

Notes

- 1. An alternative to the double white line on the offside edge of the right-turn slot is a 1.0 m painted median. The 1.0 m median is particularly useful when the major road is on a tight horizontal curve and oncoming vehicles track across the centreline. Provision of this median will require the dimension 'A' to be increased.
- 2. A raised concrete median on the minor road may be used with this treatment to minimise 'corner cutting', particularly for higher turning volumes.
- 3. The dimensions of the treatment are defined below and values of A, D, R and T are shown in Table 7.2:
- W = Nominal through lane width (m) (including widening for curves). For a new intersection on an existing road, the width is to be in accordance with the current link strategy.
- W_T = Nominal width of turn lane (m), including widening for curves based on the design turning vehicle. Desirable minimum = W, absolute minimum = 3.0 m.
- B = Total length of auxiliary lane including taper, diverge/deceleration and storage (m).
- D = Diverge/deceleration length including taper. Adjust for grade using the 'correction to grade' factor (Section 5)
- T = Physical taper length (m) and is given by:

$$T = \frac{0.33VW_T}{3.6}$$

- S = Storage length (m) should be the greater of:
 - 1. the length of one design turning vehicle or
 - 2. (calculated car spaces –1) x 8 m (*Guide to Traffic Management Part 3: Traffic Studies and Analysis* (Austroads 2009h), or use computer program e.g. aaSIDRA).
- V = Design speed of major road approach (km/h)
- X = Distance based on design vehicle turning path, typically 10-15 m

Source: Based on QDMR (2006).

Figure 7.7: Channelised right turn (CHR) on a two-lane rural road

Table 7.2: Dimensions of CHR treatment for various design speeds

Design speed of major road approach (km/h)	Lateral movement length A (m) (1)		Desirable radius R
	W₁=3.5 m	W _T =3.0 m	(m)
50	50 ⁽²⁾	40 (2)	110
60	60	50 ⁽²⁾	175
70	70	60	240
80	80	65	280
90	90	75	350
100	100	85	425
110	110	95	500
120	120	100 ·	600

Notes:

- 1. Based on a diverge rate of 1 m/sec. If the through road is on a tight horizontal curve (e.g. one with a side friction demand greater than the maximum desirable) increase the lateral movement length so that a minimal decrease in speed is required for the through movement.
- 2. Where Type 2 road trains are required minimum A = 60.0 m.