<br>25.0<br>300.0<br>-2.1<br>-100.0 |

| DISTANCE                                                                                                                                                                                                                                                                                                     | 77.3                                                                                                                                                                | 77 3                                                                                                                                                                  | 77 3                                                                                                            | 77 3                                                                                                                 | 77 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 77 3                                                                          | 77 3                                                                                                                     | 77 3                                                                                                        | 77 3                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                              | 12.8                                                                                                                                                                | 15.8                                                                                                                                                                  | 18.8                                                                                                            | 21.8                                                                                                                 | 24.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.0                                                                          | 25.0                                                                                                                     | 25.0                                                                                                        | 25.0                                                                                                                           |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                                                                                                     | . 0                                                                                                                                                                 | . 2                                                                                                                                                                   | . 7                                                                                                             | 2.4                                                                                                                  | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.5<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.2                                                                          | 41.4                                                                                                                     | 111.7                                                                                                       | 300.0                                                                                                                          |
| GROUND                                                                                                                                                                                                                                                                                                       | -4.5                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |                                                                                                                          |                                                                                                             |                                                                                                                                |
|                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |                                                                                                                          |                                                                                                             |                                                                                                                                |
| TOTAL AWT -25.7                                                                                                                                                                                                                                                                                              | -8.7                                                                                                                                                                | 2                                                                                                                                                                     | -28.2                                                                                                           | -31.2                                                                                                                | -33.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -42.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -56.3                                                                         | -79.7                                                                                                                    | -100.0-                                                                                                     | -100.0                                                                                                                         |
| SOURCE : 20                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |                                                                                                                          |                                                                                                             |                                                                                                                                |
| CFS - curing (in                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     | ) - coi                                                                                                                                                               | nveyor                                                                                                          | belt ,                                                                                                               | / moto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               |                                                                                                                          |                                                                                                             |                                                                                                                                |
|                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                 | 171                                                                                                                  | DECLIENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | av 11-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |                                                                                                                          |                                                                                                             |                                                                                                                                |
|                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                 | F1                                                                                                                   | KEOOFING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CY Hz_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |                                                                                                                          |                                                                                                             |                                                                                                                                |
|                                                                                                                                                                                                                                                                                                              | 31.5                                                                                                                                                                | 63                                                                                                                                                                    | 125                                                                                                             | 250                                                                                                                  | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2k                                                                            | 4k                                                                                                                       | 8k                                                                                                          | 16k                                                                                                                            |
| POWER LEVEL                                                                                                                                                                                                                                                                                                  | 77 0                                                                                                                                                                | 02.0                                                                                                                                                                  | 90 0                                                                                                            | 74 0                                                                                                                 | 72.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65 0                                                                          | 62.0                                                                                                                     | E0 0                                                                                                        | 0                                                                                                                              |
| DIRECTIVITY                                                                                                                                                                                                                                                                                                  | .0                                                                                                                                                                  | .0                                                                                                                                                                    | .0                                                                                                              | .0                                                                                                                   | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0                                                                            | .0                                                                                                                       | .0                                                                                                          | .0                                                                                                                             |
|                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |                                                                                                                          |                                                                                                             |                                                                                                                                |
| DISTANCE<br>BARRIER                                                                                                                                                                                                                                                                                          | 77.2                                                                                                                                                                | 77.2                                                                                                                                                                  | 77.2                                                                                                            | 77.2                                                                                                                 | 77.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 77.2                                                                          | 77.2                                                                                                                     | 77.2                                                                                                        | 77.2                                                                                                                           |
| BARRIER<br>AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                                                                                                     | .0                                                                                                                                                                  | .2                                                                                                                                                                    | .7                                                                                                              | 2.4                                                                                                                  | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.9                                                                          | 40.8                                                                                                                     | 110.0                                                                                                       | 300.0                                                                                                                          |
| TEMP & WIND                                                                                                                                                                                                                                                                                                  | .0                                                                                                                                                                  | .0                                                                                                                                                                    | .0                                                                                                              | .0                                                                                                                   | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0                                                                            | .0                                                                                                                       | .0                                                                                                          | . 0                                                                                                                            |
| GROUND                                                                                                                                                                                                                                                                                                       | -5.7                                                                                                                                                                | -3.2                                                                                                                                                                  | 6.9                                                                                                             | 15.0                                                                                                                 | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.0                                                                          | 11.7                                                                                                                     | 5.6                                                                                                         | 1                                                                                                                              |
| TOTAL AWT -7.1                                                                                                                                                                                                                                                                                               | 5.5                                                                                                                                                                 | 18.8                                                                                                                                                                  | -4.8                                                                                                            | -20.6                                                                                                                | -26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -36.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -48.1                                                                         | -67.8                                                                                                                    | -100.0-                                                                                                     | -100.0                                                                                                                         |
|                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |                                                                                                                          |                                                                                                             |                                                                                                                                |
| SOURCE : 21<br>CFS - curing (in                                                                                                                                                                                                                                                                              |                                                                                                                                                                     | ) - coi                                                                                                                                                               | nvevor                                                                                                          | belt                                                                                                                 | / motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               |                                                                                                                          |                                                                                                             |                                                                                                                                |
| 010 0011119 (11                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                 | 2010                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               |                                                                                                                          |                                                                                                             |                                                                                                                                |
|                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                 | FI                                                                                                                   | REQUEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CY Hz_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |                                                                                                                          |                                                                                                             |                                                                                                                                |
|                                                                                                                                                                                                                                                                                                              | 31 5                                                                                                                                                                | 63                                                                                                                                                                    | 125                                                                                                             | 250                                                                                                                  | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2k                                                                            | 4k                                                                                                                       | 8k                                                                                                          | 16k                                                                                                                            |
|                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |                                                                                                                          |                                                                                                             |                                                                                                                                |
| POWER LEVEL                                                                                                                                                                                                                                                                                                  | 77.0                                                                                                                                                                | 93.0                                                                                                                                                                  | 80.0                                                                                                            | 74.0                                                                                                                 | 72.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65.0                                                                          | 62.0                                                                                                                     | 58.0                                                                                                        | . 0                                                                                                                            |
| DIRECTIVITY                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |                                                                                                                          |                                                                                                             |                                                                                                                                |
| DISTANCE                                                                                                                                                                                                                                                                                                     | 77.0                                                                                                                                                                | 77.0                                                                                                                                                                  | 77.0                                                                                                            | 77.0                                                                                                                 | 77.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 77.0                                                                          | 77.0                                                                                                                     | 77.0                                                                                                        | 77.0                                                                                                                           |
| BARRIER                                                                                                                                                                                                                                                                                                      | . 0                                                                                                                                                                 | .0                                                                                                                                                                    | . 0                                                                                                             | .0                                                                                                                   | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0                                                                            | .0                                                                                                                       | .0                                                                                                          | .0                                                                                                                             |
| AIR ABSORPTION<br>TEMP & WIND                                                                                                                                                                                                                                                                                | . 0                                                                                                                                                                 | . 2                                                                                                                                                                   | . /                                                                                                             | 2.3                                                                                                                  | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |                                                                                                                          | .0                                                                                                          |                                                                                                                                |
| GROUND                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |                                                                                                                          |                                                                                                             |                                                                                                                                |
| TOTAL AWT -6.9                                                                                                                                                                                                                                                                                               |                                                                                                                                                                     | 10 1                                                                                                                                                                  |                                                                                                                 | 20.2                                                                                                                 | 26.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47 E                                                                          | 66.0                                                                                                                     | 100 0                                                                                                       | 100.0                                                                                                                          |
| IOIAL AWI -0.3                                                                                                                                                                                                                                                                                               | 5.0                                                                                                                                                                 | 19.1                                                                                                                                                                  | -4.4                                                                                                            | -20.3                                                                                                                | -20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -47.5                                                                         | -00.9                                                                                                                    | -100.0-                                                                                                     | -100.0                                                                                                                         |
| SOURCE : 22                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |                                                                                                                          |                                                                                                             |                                                                                                                                |
| CFS - processing                                                                                                                                                                                                                                                                                             | (exte                                                                                                                                                               | rnal) ·                                                                                                                                                               | - RTT ı                                                                                                         | nanv                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |                                                                                                                          |                                                                                                             |                                                                                                                                |
|                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |                                                                                                                          |                                                                                                             |                                                                                                                                |
|                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                 | FI                                                                                                                   | REQUEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CY Hz_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |                                                                                                                          |                                                                                                             |                                                                                                                                |
|                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |                                                                                                                          |                                                                                                             | 1.61                                                                                                                           |
|                                                                                                                                                                                                                                                                                                              | 31.5                                                                                                                                                                | 63                                                                                                                                                                    |                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CY Hz_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               | 4k                                                                                                                       | 8k                                                                                                          | 16k                                                                                                                            |
| POWER LEVEL                                                                                                                                                                                                                                                                                                  | 111.0                                                                                                                                                               | 114.0                                                                                                                                                                 | 125<br>103.0                                                                                                    | 250<br>104.0                                                                                                         | 500<br>103.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1k<br>100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2k<br>98.0                                                                    | 94.0                                                                                                                     | 88.0                                                                                                        | .0                                                                                                                             |
| POWER LEVEL<br>DIRECTIVITY                                                                                                                                                                                                                                                                                   | 111.0                                                                                                                                                               | 114.0                                                                                                                                                                 | 125<br>103.0                                                                                                    | 250<br>104.0                                                                                                         | 500<br>103.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2k<br>98.0                                                                    | 94.0                                                                                                                     | 88.0                                                                                                        | .0                                                                                                                             |
| DIRECTIVITY                                                                                                                                                                                                                                                                                                  | 111.0                                                                                                                                                               | 114.0                                                                                                                                                                 | 125<br>103.0<br>.0                                                                                              | 250<br>104.0<br>.0                                                                                                   | 500<br>103.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1k<br>100.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2k<br>98.0<br>.0                                                              | 94.0                                                                                                                     | 88.0                                                                                                        | .0                                                                                                                             |
| DIRECTIVITY DISTANCE BARRIER                                                                                                                                                                                                                                                                                 | 111.0                                                                                                                                                               | 114.0                                                                                                                                                                 | 125<br>103.0<br>.0                                                                                              | 250<br>104.0<br>.0                                                                                                   | 500<br>103.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1k<br>100.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2k<br>98.0<br>.0                                                              | 94.0                                                                                                                     | 88.0                                                                                                        | .0<br>.0<br>76.8<br>.0                                                                                                         |
| DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION                                                                                                                                                                                                                                                                  | 111.0<br>.0<br>76.8<br>.0                                                                                                                                           | 114.0<br>.0<br>76.8<br>.0                                                                                                                                             | 125<br>103.0<br>.0<br>76.8<br>.0                                                                                | 250<br>104.0<br>.0<br>76.8<br>.0                                                                                     | 500<br>103.0<br>.0<br>76.8<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1k 100.0 .0 76.8 .0 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2k<br>98.0<br>.0<br>76.8<br>.0                                                | 94.0<br>.0<br>76.8<br>.0                                                                                                 | 88.0<br>.0<br>76.8<br>.0                                                                                    | .0<br>.0<br>76.8<br>.0                                                                                                         |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                                                                                                                                                                                                                                     | 111.0<br>.0<br>76.8<br>.0<br>.0                                                                                                                                     | 114.0<br>.0<br>76.8<br>.0<br>.2                                                                                                                                       | 125<br>103.0<br>.0<br>76.8<br>.0<br>.7                                                                          | 250<br>104.0<br>.0<br>76.8<br>.0<br>2.3                                                                              | 500<br>103.0<br>.0<br>76.8<br>.0<br>6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1k 100.0 .0 76.8 .0 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2k<br>98.0<br>.0<br>76.8<br>.0<br>20.1                                        | 94.0<br>.0<br>76.8<br>.0<br>39.3                                                                                         | 88.0<br>.0<br>76.8<br>.0<br>105.7                                                                           | .0<br>.0<br>76.8<br>.0<br>300.0                                                                                                |
| DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                                                                                                                                                               | 111.0<br>.0<br>76.8<br>.0<br>.0                                                                                                                                     | 114.0<br>.0<br>76.8<br>.0<br>.2<br>.0                                                                                                                                 | 125<br>103.0<br>.0<br>76.8<br>.0<br>.7<br>.0<br>6.5                                                             | 250<br>104.0<br>.0<br>76.8<br>.0<br>2.3<br>.0<br>15.0                                                                | 500<br>103.0<br>.0<br>76.8<br>.0<br>6.1<br>.0<br>15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1k 100.0 .0 76.8 .0 11.8 .0 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2k  98.0 .0  76.8 .0 20.1 .0 15.0                                             | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0                                                                                   | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1                                                              | .0<br>.0<br>76.8<br>.0<br>300.0<br>.0                                                                                          |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                                                                                                                                                                                                                                     | 111.0<br>.0<br>76.8<br>.0<br>.0                                                                                                                                     | 114.0<br>.0<br>76.8<br>.0<br>.2<br>.0                                                                                                                                 | 125<br>103.0<br>.0<br>76.8<br>.0<br>.7<br>.0<br>6.5                                                             | 250<br>104.0<br>.0<br>76.8<br>.0<br>2.3<br>.0<br>15.0                                                                | 500<br>103.0<br>.0<br>76.8<br>.0<br>6.1<br>.0<br>15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1k 100.0 .0 76.8 .0 11.8 .0 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2k  98.0 .0  76.8 .0 20.1 .0 15.0                                             | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0                                                                                   | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1                                                              | .0<br>.0<br>76.8<br>.0<br>300.0<br>.0                                                                                          |
| DIRECTIVITY DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                                                                                                                                                               | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>-5.7                                                                                                                       | 114.0<br>.0<br>76.8<br>.0<br>.2<br>.0                                                                                                                                 | 125<br>103.0<br>.0<br>76.8<br>.0<br>.7<br>.0<br>6.5                                                             | 250<br>104.0<br>.0<br>76.8<br>.0<br>2.3<br>.0<br>15.0                                                                | 500<br>103.0<br>.0<br>76.8<br>.0<br>6.1<br>.0<br>15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1k 100.0 .0 76.8 .0 11.8 .0 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2k  98.0 .0  76.8 .0 20.1 .0 15.0                                             | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0                                                                                   | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1                                                              | .0<br>.0<br>76.8<br>.0<br>300.0<br>.0                                                                                          |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1                                                                                                                                                                                                                              | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>-5.7                                                                                                                       | 114.0<br>.0<br>76.8<br>.0<br>.2<br>.0<br>-3.3                                                                                                                         | 125<br>103.0<br>.0<br>76.8<br>.0<br>.7<br>.0<br>6.5                                                             | 250<br>104.0<br>.0<br>76.8<br>.0<br>2.3<br>.0<br>15.0                                                                | 500<br>103.0<br>.0<br>76.8<br>.0<br>6.1<br>.0<br>15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1k 100.0 .0 76.8 .0 11.8 .0 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2k  98.0 .0  76.8 .0 20.1 .0 15.0                                             | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0                                                                                   | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1                                                              | .0<br>.0<br>76.8<br>.0<br>300.0<br>.0                                                                                          |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1 SOURCE : 23                                                                                                                                                                                                                  | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>-5.7                                                                                                                       | 114.0<br>.0<br>76.8<br>.0<br>.2<br>.0<br>-3.3                                                                                                                         | 125  103.0 .0  76.8 .0 .7 .0 6.5                                                                                | 250<br>104.0<br>.0<br>76.8<br>.0<br>2.3<br>.0<br>15.0<br>9.9                                                         | 500  103.0 .0  76.8 .0 6.1 .0 15.0  5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1k 100.0 .0 76.8 .0 11.8 .0 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2k<br>98.0<br>.0<br>76.8<br>.0<br>20.1<br>.0<br>15.0                          | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1                                                                           | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1                                                              | .0<br>.0<br>76.8<br>.0<br>300.0<br>.0                                                                                          |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1 SOURCE : 23                                                                                                                                                                                                                  | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>-5.7                                                                                                                 | 114.0<br>.0<br>76.8<br>.0<br>.2<br>.0<br>-3.3<br>40.3                                                                                                                 | 125 103.0 .0 76.8 .0 .7 .0 6.5 18.9                                                                             | 250  104.0 .0  76.8 .0 2.3 .0 15.0  9.9  revers:                                                                     | 500  103.0 .0  76.8 .0 6.1 .0 15.0  5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2k 98.0 .0 76.8 .0 20.1 .0 15.0                                               | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1                                                                           | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1                                                              | .0<br>.0<br>76.8<br>.0<br>300.0<br>.0<br>6                                                                                     |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1 SOURCE : 23                                                                                                                                                                                                                  | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>-5.7                                                                                                                 | 114.0<br>.0<br>76.8<br>.0<br>.2<br>.0<br>-3.3<br>40.3                                                                                                                 | 125 103.0 .0 76.8 .0 .7 .0 6.5 18.9                                                                             | 250  104.0 .0  76.8 .0 2.3 .0 15.0  9.9  revers:                                                                     | 500  103.0 .0  76.8 .0 6.1 .0 15.0  5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1k 100.0 .0 76.8 .0 11.8 .0 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2k 98.0 .0 76.8 .0 20.1 .0 15.0                                               | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1                                                                           | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1                                                              | .0<br>.0<br>76.8<br>.0<br>300.0<br>.0<br>6                                                                                     |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1  SOURCE : 23 CFS - processing                                                                                                                                                                                                | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>-5.7<br>39.8                                                                                                         | 114.0<br>.0<br>76.8<br>.0<br>.2<br>.0<br>-3.3<br>40.3                                                                                                                 | 125  103.0  76.8  .0  .7  .0  6.5  18.9  - RTT:                                                                 | 250  104.0 .0  76.8 .0 2.3 .0 15.0  9.9  revers:FI                                                                   | 500  103.0 .0  76.8 .0 6.1 .0 15.0  5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2k 98.0 .0 76.8 .0 20.1 .0 15.0 -13.9                                         | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1<br>-33.3                                                                  | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1<br>-99.6                                                     | .0<br>.0<br>76.8<br>.0<br>300.0<br>.0<br>6                                                                                     |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1  SOURCE : 23 CFS - processing                                                                                                                                                                                                | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>-5.7<br>39.8<br>(exter                                                                                               | 114.0<br>.0<br>76.8<br>.0<br>.2<br>.0<br>-3.3<br>40.3                                                                                                                 | 125 103.0 .0 76.8 .0 .7 .0 6.5 18.9 - RTT:                                                                      | 250  104.0  76.8 .0 2.3 .0 15.0  9.9  revers:FI 250 79.0                                                             | 500  103.0  .0  76.8 .0 6.1 .0 15.0  5.1  ing  REQUENC 500  89.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6  CY Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2k 98.0 .0 76.8 .0 20.1 .0 15.0 -13.9                                         | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1<br>-33.3                                                                  | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1<br>-99.6                                                     | .0<br>.0<br>76.8<br>.0<br>300.0<br>.0<br>6<br>-100.0                                                                           |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1  SOURCE: 23 CFS - processing                                                                                                                                                                                                 | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                     | 114.0<br>.0<br>76.8<br>.0<br>.2<br>.0<br>-3.3<br>40.3                                                                                                                 | 125 103.0 .0 76.8 .0 .7 .0 6.5 18.9 - RTT: 125 75.0 .0                                                          | 250  104.0  76.8 .0 2.3 .0 15.0  9.9  revers:FI 250 79.0 .0                                                          | 500  103.0  76.8 .0 6.1 .0 15.0  5.1  Ingredience Sequence Sequenc | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6  CY Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2k 98.0 .0 76.8 .0 20.1 .0 15.0 -13.9                                         | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1<br>-33.3                                                                  | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1<br>-99.6                                                     | .0<br>.0<br>76.8<br>.0<br>300.0<br>.0<br>6<br>-100.0                                                                           |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1  SOURCE: 23 CFS - processing                                                                                                                                                                                                 | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.7<br>39.8<br>(exter                                                                                         | 114.0<br>.0<br>76.8<br>.0<br>.2<br>.0<br>-3.3<br>40.3<br>75.0<br>.0                                                                                                   | 125 103.0 76.8 .0 76.8 .0 .7 .0 6.5  18.9  - RTT: 125 75.0 .0 76.9                                              | 250  104.0  76.8 .0 2.3 .0 15.0  9.9  revers:  FI  250  79.0 .0  76.9                                                | 500  103.0  76.8 .0 6.1 .0 15.0  5.1  ing  REQUENC 500  89.0 .0 76.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6  CY Hz 1k 93.0 .0 76.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2k 98.0 .0 76.8 .0 20.1 .0 15.0 -13.9  2k 91.0 .0 76.9                        | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1<br>-33.3<br>4k<br>87.0<br>.0                                              | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1<br>-99.6                                                     | .0<br>.0<br>.0<br>.0<br>300.0<br>.0<br>6<br>-100.0                                                                             |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1  SOURCE : 23 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION                                                                                                                                      | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>.5.7<br>39.8<br>(exterior)<br>31.5<br>57.0<br>.0<br>76.9<br>.0                                                       | 114.0<br>.0<br>76.8<br>.0<br>.2<br>.0<br>.3.3<br>40.3<br>40.3<br>75.0<br>.0                                                                                           | 125 103.0 76.8 .0 76.8 .0 .7 .0 6.5 18.9 - RTT: 125 75.0 .0 76.9 .0                                             | 250  104.0  76.8 .0 2.3 .0 15.0  9.9  revers:  FI  250  79.0 .0  76.9 .0                                             | 500  103.0  76.8 .0 6.1 .0 15.0  5.1  ing  REQUENC 500  89.0 .0  76.9 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6  CY Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2k 98.0 .0 76.8 .0 20.1 .0 15.0 -13.9  2k 91.0 .0 76.9 .0 20.2                | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1<br>-33.3<br>4k<br>87.0<br>.0<br>76.9<br>.0<br>39.4                        | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1<br>-99.6-                                                    | .0<br>.0<br>76.8<br>.0<br>300.0<br>6<br>-100.0                                                                                 |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1  SOURCE : 23 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                                                                                                          | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                     | 114.0<br>.0<br>76.8<br>.0<br>.2<br>.0<br>.3.3<br>40.3<br>40.3<br>75.0<br>.0<br>76.9<br>.0<br>.0<br>.0                                                                 | 125 103.0 .0 76.8 .0 .7 .0 6.5 18.9 - RTT: 125 75.0 .0 76.9 .0 .7 .0                                            | 250  104.0  76.8 .0 2.3 .0 15.0  9.9  revers:  F1 250  79.0 .0 76.9 .0 2.3 .0                                        | 500  103.0  76.8 .0 6.1 .0 15.0  5.1  ing  REQUENC 500  89.0 .0 76.9 .0 6.1 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6  CY Hz 1k 93.0 .0 76.9 .0 11.8 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2k 98.0 .0 76.8 .0 20.1 .0 15.0 -13.9  2k 91.0 .0 76.9 .0 20.2 .0             | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1<br>-33.3<br>4k<br>87.0<br>.0<br>76.9<br>.0<br>39.4                        | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1<br>-99.6                                                     | .0<br>.0<br>76.8<br>.0<br>300.0<br>.0<br>6<br>-100.0                                                                           |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1  SOURCE : 23 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION                                                                                                                                      | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                     | 114.0<br>.0<br>76.8<br>.0<br>.2<br>.0<br>.3.3<br>40.3<br>40.3<br>75.0<br>.0<br>76.9<br>.0<br>.0<br>.0                                                                 | 125 103.0 .0 76.8 .0 .7 .0 6.5 18.9 - RTT: 125 75.0 .0 76.9 .0 .7 .0                                            | 250  104.0  76.8 .0 2.3 .0 15.0  9.9  revers:  F1 250  79.0 .0 76.9 .0 2.3 .0                                        | 500  103.0  76.8 .0 6.1 .0 15.0  5.1  ing  REQUENC 500  89.0 .0 76.9 .0 6.1 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6  CY Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2k 98.0 .0 76.8 .0 20.1 .0 15.0 -13.9  2k 91.0 .0 76.9 .0 20.2 .0             | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1<br>-33.3<br>4k<br>87.0<br>.0<br>76.9<br>.0<br>39.4                        | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1<br>-99.6                                                     | .0<br>.0<br>76.8<br>.0<br>300.0<br>.0<br>6<br>-100.0                                                                           |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1  SOURCE : 23 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND                                                                                                                          | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>.5.7<br>39.8<br>(exter<br>31.5<br>57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0       | 114.0 .0 .0 .76.8 .0 .2 .0 .0 .3.3 .40.3 .63 .75.0 .0 .0 .2 .0 .0 .2 .0 .0 .2 .3 .3                                                                                   | 125 103.0 76.8 .0 76.8 .0 .7 .0 6.5 18.9 - RTT: 125 75.0 .0 76.9 .0 .7 .0 6.6                                   | 250  104.0  76.8 .0 2.3 .0 15.0  9.9  revers:  FI  250  79.0 .0 76.9 .0 2.3 .0 15.0                                  | 500  103.0  76.8 .0 6.1 .0 15.0  5.1  ing  REQUENC 500  89.0 .0 76.9 .0 6.1 .0 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6  CY Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2k 98.0 .0 76.8 .0 20.1 .0 15.0 -13.9  2k 91.0 .0 76.9 .0 20.2 .0 15.0        | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1<br>-33.3<br>4k<br>87.0<br>.0<br>76.9<br>.0<br>39.4<br>.0                  | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1<br>-99.6-<br>8k<br>77.0<br>.0<br>106.0<br>.0<br>5.3          | .0<br>.0<br>76.8<br>.0<br>300.0<br>.0<br>6<br>-100.0                                                                           |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1  SOURCE: 23 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -7.8                                                                                                    | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>-5.7<br>39.8<br>(exter<br>31.5<br>57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0       | 114.0 .0 .0 .76.8 .0 .2 .0 .0 .3.3 .40.3 .63 .75.0 .0 .0 .2 .0 .0 .2 .0 .0 .2 .3 .3                                                                                   | 125 103.0 76.8 .0 76.8 .0 .7 .0 6.5 18.9 - RTT: 125 75.0 .0 76.9 .0 .7 .0 6.6                                   | 250  104.0  76.8 .0 2.3 .0 15.0  9.9  revers:  FI  250  79.0 .0 76.9 .0 2.3 .0 15.0                                  | 500  103.0  76.8 .0 6.1 .0 15.0  5.1  ing  REQUENC 500  89.0 .0 76.9 .0 6.1 .0 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6  CY Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2k 98.0 .0 76.8 .0 20.1 .0 15.0 -13.9  2k 91.0 .0 76.9 .0 20.2 .0 15.0        | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1<br>-33.3<br>4k<br>87.0<br>.0<br>76.9<br>.0<br>39.4<br>.0                  | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1<br>-99.6-<br>8k<br>77.0<br>.0<br>106.0<br>.0<br>5.3          | .0<br>.0<br>76.8<br>.0<br>300.0<br>.0<br>6<br>-100.0                                                                           |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1  SOURCE: 23 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND                                                                                                                    | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>.0<br>-5.7<br>39.8<br>(exter<br>31.5<br>57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | 114.0<br>.0<br>76.8<br>.0<br>.2<br>.0<br>-3.3<br>40.3<br>75.0<br>.0<br>76.9<br>.0<br>.2<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | 125 103.0 76.8 .0 76.8 .0 .7 .0 6.5  18.9  - RTT: 125 75.0 .0 76.9 .0 .7 .0 6.6 -9.1                            | 250  104.0  76.8  .0  2.3  .0  15.0  9.9  revers:  FI  250  79.0  .0  76.9  .0  15.1                                 | 500  103.0  76.8 .0 6.1 .0 15.0  5.1  ing  REQUENC 500  89.0 .0 76.9 .0 6.1 .0 15.0  -9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6  CY Hz 1k 93.0 .0 76.9 .0 11.8 .0 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2k 98.0 .0 76.8 .0 20.1 .0 15.0 -13.9  2k 91.0 .0 76.9 .0 20.2 .0 15.0        | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1<br>-33.3<br>4k<br>87.0<br>.0<br>76.9<br>.0<br>39.4<br>.0                  | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1<br>-99.6-<br>8k<br>77.0<br>.0<br>106.0<br>.0<br>5.3          | .0<br>.0<br>76.8<br>.0<br>300.0<br>.0<br>6<br>-100.0                                                                           |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1  SOURCE: 23 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -7.8  SOURCE: 24                                                                                        | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>.0<br>-5.7<br>39.8<br>(exter<br>31.5<br>57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | 114.0 .0 .0 .0 .0 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 .0 .0 .0 .1 .3 .3                                                                                         | 125 103.0 76.8 .0 .7 .0 6.5 18.9 - RTT: 125 75.0 .0 76.9 .0 6.6 -9.1                                            | 250  104.0  76.8 .0 2.3 .0 15.0  9.9  revers:  FI  250  79.0 .0  76.9 .0 15.0  -15.1  collect                        | 500  103.0  76.8 .0 6.1 .0 15.0  5.1  ing  REQUENC 500  89.0 .0 76.9 .0 6.1 .0 15.0  -9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6  CY Hz 1k 93.0 .0 76.9 .0 11.8 .0 15.0  -10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2k 98.0 .0 76.8 .0 20.1 .0 15.0 -13.9  2k 91.0 .0 76.9 .0 20.2 .0 15.0 -21.0  | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1<br>-33.3<br>4k<br>87.0<br>.0<br>76.9<br>.0<br>39.4<br>.0                  | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1<br>-99.6-<br>8k<br>77.0<br>.0<br>106.0<br>.0<br>5.3          | .0<br>.0<br>76.8<br>.0<br>300.0<br>.0<br>6<br>-100.0                                                                           |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1  SOURCE: 23 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -7.8  SOURCE: 24                                                                                        | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>.0<br>-5.7<br>39.8<br>(exter<br>31.5<br>57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | 114.0 .0 .0 .0 .0 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 .0 .0 .0 .1 .3 .3                                                                                         | 125 103.0 76.8 .0 .7 .0 6.5 18.9 - RTT: 125 75.0 .0 76.9 .0 6.6 -9.1                                            | 250  104.0  76.8 .0 2.3 .0 15.0  9.9  revers:  FI  250  79.0 .0  76.9 .0 15.0  -15.1  collect                        | 500  103.0  76.8 .0 6.1 .0 15.0  5.1  ing  REQUENC 500  89.0 .0 76.9 .0 6.1 .0 15.0  -9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6  CY Hz 1k 93.0 .0 76.9 .0 11.8 .0 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2k 98.0 .0 76.8 .0 20.1 .0 15.0 -13.9  2k 91.0 .0 76.9 .0 20.2 .0 15.0 -21.0  | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1<br>-33.3<br>4k<br>87.0<br>.0<br>76.9<br>.0<br>39.4<br>.0                  | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1<br>-99.6-<br>8k<br>77.0<br>.0<br>106.0<br>.0<br>5.3          | .0<br>.0<br>76.8<br>.0<br>300.0<br>.0<br>6<br>-100.0                                                                           |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1  SOURCE: 23 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -7.8  SOURCE: 24                                                                                        | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5.7<br>39.8<br>(external)<br>57.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0     | 114.0 .0 .0 .76.8 .0 .2 .0 .0 .3.3 .40.3 .75.0 .0 .0 .2 .0 .0 .3.3 .1.3                                                                                               | 125 103.0 76.8 .0 76.8 .0 .7 .0 6.5 18.9 - RTT: 125 75.0 .0 76.9 .0 .7 .0 6.6 -9.1                              | 250  104.0  76.8  .0  2.3  .0  15.0  9.9  revers:  FI  250  79.0  .0  76.9  .0  15.0  -15.1  collec                  | 500  103.0 .0 76.8 .0 6.1 .0 15.0  5.1 ing REQUENC 76.9 .0 6.1 .0 15.0  -9.0  REQUENC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6  CY Hz 1k 93.0 .0 76.9 .0 11.8 .0 15.0  -10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2k 98.0 .0 76.8 .0 20.1 .0 15.0 -13.9  2k 91.0 .0 76.9 .0 20.2 .0 15.0 -21.0  | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1<br>-33.3<br>4k<br>87.0<br>.0<br>76.9<br>.0<br>39.4<br>.0<br>11.4          | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1<br>-99.6-                                                    | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1  SOURCE: 23 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -7.8  SOURCE: 24 CFS - processing                                                                       | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                     | 114.0 .0 76.8 .0 .2 .0 -3.3 40.3  75.0 .0 76.9 .0 .2 .0 -3.3 1.3                                                                                                      | 125 103.0 76.8 .0 76.8 .0 .7 .0 6.5  18.9  - RTT: 125 75.0 .0 76.9 .0 .7 .0 6.6 -9.1 - dust                     | 250  104.0  76.8 .0 2.3 .0 15.0  9.9  revers:  FI  250  79.0 .0  76.9 .0 2.3 .0 15.1  collect FI  250                | 500  103.0  76.8 .0 6.1 .0 15.0  5.1  ting  REQUENC  76.9 .0 15.0  -9.0  REQUENC  500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6  CY Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2k 98.0 .0 76.8 .0 20.1 .0 15.0 -13.9  2k 91.0 .0 76.9 .0 20.2 .0 15.0 -21.0  | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1<br>-33.3<br>4k<br>87.0<br>.0<br>76.9<br>.0<br>39.4<br>.0<br>11.4<br>-40.7 | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1<br>-99.6<br>8k<br>77.0<br>.0<br>106.0<br>.0<br>5.3           | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.6<br>-100.0                                                                         |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1  SOURCE: 23 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -7.8  SOURCE: 24                                                                                        | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                     | 114.0 .0 .0 .76.8 .0 .2 .0 .0 .3.3 .40.3 .63 .75.0 .0 .2 .0 .0 .3.3 .1.3 .63 .102.0                                                                                   | 125 103.0 76.8 .0 76.8 .0 .7 .0 6.5  18.9  - RTT:  125 75.0 .0 76.9 .0 .7 .0 6.6 -9.1 - dust  125 106.0         | 250  104.0  76.8 .0 2.3 .0 15.0  9.9  revers:  FI  250  79.0 .0  76.9 .0 2.3 .0 15.0  -15.1  collect  FI  250  109.0 | 500  103.0  76.8 .0 6.1 .0 15.0  5.1  ing REQUENC 500  49.0 6.1 .0 15.0  76.9 .0 15.0  76.9 .0 6.1 .0 15.0  108.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6  CY Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2k 98.0 .0 76.8 .0 20.1 .0 15.0 -13.9  2k 91.0 .0 76.9 .0 20.2 .0 15.0 -21.0  | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1<br>-33.3<br>4k<br>87.0<br>.0<br>76.9<br>.0<br>39.4<br>.0<br>11.4<br>-40.7 | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1<br>-99.6<br>8k<br>77.0<br>.0<br>76.9<br>.0<br>5.3<br>-100.0  | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.100.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1  SOURCE: 23 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -7.8  SOURCE: 24 CFS - processing                                                                       | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                     | 114.0 .0 .0 .0 .0 .0 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                        | 125 103.0 76.8 .0 76.8 .0 .7 .0 6.5 18.9 - RTT : 125 75.0 .0 76.9 .7 .0 6.6 -9.1 - dust 125 106.0 .0            | 250  104.0  76.8 .0 2.3 .0 15.0  9.9  revers: FI  250  79.0 .0  76.9 .0 15.0  -15.1  collect  FI  250  109.0 .0      | 500  103.0  76.8 .0 6.1 .0 15.0  5.1  ing  REQUENC 500  89.0 .0 76.9 .0 6.1 .0 15.0  -9.0  ctor / REQUENC 500  108.0 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6  CY Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2k 98.0 .0 76.8 .0 20.1 .0 15.0 -13.9  2k 91.0 .0 76.9 .0 20.2 .0 15.0  -21.0 | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1<br>-33.3<br>4k<br>87.0<br>.0<br>76.9<br>.0<br>39.4<br>.0<br>11.4<br>-40.7 | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1<br>-99.6<br>8k<br>77.0<br>.0<br>106.0<br>5.3                 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.6<br>-100.0                                                                         |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1  SOURCE: 23 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -7.8  SOURCE: 24 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE  POWER LEVEL DIRECTIVITY  DISTANCE | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                     | 114.0 .0 .0 .76.8 .0 .2 .0 .0 .3.3                                                                                                                                    | 125 103.0 76.8 .0 76.8 .0 .7 .0 6.5  18.9  - RTT:  125 75.0 .0 76.9 .0 .7 .0 6.6 -9.1 - dust  125 106.0 .0 76.9 | 250  104.0  76.8 .0 2.3 .0 15.0  9.9  revers:  FI  250  79.0 .0  76.9 .0 15.1  collect  FI  250  109.0 .0  76.9      | 500  103.0  76.8 .0 6.1 .0 15.0  5.1  ing REQUENC 500  49.0 .0 15.0  76.9 .0 15.0  108.0 .0 76.9 .0 76.9 .0 76.9 .0 76.9 .0 76.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6  CY Hz 1k 93.0 .0 76.9 .0 11.8 .0 76.9 .1 that contains the conta | 2k 98.0 .0 76.8 .0 20.1 .0 15.0 -13.9  2k 91.0 .0 76.9 .0 20.2 .0 15.0 -21.0  | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1<br>-33.3<br>4k<br>87.0<br>.0<br>76.9<br>.0<br>39.4<br>.0<br>11.4<br>-40.7 | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1<br>-99.6<br>8k<br>77.0<br>.0<br>106.0<br>.0<br>5.3<br>-100.0 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.6<br>-100.0                                                                   |
| DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT 15.1  SOURCE: 23 CFS - processing  POWER LEVEL DIRECTIVITY  DISTANCE BARRIER AIR ABSORPTION TEMP & WIND GROUND  TOTAL AWT -7.8  SOURCE: 24 CFS - processing                                                                       | 111.0<br>.0<br>76.8<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                     | 114.0 .0 .0 .76.8 .0 .2 .0 .0 .3.3                                                                                                                                    | 125 103.0 76.8 .0 76.8 .0 .7 .0 6.5  18.9  - RTT:  125 75.0 .0 76.9 .0 .7 .0 6.6 -9.1 - dust  125 106.0 .0 76.9 | 250  104.0  76.8 .0 2.3 .0 15.0  9.9  revers:  FI  250  79.0 .0  76.9 .0 15.1  collect  FI  250  109.0 .0  76.9      | 500  103.0  76.8 .0 6.1 .0 15.0  5.1  ing REQUENC 500  49.0 .0 15.0  76.9 .0 15.0  108.0 .0 76.9 .0 76.9 .0 76.9 .0 76.9 .0 76.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1k 100.0 .0 76.8 .0 11.8 .0 15.0 -3.6  CY Hz 1k 93.0 .0 76.9 .0 11.8 .0 76.9 .1 that contains the conta | 2k 98.0 .0 76.8 .0 20.1 .0 15.0 -13.9  2k 91.0 .0 76.9 .0 20.2 .0 15.0 -21.0  | 94.0<br>.0<br>76.8<br>.0<br>39.3<br>.0<br>11.1<br>-33.3<br>4k<br>87.0<br>.0<br>76.9<br>.0<br>39.4<br>.0<br>11.4<br>-40.7 | 88.0<br>.0<br>76.8<br>.0<br>105.7<br>.0<br>5.1<br>-99.6<br>8k<br>77.0<br>.0<br>106.0<br>.0<br>5.3<br>-100.0 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.6<br>-100.0                                                                   |

| TEMP & WIND<br>GROUND                       | .0<br>-5.7       | .0<br>-3.3             | .0<br>6.6 | .0<br>15.0 | .0<br>15.0  | .0<br>15.0 | .0<br>15.0 | .0<br>11.7 | .0<br>5.6   | .0     |
|---------------------------------------------|------------------|------------------------|-----------|------------|-------------|------------|------------|------------|-------------|--------|
| TOTAL AWT 11.8                              | 28.8             | 28.3                   | 21.9      | 14.9       | 10.1        | -2.7       | -18.0      | -39.0      | -100.0-     | -100.0 |
| SOURCE : 25<br>CFS - processing             | (exte            | rnal) -                | forkl     | lift       |             |            |            |            |             |        |
|                                             |                  |                        |           | FF         | EQUENC      | CY Hz_     |            |            |             |        |
|                                             | 31.5             | 63                     | 125       | 250        | 500         | 1k         | 2k         | 4k         | 8k          | 16k    |
| POWER LEVEL DIRECTIVITY                     |                  |                        |           |            |             |            |            |            |             |        |
| DISTANCE                                    | 77.0             | 77.0                   | 77.0      | 77.0       |             |            |            |            |             |        |
| BARRIER<br>AIR ABSORPTION                   | . 0              | .0                     | . 0       | .0         |             | .0<br>11.9 | .0<br>20.4 |            | .0<br>107.1 |        |
| AIR ABSORPTION<br>TEMP & WIND               | .0               | .0                     | . 0       | .0         | .0          | .0         |            |            | .0          |        |
| GROUND                                      | -5.7             | -3.3                   | 6.6       | 15.0       | 15.0        | 15.0       | 15.0       | 11.4       | 5.3         | 3      |
| TOTAL AWT 3.7                               | 29.7             | 26.2                   | 14.7      | 2.7        | -5.1        | -10.9      | -21.3      | -40.2      | -100.0-     | -100.0 |
| SOURCE : 26<br>CFS - processing             | (exte            | rnal) -                | aggre     | egate u    | ınload      |            |            |            |             |        |
|                                             |                  |                        |           | FF         | P ← CITENIC | TV UF      |            |            |             |        |
|                                             |                  |                        |           |            | ~           |            |            |            |             |        |
|                                             |                  | 63                     |           |            |             |            |            |            |             |        |
|                                             | . 0              | .0                     | . 0       | . 0        | . 0         | . 0        | . 0        | .0         | . 0         | . 0    |
| DISTANCE BARRIER AIR ABSORPTION TEMP & WIND | 76.8             | 76.8                   | 76.8      | 76.8       | 76.8        | 76.8       | 76.8       | 76.8       | 76.8        | 76.8   |
| BARRIER                                     | . 0              | .0                     | .0        | .0         | . 0<br>6 1  | 11 8       | 20 1       | .0         | 105.5       | 300.0  |
|                                             |                  |                        |           |            |             |            |            |            | .0          | .0     |
| GROUND                                      | -5.7             | -3.3                   | 6.5       | 15.0       | 15.0        | 15.0       | 15.0       | 11.4       | 5.3         | 3      |
| TOTAL AWT 12.6                              | 38.8             | 37.3                   | 18.0      | 5.9        | 3.1         | . 4        | -10.9      | -30.5      | -82.7       | -100.0 |
| SOURCE : 27<br>CFS - processing             | (exte            | rnal) -                | silo      | vent 1     |             |            |            |            |             |        |
|                                             |                  |                        |           | FF         | EQUENC      | CY Hz_     |            |            |             |        |
|                                             | 31.5             | 63                     | 125       | 250        | 500         | 1k         | 2k         | 4k         | 8k          | 16k    |
| POWER LEVEL DIRECTIVITY                     |                  |                        |           |            |             |            |            |            |             |        |
| DISTANCE                                    |                  | 76.8                   | 76.8      | 76.8       | 76.8        | 76.8       | 76.8       | 76.8       | 76.8        | 76.8   |
| BARRIER                                     | .0               |                        |           | . 0        |             |            | .0         |            | .0          |        |
| AIR ABSORPTION<br>TEMP & WIND               | .0               | .2                     | .7        | 2.3        | 6.1         | 11.8       |            |            | 105.6       |        |
| GROUND                                      |                  | -1.2                   | 10.0      | 13.0       |             |            |            |            |             |        |
| TOTAL AWT3                                  | 12.0             | 6.2                    | -1.5      | -3.1       | .6          | -5.6       | -17.6      | -46.5      | -100.0-     | -100.0 |
| SOURCE : 28<br>CFS - processing             | (exte            | rnal) -                | silo      | vent 2     | 2           |            |            |            |             |        |
|                                             |                  |                        |           | FF         | EQUEN       | CY Hz_     |            |            |             |        |
|                                             | 31.5             | 63                     | 125       | 250        | 500         | 1k         | 2k         | 4k         | 8k          | 16k    |
| POWER LEVEL<br>DIRECTIVITY                  |                  | 82.0                   |           |            |             |            |            |            |             |        |
| DISTANCE                                    |                  | T.C. 0                 | 76.8      | 76 8       | 76 0        | 76.8       | 76.8       | 76.8       | 76.8        | 76 8   |
|                                             | 76.8             | 76.8                   | ,         | ,          | 70.0        | ,          | ,          | ,          | ,           |        |
| BARRIER                                     | 76.8<br>.0       | .0                     | .0        | .0         | .0          | .0         | .0         | .0         | .0          | .0     |
| AIR ABSORPTION                              | 76.8<br>.0<br>.0 | .0                     | .0        | .0<br>2.3  | .0<br>6.1   | .0         | .0         | 39.3       | .0          | 300.0  |
|                                             | . 0              | .0<br>.2<br>.0<br>-1.2 | . 0       | . 0        | .0          | . 0        | . 0        | .0         | . 0         | . 0    |

TOTAL AWT -.2 12.0 6.2 -1.5 -3.1 .6 -5.6 -17.6 -46.5-100.0-100.0

TOTAL AWT 18.9 42.9 42.6 25.8 18.1 13.0 5.5 -6.0 -26.1 -81.4 -88.0

# Appendix D

Sample ENM ranking file

X= 647.0 Y= 3483.0 Z= 46.2

| SOURCE TITLE                                                                                                                                                                                                                                                             | dB(A)                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 24 CFS - processing (external) - dust collector / fan<br>26 CFS - processing (external) - aggregate unload<br>22 CFS - processing (external) - RTT manv<br>23 CFS - processing (external) - RTT reversing<br>27 CFS - processing (external) - silo vent 1                | 23.9<br>22.6<br>22.4<br>11.0<br>7.9       |
| 28 CFS - processing (external) - silo vent 2 14 CFS - processing (external) - FEL 25 CFS - processing (external) - forklift 13 CFS - processing (external) - backhoe 15 CFS - curing (intenral) - FEL                                                                    | 7.9<br>1.1<br>-3.6<br>-7.1<br>-8.5        |
| 19 CFS - curing (intenral) - conveyor belt / motor 4 21 CFS - curing (intenral) - conveyor belt / motor 6 18 CFS - curing (intenral) - conveyor belt / motor 3 20 CFS - curing (intenral) - conveyor belt / motor 5 17 CFS - curing (intenral) - conveyor belt / motor 2 | -20.9<br>-21.9<br>-22.1<br>-22.6<br>-24.4 |
| 16 CFS - curing (intenral) - conveyor belt / motor 1                                                                                                                                                                                                                     | -24.6                                     |
| TOTAL                                                                                                                                                                                                                                                                    | 28.0                                      |
| PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION  K= 510.0 Y= 3539.0 Z= 53.2                                                                                                                                                                                          |                                           |

| SOURCE TITLE                                                                                | dB(A)      |
|---------------------------------------------------------------------------------------------|------------|
| 24 CFS - processing (external) - dust collector / fan                                       | 23.9       |
| 22 CFS - processing (external) - RTT manv                                                   | 20.2       |
| 26 CFS - processing (external) - aggregate unload                                           | 18.5       |
| 23 CFS - processing (external) - RTT reversing 27 CFS - processing (external) - silo vent 1 | 6.4<br>3.7 |
| 27 CFS - processing (external) - silo vent 1                                                | 3.7        |
| 28 CFS - processing (external) - silo vent 2                                                | 3.7        |
| 14 CFS - processing (external) - FEL                                                        | .3         |
| 25 CFS - processing (external) - forklift                                                   | -4.3       |
| 13 CFS - processing (external) - backhoe                                                    | -8.1       |
| 15 CFS - curing (intenral) - FEL                                                            | -9.3       |
| 19 CFS - curing (intenral) - conveyor belt / motor 4                                        | -21.7      |
| 21 CFS - curing (intenral) - conveyor belt / motor 6                                        | -22.8      |
| 18 CFS - curing (intenral) - conveyor belt / motor 3                                        | -22.9      |
| 20 CFS - curing (intenral) - conveyor belt / motor 5                                        | -23.4      |
| 17 CFS - curing (intenral) - conveyor belt / motor 2                                        | -25.3      |
| 16 CFS - curing (intenral) - conveyor belt / motor 1                                        | -25.5      |
| TOTAL                                                                                       | 26.3       |

X= 827.0 Y= 3006.0 Z= 22.2

TOTAL

| OURCE TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dB(A)                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 22 CFS - processing (external) - RTT manv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.7                                             |
| 26 CFS - processing (external) - aggregate unload                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.2                                             |
| 24 CFS - processing (external) - dust collector / fan<br>27 CFS - processing (external) - silo vent 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.3<br>6.5                                      |
| 28 CFS - processing (external) - silo vent 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.5                                              |
| 14 CFS - processing (external) - FEL<br>25 CFS - processing (external) - forklift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 7                                              |
| 23 CFS - processing (external) - RTT reversing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2.7                                             |
| 13 CFS - processing (external) - backhoe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -4.8                                             |
| 15 CFS - curing (intenral) - FEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -8.9                                             |
| 18 CFS - curing (intenral) - conveyor belt / motor 3 19 CFS - curing (intenral) - conveyor belt / motor 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -16.7<br>-18.0                                   |
| 21 CFS - curing (internal) - conveyor belt / motor 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -18.8                                            |
| 20 CFS - curing (intenral) - conveyor belt / motor 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -19.4                                            |
| 17 CFS - curing (intenral) - conveyor belt / motor 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -21.2                                            |
| 16 CFS - curing (intenral) - conveyor belt / motor 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -21.4                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
| TOTAL  PROGRAM ENM SOURCE RANKING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.1                                             |
| PROGRAM ENM SOURCE RANKING<br>SINGLE POINT CALCULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.1                                             |
| PROGRAM ENM SOURCE RANKING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.1                                             |
| PROGRAM ENM SOURCE RANKING<br>SINGLE POINT CALCULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.1<br>dB(A)                                    |
| PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION  = 661.0 Y= 2957.0 Z= 22.2  OURCE TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dB(A)                                            |
| PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION  = 661.0 Y= 2957.0 Z= 22.2  OURCE TITLE  22 CFS - processing (external) - RTT many                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dB(A)                                            |
| PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION  = 661.0 Y= 2957.0 Z= 22.2  OURCE TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dB(A)  18.6 15.1 10.1                            |
| PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION  = 661.0 Y= 2957.0 Z= 22.2  OURCE TITLE  22 CFS - processing (external) - RTT manv 26 CFS - processing (external) - aggregate unload 24 CFS - processing (external) - dust collector / fan 27 CFS - processing (external) - silo vent 1                                                                                                                                                                                                                                                                                                                                                                             | dB(A)  18.6 15.1 10.1 4.5                        |
| PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION  = 661.0 Y= 2957.0 Z= 22.2  OURCE TITLE  22 CFS - processing (external) - RTT manv 26 CFS - processing (external) - aggregate unload 24 CFS - processing (external) - dust collector / fan                                                                                                                                                                                                                                                                                                                                                                                                                          | dB(A)  18.6 15.1 10.1                            |
| PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION  = 661.0 Y= 2957.0 Z= 22.2  OURCE TITLE  22 CFS - processing (external) - RTT manv 26 CFS - processing (external) - aggregate unload 24 CFS - processing (external) - dust collector / fan 27 CFS - processing (external) - silo vent 1                                                                                                                                                                                                                                                                                                                                                                             | dB(A)  18.6 15.1 10.1 4.5                        |
| PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION  = 661.0 Y= 2957.0 Z= 22.2  OURCE TITLE  22 CFS - processing (external) - RTT manv 26 CFS - processing (external) - aggregate unload 24 CFS - processing (external) - dust collector / fan 27 CFS - processing (external) - silo vent 1 28 CFS - processing (external) - silo vent 2  14 CFS - processing (external) - FEL 25 CFS - processing (external) - forklift                                                                                                                                                                                                                                                | dB(A)  18.6 15.1 10.1 4.5 4.5                    |
| PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION  = 661.0 Y= 2957.0 Z= 22.2  OURCE TITLE  22 CFS - processing (external) - RTT manv 26 CFS - processing (external) - aggregate unload 24 CFS - processing (external) - dust collector / fan 27 CFS - processing (external) - silo vent 1 28 CFS - processing (external) - silo vent 2  14 CFS - processing (external) - FEL 25 CFS - processing (external) - forklift 13 CFS - processing (external) - backhoe                                                                                                                                                                                                       | dB(A)  18.6 15.1 10.1 4.5 4.569 -6.2             |
| PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION  = 661.0 Y= 2957.0 Z= 22.2  OURCE TITLE  22 CFS - processing (external) - RTT manv 26 CFS - processing (external) - aggregate unload 24 CFS - processing (external) - dust collector / fan 27 CFS - processing (external) - silo vent 1 28 CFS - processing (external) - silo vent 2  14 CFS - processing (external) - FEL 25 CFS - processing (external) - forklift                                                                                                                                                                                                                                                | dB(A)  18.6 15.1 10.1 4.5 4.5                    |
| PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION  = 661.0 Y= 2957.0 Z= 22.2  OURCE TITLE  22 CFS - processing (external) - RTT manv 26 CFS - processing (external) - aggregate unload 24 CFS - processing (external) - dust collector / fan 27 CFS - processing (external) - silo vent 1 28 CFS - processing (external) - silo vent 2  14 CFS - processing (external) - FEL 25 CFS - processing (external) - forklift 13 CFS - processing (external) - backhoe 23 CFS - processing (external) - RTT reversing 15 CFS - curing (intenral) - FEL                                                                                                                       | dB(A)  18.6 15.1 10.1 4.5 4.5 69 -6.2 -8.2 -10.3 |
| PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION  = 661.0 Y= 2957.0 Z= 22.2  OURCE TITLE  22 CFS - processing (external) - RTT manv 26 CFS - processing (external) - aggregate unload 24 CFS - processing (external) - dust collector / fan 27 CFS - processing (external) - silo vent 1 28 CFS - processing (external) - silo vent 2  14 CFS - processing (external) - FEL 25 CFS - processing (external) - forklift 13 CFS - processing (external) - backhoe 23 CFS - processing (external) - RTT reversing 15 CFS - curing (intenral) - FEL  18 CFS - curing (intenral) - conveyor belt / motor 3 19 CFS - curing (intenral) - conveyor belt / motor 4            | dB(A)  18.6 15.1 10.1 4.5 4.5 69 -6.2 -8.2 -10.3 |
| PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION  = 661.0 Y= 2957.0 Z= 22.2  OURCE TITLE  22 CFS - processing (external) - RTT manv 26 CFS - processing (external) - aggregate unload 24 CFS - processing (external) - dust collector / fan 27 CFS - processing (external) - silo vent 1 28 CFS - processing (external) - silo vent 2  14 CFS - processing (external) - FEL 25 CFS - processing (external) - backhoe 23 CFS - processing (external) - RTT reversing 15 CFS - curing (intenral) - FEL  18 CFS - curing (intenral) - conveyor belt / motor 3 19 CFS - curing (intenral) - conveyor belt / motor 4 21 CFS - curing (intenral) - conveyor belt / motor 6 | dB(A)  18.6 15.1 10.1 4.5 4.5 69 -6.2 -8.2 -10.3 |
| PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION  = 661.0 Y= 2957.0 Z= 22.2  OURCE TITLE  22 CFS - processing (external) - RTT manv 26 CFS - processing (external) - aggregate unload 24 CFS - processing (external) - dust collector / fan 27 CFS - processing (external) - silo vent 1 28 CFS - processing (external) - silo vent 2  14 CFS - processing (external) - FEL 25 CFS - processing (external) - forklift 13 CFS - processing (external) - backhoe 23 CFS - processing (external) - RTT reversing 15 CFS - curing (intenral) - FEL  18 CFS - curing (intenral) - conveyor belt / motor 3 19 CFS - curing (intenral) - conveyor belt / motor 4            | dB(A)  18.6 15.1 10.1 4.5 4.5 69 -6.2 -8.2 -10.3 |

20.9

X= 2568.0 Y= 556.0 Z= 61.2

| SOURCE TITLE                                                                                                                                                                                                                                                             | dB(A)                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 22 CFS - processing (external) - RTT manv<br>14 CFS - processing (external) - FEL<br>13 CFS - processing (external) - backhoe<br>25 CFS - processing (external) - forklift<br>15 CFS - curing (intenral) - FEL                                                           | 18.3<br>18.1<br>10.8<br>10.3<br>8.8       |
| 24 CFS - processing (external) - dust collector / fan<br>23 CFS - processing (external) - RTT reversing<br>27 CFS - processing (external) - silo vent 1<br>28 CFS - processing (external) - silo vent 2<br>26 CFS - processing (external) - aggregate unload             | 7.0<br>3.9<br>.9<br>.8<br>-2.3            |
| 19 CFS - curing (intenral) - conveyor belt / motor 4 18 CFS - curing (intenral) - conveyor belt / motor 3 17 CFS - curing (intenral) - conveyor belt / motor 2 16 CFS - curing (intenral) - conveyor belt / motor 1 21 CFS - curing (intenral) - conveyor belt / motor 6 | -10.1<br>-10.1<br>-10.2<br>-10.3<br>-22.5 |
| 20 CFS - curing (intenral) - conveyor belt / motor 5                                                                                                                                                                                                                     | -22.8                                     |
| TOTAL                                                                                                                                                                                                                                                                    | 22.4                                      |

## PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION

X= 2964.0 Y= 577.0 Z= 51.2

| SOURCE TITLE                                                                                                                                                                                                                                                             | dB(A)                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 14 CFS - processing (external) - FEL 25 CFS - processing (external) - forklift 22 CFS - processing (external) - RTT manv 13 CFS - processing (external) - backhoe 15 CFS - curing (intenral) - FEL                                                                       | 17.5<br>9.5<br>9.1<br>9.1<br>7.8          |
| 24 CFS - processing (external) - dust collector / fan<br>23 CFS - processing (external) - RTT reversing<br>27 CFS - processing (external) - silo vent 1<br>28 CFS - processing (external) - silo vent 2<br>26 CFS - processing (external) - aggregate unload             | 5.3<br>2.9<br>1.2<br>1.1<br>-2.5          |
| 18 CFS - curing (intenral) - conveyor belt / motor 3 19 CFS - curing (intenral) - conveyor belt / motor 4 17 CFS - curing (intenral) - conveyor belt / motor 2 16 CFS - curing (intenral) - conveyor belt / motor 1 21 CFS - curing (intenral) - conveyor belt / motor 6 | -10.6<br>-10.7<br>-10.7<br>-10.8<br>-24.4 |
| 20 CFS - curing (intenral) - conveyor belt / motor 5                                                                                                                                                                                                                     | -24.7                                     |
| TOTAL                                                                                                                                                                                                                                                                    | 19.9                                      |

PROGRAM ENM SOURCE RANKING

#### SINGLE POINT CALCULATION

X= 3712.0 Y= 1349.0 Z= 22.2

| SOURCE T             | TITLE                                                                                                                                                                                                                                               | dB(A)                                   |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 22 C<br>14 C<br>25 C | CFS - processing (external) - aggregate unload<br>CFS - processing (external) - RTT manv<br>CFS - processing (external) - FEL<br>CFS - processing (external) - forklift<br>CFS - processing (external) - dust collector / fan                       | 12.5<br>8.9<br>7.4<br>5.3<br>4.0        |
| 27 (<br>15 (<br>13 ( | CFS - processing (external) - silo vent 2 CFS - processing (external) - silo vent 1 CFS - curing (internal) - FEL CFS - processing (external) - backhoe CFS - curing (internal) - conveyor belt / motor 3                                           | 2.9<br>2.7<br>2.6<br>1.2<br>-6.5        |
| 23 C<br>17 C<br>16 C | CFS - curing (intenral) - conveyor belt / motor 4 CFS - processing (external) - RTT reversing CFS - curing (intenral) - conveyor belt / motor 2 CFS - curing (intenral) - conveyor belt / motor 1 CFS - curing (intenral) - conveyor belt / motor 6 | -6.5<br>-6.6<br>-11.9<br>-12.0<br>-24.1 |
| 20 (                 | CFS - curing (intenral) - conveyor belt / motor 5                                                                                                                                                                                                   | -24.3                                   |
|                      | TOTAL                                                                                                                                                                                                                                               | 16.5                                    |

## PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION

X= 3827.0 Y= 1335.0 Z= 31.2

| dB(A)        | URCE TITLE                                                                             |
|--------------|----------------------------------------------------------------------------------------|
| 21.6<br>19.2 | 26 CFS - processing (external) - aggregate unload 14 CFS - processing (external) - FEL |
| 13.9         | 13 CFS - processing (external) - backhoe                                               |
| 10.4         | 23 CFS - processing (external) - RTT reversing                                         |
| 8.5          | 25 CFS - processing (external) - forklift                                              |
| 8.4          | 22 CFS - processing (external) - RTT manv                                              |
| 5.5          | 15 CFS - curing (intenral) - FEL                                                       |
| 4.5          | 24 CFS - processing (external) - dust collector / fan                                  |
| 1.7          | 27 CFS - processing (external) - silo vent 1                                           |
| 1.7          | 28 CFS - processing (external) - silo vent 2                                           |
| -7.9         | 18 CFS - curing (intenral) - conveyor belt / motor 3                                   |
| -8.0         | 19 CFS - curing (intenral) - conveyor belt / motor 4                                   |
| -11.2        | 17 CFS - curing (intenral) - conveyor belt / motor 2                                   |
| -11.3        | 16 CFS - curing (intenral) - conveyor belt / motor 1                                   |
| -25.1        | 21 CFS - curing (intenral) - conveyor belt / motor 6                                   |
| -25.3        | 20 CFS - curing (intenral) - conveyor belt / motor 5                                   |
| 24.6         | TOTAL                                                                                  |

| SOURCE TITLE                                                                       | dB(A)      |
|------------------------------------------------------------------------------------|------------|
| 26 CFS - processing (external) - aggregate unload                                  | 17.0       |
| 14 CFS - processing (external) - FEL<br>22 CFS - processing (external) - RTT many  | 13.8       |
| 13 CFS - processing (external) - backhoe                                           | 8.7        |
| 25 CFS - processing (external) - forklift                                          | 7.2        |
| 00.000                                                                             |            |
| 23 CFS - processing (external) - RTT reversing<br>15 CFS - curing (intenral) - FEL | 5.5<br>4.9 |
| 28 CFS - processing (external) - silo vent 2                                       | 4.4        |
| 24 CFS - processing (external) - dust collector / fan                              | 4.2        |
| 27 CFS - processing (external) - silo vent 1                                       | 1.6        |
|                                                                                    |            |
| 17 CFS - curing (intenral) - conveyor belt / motor 2                               | -8.3       |
| 18 CFS - curing (intenral) - conveyor belt / motor 3                               | -11.8      |
| 16 CFS - curing (intenral) - conveyor belt / motor 1                               | -11.8      |
| 19 CFS - curing (intenral) - conveyor belt / motor 4                               | -11.9      |
| 21 CFS - curing (intenral) - conveyor belt / motor 6                               | -25.4      |
| 20 CFS - curing (intenral) - conveyor belt / motor 5                               | -25.6      |
| TOTAL                                                                              | 20.4       |

X= 3948.0 Y= 2044.0 Z= 22.2

| SOURCE TITLE                                                                                                                                                                                                                                                             | dB(A)                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 26 CFS - processing (external) - aggregate unload 22 CFS - processing (external) - RTT manv 14 CFS - processing (external) - FEL 25 CFS - processing (external) - forklift 24 CFS - processing (external) - dust collector / fan                                         | 13.2<br>10.7<br>8.1<br>4.6<br>4.4         |
| 27 CFS - processing (external) - silo vent 1 15 CFS - curing (intenral) - FEL 28 CFS - processing (external) - silo vent 2 13 CFS - processing (external) - backhoe 23 CFS - processing (external) - RTT reversing                                                       | 3.5<br>3.4<br>2.1<br>2.0<br>-5.6          |
| 19 CFS - curing (intenral) - conveyor belt / motor 4 16 CFS - curing (intenral) - conveyor belt / motor 1 17 CFS - curing (intenral) - conveyor belt / motor 2 18 CFS - curing (intenral) - conveyor belt / motor 3 21 CFS - curing (intenral) - conveyor belt / motor 6 | -11.5<br>-11.5<br>-11.5<br>-11.5<br>-23.8 |
| 20 CFS - curing (intenral) - conveyor belt / motor 5                                                                                                                                                                                                                     | -24.1                                     |
| TOTAL                                                                                                                                                                                                                                                                    | 17.3                                      |

SOURCE TITLE 22 CFS - processing (external) - RTT manv 14.6 26 CFS - processing (external) - aggregate unload 14 CFS - processing (external) - FEL 13.1 8.0 24 CFS - processing (external) - dust collector / fan 25 CFS - processing (external) - forklift 4.5 4.4 15 CFS - curing (intenral) - FEL 3.1 28 CFS - processing (external) - silo vent 2 2.2 27 CFS - processing (external) - silo vent 1
13 CFS - processing (external) - backhoe
23 CFS - processing (external) - RTT reversing 2.1 -5.5 17 CFS - curing (intenral) - conveyor belt / motor 2 -11.9 16 CFS - curing (intenral) - conveyor belt / motor 1 -11.9 18 CFS - curing (intenral) - conveyor belt / motor 3
19 CFS - curing (intenral) - conveyor belt / motor 4 -12.0 -21.8 21 CFS - curing (intenral) - conveyor belt / motor 6 -23.9 20 CFS - curing (intenral) - conveyor belt / motor 5 -24.2 TOTAL 18.4

#### PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION

X= 3971.0 Y= 3280.0 Z= 22.2

SOURCE TITLE dB(A) 22 CFS - processing (external) - RTT manv 14.1 26 CFS - processing (external) - aggregate unload 14 CFS - processing (external) - FEL 12.4 7.2 24 CFS - processing (external) - dust collector / fan 25 CFS - processing (external) - forklift 3.9 3.6 15 CFS - curing (intenral) - FEL 1.7 13 CFS - processing (external) - backhoe 1.0 27 CFS - processing (external) - silo vent 1 1.0 28 CFS - processing (external) - silo vent 2 1.0 23 CFS - processing (external) - RTT reversing -6.7 16 CFS - curing (intenral) - conveyor belt / motor 1 -12.7 18 CFS - curing (intenral) - conveyor belt / motor 3 -12.8 17 CFS - curing (intenral) - conveyor belt / motor 2 19 CFS - curing (intenral) - conveyor belt / motor 4 -12.8 -23.8 21 CFS - curing (intenral) - conveyor belt / motor 6 -24.3 20 CFS - curing (intenral) - conveyor belt / motor 5 -24.7TOTAL 17.7

| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SOURCE TITLE                                                                                                                                                                                                                         | dB(A)                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 15 CFS - curing (intenral) - FEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22 CFS - processing (external) - RTT manv<br>14 CFS - processing (external) - FEL<br>13 CFS - processing (external) - backhoe                                                                                                        | 17.5<br>15.3<br>14.4<br>9.2<br>7.5        |
| 18 CFS - curing (intenral) - conveyor belt / motor 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15 CFS - curing (intenral) - FEL<br>27 CFS - processing (external) - silo vent 1<br>28 CFS - processing (external) - silo vent 2                                                                                                     | 6.0<br>4.3<br>4.2<br>4.2<br>4.1           |
| PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION  X= 3079.0 Y= 3574.0 Z= 22.2  SOURCE TITLE  dB(A  22 CFS - processing (external) - RTT manv 26 CFS - processing (external) - aggregate unload 17. 24 CFS - processing (external) - dust collector / fan 16. 14 CFS - processing (external) - FEL 25 CFS - processing (external) - FEL 25 CFS - processing (external) - forklift  8.  27 CFS - processing (external) - silo vent 1 8. 28 CFS - processing (external) - silo vent 2 8. 13 CFS - processing (external) - backhoe 6. 15 CFS - curing (intenral) - FEL 23 CFS - processing (external) - RTT reversing  16 CFS - curing (intenral) - conveyor belt / motor 1 17 CFS - curing (intenral) - conveyor belt / motor 2 2. CFS - curing (intenral) - conveyor belt / motor 6 2. CFS - curing (intenral) - conveyor belt / motor 6 2. CFS - curing (intenral) - conveyor belt / motor 6 2. CFS - curing (intenral) - conveyor belt / motor 6 2. CFS - curing (intenral) - conveyor belt / motor 6 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing (intenral) - conveyor belt / motor 5 2. CFS - curing ( | 18 CFS - curing (intenral) - conveyor belt / motor 3<br>17 CFS - curing (intenral) - conveyor belt / motor 2<br>19 CFS - curing (intenral) - conveyor belt / motor 4                                                                 | -12.5<br>-12.6<br>-12.6<br>-25.0<br>-25.6 |
| SINGLE POINT CALCULATION  X= 3079.0 Y= 3574.0 Z= 22.2  SOURCE TITLE  22 CFS - processing (external) - RTT manv 26 CFS - processing (external) - aggregate unload 17. 24 CFS - processing (external) - dust collector / fan 16. 14 CFS - processing (external) - FEL 25 CFS - processing (external) - forklift  8.  27 CFS - processing (external) - silo vent 1 28 CFS - processing (external) - silo vent 2 31 CFS - processing (external) - backhoe 6. 15 CFS - curing (intenral) - FEL 23 CFS - processing (external) - BTT reversing  16 CFS - curing (intenral) - Conveyor belt / motor 1 17 CFS - curing (intenral) - conveyor belt / motor 2 21 CFS - curing (intenral) - conveyor belt / motor 6 21 CFS - curing (intenral) - conveyor belt / motor 6 21 CFS - curing (intenral) - conveyor belt / motor 6 20 CFS - curing (intenral) - conveyor belt / motor 5 3 - 19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                      | 21.6                                      |
| 26 CFS - processing (external) - aggregate unload 24 CFS - processing (external) - dust collector / fan 16. 14 CFS - processing (external) - FEL 25 CFS - processing (external) - FEL 25 CFS - processing (external) - forklift  27 CFS - processing (external) - silo vent 1 28 CFS - processing (external) - silo vent 2 31 CFS - processing (external) - backhoe 45 CFS - curing (intenral) - FEL 47 CFS - curing (intenral) - FEL 48 CFS - processing (external) - BTT reversing  18 CFS - curing (intenral) - conveyor belt / motor 1 49 CFS - curing (intenral) - conveyor belt / motor 2 40 CFS - curing (intenral) - conveyor belt / motor 6 40 CFS - curing (intenral) - conveyor belt / motor 6 40 CFS - curing (intenral) - conveyor belt / motor 6 40 CFS - curing (intenral) - conveyor belt / motor 5 40 CFS - curing (intenral) - conveyor belt / motor 5 41 CFS - curing (intenral) - conveyor belt / motor 5 41 CFS - curing (intenral) - conveyor belt / motor 5 42 CFS - curing (intenral) - conveyor belt / motor 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      | dB(A)                                     |
| 15 CFS - curing (intenral) - FEL 23 CFS - processing (external) - RTT reversing  .  16 CFS - curing (intenral) - conveyor belt / motor 1 17 CFS - curing (intenral) - conveyor belt / motor 2 21 CFS - curing (intenral) - conveyor belt / motor 6 20 CFS - curing (intenral) - conveyor belt / motor 5 -19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26 CFS - processing (external) - aggregate unload 24 CFS - processing (external) - dust collector / fan 14 CFS - processing (external) - FEL 25 CFS - processing (external) - forklift  27 CFS - processing (external) - silo vent 1 | 18.1<br>17.0<br>16.3<br>12.2<br>8.2       |
| 21 CFS - curing (internal) - conveyor belt / motor 6 -19. 20 CFS - curing (internal) - conveyor belt / motor 5 -19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15 CFS - curing (intenral) - FEL 23 CFS - processing (external) - RTT reversing  16 CFS - curing (intenral) - conveyor belt / motor 1                                                                                                | 6.7<br>1.7<br>.5                          |
| 19 CFS - curing (internal) - conveyor belt / motor 4 -21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21 CFS - curing (intenral) - conveyor belt / motor 6<br>20 CFS - curing (intenral) - conveyor belt / motor 5<br>18 CFS - curing (intenral) - conveyor belt / motor 3                                                                 | -8.5<br>-19.0<br>-19.5<br>-20.4           |

23.0

TOTAL

| SOURCE TITLE                                                                                                                                                                                                                                                             | dB(A)                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 22 CFS - processing (external) - RTT manv 26 CFS - processing (external) - aggregate unload 24 CFS - processing (external) - dust collector / fan 14 CFS - processing (external) - FEL 25 CFS - processing (external) - forklift                                         | 17.4<br>15.5<br>15.0<br>10.5            |
| 27 CFS - processing (external) - silo vent 1<br>28 CFS - processing (external) - silo vent 2<br>13 CFS - processing (external) - backhoe<br>15 CFS - curing (intenral) - FEL<br>23 CFS - processing (external) - RTT reversing                                           | 5.9<br>5.9<br>4.8<br>.1<br>-2.2         |
| 16 CFS - curing (intenral) - conveyor belt / motor 1 17 CFS - curing (intenral) - conveyor belt / motor 2 21 CFS - curing (intenral) - conveyor belt / motor 6 20 CFS - curing (intenral) - conveyor belt / motor 5 18 CFS - curing (intenral) - conveyor belt / motor 3 | -4.7<br>-4.9<br>-17.4<br>-18.1<br>-22.1 |
| 19 CFS - curing (intenral) - conveyor belt / motor 4                                                                                                                                                                                                                     | -22.8                                   |
| TOTAL                                                                                                                                                                                                                                                                    | 21.8                                    |
| PROGRAM ENM SOURCE RANKING SINGLE POINT CALCULATION  X= 2366.0 Y= 4471.0 Z= 22.2                                                                                                                                                                                         |                                         |
| SOURCE TITLE                                                                                                                                                                                                                                                             | dB(A)                                   |
| 22 CFS - processing (external) - RTT manv                                                                                                                                                                                                                                | 15.1                                    |

22 CFS - processing (external) - RTT manv 26 CFS - processing (external) - aggregate unload 24 CFS - processing (external) - dust collector / fan 14 CFS - processing (external) - FEL 25 CFS - processing (external) - forklift 12.6 11.8 7.1 3.7 13 CFS - processing (external) - backhoe .9 28 CFS - processing (external) - silo vent 2 27 CFS - processing (external) - silo vent 1 -.2 -.3 15 CFS - curing (internal) - FEL 21 CFS - curing (internal) - conveyor belt / motor 6 -3.2 -6.9 20 CFS - curing (intenral) - conveyor belt / motor 5 16 CFS - curing (intenral) - conveyor belt / motor 1 -7.1 -7.1 23 CFS - processing (external) - RTT reversing
17 CFS - curing (intenral) - conveyor belt / motor 2
18 CFS - curing (intenral) - conveyor belt / motor 3 -7.8 -17.6 -24.9 19 CFS - curing (intenral) - conveyor belt / motor 4 -25.7 TOTAL 18.9