ONORTHROP

Stormwater Report

Revision Schedule

| Date | Revision | Issue | Prepared By | Approved By |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 24.04 .20 | 1 | For Information | E. Jacobs | J. Gilligan |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Northrop Consulting Engineers Pty Ltd
ACN 064775088 |ABN 81094433100
Level 2, 3 Horwood Place, Parramatta NSW 2150
0292414188 | sydney@northrop.com.au | www.northrop.com.au
© 2020 Northrop Consulting Engineers Pty Ltd. All rights reserved.
This document has been prepared on behalf of and for the exclusive use of Hansen Yuncken and is subject to and issued in accordance with the agreement between Hansen Yuncken and Northrop Consulting Engineers. Northrop Consulting Engineers accepts no liability or responsibility whatsoever for it in respect of any use of or reliance upon this document by any third party. Copying this document without the permission of Hansen Yuncken or Northrop Consulting Engineers is not permitted.

Table of Contents

1. General 3
1.1 Introduction 3
1.2 Related Reports and Documents 3
1.3 The Development 3
2. Erosion and Sediment Control 5
2.1 Sediment Basin 5
2.2 Sediment and Erosion Control Measures 6
3. Bulk Earthworks 7
3.1 Construction Sequencing 7
4. Stormwater Management 8
4.1 Water Quantity 8
4.2 Water Quality 10
Appendix A. 12d Drainage Results 14
Appendix B. Engineering Drawings 15
Appendix C. Water Quality Devices - Product Specifications 16

1. General

1.1 Introduction

Northrop Consulting Engineers Pty Ltd (Northrop) have been engaged by Hansen Yuncken to prepare the Civil Engineering design and documentation in support of a State Significant Development Application (SSDA) submission for the proposed Meadowbank TaFE development at See Street, Meadowbank.

This report covers the works shown as the Northrop Drawing Package required for the development of the site with a new Multi-storey carpark and includes:

- Erosion and Sediment control;
- Bulk Earthworks;
- Stormwater Drainage - Water Quantity;
- Stormwater Drainage - Water Quality

It should be noted that the Multi-Storey Carpark is in addition to the proposed Multi-Trades and Digital Technology Hub previously documented and submitted for approval.

1.2 Related Reports and Documents

This report is to be read in conjunction with the following reports and documents:

1. State Significant Development Application (SSDA) Civil Documentation prepared by Northrop for the Multi Storey Carpark:

- 193030-DAC01.01 Cover Sheet, Drawing Schedule and Locality Plan
- 193030-DAC01.11 Specification Notes - Sheet 01
- 193030-DAC01.12 Specification Notes - Sheet 02
- 193030-DAC02.01 Sediment and Soil Erosion Control Plan
- 193030-DAC02.11 Sediment and Soil Erosion Control Details
- 193030-DAC04.01 Siteworks and Stormwater Management Plan
- 193030-DAC09.01 Details - Sheet 01
- 193030-DAC09.02 Details - Sheet 02

2. Managing Urban Stormwater: Soils and Construction prepared by prepared by Landcom 2004
3. City of Ryde Council's Development Control Plan Part 8;
4. NSW MUSIC Modelling Guidelines prepared by NSW Local Land Services August 2015;
5. Australian Rainfall and Runoff 2019
6. Architectural Plans for the proposed multi-storey carpark prepared by Gray Puksand
7. SSDA Design Report - Civil Meadowbank Tafe - Multi Trades and Digital Technology Hub.

1.3 The Development

1.3.1 Site Description and proposed works

The subject site is located within the suburb of Meadowbank in the City of Ryde Council (Council) Local Government Area (LGA). The proposed works are to take place on an existing carparking area within the Meadowbank TaFE site and is to consist of a new multi-storey car parking facility.

The development site for the multi-storey carpark is approximately $4,000 \mathrm{~m} 2$ and is bound by See Street to the south and the existing TaFE development to the west, north and east.

Based on review of the survey undertaken across the site by CMS Surveyors Pty Ltd the general site levels fall from a maximum RL of approximately 27.09 m AHD at the south, to a minimum ground surface RL of approximately 23.61 m AHD at the north. There is limited information on the existing stormwater network which predominantly consists of 150 mm and 225 mm pipes

2. Erosion and Sediment Control

The objectives of the erosion and sediment control for the development site are to ensure:

- Adequate erosion and sediment control measures are applied prior to the commencement of construction and are maintained throughout construction; and
- Construction site runoff is appropriately treated in accordance with City of Ryde Council requirements.

As part of the works, the erosion and sedimentation control will be constructed in accordance with Council requirements and "Managing Urban Stormwater Soil \& Construction" 2004 (Blue Book) prepared by Landcom, prior to any earthworks commencing on site.

2.1 Sediment Basin

A temporary sediment basin has been designed to capture site runoff during construction and has been located towards the north eastern side of the site, in the lowest point. The construction of the basin will be undertaken in stages to enable maximum runoff capture assisted by diversion swales and direct runoff to the basin.

Calculations to determine the concept design basin size have been based on available geotechnical information regarding soil types and through the use of the Soils and Construction Volume 1 Manual.

To ensure the sediment basin is working effectively it will be maintained throughout the construction works. Maintenance includes ensuring adequate settlement times or flocculation and pumping of clean water to reach the minimum storage volume at the lower level of the settling zone. The settling zone will be identified by pegs to clearly show the level at which design storage capacity is available.

The pumped water from the sediment basin can be reused for dust control during construction.
Overflow weirs are to be provided to control overflows for rainfall events in excess of the design criteria which caters for a storm event up to and including the 1% AEP storm event.

The concept sediment basin sizing is summarised in the table below. Detailed sediment basin sizing, configuration and location shall form part of the Construction Certificate application.

The sediment basin has been located for future conversion into the permanent water quality basin.

2.2 Sediment and Erosion Control Measures

Prior to any earthworks commencing on site, sediment and erosion control measure shall be implemented generally in accordance with the Construction Certificate drawings and the "Blue Book". The measures shown on the drawings are intended to be a minimum treatment only as the contractor will be required to modify and stage the erosion and sedimentation control measures to suit the construction program, sequencing and techniques. These measures will include:

- A temporary site security/safety fence is to be constructed around the site, the site office area and the proposed sediment basin;
- Sediment fencing provided downstream of disturbed areas, including any topsoil stockpiles;
- Dust control measures including covering stockpiles, installing fence hessian and watering exposed areas;
- Placement of hay bales or mesh and gravel inlet filters around and along proposed catch drains and around stormwater inlets pits; and
- The construction of a temporary sediment basin as noted above in Section 2.1;
- Stabilised site access at the construction vehicle entry/exits.

Any stockpiled material, including topsoil, shall be located as far away as possible from any associated natural watercourses or temporary overland flow paths. Sediment fences shall be installed to the downstream side of stockpiles and any embankment formation. All stockpiles and embankment formations shall be stabilised by hydroseeding or hydro mulching on formation.

3. Bulk Earthworks

The proposed works will generally consist of earthworks cut and fill operations to form design levels of the proposed carpark area. The levels have been designed to optimise and balance cut to fill material across the site (where possible). The levels for the site have been based on the current Architectural Plans with the majority of the site to be constructed in cut.

Preliminary bulk earthworks quantities are summarised in Table 1:
Table 1 - Concept Earthworks Volumes

Earthworks	Volume (m $\left.{ }^{3}\right)$
Cut	1,904
Fill	145
Balance	1,759 Excess Cut over Fill

The bulk earthworks cut/fill volumes provided are concept only and are subject to change pending final coordination and detailed design. It should be noted the above-mentioned cut/fill operations have been calculated based on the following assumptions:

- No allowance for earthworks bulking factors;
- No allowance for spoil generated from utility service and stormwater drainage trenching;
- No allowance for spoil generated from water quality media;
- 300mm pavement depth for roads and pavements

3.1 Construction Sequencing

The sequence of work for the bulk earthworks will generally include:

- Provision of site establishment erosion and sediment control measures typically outlined in this report's section Erosion \& Sediment Control;
- Clearing of vegetation from the proposed development site and either removal or mulching;
- Demolition of existing structures and pavements (as required);
- Stripping and stockpiling of topsoil suitable for reuse;
- Inspection of exposed natural material to ensure conformity with design assumptions and requirements;
- Placement of cut to fill layers not greater than 200 mm in thickness and compacted to not less than 98\% Standard Maximum Dry Density (SMDD) in accordance with the geotechnical report; and
- Spread topsoil to a maximum depth of 200 mm and hydroseed or hydro mulch disturbed areas.

4. Stormwater Management

4.1 Water Quantity

4.1.1 Major / Minor Drainage System

The major/minor approach to stormwater drainage is the recognised drainage concept for urban catchments within the City of Ryde Local Government Area.

The minor system is comprised of the below ground pit and pipe network and is design to control nuisance flooding and enable effective stormwater management for the site. Council's DCP requires that the minor drainage system be designed for a minimum 20-year ARI for commercial development sites.

The major drainage system incorporates overland flow routes through proposed hardstand, carparking and landscaped areas and is assessed against the 100-year ARI design storm event. The major system also exists to cater for minor drainage system failures. In accordance with Council's requirements, the major drainage system is to be designed in a manner that ensures that personal safety is not compromised.

For the purposes of this report, 12d Drainage software is used to calculate flows exiting the site for the proposed scenario. Stormwater piped capacities have been designed to convey the minor (20year ARI) storm event with safe overland flows for the 100-year ARI storm event. If the major system cannot meet the safety and flooding criteria, then the capacity of the minor drainage system has been increased.

4.1.2 Existing System

Detail site survey has very limited information on the existing stormwater pit and pipe network at the Meadowbank TaFE site. It is likely that additional survey information of the in-ground stormwater network will be required to finalise the civil design prior to construction. At present the design team has determined an appropriate point of discharge for the proposed development which will need further verification by the project surveyor.

4.1.3 Proposed system

The model for the proposed site was developed based upon the following methodology

- The site pit and pipe network is proposed to connect to existing stormwater infrastructure within the TaFE site
- An indicative pit and pipe network was developed for the proposed siteworks (refer civil drawing 193030-DAC04.01 Siteworks and Stormwater Management Plan for details)
- Tailwater conditions at the connection were considered 150 mm below grate level for the 1 in 20year ARI storm event and 150mm above grate level for the 1 in 100-year ARI storm event. These levels have been specified to simulate a charged system downstream and to verify the capacity of the designed pit and pipe network.
- The entire carpark building surface has been proposed to discharge to the in-ground stormwater pit and pipe network.

4.1.4 Results

Model simulations were undertaken in 12d Drainage software to determine the size of the proposed piped networks in order to satisfy major / minor requirements in accordance with City of Ryde Council's standards.

The proposed piped drainage system has been designed to cater for the 1 in 20-year ARI event leading to an existing pit within the TaFE site.

Results indicate that the major / minor system requirements are satisfied at all proposed pits in the development area and that the piped system sufficiently conveys minor storm flows with safe provision for major system flows.

4.1.4.1 Discussion

The stormwater design of the Multi-Storey Carpark utilises the same philosophy with respect to OnSite Stormwater Detention (OSD) as the Multi-Trades and Digital Technology Hub. The following items have been considered.

- The proposed Multi Storey carpark is proposed in a location that currently occupies an at grade carpark. As the impervious percentage between the existing and proposed site is negligible, the provision of OSD has not been considered appropriate for this development.
- As the development site is within the same property as the Multi-Trades and Digital Technology Hub, it benefits from the analysis previously undertaken in the SSDA Design Report - Civil Meadowbank Tafe - Multi Trades and Digital Technology Hub. Findings in this report indicate that the downstream conditions are equal or worse off with an OSD installed. As such it is proposed to proceed with this component of the development without OSD.

4.2 Water Quality

The stormwater management systems for the site shall comply with City of Ryde Councils Water Sensitive Urban Design Guidelines. Council's policy requires improved water quality of the stormwater flow form the developed site prior to discharge into the authority's drainage system.

Council also require the removal of target pollutants from the site during the construction phase as vehicles that may enter or exit could generate various pollutants such as silt, oil and grease. These target pollutants can be verified into five major groups of stormwater pollutants

- Gross Pollutants;
- Coarse medium and fine sediments
- Oil and grease
- Heavy metals; and
- Nutrients.

4.2.1 Water Quality Objectives

In accordance with City of Ryde Council's Development Control Plan, we note that the following targets have neem set in relation to stormwater quality as shown in Table 2 below:
Table 2 - Water Quality Targets

Pollutant	\% Reduction Post-Development Average Annual Load Reduction
Total Suspended Solids (TSS)	85
Total Phosphorous (TP)	60
Total Nitrogen (TN)	45
Gross Pollutants	90

To demonstrate compliance with City of Ryde, Council's Development Control Plan, treatment removal loads were analysed from pre-to post development scenarios using MUSIC (Model for Urban Stormwater Improvement Conceptualisation) Version 6 software. Model development and results are discussed in section 4.2.3.

4.2.2 Proposed Treatments

Possible stormwater quality treatment devices such as Ocean Protects Vortech and Jellyfish are discussed below. (refer to product specifications in Appendix C for further details).

4.2.2.1 Ocean Protect Vortech

The Ocean Protect Vortech is a Gross Pollutant Trap proposed as an end of line primary treatment device to treat stormwater runoff from the proposed development. The Ocean Protect Vortech system targets suspended solids, oil, floating and separable debris.

The expected removal rates that were utilised in the water quality modelling process to represent the pollutant filters were based on manufacturers specifications as follows:

Table 3 - Vortech MUSIC Input Parameters

Pollutant	Input	Output	Adopted Rate\%
Total Suspended Solids (TSS)	1250	305	75.5
Total Phosphorous (TP)	2.12	1.53	27.9
Total Nitrogen (TN)	8.55	8.55	0
Gross Pollutants	83.8	1.05	98.7

4.2.2.2 Ocean Protect Jellyfish

The Ocean Protect Jellyfish is a proposed as an end of line secondary treatments device to treat stormwater runoff from the development. The Ocean Protect Jellyfish system targets particulate bound pollutants including phosphorus, nitrogen, metals and hydrocarbons.

The expected removal rates that were utilised in the water quality modelling process to represent the pollutant filters were based on manufacturers specifications as follows:

Table 3 - Jellyfish MUSIC Input Parameters

Pollutant	Input	Output	Adopted Rate
Total Suspended Solids (TSS)	305	46.5	84.8
Total Phosphorous (TP)	1.53	0.556	63.6
Total Nitrogen (TN)	8.55	3.98	53.4
Gross Pollutants	1.05	0.0984	90.6

4.2.3 Water Quality Modelling - MUSIC Model, Parameters and Methodology

A water quality modelling tool, MUSIC was utilised to simulate urban stormwater systems operating at a range of temporal and spatial scales. MUSIC models the total amounts of gross pollutants and nutrients produced within various types of catchments. It allows the user to simulate the removal rates expected when implementing removal devices to reduce the increased gross pollutant and nutrient levels created by the proposed development.

The following methodology and parameters were incorporated in the MUSIC modelling:

- The MUSIC model was created to assess the effectiveness of water quality nodes which are to be constructed as part of the proposed development;
- In accordance with Council's requirements, pluviograph data from Sydney was utilised within the model;
- A MUSIC model was setup to represent the post developed site. From architectural plans the site was categorized as hardstand / carpark / sealed road;
- Pollutant concentration parameters used with in the model were based on the recommended model defaults for hardstand / road area; and
- A treatment train was designed to incorporate a series of treatment nodes including Ocean Protect Vortech and Ocean Protect Jellyfish. The effectiveness of the proposed treatments is summarised in Section 4.2.4.

Figure 1 - Proposed MUSIC Model

4.2.4 Results

The following results were achieved in the model:

Table 5 - MUSIC Results

Pollutant	Post- Development with no WSUD measures (kg/yr.)	Post- Development with WSUD measures (kg/yr.)	Removal Rate (\%)	Target Removal Rate (\%)
Total Suspended Solids (TSS)	1280	49.8	96.1	85
Total Phosphorous (TP)	2.11	0.552	73.8	60
Total Nitrogen (TN)	8.87	4.14	53.4	45
Gross Pollutants	83.8	0.0984	99.9	90

Results of MUSIC analysis indicate that the proposed treatment train consisting of Ocean Protect Vortech and Ocean Protect Jellyfish satisfies City of Ryde Council's statutory requirements for target pollutant removal rates.

Appendix A. 12d Drainage Results

12d Model Dynamic Drainage Results 5AEP
DATA Negative Flow Values Indicate Reverse Flows

DATA	Negative Flow Values Indicate Reverse Flows																					
Pit						Pipe											Catchment				Catchment	Set 1
Pit	Pit	Surface	Pit	Major Ever	Minor Ever	Pipe			Pipe	U/S	D/S		Pipe	Pipe	Pipe	Roughness	Catchment	Area	Impervious	Pervious	Impervious	Pervious
Name	Type	RL	Max Ku	Inlet Capaq	Inlet Capaq	Name	From	To	Length	IL	IL	Slope	Type	Diameter	Roughness	Type	Name		Percentage ${ }^{\text {P }}$	Percentag	Tc	Tc
		(m)		\%	\%			(m)	(m)	(m)	(\%)		(mm)				(Ha)	(\%)	(\%)	(min)	(min)	(min)
$01 \backslash 01$	$900 \times 900 \mathrm{G}$.	25.75	0	50	100	01\01 to 0	01\01	01102	19.445	24.994	24.8		UPVC	150	0.013	Manning	01\01		0	0		
$01 \backslash 02$	$900 \times 900 \mathrm{G}$.	25.75	0	50	100	01\02 to 0	01\02	$01 \backslash 03$	25.385	24.77	24.516	1	UPVC	150	0.013	Manning	01\02		0	0		
$01 \backslash 03$	$900 \times 900 \mathrm{G}$.	25.75	0	50	100	01\03 to 0	01\03	$01 \backslash 04$	15.79	24.486	24.328		UPVC	150	0.013	Manning	01\03		0	0		
$01 \backslash 04$	$900 \times 900 \mathrm{G}$.	25.75	4	50	100	01\04 to 0	01\04	$01 \backslash 05$	22.668	24.298	24.071		UPVC	150	0.013	Manning	01\04	0.024	90	10	5	27.3725
01\05	$900 \times 900 \mathrm{G}$.	25.75	0.25	50	100	01\05 to 0	01\05	$01 \backslash 06$	21.527	24.041	23.826		UPVC	150	0.013	Manning	01\05		0	0		
$01 \backslash 06$	$900 \times 900 \mathrm{G}$.	25.75	1.87	50	100	01\06 to 0	01\06	$01 \backslash 07$	6.989	23.796	23.726		UPVC	150	0.013	Manning	01\06		0	0		
$01 \backslash 07$	900×900 J.1	25.75	5.95	80	100	01\07 to 0	01\07	$01 \backslash 08$	2.854	22.887	22.602	10	UPVC	225	0.013	Manning	01\07	0.27	90	10	5	27.3725
$01 \backslash 08$	$900 \times 900 \mathrm{G}$.	23.381	1.89	80	100	01\08 to V	01\08	WQ01	2.368	22.527	22.278	10.517	UPVC	225	0.013	Manning	01108		0	0		
WQ01	$900 \times 900 \mathrm{G}$.	23.194	0.4	80	100	WQ01 to	WQ01	WQ02	2.267	22.248	22.135		UPVC	225	0.013	Manning	WQ01		0	0		
WQ02	$900 \times 900 \mathrm{G}$.	23.057	1.83	80	100	WQ02 to C	WQ02	01109	3.411	21.537	21.026	15	UPVC	225	0.013	Manning	WQ02		0	0		
$01 \backslash 09$	G.G.P. 1.8n	21.962	1.81	80	100	01109 to 0	01109	01\10	12.236	20.996	19.598	11.424	UPVC	225	0.013	Manning	01\09	0.021	50	50	5	14.5799
$01 \backslash 10$	G.G.P. 1.8n	20.466	1.38	80	100	01\10 to 0	01\10	$01 \backslash 11$	19.139	19.568	17.621	10.171	UPVC	225	0.013	Manning	01\10	0.008	30	70	5	6.8757
$01 \backslash 11$	G.G.P. 1.8n	18.414	0.63	80	100	01\11 to E	01\11	EX01	12.32	17.509	16.248	10.242	UPVC	225	0.013	Manning	01\11	0.012	20	80	5	13.2919
EX01	G.G.P. 1.8n	17.052															EX01					

RESULTS																	
Pit							Pipe					Overflow					
Pit	Approach	Captured	Bypass	Max	Ponding	Pit	Pipe	Max	Max	Max U/S	MAX D/S	From	To	Flow	Flow	Flow	VxD
Name	Flow	Flow	Flow	HGL	Depth	Freeboard	Name	Flow	Velocity	HGL	HGL			Width	Depth	Velocity	Ratio
(m3/s)	(m3/s)	(m3/s)	(m)	(m)	(m)		(m3/s)	(m/s)	(m)	(m)			(m)	(m)	(m/s)		
01\01	0	0		24.994	0	0.756	01\01 to 0	0	0	24.994	24.8	$01 \backslash 01$			0		
$01 \backslash 02$	0	0		24.77	0	0.98	01\02 to 0	0	0	24.77	24.516	$01 \backslash 02$			0		
01\03	0	0		24.498	0	1.264	01\03 to 0	-0.001	0	24.507	24.455	01\03			0		
$01 \backslash 04$	0.01	0.01		24.455	0	1.365	01\04 to 0	0.01	0.7	24.374	24.31	01\04			0		
01\05	0	0		24.31	0	1.644	01\05 to 0	0.014	0.86	24.308	24.244	01\05			0		
01\06	0	0		24.244	0	1.874	01\06 to 0	0.017	0.99	24.231	24.234	01\06			0		
$01 \backslash 07$	0.113	0.113		24.234	0	2.22	01\07 to 0	0.111	2.78	24.052	23.327	01\07	LOST		0		
$01 \backslash 08$	0	0		23.327	0	0.491	01\08 to V	0.109	2.75	23.148	22.661	01\08			0		
WQ01	0	0		22.661	0	0.635	WQ01 to	0.109	2.75	22.553	22.381	WQ01			0		
WQ02	0	0		22.374	0	1.237	WQ02 to 0	0.107	2.7	22.206	21.623	WQ02			0		
$01 \backslash 09$	0.007	0.007		21.623	0	0.806	01\09 to 0	0.113	3.23	21.527	19.759	01\09			0		
01\10	0.003	0.003		19.759	0	0.753	01\10 to 0	0.12	3.41	19.702	17.963	01\10			0		
01\11	0.003	0.003		17.963	0	0.781	01\11 to E	0.118	2.98	17.917	16.89	01\11			0		
EX01	0	0		16.89	0	-0.643						EX01			0		

12d Model Dynamic Drainage Results 1AEP

DATA																						
Pit						Pipe											Catchment				Catchment Set 1	
Pit	Pit	Surface	Pit	Major Event	Minor Event	Pipe			Pipe	U/S	D/S		Pipe	Pipe	Pipe	Roughness	Catchment	Area	Impervious	Pervious	Impervious	Pervious
Name	Type	RL	Max Ku	Inlet Capacity	Inlet Capacity	Name	From	To	Length	11	11	Slope	Type	Diameter	Roughness	Type	Name		Percentage	Percentage	Tc	Tc
		(m)		\%	\%			(m)	(m)	(m)	(\%)		(mm)				(Ha)	(\%)	(\%)	(min)	(min)	(min)
01101	900x900 G	25.75	0	50	100	$01 \backslash 01$ to 01\02	01101	01102	19.445	24.994	24.8		UPVC	150	0.013	Manning	$01 \backslash 01$		0	0		
01102	900x900 G	25.75	0.2	50	100	$01 \backslash 02$ to 01\03	01102	01103	25.385	24.77	24.516		UPVC	150	0.013	Manning	01102		0	0		
01103	900x900 G	25.75	2.13	50	100	$01 \backslash 03$ to 01\04	01103	01104	15.79	24.486	24.328		UPVC	150	0.013	Manning	01103		0	0		
0104	900x900 G	25.75	8.02	50	100	$01 \backslash 04$ to 01\05	$01 \backslash 04$	01105	22.668	24.298	24.071		UPVC	150	0.013	Manning	01104	0.024	90	10	5	24.735
01105	900x900 G	25.75	0.25	50	100	01\05 to 01\06	01105	01106	21.527	24.041	23.826		UPVC	150	0.013	Manning	01105		0	0		
01106	900x900 G	25.75	1.87	50	100	01\06 to 01\07	01106	$01 \backslash 07$	6.989	23.796	23.726		UPVC	150	0.013	Manning	01106		0	0		
0107	900×900 J.	25.75	5.95	80	100	01\07 to 01\08	$01 \backslash 07$	01108	2.854	22.887	22.602	10	UPVC	225	0.013	Manning	$01 \backslash 07$	0.27	90	10	5	24.735
0108	900×900 G	23.381	1.89	80	100	01108 to WQ01	01108	WQ01	2.368	22.527	22.278	10.517	UPVC	225	0.013	Manning	01108		0	0		
WQ01	900x900 G	23.194	0.39	80	100	WQ01 to WQ02	WQ01	WQ02	2.267	22.248	22.135		UPVC	225	0.013	Manning	WQ01		0	0		
WQ02	900x900 G	23.057	1.81	80	100	W002 to $01 \backslash 09$	WQ02	$01 \backslash 09$	3.411	21.537	21.026	15	UPVC	225	0.013	Manning	WQ02		0	0		
0109	G.G.P. 1.8r	21.962	1.7	80	100	01\09 to 01\10	01\09	01\10	12.236	20.996	19.598	11.424	UPVC	225	0.013	Manning	01109	0.021	50	50	5	13.175
01\10	G.G.P. 1.8r	20.466	1.19	80	100	01\10 to 01\11	01110	$01 \backslash 11$	19.139	19.568	17.621	10.171	UPVC	225	0.013	Manning	01\10	0.008	30	70	5	6.2131
01\11	G.G.P. 1.8r	18.414	0.63	80	100	$01 \backslash 11$ to EX01	$01 \backslash 11$	Ex01	12.32	17.509	16.248	10.242	UPVC	225	0.013	Manning	01\11	0.012	20	80		12.0111
EX01	G.G.P. 1.8r	17.052															EX01					

RESULTS																	
Pit							Pipe					Overflow					
Pit	Approach	Captured	Bypass	Max	Ponding	Pit	Pipe	Max	Max	Max U/S	MAX D/S	From	To	Flow	Flow	Flow	VxD
Name	Flow	Flow	Flow	HGL	Depth	Freeboard	Name	Flow	Velocity	HGL	HGL			Width	Depth	Velocity	Ratio
(m3/s)	(m3/s)	(m3/s)	(m)	(m)	(m)		(m3/s)	(m/s)	(m)	(m)			(m)	(m)	(m/s)		
01 101	0	0		24.994	0	0.756	01\01 to 01102	0	0	24.995	24.928	0101			0		
0102	0	0		24.928	0	0.98	01102 to 01103	-0.004	0.38	24.928	24.926	0102			0		
01103	0	0		24.926	0	1.264	$01 \backslash 03$ to 01104	-0.011	0.62	24.926	24.923	01103			0		
01104	0.013	0.013		24.923	0	1.35	01\04 to 01105	0.015	0.85	24.896	24.861	01104			0		
01105	0	0		24.861	0	1.635	01105 to 01106	0.019	1.07	24.86	24.826	01005			0		
01106	0	,		24.826	0	1.861	$01 \backslash 06$ to 01107	0.025	1.44	24.82	24.807	01106			0		
01107	0.142	0.142		24.807	0	2.076	$01 \backslash 07$ to 01\08	0.139	3.49	24.625	23.383	$01 \backslash 07$	LOST		0		
01108	0	0		23.383	0	0.309	$01 \backslash 08$ to WQ01	0.113	2.84	23.203	22.714	01108			0		
WQ01	0	0		22.714	0	0.589	WQ01 to WQ02	0.113	2.84	22.602	22.453	WQ01			0		
WQ02	0	0		22.453	0	1.181	WQ02 to 01109	0.112	2.83	22.285	21.696	WQ02			0		
$01 \backslash 09$	0.01	0.01		21.696	0	0.777	01\09 to 01\10	0.13	3.37	21.599	19.984	01109			0		
01\10	0.004	0.004		19.984	0	0.73	01\10 to 01\11	0.128	3.41	19.927	18.04	01\10			,		
01\11	0.006	0.006		18.04	0	0.727	$01 \backslash 11$ to EX01	0.129	3.52	17.996	16.414	01\11			0		
EX01	0	0		16.414	0	-0.138						EX01			0		

Appendix B. Engineering Drawings

MEADOWBANK TAFE

MEADOWBANK, NSW

CIVIL DOCUMENTATION - CARPARK


```
\mathrm{ DWG No. DRAWINGGTILE,}
corco:01 cover Shet, orawNG shemule ANo Localitr Plav
```



```
Maccon
lol
```


	ACCESS AND SAFETY
	THE Conract orop Shall comp
3.	
	WHERE NECESSARY THE CONTRACTOR SHALL PROVIDE SAFE site.
	THE CONTRACTOR SHALL ENSURE PUBLIC ACCESS EXTERNAL TO THE SITE IS IN ACCORDANCE WITH COUNCILS / AUTHORITY / SITE MANAGERS REQUIREMENTS

TREE PROTECTION

 reaurenents.

	EXISTING SERVICES
	 LOCATING OF SERVICES PRIOR TO COMMENCEMENT OF WORKS.
	Existing services. no mechanical excavations are to be undertaken over ONLYUNICATION, GAS
	STM UNDER THE DIRECTION OF THE SUPERINTENDENT AT THE CONTRACTORS EXPENSE.
	THE CONTRACTOR SHALL ALLOW IN THE PROGRAM FOR THE ADJUSTMENT (IF REQU AFECTED BY WORKS
5.	THE CONTRACTOR SHALL ALLOW IN THE PROGRAM FOR THE CAPPING OFF, EXCAVATION AND REMOVAL (IF REQUIRED) OF EXISTING STHERWISE ON THE DRAWINGS OR BY THE SUPERINTENDENT THE CONTRACTOR SHALL ENSURE THAT AT ALL TIMES SERVICES TO ALL BUILDINGS ARE NOT AFFECTED BY THE WORKS AND ARE MAINTAINED AND NOT DISRUPTED.
	PRIOR TO COMMENCEMENT OF ANY WORKS THE CONTRACTOR SHALL GAIN APPROVAL OF THE PROGRAM FOR THE RELOCATION AND/OR INTERRUPTION OF SUPPLY.
	the contractor is to allow to pothole any services Within A PUBLIC RESERVE WITHIN THE EXTENT OF WORKS (E.G. STORMWATER (ROSSINGS)

	EARTHWORKS (cont)
	Where there is insufficient excavated material suitable for FILLING OR SUBGRADE REPLACEMENT, THE CONTRACTOR IS TO ALLOW TO IM FOLLOWING; BE OF VIRGIN EXCAVATED NATURAL MATERIAL OR ONTRACTOR TO PROVIDE EVIDENCE IMPORT IS SUITABLE FOR USE MAXIMUM SIZE 50mm, PASSING 75 MICRON SIEVE ($<25 \%$
	THE CONTRACTOR SHALL PROGRAM THE EARTHWORKS OPERATION THE PERIOD OF CONSTRUCTION. THE SURFACE SHALL BE GRADED AND THE SEALED OFF SIMILAR WHICH WOULD ALLOW WATER TO POND AND PENETRATE THE UNDERLYING MATERIAL. ANY DAMAGE RESULTING FROM THE CONTRACTOR NOT OBSERVING THESE REQUIREMENTS SHALL BE RECTIFIED AT THEIR COST
depe exavations	
	PRIOR TO THE COMMENCEMENT OF EXCAVATION WORKS GREATER THAN 1.5 m IN DEPTH, THE CONTRACTOR SHALL OBTAIN THE SERVICE OF A SUITABLY QUALIFIED GEOTECHNICAL ENGINEER TO DETERMINE THE STABILITY OF MATERIAL BEING EXCAVA REQUIREMENTS / MINIMUM BATTER SLOPES.
	CONTRACTOR MUST PROVIDE THE SUPERINTENDENT AND OR TH DESIGN ENGINEER WITH A COPY OF THE GEO REPORT PRIOR TO PRACTICAL COMPLETION
	HE CONTRACTOR IS TO PROVIDE SAFETY BARRIERS, FENCING AND THE LIKE IN ACCORDANCE WITH OH\&S AND REGULATORY AUTHORITY TIMES.

LANDSCAPING
 2.

部

 grade uno.

 Ricill

subsol oranact

3.

Min

meadowbank tafe

SIGNAGE AND LINEMARKING

 Pant stall be applec at a wet thecknes of between o3sman AAPDARK LNEMARAKNG To BE OOmm WIDE

NOT FOR CONSTRUCTION

 sexvef teentis

 NMG Titivil documentation
CARPARK SPECIFICATION Notes - sheet 01

STOCKPILE

WIRE MESH AND GRAVEL SEDIMENT FILTER

CONSTRUCTION NOTES

$\frac{\text { CONSTRUCTION NOTES }}{1}$
Le

GEOTEXTILE INLET FILTER TRAPS

CONSTRUCTION NOTES
-Riove allv veetation an topsol fron wnoer the dan wall ano foom with the stopage areal

 SPREA THE FLLL W WOOM TO OOSOM
7. Construct the mirager spluway

Mentinit Basive wer

CONSTRUCTION NOTES

STABILISED SITE ACCESS

 SEDIMENT FENCE

		ISSUED VERVT APPPo date				GRAY PUKSAND	
		10	${ }^{16}$	24,0,20			ciome

NORTHROP
meadowbank tafe
Lein
CIVIL DOCUMENTATION
CARPARK
SEDIMENT AND SOLI EROSION
CONTROL DETALLS

193030	
WG WMEER	Revs
DAC02.11	1

NOT FOR CONSTRUCTION

- KERB \& GUTTER 'KG'

WHEEL STOP 'WS

Appendix C. Water Quality Devices - Product Specifications

Vortechs
Operations \& Maintenance Manual

Table of Contents

Introduction 2
Why do I need to perform maintenance? 2
Health and Safety 3
Personnel health and safety 3
How does it Work? 4
Maintenance Procedures 4
Primary Types of Maintenance 4
Minor Service 5
Major Service 5
Additional Types of Maintenance 6
Hazardous Material Spill. 6
Blockages 6
Major Storms and Flooding 6
Disposal of Waste Materials 6
Maintenance Services. 6

Introduction

The primary purpose of stormwater treatment devices is to capture and prevent pollutants from entering waterways, maintenance is a critical component of ensuring the ongoing effectiveness of this process. The specific requirements and frequency for maintenance depends on the treatment device and pollutant load characteristics of each site. This manual has been designed to provide details on the cleaning and maintenance processes as recommended by the manufacturer.

The Vortechs system is a high-performance hydrodynamic separator that effectively removes fine sediment, oil and grease, as well as floating and sinking pollutants. Its swirl concentrator and flow control features, work together to minimise turbulence and provide stable storage of captured pollutants. The design also allows for easy inspection and unobstructed maintenance access.

Why do I need to perform maintenance?

Adhering to the maintenance schedule of each stormwater treatment device is essential to ensuring that it works properly throughout its design life.

During each inspection and clean, details of the mass, volume and type of material that has been collected by the device should be recorded. This data will assist with the revision of future management plans and help determine maintenance interval frequency. It's also essential that qualified and experienced personnel carry out all maintenance (including inspections, recording and reporting) in a systematic manner.

Maintenance of your stormwater management system is essential to ensuring ongoing at-source control of stormwater pollution. Maintenance also helps prevent structural failures (e.g. prevents blocked outlets) and aesthetic failures (e.g. debris build up).

Health and Safety

Access to a Vortechs unit requires removing heavy access covers/grates, additionally it might become necessary to enter into a confined space. Pollutants collected by the Vortechs will vary depending on the nature of your site. There is potential for these materials to be harmful. For example, sediments may contain heavy metals, carcinogenic substances or objects such as broken glass and syringes. For these reasons, all aspects of maintaining and cleaning your Vortechs require careful adherence to Occupational Health and Safety (OH\&S) guidelines.

It is important to note that the same level of care needs to be taken to ensure the safety of non-work personnel, as a result it may be necessary to employ traffic/pedestrian control measures when the device is situated in, or near areas with high vehicular/pedestrian activity.

Personnel health and safety

Whilst performing maintenance on the Vortechs, precautions should be taken in order to minimise (or, when possible, prevent) contact with sediment and other captured pollutants by maintenance personnel. In order to achieve this the following personal protective equipment (PPE) is recommended:

- Puncture resistant gloves
- Steel capped safety boots
- Long sleeve clothing, overalls or similar skin protection
- Eye protection
- High visibility clothing or vest

During maintenance activities, it may be necessary to implement traffic control measures. Ocean Protect recommend that a separate site specific traffic control plan is implemented as required to meet the relevant governing authority guidelines.

Whilst the minor maintenance for the Vortechs can be performed from surface level, there may be a need to enter the pit (confined space) during major services. It is recommended that all maintenance personnel evaluate their own needs for confined space entry and compliance with relevant industry regulations and guidelines. Ocean Protect maintenance personnel are fully trained and carry certification in confined space entry requirements.

How does it Work?

Stormwater enters the swirl chamber at a tangent, creating a swirling flow pattern and enhancing gravitational separation. Sinking pollutants stay in the swirl chamber while floating pollutants are stopped at the floatables baffle wall. During larger storms, the water level rises above the low flow control and begins to flow through the high flow control.

As a storm event increases in intensity, the swirling action increases proportionately, this assists in in the prevention of re-suspension. When flowing at peak capacity, the water surface in the system approaches the top of the high flow control. The Vortechs should be sized so that previously captured pollutants are retained in the system even during these infrequent events. As a storm subsides, treated runoff decants out of the Vortechs system at a controlled rate, restoring the water level to a dry-weather level equal to the invert of the inlet and outlet pipes.

Maintenance Procedures

To ensure optimal performance, it is advisable that regular maintenance is performed. Typically, the Vortechs requires a minor service every 6 months and a major service every 12 months.

Primary Types of Maintenance

The table below outlines the primary types of maintenance activities that typically take place as part of an ongoing maintenance schedule for the Vortechs.

Description of Typical Activities	Frequency	
Minor Service	Visual inspection of swirl, floatables and outlet chambers Removal of large floatable pollutants Measuring of sediment depth	At 6 Months
Major Service	Removal of accumulated sediment and gross pollutants Inspection of the swirl chamber, baffle wall and outlet controls	At 12 Months

Maintenance requirements and frequencies are dependent on the pollutant load characteristics of each site. The frequencies provided in this document represent what the manufacturer considers to be best practice to ensure the continuing operation of the device is in line with the original design specification.

Minor Service

This service is designed to assess the condition of the device and record necessary information that will inform the activities to be undertaken during a major service.

1. Establish a safe working area around the access point
2. Remove access cover over the swirl chamber
3. Visually inspect the chamber
4. Remove large floatable pollutants with a net
5. Measure and record sediment depth
6. Replace access cover
7. Repeat steps 2-6 for floatable and outlet chambers

Major Service

This service is designed to return the Vortechs device back to optimal operating performance.

1. Establish a safe working area around the access point
2. Remove access cover over the swirl chamber
3. Using a vacuum unit remove any floatable pollutants
4. Decant water until water level reaches accumulated sediment
5. Remove accumulated sediment and gross pollutants with vacuum unit (if required)
6. Repeat steps 2-5
7. Inspect the swirl chamber, baffle wall and outlet controls
8. Use high pressure water to clean sump area (if required)
9. Replace access covers

When determining the need to remove accumulated sediment from the Vortechs unit, the specific sediment storage capacity for the size of unit should be considered (see table below).

Vortechs Model	Swirl Chamber Diameter (m)	Sediment Storage Capacity $\left(\mathrm{m}^{3}\right)$
VX1000	0.9	0.5
VX2000	1.2	0.9
VX3000	1.5	1.4
VX4000	1.8	1.8
VX5000	2.1	2.4
VX7000	2.4	3.1
VX9000	2.7	3.7
VX11000	3.0	4.3
VX16000	3.7	5.4

Additional Types of Maintenance

The standard maintenance approach is designed to work towards keeping the Vortechs operational during normal conditions. From time to time, events on site can make it necessary to perform additional maintenance to ensure the continuing performance of the device.

Hazardous Material Spill

If there is a spill event on site, the Vortechs unit that potentially received flow should be inspected and cleaned. Specifically, all captured pollutants and liquids from within the unit should be removed and disposed in accordance with any additional requirements that may relate to the type of spill event.

Blockages

In the unlikely event that flooding occurs upstream of the Vortechs system, the following steps should be undertaken to assist in diagnosing the issue and determining the appropriate response.

1. Inspect the upstream diversion structure (if applicable) ensuring that it is free of debris and pollutants
2. Decant water from Vortechs unit in preparation for confined space entry
3. Inspect the high flow and low flow control elements as well as both inlet and outlet pipes for obstructions, if present remove any built up pollutants or blockages.

Major Storms and Flooding

In addition to the scheduled activities, it is important to inspect the condition of the Vortechs after a major storm event. The focus is to inspect for higher than normal sediment accumulation that may result from localised erosion, where necessary accumulated pollutants should be removed and disposed.

Disposal of Waste Materials

The accumulated pollutants found in the Vortechs must be handled and disposed of in a manner that is in accordance with all applicable waste disposal regulations. When scheduling maintenance, consideration must be made for the disposal of solid and liquid wastes. If the system has been exposed to any hazardous or unusual substance, there may be additional special handling and disposal methods required to comply with relevant government/authority/industry regulations.

Maintenance Services

With over a decade and a half of maintenance experience Ocean Protect has developed a systematic approach to inspecting, cleaning and maintaining a wide variety of stormwater treatment devices. Our fully trained and professional staff are familiar with the characteristics of each type of system, and the processes required to ensure its optimal performance.

Ocean Protect has several stormwater maintenance service options available to help ensure that your stormwater device functions properly throughout its design life. In the case of our Vortechs system we offer long term pay-as-you-go contracts and pre-paid once off servicing.

For more information please visit www.OceanProtect.com.au

Jellyfish Filter

Operations \& Maintenance Manual

Table of Contents

Introduction 2
Why do I need to perform maintenance? 2
Health and Safety 3
Personnel health and safety 3
How does it Work? 4
Maintenance Procedures 5
Primary Types of Maintenance 5
Minor Service 5
Major Service (Filter Cartridge Replacement). 6
Additional Types of Maintenance 7
Hazardous Material Spill. 7
Blockages 7
Major Storms and Flooding 7
Disposal of Waste Materials 7
Maintenance Services 7
Appendix 1 - Jellyfish Cartridge Schematic 8

Introduction

The primary purpose of stormwater treatment devices is to capture and prevent pollutants from entering waterways, maintenance is a critical component of ensuring the ongoing effectiveness of this process. The specific requirements and frequency for maintenance depends on the treatment device and pollutant load characteristics of each site. This manual has been designed to provide details on the cleaning and maintenance processes for the Jellyfish Filter as recommended by the manufacturer.

The Jellyfish Filter is a stormwater quality treatment technology featuring high surface area and high flow rate membrane filtration at low driving head. By incorporating pre-treatment with light-weight membrane filtration, the Jellyfish Filter removes floatables, trash, oil, debris, TSS and a high percentage of particulatebound pollutants; including phosphorus and nitrogen, metals and hydrocarbons.

Why do I need to perform maintenance?

Adhering to the maintenance schedule of each stormwater treatment device is essential to ensuring that it functions properly throughout its design life.

During each inspection and clean, details of the mass, volume and type of material that has been collected by the device should be recorded. This data will assist with the revision of future management plans and help determine maintenance interval frequency. It is also essential that suitably qualified and experienced personnel carry out all maintenance (including inspections, recording and reporting) in a systematic manner.

Maintenance of your stormwater management system is essential to ensuring ongoing at-source control of stormwater pollution. Maintenance also helps prevent structural failures (e.g. prevents blocked outlets) and aesthetic failures (e.g. debris build up), but most of all ensures the long term effective operation of the Jellyfish.

Health and Safety

Access to a Jellyfish unit requires removing heavy access covers/grates, and entry into a confined space. Pollutants collected by the Jellyfish will vary depending on the nature of your site. There is potential for these materials to be harmful. For example, sediments may contain heavy metals, carcinogenic substances or objects such as broken glass and syringes. For these reasons, all aspects of maintaining and cleaning your Jellyfish require careful adherence to Occupational Health and Safety (OH\&S) guidelines.

It is important to note that the same level of care needs to be taken to ensure the safety of non-work personnel. As a result, it may be necessary to employ traffic/pedestrian control measures when the device is situated in, or near areas with high vehicular/pedestrian activity.

Personnel health and safety

Whilst performing maintenance on the Jellyfish, precautions should be taken in order to minimise (or, if possible, prevent) contact with sediment and other captured pollutants by maintenance personnel. The following personal protective equipment (PPE) is subsequently recommended:

- Puncture resistant gloves
- Steel capped safety boots
- Long sleeve clothing, overalls or similar skin protection
- Eye protection
- High visibility clothing or vest

During maintenance activities, it may be necessary to implement traffic control measures. Ocean Protect recommend that a separate site-specific traffic control plan is implemented as required to meet the relevant governing authority guidelines.

Whilst some aspects of Jellyfish maintenance can be performed from surface level, there will be a need to enter the Jellyfish pit (confined space) for both minor and major services. It is recommended that all maintenance personnel evaluate their own needs for confined space entry and compliance with relevant industry regulations and guidelines. Ocean Protect maintenance personnel are fully trained and carry certification for confined space entry applications.

How does it Work?

Stormwater enters the Jellyfish system through the inlet pipe where floatable pollutants are captured behind the maintenance access wall. As stormwater enters the treatment chamber a separation skirt ensures the retention of oils whilst simultaneously protecting the filtration cartridges and allowing coarse particles to settle below on the chamber floor. Stormwater then passes through the Jellyfish cartridges and onto the Jellyfish deck, at this point the backwash pool will fill and overflow allowing treated stormwater to exit via the outlet pipe.

Jellyfish Filter and Components

As the storm event subsides, the treated water held in the backwash pool passes back through the high flow cartridges into the treatment chamber. This passive backwash helps to clear the cartridge surface by dislodging sediment onto the chamber floor. The drain down cartridge(s) located outside the backwash pool enables water levels to balance, leaving the cartridge deck level free of standing water.

Maintenance Procedures

To ensure optimal performance, it is advisable that regular maintenance is performed. Typically the Jellyfish requires a service every 6 months, additionally as the Jellyfish cartridges capture pollutants they will need to be replaced (expected cartridge life is 2-5 years with a maximum cartridge life of 5 years).

Primary Types of Maintenance

The table below outlines the primary types of maintenance activities that typically take place as part of an ongoing maintenance schedule for the Jellyfish.

	Description of Typical Activities	Frequency
Minor Service	Removal \& rinsing of cartridges Wash down of deck level Removal of large floatable pollutants Removal of accumulated sediment (if required)	Every 6 Months
Major Service	Replacement of Jellyfish cartridges	As required

Maintenance requirements and frequencies are dependent on the pollutant load characteristics of each site. The frequencies provided in this document represent what the manufacturer considers to be best practice to ensure the continuing operation of the device is in line with the original design specification.

Minor Service

This service is designed to assess the condition of the Jellyfish cartridges and record necessary information that will establish whether a major service is required.

1. Establish a safe working area around the access point
2. Remove access covers
3. Using a vacuum unit or net remove any floatable gross pollutants contained behind the maintenance access wall
4. Using a vacuum unit decant the water until the level drops below the base of the cartridges
5. Remove Jellyfish cartridges*
a. Remove cartridge lid
b. Remove cartridges vertically from chamber, lifting from eye nut lifting points only
c. Replace and secure cartridge lid back into deck to reduce trip hazards during maintenance
6. Unscrew all 11 tentacles from the cartridge head plate, keep all components for reassembly*
7. Rinse each tentacle individually NOTE: excessive water pressure may damage the tentacles
a. Position tentacle in a container (to capture runoff) with the open end facing down
b. Rinse entire length of cartridge using only low pressure water source (e.g. garden hose).
c. Evaluate and note the condition of the tentacles
d. Ensure runoff is disposed appropriately
e. Re-assemble cartridges ready for reinstallation*
8. Wash down deck level to remove any built up sediment (if required)
9. Measure the level of accumulated sediment in the chamber if depth is greater than 300 mm use vacuum unit to remove sediment.
10. Re-install Jellyfish cartridges
a. Remove cartridge lid
b. Lower cartridge into chamber, lifting from eye nut lifting points only
c. Insert cartridge vertically into cartridge receptacle, and secure cartridge lid back in place
11. Replace access covers
[^0]
Major Service (Filter Cartridge Replacement)

For the Jellyfish system a major service is a reactionary process based on the outcomes from the minor service.

Trigger Event	Maintenance Action
Rinsing does not remove accumulated sediment from the tentacles	Replace Jellyfish tentacles ${ }^{[1]}$
Jellyfish tentacles are damaged	Replace Jellyfish tentacles ${ }^{[1]}$
Jellyfish cartridges have been in operation for 5 years	Replace Jellyfish tentacles ${ }^{[1]}$

[1] Replacement filter tentacles and components are available for purchase from Ocean Protect.
This service is designed to return the Jellyfish device back to optimal operating performance

1. Establish a safe working area around the access point
2. Remove access covers
3. Using a vacuum unit or net remove any floatable gross pollutants contained behind the maintenance access wall
4. Using a vacuum unit decant the water until the level drops below the base of the cartridges
5. Remove Jellyfish cartridges*
a. Remove cartridge lid
b. Remove cartridges vertically from chamber, lifting from eye nut lifting points only
c. Replace and secure cartridge lid back into deck to reduce trip hazards during maintenance
6. Unscrew all 11 tentacles from the cartridge head plate for disposal, keep all components for fixing of new tentacles to existing head plate*
7. Wash down deck level to remove any built up sediment (if required)
8. Use vacuum unit to remove accumulated sediment and pollutants in the chamber
9. Install replacement tentacles into each head plate*
10. Install Jellyfish cartridges
a. Remove cartridge lid
b. Lower cartridge into chamber, lifting from eye nut lifting points only
c. Insert cartridge vertically into cartridge receptacle, and secure cartridge lid back in place
11. Replace access covers

*Refer appendix 1 for Jellyfish Cartridge Schematic

Additional Types of Maintenance

Occasionally events on site can make it necessary to perform additional maintenance to ensure the continuing performance of the device.

Hazardous Material Spill

If there is a spill event on site, the Jellyfish unit should be inspected and serviced accordingly. Specifically, all captured pollutants and liquids from within the unit should be removed and disposed in accordance with any additional requirements that may relate to the type of spill event. Additionally, it will be necessary to inspect the filter cartridges and assess their contamination, depending on the type of spill event it may be necessary to replace the filtration cartridges.

Blockages

The Jellyfish treatment system is designed to operate in an offline arrangement, where an upstream high flow bypass structure is in used. In the unlikely event that flooding occurs upstream of the Jellyfish system, the following steps should be undertaken to assist in diagnosing the issue and determining the appropriate response.

1. Inspect the upstream diversion structure to ensure that it is free of debris and pollutants
2. Inspect the Jellyfish unit checking both the inlet and outlet pipes for obstructions (e.g. pollutant buildup, blockage), which if present, should be removed.

Major Storms and Flooding

In addition to the scheduled activities, it is important to inspect the condition of the Jellyfish after a major storm event. The focus is to inspect for damage and higher than normal sediment accumulation that may result from localised erosion. Where necessary, damaged components should be replaced and accumulated pollutants should be removed and disposed.

Disposal of Waste Materials

The accumulated pollutants found in the Jellyfish must be handled and disposed of in a manner that is in accordance with all applicable waste disposal regulations. When scheduling maintenance, consideration must be made for the disposal of solid and liquid wastes. If the filter cartridges have been contaminated with any unusual substance, there may be additional special handling and disposal methods required to comply with relevant government/authority/industry regulations.

Maintenance Services

With over a decade and a half of maintenance experience Ocean Protect has developed a systematic approach to inspecting, cleaning and maintaining a wide variety of stormwater treatment devices. Our fully trained and professional staff are familiar with the characteristics of each type of system, and the processes required to ensure its optimal performance.

Ocean Protect has several stormwater maintenance service options available to help ensure that your stormwater device functions properly throughout its design life. In the case of our Jellyfish system we offer long term pay-as-you-go contracts, pre-paid once off servicing and replacement cartridges.

For more information please visit www.OceanProtect.com.au

Appendix 1 - Jellyfish Cartridge Schematic

NUT Attach hand tight.

SCREW, BUTTON HEAD CAP Requires 5 mm hex wrench

O-RING \qquad

GASKET
Large bead oriented downward as shown

[^0]: *Refer appendix 1 for Jellyfish Cartridge Schematic

