NINA PIERPONT M.D. PH.D. Dear Senator Fielding, Please accept the following letter and attachments as a formal submission to the Senate Inquiry on the social and economic impacts of rural wind farms. The attachments consist of two chapters from my book, "Wind Turbine Syndrome: A Report on a Natural Experiment" (2009), and an updated paper I gave on the subject at an international conference held in Canada this past October (2010), "Wind Turbine Syndrome and the Brain." Permit me to speak plainly. a) The evidence for turbines producing substantial low frequency noise and, worse, infrasound, is no longer in dispute. I quote from one of numerous studies demonstrating this: "Wind turbines and wind farms generate strong infrasonic noise which is characterized by their blade passing harmonics (monochromatic signals)" (Ceranna et al., p. 23). In this instance, the authors are referring to a single 200 kW Vestas V47 at 200 meters—a peashooter compared to the turbines being built near people's homes in Australia.¹ http://www.windturbinesyndrome.com/news/2010/wind-turbines-produce-major-infrasound-period-no-question-about-it/. ¹ Lars Ceranna, Gernot Hartmann, and Manfred Henger, "The Inaudible Noise of Wind Turbines," presented at the Infrasound Workshop, November 28 – December 02, 2005, Tahiti. Federal Institute for Geosciences and Natural Resources (BGR), Section B3.11. Stilleweg 2, 30655 Hannover, Germany. Download PDF copy here: - b) Second, the clinical evidence is unambiguous that low frequency noise and infrasound profoundly disturb the body's organs of balance, motion, and position sense (called "vestibular organs").² - c) Third, the case studies performed by me and other medical scientists have demonstrated unequivocally that many people living within 2 km of turbines are made seriously ill, often to the point of abandoning their homes.³ - d) Fourth, there is no doubt among otolaryngologists and neuro-otologists who have studied the evidence that wind turbine low frequency noise and infrasound seriously disrupt the body's vestibular organs, resulting in the constellation of illnesses I have called Wind Turbine Syndrome.⁴ The latest research suggests the following mechanism for Wind Turbine Syndrome: air-borne or body-borne low-frequency sound directly stimulates the inner ear, with physiologic responses of both cochlea (hearing organ) and otolith organs (saccule and utricle—organs of balance and motion detection).⁵ Research has now proved conclusively that physiologic responses in the cochlea suppress the hearing response to low-frequency sound but still send signals to the brain, signals whose function is, at present, mostly unknown. The physiologic response of the cochlea to turbine noise is also a trigger for tinnitus and the brain-cell-level reorganization that tinnitus represents—reorganization that can have an impact on language processing and the profound learning processes related to language processing.⁶ New research also demonstrates that the "motion-detecting" otolith organs of mammals also respond to air-borne low-frequency sound. Physiologic responses and signals from the otolith organs are known to generate a wide range of brain responses, ² For a summary, see Nina Pierpont, "Report for Clinicians," in *Wind Turbine Syndrome: A Report on a Natural Experiment* (Santa Fe, NM: K-Selected Books, 2009), pp. 26-125. Purchase a copy here: http://www.windturbinesyndrome.com/buy.html. ³ Pierpont 2009, pp. 31-33, 127-192. ⁴ Pierpont 2009, pp. 287-292. See also testimony by F. Owen Black, MD, FACS, found at http://www.windturbinesyndrome.com/news/2010/owen-black/. ⁵ See Pierpont, "Wind Turbine Syndrome and the Brain" (2010), attached. ⁶ Pierpont 2010, attached. including dizziness and nausea (seasickness, even without the movement), fear and alerting (startle, wakefulness), and difficulties with visually-based problem-solving.⁷ Increased alerting in the presence of wind turbine noise disturbs sleep, even when people do not recall being awakened. A population-level survey in Maine now shows clear disturbances of sleep and mental well-being out to 1400 m (4600 ft) from turbines, with diminishing effects out to 5 km (3 miles).8 The *cure* for Wind Turbine Syndrome is simple: Move away from the turbines or shut them off. The *prevention* of Wind Turbine Syndrome is even simpler: Don't build these low frequency/infrasound-generating machines within 2 km of people's homes. Governments and corporations who violate this principle are guilty of gross clinical harm. These are strong words. They are carefully chosen. They are strong because governments and the wind industry stubbornly refuse to acknowledge that they are deliberately and aggressively harming people. This must stop. The evidence is overwhelming. | Sincerely, | | | |------------|--|--| | | | | | | | | | | | | | | | | Nina Pierpont, MD, PhD⁹ Fellow of the American Academy of Pediatrics ⁷ Pierpont 2010, attached. ⁸ Pierpont 2010, attached. ⁹ Curriculum vitae attached. ### WIND TURBINE SYNDROME & THE BRAIN ### Nina Pierpont, MD, PhD† November 15, 2010 *The following is the text of Pierpont's keynote address before the "First International Symposium on the Global Wind Industry and Adverse Health Effects: Loss of Social Justice?" in Picton, Ontario, Canada, October 30, 2010. It is followed by a discussion of several other relevant talks at the symposium by Drs. Alec Salt, Michael Nissenbaum, Christopher Hanning, and Mr. Richard James. ### Abstract The latest research, as discussed below, suggests the following mechanism for Wind Turbine Syndrome: air-borne or body-borne low-frequency sound directly stimulates the inner ear, with physiologic responses of both cochlea (hearing organ) and otolith organs (saccule and utricle—organs of balance and motion detection). Research has now proved conclusively that physiologic responses in the cochlea suppress the hearing response to low-frequency sound but still send signals to the brain, signals whose function is, at present, mostly unknown. The physiologic response of the cochlea to turbine noise is also a trigger for tinnitus and the brain-cell-level reorganization that tinnitus represents—reorganization that can have an impact on language processing and the profound learning processes related to language processing. New research also demonstrates that the "motion-detecting" otolith organs of mammals also respond to air-borne low-frequency sound. Physiologic responses and signals from the otolith organs are known to generate a wide range of brain responses, including dizziness and nausea (seasickness, even without the movement), fear and alerting (startle, wakefulness), and difficulties with visually-based problem-solving. Increased alerting in the presence of wind turbine noise disturbs sleep, even when people do not recall being awakened. A population-level survey in Maine now shows clear disturbances of sleep and mental well-being out to 1400 m (4600 ft) from turbines, with diminishing effects out to 5 km (3 miles). [†] Nina Pierpont, MD (Johns Hopkins), PhD (Princeton: Population Biology). Pierpont is a Fellow of the American Academy of Pediatrics and former Clinical Assistant Professor of Pediatrics at the College of Physicians & Surgeons, Columbia University, New York, NY. She is currently in private practice, doing chiefly behavioral medicine in both children and adults. She can be reached at pierpont@westelcom.com. Her book, "Wind Turbine Syndrome: A Report on a Natural Experiment" (2009), is available from Amazon.com and www. windturbinesyndrome.com. ### SENSORY SYSTEMS CHANGE BRAIN FUNCTIONING I confess I have an odd medical practice. I'm a pediatrician by training, but I'm fascinated by brains and development, and essentially practice psychiatry and child development. I'm interested in how to help children's brains grow well, and, at the other end of the spectrum, in what derails normal brain functioning in normal people—like Wind Turbine Syndrome—and how to get that functioning back on track. So much of brain function is about the sensory systems—vision, hearing, touch—and what the brain does to take basic sensory signals from all over the body and turn them into a coherent picture of where this particular creature—oneself—is at this particular time, and what needs to happen next to meet its needs. Those needs range from the basic and physiologic—like breathing and pumping blood in the right amounts to the different parts of the body—to complex social and language-based needs, like figuring out what your spouse really meant by that last thing he said. Our sensory systems mediate all of these needs. Sensory systems change brain functioning. They affect not only what a person or animal feels or thinks at that very moment, but also how that brain will function in the future, even the near future. This is called neuroplasticity, the neural basis of learning, for which Eric Kandel won the Nobel prize in 2000.¹ ### TINNITUS: THE BRAIN MAKES UP SOUND WHERE NO SOUND EXISTS Take, for example, tinnitus, or ringing in the ears—an important sensory problem in Wind Turbine Syndrome. Ringing, buzzing, sizzling, or waterfall noises—my study subjects described all of these, sometimes in the head as well as the ears. 58% of the adults and older teens in my sample of affected families had tinnitus. In the general population, it's 4%. People with a prior history of hearing loss or industrial noise exposure were especially likely to get tinnitus, but other people in the study also got it, without these risk factors. Among people with tinnitus in general, many have damage to their cochlea, the snail-shaped organ of hearing in the inner ear. Because of this damage, many researchers have heretofore thought that tinnitus originates in the cochlea as distorted hearing signals—the cochlea being
somehow able to produce nerve signals of sound without the sound being there in the environment. We are now getting quite a different picture of tinnitus. People with auditory nerves (meaning the nerve from the cochlea to the brain) that have been completely cut (for example, because of a tumor on the nerve) also have tinnitus, although, again, there is no input from the cochlea to the brain at all. Recently, functional imaging studies (like MRI or PET scans) of people with tinnitus have supported the idea that tinnitus arises not in the ear, but in the parts of the brain that process sound. The trigger is an absence of input from the cochlea or parts of the cochlea. Essentially, your brain makes up sound where no sound exists. It's like phantom pain that people get when they have lost a limb. There is no nerve input from the limb because it's gone; nevertheless, the person experiences the limb hurting. Tinnitus is like this—it's phantom noise. It can be an excruciating and unpleasant sensation. ^{1.} Kandel ER. 2000. The molecular biology of memory storage: a dialog between genes and synapses. Nobel Lecture. Click here. This type of change in the brain (like what happens with tinnitus) happens quickly. We learn this from a journal as unimpeachable as the New England Journal of Medicine, the gold standard in America for medical research. Describing the pathophysiology of tinnitus, a review article published in 2002 stated: Hearing loss leads to a reorganization of the pathways in the central [brain] auditory system. These changes may occur rapidly and lead to abnormal interactions between auditory and other central [brain] pathways.² What's happening here is that the cells in the brain are making new connections, not good connections. It's like chaos in the brain, and the result is hearing a noise that isn't really there. ### WIND TURBINE SYNDROME & TINNITUS Now listen to this story from Wind Turbine Syndrome.³ A real Canadian family, family A in my study. We'll call them the Smiths. We'll call them Frank, Marlene, and their 2½ year old boy, Justin. Frank, age 32, is a healthy fisherman who owns his own boat. Turbines, 10 in a row pointing at the house, the closest 1 km away, go online. For the first three weeks, Frank has repetitive popping in his ears, like pressure changes. After three weeks, a continuous headache starts whenever he's at home. It resolves after several hours every time he leaves the house, and comes back within several hours of coming home. Several weeks after the headache started, tinnitus starts and worsens over the duration of the 5-month exposure, until the family abandoned their home and rented a house in town. Marlene, his wife, a 33-year-old accountant, likewise noticed repetitive popping in her ears for the first three weeks. She also noticed she couldn't hear as well as before. After three weeks, the tinnitus began. The tinnitus continued and worsened over time during the 5 months of exposure, varying according to how much she was at home and how loud the turbines were. After the exposure ended, she told me, the tinnitus resolved, but she noticed a new difficulty understanding conversation in a noisy room. She noticed she had to watch the speaker's face more closely. During exposure, young Justin, a healthy $2\frac{1}{2}$ -year-old, pulled on his ears and got cranky at the same times that adults in the family noticed more headache and tinnitus. His language development was good before, during, and after exposure, but his mother noticed during exposure that the child began to confuse T with K sounds and W with L sounds, which he had not done before. This sound confusion was ongoing six weeks after exposure ended, when I interviewed the parents. Let's match the research to the clinical account—match medical science to this real family. These two adults experienced pressure changes in their ears for some weeks, one with some loss of hearing. They then developed tinnitus. The tinnitus resolved when the noise exposure ended, but Marlene still noticed subtle differences in her own auditory processing and in her child's, Justin's. Picking out one voice against background noise is an example of brain (or central) auditory processing, which means how your brain takes signals coming from your ears and puts them together into language, music, the song of a hermit thrush, or other recognizable and meaningful sounds. - 2. Lockwood AH, Salvi RJ, Burkard RF. 2002. Tinnitus. N Engl J Med. 347(12): 904-10. - 3. Pierpont, N. Wind Turbine Syndrome: A Report on a Natural Experiment. K-Selected Books, 2009, 294 pp. To pick out one sound from background noise, your brain processes simultaneous signals from both ears, integrating the signals into a new type of perception that transcends what either ear can do alone. (It's sort of like depth perception with two eyes.) Hearing in background noise is one aspect of brain auditory processing, and one that audiologists often test. Distinguishing language sounds is another critical part of how the brain processes sound, especially for children learning language. So, what do we have? We have the New England Journal telling us that auditory pathways in the brain reorganize rapidly when there are deficits in the input from the ears, producing tinnitus. (Let's not ignore that this "reorganization" represents deterioration in function—not an improvement. Contrast this to the process of brain organization that occurs as a child learns language.) We have this research on the one hand, and on the other, younger healthy adults telling us their observations of their own hearing and hearing-related processes as they passed through a substantial bout of noise exposure. Marlene described the noise, by the way, as, "Not noisy like a chainsaw; more like pulsating annoyance. To another person it wouldn't sound loud." I suspect that in a child as young as Justin, $2\frac{1}{2}$, who was removed from exposure so quickly, this process is entirely reversible. But such effects are less likely to be reversible with older age or longer exposure. That's a basic principle of how brains develop. # Noise exposure, even at relatively low sound levels, fouls up the parts of the brain responsible for figuring out language sounds, and the parts responsible for understanding and learning and remembering things we hear or read I'm basing this interpretation of the Smith's experience on the tinnitus research and also on another area of research—on the effects of other types of environmental noise (like airport or traffic noise) on children's learning. Learning to read is a language-intensive process that is especially sensitive to the effects of noise in school or at home. This effect is distinct from the effects of noise on attention or working memory,⁴ and is correlated with measures of sound processing such as speech recognition.⁵ In one study, for example, a German city closed an old airport and built a new one. Researchers had the opportunity to follow the reading skills of both sets of children over time. Those living near the airport that closed showed improvement in their reading. The ones near the new airport slowed down in their learning after the airport opened.⁶ ^{4.} Haines MM, Stansfeld SA, Job RFS, Berglund B, Head J. 2001. A follow-up study of effects of chronic aircraft noise exposure on child stress responses and cognition. Int J Epidemiol 30: 839-45. ^{5.} Evans GW, Maxwell L. 1997. Chronic noise exposure and reading deficits: the mediating effects of language acquisition. Environ Behav 29(5): 638-56. ^{6.} Hygge S, Evans GW, Bullinger M. 2002. A prospective study of some effects of aircraft noise on cognitive performance in schoolchildren. Psychol Sci 13: 469-74. Another study looked at the effects of noise on both reading and auditory processing in children who lived in an apartment building next to a busy highway. Auditory processing, again, is what your brain does with the signals from your ears to turn them into meaningful language or other sounds. The higher the children lived in the building, the quieter were their apartments and the better their reading and auditory discrimination scores, which means, for example, distinguishing the word *goat* from *boat*. The study factored out the effects of parent education and income, and then found that children exposed to more noise were more delayed in their reading. The amount of delay in reading was explained by how badly the children were doing distinguishing language sounds from each other, which also worsened with more noise.⁷ In other words, the presence of noise in the environment degraded how these children's brains processed language sounds, which in turn degraded their ability to learn to read. It wasn't that the noise just kept them from hearing things they needed to learn; the noise actually harmed their brain's ability to process language, even when that language was coming in through their eyes, as it does when we read. Moreover, these effects of noise on reading occur at sound levels far less than those needed to produce hearing damage.⁸ Children at higher grade levels are more affected, and longer exposure produces larger deficits, other studies have shown.^v In my wind turbine study, 7 out of the 10 school-age children and teens did worse in school during exposure to turbines, compared to before or after, including unexpected problems in reading, math, concentration, and test performance, noticed by both teachers and parents. Teachers sent notes home asking what was wrong with the children. Subtle as these effects are, they have serious implications. Noise exposure, even at relatively low sound levels, fouls up the parts of the brain responsible for figuring out language sounds (what we call language processing) and the parts responsible for understanding and learning and remembering things we hear or read (what we call language-based learning). Let me emphasize: Noise exposure, even at low levels that
don't damage hearing, can do this. # THE BALANCE ORGANS: A <u>PROTEAN</u> PRESENCE IN THE BRAIN, IN TERMS OF WHAT TYPES OF SENSATIONS THEY DRAW ON AND HOW THE INFORMATION IS ### USED BY THE BRAIN There is another set of organs in the inner ear, the organs of balance (called the vestibular organs), consisting of the utricle and saccule (the two otolith or "ear rock" organs, where microscopic stones control our perception of gravity and movement in a straight line) and the semicircular canals, which detect rotations of the head in three planes. The balance system is probably the least well known of all the senses for both the general public and physicians. It's a ^{7.} Cohen S, Glass DC, Singer JE. 1973. Apartment noise, auditory discrimination, and reading ability in children. J Exp Soc Psychol 9: 407-22. ^{8.} Evans GW. 2006. Child development and the physical environment. Annu Rev Psychol 57: 423-51. ^{9.} Evans 2006. different kind of sense. It has some dedicated organs (the vestibular organs in the inner ear, just described), but these organs do not function on their own, not without the cooperation (and brain integration) of multiple sensory signals from all over the body. We use this sense not just for balance (staying upright), but also for telling where we are in space and how fast and in what direction the different parts of our bodies are moving, at all times. The vestibular sense feeds back instantaneously, for example, on the eye movement muscles and on posture-maintaining muscles in the neck and back. It also adapts to gravity by controlling tension in the arteries and smaller blood vessels all over the body, and how hard the heart is pumping, to keep the blood evenly distributed whether you are standing up, lying down, or standing on your head. Balance and motion detection requires input from the eyes, from stretch receptors in the muscles and joints all over the body, from touch receptors in the skin, and, it is now known, from stretch and pressure receptors in and around internal organs and the great blood vessels in the chest and abdomen.¹⁰ As well as requiring signals from the inner ear—the utricle, saccule, and semicircular canals. This is a remarkable feat of brain integration, especially when the signals don't all agree with one another. The brain has to figure out which signals to downweight or ignore if they don't all agree, or if the signals from one channel are distorted. Even fish have otolith organs and semicircular canals. The cochlea, or specialized hearing organ, evolved later, our type specifically in mammals. The brain essentially grew up, through evolution, with vestibular neurons and signals already in place. As a consequence, our systems for detecting movement, gravity, pressure, and vibration have a protean presence in the brain, going everywhere, both in terms of what types of sensations they draw on, and how the information is used by the brain. In fish and amphibians, the otolith organs are much better detectors of low-frequency noise and vibration than are these animals' own versions of sound-detecting organs. We now know that even in mice—a mammal—low-frequency, air-borne sound is detected by the otolith organs. In humans, detection of low frequency sound by the otolith organs has been shown only using bone-conducted sound, meaning a source of vibration placed right against the head. At 100 Hz, the tone of a moderately low note on the piano, healthy adults can detect a bone-conducted vibration at 15 dB <u>below</u> their own normal hearing thresholds, probably through the utricle. 14,15 "Detection" in this case means that the vibration triggers an automatic reflex in muscles around the eyes or in the neck, a response that can only be due, we know, to vestibular stimulation. - 10. Mittelstaedt H. 1996. Somatic graviception. Biol Psychol 42(1-2): 53-74. - 11. Fay RR, Simmons AM. 1999. The sense of hearing and fishes and amphibians. In Comparative Hearing: Fish and Amphibians, ed. Fay RR, Popper AN, pp. 269-317. Springer-Verlag, New York. - 12. Sand O, Karlsen HE. 1986. Detection of infrasound by the Atlantic cod. J Exp Biol 125: 197-204. - 13. Jones GP, Lukashkina VA, Russell IJ, Lukashkin AN. 2010. The vestibular system mediates sensation of low-frequency sounds in mice. J Assoc Res Otolaryngol 2010 Sep 4. [Epub ahead of print]. - 14. Todd NPMc, Rosengren SM, Colebatch JG. 2008. Tuning and sensitivity of the human vestibular system to low-frequency vibration. Neuroscience Letters 444: 36-41. - 15. Todd NP, Rosengren SM, Colebatch JG. 2009. A utricular origin of frequency tuning to low-frequency vibration in the human vestibular system? Neurosci Lett 451(3): 175-180. All this by way of saying that we are getting nearer to understanding the pathophysiological mechanisms causing Wind Turbine Syndrome. ### WIND TURBINE SYNDROME RESEMBLES INNER EAR PATHOLOGY WIT- ### NESSED BY OTOLARYNGOLOGISTS The symptoms of Wind Turbine Syndrome directly mirror the symptom clusters that practicing otolaryngologists have seen for years in patients with balance problems due to vestibular inner ear pathology. With vestibular pathology, however, the symptoms are not known to come and go with noise exposure. Very importantly, the symptoms associated with vestibular pathology are not just about balance or dizziness, as I'll review in a moment. Indeed, the symptoms clinically reveal the linkages between the balance-processing parts of the brain, and cognition and memory—linkages only now being described through experiments and functional brain imaging. Over 90% of my sample of affected people, both adults and children, had cognitive difficulties during wind turbine exposure—problems that lingered and resolved slowly after exposure ended. These included difficulties with reading, math, spelling, writing, multitasking in kitchen and home, remembering a series of errands, maintaining a train of thought in a telephone conversation, following the plot of a TV show, following recipes, and following directions to put together furniture. Balance-disordered patients in clinical practice also struggle with short-term memory, concentration, multitasking, arithmetic, and reading. Patients with inner ear fluid leakages, for example, present with symptoms of dizziness, headache, stiff neck, and disturbed sleep, accompanied by marked mental performance deficits compared to baseline.¹⁸ This kind of inner ear leakage can be set off by whiplash injuries, mild head trauma, or pressure trauma to the ear. The fluid leak is associated with an imbalance of fluid pressures in the inner ear, known as endolymphatic hydrops, which distorts both balance and hearing. (Ménière's disease, in which balance and hearing disturbances fluctuate, is endolymphatic hydrops that comes and goes for unknown reasons.) Tellingly, Dr. Alec Salt, who will speak next on infrasound effects on the inner ear, has discovered experimentally that infrasound exposure causes temporary endolymphatic hydrops.¹⁹ This is a possible mechanism for the balance disturbances, tinnitus, headache, and cognitive problems of Wind Turbine Syndrome. ^{16.} Grimm RJ, Hemenway WG, Lebray PR, Black FO. 1989. The perilymph fistula syndrome defined in mild head trauma. Acta Otolaryngol Suppl 464: 1-40. ^{17.} Hanes DA, McCollum G. 2006. Cognitive-vestibular interactions: a review of patient difficulties and possible mechanisms. J Vestib Res 16(3): 75-91. ^{18.} Grimm et al. 1989. ^{19.} Salt AN. 2004. Acute endolymphatic hydrops generated by exposure of the ear to nontraumatic low-frequency tones. J Assoc Res Otolaryngol 5(2): 203-14. ### The balance system is closely linked to emotions, especially ### FEAR, ANXIETY, AND PANIC So far, I have talked about how the absence or distortion of hearing signals from the inner ear affects thinking and learning at the brain level, and how distortion of balance signals from the inner ear affects thinking, memory, and concentration at the brain level. There is one more subject in this cluster of sensory/brain-function linkages, which I would like to discuss. The balance system is closely linked to emotions, especially fear, anxiety, and panic. When my foot slides on ice under some new snow and I fling my arms out to regain balance, I have a moment of panic. My husband has fear of heights for reasons directly attributable to his brain's style of balance signal integration. I don't, and love to sit on the edge of cliffs over the ocean, watching seabirds. When he sees me doing this, or if he gets near the edge himself or goes to the top of a tall building, he feels dizzy and nauseated (which are direct balance problem symptoms) and also panicked and irrational—afraid that he or I might fall or even jump off. (I didn't have a full sense of this until recently, he's so controlled and calm, but now I understand why he doesn't want to take me back to Newfoundland—where there are huge, wonderful seabird cliffs...) In some studies of balance-anxiety linkages, up to 80% of people with panic disorder have measurable disorders of balance processing. The places where people panic are those in which they "lose their bearings," so to speak, due to distortion of balance signals and their own brains' particular style of dealing with distorted balance signals. Grocery stores have been always a big culprit. In my wind turbine study, 2/3 of the adult subjects (14 out of 21) experienced a highly disturbing collection of symptoms when exposed to high levels of turbine noise. They felt movement inside their chests, described as quivering, jitteriness, or pulsation, and then an uncomfortable urge to flee—to get out of there. Or, if the feeling awoke them at night, panic, with racing heart, a feeling they could not breathe, or the sense that there just had been an alarming noise—like a window breaking—and that they had to get up to check the house. # WIND TURBINE SYNDROME PANIC SYMPTOMS LINKED TO PREVIOUS HIS- ### TORY OF MOTION SENSITIVITY None of these
people had had panic attacks in their lives before. Several had histories of anxiety or depression, but altogether, among all the adults in the study, a previous mental health problem was not significantly associated with the presence of this panic symptom. What was associated with the panic symptom, with a highly significant statistical relationship, was a previous history of motion sensitivity. Even a tough cowboy from Missouri, a welder who raises horses, had this symptom awakening him at night near turbines. Once he and his family moved into town, he slept like a baby. No more panic awakening. (It was his wife who had to tell me about it, however.) Even the physician in my study had this symptom. Toddlers and preschool children in my study had a similar symptom—awakening in the night in states of high alarm and unable to go back to bed or to sleep. In short, noise impinging on the ear is not just about hearing, we are learning, but also about how the brain organizes itself around sound. ### **Summary** - Wind turbine noise causes tinnitus in many exposed people. Tinnitus at the physiologic level is the result of a change in sound processing by the brain. - Other types of environmental noise have been shown to impair children's learning by changing how they process language sounds. Families exposed to wind turbines noticed deterioration in their children's thinking and learning abilities during exposure. Adults also had problems with thinking, memory, and concentration during exposure. - Other clinical and brain studies have shown that diminished thinking and performance are tied to malfunctioning of the vestibular portion of the inner ear. - Distorted balance signaling has a close connection with panic and anxiety in a variety of situations, a linkage that may explain how panic in the night crops up in previously non-panicked but motion-sensitive people exposed to wind turbines. # ALEC SALT, PhD, DEMOLISHES A-WEIGHTING NOISE MEASUREMENTS, WHILE DEMONSTRATING THAT THE EAR HAS A PHYSIOLOGICAL RESPONSE TO LOW FREQUENCY NOISE AT THE INTENSITIES PRODUCED BY WIND TURBINES Professor Alec Salt is a cochlear physiologist, a laboratory scientist in the <u>Department of Otolaryngology at the Washington University School of Medicine</u> in St. Louis. He and his students study the fluids and physiology of the cochlea (the hearing part of the inner ear) in guinea pigs. For years, Salt and his colleagues have used infrasound to change the way parts of the cochlea behave—not because they were interested in infrasound, but because it has physiologic effects which are useful in their studies of cochlear fluids and cells. In the last year or so, Dr. Salt documented that the two types of sensory cells in the cochlea, the inner and outer hair cells, react differently to infrasound. The inner hair cells, which are the ones that send hearing signals to the brain, do not respond to infrasound, but the outer hair cells do. Infrasound, he discovered, makes the outer hair cells move in such a way that they prevent the inner hair cells from responding. The outer hair cells also send neural signals to the brain and to other outer hair cells, but it is not clear what these signals do once they reach the brain. One thing we do know is that they don't convey sound stimuli, themselves. Some evidence suggests they may play a role in mediating the perception of loud sounds in the cochlear nucleus, the first relay point for sound impulses in the brain.^{20,21} ^{20.} Benson TE, Brown MC. 2004. Postsynaptic targets of Type II auditory nerve fibers in the cochlear nucleus. J Assoc Res Otolaryngol 5(2): 111–125. ^{21.} Weisz C, Glowatzki E, Fuchs P. 2009. The postsynaptic function of Type II cochlear afferents. Nature 461(7267): 1126–1129. What's significant for Wind Turbine Syndrome is Dr. Salt's discovery that the cochlea does indeed respond to infrasound, and sends signals to the brain in response to infrasound, but the anatomy and cellular responses of the outer hair cells actively prevent us from hearing the infrasound. Wondering whether these findings had any significance to people and their diseases, Dr. Salt searched the medical literature last winter and came across Wind Turbine Syndrome. He subsequently published a research article linking his findings to the symptoms or clinical manifestations of Wind Turbine Syndrome.²² It's worth emphasizing that Professor Salt is an outstanding educator, as is clear from his <u>website</u>. There is a lot to be learned here about the inner ear, complete with moving, colored, 3-D simulations. His recent research article is posted here, with a user-friendly discussion of its significance. There is also a link to the website of the National Institutes of Health, where his research is featured. He has also posted the slides from his presentation at the Picton conference on October 30. In his presentation, Dr. Salt compared measured wind turbine sound spectra, not only to the human hearing response curve (as the wind industry consultants do), but also to the separate response curves of the inner and outer hair cells, showing that wind turbine low-frequency noise and infrasound are easily detectable by the normal cochlea. He also demonstrates how A-weighted sound level measurements specifically exclude the low frequencies significant in wind turbine health effects, effectively demolishing the credibility of A-weighted noise measurements. Dr. Salt's research is exciting and useful because it pointedly disproves the wind industry's assertion that the infrasound produced by wind turbines is not relevant to human health because it is, they claim, below the hearing threshold of most people. On the contrary, the ear has a physiological response to low frequency noise at the intensities produced by wind turbines, even when this noise cannot be heard. A physiologic response opens the door, of course, to clinical effects. With regard to the mechanism of Wind Turbine Syndrome, we are now in the interesting position of having, on the one hand, a demonstrated cochlear response to infrasound without a known brain response. On the other hand, if we consider the vestibular (balance) organs in the inner ear (which share physiology and fluid connections with the cochlea), we know a lot about brain responses. There is a large scientific literature on what the brain does with normal or distorted vestibular signals with regard to sensations, symptoms, brain cell pathways, and functional and experimental problems.²³ We also know that the symptom complex of Wind Turbine Syndrome is very similar to the symptoms of vestibular dysfunction. What is lacking is direct evidence for air-borne infrasound stimulating the hair cells of the vestibular organs. Dr. Salt told us in his conference talk that the vestibular hair cells are "tuned" (meaning, have their best response) to bodyborne vibrations at infrasonic frequencies, but that no one has yet looked at the responses of these cells to "acoustic" (meaning, air-borne) infrasound coming in through the outer and middle ear. ^{22.} Salt AN, Hullar TE. 2010. Responses of the ear to low frequency sounds, infrasound and wind turbines. Hear Res 268(1-2):12-21. ^{23.} This field is reviewed in Wind Turbine Syndrome, pp. 72-99, 195-205, and 226-244. ## "JUMPING MICE": MAMMALIAN BALANCE ORGANS DETECT AIR-BORNE LOW-FREQUENCY SOUND USING THEIR OTOLITH ORGANS (SACCULE & UTRICLE) I suspect it's only a matter of time—and short time, at that—before some research group shows air-borne infrasound stimulating the vestibular hair cells, or shows a human vestibular response to air-borne infrasound. I base my prediction in part on a new article Dr. Salt sent to me immediately after the conference, titled, "The vestibular system mediates sensation of low-frequency sounds in mice."²⁴ In it, the authors explain how the "ancestral acoustic sensitivity" of the saccule has been retained not only in fish and amphibians, but also, according to recent evidence, in birds and mammals. The authors demonstrate how mouse otolith organs respond to air-borne, low-frequency sounds below the detection range of the mouse cochlea. Mice jump when startled by a beep. They startle more, with a more vigorous jump, in the presence of a low- or mid-frequency background sound. The authors measured this "startle response"—how much the mice jumped—quantitatively on little electronic platforms. Genetically normal mice jump more in response to either low- or mid-frequency background sound, but the authors also tested mice which, for genetic reasons, never developed the otoconia (little stones) in their otolith organs (utricle & saccule). Significantly, these otolith-deficient mice did the extra-large jumps only when the background sound stimulus fell within the frequency range of the mouse cochlea. They didn't detect the low-frequency background sound stimuli the way the mice with functioning otolith organs did. Jumping mice. The authors of this study have demonstrated that mammalian ears, using their otolith organs of balance and motion detection, detect air-borne low-frequency sound at frequencies too low to be heard by their cochleas. This makes them startle more. Now consider "jumping people"—startled right out of bed in the middle of the night in the presence of sub-audible, low-frequency noise, or infrasound, from wind turbines. Evidence like this suggests the following mechanism for Wind Turbine Syndrome: air-borne or body-borne low-frequency sound directly stimulates the inner ear, with physiologic responses of both cochlea and otolith organs. Physiologic responses in the cochlea suppress the hearing response to low-frequency sound but still send some signals to the brain, signals whose function is, at present, mostly unknown. The physiologic response of the cochlea to turbine noise is also a trigger for tinnitus and the brain-cell-level reorganization that tinnitus represents—reorganization that can have an impact on
language processing and the learning processes related to language processing. Physiologic responses and signals from the otolith organs tie into a wide range of known brain responses to vestibular signals, including dizziness and nausea (seasickness without the movement), fear and alerting (startle, wakefulness), and difficulties with visually-based problem-solving. ### CHRISTOPHER HANNING, MD, AND SLEEP AROUSAL The interaction between sleep and these ear-brain mechanisms is interesting. Wind turbines create a particularly disturbing kind of noise with high alert potential, Dr. Chris Hanning, a sleep specialist, explained at the conference. Our sleep is disturbed not only when we wake up completely, but also by subclinical arousals—in which the body and brain move into a lighter phase of sleep without waking all the way up. This type of disturbance requires even less 24. Jones et al. 2010. noise than full awakening, but still disrupts sleep and its restorative properties for mood, memory, thinking, alertness, and coordination. People vary in how deeply they sleep, and how resistant they are to awakening or arousal by noise. We can reliably measure how much people are disturbed during sleep using questionnaires about their daytime functioning. ### RICK JAMES, NOISE CONTROL ENGINEER: SICK BUILDING SYNDROME Turning to noise studies around wind turbines, noise control engineer Rick James presented sound monitoring data showing the disturbing, high-alert qualities of wind turbine noise: high levels of low frequency noise and infrasound, and the pulsating quality of the low frequency noise and infrasound. Both the audible noise and the infrasound from turbines are subject to "amplitude modulation" (meaning, the loudness goes up and down)—a quality that adds markedly to its disturbing character. The arrangement and spacing of turbines in clusters also affects how much noise they make, because a second turbine, beating in the downwind turbulence of the first turbine, makes more noise. Mr. James reviewed research from the 1980's and '90's on illness in office workers, induced by low-frequency noise from mal-aligned fans or vibrating ducts in the heating, ventilation, and air conditioning systems of large buildings. Research on these specialized cases of "Sick Building Syndrome" focused on the detrimental effects of low frequency noise on work productivity, and included experimental assessment of low frequency noise effects on concentration and mood.²⁵ A word of caution, however. The term "Sick Building Syndrome" is associated most commonly with problems of indoor air quality (including particulates, allergens, infectious particles, solvent odor, and the amount of fresh air), and the syndrome includes irritation of the skin, eyes, and respiratory tract, as well as fatigue, headache, poor concentration, nausea, and dizziness. ²⁶ The latter symptoms are commonly associated with low frequency noise exposure in other contexts, whereas skin and mucous membrane irritation are not. In other words, although Wind Turbine Syndrome shares the noise-related aspects of Sick Building Syndrome, the two terms are not the same. ^{25.} Persson Waye K, Rylander Right, Benton S, Leventhall HG. 1997. Effects on performance and work quality due to low frequency ventilation noise. J Sound Vibr 205(4): 467-474. ^{26.} World Health Organization. 1982. Indoor air pollutants: exposure and health effects. Pp. 23-25. # MICHAEL NISSENBAUM, MD, REPORTS THAT SURVEYED SUBJECTS UP TO 3 MILES FROM TURBINES SHOWED EFFECTS ON SLEEP AND MOOD THAT ### VARIED DIRECTLY WITH DISTANCE FROM THE TURBINES Finally, Dr. Michael Nissenbaum, a Maine physician, presented results of a study of 79 adults living up to three miles from wind turbines in Maine, who completed (what are clinically called) validated questionnaires on sleep disturbance and general physical and mental well-being, divided into study and control groups based on distance from turbines. Dr. Nissenbaum found differences between the study and control groups in several sleep quality indices, and in the mental health component of the general questionnaire. Even more remarkable, when he pooled the data from study and control groups, he found a dose-response relationship out to about 5 km (3 miles) from turbines. Subjects up to 3 miles from turbines, whether they were initially considered to be in the study or control groups, showed effects on sleep and mood that varied directly with distance from the turbines, Dr. Nissenbaum reported. This is a valuable study. The surveys required information only about the subjects' current state of sleep and well-being, without reference to the turbines. The impact of turbine noise is apparently seen much farther away than the 1.5-2 km minimum setback proposed by many researchers (including me), although there was a drop-off in symptoms beyond 1.4 km. The questionnaires did not sample the full range of Wind Turbine Syndrome symptoms, but provide a standardized and quantified measure of one important symptom—sleep disturbance—and of general medical and mental health in relation to turbines. ### THE "HUMANNESS" OF WIND TURBINE SYNDROME Such is the state of Wind Turbine Syndrome research a year after I published "Wind Turbine Syndrome: A Report on a Natural Experiment." As I said earlier, we have made substantial progress in figuring out the mechanism and other parameters of this industrial plague. It's worth pointing out that, with one notable exception, none of this was done with government or industry or foundation support —either financial or moral support. Just the opposite, governments (at all levels) and the wind energy industry have actively tried to thwart this research. But—this pleases me immensely—it was accomplished despite their opposition. The exception being the National Institutes of Health, which funded Dr. Salt's research. All praise to the NIH! A final word. For me, it was both sobering and energizing to talk, again, with victims of Wind Turbine Syndrome at the conference. At times, distracted by political and journalistic "noise," I forget how serious WTS actually is. Separately, a man and a woman from different countries told me quietly of their thoughts of committing suicide. Both are older with good marriages and productive lives and adequate resources. One has been driven from her home by relentless nausea and vomiting, and the other is made ill whenever he returns home. While governments, the wind industry and its scientific and clinical hirelings, and the media continue to belittle and deny the experience of these individuals—Lord knows, the media is filled with denial, ridicule, and venom (Google "Wind Turbine Syndrome")—I am reminded, once more, that the physical, mental, social, and financial consequences of this perfectly correctible condition are appalling. NINA PIERPONT, MD, PHD # Wind Turbine Syndrome A Report on a Natural Experiment K-Selected Books Santa Fe, NM "Impressive. Interesting. And important." —ROBERT M. MAY, PhD, Professor Lord May of Oxford OM AC Kt FRS. President of the Royal Society (2000–05), Chief Scientific Advisor to the UK government (1995–2000). Lord May is currently at the forefront of global warming research and is considered a pioneer in epidemiological research. "Dr. Pierpont has clinically defined a new group of human subjects who respond to low frequency, relatively high amplitude forces acting upon the sensory and other body systems. Her rigorous clinical observations are consistent with reports of the deleterious effects of infrasound on humans, including, but not limited to, the low frequency sonar effects on divers. There are clinical conditions (such as dehiscent superior semicircular canals) that might explain some of Dr. Pierpont's clinical symptom review, but this relatively rare condition cannot explain all of her observations. "Dr. Pierpont's astute collection of observations should motivate a well-controlled, multi-site, multi-institutional prospective study." —F. OWEN BLACK, MD, FACS, Senior Scientist and Director of Neuro-Otology Research, Legacy Health System, Portland, Oregon. Dr. Black is widely considered to be one of the foremost balance, spatial orientation, and equilibrium clinical researchers in America. "Like so many earlier medical pioneers exposing the weaknesses of current orthodoxy, Dr. Nina Pierpont has been subjected to much denigration and criticism. It is a tribute to her strength of character and conviction that this important book has reached publication. Her detailed recording of the harm caused by wind turbine noise will lay firm foundations for future research. It should be required reading for all planners considering 'wind farms.'" —CHRISTOPHER HANNING, MD, FRCA, MRCS, LRCP. Dr. Hanning, a founder of the British Sleep Society, is a leading sleep clinician and researcher. He recently retired as Director of the Sleep Clinic and Laboratory at Leicester General Hospital, one of the largest sleep disorder clinics in the UK. "This is an extraordinary book. It is personal and passionate, which makes it compelling reading. But it is much more—authoritative, meticulous, and scholarly. The descriptions of anatomy, physiology, and the pathophysiology of how noise affects health are bang on. It clearly takes its place as the leading work on the topic. "In addition to Dr. Pierpont's detailed clinical accounts, there is accumulating evidence of adverse health effects from Japan, New Zealand, the UK, USA, and Canada. There are also some 357 organizations from 19 European countries demanding an enquiry by the European Union about health and many other adverse effects of wind farms. At a minimum, the EU would be wise to consult with Dr. Pierpont. "This book is a must-read for all health care professionals, especially those in clinical practice. One cannot but hope that politicians and policy makers at all levels heed the wake-up call that there are serious consequences to precipitant
decisions relating to so-called green energy." —ROBERT Y. McMURTRY, MD, FRCS (C), FACS. Former Dean of Medicine and Dentistry at the Schulich School of Medicine & Dentistry, University of Western Ontario. Dr. McMurtry has had a long and distinguished career in Canadian public health policy at both the federal and provincial level, including as founding Assistant Deputy Minister of the Population and Public Health Branch of Health Canada, and currently as a member of the Health Council of Canada. "Dr. Pierpont has written a superb and powerful book. Truly firstrate in its presentation of hard data, and with remarkable clarity. "I devoutly hope that her findings, pinned as they are to unassailable research and rigorously peer-reviewed by ranking scientists, come to the attention of movers and shakers who can broaden the research base and shape the politics of dealing with Wind Turbine Syndrome." —JACK G. GOELLNER, Director Emeritus, The Johns Hopkins University Press (America's oldest university press, founded 1878). During Mr. Goellner's tenure as director, JHUP became a world leader, celebrated for its medical publishing, among other fields. "Dr. Pierpont has made an important contribution to a debate about wind turbines that should be conducted not between champions and opponents of renewable energy, but within the community of those who want this country to behave in an environmentally responsible way. That we can and should do." —EDITORIAL BOARD OF *THE INDEPENDENT* (UK), August 2, 2009 Copyright © 2009 by Nina Pierpont. All rights reserved. This book may not be reproduced, in whole or in part, including illustrations, in any form (beyond that copying permitted by Sections 107 and 108 of the U.S. Copyright Law and except by reviewers for the public press), without written permission from the publishers. This prohibition specifically extends to Google Book Search and any other book search services. Designed and set in Warnock type by Jordan Klassen. Printed in the United States of America by King Printing, Lowell, Mass. # Publisher's Cataloging-in-Publication Data (Provided by Quality Books, Inc.) Pierpont, Nina. Wind turbine syndrome : a report on a natural experiment / Nina Pierpont. p. cm. Includes bibliographical references. ISBN-13: 978-0-9841827-0-1 ISBN-10: 0-9841827-0-5 - 1. Vestibular apparatus—Diseases. 2. Wind turbines - —Health aspects. 3. Syndromes. I. Title. RF260.P54 2009 617.8'82 QBI09-600120 This study is dedicated to the memory of Dudley Weider, MD, Professor of Otolaryngology at the Dartmouth-Hitchcock Medical Center, who sent me to Alaska, diagnosed and cured my husband, and taught me about migraine and dizziness. We miss him. ## Contents | One | By way of explaining why on earth I wrote this book | 1 | |---------|--|-----| | | DOOR | _ | | Two | The Report, for clinicians | 26 | | Three | The Case Histories: The raw data | 126 | | Four | The REPORT all over again, in plain English for non-clinicians | 193 | | Abbrev | iations | 257 | | Glossar | У | 259 | | Referen | aces | 271 | | Referee | reports | 287 | | About 1 | the author | 293 | ### **TWO** ### The Report, for clinicians #### **Abstract** This report documents a consistent and often debilitating complex of symptoms experienced by adults and children while living near large industrial wind turbines (1.5–3 MW). It examines patterns of individual susceptibility and proposes pathophysiologic mechanisms. Symptoms include sleep disturbance, headache, tinnitus, ear pressure, dizziness, vertigo, nausea, visual blurring, tachycardia, irritability, problems with concentration and memory, and panic episodes associated with sensations of internal pulsation or quivering that arise while awake or asleep. The study is a case series of 10 affected families, with 38 members age <1 to 75, living 305 m to 1.5 km (1000 to 4900 ft) from wind turbines erected since 2004. All competent and available adults and older teens completed a detailed clinical interview about their own and their children's symptoms, sensations, and medical conditions a) before turbines were erected near their homes, b) while living near operating turbines, and c) after leaving their homes or spending a prolonged period away. Statistically significant risk factors for symptoms during exposure include pre-existing migraine disorder, motion sensitivity, or innerear damage (pre-existing tinnitus, hearing loss, or industrial noise exposure). Symptoms are not statistically associated with preexisting anxiety or other mental health disorders. The symptom complex resembles syndromes caused by vestibular dysfunction. People without known risk factors are also affected. The proposed pathophysiology posits disturbance to balance and position sense when low frequency noise or vibration stimulates receptors for the balance system (vestibular, somatosensory, or visceral sensory, as well as visual stimulation from moving shadows) in a discordant fashion. Vestibular neural signals are known to affect a variety of brain areas and functions, including spatial awareness, spatial memory, spatial problem-solving, fear, anxiety, autonomic functions, and aversive learning, providing a robust neural framework for the symptom associations in Wind Turbine Syndrome. Further research is needed to prove causes and physiologic mechanisms, establish prevalence, and explore effects in special populations, including children. This and other studies suggest that safe setbacks will be at least 2 km (1.24 mi), and will be longer for larger turbines and in more varied topography. ### Introduction and Background Policy initiatives in the United States and abroad currently encourage the construction of extremely large wind-powered electric generation plants (wind turbines) in rural areas. In its current format, wind electric generation is a variably regulated, multi-billion-dollar-a-year industry. Wind turbines are now commonly placed close to homes. Usual setbacks in New York State, for example, are 305–457 m (1000–1500 ft) from houses. Developer statements and preconstruction modeling lead ¹ Town of Ellenburg, NY, wind law: 1000 ft (305 m); Town of Clinton, NY, wind law: 1200 ft (366 m); Town of Martinsburg, NY, wind law: 1500 ft (457 m). For other examples in and outside NY State, see *Wind Energy Development: A Guide for Local Authorities in New York*, New York State Energy Research and Development Authority, October 2002, p. 27. http://text.nyserda.org/programs/pdfs/windguide.pdf. communities to believe that disturbances from noise and vibration will be negligible or nonexistent.^{2–4} Developers assure prospective communities that turbines are no louder than a refrigerator, a library reading room, or the rustling of tree leaves which, they say, easily obscures turbine noise.⁵ Despite these assurances, some people experience significant symptoms after wind turbines are placed in operation near their homes. The purpose of this study is to establish a case definition for the consistent, frequently debilitating, set of symptoms ² "The GE 1.5 MW wind turbine, which is in use in Fenner, New York, is generally no louder than 50 decibels (dBA) at a distance of 1,000 feet (the closest we would propose siting a turbine to a residence). Governmental and scientific agencies have described 50 dBA as being equivalent to a 'quiet room.' Please keep in mind that these turbines only turn when the wind blows, and the sound of the wind itself is often louder than 50 dBA. Our own experience, and that of many others who live near or have visited the Fenner windfarm, is that the turbines can only be heard when it is otherwise dead quiet, and even then it is very faint, especially at a distance." Letter from Noble Environmental Power, LLC, to residents of Churubusco (Town of Clinton), New York, 7/31/2005. ³ "Virtually everything with moving parts will make some sound, and wind turbines are no exception. However, well-designed wind turbines are generally quiet in operation, and compared to the noise of road traffic, trains, aircraft, and construction activities, to name but a few, the noise from wind turbines is very low.... Today, an operating wind farm at a distance of 750 to 1,000 feet is no noisier than a kitchen refrigerator or a moderately quiet room." Facts about wind energy and noise. American Wind Energy Association, August 2008, p. 2. www. windturbinesyndrome.com/?p=698. ⁴ "In general, wind plants are not noisy, and wind is a good neighbor. Complaints about noise from wind projects are rare, and can usually be satisfactorily resolved." Facts about wind energy and noise. American Wind Energy Association, August 2008, p. 4. www.windturbinesyndrome.com/?p=698. ⁵ "Outside the nearest houses, which are at least 300 metres away, and more often further, the sound of a wind turbine generating electricity is likely to be about the same level as noise from a flowing stream about 50–100 metres away or the noise of leaves rustling in a gentle breeze. This is similar to the sound level inside a typical living room with a gas fire switched on, or the reading room of a library or in an unoccupied, quiet, air-conditioned office. . . . Even when the wind speed increases, it is difficult to detect any increase in turbine sound above the increase in normal background sound, such as the noise the wind itself makes and the rustling of trees." Noise from wind turbines: the facts. British Wind Energy Association, August 2008. www.windturbinesyndrome.com/?p=698. experienced by people while living near wind turbine installations, and to place this symptom complex within the context of known pathophysiology. A case definition is needed to allow studies of causation, epidemiology, and outcomes to go forward, and to establish adequate community controls. This set of symptoms stands out in the context of noise control practice. George Kamperman, P.E., INCE Bd. Cert., past member of the
acoustics firm Bolt, Beranek and Newman (USA), wrote, "After the first day of digging into the wind turbine noise impact problems in different countries, it became clear that people living within about two miles from 'wind farms' all had similar complaints and health problems. I have never seen this type of phenomenon [in] over fifty plus years of consulting on industrial noise problems. The magnitude of the impact is far above anything I have seen before at such relatively low sound levels. I can see the devastating health impact from wind turbine noise but I can only comment on the physical noise exposure. From my viewpoint we desperately need noise exposure level criteria." I named this complex of symptoms "Wind Turbine Syndrome" in a preliminary fashion in testimony before the Energy Committee of the New York State Legislature on March 7, 2006. My observation that people can feel vibration or pulsations from wind turbines, and find it disturbing, was quoted in the brief section, "Impacts on Human Health and Well-Being" in the report *Environmental Impacts of Wind-Energy Projects* of the National Academy of Science, published in May 2007. No other medical information was cited in this report. The authors asked for more information to better understand these effects.⁷ $^{^6\,\}mathrm{George}$ Kamperman, personal communication, 2/21/2008. See www.kamperman.com/index.htm. ⁷ National Research Council. 2007. *Environmental Impacts of Wind-Energy Projects*. The National Academies Press, Washington, DC. 185 pp, p. 109. Debates about wind turbine—associated health problems have been dominated to date by noise control engineers, or acousticians, which is problematic in part because the acoustics field at present is dominated by the wind turbine industry,⁸ and in part because acousticians are not trained in medicine. A typical approach to wind turbine disturbance complaints, world-wide, is *noise first, symptoms second*: if an acoustician can demonstrate with noise measurements that there is no noise considered significant in a setting, then the symptoms experienced by people in that setting can be, and frequently are, dismissed. This has been the experience of seven of the ten families in this study in the United States, Canada, Ireland, and Italy.⁹ At least one developer has put forward the hypothesis that a negative attitude or worry towards turbines is what leads people to be disturbed by turbine noise.¹⁰ ¹⁰ "We often use the word 'noise' to refer to 'any unwanted sound.' It's true that wind turbines make sounds ... but whether or not those sounds are 'noisy' has a lot to do with who's listening. It's also worth noting that studies have shown [no references provided in source document] that a person's attitude toward a sound—meaning whether it's a 'wanted' or 'unwanted' sound—depends a great deal on what they think and how they feel about the source of the sound. In other words, if someone has a negative attitude to wind turbines, or is worried about them, this will affect how they feel about the sound. However, if someone has a positive attitude toward wind energy, it's very unlikely that the sounds will bother them at all." Wind fact sheet #5: Are modern wind turbines noisy? p. 2. Noble Environmental Power, LLC. www.windturbinesyndrome.com/?p=698. ⁸ George Kamperman, personal communication, 2/23/2008. ⁹A notable exception to this pattern is the physics research and modeling of GP van den Berg, who, as a graduate student and member of the Science Shop for Physics of the University of Groningen in the Netherlands, investigated noise complaints near a windplant and devised new models of atmospheric noise propagation to fit the phenomena he observed. References: 1) van den Berg, GP. 2004. Effects of the wind profile at night on wind turbine sound. J Sound Vib 277: 955–70; 2) van den Berg, GP. 2004. Do wind turbines produce significant low frequency sound levels? 11th International Meeting on Low Frequency Noise and Vibration and Its Control, Maastricht, Netherlands, August 30 to September 1, 8 pp.; 3) van den Berg, GP. 2005. The beat is getting stronger: the effect of atmospheric stability on low frequency modulated sound of wind turbines. J Low Freq Noise Vib Active Contr 24(1): 1–24; 4) van den Berg, GP. 2006. The sound of high winds: the effect of atmospheric stability on wind turbine sound and microphone noise. PhD dissertation, University of Groningen, Netherlands. 177 pp. http://irs.ub.rug.nl/ppn/294294104 A reorientation is in order. If people are so disturbed by their headaches, tinnitus, sleeplessness, panic episodes, disrupted children, or memory deficits that they must move or abandon their homes to get away from wind turbine noise and vibration, then that noise and vibration is by definition significant, because the symptoms it causes are significant. The role of an ethical acoustician is to figure out what type and intensity of noise or vibration creates particular symptoms, and to propose effective control measures. My study subjects make it clear that their problems are caused by noise and vibration. Some symptoms in some subjects are also triggered by moving blade shadows. However, I do not present or analyze noise data in this study, because noise is not my training. (Conversely, symptoms and disease are not the training of acousticians.) I focus on detailed symptomatic descriptions and statistical evaluation of medical susceptibility factors within the study group. Correlating the noise and vibration characteristics of the turbine-exposed homes with the symptoms of the people in the homes is an area ripe for collaboration between medical researchers and independent noise control engineers. Other than articles on the Internet, there is currently no published research on wind turbine—associated symptoms. A UK physician, Dr. Amanda Harry, whose practice includes patients living near wind turbines, has published online the results of a checklist survey, documenting specific symptoms among 42 adults who identified themselves to her as having problems while living 300 m to 1.6 km (984 ft to 1 mi) from turbines. She found a high prevalence of sleep disturbance, fatigue, headache, migraine, anxiety, depression, tinnitus, hearing loss, and palpitations. Respondents described a similar set of symptoms and many of the same experiences that ¹¹ Harry, Amanda. 2007. Wind turbines, noise, and health. 32 pp. www.windturbine noisehealthhumanrights.com/wtnoise_health_2007_a_barry.pdf I document in this report, including having to move out of their homes because of symptoms. Respondents were mostly older adults: 42% were age 60 or older, 40% age 45–60, 12% age 30–45, and 5% age 18–30. A biomedical librarian, Barbara Frey, working with this physician and others, has published online a compilation of other personal accounts of symptoms and sensations near wind turbines. ¹² These also mirror what I document. Robyn Phipps, PhD, a New Zealand scientist specializing in health in indoor environments, systematically surveyed residents up to 15 km (9.3 mi) from operating wind turbine installations, asking both positive and negative questions about visual, noise, and vibration experiences. 13 All respondents (614 or 56% of the 1100 households to whom surveys were mailed) lived at least 2 km (1.24 mi) from turbines, with 85% of respondents living 2–3.5 km (1.24–2.2 mi) from turbines and 15% farther away. Among other questions, the survey asked about unpleasant physical sensations from turbine noise, which were experienced by 2.1% of respondents, even at these distances. Forty-one respondents (6.7%) spontaneously telephoned Dr. Phipps to tell her more than was asked on the survey about their distress due to turbine noise and vibration, nearly all (39) with disturbed sleep. 14 Symptoms were not further differentiated in this study, but clearly may occur at distances even greater than 2 km (1.24 mi) from turbines. Published survey studies have examined residents' reactions to wind turbines relative to modeled noise levels and visibility of ¹² Frey, Barbara J, and Hadden, Peter J. 2007. Noise radiation from wind turbines installed near homes: effects on health. 137 pp. www.windturbinenoisehealthhuman rights.com/wtnhhr_june2007.pdf. ¹³ Phipps, Robyn. 2007. Evidence of Dr. Robyn Phipps, in the matter of Moturimu wind farm application heard before the Joint Commissioners, March 8–26. Palmerston North, New Zealand. 43 pp. www.wind-watch.org/documents/wp-content/uploads/phipps-moturimutestimony.pdf. ¹⁴ Phipps 2007. turbines in Sweden^{15–17} and the Netherlands.^{18–20} The study in the Netherlands included questions on health, though not of sufficient power to make any statements on health other than the correspondence between sleep disturbance and modeled noise (see below, Discussion). Both sets of studies, the Swedish and Dutch, have findings that could contribute to the rational setting of noise limits near wind turbines (see Discussion). With regard to official opinion, the National Academy of Medicine in France recommended in 2005 that industrial wind turbines be sited at least 1.5 km (0.93 mi) from human habitation due to health effects of low frequency noise produced by the turbines.²¹ Current wind turbines have three airfoil-shaped rotor blades attached by a hub to gears and a generator, which are housed in a bus-sized box (nacelle) at the top of a nearly cylindrical, hollow ¹⁵ Pedersen E, Persson Waye K. 2004. Perceptions and annoyance due to wind turbine noise: a dose-response relationship. J Acoust Soc Am 116(6): 3460–70. ¹⁶ Pedersen E. 2007. Human response to wind turbine noise: perception, annoyance and moderating factors. PhD dissertation, Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Göteborg University, Göteborg, Sweden. 86 pp. ¹⁷ Pedersen E, Persson Waye K. 2007. Wind turbine noise, annoyance and self-reported health and wellbeing in different living environments. Occup
Environ Med 64(7): 480–86. ¹⁸ Pedersen E, Bouma J, Bakker R, van den Berg GP. 2008. Response to wind turbine noise in the Netherlands. J Acoust Soc Am 123(5): 3536 (abstract). ¹⁹ van den Berg GP, Pedersen E, Bakker R, Bouma J. 2008. Wind farm aural and visual impact in the Netherlands. J Acoust Soc Am 123(5): 3682 (abstract). ²⁰ van den Berg GP, Pedersen E, Bouma J, Bakker R. 2008. Project WINDFARMperception: visual and acoustic impact of wind turbine farms on residents. Final report, June 3. 63 pp. Summary: http://umcg.wewi.eldoc.ub.rug.nl/FILES/root/Rapporten/2008/WINDFARMperception/WFp-final-summary.pdf. Entire report: https://dspace.hh.se/dspace/bitstream/2082/2176/1/WFp-final.pdf. ²¹ Académie nationale de médecine de France. 2006. "Le retentissement du fonctionnement des éoliennes sur la santé de l'homme, le Rapport, ses Annexes et les Recommandations de l'Académie nationale de médecine, 3/14/2006." 17 pp. www.academie-medecine.fr/sites_thematiques/EOLIENNES/chouard_rapp_14mars_ 2006.htm. steel tower. The nacelle is rotated mechanically to face the blades into the wind. The blades spin upwind of the tower. The tower is anchored in a steel-reinforced concrete foundation. Turbine heights in this study were 100 to 135 m (328 to 443 ft) with hub heights 59 to 90 m (194 to 295 ft) and blade lengths 33 to 45 m (108 to 148 ft). Individual turbine powers were 1.5 to 3 MW. Clusters contained from 8 to 45 individual turbines (see Table 1B). In this study, participants from all families described good and bad symptomatic periods correlated with particular sounds from the turbine installations, rate of turbine spin, or whether the turbines were turned towards, away from, or sideways relative to their homes. All participants identified wind directions and intensities that exacerbated their problems and others that brought relief. Many subjects described a quality of invasiveness in wind turbine noise, more disturbing than other noises like trains. Some stated that the noise wouldn't sound loud to people who did not live with it, or that noises described with benign-sounding terms like "swish" or "hum" were in reality very disturbing. Several were disturbed specifically by shadow flicker, which is the flashing of light in a room as the slanting sun shines through moving turbine blades, or the repetitive movement of the shadows across yards and walls. (These observations are documented in the narrative data of the Case Histories.) Wind turbines generate sound across the spectrum from the infrasonic to the ultrasonic,²² and also produce ground-borne or seismic vibration.²³ "In the broadest sense, a sound wave is any disturbance that is propagated in an elastic medium, which may be ²² van den Berg 2004a. ²³ Styles P, Stimpson I, Toon S, England R, and Wright M. 2005. Microseismic and infrasound monitoring of low frequency noise and vibrations from wind farms: recommendations on the siting of wind farms in the vicinity of Eskdalemuir, Scotland. 125 pp. www.esci.keele.ac.uk/geophysics/News/windfarm_monitoring.html a gas, a liquid, or a solid. Ultrasonic, sonic, and infrasonic waves are included in this definition.... Sonic waves [are] those waves that can be perceived by the hearing sense of the human being. Noise is defined as any perceived sound that is objectionable to a human being."²⁴ Following standard usage in noise literature, I use the word *vibration* to refer to disturbances in solid media, such as the ground, house structures, or the human body. When air-borne sound waves of particular energy (power) and frequency meet a solid object, they may set the object vibrating. Conversely, a vibrating solid object, such as the strings on a violin, can create sound waves in air. There is energy transfer in both directions between air-borne or fluid-borne sound waves and the vibration of solids. When I talk about noise and vibration together, I am referring to this continuum of mechanical energy in the air and solids. Energy in either form (sound or vibration) can impinge on the human body, and there may be multiple exchanges between air and solids in the path between a source and a human. The tissues of humans and other animals are semi-liquid to varying degrees, and have fluid-filled and air-filled spaces within them, as well as solid structures like bones. As an example of such energy transfer, a sound wave in the air, encountering a house, may set up vibrations in the structure of the house. These vibrations, in walls or windows, may set up air pressure (sound) waves in rooms, which can in turn transmit mechanical energy to the tympanic membrane and middle ear, to the airways and lungs, and to body surfaces. Alternatively, vibrations in house structures or the ground may transmit energy directly to the body by solid-to-solid contact and be conducted through the body by bone conduction. ²⁴ Beranek LL. 2006. Basic acoustical quantities: levels and decibels. Chapter 1 in *Noise and Vibration Control and Engineering: Principles and Applications*, ed. Ver IL, Beranek LL, pp. 1–24. John Wiley & Sons, Hoboken, NJ. p. 1. All parts of the body (and indeed all objects) have specific resonance frequencies, meaning that particular frequencies or wavelengths of sound will be amplified in that body part. 25 If the wavelength of a sound or its harmonic matches the dimensions of a room, it may set up standing waves in the room with places where the intersecting, reverberating sound waves reinforce each other. Resonance also occurs inside air-filled body cavities such as the lungs, trachea, pharynx, middle ear, mastoid, and gastrointestinal tract. The elasticity of the walls and density of the contents of these spaces affect the dynamics of sound waves inside them. The orbits (bones surrounding the eyes) and cranial vault (braincase) are also resonance chambers, because of the lower density of their contents compared to the bones that surround them. There are also vibratory resonance patterns along the spine (which is elastic), including a resonance involving the movement of the head relative to the shoulders. Von Gierke^{26,27} and Rasmussen²⁸ have described the resonant frequencies of different parts of the human body. Noise intensity is measured in decibels (dB), a logarithmic scale of sound pressure amplitude. Single noise measurements or integrated measurements over time combine the energies of a range of frequencies into a single number, as defined by the filter or weighting network used during the measurement. The A-weighting ²⁵ Hedge, Alan. 2007. Department of Design and Environmental Analysis, Cornell University. Syllabus/lecture notes for DEA 350: Whole-body vibration (January), found at http://ergo.human.cornell.edu/studentdownloads/DEA325pdfs/Human%20 Vibration.pdf $^{^{26}}$ von Gierke HE, Parker DE. 1994. Differences in otolith and abdominal viscera graviceptor dynamics: implications for motion sickness and perceived body position. Aviat Space Environ Med 65(8): 747–51. $^{^{\}rm 27}$ von Gierke HE. 1971. Biodynamic models and their applications. J Acoust Soc Am 50(6): 1397–413. ²⁸ Rasmussen G. 1982. Human body vibration exposure and its measurement. Bruel and Kjaer Technical Paper No. 1, Naerum, Denmark. Abstract: Rasmussen G. 1983. Human body vibration exposure and its measurement. J Acoust Soc Am 73(6): 2229. network is the most common in studies of community noise. It is designed to duplicate the frequency response of human hearing for air-borne sounds entering through the outer and middle ear. A-weighting slightly augments the contributions of sounds in the 1000 to 6000 Hz range (from C two octaves above middle C, key 64 on the piano, to F# above the highest note on the piano), and progressively reduces the contributions of lower frequencies below about 800 Hz (G-G# 1½ octaves above middle C, keys 59-60). At 100 Hz, where the human inner-ear vestibular organ has a peak response to vibration²⁹ (G-G# 1½ octaves below middle C, keys 23-24), A-weighting reduces sound measurement by a factor of 1000 (30 dB). At 31 Hz (B, the second-to-bottom white key, key 3), A-weighting reduces sound measurement by a factor of 10,000 (40 dB). Thus A-weighting preferentially captures the high sounds used in language recognition, to which the human cochlea and outer and middle ear are indeed very sensitive, but reduces the contribution of mid- and lower-range audible sounds, as well as infrasound (defined as 20 Hz and below). Linear (lin) measurements use no weighting network, so the frequency responses are limited by other aspects of the system, such as microphone sensitivity. Linear measurements may capture low frequency sounds but are not standardized—different sound level meters yield different results. As a result, the standardized and commonly available C-weighting network is preferred for measuring environmental noise with low frequency components, such as noise from wind turbines. The C-weighting network has a flat response (meaning that it does not reduce or enhance the contributions of different frequencies) over the audible frequency range and a well-defined decreasing response below 31 Hz. ²⁹ Todd NPMc, Rosengren SM, Colebatch JG. 2008. Tuning and sensitivity of the human vestibular system to low-frequency vibration. Neurosci Lett 444: 36–41. One third (1/3) octave band studies are used to describe sound pressure levels by frequency, and are presented as a graph rather than a single number. One third (1/3) octave bands can also be measured linearly or with weighting networks. ### Methods The study design is a case series of affected families, interviewed by telephone. I used a broad-based, structured interview including a narrative account, symptom checklist, past medical and psychiatric history, personal and social history, selected elements of family history, and review of systems. This is the "history" in the standard physician's "history and physical," with specific questions oriented towards the problems in question.
The core of the syndrome consists of symptoms such as sleep disturbance, headache, tinnitus, dizziness, nausea, anxiety, concentration problems, and others which are typically diagnosed by medical history more than physical exam. Limited medical records were provided by the adults of families A and B (A1, A2, B1, B2) and by a young man in family C (C4). I requested records for all families through F, but since no more were forthcoming, I stopped asking, and pursued those parts of the study not dependent on physical examination or test results, and for which I had a uniform study tool, the interview. The study design includes comparison groups in two ways: 1) I obtained information for each symptom before exposure, during exposure, and away from or after the end of exposure, so that each subject acted as his or her own control in the "natural experiment" of living in a home under a certain set of conditions, having wind turbines added to those conditions, and then moving or going away and again experiencing an environment without turbines. Subjects also noted how their symptom intensity varied in concert with the type and loudness of noise, the direction turbine blades were turned, the rate of spin, or the presence or absence of shadow flicker. A positive symptom is one that emerged from the within-subject comparison as distinctly worse during exposure than before or after (generally both). For example, a subject was considered to have headaches due to turbine exposure only if his (her) headaches were more frequent, severe, or longer-lasting during turbine exposure than his own headaches before being exposed to turbines and after ending the exposure. 2) I obtained information on all household members, not only the most affected, so that I could compare more affected to less affected subjects, all of whom were exposed, to evaluate individual risk factors with regard to age, sex, and underlying health conditions. Families were selected to conform to all of the following: 1) severity of symptoms of at least one family member; 2) presence of a "post-exposure" condition, in which the family had either left the affected home or spent periods of time away; 3) quality of observation, memory, and expression, so that interviewed people were able to state clearly, consistently, and in detail what had happened to them under what conditions and at what time (all but one individual were native English speakers); 4) residence near recently erected turbines (placed in operation 2004–2007); 5) short time span between moving out and the interview, if exposure had already ended (six weeks was the maximum); and 6) family actions in response to turbine noise showing how serious and debilitating the symptoms were (moving out, purchasing a second home, leaving home for months, renovating house, sleeping in root cellar). Most families who met these criteria and were willing to be interviewed lived outside the United States. In the course of the study, I received direct evidence that participation by Americans was limited by non-medical factors such as turbine leases or neighbor contracts prohibiting criticism, court decisions restricting criticism of turbine projects, and community relationships. The same factors are likely, in future, to affect other studies of wind turbine noise effects in the United States, with the potential to introduce significant bias into any population-based study. Moving is an economic hardship for all the families in the study. All own (or owned) their homes, but only three of the eight families who have left their homes have sold them: one to the utility operating the turbines, one to a buyer introduced to the family by the turbine owner, and one to an independent buyer. Three families do not have their homes for sale because the properties include farmland which they farm or lease out. These families have rented additional houses in nearby villages for living and sleeping, though they can ill afford it. The remaining two families who have left their homes are trying to sell the homes, but have not been successful. One of the two families that have not moved is trying to sell their home so they can move. The tenth family has not moved and is not at this point trying to sell the home. Though not by design, each case household consisted of a married couple or a married couple with children. One family included an older parent. I interviewed both members of each couple except for one man with dementia, and I interviewed the older parent together with her daughter-in-law. I directly interviewed three out of the four subjects in the 16- to 21-year-old age group; the fourth did not make himself available. Child data are otherwise derived from the parent interviews. I audio-recorded the interviews for the first two families (C and D, in 2006) as I was developing the interview protocol, but after that noted answers directly on an interview form, writing down distinctive or critical observations and symptom descriptions verbatim. Because of subject time constraints, I also audiorecorded the final family (J, in 2008). Subjects who were recorded gave their permission verbally at the beginning of the interview. I made a confidentiality statement and informed subjects that they would have the opportunity to review the data presented about them prior to publication. Follow-up interviews were done with families C, D, and G. Other families have kept in touch by email and telephone about further developments. All ten families have reviewed the information presented about them and signed permission for anonymous publication. I use simple statistical tests ($2x2 ext{ }\chi^2$) to examine associations among symptoms and between pre-existing conditions and symptoms during exposure.³⁰ Degrees of freedom (df) are 2 for all the χ^2 results in this report. Children were excluded from the analysis of adult symptoms if no child younger than a certain age had the symptom in question. Study children were categorized into developmental-age blocks (see Table 1C). When I excluded children from an analysis, I excluded all the children in that age block and below. Excluding children from adult symptom analyses avoided inflating the no symptom/absent pre-existing condition box of the $2x2 ext{ }\chi^2$ contingency tables, which could artificially increase the χ^2 value. #### Results I interviewed 23 adult and teenage members of 10 families, collecting information on all 38 adult, teen, and child family members. One family member was a baby born a few days before the family (A) moved out, so there are no data for this child on sleep or behavior during exposure (which was in utero). Thus the sample size of subjects for whom we have information about experiences or behavior during exposure is 37. ³⁰ Sokal RR, Rohlf FJ. 1969. *Biometry*. W. H. Freeman, San Francisco. Residence status and family composition are detailed in Table 1A; turbine, terrain, and house characteristics in Table 1B; and the age and sex distribution of subjects in Table 1C. Twenty subjects were male and 18 female, ranging in age from <1 to 75. Seventeen subjects were age 21 and below, and 21 subjects were age 32 and above. There is a gap in the 20's and a preponderance of subjects in their 50's. Wind turbine brands to which study subjects were exposed included Gamesa, General Electric, Repower, Bonus (Siemens), and Vestas. Individual accounts of baseline health status and pre-exposure, during exposure, and post-exposure symptoms or absence of symptoms are presented in the CASE HISTORIES for families A through J, with a separate sub-table (A1, A2, A3, etc.) for each individual. I encourage the reader to read these, because they highlight the before-during-after comparisons for each person, show how the symptoms fit together for individuals, reveal family patterns, and provide subjects' own words for what they feel and detect. When individuals are referred to in the text, the letter and number in parentheses (e.g., A1, C2) refers to the Case History table in which that subject's information is found. #### **Baseline conditions** Eight adult subjects had current or history of serious medical illness, including lupus (1), breast cancer (2), diabetes (1), coronary artery disease (2), hypertension (1), atrial fibrillation with anticoagulation (1), Parkinson's disease (1), ulcer (1), and fibromyalgia (2). Two were male (age 56-64) and six female (age 51-75). Other past and current medical illnesses are listed in Table 2. Four subjects smoked at the beginning of exposure, and five others had smoked in the past (Table 2). There were no seriously ill children in the sample. Seven subjects had histories of mental health disorders including depression, anxiety, post-traumatic stress disorder (PTSD), and bipolar disorder. Three were male (age 42–56) and four female (age 32–64). One of these men (age 56) also had Alzheimer's disease. There were no children with mental health disorders or developmental disabilities in this sample. Eight subjects had pre-existing migraine disorder (including two with previous severe sporadic headaches that I interpreted as migraine). Four were male (age 19–42) and four female (age 12–42). An additional seven subjects, age <1 to 17, were children of migraineurs who had not experienced migraines themselves at baseline. Eight subjects had permanent hearing impairments, defined subjectively or objectively, including mild losses, losses limited to one ear, or impairments of binaural processing. Six were male (age 32–64) and two female (age 51–57). Six subjects had continuous tinnitus or a history of multiple, discrete episodes of tinnitus prior to exposure. Four were male (age 19–64) and two female (age 33–57). Twelve subjects had significant previous noise exposure, defined as working in noisy industrial or construction settings; working on or in a diesel boat, truck, bus, farm equipment, or aircraft; a military tour of duty; or operating lawn
mowers and chain saws for work. Not included were home or sporadic use of lawn mowers and chain saws, commuting by train or airplane, urban living in general, or playing or listening to music. Nine of the noise-exposed subjects were male (age 19–64) and three female (age 33–53). Eighteen subjects were known to be motion sensitive prior to exposure, as defined by carsickness as a child or adult, any episode of seasickness, or a history of two or more episodes of vertigo. Ten were male (age 6-64) and eight female (age 12-57). Table 1A: Cases: personal attributes | Residence status | Moved to a rented house in nearby village 6 months after renovating their own home, which is vacant. Land they own continues to be leased to a farmer. | Moved to a rented house in nearby village. Home is vacant. Land they own, which has been in the family for over a century, continues to be leased to a farmer. | Family divided and moved in with extended family members. Home, built 24 years before by husband on land in family for over a century, is vacant and for sale. | Occupied home, purchased second house in village 25 miles away during study. Sold home and moved after study completed. | Moved to a newly purchased house in a nearby village after turbine utility bought their home and property. | |---|--|--|--|---|--| | Head of household occupations Residence status | Fisherman, accountant | Fisherman, homemaker | Fisherman, homemaker | Retired/disabled,
home health aide | Retired/disabled, teacher | | Ages† | 33, 32, 2½, 2 | <u>55, 53, 19</u> | 45, 42, 21, 19, 15, 12, 9, 5 | <u>64</u> , <u>64</u> | 56, <u>56</u> | | # interviewed | 5 | m | ю | 2 | 1 | | Case Country # in household # interviewed Ages† | 4 | n | ∞ | 2 | 7 | | Country | Canada | Canada | Canada | Canada | Canada | | Case | K | <u>*</u> | C | Ω | 丑 | | | | | | | | | Residence status | Rented house in nearby village and continue to use farm and home office during day. | Under pressure from family, turbine owner arranged purchase at 30% below pre-turbine value. | Family occupies home.
Significant renovations made
in attempt to exclude noise. | Occupied newly built home during study but wife spent months away due to symptoms. Moved out after study completed, leaving home vacant and for sale. | Family occupies home. | |---|---|---|---|---|--| | Head of household occupations Residence status | Farmer, nurse midwife | 35, 32, 6, 5, Computer programmer, 2, 8 months homemaker | Milk truck driver, homemaker | Professional gardener, teacher | <u>49</u> , <u>47</u> , 13, 8 Physician, nurse | | Ages† | $\frac{51}{17}, \frac{42}{75}$ | 35, 32, 6, 5, Computer pi 2, 8 months homemaker | <u>57, 52,</u> 8 | <u>59, 52</u> | 49, 47, 13, 8 | | # interviewed | 4 | 2 | 7 | 7 | 2 | | Case Country # in household # interviewed Agest | 4 | 9 | m | 2 | 4 | | Country | UK | Ireland | Ireland | Italy | USA | | Case | Щ | Ŋ | H | П | J | *Families A and B are related and own separate homes on the same property. **Grandmother living in different house on same property did not move away. +Underlined ages indicate interviewees. Table 1B: Cases: physical attributes | Case | Distance to Case closest turbine | #
turbines | MW per
turbine | Year placed in operation | Hub
height | Total
height | Terrain | Configuration
of turbines | House
construction | |------|----------------------------------|---------------|-------------------|--------------------------|---------------|-----------------|----------------------------|---|---------------------------------------| | A | 1000 m
(3281 ft) | 10 | 33 | 2007 | 90 m | 135 m | Hilly with
rocky ridges | 10 in line point at
house at hub level | Wood frame | | *B | 1000 m
(3281 ft) | 10 | က | 2007 | 90 m | 135 m | Hilly with
rocky ridges | 10 in line point at
house at hub level | Wood frame | | C | 305 m (1000 ft) | 17 | 1.8 | 2004-05 | 80 m | 125 m | Rocky
peninsula | On three sides | Wood frame | | О | 548 m (1798 ft) | 22 | 1.8 | 2006 | 78 m | 117 m | Flat farmland | Group on one side | Wood frame | | Щ | 423 m (1388 ft) | 45 | 1.5 | 2006 | 87 m | 120 m | Flat farmland,
swamp | On three sides | Brick with stone front | | Щ | 930 m (3051 ft) | ∞ | 2 | 2006 | 29 m | 100 m | Flat farmland | 5 in line point
at house | Brick on
cement slab | | Ð | 596 m (1955 ft) | 32 | 33 | 2006 | 80 m | 125 m | 125 m Rocky hills | Above house on three sides | Stone cottage,
walls 60 cm thick | | H | 1500 m
(4921 ft) | 11 | 2.3 | 2005 | 80 m | 121 m | Rocky hills | Above house on three sides | Stone cottage,
cement slab | | П | 875 m (2871 ft) | 10 | 2 | 2006 | 78 m | 121 m | 121 m Rocky hills | Across valley at
higher elevation | Stone and brick,
walls 50 cm thick | | _ | 732 m (2400 ft) | 40 | 2 | 2007 | 80 m | 123 m | Ridges and valleys | 6 in L-shape above
house on two sides | Wood frame | | - | - | | | | | | | | | $\ensuremath{^*}\textsc{Families}$ A and B are related and own separate homes on the same property. Table 1C: Cases: demographics | Age | Male | Female | Total | |--------|------|--------|-------| | <1 | 1 | 1 | 2 | | 1-3 | 1 | 1 | 2 | | 4-6 | 2 | 1 | 3 | | 7–11 | 3 | 0 | 3 | | 12-15 | 1 | 2 | 3 | | 16-21 | 2 | 2 | 4 | | 22-29 | 0 | 0 | 0 | | 30-39 | 2 | 2 | 4 | | 40-49 | 3 | 2 | 5 | | 50-59 | 4 | 5 | 9 | | 60-69 | 1 | 1 | 2 | | 70-79 | 0 | 1 | 1 | | Totals | 20 | 18 | 38 | The subjects' baseline conditions are summarized in Table 3. Seven subjects had a remembered history of a single concussion, and none had a history of a more severe head injury. Six were male (age 19–59) and one female (age 12). I did not collect information on whiplash injury. ## **Core symptoms** Core symptoms are defined as 1) common and widely described by study participants, 2) closely linked in time and space to turbine exposure, and 3) amenable to diagnosis by medical history. Core symptoms include sleep disturbance, headache, tinnitus, other ear and hearing sensations, disturbances to balance and equilibrium, nausea, anxiety, irritability, energy loss, motivation loss, and disturbances to memory and concentration. An additional core symptom is a new type of internal or visceral sensation which has no name in the medical lexicon. Subjects struggled to explain these sensations, often apologizing for how strange their words sounded. A physician subject called it "feeling jittery inside" or "internal quivering." Other subjects chose similar words, while others talked about feeling pulsation or beating inside. The physical sensations of quivering, jitteriness, or pulsation are accompanied by acute anxiety, fearfulness, or agitation, irritability, sleep disturbance (since the symptom arises during sleep or wakefulness), and episodes of tachycardia. I call this sensation and accompanying symptoms *Visceral Vibratory Vestibular Disturbance* (VVVD). It is described further below. Core symptoms are closely correlated with exposure, including being at home, the direction and strength of the wind, whether turbines are facing the home, and the presence of moving blade shadows. Core symptoms all resolve immediately or within hours away from the turbines, with the exception of disturbances of concentration and memory, which resolved immediately in some cases or improved over weeks to months in others. Core symptoms are summarized in Table 3. Sleep disturbance. Thirty-two subjects (17 males age 2-64 and 15 females age 2-75) had disturbed sleep. Types of sleep disturbance included: difficulty getting to sleep, frequent or prolonged awakening by turbine noise, frequent or prolonged awakening by awakened children, night terrors (both 21/2-year-olds, B3 and G5), nocturnal enuresis (one 5-year-old girl, G4), nocturia (six women age 42-75 and one man age 64; B2, C2, E2, F2, F4, H2, D1), excessive movement during sleep (one 8-year-old boy, H3), excessive nighttime fears (two 5-year-olds, a girl and a boy, C8 and G4), and abrupt arousals from sleep in states of fear and alarm (four women age 42–57; C2, F2, H2, I2). Other adults, though not fearful when they woke up, awoke with physical symptoms similar to their daytime symptoms of anxiety/agitation/internal quivering (three men age 42-64 and two women age 32-53; D1, F1, J1, B2, G2). Four people slept well, including the one infant (G6), a 19-year-old woman (B3), a 47-year-old woman (J2) and her 8-year-old son (J4). It was unclear whether a 56-year-old man with dementia, bipolar disorder, Parkinson's disease, and disturbed sleep at baseline (E1) slept worse than usual or not. With three exceptions, all types of sleep disturbance resolved immediately whenever subjects slept away from their turbine-exposed homes, including the adult nocturia and
the 5-year-old's nocturnal enuresis. A 49-year-old man with a pre-existing sleep disturbance (J1) took two nights to get back to his baseline, and a 45-year-old man (C1) and a 42-year-old man (F1) did not improve all the way to baseline; this was thought to be due to coexisting depression after abandoning their homes. Table 2: Past and current serious medical illness | | Adult
(>22 yo) (n=21) | | Child/youth (0-21 yo) (n=17) | | |--|--------------------------|--------|------------------------------|--------| | | Male | Female | Male | Female | | Breast cancer | | 2 | | | | Skin cancer | 1 | | | | | Lupus | | 1 | | | | Diabetes | 1 | | | | | Polycystic ovarian syndrome | | 1 | | | | Coronary artery disease | 1 | 1 | | | | Atrial fibrillation with anticoagulation | | 1 | | | | Other arrhythmias | 1 | 1 | | | | Hypertension—present | | 1 | | | | Hypertension—past or pregnancy | | 2 | | | | Parkinson's disease | 1 | | | | | Diplopia | | 1 | | | | Renal function impairment | 1 | | | | | Ulcer—past | 1 | | | | | Gastroesophageal reflux | 2 | 3 | | | | Irritable bowel syndrome | 1 | 1 | | | | Fibromyalgia | | 2 | | | | Osteoarthritis | 1 | 1 | | | | Back pain | 2 | 1 | 1 | | | Other joint pain | 1 | | | | | Asthma | 2 | 2 | | 1 | | Eczema | | 1 | 1 | | | Frequent/chronic otitis media—present | | | 1 | 1 | | Frequent/chronic otitis media—past | | 1 | 2 | 1 | | | | | | | | Smoking—present | 3 | 1 | | | | Smoking—past | 3 | 1 | 1 | | Table 3: Baseline conditions and core symptom occurrence* | | Total | Male | Ages | Female | Ages | N** | % of sample | |--|-------|------|-------|--------|-------|-----|-------------| | Baseline Conditions | | | | | | | | | Serious medical illness† | 8 | 2 | 56-64 | 6 | 51-75 | 38 | 21 | | Mental health disorders‡ | 7 | 3 | 42-56 | 4 | 32-64 | 34 | 21 | | Migraine disorder | 8 | 4 | 19-42 | 4 | 12-42 | 34 | 24 | | Hearing impairments | 8 | 6 | 32-64 | 2 | 51-57 | 34 | 24 | | Pre-existing tinnitus | 6 | 4 | 19-64 | 2 | 33-57 | 24 | 25 | | Previous noise exposure | 12 | 9 | 19-64 | 3 | 33-53 | 24 | 38 | | Motion sensitivity | 18 | 10 | 6-64 | 8 | 12-57 | 34 | 53 | | | | | | | | | | | Core Symptoms | | | | | | | | | Sleep disturbance | 32 | 17 | 2-64 | 15 | 2-75 | 36 | 89 | | Headache | 19 | 8 | 6-55 | 11 | 12-57 | 34 | 56 | | VVVD◊ | 14 | 6 | 32-64 | 8 | 32-75 | 21 | 67 | | Dizziness, vertigo, unsteadiness | 16 | 7 | 19–64 | 9 | 12-64 | 27 | 59 | | Tinnitus | 14 | 9 | 19-64 | 5 | 33-57 | 24 | 58 | | Ear pressure or pain | 11 | 6 | 2-25 | 5 | 19-57 | 36 | 30 | | External auditory canal sensation | 5 | 2 | 42-55 | 3 | 52-75 | 34 | 15 | | Memory and concentration deficits (salient+mild/vague) | 28 | 15 | 6–64 | 13 | 5–57 | 30 | 93 | | Irritability, anger | 28 | 15 | 2-64 | 13 | 2-64 | 37 | 76 | | Fatigue, loss of motivation | 27 | 14 | 2-64 | 13 | 2-75 | 36 | 75 | ^{*}A symptom during exposure is defined as distinctly worse for that individual during exposure compared to before and/or after exposure. ^{**}N=number of subjects in which it was possible to know about the condition or symptom, given age and other specific limitations (see p. 41 and subsequent text). \dagger See p. 42 and Table 2. [‡]See p. 42 and subsequent text for definitions of this and other conditions and symptoms. \$\forall Visceral Vibratory Vestibular Disturbance: See pp. 48 and 55ff. Headache. Nineteen subjects experienced headaches that were increased in frequency, intensity, and/or duration compared to baseline for that person. Eight were male (age 6–55) and eleven female (age 12–57). Eight had pre-existing migraine (C2, C3, C4, C5, C6, F1, G1, G2). Two women (one a migraineur, one not; C2, E2) had severe headaches provoked by shadow flicker. All other exposure-related headaches were triggered by noise alone. Recovery from headaches generally took several hours after the exposure ended. Headache risk factors were examined in a subset of the study group that included all subjects age 5 and older (N=34), since the younger children in the study (age <1 to 2) were not reliable sources of information on headache. The occurrence of unusually severe or frequent headaches during exposure was significantly associated with pre-existing migraine disorder (χ^2 = 8.26, p = 0.004). All 8 subjects with pre-existing migraine experienced headaches that were unusually intense, frequent, or prolonged compared to their baseline headaches. Of the 26 subjects without pre-existing migraine, 11 also experienced unusual or severe headaches during exposure. Two of these were children of migraineurs not known to have migraine themselves (a girl age 17 and a boy age 6; F3, G3). All children or teens (through age 21) who had headaches during exposure were migraineurs or children of migraineurs. Once migraine was factored out as a risk factor, 9 of 17 subjects over age 22 without a history of migraine still had headaches of increased intensity, duration, or frequency during exposure to turbines. I found no significant correlation within this group between headache and the presence of serious underlying medical illness ($\chi^2 = 0.486$, p = 0.486), present or past mental health disorder ($\chi^2 = 0.476$, p = 0.490), tinnitus or hearing loss at baseline, motion sensitivity at baseline, or tinnitus, disequilibrium, or VVVD during exposure. In summary, a little more than half (19) of the 34 study participants age 5 and older experienced unusually severe headaches during exposure. Migraine was a statistically significant risk factor but was present in fewer than half (8) of the 19 subjects with worsened headache. Children and teens up to age 21 with headaches either had known migraine or were the children of migraineurs. Nine of the 19 headache subjects were adults without clear risk factors, showing that while people with migraine are more likely to have headaches of unusual intensity, duration, or frequency around turbines, so can other adults without identified risk factors. Ears, hearing, and tinnitus. Fourteen subjects (nine males age 19–64 and five females age 33–57) experienced tinnitus that was new or worse in severity or duration than at baseline. For two men (age 55 and 64; B1, D1), the tinnitus at times interfered with their ability to understand conversation. Four of the 14 subjects experienced particularly disturbing kinds of tinnitus or noise which was perceived to be inside the head (two men age 42, 55, and two women age 52, 57; B1, F1, H2, I2). This sensation was painful for two subjects. Tinnitus tended to resolve over several hours after exposure ended. Tinnitus risk factors were examined in subjects age 16 and older, since the youngest person with tinnitus was in this age group. The subject with dementia (E1) was excluded, since there was no information on his hearing status or tinnitus. Sample size was 24 subjects. The occurrence of new or worsened tinnitus in the presence of turbines was significantly correlated with previous noise exposure ($\chi^2 = 6.17$, p = 0.013), tinnitus prior to exposure ($\chi^2 = 5.71$, p = 0.017), and baseline hearing loss ($\chi^2 = 4.20$, p = 0.040). New or worsened tinnitus during exposure was strongly correlated with ear popping, ear pressure, or ear pain during exposure ($\chi^2 = 7.11$, $\chi^2 = 0.008$), and weakly correlated with dizziness/disequilibrium during exposure ($\chi^2 = 3.70$, $\chi^2 = 0.054$). Tinnitus during exposure did not show a significant relationship with preexisting migraine or motion sensitivity, or with headache or VVVD during exposure. Eleven subjects during exposure experienced ear popping, ear or mastoid area pressure, ear pain without infection, or a sensation that the eardrum was moving but not producing a sensation of sound (six males age 2–55 and five females age 19–57). The 2½-year-old (A3) pulled on his ears and got cranky repeatedly at the same time as his grandmother's (B2) exacerbations of headache, tinnitus, and ear pain. Correlations with tinnitus during exposure are described above. Five subjects experienced tickling, blowing, or undefined sensations in the external auditory canal, or increased wax production (two men age 42, 55, and three women age 52–75). Individual subjects noticed changes in their hearing or auditory processing. A 33-year-old woman (A2) had progressively worsening tinnitus during her five months of exposure. After she moved away, the tinnitus resolved and she noticed she had a new difficulty understanding conversation in a noisy room, now needing to watch the speaker's face carefully. Her son (A3, the $2\frac{1}{2}$ -year-old who pulled on his ears and got cranky, above) did not confuse sounds before exposure, but began to do so during exposure, and continued to do so at the time I interviewed his mother six weeks after the exposure ended. The child's language development was otherwise good. A 42-year-old woman (C2) had tinnitus throughout her 21-month exposure period without subjective hearing changes. After she moved and the tinnitus resolved, she noted hyperacusis. A 32-year-old woman (G2) experienced hyperacusis during exposure, but no tinnitus. The hyperacusis resolved after the family moved. Balance and equilibrium. Sixteen subjects (seven males age 19–64 and nine females age 12–64) experienced disturbance to their balance or sense of equilibrium during exposure, describing dizziness, light-headedness, unsteadiness, or spinning sensations. One of them, a 42-year-old woman (C2), described how a friend, sitting next to her in her turbine-exposed home, remarked how her (C2's) eyes appeared to be bouncing back and forth (nystagmus). Ten of these 16 subjects also experienced nausea during exposure to turbines, during or separate from dizziness. No children under the age of 12 had symptoms of dizziness, disequilibrium, or nausea during exposure, except for the usual nausea of acute gastrointestinal and other
infections. Risk factors for dizziness/disequilibrium in the presence of turbines were analyzed using subjects age 12 and up, since this was the youngest age child with this type of symptom. The subject with Parkinson's disease and dementia (E1) was excluded because his baseline balance problems and inability to express himself made it hard for his wife (the informant) to tell if he had worsened symptoms during exposure or not. The remaining sample was 27 subjects. Disequilibrium during exposure was significantly correlated with headaches during exposure ($\chi^2 = 5.08$, p = 0.024) and baseline motion sensitivity (χ^2 = 4.20, p = 0.040). Disequilibrium during exposure is weakly correlated with tinnitus during exposure ($\chi^2 = 3.70$, p = 0.054). (Inspection of the data shows that these are primarily ataxic (unsteady) subjects.) Dizziness/ disequilibrium during exposure was not correlated with VVVD or ear popping/pressure/pain during exposure, pre-existing migraine disorder, previous noise exposure, or prior tinnitus or hearing loss. Internal quivering, vibration, or pulsation. Eleven adult subjects described these uncomfortable, unfamiliar, and hard-to-explain sensations: • Dr. J (J1, age 49) described "internal quivering" as part of the "jittery feeling" he has when the turbines are turning fast. - Mrs. I (I2, age 52) said the noise inside her house is "low, pulsating, almost a vibration," not shut out by earplugs. She gets a sensation inside her chest like "pins and needles" and chest tightness on awakening at night to noise. "It affects my body—this is the feeling I get when I say I'm agitated or jittery. It's this that gives me pressure or ringing in my ears." "A feeling someone has invaded not only my health and my territory, but my body." - Mrs. H (H2, age 57) described a pulsation that prevented sleep from the "unnatural" noise from the turbines. - Mr. G (G1, age 35) described feeling disoriented and "very strange" in certain parts of the house where he could "feel rumbling." If he did not move quickly away from these locations, the feeling would progress to nausea. He described the noise as "at times very invasive. Train noise has a different quality, and is not invasive." - Mrs. G (G2, age 32) felt disoriented, "light-headed," dizzy, and nauseated in her garden and in specific parts of the house where she detected vibration. She felt her body vibrating "inside," but when she put her hand on walls, windows, or objects, they did not seem to be vibrating. - Mrs. F (F2, age 51) described a physical sensation of noise "like a heavy rock concert," saying the "hum makes you feel sick." - Mrs. E (E2, age 56), when supine, felt a "ticking" or "pulsing" in her chest in rhythm with the audible swish of the turbine blades. She interpreted this as her "heart synchronized to the rhythm of the blades," but there is no information (such as a pulse rate from the wrist at the same time) to determine whether this was true or not, or whether she detected a separate type of pulsation. Mrs. E could make these sensations go away by getting up and moving around, but they started again when she lay back down. - Mr. D (D1, age 64) felt pulsations when he lay down in bed. In addition, "When the turbines get into a particular position (facing me), I get real nervous, almost like tremors going through your body...it's more like a vibration from outside...your whole body feels it, as if something was vibrating me, like sitting in a vibrating chair but my body's not moving." This occurs day or night, but not if the turbines are facing "off to the side." - Mr. C (C1, age 45) felt pulsations in his chest that would induce him to hold his breath, fight the sensation in his chest, and not breathe "naturally." Chest pulsations interrupted his sleep and ability to read. He also described a sensation of "energy coming within me . . . like being cooked alive in a microwave." - Mrs. B (B2, age 53) described her breath being "short every once in a while, like [while] falling asleep, my breathing wanted to catch up with something." - Mr. B (B1, age 55) had two episodes of feeling weight on his chest while lying down, which resolved when he stood up. Other than this, he experienced the invasive quality of the noise in his head and ears: "That stuff [turbine noise] doesn't get out of your head, it gets in there and just sits there—it's horrible." Agitation, anxiety, alarm, irritability, nausea, tachycardia, and sleep disturbance are associated with internal vibration or pulsation: • Dr. J's (J1, age 49) "jittery" feeling includes being "real anxious," irritable, and "no fun to be around." He interrupts outdoor and family activities to sequester himself in his well-insulated house. When the turbine blades are spinning fast and he detects certain types of noise and vibration as he arrives home from work, he gets queasy and loses his appetite. He awakens from sleep with the "jittery" feeling and tachycardia, and may need to go downstairs to a cot in the 55-degree root cellar (the - only place on his property where he cannot hear or feel the turbines) to be able to fall back to sleep. He often takes deep breaths or sighs when in the "jittery" state. - Mrs. I (I2, age 52) describes episodic "queasiness and nausea" with loss of appetite, "trembling in arms, legs, fingers," "strong mental and physical agitation," and frequent unexpected crying. On noisy nights she awakens after four hours of sleep, weeping in the night. "When I wake up, [there is] more a feeling of pressure and tightness in my chest; it makes me panic and feel afraid." It is "a startling sort of waking up, a feeling there was something and I don't know what it was." Once she awoke thinking there had been an earth tremor (there had not), and twice she has awakened with tachycardia, the "feeling your heart is beating very fast and very loud, so I can feel the blood pumping." Feelings of panic keep her from going back to sleep. - Mrs. H (H2, age 57) awakens 5–6 times per night with a feeling of fear and a compulsion to check the house. She describes it as a "very disturbed sort of waking up, you jolt awake, like someone has broken a pane of glass to get into the house. You know what it is but you've got to check it—go open the front door—it's horrific." She finds it hard to fall back to sleep and describes herself as irritable and angry, shouting more at her family members. - Mr. G (G1, age 35) described the noise outside his home and the noise that awakened him at night as "stressful." - Mrs. G (G2, age 32) was, during exposure, irritable, angry, and worried about the future and her children. She awoke often at night because her children woke up, when she cared for their fears, mentioning none of her own. - Mrs. F (F2, age 51) described a "feeling of unease all the time." At night she startles awake with heart pounding, a feeling of fear, and a compulsion to check the house. The feeling of alarm keeps her from being able to go back to sleep. - Mrs. E (E2, age 56) did not express anxiety or fear, but she awakened repeatedly at night and was unable to get back to sleep on nights when the turbines were facing the house. - Mr. D (D1, age 64) described how he has to "calm down" from the "tremor." If outside, "I come in, sit down in my chair and try to calm myself down. After an episode like that, I'm real tired." Mood has worsened with increased anger, frustration, and aggression. Tachycardia accompanies the "tremor" at times: "My heart feels like it's starting to race like crazy and I have these tremors going through my body." Mr. D pants or hyperventilates when the tremor and tachycardia occur, and consciously slows his breathing when calming down. - Mr. C (C1, age 45) was unable to rest, relax, or recuperate in his home, where his body was "always in a state of defense." He had to drive away in his car to rest. - Mrs. B (B2, age 53) became "upset and in a turmoil" when her symptoms worsened, leaving her house and tasks repeatedly to get relief. - Mr. B (B1, age 55) described stress, "lots, pretty near more'n I could take, it just burnt me, the noise and run-around." He was prescribed an anxiolytic, and spent more time at the shore in his fishing boat for symptom relief. The internal quivering, vibration, or pulsation and the associated complex of agitation, anxiety, alarm, irritability, tachycardia, nausea, and sleep disturbance together make up what I refer to as *Visceral Vibratory Vestibular Disturbance* (VVVD). Fourteen adult subjects (six men age 35–64 and eight women age 32–75) had VVVD during exposure, including the eleven quoted above and Mr. F (F1, age 42), Mrs. F Senior (F4, age 75), and Mrs. C (C2, age 42). Mr. I (I1, age 59) had partial symptoms, with an urge to escape, noise-induced nausea, and sleep disturbance, but no feeling of internal movement. VVVD resolves immediately upon leaving the vicinity of the turbines, when the turbines are still and silent, and under favorable weather conditions at each locality. Because VVVD is in part a panic attack, accompanied by other physical and mental symptoms, I examined the relationships among VVVD and panic disorder, other mental health diagnoses, and other risk factors. The sample for this analysis was 21 adults ages 22 and above (since the study had no participants age 22–29, this is the same for this study as starting with the age group of the youngest symptomatic subjects, who were 32). No study subjects had pre-existing panic disorder or previous isolated episodes of panic, so there was no correlation between pre-existing panic and VVVD. Seven subjects had mental health disorders either at the time turbines started up near their homes (two subjects) or in the past (five subjects), including depression, anxiety, post-traumatic stress disorder (PTSD), and bipolar disorder. There was no correlation between current or past mental health disorder and VVVD ($\chi^2 = 0.429$, p = 0.513). There was, however, a highly
significant correlation between VVVD and motion sensitivity ($\chi^2 = 7.88$, p = 0.005). There was also a moderately significant correlation between VVVD and headaches during exposure ($\chi^2=4.95$, p = 0.026). There was no correlation between VVVD and dizziness or tinnitus during exposure, or between VVVD and pre-existing migraine, tinnitus, or hearing loss. Concentration and memory. Twenty of the 34 subjects age 4 and up (eleven males age 6–64 and nine females aged 5–56) had salient problems with concentration or memory during exposure to wind turbines, compared to pre- and/or post-exposure. This is a conservative count, including only subjects whose accounts included specific information on decline in school and homework performance (for children and teens) or details on loss of function for adults. Eight other subjects had some disturbance to concentration and memory, but symptoms were milder or the descriptions more vague (in their own or parents' accounts). Five other subjects, all older adults, noted no change compared to pre-existing memory problems. This leaves only one subject, a 19-year-old woman home from college and minimally exposed (B3), who did not have baseline deficits and was unaffected. Pre-exposure cognitive, educational, and work accomplishments, specific difficulties related to concentration and memory during exposure, and degree and timing of post-exposure recovery are documented in the CASE HISTORIES for each individual, under "Cognition." Difficulties are often striking compared to the subject's usual state of functioning: - Mr. A (A1, age 32), a professional fisherman with his own boat, who had an isolated difficulty with memory for names and faces prior to exposure, became routinely unable to remember what he meant to get when he arrived at a store, unless he had written it down. - Mrs. B (B2, age 53), a homemaker, got confused when she went to town for errands unless she had written down what she was going to do, and had to return home to get her list. When interviewed six weeks after moving, she reported that she had improved to being able to manage three things to do without a list. - Mr. C (C1, age 45) had to put reading aside because he could not concentrate whenever he felt pulsations. - Mrs. C (C2, age 42), a very organized mother of six who was "ready a month in advance for birthday parties" prior to exposure, became disorganized and had difficulty tracking multiple tasks at once, including while cooking, repeatedly boiling the water away from pots on the stove. She remarked, "I thought I was half losing my mind." - Mr. D (D1, age 64), a disabled, retired industrial engineer, noticed progressive slowing of memory recall speed and more difficulty remembering what he had read. - Mrs. E (E2, age 56), a retired teacher active in community affairs, could not spell, write emails, or keep her train of thought on the telephone when the turbine blades were turned towards the house, but was able to do these things when the blades were not facing the house. - Mrs. F (F2, age 51), a nurse, child development specialist, midwife, and master's level health administrator, could not follow recipes, the plots of TV shows, or furniture assembly instructions during exposure. - Mrs. G (G2, age 32), a well-organized mother of four, was forgetful, had to write everything down, could not concentrate, and could not get organized. She forgot a child's hearing test appointment. She did not have memory or concentration problems during a previous depression at age 18, and described her experience as "different this time." - Mr. I (I1, age 59), a professional gardener, could not concentrate on his outdoor gardening and building tasks if the turbines were noisy, saying "after half an hour you have to leave, escape, close the door." - Dr. J (J1, page 49), a physician, noticed marked concentration problems when he sat down to pay bills in a small home office with a window towards the turbines. Decline in school performance compared to pre-exposure, or marked improvement in school performance after moving away from turbines, was noted for 7 of the 10 study children and teens attending school (age 5–17; C7, F3, G3, G4, H3, J3, J4). For example: - A 17-year-old girl (F3), a diligent student, was not concerned about the turbines and thought her parents were overdoing their concern until she unexpectedly did worse on national exams than the previous year, surprising her school, family, and self. At this point she began accompanying her parents to their sleeping house. - A 9-year-old boy (C7), whose schoolwork was satisfactory without need for extra help prior to exposure, failed tests, lost his math skills, and forgot his math facts. He could not maintain his train of thought during homework, losing track of where he was if he looked up from a problem. - A 6-year-old boy (G3), described as an extremely focused child and advanced in reading prior to exposure, did not like to read during exposure. Two months post-exposure, now age 7, he would sit down to read on his own for an hour at a time, reading "quite a thick book" for his age. - His 5-year-old sister (G4) had a short attention span prior to exposure. Her hearing loss due to bilateral chronic serous otitis media was thought to be interfering with schoolwork during exposure, and she repeatedly had tantrums over schoolwork at home during the exposure period. Two months after moving, despite no change in her ears (on a waiting list for pressure equalization tubes), she was more patient and could work longer on homework. Her mother noted that her "schoolwork has improved massively." - An 8-year-old boy (H3) had an excellent memory and did well in reading, spelling, and math prior to exposure. During exposure he became resistant to doing homework, with tantrums, and his teacher told him he was not concentrating and needed to go to bed earlier. In comparing the 20 subjects with salient concentration or memory changes to the 14 who had no change from baseline or vague/ minimal difficulties, there are significant relationships with 1) baseline cognition, in that those without memory or concentration deficits at baseline are more likely to notice such deficits during exposure ($\chi^2 = 4.86$, p = 0.027), and 2) fatigue or loss of energy or enjoyment for usual activities during exposure ($\chi^2 = 5.61$, p = 0.018). There is no significant relationship between salient concentration or memory changes and pre-existing psychiatric diagnoses, migraine, motion sensitivity, or noise exposure, or between salient concentration or memory changes and headache, tinnitus, VVVD, or irritability during exposure. In addition to the statistical association between fatigue and concentration disturbance, a number of subjects directly attributed their concentration problems to their sleep deprivation or disturbance. Several aspects of the data, however, suggest that additional factors may be involved. First, one subject, Mrs. E (E2, age 56), could not do certain mental tasks requiring concentration when the turbines were turned towards her house, but could do them when the turbines were not turned towards the house. Mr. C (C1, age 45), Mr. I (I1, age 59), and Dr. J (J1, age 49) also had concentration problems closely linked in time and space to direct exposure to turbine noise. Second, some of the problems described by subjects, such as Mrs. F (F2, age 51) and the members of families A and B, are more extreme than I expect from sleep deprivation. The degree of thinking dysfunction involved in not being able to follow a recipe or assemble a piece of furniture, in a woman both highly educated and involved in several practical professions (nursing and farming), does not match my expectation of sleep deprivation from the experience, for example, of both younger and older physicians, who often function under sleep deprivation. Third, some subjects had concentration problems without obvious sleep problems. All four members of family J had concentration problems, but only Dr. J (J1, age 49) was sleep deprived. Mrs. J (J2, age 47) fell asleep easily and usually went back to sleep if awakened, but still had problems with memory and focus in her home activities that she had noticed and attempted to treat. Their 13-year-old son (J3) needed white noise or music to drown out turbine noise to fall asleep, but went to sleep promptly, slept through the night, and did not complain in the morning of being tired or having slept poorly. His school performance and his level of distractibility at home, however, were both markedly different than at baseline. The younger son, age 8 (J4), continued to sleep well, but still had a surprising decline in school performance, though milder and of shorter duration than his brother's. Fourth, the problems with concentration and memory resolve on a different schedule from the turbine-related sleep problems. Sleep problems resolve immediately except when accompanied by persistent depression (C1, F1). Problems with concentration and memory frequently took longer to improve, even in the absence of depression. To study resolution, we need to look at subjects who have moved away from their exposed homes or spent a prolonged period away that included work (families A, B, C, E, F, and G, and Mrs. I), since vacations do not provide the same challenges to concentration and memory. Of these 23 subjects over age 4, 13 had salient difficulties with concentration or memory: • Mr. A (A1, age 32) rated his memory as 85% at baseline, 2% during exposure, and 10% six weeks after moving away. - Mr. and Mrs. B (B1, B2, age 55 and 53) said their memories had partially recovered six weeks after moving. - Mr. C (C1, now age 47), with continuing depression and ongoing exposure for house maintenance, noted 25 months after moving how bad his memory seemed. - Mrs. C (C2, now age 44) felt she had recovered her memory and concentration 18 months after moving, despite ongoing stress
from crowded living arrangements. Her affected son (now age 11, C7) had not completely recovered his school performance. - Mrs. E (age 52) recovered immediately. She only experienced problems during exposure when the turbines were turned in a particular direction. - Mr. and Mrs. F (F1, F2, ages 42 and 51) had moved away but still worked at their turbine-exposed home and farm during the day. Three months after they moved, both thought their concentration had improved, but not to baseline. Mr. F, with ongoing depression, did not perceive any memory recovery. I do not have information about their daughter's (F3, age 17) exam performance after moving. - Mrs. G (G2, age 32) rated her memory as 10/10 at baseline, 2/10 during exposure, and 5/10 two months after moving away, at which point her depression was mostly resolved. Mrs. G's 5-year-old and 6-year-old children (G3, G4) showed marked improvements in concentration by two months after moving. Only three subjects were clearly depressed during or after exposure. Mrs. G (G2, age 32) was becoming depressed at the time of the first (during exposure) interview. She remarked on the difference in her cognitive functioning between her current experience and a previous episode of depression at age 18, when she had no problem with her memory or concentration. Two other subjects, Mr. C (C1, age 45) and Mr. F (F1, age 42), developed depression after they had to abandon their homes, which was associated with prolonged memory difficulties. Both also had ongoing exposure. Irritability and anger. Twenty-eight subjects (15 male age 2–64 and 13 female age 2–64) perceived themselves or were noted by parents to be more angry, irritable, easily frustrated, impatient, rude, defiant, or prone to outbursts or tantrums than at baseline. The adults were uniformly apologetic about their own irritability, and several described how careful they were to avoid acting irritable in their households. Four children (three boys age 8–9 and a girl age 5; C7, G3, H3, G4) were markedly frustrated over homework. The young children of family G quarreled and had tantrums incessantly, and the six children/young adults in family C became angry, prickly, moody, defiant, or prone to fights at school. In families with children, the breakdown in children's behavior, social coping skills, and school performance was one of the strongest elements propelling them to move. Fatigue and motivation. Twenty-one subjects felt or acted tired, and 24 had problems with motivation for usual, necessary, or formerly enjoyable activities (27 combined, 14 male age 2–64 and 13 female age 2–75). Like concentration and memory, these symptoms undoubtedly have a relationship with sleep deprivation, but certain subjects described leaden feelings around turbines that resolved as soon as they left the vicinity, such as Mr. A (A1, age 32), who said, "You feel different up there: draggy, worn out before you even start anything. . . . It was a chore to walk across the yard." After driving an hour away to visit a family member, "I felt better all over, like you could do a cart wheel," and he felt well after moving. When away from their turbine-exposed homes, most subjects recovered their baseline positive mood states, energy, and motivation immediately. Six adult subjects did not. These were Mr. B (B1, age 55), Mr. and Mrs. C (C1, C2, age 45 and 42), Mr. and Mrs. F (F1, F2, age 42 and 51), and Mrs. G (G2, age 32). By their own accounts, three (Mr. C, Mr. F, and Mrs. G) had unresolved or resolving depression. All but Mrs. G had ongoing anxiety and anger over abandoning their homes and their unresolved life situations. ### Other symptom clusters and isolated problems These symptoms and problems occurred in fewer subjects and typically require more than a medical history to diagnose. Several are exacerbations of pre-existing conditions with obvious connections to situations of high stress or stress hormone (epinephrine, cortisol) output (cardiac arrhythmias, hypertension, irritable bowel, gastroesophageal reflux, glucose instability). One is an extension of a core symptom (unusual migraine aura). Others may indicate different kinds of direct effects of noise on body tissues, as in the vibroacoustic disease model of noise effects (respiratory infections, asthma, clotting abnormalities),³¹ or other types of secondary effects (asthma).³² Respiratory infection/inflammation cluster. Seven subjects had unusual or prolonged lower respiratory infections during exposure (A2, B1, C2, E2, F1, F3, F4), and two of these also had prolonged asthma exacerbations (F1, F3). These two, however, were also taking a lot of paracetamol (acetaminophen) for their turbine-associated headaches. Four subjects had unusually severe or prolonged middle ear problems (C7, F2, G3, G4). ³¹ Castelo Branco and Alves-Pereira 2004. ³² Beasley R, Clayton T, Crane J, von Mutius E, Lai CK, Montefort S, Stewart A; ISAAC Phase Three Study Group. 2008. Association between paracetamol use in infancy and childhood, and the risk of asthma, rhinoconjunctivitis, and eczema in children aged 6–7 years: analysis from Phase Three of the ISAAC programme. Lancet 372(9643): 1039–48. Cardiovascular cluster. Two subjects had exacerbations of preexisting dysrhythmias (F1, J2). Two women had hypertension that increased during and after the exposure period, requiring medication after the end of exposure. Both still had considerable stress related to moving out and not being able to establish another regular home, and depressed husbands (C2, F2). Gastrointestinal cluster. Four subjects had exacerbations of preexisting gastroesophageal reflux (GER), ulcer, or irritable bowel, two with irritable bowel and upper gastrointestinal symptoms at the same time (D1, F1, F2, J2). Arthralgia/myalgia cluster. One healthy 32-year-old woman (G2) noted pain in one elbow while in her exposed house. It resolved when she went away for vacations with her family, and recurred when she returned. It resolved quickly when the family moved away, even though she did lots of lifting during the move. A 57-year-old woman (H2) with lupus arthritis and fibromyalgia at baseline experienced painful exacerbations whenever she returned home, with return to baseline when away. A 56-year-old woman (E2) with fibromyalgia at baseline had exacerbations which resolved during times away from her exposed home and after moving. *Diabetes control.* A 56-year-old man with Type II diabetes (E1), stable on oral medications and insulin before exposure, had marked glucose instability accompanied by visual blurring, retinal changes, and polyuria during exposure. Anticoagulation. A 75-year-old woman with atrial fibrillation (F4) had stable INR values on 2–4 mcg warfarin daily for 10 years. By 16 months of exposure, her warfarin dose had been increased to 8–9 mcg daily in response to decreasing INR values. Ocular cluster. Three subjects exposed to the same turbines (two men age 32–55 and one woman age 53; A1, B1, B2) had ocular pain, pressure, and/or burning synchronously with headache and tinnitus. Mr. D (D1, age 64) had a painless retinal stroke, losing half the vision in his left eye. Mr. D had a normal CT scan of the brain and was examined by an ophthalmologist. Complex migraine phenomena. A 19-year-old fisherman (C4) with migraine at baseline had complex visual symptoms with flashes in square patterns in one eye at a time (scintillating scotoma), evolving to blurring and visual loss for 30 seconds to 2 minutes, also in one eye at a time (amaurosis fugax), right more than left, repetitively during the last month of his 15–21 month exposure until 8–12 months after exposure ended, with a decrease in frequency by 7 months after moving out. These events happened at any time of day and rarely overlapped with headaches or tinnitus. He had normal ophthalmologic exams, normal MRI and MRA scans of the brain and associated arteries, and a normal evaluation for clotting abnormalities and vasculitis. The events resolved completely with normal vision. The same man experienced repetitive complex basilar migraines with aura after the first few months of his 15-21 month turbine exposure, involving daily bilateral paresis and paresthesias of his legs and occasional headache, tinnitus, and light-headedness. The leg symptoms resolved on the same schedule as the eye symptoms, though headaches and nausea continue to be triggered regularly by seasickness. ### Discussion The core symptoms of Wind Turbine Syndrome are sleep disturbance, headache, tinnitus, other ear and hearing sensations, disturbances to balance and equilibrium, nausea, anxiety, irritability, energy loss, motivation loss, disturbances to memory and concentration, and *Visceral Vibratory Vestibular Disturbance* (VVVD). Core symptoms are defined as common and widely described by study participants, closely linked in time and space to turbine exposure, and amenable to diagnosis by medical history. The latter was a particular requirement of this study. The subjects of this study had other types of health problems during exposure, discussed in "Other symptom clusters and isolated problems," but different types of study will be needed to find out if there is a link between these problems and wind turbine exposure. The most distinctive feature of Wind Turbine Syndrome is the group of symptoms I call Visceral Vibratory Vestibular Disturbance. The adults who experience this describe a feeling of internal pulsation, quivering, or jitteriness, accompanied by nervousness, anxiety, fear, a compulsion to flee or check the environment for safety, nausea, chest tightness, and tachycardia. The symptoms arise day or night, interrupting daytime activities and concentration, and interrupting sleep. Wakefulness is prolonged after this type of awakening. Subjects observe that their symptoms occur in association with specific types of turbine function: the turbines turned directly towards or away from them, running particularly
fast, or making certain types of noise. The symptoms create aversive reactions to bedroom and house. Subjects tend to be irritable and frustrated, especially over the loss of their ability to rest and be revitalized at home. Subjects with VVVD are also prone to queasiness and loss of appetite even when the full set of symptoms is not present. There is no statistical association in this study between VVVD and pre-existing panic episodes (which occurred in none of the subjects) or other mental health disorders, such as depression, anxiety, bipolar disorder, or post-traumatic stress disorder. There is a highly significant association between VVVD and pre-existing motion sensitivity (p = 0.005). Headaches more frequent or severe than at baseline occurred in all migraineurs in the study, and all children with headaches in the study were migraineurs or the children of migraineurs. Non-migrainous adults also got severe headaches around turbines, and indeed about half the people with headache worse than baseline (9 out of 19) were adults without history of migraine. Pre-exposure migraine is a significant risk factor for more severe or frequent headaches during turbine exposure (p = 0.004), but does not account for all the cases of headache. Tinnitus occurred as a migraine aura in three subjects, but statistically in the study group tinnitus was not significantly associated with pre-existing migraine disorder, but rather with sensations of ear popping, pressure, or pain during exposure (p = 0.008), previous industrial noise exposure (p = 0.013), past history of tinnitus (p = 0.017), baseline permanent hearing impairment (p = 0.040), and (weakly) with dizziness/disequilibrium during exposure (p = 0.058). Like the other core symptoms, tinnitus resolved or returned to baseline when subjects were away from turbines. Previous noise exposure, past tinnitus, and baseline hearing impairment all suggest prior damage to the cochlea as a risk factor. The co-occurring symptoms of ear popping, pressure, and pain during exposure suggest that tinnitus may be caused near turbines by transient alterations in inner-ear fluid pressures (perilymph or endolymph). The weak correlation between tinnitus and dizziness/disequilibrium suggests that the proposed pressure shift may concurrently affect vestibular organ function. # Visceral Vibratory Vestibular Disturbance (VVVD) The work of Mittelstaedt on visceral detectors of gravity, 33,34 and ³³ Mittelstaedt H. 1996. Somatic graviception. Biol Psychol 42(1-2): 53-74. $^{^{34}}$ Mittelstaedt H. 1999. The role of the otoliths in perception of the vertical and in path integration. Ann N Y Acad Sci 871: 334–44. Balaban and others on balance-anxiety linkages,^{35–39} opens a window on the VVVD symptom set. Balaban, a neuroscientist, has localized and described the neural connections among the vestibular organs of the inner ear, brain nuclei involved with balance processing, autonomic and somatic sensory inflow and outflow, the fear and anxiety associated with vertigo or a sudden feeling of postural instability, and aversive learning.⁴⁰ These form a coordinated, neurologically integrated system based in the parabrachial nucleus of the brainstem and an associated neural network.^{41,42} Several aspects of this system need to be considered here. First, there appear to be not three but four body systems for regulating balance, upright posture, and the sense of position and motion in space. ^{43,44} The first three systems are the eyes, the semicircular canals and otolith organs of the inner ear (vestibular organs), and somatic input from skin, skeletal muscles, tendons, ³⁵ Balaban CD, Yates BJ. 2004. The vestibuloautonomic interactions: a teleologic perspective. Chapter 7 in *The Vestibular System*, ed. Highstein SM, Fay RR, Popper AN, pp. 286–342. Springer-Verlag, New York. ³⁶ Balaban CD. 2002. Neural substrates linking balance control and anxiety. Physiology and Behavior 77: 469–75. ³⁷ Furman JM, Balaban CD, Jacob RG. 2001. Interface between vestibular dysfunction and anxiety: more than just psychogenicity. Otol Neurotol 22(3): 426–27. ³⁸ Balaban CD. 2004. Projections from the parabrachial nucleus to the vestibular nuclei: potential substrates for autonomic and limbic influences on vestibular responses. Brain Res 996: 126–37. ³⁹ Halberstadt A, Balaban CD. 2003. Organization of projections from the raphe nuclei to the vestibular nuclei in rats. Neuroscience 120(2): 573–94. ⁴⁰ Balaban and Yates 2004. ⁴¹ Balaban CD, Thayer JF. 2001. Neurological bases for balance-anxiety links. J Anx Disord 15: 53–79. ⁴² Balaban 2002. ⁴³ Mittelstaedt 1996. ⁴⁴ Mittelstaedt 1999. and joints (somatosensory system). The fourth system is visceral detection of gravity, upright position, and acceleration (meaning change in speed or direction of movement) by visceral graviceptors. These include stretch receptors in mesenteries or other connective tissue supporting organs or great vessels, and integrated systems of pressure detection in vessels and organs. 45 Such receptors have been localized to the kidneys and to the great vessels or their supporting structures in the mediastinum.⁴⁶ Mittelstaedt shows (by clever calculation and experimentation with people positioned in various ways on spinning centrifuge tables in the dark) that the visceral graviceptors control about 60% of our perception of position relative to gravity (meaning our sense of whether we are vertical or horizontal, or somewhere in between), compared to a 40% contribution made by the otolith organs.⁴⁷ Von Gierke (an older dean of vibration studies for the US space program) considers an inter-modality sensory conflict related to phase differences between the abdominal visceral graviceptors and the otolith organs to be a possible cause of motion sickness.⁴⁸ The second critical element is central processing: how sensory information about motion and position is integrated by the brain, what other brain centers are activated, and what kinds of signals the brain then sends back to the body. Balaban and colleagues describe how the parabrachial nucleus network receives motion and position information from visual, vestibular (inner ear), somatosensory, and visceral sensory input, and is linked to brain ⁴⁵ Balaban and Yates 2004. $^{^{46}}$ Vaitl D, Mittelstaedt H, Baisch F. 2002. Shifts in blood volume alter the perception of posture: further evidence for somatic graviception. Int J Psychophysiol 44(1): 1–11. ⁴⁷ Mittelstaedt 1999. ⁴⁸ von Gierke HE, Parker DE. 1994. Differences in otolith and abdominal viscera graviceptor dynamics: implications for motion sickness and perceived body position. Aviat Space Environ Med 65(8): 747–51. centers and circuits that mediate anxiety and fear, including the amygdala (a key mediator of fear reactions) and serotonin and norepinephrine-bearing neurons radiating from the midbrain. $^{49-51}$ Meaning that our sense of balance and stability in space is closely connected—neurologically—to fear and anxiety. Balaban illustrates with a story. He asks the reader to visualize waiting in traffic on a hill for a light to turn. Out of the corner of your eye you see the truck next to you starting to inch forward, and you jam your foot on the brake, since your sensory system has told you that you are starting to slip backwards. There's a bit of panic in that moment, quickly settled as you realize you are indeed stable in space and not moving. The story illustrates how a sensation of unexpected movement elicits alerting and fear. When the sense of movement is ongoing and cannot be integrated with the evidence of the other senses, as happens in vertigo, there is a more prolonged fear reaction. In fact, as Balaban shows, the association of fear with vertigo has been known since ancient times.⁵² The third critical element is integrated neurologic outflow to the body from the parabrachial nucleus network to both the somatic (conscious, voluntary) and visceral (autonomic) effector systems. The somatic musculature is responsible for that fast foot on the brake, for righting movements of limbs, torso, and neck, and for breathing motions of the diaphragm and chest wall. The autonomic system is responsible for blood flow, heart rate, blood pressure, sweating, nausea, and other automatic, non-conscious modifications to visceral functioning. In a fear response, there is integrated outflow to these two systems—the somatic and visceral/ ⁴⁹ Balaban and Thayer 2001. ⁵⁰ Balaban 2002. ⁵¹ Halberstadt and Balaban 2003. ⁵² Balaban and Thayer 2001. autonomic. Experimental work with animals shows that vestibular signaling has profound effects on autonomic regulation of body temperature, heart rate, vascular resistance, and circadian rhythms of activity and hormone secretion. These effects extend to humans. Vestibular stimulation by passive linear acceleration causes blood pressure and heart rate increases, with diminished responses in people with reduced vestibular function. 55 The parabrachial nucleus network is also involved in aversive learning, 56 an experience in which nausea, if present, plays a dominant role, 57 In VVVD, subjects detect unusual types of movement (pulsation, internal vibration, internal quivering) or other sensations (pressure, a sense of fighting something to breathe, pins and needles) in the chest or in the coordinated chest-abdominal internal space. The chest and abdomen are separated and unified by the diaphragm, which, as a striated somatic muscle, has fine-grained sensitivity to motion and stretch. The diaphragm sends signals to the brain which are specific and localizable in time and space, as opposed to visceral receptors, which send signals that are vague, like discomfort, malaise, fullness, or nausea. The diaphragm is tightly ⁵³ Murakami DM, Erkman L, Hermanson O, Rosenfeld MG, Fuller CA. 2002. Evidence for vestibular regulation of autonomic functions in a mouse genetic model. Proc Natl Acad Sci USA 99(26): 17078–82. ⁵⁴ Wilson TD, Cotter
LA, Draper JA, Misra SP, Rice CD, Cass SP, Yates BJ. 2006. Vestibular inputs elicit patterned changes in limb blood flow in conscious cats. J Physiol 575(2): 671–84. ⁵⁵ Yates BJ, Aoki M, Burchill P, Bronstein AM. 1999. Cardiovascular responses elicited by linear acceleration in humans. Exp Brain Res 125: 476–84. ⁵⁶ Balaban and Thayer 2001. ⁵⁷ Garcia J, Ervin FR. 1968. Gustatory-visceral and telereceptor-cutaneous conditioning: adaptation in internal and external milieus. Commun Behav Biol 1: 389–415. bound to one of the largest abdominal organs, the liver, and they move as a unit during breathing. The chest, via the mouth, nose, trachea, smaller airways, and air sacs of the lungs, is open to the air. Pressure fluctuations in the air (sound waves) have free access to this airspace within the body when we breathe. Pressure fluctuations in the air also have access to the ear, which is designed to funnel them to the tympanic membrane, which concentrates their energy and transmits it to the inner ear. The ear and the chest are different size spaces with walls of different mobility and elasticity. Hence they respond differently to air pressure fluctuations (sound waves) of different sizes. Studies of whole-body vibration focus on the easily mobile diaphragm and coupled abdominal organs. Being mobile, with the air of the lungs on one side and the soft abdominal wall on the other, this thoraco-abdominal system is easily set in motion by lower energy (amplitude) vibrations than are required to perturb other parts of the body.⁵⁸ Each part of the body has its own resonance frequency with regard to vibration. When an object is vibrated at its resonance frequency, the vibration is amplified. The resonant frequency of the thoraco-abdominal system, as it moves vertically towards and away from the lungs, lies between 4 and 8 Hz for adult humans.⁵⁹ Vibrations between 4 and 6 Hz set up resonances in the trunk with amplification up to 200%.⁶⁰ Related chest and abdominal effects are found in the same frequency range. Vibrations in the 4–8 Hz range influence breathing movements, 5–7 Hz can cause chest pains, 4–10 Hz abdominal pains, and 4–9 ⁵⁸ Coermann RR, Ziegenruecker GH, Wittwer AL, von Gierke HE. 1960. The passive dynamic mechanical properties of the human thorax-abdominal system and of the whole body system. Aerosp Med 31(6): 443–55. ⁵⁹ von Gierke and Parker 1994. ⁶⁰ Hedge 2007. Hz a general feeling of discomfort. 61 In small children under 40 pounds, the vertical resonance or power absorption peaks at 7.5 Hz, as opposed to 4–5 Hz for adults. 62 Low frequency noise can cause the human body to vibrate, as quantified by researchers in Japan.⁶³ The degree to which the body surface is induced to vibrate by low frequency noise is correlated with subjective unpleasantness (a sensation suggesting visceral as well as surface/somatic stimulation by the noise).⁶⁴ With this background, I propose the following mechanism for VVVD. Air pressure fluctuations in the range of 4-8 Hz, which may be harmonics of the turbine blade-passing frequency, may resonate (amplify) in the chest and be felt as vibrations or quivering of the diaphragm with its attached abdominal organ mass (liver). Slower air pressure fluctuations, which could be the blade-passing frequencies themselves or a low harmonic (1–2 Hz), would be felt as pulsations, as opposed to the faster vibrations or quivering. (The vibrations or pressure fluctuations may also be occurring at different frequencies, without this particular resonance amplification.) The pressure fluctuations in the chest could disturb visceral receptors, such as large vessel or pulmonary baroreceptors or mediastinal stretch receptors which function as visceral graviceptors. These aberrant signals from the visceral graviceptors, not concordant with signals from the other parts of the motion-detecting system, have the potential to activate ⁶¹ Rasmussen 1982. $^{^{62}\,\}mathrm{Giacomin}$ J. 2005. Absorbed power of small children. Clin Biomech 20(4): 372–80. ⁶³ Takahashi Y, Yonekawa Y, Kanada K, Maeda S. 1999. A pilot study on the human body vibration induced by low-frequency noise. Ind Health 37: 28–35. ⁶⁴ Takahashi Y, Kanada K, Yonekawa Y, Harada N. 2005. A study on the relationship between subjective unpleasantness and body surface vibrations induced by high-level low-frequency pure tones. Ind Health 43: 580–87, p. 580. the integrated neural networks that link motion detection with somatic and autonomic outflow, emotional fear responses, and aversive learning. The people who are susceptible to responding in this way are those who in the past have become nauseated in response to other vertically oriented, anomalous environmental movements (seasickness or carsickness). Thus panic episodes with autonomic symptoms such as tachycardia and nausea arise during wakefulness or sleep in people with pre-existing motion sensitivity but without prior history of panic, anxiety, or other mental health disorders. Repeated triggering of these symptoms creates aversive learning, wherein the person begins to feel horror and dread of things associated with the physical sensations, such as his bedroom or house where he previously found comfort and regeneration. VVVD was identified in the study in 14 out of 21 adult subjects. The behavior and experiences of other subjects, especially children, could be interpreted as partial manifestations of the same problem. For example, the two toddlers in the study, both age $2\frac{1}{2}$ (A3, G5), had night terrors. They awoke screaming multiple times per night, and were inconsolable and difficult to get back to sleep. The little girl (G5) would fight her mother, grabbing onto the posts of the bunk bed, to avoid going back into her own bed after awakening in this state. This shows clear parallels with the fear responses, prolonged awake periods, and aversive responses of the adults with VVVD. Both toddlers were agitated and irritable in the daytime, also similar to the adults in the study. Both 5-year-olds in the study, a boy and a girl (C7, G4), also frequently woke up fearful at night. # Perturbing the inner ear I propose that disrupted stimulation of other channels of the balance system, especially the inner-ear vestibular organs, is also likely to play a role in Wind Turbine Syndrome. Altogether, in subjects with or without VVVD, the Wind Turbine Syndrome core symptoms resemble the symptoms of a balance or vestibular disorder, meaning malfunctioning of the inner-ear motiondetecting organs (peripheral vestibular dysfunction) or of brain processing of balance-related neural signals (central balance dysfunction). These symptoms may arise near wind turbines due to abnormal stimulation of the classical balance pathways (visual, vestibular, and somatosensory), perhaps in an additive fashion if several pathways are disturbed simultaneously. A clinical rule of thumb is that two of the three classical balance channels have to be working and producing coherent information (with agreement among channels) for a person to keep his or her balance. (How this clinical rule will incorporate the new fourth channel of balance information is yet to be seen. It may be that the sensory integrative process is actually broader, taking into account the amounts and quality of information coming from each channel, not just whether a channel is active.) The three classical pathways are 1) vision, which includes a) seeing one's orientation relative to objects and the orientation of objects relative to gravity, b) movement of images across the retina, called "retinal slip," and c) parallax or distance detection; 2) somatosensory, which involves stretch signals from muscles, tendons, and joints, and touch sensations from the skin; and 3) signals from the inner-ear vestibular organs. The vestibular organs are 1) the semicircular canals, which detect angular acceleration during rotation of the head in any of three planes, and 2) the otolith organs (utricle and saccule), which detect gravity, tilt (static or moving), and linear accelerations by virtue of microscopic calcium carbonate crystals (otoconia) positioned in a protein matrix over the sensing hair cells. In the utricle, the patch of hair cells plus otoconia (called the macula) is oriented horizontally and is sensitive to tilts and (in upright people) to the horizontal component of linear accelerations. In the saccule, the macula is vertical, sensitive to tilts and to the vertical component of linear accelerations (including gravity) in upright people. The inner-ear or labyrinthine organs are delicate, membranous, interconnected structures with fluid inside (endolymph) and outside (perilymph), suspended in tiny canals and chambers through solid temporal bone at the base of the skull. The vertically oriented macula of the saccule is firmly bound to temporal bone over its entire area, but the horizontally oriented macula of the utricle has been recently found to be attached to temporal bone only at its anterior end,⁶⁵ a property that gives it an additional degree of freedom that may influence its tuning or resonance with regard to vibration.⁶⁶ Hair cells, which send neural signals when mechanically perturbed, are also present in specific parts of the semicircular canals and the cochlea, which is the spiral-shaped hearing organ. In the current study, two subjects (C2, E2) were sensitive to the visual pathway with regard to triggering of symptoms. They developed severe headaches when exposed to the moving shadows of turbine blades. One (C2) had known migraine and was prone to vertigo. The other (E2) had fibromyalgia and a history of two pre-exposure episodes of vertigo. Fibromyalgia, a syndrome of chronic, diffuse pain of central origin,⁶⁷ is frequently accompanied by vertigo and dizziness.⁶⁸ ⁶⁵ Uzun-Coruhlu H, Curthoys IS, Jones AS. 2007. Attachment of the utricular and saccular maculae to the temporal bone. Hear Res 233(1–2): 77–85. ⁶⁶ Todd NP, Rosengren SM, Colebatch
JG. 2009. A utricular origin of frequency tuning to low-frequency vibration in the human vestibular system? Neurosci Lett 451(3): 175–80. ⁶⁷ Staud R, Cannon RC, Mauderli AP, Robinson ME, Price DD, Vierck CJ Jr. 2003. Temporal summation of pain from mechanical stimulation of muscle tissue in normal controls and subjects with fibromyalgia syndrome. Pain 102: 87–95. ⁶⁸ Rosenhall U, Johansson G, Orndahl G. 1996. Otoneurologic and audiologic findings in fibromyalgia. Scand J Rehabil Med 28(4): 225–32. In this study, 72% of 168 fibromyalgia patients had dizziness or vertigo, most with abnormalities on otoneurologic testing. Two subjects (C2, J2) noticed vibrations in their lower legs at certain locations on their properties, which opens the possibility of disruption of the somatosensory channel.⁶⁹ An audiologist detected vibration in the floor of an affected room in the C family's house, becoming nauseated when he put his forehead against it, an effect he interpreted as stimulation of the vestibular organs by bone conduction.⁷⁰ I suspect that the inner-ear vestibular organs—and the cochlea are abnormally stimulated in Wind Turbine Syndrome, especially in subjects who have marked ear symptoms such as tinnitus (including the sensation of noise inside the head) and ear pressure, popping, or pain. Families A and B, exposed to the same set of turbines, showed this pattern of symptoms especially strongly. All four adults (A1, A2, B1, B2) also had unsteadiness on their feet without accompanying vertigo or history of migraine, vertigo, prior unsteadiness, or neurologic disease. Unsteady gait, or ataxia, is generally associated with cerebellar dysfunction, but can also indicate otolith dysfunction.⁷¹ (Vestibular nuclei in the brainstem are richly interconnected with the cerebellum.)⁷² Other subjects (C2, G1, J1) had vertigo during exposure (C2 also had observed nystagmus), suggesting that disordered signals were reaching the vestibulo-ocular reflex arc from the semicircular canals or otolith organs. ⁶⁹ Hanes DA, McCollum G. 2006. Cognitive-vestibular interactions: a review of patient difficulties and possible mechanisms. J Vestib Res 16(3): 75–91. Vibration of calf muscles is a method sometimes used in balance studies to simulate somatosensory disturbance, p. 77. $^{^{70}}$ Noise report prepared for family C, May 2006. $^{^{71}}$ Schlindwein P, Mueller M, Bauermann T, Brandt T, Stoeter P, Dieterich M. 2008. Cortical representation of saccular vestibular stimulation: VEMPs in fMRI. Neuroimage 39: 19–31. ⁷² Colebatch JG, Halmagyi GM, Skuse NF. 1994. Myogenic potentials generated by a click-evoked vestibulocollic reflex. J Neurol Neurosurg Psychiatry 57(2): 190–97. In Wind Turbine Syndrome, I hypothesize that low frequency noise or vibration impinges on the delicately mobile labyrinthine organs, but not in a way that stimulates the cochlea to a coherent representation of sound. Instead, the low frequency noise or vibration, I suggest, may stimulate various parts of the labyrinth in a disorganized fashion, experienced as tinnitus from the cochlea, a distorted sense of vertical from the otolith organs, or illusory self-motion from the otolith organs or semicircular canals. The dominant sensory impression may depend on 1) the frequencies and intensities of low frequency noise and vibration coming from the turbines, 2) whether the noise or vibration arrives at the ear through the air and outer/middle ear or is bone-conducted, and 3) the susceptibilities and prior histories of the subjects, such as migraine with its tendency towards vertigo, prior damage to the cochlea, or other conditions or anomalies of the inner ear.⁷³ The statistical correlation in the current study between tinnitus and ear popping, pressure, or pain during exposure suggests a refinement to this mechanism: altered fluid pressure relationships in the inner ear may distort cochlear mechanics during exposure and cause tinnitus, and distort utricular and saccular mechanics to create instability or ataxia and other second-order vestibular symptoms. Low frequency noise, in fact, is known to distort endolymphatic pressure and volume after just short exposures to loud but not ⁷³ For example, dehiscence of the superior semicircular canal, in which alterations in inner-ear pressure relationships due to a "third window" effect (from an abnormal hole in the bone between the superior semicircular canal and the cranial cavity) cause conductive hearing loss, increased sensitivity to bone-conducted sound or vibration, and the tendency to become unbalanced by sounds (Tullio effect). Dislocation of the stapes footplate, labyrinthine fistulas, and endolymphatic hydrops can also underlie the Tullio phenomenon. (See Colebatch JG, Day BL, Bronstein AM, Davies RA, Gresty MA, Luxon LM, Rothwell JC. 1998. Vestibular hypersensitivity to clicks is characteristic of the Tullio phenomenon. J Neurol Neurosurg Psychiatry 65: 670–78.) damaging low frequency tones.⁷⁴ This temporary effect is associated with hyperacusis, a distortion of hearing function in which sounds are perceived as louder.⁷⁵ One subject in the current study, G2, had hyperacusis while living near turbines, and another (C2) noticed hyperacusis after her tinnitus resolved, after she moved away from the turbines. Tinnitus may also be associated with increased perilymphatic and intracranial pressure in the presence of an open cochlear aqueduct, which provides a direct channel linking these two fluid spaces.⁷⁶ There is both animal and human precedent for thinking that certain types of environmental noise or vibration may stimulate the otolith organs and cause disturbance to motion and position sense. Vestibular organ structures have been conserved during evolution, meaning they are rather similar in fish, amphibians, and other vertebrate taxa, including humans. All the vertebrates have semicircular canals and otolith organs. Like us, fish use their otolith organs (utricle, saccule, and an extra one, the lagena) to sense linear accelerations and tilt relative to gravity, but these organs in "non-specialist" fish species (such as cod) are also the fishes' auditory organs. The otolith organs in these fish are highly sensitive to nearby perturbations in the water ("near-field sound")⁷⁷ with peak sensitivities in the low frequency range between 40 and 120 Hz.⁷⁸ Atlantic cod otolith organs are so sensitive to $^{^{74}}$ Salt AN. 2004. Acute endolymphatic hydrops generated by exposure of the ear to nontraumatic low-frequency tones. J Assoc Res Otolaryngol 5(2): 203-14. ⁷⁵ Salt 2004. $^{^{76}}$ Reid A, Cottingham CA, Marchbanks RJ. 1993. The prevalence of perilymphatic hypertension in subjects with tinnitus: a pilot study. Scand Audiol 22: 61–63. ⁷⁷ Sand O, Karlsen HE, Knudsen FR. 2008. Comment on "Silent research vessels are not quiet" [J Acoust Soc Am 2007; 121(4): EL145–50]. J Acoust Soc Am 123(4): 1831–33. ⁷⁸ Fay RR, Simmons AM. 1999. The sense of hearing in fishes and amphibians. In *Comparative Hearing: Fish and Amphibians*, ed. Fay RR, Popper AN, pp. 269–317. Springer-Verlag, New York. infrasound in water (at 0.1 Hz, or one wave every 10 seconds) that the fish may be able to use seismic sounds from the Mid-Atlantic Ridge or the sounds of waves breaking on distant shores, or even more complex mechanisms, to guide them during migration.^{79,80} Directional infrasound detection plays a role in predator avoidance behaviors.⁸¹ In humans, there is a substantial body of experimental evidence showing that both air-conducted sound and bone-conducted sound (vibration) stimulate the otolith organs and cause measurable impacts on vestibular reflexes, independent of their stimulation of the cochlea. Air-borne sound in the form of loud clicks or short tone bursts induces inhibitory neural signals in the sternocleidomastoid muscles in the anterior neck. Called the *vestibular evoked myogenic potential* (VEMP), this is an extremely fast or "short-latency" neural response that is part of the vestibulocollic reflex. Bone-conducted sound or vibration is more efficient than air-conducted clicks or tones at stimulating the otolith organs: both the absolute decibel levels and decibels above hearing threshold needed to produce the VEMP response are lower for bone-conducted sound. Sa Studies of both the VEMP and—a second measure of vestibular function—the *ocular vestibular evoked myogenic potential* (OVEMP) show that the tuning (best frequency response) for both ⁷⁹ Sand O, Karlsen HE. 1986. Detection of infrasound by the Atlantic cod. J Exp Biol 125: 197–204. ⁸⁰ Sand O, Karlsen HE. 2000. Detection of infrasound and linear acceleration in fishes. Phil Trans R Soc Lond B 355: 1295–98. ⁸¹ Karlsen HE, Piddington RW, Enger PS, Sand O. 2004. Infrasound initiates directional fast-start escape responses in juvenile roach Rutilus rutilus. J Exp Biol 207(Pt 24): 4185–93. ⁸² Colebatch et al. 1994. ⁸³ Welgampola MS, Rosengren SM, Halmagyi GM, Colebatch JG. 2003. Vestibular activation by bone conducted sound. J Neurol Neurosurg Psychiatry 74: 711–18. VEMP and OVEMP for air-conducted sound lies between 400 and 800 Hz.⁸⁴ Whereas with bone-conducted sound (vibration), the best frequency response for both VEMP and OVEMP is at 100 Hz. Modeling of the frequency tuning and other aspects of the response, such as laterality, phase differences, and gain, suggests that the air-conducted peak comes from the rigidly attached saccule, whereas the bone-conducted or vibratory peak derives from the more mobile utricle.⁸⁵ A particular type of vestibular hair cell, Type I cells, is thought to be involved in the utricular response and accounts for the marked sensitivity of the OVEMP response to vibration, since these cells typically produce a strong neural vestibular signal in response to a low degree of mechanical disturbance.^{86,87} Most exciting, Todd et al. provide direct experimental evidence that at the 100 Hz tuning peak, the vestibular organs (probably utricle, as above) of
normal humans are *much more sensitive than the cochlea* to low frequency bone-conducted sound/vibration.⁸⁸ The researchers applied vibration directly to the skin over the bony mastoid prominence behind the subjects' ears, adjusting the power by measuring the tiny whole-head acceleration produced by each vibration force and frequency. They were able to elicit and measure neural signals of the vestibulo-ocular reflex (OVEMP, as above) at vibration intensities 15 dB below the subjects' hearing thresholds. In other words, the amount of vibration/bone-conducted sound was so small that the subjects could not hear it, yet the vestibular parts of their inner ears still responded to the vibration and ⁸⁴ Todd et al. 2009. ⁸⁵ Todd et al. 2009. ⁸⁶ Todd et al. 2009. ⁸⁷ Curthoys IS, Kim J, McPhedran SK, Camp AJ. 2006. Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig. Exp Brain Res 175(2): 256–67. ⁸⁸ Todd et al. 2008. transmitted signals into the balance and motion networks in the brain, resulting in specific types of eye muscle activation. Since dB is a base 10 logarithmic measure, $15\ dB\ below$ means a signal 0.0316 ($10^{-1.5}$), or about 3%, of the power or amplitude of the signal these normal subjects could hear. The researchers note that "the very low thresholds we found are remarkable as they suggest that humans possess a frog- or fish-like sensory mechanism which appears to exceed the cochlea for detection of substrate-borne low-frequency vibration and which until now has not been properly recognized."⁸⁹ Thus the potential exists, in normal humans, for stimulation of balance signals from the inner ear by low frequency noise and vibration, even when the noise or vibration does not seem especially loud, or even cannot be heard. In the presence of pre-existing inner-ear pathology, thresholds for vestibular stimulation by noise or vibration are even lower than in normal subjects.⁹⁰ ### Central balance processing When there is conflict in neurologically normal people among the signals coming from the different balance channels, the brain areas that integrate the information quickly compensate by suppressing or down-weighting information from the anomalous channel⁹¹—information that does not match what is coming from the other channels. On functional brain scans, vestibular and visual cortical areas show a pattern of inverse activation and deactivation, such ⁸⁹ Todd et al. 2008, p. 41. ⁹⁰ Colebatch et al. 1998. See footnote 73. ⁹¹ Jacob RG, Redfern MS, Furman JM. 2009. Space and motion discomfort and abnormal balance control in patients with anxiety disorders. J Neurol Neurosurg Psychiatry 80(1): 74–78. E-pub 2008 July 24. that vestibular activation deactivates visual cortex and vice versa. 92,93 In people with vestibular organ damage, long-term compensation promotes reliance on vision ("visual dependence") or on somatosensory input from muscles, tendons, joints, and skin ("surface dependence"). A visually dependent vestibular patient cannot adequately suppress visual input and up-weight vestibular signals because of pre-existing problems with the vestibular channel,94 leaving the person dependent on visual perception of motion and position even in environments where the visual information is ambiguous. When combined with the sense of fear generated by a feeling of postural instability or uncertainty (as reviewed above), this can create fear of heights. It can also cause Space and Motion Discomfort, 95 a condition in which situations challenging to motion and position sense create discomfort. These situations include looking up at tall buildings, scanning shelves in a supermarket, closing eyes in the shower, leaning far back in a chair, driving through tunnels, riding in an elevator, riding in the back seat of a car, or reading in the car. 96 Even without vestibular organ disease, some people have Space and Motion Discomfort due to a central or brain-based difficulty with ⁹² Brandt T, Bartenstein P, Janek A, Dieterich M. 1998. Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parietoinsular vestibular cortex. Brain 121(Pt. 9): 1749-58. ⁹³ Brandt T, Dieterich M. 1999. The vestibular cortex: its locations, functions, and disorders. Ann NY Acad Sci 871: 293-312. ⁹⁴ Redfern MS, Yardley L, Bronstein AM. 2001. Visual influences on balance. J Anxiety Disord 15(1-2): 81-94. ⁹⁵ Jacob RG, Woody SR, Clark DB, Lilienfeld SO, Hirsch BE, Kucera GD, Furman JM, Durrant JD. 1993. Discomfort with space and motion: a possible marker of vestibular dysfunction assessed by the Situational Characteristics Questionnaire. J Psychopathol Behav Assess 15(4): 299–324. ⁹⁶ Jacob et al. 2009. As a rural physician, I might also ask patients about driving past rows of parallel trees, especially with the low winter sun flashing between the trunks, as the rural equivalent of looking at lights on the wall of a tunnel. the process of integrating balance signals into a coherent, moment-to-moment representation of their motion and orientation in space. Balance testing using posturography shows that such people have difficulty down-weighting anomalous information from either the visual or somatosensory channel, or have a mild, central disorder of balance control with increased postural sway even under non-challenging conditions. ^{97–99} Space and Motion Discomfort is common in patients with anxiety disorders, 100,101 migrainous vertigo, 102 and migraine-anxiety related dizziness. 103 Vertigo is especially characteristic of migraine and may at times occur as a migraine aura with or without headache. 104 In one study, dizziness or vertigo was found in 54% of 200 migraine patients, half of whom also had a history of motion sickness, compared with 30% of people with tension-type headaches. 105 In a study of 72 patients with isolated recurrent vertigo, 61% were found to have migraine, compared to 10% in a control group of orthopedic patients. 106 Abnormal balance testing $^{^{97}}$ Redfern MS, Furman JM, Jacob RG. 2007. Visually induced postural sway in anxiety disorders. J Anxiety Disord 21(5): 704–16. NIH Public Access Author Manuscript, pp. 1–14. ⁹⁸ Jacob et al. 2009. ⁹⁹ Furman JM, Balaban CD, Jacob RG, Marcus DA. 2005. Migraine-anxiety related dizziness (MARD): a new disorder? J Neurol Neurosurg Psychiatry 76: 1–8. ¹⁰⁰ Jacob et al. 2009. ¹⁰¹ Redfern et al. 2007. ¹⁰² Neuhauser H, Leopold M, von Brevern M, Arnold G, Lempert T. 2001. The interactions of migraine, vertigo, and migrainous vertigo. Neurology 56: 436–41. ¹⁰³ Furman et al. 2005. ¹⁰⁴ Furman et al. 2005. ¹⁰⁵ Kayan A, Hood JD. 1984. Neuro-otological manifestations of migraine. Brain 107: 1123–42. ¹⁰⁶ Lee H, Sohn SI, Jung DK, Cho YW, Lim JG, Yi SD, Yi HA. 2002. Migraine and isolated recurrent vertigo of unknown cause. Neurol Res 24(7): 663–65. is seen in patients with migraine but not in those with tensiontype headaches. 107 Balance testing shows that both central and vestibular organ balance problems are found in migraine patients, especially in those who experience dizziness or vertigo. 108 About 50% of migraine sufferers in general have histories of motion sickness, compared to only about 20% in people with tension headaches. 109 Motion sickness is the most common vestibular symptom in migraine. Motion sickness is provoked by excessively moving environments (amusement park rides, boats in rough water, airplanes in turbulence, the back of a school bus) or situations of conflict among visual, vestibular, somatosensory, and visceral signals to the balance system (reading in the car, riding in the back seat, driving in snow, simulators, IMax movies, computer images and games, space travel). The nausea of motion sickness may be accompanied by dizziness, cold sweat, pallor, headache, increased salivation, sleepiness, and apathy or disinclination for physical or mental work, thus sharing many symptoms with migraine. 110 Like migraine, motion sickness is more common in women.¹¹¹ Visual migraine aura without headache is increased in adults with a history of childhood motion sickness. Motion sickness is not associated with peripheral vestibular disorders, however, such as benign paroxysmal positional vertigo, Meniere's disease, or vestibular neuritis. 112 ¹⁰⁷ Ishizaki K, Mori N, Takeshima T, Fukuhara Y, Ijiri T, Kusumi M, Yasui K, Kowa H, Nakashima K. 2002. Static stabilometry in patients with migraine and tensiontype headache during a headache-free period. Psychiatry Clin Neurosci 56(1): 85-90. ¹⁰⁸ Furman et al. 2005. ¹⁰⁹ Marcus DA, Furman JM, Balaban CD. 2005. Motion sickness in migraine sufferers. Expert Opin Pharmacother 6(15): 2691–97. ¹¹⁰ Marcus et al. 2005. ¹¹¹ Marcus et al. 2005. ¹¹² Marcus et al. 2005. The dizziness associated with anxiety disorders is not necessarily caused by the anxiety, as is often assumed in clinical practice, but may have a component of disturbed balance control. 113,114 For example, the presence of panic or fear of heights is significantly associated with abnormalities on caloric testing, a form of vestibular testing. A positive result on a questionnaire for Space and Motion Discomfort is significantly associated with abnormality on posturography showing either surface 116 or visual 117 dependence. In testing of vestibulo-ocular reflexes, anxiety patients have been found to have higher vestibular sensitivity or gain than normal controls. Balance assessments of patients diagnosed with panic attacks or agoraphobia (fear of leaving the house) show a high proportion with abnormalities of vestibular function, in some studies greater than 80%, especially if the patients have episodes of dizziness between panic attacks. 119–122 ¹¹³ Furman et al. 2005. ¹¹⁴ Eckhardt-Henn A, Breuer P, Thomalske C, Hoffmann SO, Hopf HC. 2003. Anxiety disorders and other psychiatric subgroups in patients complaining of dizziness. J Anxiety Disord 17(4): 369–88. ¹¹⁵ Jacob et al. 2009. ¹¹⁶ Jacob et
al. 2009. ¹¹⁷ Redfern et al. 2007. $^{^{118}}$ Furman JM, Redfern MS, Jacob RG. 2006. Vestibulo-ocular function in anxiety disorders. J Vestib Res 16: 209-15. ¹¹⁹ Perna G, Dario A, Caldirola D, Stefania B, Cesarani A, Bellodi L. 2001. Panic disorder: the role of the balance system. J Psychiatr Res 35(5): 279–86. ¹²⁰ Jacob RG, Furman JM, Durrant JD, Turner SM. 1996. Panic, agoraphobia, and vestibular dysfunction. Am J Psychiatry 153(4): 503–12. ¹²¹ Yardley L, Britton J, Lear S, Bird J, Luxon LM. 1995. Relationship between balance system function and agoraphobic avoidance. Behav Res Ther 33(4): 435–39. ¹²² Yardley L, Luxon LM, Lear S, Britton J, Bird J. 1994. Vestibular and posturographic test results in people with symptoms of panic and agoraphobia. J Audiol Med 3: 58–65. Thus problems with balance function can be due to abnormalities of the inner-ear vestibular organs (utricle, saccule, and semicircular canals) or to abnormal central (brain) integration of balance signals. Mild (mostly central) abnormalities are common and associated with common conditions such as migraine, motion sensitivity, vertigo, and several types of anxiety disorder. People with mild balance abnormalities only feel off balance or insecure in challenging situations where the available sensory information is inadequate or confusing, such as at heights or in the situations described in the questionnaire for Space and Motion Discomfort. The rest of the time, people with mild, compensated balance deficits feel normal and securely oriented in space. However, if a person is already in a state of adaptation to an ongoing vestibular organ or central balance deficit—even mild, fully compensated deficits—he or she is at particular risk for decompensation with exposure to new balance challenges. Many of the affected people in the present study, I suspect, were in this condition, because their medical histories reveal a variety of risks for mild baseline balance dysfunction. These risks include motion sensitivity, migraine disorder, prior damage to inner-ear organs from industrial noise exposure or chemotherapy, autoimmune disease, ¹²³ fibromyalgia, ¹²⁴ and normal aging (over 50). We may also consider normal early childhood (age 1–4 or so) as a time of natural mild balance dysfunction ^{125,126} (see discussion at the end ¹²³ Rinne T, Bronstein AM, Rudge P, Gresty MA, Luxon LM. 1998. Bilateral loss of vestibular function: clinical findings in 53 patients. J Neurol 245(6–7): 314–21. $^{^{124}}$ Rosenhall U, Johansson G, Orndahl G. 1996. Otoneurologic and audiologic findings in fibromyalgia. Scand J Rehabil Med 28(4): 225–32. ¹²⁵ Foudriat BA, Di Fabio RP, Anderson JH. 1993. Sensory organization of balance responses in children 3–6 years of age: a normative study with diagnostic implications. Int J Pediatr Otorhinolaryngol 27(3): 255–71. $^{^{126}}$ Steindl R, Kunz K, Schrott-Fischer A, Scholtz AW. 2006. Effect of age and sex on maturation of sensory systems and balance control. Dev Med Child Neurol $48(6)\colon 477-82.$ of the next section). Other potential risks for chronic balance deficits, not seen in this study, are whiplash injury and head injury, including concussions and milder head impacts without loss of consciousness, ^{127–129} and chronic inner-ear conditions such Meniere's disease, dehiscence of the superior semicircular canal, and others. ¹³⁰ ### Cognition and vestibular function It is now becoming apparent that a variety of cognitive functions depend on coherent vestibular signaling. Clinicians who work with balance-disordered patients are familiar with their struggles with short-term memory, concentration, multitasking, arithmetic, and reading. ^{131,132} In the perilymphatic fistula syndrome, for example (a form of inner-ear pathology that can follow whiplash, minor head injuries, or pressure trauma to the ear), symptoms of dizziness, headache, stiff neck, and disturbed sleep are accompanied by marked mental performance deficits compared to the patient's baseline. ¹³³ Such cognitive symptoms are difficult to evaluate clinically and are often dismissed as psychological in origin. ¹³⁴ However, recent research using imaging and other modalities shows that vestibular function exerts a powerful influence over human thinking and memory. ¹²⁷ Grimm RJ, Hemenway WG, Lebray PR, Black FO. 1989. The perilymph fistula syndrome defined in mild head trauma. Acta Otolaryngol Suppl 464: 1–40. ¹²⁸ Ernst A, Basta D, Seidl RO, Todt I, Scherer H, Clarke A. 2005. Management of posttraumatic vertigo. Otolaryngol Head Neck Surg 132(4): 554–58. ¹²⁹ Claussen CF, Claussen E. 1995. Neurootological contributions to the diagnostic follow-up after whiplash injuries. Acta Otolaryngol Suppl 520, Pt. 1: 53–56. ¹³⁰ Colebatch et al. 1998. ¹³¹ Hanes and McCollum 2006. ¹³² Grimm et al. 1989. ¹³³ Grimm et al. 1989. ¹³⁴ Hanes and McCollum 2006. The vestibular system is ancient in the vertebrate lineage. Hence its neural connections ramify widely in both older and more recently evolved parts of the brain, including the brainstem, midbrain, cerebellum, and occipital, parietal, and frontal cortex. 135 Vestibular injury causes specific cognitive difficulties, but not general cognitive impairment.¹³⁶ Vestibular effects on cognition are often attributed to competing stimuli (meaning, challenges to movement and position sense draw attention away from cognitive tasks), but may actually reflect the direct dependence of certain cognitive operations on the vestibular system. 137 Vestibular input is critical for spatial thinking, body and spatial awareness, spatial memory, and complex spatial or map calculations. 138 Dynamic, active vestibular signaling is needed during the acquisition, storage, and use of information with spatial components, such as building mental maps or deducing a novel path between two points. 139 Patients with 5–10 year histories of bilateral vestibular loss showed marked deficits in a classic experimental task of spatial memory and navigation, accompanied, on average, by a 16.9% volume loss in the hippocampus (a temporal lobe structure essential for learning and memory). 140 In a test of general memory, however, these patients were no different from controls.¹⁴¹ Vestibular signaling to the hippocampus is known to occur in both humans and other primates via a direct, two-neuron ¹³⁵ Dieterich M, Brandt T. 2008. Functional brain imaging of peripheral and central vestibular disorders. Brain 131(10): 2538-52. ¹³⁶ Hanes and McCollum 2006. ¹³⁷ Hanes and McCollum 2006. ¹³⁸ Hanes and McCollum 2006. ¹³⁹ Brandt T, Schautzer F, Hamilton DA, Bruning R, Markowitsch HJ, Kalla R, Darlington C, Smith P, Strupp M. 2005. Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 128: 2732-41. ¹⁴⁰ Brandt et al. 2005. ¹⁴¹ Brandt et al. 2005. linkage through the posterior thalamus. There are also other proposed neural pathways. 142 Disordered vestibular input increases error rates in purely mental tasks based on visualization of remembered objects, showing that coherent vestibular input is critical for thinking successfully and efficiently in spatial terms.¹⁴³ This is true even without using sight and beyond the period of memory storage. The tasks included detailed visualization, considered an occipital (visual) cortical task, and mental rotation, a parietal cortical task.¹⁴⁴ Vestibular stimulation in both humans and other primates activates a variety of areas in the parietal cortex, including 1) a core vestibular processing area (posterior insula), 2) the somatosensory strip, 3) areas involved in hemineglect in stroke patients (ventral parietal), and 4) a region "known to be involved in multimodal coordinate transformations and representation of space" (intraparietal sulcus), which is a principal site for arithmetic and counting tasks. ¹⁴⁵ Hemineglect is a condition after right-sided parietal stroke in which a patient can have so much unawareness of the left side of space that he is oblivious to his own left-sided body parts being paralyzed, for example, or undressed. Vestibular stimulation temporarily corrects or improves this unawareness, in ways that suggest stimulation not only to general attention, but also to cerebral structures involved ¹⁴² Brandt et al. 2005. ¹⁴³ Mast FW, Merfeld DM, Kosslyn SM. 2006. Visual mental imagery during caloric vestibular stimulation. Neuropsychologia 44(1): 101–9. $^{^{144}}$ Mast et al. 2006. I wonder whether the detailed visualization task also included a parietal component, given the quantitative comparison the subjects had to make with the remembered image. ¹⁴⁵ Hanes and McCollum 2006, p. 82. in the mental representation of space. 146,147 Vestibular stimulation also improves hemineglect patients' performance on tasks of visual localization and visual-spatial memory retrieval. At baseline, and again 24 hours after the experiment, their responses were biased away from the left side, but this bias was corrected or improved immediately after left vestibular stimulation. 148 Studies of hemineglect patients have further shown that many mental operations are "spatialized" and dependent on parietal brain areas that have been lost, including mathematical operations involving a "mental number line" with lower numbers on the left, 149,150 clock representations of time, 151 and spelling at the beginnings (left) or ends (right) of words (errors occur opposite to the side of the parietal lesion). 152 In right-handed patients with right parietal strokes, there is no impairment to simple numeric calculation (a left-sided parietal function), but there is impairment to spatialized mathematical thinking, such as finding the midpoint between two numbers. 153 At the other extreme of mental functioning, it has been found that great mathematicians think of numbers in spatial terms, 154 which "may be more efficient because ¹⁴⁶ Geminiani G, Bottini G. 1992. Mental representation and temporary recovery from unilateral neglect after
vestibular stimulation. J Neurol Neurosurg Psychiatry 55(4): 332-33. ¹⁴⁷ Cappa S, Sterzi R, Vallar G, Bisiach E. 1987. Remission of hemineglect and anosognosia during vestibular stimulation. Neuropsychologia 25: 775–82. ¹⁴⁸ Geminiani and Bottini 1992. ¹⁴⁹ Zorzi M, Priftis K, Umilta C. 2002. Brain damage: neglect disrupts the mental number line. Nature 417: 138-39. ¹⁵⁰ Vuilleumier P, Ortigue S, Brugger P. 2004. The number space and neglect. Cortex 40(2): 399-410. ¹⁵¹ Vuilleumier et al. 2004. ¹⁵² Hillis HE, Caramazza A. 1995. Spatially specific deficits in processing graphemic representations in reading and writing. Brain Lang 48 (3): 263–308. ¹⁵³ Zorzi et al. 2002. ¹⁵⁴ Hadamard J. 1996. The Mathematician's Mind: The Psychology of Invention in the Mathematical Field. Princeton University Press, NJ. In Zorzi et al. 2002. it is grounded in the actual neural representation of numbers."¹⁵⁵ A recent study of outstanding human memorizers shows that spatially oriented strategies are also critical to good memory, by providing an efficient framework for memory organization and retrieval.¹⁵⁶ Thus current research shows that coherent vestibular neural input is critical for spatialized forms of thinking and memory. Spatialized thinking and memory is intrinsic to many of the things we do with our minds, including mathematical thinking and memory organization (as discussed above) and many forms of map-based or visually based problem-solving or short-term memory we do in everyday life. Spatial thinking is used, for example, to figure out the most efficient path for a set of errands, remember the path and images of the items to be obtained, search for the items on the shelf, and judge if one was given the correct change. It is used for mental "maps" or calendars of one's day, week, or month and its appointments, to picture in three dimensions how to put something together, or imagine what has gone wrong inside a device and initiate a repair. It is used, as well, for understanding the visual clues and images in a movie or TV show. In this context, it is easy to see how vestibular disturbance might impair concentration (which means the ability to perform thinking tasks successfully and efficiently) and memory. Vestibular disturbance also has the potential to affect reading directly, via the reflex control exerted by semicircular canal and otolith organs over eye movements (vestibulo-ocular reflex). Effects on concentration and memory were nearly ubiquitous in the present study, if one includes all subjects that told me about any problems in this area. For some subjects the deficits were ¹⁵⁵ Zorzi et al. 2002. ¹⁵⁶ Maguire EA, Valentine ER, Wilding JM, Kapur N. 2003. Routes to remembering: the brains behind superior memory. Nat Neurosci 6(1): 90–95. dramatic compared to pre-exposure baseline, including the 7 out of 10 school-age children and teens who showed a decline in their academic performance. Detrimental effects on concentration and memory were significantly associated with normal memory at baseline (p=0.027) and with fatigue and loss of energy and motivation during exposure (p=0.018). Though sleep deprivation/disturbance undoubtedly plays a role in the problems with concentration and memory, qualitative aspects of the mental performance deficiencies suggest a mechanism other than sleep disturbance alone. I propose that this mechanism is the effect of vestibular disturbance on cognition. It is interesting here to examine a possible role of vestibular disturbance in the learning of very young children, in the toddler and preschool years. Mrs. G (G2) volunteered that her 2½-yearold's (G5) irritability during turbine exposure was especially triggered by her older siblings' "unsteadying her" or coming so close that she thought she might be unsteadied. Children at this age are learning to keep their balance through a variety of different kinds of activities and postures. They are both fascinated and relaxed by vestibular stimulation (swinging, spinning, rolling, somersaults, etc.) and they actively explore the physical world through this play. The behavior of objects in gravity is another source of fascination, starting with babies' casting behavior and moving on to pouring water, sliding down slides, rolling things down inclines, building dams, floating toy boats, blowing bubbles, releasing helium balloons, etc. Vestibular input and processing play a critical role in a) balance during movement, b) the generation, storage, and use of internal maps, and c) recognition of the behavior of objects under the influence of gravity. Indovina et al. measured brain activity by functional MRI in adults as they watched the movement of simulated objects, finding that the vestibular network was selectively engaged when the acceleration of an object was consistent with natural gravity, even though the stimulus was only visual.¹⁵⁷ The authors use this as evidence that "predictive mechanisms of physical laws of motion are represented in the human brain"¹⁵⁸ under the influence of vestibular signaling of the vector of gravity. I suggest that these representations of the physical laws of motion are embedded in the human brain during early childhood as toddlers and children learn through experimentation (play) about the behavior of their bodies and other objects in gravity, and that coherent vestibular signaling is critical to this learning. #### Environmental noise, learning, sleep, and health effects Many studies have quantified the effects of environmental noise on children's learning. Reading acquisition—a language-intensive process—is especially sensitive to the effects of noise in school and at home. The effect is distinct from the effects of noise on attention or working memory, ¹⁵⁹ and is correlated with measures of language processing such as speech recognition. ¹⁶⁰ Airplane noise, which has a large low frequency component, has a stronger effect than traffic noise in some studies, ¹⁶¹ but traffic noise is also shown to have modest effects on memory in quieter communities. ¹⁶² Most studies are cross-sectional, but a longitudinal or cohort study, done ¹⁵⁷ Indovina I, Maffei V, Bosco G, Zago M, Macaluso E, Lacquaniti F. 2005. Representation of visual gravitational motion in the human vestibular cortex. Science 308: 416–19. ¹⁵⁸ Indovina et al. 2005. ¹⁵⁹ Haines MM, Stansfeld SA, Job RFS, Berglund B, Head J. 2001. A follow-up study of effects of chronic aircraft noise exposure on child stress responses and cognition. Int J Epidemiol 30: 839–45. ¹⁶⁰ Evans GW, Maxwell L. 1997. Chronic noise exposure and reading deficits: the mediating effects of language acquisition. Environ Behav 29(5): 638–56. ¹⁶¹ Clark C, Martin R, van Kempen E, Alfred T, Head J, Davies HW, Haines MM, Barrio IL, Matheson M, Stansfeld SA. 2005. Exposure-effect relations between aircraft and road traffic noise exposure at school and reading comprehension: the RANCH project. Am J Epidemiol 163: 27–37. ¹⁶² Lercher P, Evans GW, Meis M. 2003. Ambient noise and cognitive processes among primary schoolchildren. Environ Behav 35(6): 725–35. when an airport was closed in one location and opened in another, showed similar effects on reading acquisition. 163 One study showed effects of noise on reading and auditory processing in children who lived in an apartment building next to a busy highway. The higher they lived in the building, the quieter were their apartments and the better their reading and auditory discrimination scores (e.g., distinguishing goat from boat). After controlling for parental education and income, the auditory discrimination scores largely explained the noise-reading linkage. 164 These effects on reading occur at sound levels far less than those needed to produce hearing damage. 165 Children with pre-existing reading deficiencies and children at higher grade levels are more affected, and longer exposure produces larger deficits.¹⁶⁶ Effects suggestive of wind turbine noise impact on auditory discrimination or central auditory processing were found in the current study. During the period immediately after moving away from turbines and the cessation of her tinnitus, Mrs. A (A2, age 33) found she had a new difficulty understanding conversation in crowded, noisy places. Her son (A3, age 2½) began to confuse several consonant sounds during exposure, and continued to do so in the immediate post-exposure period. Studies of adults in industrial settings have shown effects of noise on cognitive function when the noise is not considered loud and is nowhere near the threshold for causing damage to hearing. Polish ¹⁶³ Hygge S, Evans GW, Bullinger M. 2002. A prospective study of some effects of aircraft noise on cognitive performance in schoolchildren. Psychol Sci 13: 469-74. ¹⁶⁴ Cohen S, Glass DC, Singer JE. 1973. Apartment noise, auditory discrimination, and reading ability in children. J Exp Soc Psychol 9: 407–22. ¹⁶⁵ Evans GW. 2006. Child development and the physical environment. Annu Rev Psychol 57: 423-51. ¹⁶⁶ Evans 2006, p. 426. researchers exposed workers to 50 dBA broadband noise or 50 dBA broadband noise with low frequency components (10-250 Hz) as they worked on standard psychological tests. Low frequency noise impaired performance more than broadband noise without low frequency components, especially in subjects who rated themselves as highly sensitive to low frequency noise. There was no difference in the annoyance ratings for the two types of noise, nor evidence of either habituation or sensitization.¹⁶⁷ Sleep deprivation is a primary focus of studies of community noise in general and was a major factor for the subjects in the current study. The occurrence of VVVD contributes a distinctive quality to sleep disturbance and to the extent of sleep deprivation near wind turbines, since waking up in a physiologic state of panic leads to prolonged wakefulness or not returning to sleep at all. A second distinctive quality of wind turbine-associated sleep disturbance was
nocturia (getting up repeatedly at night to urinate), mostly in adult women, and nocturnal enuresis (bed-wetting) in a 5-year-old girl. Nocturia resolved immediately when subjects slept away from turbines. For the 5-year-old, the enuresis stopped during a family vacation, resumed on return home, and resolved fully when the family moved away. Studies of whole-body vibration identify 10–18 Hz as frequencies likely to create the urge to urinate, ¹⁶⁸ a possible mechanism for nocturia during exposure. Nocturnal enuresis may be a manifestation of the same direct vibratory stimulation in a child not yet developmentally ready to awaken to bladder signals, or it may instead be a parasomnia (like sleep walking, sleep talking, and night terrors) that occurs during disordered partial arousal ¹⁶⁷ Pawlaczyk-Luszczynska M, Dudarewicz A, Waszkowska M, Szymczak W, Sliwinska-Kowalska M. 2005. The impact of low-frequency noise on human mental performance. Int J Occup Med Environ Health 18(2): 185–98. ¹⁶⁸ Rasmussen 1982. from the deeper stages of sleep. Perilymphatic fistula syndrome, a vestibular disorder, includes nocturnal enuresis in adult women in its list of parasomnic manifestations. ¹⁶⁹ Noise at night is known to cause a variety of sleep disturbances, including delay of sleep onset, overt awakening, brief arousals seen on EEG, changes in length and timing of sleep stages, and premature final awakening. Short-term effects of noise during sleep include noise-induced body movements and modifications of autonomic functions such as heart rate, blood pressure, vasoconstriction, and respiratory rate. Noise-induced body movements indicate a low level of arousal from sleep, and occur with noise events as low as 32 dBA. Arousals detected by brain wave pattern on EEG occur with noise events as low as 35 dBA, and conscious awakenings with events of 42 dBA. ¹⁷⁰ Much of the extensive literature on community noise and sleep disturbance focuses on neuroendocrine changes in catecholamine and cortisol levels due to noise disturbance, ¹⁷¹ short-term changes in circulation, including blood pressure, heart rate, cardiac output, and vasoconstriction, ^{172,173} and the effects of long- ¹⁶⁹ Grimm et al. 1989. ¹⁷⁰ Muzet A, Miedema H. 2005. Short-term effects of transportation noise on sleep with specific attention to mechanisms and possible health impact. Draft paper presented at the Third Meeting on Night Noise Guidelines, WHO European Center for Environment and Health, Lisbon, Portugal, April 26–28. Pp. 5–7 in *Report on the Third Meeting on Night Noise Guidelines*, available at www.euro.who.int/Document/NOH/3rd_NNG_final_rep_rev.pdf. $^{^{171}}$ Ising H, Braun C. 2000. Acute and chronic endocrine effects of noise: review of the research conducted at the Institute for Water, Soil and Air Hygiene. Noise Health 7: 7–24. $^{^{172}}$ Babisch W. 2003. Stress hormones in the research on cardiovascular effects of noise. Noise Health 5(18): 1–11. $^{^{173}}$ Babisch W. 2005. Guest editorial: Noise and health. Environ Health Perspect 113(1): A14–15. term exposure on the risk of myocardial infarction. 174 There is a significant exposure-response relationship between exposure to nighttime aircraft noise, daily average road traffic noise, and hypertension. $^{175-177}$ Most studies of sleep do not differentiate between low frequency and other types of noise, but there is a growing awareness of the particularly disturbing nature of the low frequency components of community noise. ¹⁷⁸ One study compared children sleeping with heavy trucks passing two meters from the house walls every two minutes all night long, to children sleeping with traffic noise without the low frequency component. The low frequency noise–exposed children showed increased cortisol production during the first half of the night (an alteration in the normal circadian rhythm of secretion) compared to the other children. ¹⁷⁹ Increased cortisol during the first half of the night was significantly related to restless sleep and difficulties in returning to sleep after awakening during the night. ¹⁷⁴ Babisch W, Beule B, Schust M, Kersten N, Ising H. 2005. Traffic noise and risk of myocardial infarction. Epidemiology 16(1): 33–40. ¹⁷⁵ Jarup L, Babisch W, Houthuijs D, Pershagen G, Katsouyanni K, Cadum E, Dudley M-L, Savigny P, Seiffert I, Swart W, Breugelmans O, Bluhm G, Selander J, Haralabidis A, Dimakopoulou K, Sourtzi P, Velonakis M, Vigna-Taglianti F. 2008. Hypertension and exposure to noise near airports: the HYENA study. Environ Health Perspect 116(3): 329–33. ¹⁷⁶ Eriksson C, Rosenlund M, Pershagen G, Hilding A, Ostenson C-G, Bluhm G. 2007. Aircraft noise and incidence of hypertension. Epidemiology 18(6): 716–21. ¹⁷⁷ Haralabidis AS, Dimakopoulou K, Vigna-Taglianti F, Giampaolo M, Borgini A, Dudley M-L, Pershagen G, Bluhm G, Houthuijs D, Babisch W, Velonakis M, Katsouyanni K, Jarup L. 2008. Acute effects of night-time noise exposure on blood pressure in populations living near airports. European Heart J 29(5): 658–64. $^{^{178}}$ Persson Waye K. 2004. Effects of low frequency noise on sleep. Noise Health 6(23): 87–91. ¹⁷⁹ Ising H, Ising M. 2002. Chronic cortisol increases in the first half of the night caused by road traffic noise. Noise Health 4: 13–21. #### Low frequency noise Birgitta Berglund, lead editor of the WHO *Guidelines for Community Noise*, ¹⁸⁰ stated in a review of low frequency noise effects: Although the effects of lower intensities of low-frequency noise are difficult to establish for methodological reasons, evidence suggests that a number of adverse effects of noise in general arise from exposure to low frequency noise: Loudness judgments and annoyance reactions are sometimes reported to be greater for low-frequency noise than other noises for equal sound-pressure level; annoyance is exacerbated by rattle or vibration induced by low-frequency noise; speech intelligibility may be reduced more by low-frequency noise than other noises except those in the frequency range of speech itself, because of the upward spread of masking. Low-frequency noise (infrasound included) is the superpower of the frequency range: It is attenuated less by walls and other structures; it can rattle walls and objects; it masks higher frequencies more than it is masked by them; it crosses great distances with little energy loss due to atmospheric and ground attenuation; ear protection devices are much less effective against it; it is able to produce resonance in the human body; and it causes greater subjective reactions (in the laboratory and in the community studies) and to some extent physiological reactions in humans than mid- and high frequencies. ¹⁸¹ ¹⁸⁰ World Health Organization. 1999. Guidelines for Community Noise, ed. Berglund B, Lindvall T, Schwela DH. 159 pp. www.who.int/docstore/peh/noise/guidelines2.html ¹⁸¹ Berglund B, Hassmen P, Job RFS. 1996. Sources and effects of low frequency noise. J Acoust Soc Am 99(5): 2985–3002, p. 2985. Low-frequency noise also differs from other noise in producing vibrations of the human body and other objects.... Motion sickness has been linked to low-frequency noise even without accompanying vibration. ¹⁸² Many subjects in the present study stated that turbine noise was different from other types of noise, using words like "invasive" and "unnatural," and saying that it was impossible to get used to this noise. Several said it wouldn't sound loud to people who did not live at their homes, or they described a "swish" or "hum" as extremely bothersome noises. A number spoke favorably of living near heavily traveled roads or urban train lines, compared to living near wind turbines. All who moved, moved into villages, towns, or suburbs, where there was more traffic but no danger of turbines being built next to them. The descriptions make it clear that there is a disturbing quality about turbine noise which is more than its audible loudness and that, over time, people become sensitized to wind turbine noise, rather than get used to it. In the present study, Mr. and Mrs. *G* described a resonance or standing wave phenomenon in one room of their turbine-exposed home. At one end of this room, Mrs. *G* felt internal vibration, even though she could not feel any surfaces or objects vibrating when she put her hand on them. Mr. *G* felt peculiar in the same place, and always had to walk quickly away from that spot before his feeling progressed to nausea. In the home of family *C*, an audiologist detected vibration in the floor of a small room the family identified as having the worst problem in the home, and felt nauseated when he put his forehead against it.¹⁸³ ¹⁸² Berglund et al. 1996, p. 2993. $^{^{183}}$ Personal communication from acoustician; name withheld for confidentiality reasons. At a NASA test facility in the 1960's, healthy young men were exposed to low frequency noise in the 1–50 Hz frequency range at 110 to 150 dB for 2–3 minutes (high amplitude and short duration). Over the full 1–50 Hz frequency range they experienced fatigue and took longer to perform assigned tasks. At frequencies less than 25 Hz there was an "annoying tickling" in the ear. In the same frequency range, there were modulations of speech, moderate vibrations of the chest, and fullness in the hypopharynx with an annoying gag sensation. "In regard to the opinions of those tested, it was indicated that the sensations involved were impressive." ¹⁸⁴ A case that was similar to the cases presented in this paper involved a couple in Germany in 1996. After moving into a new house outside a provincial city, the couple experienced symptoms with increasing intensity, including "indisposition, decrease in performance, sleep disturbance, headache, ear pressure, crawl parasthesy,¹⁸⁵ or shortness of breath."¹⁸⁶ Their case was intensely investigated with both A-weighted and linear measurements of noise indoors and outdoors, correlated in real time with the couple's symptoms. In time, the symptoms were
correlated with intensity of noise below 10 Hz. The couple's symptoms and the intensity of noise below 10 Hz both varied with the wind and weather, and were worse in the winter. No plausible mechanism for production of such noises or correspondences to local sources of noise, such as the housing complex heating plant, was found. Symptoms occurred when the sound pressure level at 1 Hz was 65 dB, well $^{^{184}}$ Edge PM, Mayes WH. 1966. Description of Langley low-frequency noise facility and study of human response to noise frequencies below 50 cps. NASA Technical Note, NASA TN D-3204. 11 pp. ¹⁸⁵ Paresthesia means a prickling sensation, the "pins and needles," felt when a numb foot is waking up. I interpret "crawl parasthesy" to mean a sensation like insects crawling on the skin or in the chest. One of the current study's subjects, I2, also described "pins and needles" inside her chest. $^{^{186}}$ Feldmann J, Pitten FA. 2004. Effects of low-frequency noise on man: a case study. Noise Health 7(25): 23–28. below hearing threshold. None of the frequencies responsible for the symptoms, all below 10 Hz, had sound pressure levels above 80 dB. The decibel levels that affected the man and wife in their home were far less than their own threshold hearing levels measured in a sound lab. The authors hypothesized that infrasound, with its very long wavelengths (10 Hz, for example, has a 34 m wavelength in air), causes strong pressure fluctuations in relatively small closed rooms—pressure fluctuations that are detected more by the whole body and its inner organs than by the ears. Similar intensive investigations, using linear as well as A-weighted sound levels, 1/3 octave sound pressure levels down to 1 Hz, indoor measurements, and assessments of wall vibration, have proved fruitful in other low frequency noise complaint investigations. 187 These investigators, from a state environmental agency in Germany, paid attention to spontaneous statements by the affected people, to see whether perceptions of noise followed a systematic pattern. They found that "noises which in many cases induced vehement complaints were to a large extent of rather low sound levels,"188 and that indoor ventilator noise and noises generated by structureborne sound transmission were distinctly more disturbing than road traffic noise. These authors documented standing waves in rooms by measuring and comparing loudness in dBA and dB(lin) at the center of the room and near walls. They detected vibration in walls, and correlated the dominant frequency and its corresponding wavelength to the size of the room in discussing how a standing wave was established in the room. For this kind of complaint, the authors noted, ¹⁸⁷ Findeis H, Peters E. 2004. Disturbing effects of low-frequency sound immissions and vibrations in residential buildings. Noise Health 6(23): 29–35. ¹⁸⁸ Findeis and Peters 2004, p. 29. More than half... were made on the grounds of sleep disturbance. Quite often symptoms like "a roaring in the head, especially when lying down" were brought forward. Time and again, "a feeling of riding a lift [elevator]" was reported, and over and again the measuring team had the impression that the reported immissions [noise] meant a nerve-wracking experience for the exposed persons. Several complainants even got into a state of being aggressive. There were reports by a number of trustworthy persons on how they at first-for instance when moving into the flat—did not even notice any immissions. But in the course of a few weeks they began to perceive them distinctly and [the immissions] became intolerable after continued exposure. It was obvious that in these cases the sensibility of specific noise components had developed. Thus, it is understandable that nonexposed persons were at a difficulty to even acknowledge such noise immissions. 189 Wind turbines produce noise in the low and infrasonic frequency ranges. The issue has not been whether they produce low frequency or infrasonic noise, but whether the amplitudes are sufficient to cause human effects. According to data published by van den Berg,¹⁹⁰ unweighted amplitudes at 1 Hz, at one wind park under one set of weather conditions, were in the 70–100 dB range, declining to the 55–75 dB range at 10 Hz and the 50–60 dB range at 100 Hz. Wind turbine noise has a pulsating quality, produced as the airfoil blades swing past the tower, compressing the air between blade and tower. These low frequency pressure fluctuations, among other effects, modify the loudness of the higher frequency sounds coming from the turbines, producing the audible "swish" ¹⁸⁹ Findeis and Peters 2004, p. 32. ¹⁹⁰ van den Berg 2004a. that synchronizes with the feeling of pulsation some subjects felt in their chests. Coming from several towers at once, these low frequency air pressure fluctuations may synchronize and reinforce, depending on the orientation of the towers and house and the timing of the individual turbines. Three families in this study (A, B, and F) lived in houses nearly in line with a row of turbines. For families A and B, the area's worst storms, "nor'easters," swept right down the line towards their houses, which were built on a hill at the level of the turbine hubs. These two families, though they were a kilometer (about 3300 feet) from the closest of the 10 turbines, moved out faster—in five months—than any of the other families, and had particularly severe symptoms. Studies of turbine noise also show that noise carries farther than predicted by conventional industry modeling. This has to do not only with the low frequency components of the noise, which attenuate less with distance, but also with layering of the atmosphere at night, which creates cool still air at ground level and brisk, laminar airflow at turbine hub heights. ¹⁹¹ Industry models do not take these factors into account. Nor do they allow for a noise source more than 30 m above the ground. (Turbine hub heights in this study were 59–90 m.) Nor do they allow for increased transmission of sound in front of and behind the blades (with less sound transmission in the plane of the blades, including under the turbines), sky reflections, or weather conditions that focus the noise transmissions. ¹⁹² # Vibroacoustic Disease (VAD) model High intensities of low frequency noise over prolonged time periods may cause marked neurologic damage, as described ¹⁹¹ van den Berg 2004b. ¹⁹² Richard James, INCE Full Member, personal communication, 5/11/08. by the Vibroacoustic Disease (VAD) group in Portugal. 193 This is a provocative body of research, full of interesting case descriptions and pathology studies, but compromised by absence of specified study group criteria, absence of control groups, and lack of quantification. The study group consists of 140 aircraft maintenance and repair technicians in the Portuguese Air Force, of whom 22 (15.7%) had adult-onset epilepsy, compared to a national prevalence of 0.2%. 194 Some of the case descriptions of the subjects with epilepsy also include cognitive decline, depression, paranoia, and rage attacks. 195 The descriptions are similar to those of retired professional football players with histories of multiple concussions. 196,197 The vibroacoustic disease researchers ascribe VAD pathology to whole-body vibration induced by the noise, with the pathology of each body part induced by vibration of that part. Neurologic effects may be due to neuronal or axonal shearing, as in the multiple concussions scenario, or due to microangiopathy in the brain, meaning, effects on and occlusion of small blood vessels. 198 With regard to the chest, the VAD researchers have used human autopsy and biopsy and animal rearing studies to describe loss of ¹⁹³ Castelo Branco and Alves-Pereira 2004. ¹⁹⁴ Castelo Branco and Alves-Pereira 2004. ¹⁹⁵ Martinho Pimenta AJ, Castelo Branco NAA. 1999. Neurological aspects of vibroacoustic disease. Aviat Space Environ Med 70(3): A91–95. ¹⁹⁶ Omalu BI, DeKosky ST, Minster RL, Kamboh MI, Hamilton RL, Wecht CH. 2005. Chronic traumatic encephalopathy in a National Football League player. Neurosurgery 57: 128-34. ¹⁹⁷ Omalu BI, DeKosky ST, Hamilton RL, Minster RL, Kamboh MI, Shakir AM, Wecht CH. 2006. Chronic traumatic encephalopathy in a National Football League player: part II. Neurosurgery 59: 1086-93. ¹⁹⁸ Martinho Pimenta and Castelo Branco 1999. cilia and microvilli from epithelial surfaces of the bronchi,^{199–201} pleura,²⁰² and pericardium.²⁰³ They also describe thickening of bronchial epithelial basement membrane,²⁰⁴ pericardium,²⁰⁵ and blood vessel walls²⁰⁶ by extra, organized collagen and elastin. Several of the animal-rearing studies on bronchial epithelial changes are well controlled and convincing.^{207,208} Based on the vibroacoustic disease research, I hypothesize that vibratory or pulsating air pressure fluctuations in subjects' airways in the present study may induce shearing of surface cilia, thus impairing the clearance of mucus and particulates from airways. This in turn could make subjects more susceptible to lower respiratory infections and increased airway irritation and reactivity (asthma). The Eustachian tube and middle ear could be susceptible ¹⁹⁹ Oliveira MJR, Pereira AS, Ferreira PG, Guinaraes L, Freitas D, Carvalho APO, Grande NR, Aguas AP. 2004. Arrest in ciliated cell expansion on the bronchial lining of adult rats caused by chronic exposure to industrial noise. Environ Res 97: 282–86. ²⁰⁰ Oliveira MJR, Pereira AS, Castelo Branco NAA, Grande NR, Aguas AP. 2002. In utero and postnatal exposure of Wistar rats to low frequency/high intensity noise depletes the tracheal epithelium of ciliated cells. Lung 179: 225–32. ²⁰¹ Monteiro M, Ferreira JR, Alves-Pereira M, Castelo Branco NAA. 2007. Bronchoscopy in vibroacoustic disease I: "pink lesions." Inter-Noise 2007, August 28–31, Istanbul, Turkey. ²⁰² Pereira AS, Grande NR, Monteiro E, Castelo Branco MSN, Castelo Branco NAA. 1999. Morphofunctional study
of rat pleural mesothelial cells exposed to low frequency noise. Aviat Space Environ Med 70(3): A78–85. ²⁰³ Castelo Branco NAA, Aguas AP, Pereira AS, Monteiro E, Fragata JIG, Tavares F, Grande NR. 1999. The human pericardium in vibroacoustic disease. Aviat Space Environ Med 70(3): A54–62. ²⁰⁴ Castelo Branco NAA, Monteiro M, Ferreira JR, Monteiro E, Alves-Pereira M. 2007. Bronchoscopy in vibroacoustic disease III: electron microscopy. Inter-Noise 2007, August 28–31, Istanbul, Turkey. ²⁰⁵ Castelo Branco et al. 1999. ²⁰⁶ Castelo Branco NAA. 1999. A unique case of vibroacoustic disease: a tribute to an extraordinary patient. Aviat Space Environ Med 70(3): A27–31. ²⁰⁷ Oliveira et al. 2004. ²⁰⁸ Oliveira et al. 2002. to the same process, leading to prolonged middle ear effusions and unusual acute infections. The increased asthma seen in subjects F1 and F3 may also have a connection to their frequent use of paracetemol (acetaminophen) for headaches during turbine exposure.²⁰⁹ ### Community noise studies and annoyance Studies of community noise frequently assess a quality called annoyance. "Apart from 'annoyance," the World Health Organization writes, "people may feel a variety of negative emotions when exposed to community noise, and may report anger, disappointment, dissatisfaction, withdrawal, helplessness, depression, anxiety, distraction, agitation, or exhaustion." 210 Beyond even these negative emotions, moving out of an owned home indicates that people feel sick and under threat, judging that their survival and well-being, and that of their children, will be enhanced by moving out—even as they exhaust limited resources to do so and face unrecompensed loss of their major asset, their home. Sick and annoyed are not the same thing. In English, annoyance carries an air of triviality, like a mosquito buzzing around one's head. Sickness threatens survival itself. Pedersen and Persson Waye assessed annoyance (which may be a shorthand for the above list of negative emotions, but remains different from sickness) among 351 households near wind turbines in Sweden in 2000. They used a mailed survey and compared annoyance to modeled A-weighted sound pressure levels they ²⁰⁹ Beasley et al. 2008. ²¹⁰ World Health Organization 1999, *Guidelines for Community Noise*, p. 50. calculated to exist outside homes near clusters of one to five turbines of power 0.15–0.65 MW (much smaller than in the current study), based on the homes' distances from turbines. They found people to be highly annoyed by wind turbine noise at sound pressure levels much lower than for other types of community noise. The A-weighted decibel level (in a measure averaged and weighted over time, $L_{\rm eq}$) that corresponded to 15% of the people being highly annoyed was 38 dBA for wind turbines, 57 dBA for aircraft, 63 dBA for road traffic, and 70 dBA for railways. The curve for annoyance due to wind turbine noise had a steep slope, so that by 41 dBA, 35% of people were *highly annoyed*. Sixteen percent of respondents over 35 dBA reported that their sleep was disturbed by wind turbine noise. I interpret this result as an indication of the degree to which wind turbine noise has a disturbing quality not captured by its A-weighted measurement. Since A-weighting emphasizes higher frequencies and filters out lower frequencies, the qualitative difference may be related to the presence of low frequency components. Even without directly measuring the low frequency components, this study is potentially useful with regard to regulating noise and determining setback distances for turbines. Since the study was done in units of dBA outside houses, and most community noise regulations (including for wind turbines) also use units of dBA outside houses, we can easily translate this result into the recommendation that wind turbine ordinances need to limit the turbine noise levels outside houses to less than 35 dBA. This does not mean that only 35 dB of real noise is present, but rather that in the common measurement unit of community noisewhich is dBA—35 is a number that represents a significant amount ²¹¹ Pedersen E, Persson Waye K. 2004. Perception and annoyance due to wind turbine noise: a dose-response relationship. J Acoust Soc Am 116(6): 3460–70. of sleep disturbance and high annoyance if the noise comes from wind turbines. In a continuation study that involved interviewing participants, Pedersen found that some people had moved out of their homes, rebuilt their homes in an attempt to exclude turbine noise, or begun legal proceedings because of problems associated with turbine exposure. Pedersen and Persson Waye also found informants who were sensitive to both noise and blade motion, felt violated or invaded by turbine noise, and found their houses to be places where they could no longer find restoration qualitative similarities to the current study. Van den Berg, Pedersen, and colleagues conducted another survey study of noise and annoyance in the Netherlands in 2007. They mailed questionnaires to 1960 households within 2.1 km (1.3 mi) of at least two adjacent 0.5–3 MW turbines, with 725 responses (37% response rate). The questionnaire asked about visual and auditory perceptions, economic benefit, annoyance, chronic diseases, current symptoms, psychological stress, and sleep disturbance, and looked at variation in these factors (as in the Swedish study) against modeled A-weighted noise levels. Though it contained several questions about health, this study was not properly constructed to sample health in an accurate or realistic way. The evidence for this is found in the study results themselves, which contain significant bias or skew relative to known health parameters. ²¹² Pedersen 2007. ²¹³ Pedersen and Persson Waye 2007. ²¹⁴ van den Berg et al. 2008b. For example, 2% of respondents in this study indicated that they had chronic migraine disorder.²¹⁵ The population prevalence of migraine disorder is remarkably stable across countries and time when controlled for age, sex, and definition of the disease, being 5–6% for males and 15–18% for females.^{216,217} A finding of 2% is an underestimate, indicating that something about this study's method of sampling migraine prevalence was awry. Sampling and sampling error occur at several levels, such as the level of selecting respondents and the level of sampling the respondents' thoughts through questioning. Potential flaws at each level can be identified in this study. First, the researchers attempted to elicit objective health information with just two questions in this survey, one on past or underlying health and one on current symptoms. (Separate questions addressed sleep disturbance.) This is the single question about underlying health: 37. Do you have any long term/chronic disease? (no \rightarrow 38, yes). *If yes, which chronic disease do you have?* (diabetes, high blood pressure, tinnitus, hearing impairment, cardiovascular disease, migraine, other viz:)²¹⁸ This is a very brief and superficial question, and it is not surprising that it failed to capture all the diagnoses of migraine that should have been present in a random population sample. In medical ²¹⁵ van den Berg et al. 2008b, p. 48. ²¹⁶ Lipton RB, Bigal ME, Diamond M, Freitag F, Reed ML, Stewart WF; AMPP Advisory Group. 2007. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology 68(5): 343–49. ²¹⁷ Stewart WF, Simon D, Shechter A, Lipton RB. 1995. Population variation in migraine prevalence: a meta-analysis. J Clin Epidemiol 48(2): 269–80. ²¹⁸ van den Berg et al. 2008b, Appendix p. 5. research, in contrast, the presence or absence of a diagnosis in a subject is established by multiple proven and validated questions directly tied to the formal definition of the illness, administered by a trained interviewer. Even in clinical practice, which is less formal, an accurate review of systems still requires a series of specific screening questions and the knowledge of when and how to question in further depth. No clinician or health researcher would rely on a question like the above to elicit full and accurate information about the past health history. The same question also failed to elicit accurate prevalence figures for tinnitus. Tinnitus prevalence among survey respondents was 2%, whereas 4% is the likely population-level figure for the respondents' average age of 54.219 Tinnitus prevalence also did not show age differences in this sample, 220 whereas in reality tinnitus has a well-documented pattern of increasing prevalence with advancing age.²²¹ The question's time frame is also unclear. Were the authors trying to find out about baseline susceptibilities (health conditions before turbines) or did they hypothesize that exposure to wind turbines might alter the prevalence of these chronic conditions? Though they never state it explicitly, their analysis makes it clear they hypothesized that health effects due to wind turbines, if they exist, would present as higher levels of the listed chronic diseases closer to wind turbines.²²² To think that they might find such an effect with this type of sample size and mode of study verges on silly, it is ²¹⁹ National Institute on Deafness and Other Communication Disorders, USA, website, "Prevalence of chronic tinnitus." 2009. www.nidcd.nih.gov/health/statistics/ prevalence.htm ²²⁰ van den Berg et al. 2008b, p. 47. ²²¹ National Institute on Deafness and Other Communication Disorders, "Prevalence of chronic tinnitus." 2009. ²²² van den Berg et al. 2008b, p. 50. so far outside the parameters of how such issues are studied (see, for example, studies cited in footnotes 171–177, above). As a result, this study's failure to find such an effect is meaningless. There were also sampling problems at the level of subject selection. First, the study has no control population that is not exposed to turbine noise. It samples within 2.1 km (1.3 mi) of turbines, using the unspoken assumption that the people
at the outer edge of this radius will not be exposed to significant amounts of turbine noise and can therefore act as a control group. An epidemiologic study, in contrast, would have a control group of households subjected to all the same procedures for household selection, questioning, and noise modeling as the study group, but without turbines present. Second, uncontrolled subject selection processes occurred at the level of the household. Once questionnaires reached households, what happened? Nearly two-thirds of households declined to respond. The researchers studied a subset of non-responders using a very brief questionnaire that yielded a modestly higher (48%) response rate. The brief questionnaire showed that non-responders were similar to responders in their average degree of annoyance at wind turbine noise, but did not address the issue of whether non-responders differed from responders in health parameters. An additional process of self-selection occurred within responder households, since only one individual replied and only answered questions about himself. The householders chose who replied. On a very mundane and human level, we can imagine how this process might have selected against migraineurs in the sample, if the person with a headache the day the survey arrived asked someone else to fill it out. The survey's second question about health concerned current symptoms, as follows: 38. Have you been troubled by the following symptoms during the last months? ((almost) never, at least once a month, at least once a week, (almost) daily) [sic] Headache Undue tiredness Pain and stiffness in the back, neck or shoulders Feeling tense or stressed Depressivity Not very sociable, wanting to be alone Irritable Resigned Fearful Concentration problems Nausea Vertigo Mood changes Other, namely: (please indicate what)²²³ This is an odd list of "symptoms"—an undifferentiated mix of physical and psychological, with a few simple "feeling words" thrown in. It does not make sense as a symptom list—not without more detail and structuring into symptom groups. As with the chronic disease question, above, medical researchers and clinicians know that accurate and complete information cannot be elicited in this format, especially about delicate subjects like mood states and health. This question, too, is unclear about timing—pre-existing vs. during exposure, while near turbines or away from them. This question in fact yielded little information that was useful to the researchers. In their analysis, the only reference to the health symptoms question is as follows: ²²³ van den Berg et al. 2008b, Appendix p. 6. Respondents who did not benefit economically from wind turbines reported more chronic diseases and health symptoms than those who benefited.... The observed differences between the sub-samples regarding chronic diseases and health symptoms could be due to age effects; respondents who did not benefit economically were older than those who benefited.²²⁴ Otherwise, through a long and detailed statistical analysis of stress, sleep disturbance, noise, annoyance, and chronic disease, the health symptoms question does not appear again. The researchers expanded their questioning on mood states by incorporating a screening interview for mental illness used in general medical practice, called the General Health Questionnaire. Despite the name, it is not a health questionnaire, nor is it a measure of psychological stress (which is how the authors use it). The GHQ-12 is a screening tool for mental illness, used to help a physician figure out which of his presenting patients need assessment for psychiatric illness. It was validated (meaning compared against other effective means of diagnosis to see if it identified the right people) for its declared purpose, not as a measure of psychological stress. The authors present it as a "validated instrument" for "measuring 'perceived health,' 226 then use it in their analysis as a measure of "psychological stress," morphing the question set from one purpose to another to another without justification. ²²⁴ van den Berg et al. 2008b, p. 49. ²²⁵ Goldberg DP, Hillier VF. 1979. A scaled version of the General Health Questionnaire. Psychol Med 9(1): 139–45. The 28-item GHQ may be found at http://www.gp-training.net/protocol/docs/ghq.doc and the 12-item GHQ (used by van den Berg et al.) at www.webpoll.org/psych/GHQ12.htm. ²²⁶ van den Berg et al. 2008b, p. 20. ²²⁷ van den Berg et al. 2008b, p. 47. In the Dutch survey study results, owners of turbines lived the closest to turbines and were able to turn them off if they or their neighbors were bothered by the noise—a key difference between the Netherlands and other countries. These closer respondents tended to be farmers and to benefit economically from the turbines. They were on average younger, healthier, and, as it happens, better educated than the respondents living farther from turbines. Sleep disturbance, annoyance, and questionnaire measures of stress were correlated with noise levels among people who did not benefit economically from turbines. Annoyance occurred at lower dBA noise levels than for road, rail, or air traffic noise, as in the similar Swedish study. Being awakened from sleep was associated with higher noise levels, and difficulty falling asleep and higher stress scores were associated with annoyance. "Respondents with economic benefits reported almost no annoyance," though they lived closest to the turbines and experienced the highest modeled noise levels. If turbine owners were turning the turbines off when they were bothered or during sleep, then the modeled noise levels would not have accurately represented real noise levels close to the turbines. Despite health being inadequately sampled in this study, the authors still draw conclusions that are interpreted popularly as evidence against health effects by wind turbines, in sentences like this one from the authors' summary: "There is no indication that the sound from wind turbines had an effect on respondents' health, except for the interruption of sleep." Though it is downplayed in this sentence, sleep interruption is in fact of great significance to health. The authors are remiss in failing to acknowledge that the study methods do not have the power to detect other health effects. ²²⁸ van den Berg et al. 2008b, Summary, p. ii. ²²⁹ van den Berg et al. 2008b, Summary, p. ii. The authors would have more accurately captured the survey's health results had they written, "Sleep disturbance or interruption, an effect of profound importance to health, was correlated with turbine noise levels. Unfortunately, the survey could not effectively address other health questions due to bias introduced at the level of data collection. An important finding is the possibility of biased responses from respondents benefiting economically from turbines, yet it is equally possible that turbine owners are in the habit of turning turbines off at critical times, thus avoiding both annoyance and sleep disturbance." ### Recommendations For physicians practicing near wind turbine installations, I suggest incorporating proximity to turbines into the personal and social history in a neutral and non-suggestive way, especially for the types of symptoms described in this report. With regard to turbine setback from dwellings: in Table 1B we see that the subjects in the current study lived between 305 m (1000 ft) and 1.5 km (4900 ft or 0.93 mi) from the closest turbine. There were three severely affected families at 930-1000 m (3000-3300 ft) from turbines. This study suggests that communities that allow 305-457 m (1000-1500 ft) setbacks from homes, like those in New York State, may have families who need to move after turbines go into operation. All turbine ordinances, I believe, should establish mechanisms to ensure that turbine developers will buy out any affected family at the full pre-turbine value of their home, so that people are not trapped between unlivable lives and destitution through home abandonment. By shifting the burden of this expense to turbine developers, I would hope that developers might have a stronger incentive to improve their techniques for noise prediction and to accept noise level criteria recommended by such agencies as the World Health Organization and the International Standards Organization, ²³⁰ and fortified by the findings of Pedersen (above). With regard to families already affected, developers and permitting agencies share the responsibility for turbines built too close to homes, and together need to provide the financial means for these families to re-establish their lives at their previous level of health, comfort, and prosperity. I support the recommendations for noise level criteria and procedures for noise monitoring by George Kamperman and Richard James.²³¹ A single setback distance may not be both protective and fair in all environments with all types of turbines, but it is clear, from the current study and others, that minimum protective distances need to be more than the 1-1.5 km (3280-4900 ft or 0.62-0.93 mi) at which there were severely affected subjects in this study, more than the 1.6 km (5250 ft or 1 mi) at which there were affected subjects in Dr. Harry's UK study, 232 and, in mountainous terrain, more than the 2-3.5 km (1.24-2.2 mi) at which there were symptomatic subjects in Professor Robyn Phipps's New Zealand study.²³³ Two kilometers, or 1.24 miles, remains the baseline shortest setback from residences (and hospitals, schools, nursing homes, etc.) that communities should consider. In mountainous terrain, 2 miles (3.2 km) is probably a better guideline. ²³⁰ See Kamperman and James 2008b. ²³¹ Kamperman and James 2008b. Presented in shorter form, Kamperman GW, James RR. 2008a. Simple guidelines for siting wind turbines to prevent health risks. Noise-Con, July 28-31, annual conference of the Institute of Noise Control Engineering/USA. ²³² Harry 2007. ²³³ Phipps
2007. Setbacks may well need to be longer than these minima, as guided by the noise criteria developed by Kamperman and James. ### Suggestions for further research - Epidemiologic studies comparing populations exposed and not exposed to wind turbines with regard to the prevalence of specific symptoms, such as tinnitus and balance complaints. Such studies might be best conducted in European countries that have both national health data systems and significant numbers of wind turbines. - Case series by neurotologists internationally, who are able to do appropriate objective examinations and testing in addition to clinical history. - Collaboration between physicians and independent noise engineers to find which specific frequencies and intensities of sound and vibration correlate with subjects' symptoms in real time, and to establish a standard protocol for wind turbine noise sampling that includes these specific frequencies and intensities of sound and vibration. - Further clinical/laboratory research on the effects of low frequency noise and vibration on the human vestibular system. - Case control studies by specialist physicians near turbine installations on rarer associated symptoms, such as ocular problems, lower respiratory infections, asthma, persistent middle ear effusions, failure of anticoagulation, loss of diabetes control, exacerbation of arrhythmias, and exacerbation of gastrointestinal conditions. - Studies of turbine noise and children's learning. Standardized test scores, before and after turbines are built near schools or in a community, might be compared to test scores of similar, non-exposed schools and communities across the same years. The current study suggests that both school and home turbine noise exposures would have to be quantified. ### Limitations of the study - The study was done by interview and only limited medical records were available. Physical exam and appropriate testing (such as hearing, balance, and neuropsychological testing) would clarify and provide objective evidence for otologic and neurologic problems. Physical exam and appropriate testing are necessary to assess the rarer associated conditions not included in the core symptoms of Wind Turbine Syndrome. - Participant memory limitations or distortions. I excluded several families from the analysis because they were unclear about what had happened when, combined with not having spent enough time in a post-exposure situation. I insisted on a post-exposure period to compensate for the difficulty of accurately comparing before-exposure experience to the current situation of exposure. - Minimization or exaggeration of effects. I felt some subjects may have minimized potentially embarrassing or frightening issues, such as nocturia in men and cognitive difficulties in general. In other families, excluded from the analysis, one spouse was clearly committed to staying in the house and minimized what the other spouse said. I endeavored to protect against exaggeration by including in the study only families who had moved out of their homes or done something else expensive in response to their symptoms, proving their symptom severity in ways other than words. The one exception to this rule was the family of an American physician and nurse, whose professionalism, I felt, was protective. - The study was limited to English-speaking subjects. There was only one non-native speaker. He was competent at English and had an English-speaking wife, but there may have been subtleties in his symptoms that he didn't tell me about. - Small case series sample. For this study, I chose a cluster of the most severely affected and most articulate subjects I could find. It is not a large enough sample to establish a gradient of effects with a gradient of exposure (distance from the turbines). It is not an epidemiologic sample that could establish prevalence of effects within exposure gradients or according to age or pre-existing conditions. Conditions that occurred in one or a few study subjects require case-control studies and cannot be established as part of the syndrome from this study. - Limited duration of follow-up. For cognitive symptoms improved but not resolved at the post-exposure interview, the time course of resolution is not clear. ### THREE ### The Case Histories: The raw data | 7 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | |--|-------------------------|---|---|--| | Case History At | | Pre-exposure | During exposure* | Post-exposure** | | (page 1 of 2)
Person
Mr. A | Sleep | Good but always easily
awakened by noise. | "I didn't really." Hard
to fall asleep. Frequent
awakening due to child's
frequent awakening. | Good, at baseline. Child
sleeping through night. | | Age 32 Pre-exposure health status Good Health history No significant | Headache | Rare, mild | Continuous headache at home which resolved after several hours away and resumed several hours after return, with onset 3 weeks into turbine start-up process. OTC and prescription analgesics, addition of glasses not helpful. | Resolved | | Previous noise exposure Diesel fishing boat from childhood Time to onset of symptoms | Cognition | Normal. Runs own fishing business. Mild difficulty with memory, especially for names and faces. | Memory problems: "You'd think I was 99." When arriving at a store or storage building, could not remember what he had come to get without a list. | Partial recovery: self-
rated memory 80–85%
at baseline, 2% during
exposure, and 10% at
6 weeks after moving | | | Mood | Good. Usually does not
show annoyance. | Loss of usual energy and enjoyment for spring fishing season. Mildly irritable. | Anger about home abandonment, otherwise resolved. | | | Balance/
equilibrium | Normal, never
carsick or seasick | "A little shaky on feet every now and then" at home. | Resolved | | | Ear/hearing | Mild subjective hearing loss attributed to diesel engine exposure, no tinnitus | Repetitive popping in ears for first 3 weeks. Tinnitus started several weeks after headache onset and worsened over time. | Resolved | # Case History A1 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure** | |-------------------------|---|---|---| | Eye/vision | Normal without glasses | Burning sensation in eyes. When headache and tinnitus were severe, eyes "felt like they were going to fall out on the table if you looked down." Had normal eye exam. | Resolved | | Other
neurological | Normal, mild concussion age 14 | No change | No change | | Cardiovascular | Cardiovascular Normal including BP (110–120/80 in 2006) | Mild diastolic hypertension on one reading $(128/94 \text{ on } 4/4/07)$ | No further BP measurements obtained. | | Gastrointestinal Normal | Normal | Nausea when headache was severe. No vomiting or other gastrointestinal changes. | Resolved | | Respiratory | Normal except smokes | No change | No change | | Other | | "You feel different up there, draggy, worn out before you even start anything." "It was a chore to walk across the yard." | When visiting family 100 km away, "I felt better all over, like you could do a cartwheel." Feels well at new house. | | | | Committee word process in all wind | | Symptoms were present in all wind directions, better during rain, and worse with wind from direction of turbines or from the 180-degree opposite direction. *Exposure period 5 months. ^{**}Interviewed 6 weeks after move. | Case History A2 | | Pre-exposure | During exposure* | Post-exposure** | |--|-------------------------|--|--|--| | (page 1 of 2) | Sleep | Normal. Sleeps through noises Frequent awakening other than children. | Frequent awakening | Normal, resolved | | Mrs. A | Headache | Rare, mild | Occasional headache | At baseline | | Age
33
Pre-exposure health status | Cognition | Concentration
"great," works as
accountant | Noticed concentration problem at work when training someone; working to focus; trainee had to help | Resolved | | Good. Pregnant during
exposure and delivered at | Mood | Good, including during
and after first pregnancy | Irritable | Resolved | | term 4 days before moving. Health history | Balance/
equilibrium | Gets seasick but not carsick | Slight unsteadiness | Resolved | | Polycystic ovarian syndrome and metabolic syndrome. Caesarian section for first delivery. Previous noise exposure | Ear/hearing | Normal hearing. Persistent middle ear fluid in late 20's, resolved. Tinnitus in past when emerging from noisy plant. | Repetitive popping in ears and decreased hearing for first 3 weeks, then tinnitus began. Tinnitus varied with exposure and worsened over time. |
Tinnitus resolved, but has new difficulty understanding conversation in a noisy room. Has to watch speaker's face. | | worked at biomedical
chemical plant for 5 years
with 1–2 hours/week | Eye/vision | Wears glasses. Eyes
water if strained. | No change | No change | | exposure to noisy areas. | Other
neurological | Normal, no concussion | No change | No change | | Time to onset of symptoms Immediate with progression | Cardiovascular | Normal except h/o temporary stress-related hypertension at age 22. | Normal | Normal | | | Gastrointestinal | Nausea and GER during pregnancy | No change | Resolved after delivery | Case History A2 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure** | |-------------|-------------------------------|---|-----------------------| | Respiratory | Normal, no asthma or smoking. | Lower respiratory infection for 6 weeks not treated until after delivery and move. | Resolved | | Other | | "Not noisy like a chainsaw, more like pulsating annoyance. To another person it wouldn't sound loud." | | | | | | | | Animals | | Dog barks at windmills and up more at night. Improved dog behavior | Improved dog behavior | *Exposure period 5 months. **Interviewed 6 weeks after move. No change No change No change No change No change No change | Case History A3 | | Pre-exposure | During exposure* | Post-exposure** | |--|-------------------------|--|---|--| | Person
Son A
Age | Sleep | Slept through night 12
hours without awakening.
Always a good sleeper. | Night terrors 2–5 times each night, 30 minutes to calm down and return to quiet sleep. | At baseline. Night terrors resolved. Awakes once briefly for drink and goes back to sleep. | | 2% | Headache | None | No apparent headaches. | None | | Pre-exposure health status Good Health history | Cognition | Good speech development with lots of words and no sound confusion. | Began to confuse t with k sounds and w with l sounds. | Vocabulary, sentences, and conversational skills are good but still confusing sounds. | | Term birth, normal growth and development | Mood | Good-natured, sensitive,
bright, listened well for age. | Oppositional, cranky,
"a completely different
kid for a few months." | "Instantaneous" resolution
when moved, resumed
former behavior. | | Previous noise exposure
No significant | Balance/
equilibrium | Normal for age | No change | No change | | Time to onset of symptoms
Immediate | Ear/hearing | Normal hearing test at birth.
One episode of otitis media. | Pulled ears and got
cranky synchronously
with adult episodes of
headache and tinnitus. | Resolved | | | Eye/vision | Normal | No change | No change | | | Other
neurological | Normal | No change | No change | *Exposure period 5 months, age 27-32 months. **Information provided by parents 6 weeks after move. Normal, no asthma Respiratory Gastrointestinal Normal Normal Cardiovascular | Case History A4 | | Pre-exposure | During exposure* | Post-exposure** | |--|-------------------------|---------------------------------------|------------------------------------|---------------------------------| | Person
Infant daughter A | Sleep | In utero, 1st and
2nd trimester | In utero, 2nd and
3rd trimester | Sleeps well | | Age | Headache | | | N/A | | 7 weeks | Cognition | | | Normal alertness | | Pre-exposure health status | Mood | | | Good, calms easily | | N/A: born 4 days before end of exposure period | Balance/
equilibrium | | | N/A | | Health history
Healthy newhorn, 38-week | Ear/hearing | | | Normal hearing
test at birth | | gestation, birth weight 2.95 kg | Eye/vision | | | Normal eye exam at birth | | Previous noise exposure | Other
neurological | Normal fetal movement | No change | Nurses well | | Time to onset of symptoms | Cardiovascular | Normal fetal heart tones and sonogram | No change | Normal | | N/A | Gastrointestinal | | | Normal | *Exposure period 5 months, all in utero. Normal Respiratory $[\]ensuremath{^{**}}$ Information provided by parents 6 weeks after move, 7 weeks after birth. | Case History B1 | | Pre-exposure | During exposure* | Post-exposure** | |--|-------------------------|--|--|---| | (page 1 of 2) Person Mr B | Sleep | Bood | Delayed onset and repeated awakenings; prescribed sleep aid. | Resolved | | Age 55 Pre-exposure health status Good Health history Surgery 4 times for benign | Headache | Rare, mild | Continuous, head and ears "sizzling." "It got in your head and would dang well stay there." Started "at back of head, then down sides, then affected right eye." Prescription and non-prescription analgesics minimally helpful. | At baseline | | prostatic hypertrophy, once for hand injury | Cognition | Normal | "Trouble remembering"; "a
little problem concentrating"
blamed on sleep deprivation | "Pretty good, a little
problem still." | | rrevious noise exposure Diesel fishing boat from childhood Time to onset of symptoms | Mood | Good | Stress, "lots, pretty near more'n I could take, it just burnt me, the noise and run-around"; prescribed anxiolytic. | Improved, still takes
some anxiolytic. | | Immediate with progression | Balance/
equilibrium | Normal, never seasick
or carsick, no vertigo. | Wobbly, staggering, off-balance "like had drunk." No falls. Occasionally felt dizzy. | Resolved, on roof shingling without problems. | | | Ear/hearing | Normal hearing on left
and mild sensorineural
loss at 4 kHz on right in
2006. Intermittent left
tinnitus since 2005. | Tinnitus continuous and bothersome, "ringing and sizzling," and interfering with conversation comprehension. Ears popped "like an airplane." Ear wax increased. | Resolved | # Case History B1 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure** | |----------------------------|--|---|--| | Eye/vision | Normal with reading glasses | Intermittent right eye pain "like a force on it, like pressure on the eye, the inside part, in the head." No change in vision. Eye pain/pressure synchronous with headache. | Resolved | | Other neurological Normal, | Normal, no concussion | No change | No change | | Cardiovascular | Normal with BP 126/82,
126/88, 112/70 in 2006 | Mild BP elevation 140/80, 132/90, 152/92.
After started anxiolytic, BP 128/84. | Resolved, BP 110/68 | | Gastrointestinal | Normal, no GER, not prone to nausea | Frequent nausea | Resolved | | Respiratory | Slight asthma as child.
Never smoked. | Two episodes of feeling of weight on chest while lying on couch, which resolved when he stood up. Lower respiratory infection in 5th month of exposure. | Normal | | Rheumatologic | Osteoarthritis | No change | No change | | Other | Little road traffic
or other noise | "That stuff [turbine noise] doesn't get out of your head, it gets in there and just sits there—it's horrible." | Not bothered by "all kinds of traffic" at new location; "after a while you don't hear it." | | | | Felt pulsation in ears and chest while outside when there was fog in the valley between the turbines and the house. | Resolved | | | | Spent more time at shore at boat, away from house and property, for symptom relief. | | | | | Hum heard and felt in double glazed picture window when turbines running. | | | | | | | *Exposure period 5 months. ^{**}Interviewed 6 weeks after move. | Case History B2 | | Pre-exposure | During exposure* | Post-exposure** | |---|-------------------------|---|--|---| | (page 1 of 2) Person Mrs B | Sleep | Poop | Delayed onset, repeated awakening,
difficulty going back to sleep,
nocturia. Ear plugs somewhat helpful. | Resolved | | Age
53 | Headache | Rare, mild | Continuous except when left property or wind in favorable direction. | Resolved | | Pre-exposure health status
Good
Health history | Cognition | Normal | Concentration disturbed; confused if went on errands without list, had to return home. | Partly resolved
at 6 weeks, up to
remembering three
things without a list. | | Hysterectomy and cholecystectomy, 4 births Previous noise exposure | Mood | Good, hard worker,
not moody. | Anxiety, guarding against irritability, upset and "in a turmoil" when symptoms worse. | Resolved | | Diesel fishing boat
intermittently for | Balance/
equilibrium | Normal, never carsick or seasick. | Some unsteadiness and gait change. | Resolved | | decades Time to onset of symptoms Several weeks,
with Drogression | Ear/hearing | Normal hearing test in 2005, no tinnitus. | Tinnitus and ear pain continuous except when left property or wind in favorable direction. Ear irrigation at clinic worsened tinnitus. | Resolved | | | Eye/vision | Normal with glasses | Eyes irritated, burning, runny. Ebb and flow of eye symptoms synchronous with headache and tinnitus. | Burning resolved but
visual blurring noted
when chemotherapy
started. | | | Other
neurological | Normal, no concussion | No change | No change | | | Cardiovascular | Normal including BP | Mild BP elevations 132–140/80–90 | Unknown | # Case History B2 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure** | |------------------|--|--|---| | Gastrointestinal | Gastrointestinal GER and post-tussive vomiting. | No change | Worsened with chemotherapy | | Respiratory | Chronic cough secondary to GER and smoking. | Breath "short every once in a while, like [while] falling asleep, breathing wanted to catch up with something, hard to explain." | Resolved, normal breathing pattern. | | Oncologic | Felt well though had
undiagnosed breast cancer. | Breast cancer diagnosed. Mastectomy 4 weeks before end of exposure. | Chemotherapy started. | | Other | | Left house repeatedly to get relief of symptoms, interrupting work and tasks. | Resolved | | | | | | | Machines | Refrigerator quiet | Refrigerator became loud and was replaced, but new one was also loud. | New refrigerator was moved to new house and is quiet. | | | Furnace quiet | Furnace became loud. Circulator was | | replaced and the furnace was still loud. *Exposure period 5 months. ^{**}Interviewed 6 weeks after move. No change No change Normal, never smoked Respiratory Other Resolved ear, like someone sitting on it." "Hard, heavy feeling behind No change No change No change Normal Cardiovascular Gastrointestinal Normal No change | Case History B3 | | Pre-exposure | During exposure* | Post-exposure** | |--|-------------------------|---------------------------------------|--|------------------------| | Person | Sleep | Good | No change | No change | | Daughter B | Headache | Rare, mild | No change | No change | | Age
19 | Cognition | Good, university student | No change (between terms and not studying) | No change | | Pre-exposure health status
Good | Mood | "Always irritable at home" | If home more than 2 days, "heavy" feeling, lost motivation and | Normal energy and mood | | Health history | | | energy, slept more | | | ACL tear and knee surgery Provious noise exposure | Balance/
equilibrium | Normal, never
carsick or seasick | No change | No change | | Music | Ear/hearing | Ears often dry, itchy,
and painful | No change | No change | | Time to onset of symptoms | Eye/vision | Normal | No change | No change | | | Other
neurological | Normal, no concussion | No change | No change | *Due to college and activities, exposure limited to 10 hours on weeknights over 2 months. ^{**}Interviewed 7 weeks after family moved. | Case History C1 | | Pre-exposure | During exposure* | Post-exposure** | |---|-------------------------|-----------------------------|--|--| | (page 1 of 2)
Person
Mr. C | Sleep | Good, sound sleeper | Delayed onset with repeated awakening. Wakes up tired. Feeling of pulsation keeps him awake night and day. | Improved, but not resolved because of depression. | | Age | Headache | Rare, mild | No change | No change | | 45
Pre-exposure health status
Good | Cognition | Normal | Pulsations interrupt
concentration; cannot read
when pulsations present. | Persistent forgetfulness noted 2 years after moving, with ongoing depression. | | Health history
Back injury with
neuropathic pain | Mood | Good | Tired, "cannot recuperate." | Persistent stress of not
having his own home and
loss of assets. Irritable. | | Previous noise exposure
Diesel fishing boat for decades | | | | Enjoyed going to his
abandoned home, but
mood worsened with stav | | Time to onset of symptoms Immediate when all turbines running | | | | of several hours or more.
Depression increased in
winter 2 years after move. | | | Balance/
equilibrium | Normal, seldom seasick | No change | No change | | | Ear/hearing | Normal hearing, no tinnitus | Infrequent tinnitus. Hard to hear conversations outside when turbines noisy. | Resolved | | | Eye/vision | Normal with glasses | No change | No change | | | Other
neurological | Normal, no concussion | No change | No change | # Case History C1 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure** | |-------------------------|-------------------------------------|--|-----------------| | Cardiovascular | Normal including BP | No change | No change | | Gastrointestinal Normal | Normal | No change | No change | | Respiratory | Normal, no smoking for 10 years | Feels pulsations in chest, holds breath, fights sensation in chest, not breathing naturally. | Resolved | | Rheumatologic | Rheumatologic Back pain from injury | No change | No change | | Other | | Unable to rest, relax, recuperate in house, "always in a state of defense," drives away in car to rest. | Resolved | | | | Feels like "energy coming within me," "like being cooked alive in a microwave." | Resolved | | | | Sensation of pulsation is very disturbing and interrupts concentration and sleep. | Resolved | | | | Infrequent sensation of throat swelling and obstruction to breathing. | Resolved | | | | Fog (150 days/year) amplifies noise. | | | Animals | | Lobster fishery moving further offshore since wind turbines present and increased death in lobster pounds. | | *Exposure period 15 months to all turbines, 21 months to at least 2 operating turbines. Interviewed 2 weeks before move and 8, 12, 18, 21, and 25 months after move. ^{**}Ongoing partial exposure for house maintenance, increased to many hours per week during winter 2 years after moving. | Case History C2 | | Pre-exposure | During exposure* | Post-exposure** | |---|-------------------------|--|--|---| | (page 1 of 2)
Person
Mrs. C | Sleep | Dood | Delayed onset, frequent
awakening, hyperalert when
awakened, nocturia; "no
good rest in 10 months." | Resolved including
nocturia | | Age
42
Des conseques boalth efeting | Headache | Migraine frequency varied,
never awoke her at night;
headache onset in childhood. | Headache onset day or night,
5–6 nights/week at maximum. | Resolved, no migraines | | Good Health history Migraine disorder, 6 healthy term pregnancies | Cognition | Normal, very organized
mother of 6 children,
"ready a month in advance
for birthday parties." | Disorganized; could not
handle as many things at
once; difficult to plan and
track cooking; "I thought I
was half losing my mind." | Resolved including ability to multitask | | without hypertension Previous noise exposure No significant | Mood | Good, lots of energy | Tired, anxious, irritable. | Improved, but still
sadness and stress
related to loss of home
and living with parents | | Time to onset of symptoms Immediate when first turbines operational, with progression | Balance/
equilibrium | Lifelong motion sensitivity in cars, boats, swings, standing on wharf seeing boats go up and down. No vertigo. | Frequent dizziness,
vertigo, and nausea
preceding headaches. | At baseline | | | Ear/hearing | Normal hearing, no tinnitus | Tinnitus began when first 2 turbines operational; no change in hearing. | Hyperacusis | | | Eye/vision | Normal, no glasses | Nystagmus, subjective
blurring | Persistent subjective
blurring | | | Other
neurological | Normal, no concussion | No change | No change | # Case History C2 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure** | |-------------------------|---|--|--| | Cardiovascular | Cardiovascular Normal including BP during pregnancies and at other times. | Hypertension and episodes of tachycardia. | Persistent BP elevation 180/102, started medications. Rare palpitations. | | Gastrointestinal Normal | Normal | Frequent nausea with dizziness and headache. | Resolved | | Respiratory | Normal, never smoked | Pneumonia with pleurisy twice in first 3 months of exposure to all turbines. | Resolved | | Other | Hand and foot eczema | Exacerbation | Persistent increased itching. | | | | At sunset, strobe effect inside or moving shadows outside triggered dizziness, nausea, and headache. | Resolved | | | | Occasional sensation of vibration in feet and legs outside house. | Resolved | *Exposure period 15 months to all turbines, 21 months to at
least 2 operating turbines. Interviewed 2 weeks before move and 18 and 21 months after ^{**}Limited ongoing exposure of several hours per week when going to house to get things, but stopped going to house by 25 months after moving. | Case History C3 | | Pre-exposure | During exposure* | Post-exposure** | |---|-------------------------|--|---------------------------------------|---| | Person | Sleep | Good | Disturbed, decreased | Resolved | | First son C | Headache | Some headaches in past,
frequency unclear | Frequent headaches | Resolved | | 21 | Cognition | Normal, did well in elementary
school, left school for fishing at age 17 | Decreased
concentration | No information | | Pre-exposure nealth status
Good | Mood | Angry and resistant towards parents | Very angry, never
smiled, frequent | Improved mood towards
family and apparent | | Health history
Ear tubes age 13 | | | and unpredictable
blow-ups | increased confidence
7–8 months after move | | Previous noise exposure | Balance/
equilibrium | Never carsick or seasick | No change | No change | | for several years Time to onset of symptoms | Ear/hearing | Frequent otitis media in infancy/
childhood; conductive hearing loss
at age 13 corrected with PE tubes | Normal | No change | | Immediate for sleep, | Eye/vision | Normal with glasses for driving only | No change | No change | | progressive criange for other symptoms | Other
neurological | Normal, no concussion | No change | No change | Exposure period 15 months to all turbines, 21 months to at least 2 operating turbines. Out of house most of daytime for work and activities during exposure period. Information provided by parents 2 weeks before move and 8, 12, 18, and 21 months after move. No change No change Normal No change Normal, no asthma or smoking Respiratory Gastrointestinal Stomachaches as schoolchild No change No change Normal including BP, one syncopal episode as teen Cardiovascular ^{**}Moved away from immediate family when family left home. | Case History C4 | | Pre-exposure | During exposure* | Post-exposure** | |---|-------------------------|--|---|--| | • | | amodua arr | amodus suun | ornoduo soci | | (page 1 of 2) Person Second son C | Sleep | Sound sleeper with some sleep walking and talking, hard to arouse | Harder to get to sleep when
he could hear turbines | Resolved | | Age 19 | Headache | Headache with nausea
and dizziness for first 2
days of each fishing trip | Occasional headache with tinnitus and dizziness on awakening | At baseline | | Pre-exposure health status
Good, strong and athletic | Cognition | Normal, left school for fishing age 17; difficulty with memorization | Distracted by shadow
flicker when present | Resolved | | Health history | Mood | Easy-going, "jokey" | "Prickly," irritable | Resolved | | as older child and teen; pneumonia once; mononucleosis | Balance/
equilibrium | Seasick and carsick as child with persistent symptoms on fishing trips | Occasional dizziness on
awakening, as above | At baseline | | Previous noise exposure Diesel fishing boat | Ear/hearing | Occasional tinnitus and headache from motor noise on fishing trips | Occasional tinnitus on
awakening, as above | At baseline | | Time to onset of symptoms Several months | Eye/vision | Normal, with acute peripheral and distance vision | In final month, intermittent flashes of light, then blurring, in one eye at a time at any time of day, with recovery; evolved to transient blindness (amaurosis fugax) lasting 30 seconds to 2 minutes, repetitively in each eye, right more than left, not associated with headache or tinnitus. | Persistent at 8
months and resolved
at 12 months with
normal vision | # Case History C4 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure** | |-----------------------|--|--|---| | Other
neurological | Normal, one concussion as teen | After first few months, hard to move legs for first 2–5 minutes after awakening, then normal; not numb; occasional bilateral tingling around knees; knees buckled unexpectedly in daytime. | Resolved on same schedule
as eye problems. | | Cardiovascular | Cardiovascular Normal including BP | No change | No change | | Gastrointestinal | Gastrointestinal Normal except nausea during migraines | No change | No change | | Respiratory | Normal, no asthma,
smoked briefly in past | Occasionally felt pulsation in chest | Occasional difficulty taking
deep breath at rest | | Rheumatologic | Back injury in hockey as teen
with some residual pain | Exacerbation of back pain | At baseline | | Other | Hand and foot eczema | Exacerbation of eczema | At baseline | | | | Slept in basement with fan on | | *Exposure period 15 months to all turbines, 21 months to at least 2 operating turbines. Exposure mostly limited to nighttime in windowless basement bedroom. Interviewed 21 months after move. Information also provided by parents 2 weeks before move and 8, 12, 18, and 21 months after move. because of turbine noise ^{**}Moved away from immediate family when family left home. No change No change Normal, no concussion No change No change Normal including BP neurological Cardiovascular Resolved No change Nauseated No change Normal, no asthma or smoking Respiratory Gastrointestinal Normal | Case History C5 | | Pre-exposure | During exposure* | Post-exposure | |---|-------------------------|---------------------------------------|--|---------------------------------| | Person
First daughter C | Sleep | Good | Disturbed, slept better
at friend's house, asked
for sleeping pill | Sleeping well, no
medication | | Age
15 | Headache | Migraines, some with vomiting | Increased frequency of headache | At baseline | | Pre-exposure health status
Good | Cognition | Normal, good student | Mild concentration difficulty, did homework at school | Resolved | | Health history
No significant | Mood | Good; compliant,
shy, considerate | Marked mood swings, "PMS" | Improved | | Previous noise exposure | Balance/
equilibrium | Normal, never
carsick or seasick | Dizziness with or without headaches | Resolved | | | Ear/hearing | Normal | No change | No change | | Time to onset of symptoms
Immediate with progression | Eye/vision | Normal with contact
lenses/glasses | No change | No change | *Exposure period 15 months to all turbines, 21 months to at least 2 operating turbines. Information provided by parents 2 weeks before move and 8, 12, 18, and 21 months after move. | Case History C6 | | Pre-exposure | During exposure* | Post-exposure | |--|-------------------------|---------------------------------------|---|--| | Person | Sleep | Good | Decreased with delayed onset Resolved | Resolved | | Second daughter C
Age
12 | Headache | Infrequent, moderate | Increased intensity with onset At baseline in evening 2–3 days/week, resolved with sleep, OTC analgesics sometimes helpful. | At baseline | | Pre-exposure health status
Good | Cognition | Good, studious,
pursues activities | Completing homework
at school but lost interest | Doing better in school
but effort still low | | Health history Normal growth and | | | in schoolwork, sports,
and dance lessons; "can't
concentrate" per mother | | | Previous noise exposure None | Mood | Independent, active | Angry and defiant, lost friends, began smoking, suspended from school. | Improved defiance; regained "good" friends by 12 months, stopped smoking by 18 months. | | Time to onset of symptoms Immediate for sleep, 8–11 | Balance/
equilibrium | Mildly carsick at
back of van only | Occasional nausea from strobing of blades | At baseline | | months to headache peak | Ear/hearing | Normal, no tinnitus | No change | No change | | | Eye/vision | Normal | No change | No change | *Exposure period 15 months to all turbines, 21 months to at least 2 operating turbines. Information provided by parents 2 weeks before move and 8, 12, 18, and 21 months after move. No change; stopped smoking No change Resolved Occasional nausea, as above No change Normal Normal neurological Cardiovascular Gastrointestinal Respiratory No change other than starting to smoke Normal, no asthma No change No change Normal, h/o one mild concussion Other No change Normal, no concussion Other No change No change No change No change Normal, no asthma Respiratory Gastrointestinal Normal Normal neurological Cardiovascular No change No change | Case History C7 | | Pre-exposure | During exposure* | Post-exposure |
---|-------------------------|---|---|---| | Person
Third son C | Sleep | Bood | Decreased sleep with delayed onset | Resolved | | Age | Headache | Infrequent | Occasional, not severe | Infrequent | | 6 | Cognition | Schoolwork satisfactory | Failed tests, lost math skills, | Improved but still | | Pre-exposure health status
Good | | אינווטעני וופכט זטן פאנימ וופוף | maintain train of thought during homework, frustrated. | strugging, enor ress
than at baseline. | | Health history
Normal growth and
development | Mood | Good with normal behavior | Decreased self-confidence, withdrawn behavior, fighting at school. School independently noted | Improved, near baseline | | Previous noise exposure
None | | | unexpected decline in academics and behavior. | | | Time to onset of symptoms Immediate for sleep, 2–5 | Balance/
equilibrium | Normal, never
carsick or seasick | No change | No change | | months for schoolwork
deterioration | Ear/hearing | Otitis media as toddler and to age 6, no rupture or tubes | Left ruptured tympanic
membrane | Resolved | | | Eye/vision | Normal with glasses | No change | No change | *Exposure period 15 months to all turbines, 21 months to at least 2 operating turbines. Information provided by parents 2 weeks before move and 8, 12, 18, and 21 months after move. | Case History C8 | | Pre-exposure | During exposure* | Post-exposure | |--|-------------------------|---------------------------------|---|--| | Person
Fourth son C | Sleep | Good, to sleep at 7:30 pm | Sleep onset delayed 3 hours with many fears at night | Resolved | | Age | Headache | None | No change | No change | | | Cognition | Normal including school to date | "Can't concentrate"
per mother | Resolved | | Pre-exposure nealth status
Good
Health history | Mood | Good with normal behavior | Angry and defiant
behavior, many fears and
specific fear of dying | Improved but misses 2 oldest brothers and home | | Normal growth and development | Balance/
equilibrium | Gets seasick and carsick | No change | No change | | Previous noise exposure
None | Ear/hearing | Normal | Complained of ears bothering him with pressure or ringing | Resolved | | Time to oncet of symptoms | Eye/vision | Normal | No change | No change | | Immediate | Other | Normal, no concussion | No change | No change | *Exposure period 15 months to all turbines, 21 months to at least 2 operating turbines. Information provided by parents 2 weeks before move and 8, 12, 18, and 21 months after move. No change No change No change No change No change Normal neurological Cardiovascular Gastrointestinal Normal No change Normal, no asthma Respiratory | Case History D1 | | Pre-exposure | During exposure* | Post-exposure** | |---|-----------|---|---|--| | | | 4 | 1 0 | J | | (page 1 of 4) | Sleep | No sleep problems. One | Feels pulsation as soon as he lies | Sleeps well when | | Person
Mr. D | | codeine at bedtime for back | down in Ded. Frequent awakening,
6–12 per night. Nocturia 2–3 | away ironi nome,
without nocturia. | | Age
64 | | up to urinate until morning. | ever heard of, up half the night." Gets to sleep using self-hypnosis | | | Pre-exposure health status Disabled due to injury to | | | he was taught for pain (counting backwards), but has to start at a higher number and count longer. | | | back and neck in industrial
accident, without paralysis | Headache | Rare/mild. No migraine or sinus problems. | Not headache, not painful, but
a "kind of numbness which | Does not occur
away from home. | | Health history
Ulcer age 61: current | | | sets over the head" [see below,
Balance/equilibrium] | | | medications lovastatin, acetaminophen with | Cognition | Concentration and memory good. Two- | More difficulty remembering what he reads. In last 2–3 months "I notice a little more each time" | No information | | Previous noise exposure | | year conege uegree m
industrial engineering. | "Once I had real fast recall, but now I have to think about things." | | | Heavy industry age 16–37, including weaving mills, turbine and jet engine production | Mood | No depression, anxiety,
panic, or anger problems | Frequent need to "calm down." Angry, including in night when awakened. "I can get real | When away for weekend, "you get all relaxed and all of a sudden you're | | Time to onset of symptoms Sleep disturbance immediate. Palpitations/tremors by 4-6 weeks. Retinal stroke at 11 weeks. Diarrhea and GI bleeding by 4 months. | | | aggressive now and I never used to. If something doesn't go my way, I get real flustered, and then start with that nervousness and I have to go calm myself down." Irritable. Anxious about his own and wife's health and well-being. | back in the same thing again." "Getting away calms you down." | # Case History D1 (page 2 of 4) | | Pre-exposure | During exposure* | Post-exposure** | |-------------------------|--|--|--| | Balance/
equilibrium | Never carsick but badly seasick once as a child. Avoided water ever after and disliked crossing bridges. No vertigo. | After retinal stroke, episodes of "numbness coming over my head. It seems to be my brain. Light-headed, not dizzy, I don't stagger. I can hear, I can talk, everything works for me properly, it's just that I get light-headed." No vertigo. | Does not occur away from home. | | Ear/hearing | Some hearing loss but no difficulty understanding conversation. Skillfully differentiates machine noises in all settings. Has background tinnitus. | Background tinnitus is louder and higher, a "squeal," when turbines in operation. Drops in pitch when turbines are off and changes intensity when turbines change direction. When louder, the tinnitus interferes with hearing. No other sensations in ears. | Tinnitus at baseline when away from home. | | Eye/vision | Wears glasses and has early cataracts. | Painless retinal stroke at night during sleep. Lost over half of vision in left eye. Confirmed by ophthalmologist, who talked to Mr. D about muscles squeezing off blood vessels in his eye. Normal CT. | No change | | Other
neurological | Normal without history of seizure or tremor | After 16 months: "Right arm jumps all over on its own it just sits and bounces hand shaking ferce just hanging onto the phone started with feeling of satin or silk between the fingers feels like it's wore out, like you're grabbing something real tight all the time muscle spasms"; had nerve conduction studies [results unknown] and normal MRI of brain. | Arm calmed down during 5 days away and worsened on return. | # Case History D1 (page 3 of 4) | | 6 | • | *** | |------------------|--|--|--------------------------------| | | Pre-exposure | During exposure* | Post-exposure** | | Cardiovascular | Normal including BP, no palpitations | Episodic tachycardia: "My heart feels like it's starting to race like crazy and I have these tremors going through my body and I was getting into a light pain on the left side of my chest." Symptoms exacerbated by nitro spray. Stress test terminated in 30 seconds. Scheduled for cardiac imaging test. | Does not occur away from home. | | Gastrointestinal | Gastrointestinal Uses laxative to counteract opiate effect. Ulcer 2 years before while taking aspirin. | Stool again positive for blood; omeprazole started, endoscopy scheduled; bowels too loose or too firm. | No information | | Respiratory | Normal except smoking
age 15–44, no asthma | Pants or hyperventilates when tremor and tachycardia occur, and consciously slows his breathing when calming down. | Does not occur away from home. | | Endocrinologic | No diabetes or other problem | No change | No change | | Rheumatologic | Persistent neck and back pain due to injury at age 37. Two acetaminophen with codeine daily, rarely more. No other joint problems. | No change | No change | | Other | Spent his time outside with ponies and traveled to Florida with wife for 6 weeks in winter. | "Now I don't go outside at all." At follow-up interview, the couple had not taken
their next winter trip to Florida because of Mr. D's health problems. | No information | | | | Two months of static electric charge in yard: hair on arms would stand up | Static charge resolved | # Case History D1 (page 4 of 4) | exposure During exposure* | "When turbines get into a particular position (facing me), I get real nervous, almost like tremors going through your body it's more like a vibration from outside your whole body feels it, as if something was vibrating me, like sitting in a vibrating chair but my body's not moving." Occurs day or night, but not if the turbines are facing "off to the side." If outside, "I come in, sit down in my chair and try to calm myself down. After an episode like that, I'm real tired." | ed for riding, Riding pony refused to leave barn, go up road, Ing cart. Sweats, trembled, ran uncontrolled through gates and fences with cart and harness attached. Both ponies were sold 8 weeks into exposure period. | previously Puppies 3 days old: mother had killed No information one large healthy puppy; she was staying | |---------------------------|--|--|--| | Pre-exposure | | Ponies well trained for riding,
jumping, and pulling cart. | Dog had 4 litters previously and did well. | | | Other (cont'd) | Animals | | *Exposure period 6 months by first interview and 16 months at follow-up interview. Information is from first interview unless otherwise noted. ** Had purchased second house but not yet moved at follow-up interview; away only for weekends or short trips. | Case History D2 | | Pre-exposure | During exposure* | Post-exposure** | |---|-------------------------|---|--|-----------------| | (page 1 of 2) | Sleep | Slept well | Frequent awakening | Slept well | | Person
Mrs. D | Headache | Only at initial diagnosis of hypertension 12 years before | No change | No change | | Age
64 | Cognition | Never was good at
concentrating and did
not do well in school | No change | No change | | Pre-exposure health status Hypertension and cardiac output limitations Health history | Mood | Depression with weight loss when husband injured (1983–84), treated with medication for over a year | Anger and irritability related to poor sleep; anxiety over husband's health and whether they will have to move | Improved | | z bruns and nysterectomy. Current medications: furosemide, metoprolol, felodipine, enalapril, | Balance/
equilibrium | Normal, never carsick
or seasick. No vertigo. | A few episodes of mild
light-headedness while
sitting or standing in house | Resolved | | premarin. | Ear/hearing | Hearing good, no tinnitus | No change | No change | | Previous noise exposure
No significant | Eye/vision | Normal with glasses | Having trouble reading small print at night; scheduled for eye exam | No information | | Time to onset of symptoms 4–5 months | Other
neurological | Normal, no concussion | No change | No change | | | Cardiovascular | Hypertension, history of angina, history of ankle edema, limited exercise tolerance | No change | No change | | | Gastrointestinal Normal | Normal | No change | No change | # Case History D2 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure** | |----------------|------------------------------|------------------|-----------------| | Respiratory | Normal, no asthma or smoking | No change | No change | | Endocrinologic | No diabetes | No change | No change | *Exposure period 6 months at her and her husband's first interview, 16 months at follow-up interview with husband. Information is from first interview. ^{**}Had purchased second house but not yet moved at follow-up interview; away only for weekends or short trips. | Case History E1 | | Pre-exposure | During exposure* | Post-exposure** | |---|-------------------------|---|--|----------------------| | Person
Mr. E | Sleep | Sleep broken, "up and
down all the time" | No change in pattern, but
now complaining of noise
and being unable to sleep | At baseline | | Age
56 | Headache | Rare, mild | No change | No change | | Pre-exposure health status | Cognition | No short-term memory, can't problem-solve, obsesses | No change | No change | | Dementia, Parkinson's disease,
binolar disorder, diabetes | Mood | Paranoid when manic | No change | Hypomanic after move | | Health history | Balance/
equilibrium | Shuffles but no overt balance problems; never carsick or seasick | Progression of Parkinsonism,
decreased walking | Persistent changes | | Hospitalized for mania three
times: hospitalized at age 23 | Ear/hearing | Possible decline but not tested | No change | No change | | because of electric shock | Eye/vision | Normal with glasses,
no retinal changes | Blurring and retinal changes | Persistent changes | | Previous noise exposure
No significant | Other
neurological | See Pre-exposure health status; one concussion as teen | See above | See above | | Time to onset of symptoms
Gradual | Cardiovascular | Coronary artery disease,
no MI, BP normal | No change | No change | | | Gastrointestinal | GER, constipation | No change | No change | | | Respiratory | Normal except smokes | No change | No change | | | Endocrinologic | Type II diabetes and obesity, stable on oral medication and insulin | Marked glucose instability with highs and lows | Stabilized | | | Other | Reduced renal function | Increased frequency
of urination | Persistent changes | | | | Squamous cell carcinoma of skin | No new lesions | No change | *Exposure period 17 months. ^{**}Information from interview of wife 1 month after move to new house. | Case History E2 | | Pre-exposure | During exposure* | Post-exposure** | |--|-------------------------|--|--|---| | (page 1 of 2)
Person
Mrs. E | Sleep | Normal except after
hysterectomy | Onset delayed up to 3 hours, multiple awakenings, nocturia (no glucosuria). At times awake all night, worse when blades facing NW. | Sleeps well, no
nocturia | | Age 56 Pre-exposure health status Fibromyalgia vs. reflex sympathetic dystrophy | Headache | Rare, mild. Only one previous similar headache, when landing in a jet with nose and ears plugged from allergy. | Headache whenever turbines were generating. "In the wintertime, the strobing in the house and on property built up such pressure in my head you'd think it was going to blow off the top." | No headaches | | Health history 4 term births, appendectomy, hysterectomy with "nerve damage" at age 38 | Cognition | Normal: retired
teacher, organizes
community activities | When blades facing house, could not spell, write letters, or keep her train of thought on the telephone, but was able work when blades not facing house. | Resolved; no
concentration or
memory difficulties | | rrevious noise exposure No significant Time to onset of symptoms | Mood | Mild anxiety with
chronic low-dose
anxiolytic at bedtime | Episode of depression | At baseline | | Immediate with progression | Balance/
equilibrium | Never carsick or seasick.
Vertigo twice in past,
each episode 1–2 weeks. | "Light-headedness, head kind of
swimming." Less steady on feet
depending on direction blades
facing, especially outside. | Resolved | | | Ear/hearing | Normal, tested | Occasional sensation like insect crawling in ear; no tinnitus or change in hearing | Resolved | | | Eye/vision | Normal, glasses for reading only | No change | No change | # Case History E2 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure** | |-----------------------|--|--|--| | Other
neurological | Painful right leg and abdomen ascribed to nerve damage, uses TENS unit; no concussion. | Pain worse, increased use of TENS unit | Resolved when away even
for short periods | | Cardiovascular | Cardiovascular Normal including BP | "Heart synchronized to rhythm of blades."
When lying on back, felt "ticking" or "pulsing" in chest in rhythm with swish of the blades. Could make it stop by getting up and moving around, but started again when she lay down. Occurred more at night. No change in BP. | Resolved | | Gastrointestinal | Gastrointestinal GER resolved with diet intervention. | Nauseated when she had a pounding headache. | Resolved | | Respiratory | Normal, never smoked.
Soprano in church choir. | More coughing illnesses, one lasting 6 weeks. Lost ability to sing. | Both resolved | | Rheumatologic | Fibromyalgia; osteoarthritis in hands | Diffuse muscle aches, "thought my fibromyalgia had really flared up." | Resolved when away even
for short periods | | Animals | Anxious dog | Dog did not sleep, wet floor 9/10 nights | Dog dry and no longer anxious | *Exposure period 17 months. **While away on trips of 12 days to 3 weeks and after final move 1 month before interview. | Case History F1 | | Pre-exposure | During exposure* | Post-exposure** | |---|-------------------------|--|---|--| | (page 1 of 2)
Person
Mr. F
Age | Sleep | Rare insomnia when worried. | Frequent abrupt awakening, focusing on noise, no sleep past 4 am. Tired and "feeling beat up" in morning. Prescribed anxiolytic. | Improved, still requires
occasional anxiolytic. | | Pre-exposure health status | Headache | As teen, occipital headaches triggered by studying. No severe headaches in 20 years. | 2–3 per week, not all day, increased OTC analgesic use. | 1–2 per week. | | Health history No significant Previous noise exposure Farm equipment exposure since youth, uses hearing | Cognition | Good; BSc and registered instructor in agronomy. | Memory deficits noted from 3 months into exposure, "frustrating at times"; noise draws attention at night; concentration problems attributed to poor sleep and the lack of resolution of problem. | Concentration improved with improved sleep but memory still decreased; has ongoing depression. | | protection consistently Time to onset of symptoms 3 days for sleep disturbance; 3 | Mood | Intermittent anxiety and depression since age 14, never medicated. | Depression, frustration, annoyance, anger. Unable to accomplish daily tasks. | Improved, not resolved; has more enthusiasm for doing things. | | months for memory deficits | Balance/
equilibrium | Slight carsickness in back seat or if reading in car. No h/o vertigo. | Occasionally off balance but not interfering with functioning. | Persists only during ongoing exposure. | | | Ear/hearing | "Reasonably keen hearing for age." No tinnitus. | Irritation and rumbling in ears
with sensations of blowing
in ears, of eardrum "moving
without hearing it," and hearing
noise "in center of head." | Improved with less exposure. | | | Eye/vision | Normal, no glasses. | No change | No change | Case History F1 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure** | |-----------------------|---|---|---| | Other
neurological | Normal, no concussion. | No change | No change | | Cardiovascular | Cardiovascular Infrequent tachycardia of short duration Weekly episodes of tachycardia of (5 seconds), diagnosed at age 15. | Weekly episodes of tachycardia of increased duration, longest 15 minutes. | Frequency still increased | | Gastrointestinal | Gastrointestinal Intermittent GER and irritable bowel symptoms. | Increased frequency and intensity of GER and irritable bowel symptoms. | Unresolved | | Respiratory | Mild wheezing with URIs began about 6 years before, no medication prescribed. | Pneumonia and asthma diagnosed 6 weeks into exposure; thereafter, persistent wheezing requiring use of bronchodilator about twice a week. | Persistent opacity on chest x-ray and semiweekly wheezing | | Rheumatologic | Rheumatologic Intermittent knee arthralgia since age 11 related to overuse. | No change | No change | | Other | | Detected indoor vibration/hum more after double-glazed windows installed in attempt to exclude noise. | | *Exposure period 7 months until rented "sleeping house" and 12 months until rented "sleeping and living house." ^{**}Ongoing exposure up to 8 hours per day while farming land and using farm office in home. Interviewed 3 months after second exposure reduction. | Case History F2 | | Pre-exposure | During exposure* | Post-exposure** | |--|-------------------------|--|--|--| | (page 1 of 2) | Sleep | Good | 3-6 hours of disrupted sleep/ | Normal sleep without | | Person
Mrs. F | | | night. Startles awake with
heart pounding, feeling of
fear, compulsion to check | medication on
any night away | | Age
51 | | | house, and need to urinate,
then unable to go back to
elean Tired in morning | | | Pre-exposure health status | | | Prescribed anxiolytic. | | | Good with controlled asthma Health history Breast cancer with mastectomy | Headache | Rare, mild | Daily, long-lasting, with increased OTC analgesic use. Headaches worse with | Resolved with
reduced exposure | | 2002: preeclampsia 1990: 2 | | | consecutive days of exposure. | | | births; current medications
anastrazol, beclamethasone
inhaler, salmeterol inhaler | Cognition | Good, master's level
nurse, midwife, and
health administrator | Could not follow recipes, plots Improved, not resolved of TV shows, or furniture assembly instructions. | Improved, not resolved | | Previous noise exposure No significant Time to onset of symptoms | Mood | Normal | Depression, despair,
hopelessness, exhaustion,
"feeling of unease all the time"
and of being overwhelmed. | Improved, not resolved | | 3 days | Balance/
equilibrium | Occasional motion sickness on boat or carnival ride. No h/o vertigo. | Frequent nausea with occasional dizzy feeling. | Resolved except
with prolonged or
overnight exposure | | | Ear/hearing | High frequency hearing loss due to chemotherapy. No tinnitus. No h/o otitis media. | Prolonged (3 week) first-time otitis media. No tinnitus, no change in hearing. | At baseline | | | Eye/vision | Normal with glasses | Mild blurring in one eye some mornings. | Improved | even when turbines off. in garage next to freezer, and barks to get in. #### Case History F2 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure** | |-----------------------|---|---|--| | Other
neurological | Normal, no concussion | No change | No change | | Cardiovascular | Occasional palpitations. BP
130/80 range, stable x 17 years | Palpitations unchanged, BP increasing during exposure period. | BP 150/90–108; started antihypertensive | | Gastrointestinal | Gastrointestinal Intermittent mild GER not requiring medication | Began treatment with proton pump inhibitor; nauseated if sleeps in home or spends longer hours there. | No nausea or need for
proton pump inhibitor | | Respiratory | Well-controlled asthma | No change | No change | | Other | | Physical sensation of noise "like a heavy rock concert." | | | | | "Hum makes you feel sick." | | | | | "We are talking about the complete devastation of your life." | | | | | Visiting adult son, 10 pm: "We're going to go stay in a nightclub. It would be quieter." | | | | | | | | Animals | Moles throughout lawn | No moles | Molehill appears when turbines off for 3–4 days. | | | Dog slept in outdoor kennel. | Dog refuses to sleep in kennel, sleeps only | Dog's behavior persistent | **Ongoing exposure up to 8 hours per day while farming land and using farm office in home. Interviewed 3 months after second exposure reduction. *Exposure period 7 months until rented "sleeping house" and 12 months until rented "sleeping and living house." | Case History F3 | | Pre-exposure | During exposure* | Post-exposure** | |---|-------------------------|---|---|--| | (page 1 of 2) Person | Sleep | Good | Poor sleep, not rested in
morning, began taking
naps after school | Sleeps well in sleeping
house, not tired in day | | Age | Headache | Rare, mild | Increased, with increased
OTC analgesic use | Resolved | | 17 Pre-exposure health status Good Health history Frequent otitis media | Cognition | Good. Studies and reading require diligent effort. High marks on GCSE national exams at age 16. | Marks on AS national exams at age 17 were significantly lower than past performance and school
expectations. Regular school marks and tests in usual range. | Improved | | as child, no PE tubes; intermittent mild asthma Previous noise exposure No significant: plays | Mood | Good, conscientious | Irritable, argumentative, unwilling to do things, "more depressed than usual for teenagers," she stated | Annoyed at having
to travel to sleep | | grand piano, keeps iPod
volume and bass low | Balance/
equilibrium | Normal, never
carsick or seasick | No change | No change | | Time to onset of symptoms | Ear/hearing | Normal hearing | No change | No change | | Noticed gradually, especially by contrast | Eye/vision | Normal with small correction for reading | Persistent floater in one eye, examined by optometrist | No change | | after family vacation | Other
neurological | Normal, no concussion | No change | No change | | | Cardiovascular | Normal including BP | No change | No change | | | Gastrointestinal | Normal | No change | No change | ### Case History F3 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure** | |-------------|---|---|--| | Respiratory | Mild asthma only with URIs.
No bronchodilator use in 2
years before exposure. | Daily bronchodilator use began at 6 months; two prolonged lower respiratory infections at 7 and 8 months; low peak flows persisted 3 months after infections, when inhaled steroid added. | Continuing inhaled steroid
use, peak flows resolved | | Other | | Did not hear or feel anything except "whooshing" some nights. | | **Limited ongoing exposure after school and on weekends/vacations. Interviewed 3 months after second exposure reduction. *Exposure period 7 months until rented "sleeping house" and 12 months until rented "sleeping and living house." | Case History F4 | | Pre-exposure | During exposure* | Post-exposure** | |--|-------------------------|---|--|---| | (page 1 of 2) | Sleep | Satisfactory, no daytime | Awakened 2-3 times per night | Slept well in hospital | | Person
Mrs. F Senior | | naps; one void nightly
with brief awakening | when wind from direction of
turbines; feels "very awake,
not relaxed" when awakened: | at 18 months'
exposure, otherwise
has not left home | | Age
75 | | | prolonged nighttime awake periods. Nocturia with urge to void at each awakening. | | | Pre-exposure health status | | | Taking daytime naps. | | | Atrial fibrillation, | Headache | Rare, mild | No change | | | Health history | Cognition | Mild memory and cognitive abnormalities | No change | | | Colostomy 1989 for obstruction, reversed | Mood | Good as long as she can
go out in her garden | No change, still going outside | | | warfarin, digoxin | Balance/
equilibrium | Normal, never carsick or seasick, no h/o vertigo | No change | | | Previous noise exposure No significant Time of onset of symptoms Immediate with progression | Ear/hearing | Hearing satisfactory | "I can feel it in my ears" at
times of night awakenings;
feels like "wax or someone
blowing down your ears." | | | I Company | Eye/vision | Normal with glasses | No change | | | | Other
neurological | Normal, no concussion | No change | | | | Cardiovascular | Atrial fibrillation with anticoagulation x 10 years, stable on 2–4 mcg warfarin daily | INR decreased and warfarin dose increased to 8–9 mcg daily; at 18 months acute exacerbation of AF during pneumonia/pyelonephritis. | | ### Case History F4 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure** | |---------------------------|---|--|-----------------| | Gastrointestinal | Gastrointestinal Normal functioning, asymptomatic | No change | | | Respiratory | Normal, no asthma, never smoked | Persistent "bad cough" for 3–4 months starting at 8 months; took antibiotic, cough improved, then recurred. Pneumonia with hypoxia at 18 months followed by persistent dyspnea; at 20 months, scarring on chest CT at both lung apices and site of pneumonia; under investigation by pulmonologist. | | | Rheumatologic No arthriti | No arthritis | Onset of arthritis in one knee; acute swelling at 18 months yielded no fluid; under investigation by rheumatologist. | | | Renal | Normal | Nocturia; pyelonephritis at 18 months | | *Interviewed at 16 months of exposure; health updates provided by daughter-in-law to 21 months of exposure. Information from interview unless otherwise noted. Dog stays in kitchen. Dog went outside and in various rooms in house. Animals ^{**}Mrs. F Senior did not reduce her exposure with her son and his family. | Case History G1 | | Pre-exposure | During exposure* | Post-exposure | |---|-------------------------|---|---|--| | (page 1 of 2) Person Mr. G | Sleep | Good | Delayed onset and increased awakening due to noise. Uses ear plugs. | Not disturbed by urban rail line outside window during work week. Slept well when away with | | Age
32
Pre-exposure health status | Headache | A few bad headaches in life,
not identified as migraines | If awakened by turbine noise, has headache at time of | ramny and after move.
No headaches | | Good
Health history
Chronic bilateral serous | Cognition | Good; computer
programmer; long work
days and commute | Tired at work, "concentration lacking in afternoons" | At baseline with same
commute; tired but
concentration fine | | otitis media and conductive hearing loss treated with PE tubes at ages 7 and 9 Previous noise exposure | Mood | Good | Finds noise outside or
noise which awakens him
at night stressful. Worried
about wife and family. | Feels more relaxed; situation resolved; wife and children all happier; home with family every day. | | airplane and train noise while commuting Time to onset of symptoms Noticed gradually | Balance/
equilibrium | Always seasick; carsick if in back seat. Vertigo for a few weeks at age 29. | Episodes of dizziness "like
being spun fast in a circle";
disorientation/feeling "very
strange" in certain parts of
house at certain times where
he can "feel rumbling." | Did not occur away
from exposed home,
when turbines off,
or after moving | | | Ear/hearing | Normal hearing; no tinnitus | No change | No change | | | Eye/vision | Corrected with glasses; eyestrain from | No change | No change | # Case History G1 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure | |-------------------------|--|---|---| | Other
neurological | Normal, no concussion | No change | No change | | Cardiovascular | Cardiovascular Normal including BP | No symptoms, BP not measured | No change | | Gastrointestinal Normal | Normal | Moves away from spot in house where he feels strange before it progresses to nausea. | Did not occur away from exposed home, when turbines off, or after moving. | | Respiratory | Slight asthma with dust/mold allergies, intermittent bronchodilator use. Never smoked. | No change | No change | | Other | | "Noise at times is very invasive. Train noise has a different quality, not invasive." | | | | | "Flicker is visually invasive." | | *During 15 month exposure, exposure reduced by working and staying in a distant city Mon-Fri each week; at home weekends; traveled by plane and train. Interviewed after 11 months of exposure and 2 months after moving away. | Case History G2 | | Pre-exposure | During exposure* | Post-exposure | |--|-----------|---|--|---| | (page 1 of 3) Person Mrs. G | Sleep | Good | Sleep onset delayed up to 4 hours; turbine noise wakes up children, 2-yearold with night terrors/ screaming; tired in morning. | Goes to sleep quickly;
children sleep through
night; well-rested; not
bothered by traffic noise;
immediate resolution. | | 32 Pre-exposure health status Good Health history Ebisode of depression at | Headache | Migraine with aura
once a year |
Migraine frequency increased to 4/year; also prolonged, "heavy" frontal headaches and "a permanent fuzz in my head." | Frontal headaches resolved immediately; no migraines since move; one mild headache every few weeks which resolves quickly on its own. | | age 18; 4 births, no post- partum depression Previous noise exposure No significant Time to onset of symptoms | Cognition | Normal, well organized;
no cognitive deficits even
with previous depression | Forgetful, has to write everything down, can't seem to get organized, hard to concentrate | Concentration and memory gradually improving; she rated them 10/10 pre-exposure, 2/10 during exposure, and 5/10 2 months after moving. | | problem, 10 months for depression (when infant 7 months old) | Mood | Good (see Health history) | Irritable, angry, worried about future and children, developing depression; better when turbines off and can go outside. | Improved, regaining energy, "bouncing around again," enjoying children. She rated her mood 10/10 before exposure, 2/10 during exposure, and 7/10.2 months after moving. | # Case History G2 (page 2 of 3) | | Pre-exposure | During exposure* | Post-exposure | |---------------------------------|---|--|--| | Balance/
equilibrium | Slight carsickness even as adult; seasick only when pregnant. No h/o vertigo. | Disoriented, "light-headed," dizzy, and nauseated in garden and specific parts of house where she detects vibration; feels her body is vibrating "inside" but walls, windows, and objects are not vibrating. No balance problem. | Did not occur away from exposed home,
when turbines off, or after moving | | Ear/hearing | Good, no tinnitus | Hyperacusis; finds TV unbearably loud. | Resolved, hearing sensitivity at baseline | | Eye/vision | Normal with glasses | No change | No change | | Other
neurological | Normal, no concussion | No change | No change | | Cardiovascular | Normal except BP increase
during 3rd and 4th pregnancies | No symptoms, BP not checked | No change | | Gastrointestinal Normal, no GER | Normal, no GER | Nauseated; see Balance/equilibrium | Resolved | | Respiratory | Mild asthma, no inhaler
use in 7 years | No change; normal coughs
and colds from children | Same; new colds in new location | | Rheumatologic | No joint problems | Sharp pain in elbow on lifting | Resolved when away from exposed home for 1–3 weeks and recurred upon return; resolved immediately when moved, despite increased lifting during move. | | Other | | Noise similar to a diesel tractor-
trailer on other side of house wall | Traffic noise at new home on busy road is not bothersome, especially because it slacks off at night | | | | Can hear turbines over a 90-dB
lawnmower because of quality of noise | | # Case History G2 (page 3 of 3) | | 6 | | | |---------|---|--|---------------| | | Pre-exposure | During exposure* | Post-exposure | | Animals | Bats lived in unused chimney;
family did not disturb them | Bats gone | | | | Three deer seen regularly in yard and many others in neighborhood | Deer no longer present, moved
downhill to village | | | | Dogs aniet at night | Dogs hark a lot at pight | | *Exposure period 15 months. Interviewed after 11 months of exposure and 2 months after moving away. No change Cardiovascular Normal | Case History G3 | | Pre-exposure | During exposure* | Post-exposure | |---|-------------------------|--|---|---| | (page 1 of 2) | Sleep | Sleeps through night | Appeared to sleep through | Not claiming to "sit | | Person
First son G | | | night but frequently told
mother in morning he
was "sitting up all night"; | up all night," doesn't
look as tired. | | Age
6 (7 post-exposure) | | | felt tired and looked "permanently tired." | | | Pre-exposure health status
Normal growth/development | Headache | No headaches | Headaches when he plays
video games and when he
hasn't played them for days | Still plays video games
but no headaches. | | Health history
No significant | Cognition | Extremely focused child, advanced in reading | Never liked to read on
own or a whole book | Sits down to read on his own for an hour | | Previous noise exposure | | | | "quite a thick book." | | No significant Time to onset of symptoms | Mood | Normal | "Freaked out" over going to store with mother and | Happier, less grouchy, gets over his resistance | | Immediate with progression | | | siblings, tantrums and bad moods prolonged. | and tantrums quickly. | | | Balance/
equilibrium | Gets carsick and seasick | No change | No change | | | Ear/hearing | Chronic serous otitis media in Persistent one ear with reduced hearing | Persistent | Persistent | | | Eye/vision | Normal | No change | No change | | | Other
neurological | Normal, no concussion | No change | No change | Case History G3 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure | |------------------------|-------------------|---|---------------| | Gastrointestinal Norma | Normal | No change | No change | | Respiratory | Normal, no asthma | No change | No change | | Other | | Less time outdoors because of turbine noise | | *Exposure period 15 months. Information provided by parents after 11 months of exposure and 2 months after moving away. | Case History G4 | | Pre-exposure | During exposure* | Post-exposure | |---|-------------------------|---|---|---| | (page 1 of 2) Person First daughter G Age 5 | Sleep | Slept through night | Awakened by turbine noise, saying, "I can hear this horrible noise." Could be soothed by mother and return to sleep. Wet bed half of nights, 2–3 nights in a row. | Sleeps through night. No bed-wetting while away from exposed home for 1–3 week visits or since move. | | Dro ovnocuro hoolth etatue | Headache | None | No change | No change | | Normal growth/development Health history Repetitive otitis media with | Cognition | Normal, no teacher concerns, but mother notes short attention span. | Hearing loss thought to be affecting school work. | Hearing and ear
fluid unchanged,
but "schoolwork has
improved massively". | | bilateral chronic serous
otitis media, no PE tubes
Previous noise exposure | Mood | Normal for age | Tantrums over homework only: "I can't do it, I can't do it," then storming out of room. | More patient and can work longer on homework. | | No significant | Balance/
equilibrium | Never carsick or seasick,
balance good | No change | No change | | Immediate with progression | Ear/hearing | Bilateral conductive hearing loss due to middle ear fluid | Persistent throughout exposure period with bilateral hearing loss and frequent episodes of acute otitis media | No change from
exposure period, on
waiting list for PE tubes | | | Eye/vision | Normal | No change | No change | | | Other
neurological | Normal, no concussion | No change | No change | | | Cardiovascular | Normal | No change | No change | | | Gastrointestinal | Normal | No change | No change | Case History G4 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure | |-------------|-------------------|---|---------------| | Respiratory | Normal, no asthma | No change | No change | | Other | | Less time outdoors because of turbine noise | | *Exposure period 15 months. Information provided by parents after 11 months of exposure and 2 months after moving away. | Case History G5 | | Pre-exposure | During exposure* | Post-exposure | |--|-------------------------|--|---|---| | (page 1 of 2) | Sleep | Sleeps through night | Whenever turbines noisy, | Rarely awakens at night, | | Person
Second daughter G | | | awakened screaming,
climbing out of bed; easily
comforted by mom but | no screaming, okay to
go back into own bed
after little cuddle. | | Age 2 (at both interviews) | | | grabbed posts to resist going back in own bed; had to sleep with mom. | | | Pre-exposure health status Normal growth/development Health history Eczema as baby | Headache | None | Did not hold head, but
spent some days quietly
on couch after receiving
OTC analgesic. | Never spends day on couch;
energetic even with URI. | | | Cognition | Normal development | Good language development | Good language development | | Previous noise exposure No significant Time to onset of symptoms Immediate with
progression | Mood | Normal | Irritable, oversensitive; numerous crying/screaming bouts every day if a sibling "unsteadied her or even walked too close." | Bouncy, good-natured,
confident, "gives as good
as she gets" and doesn't
melt down or overreact. | | | Balance/
equilibrium | Never carsick or seasick | No change | No change | | | Ear/hearing | Normal, no h/o otitis media No otitis media even with URIs | No otitis media
even with URIs | No change | | | Eye/vision | Normal | No change | No change | | | Other
neurological | Normal, no concussion | No change | No change | | | Cardiovascular | Normal | No change | No change | | | Gastrointestinal | Normal | No change | No change | Case History G5 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure | |-------------|-------------------|---|---------------| | Respiratory | Normal, no asthma | No change | No change | | Other | | Less time outdoors because of turbine noise | e e | *Exposure period 15 months. Information provided by parents after 11 months of exposure and 2 months after moving away. Normal Respiratory | Case History G6 | | Pre-exposure | During exposure* | Post-exposure | |--|-------------------------|--|--|--| | Person
Infant son G | Sleep | N/A | Slept through night
from 6 weeks of age | Continues to sleep
through night | | Аве | Headache | | N/A | N/A | | 8 months (14 months at 2nd interview) | Cognition | | No developmental concerns | At 14 months, "Not the quiet one in the corner | | Pre-exposure health status Term healthy infant exposed final 3 months in utero | | | | anymore—starting to
chat now, making the
right noises." Pulling
up and cruising around
furniture, very sociable. | | Slight eczema | Mood | | "Always a very laid-
back little boy" | No change | | Previous noise exposure
No significant | Balance/
equilibrium | | N/A | At 14 months, not yet walking independently | | Time to onset of symptoms | Ear/hearing | | Normal | No change | | No symptoms | Eye/vision | | Normal | No change | | | Other
neurological | Normal fetal movement | Normal | No change | | | Cardiovascular | Normal fetal heart
tones and sonogram | Normal | No change | | | Gastrointestinal | | Normal | No change | *Exposure period 15 months, 3 months in utero and 12 months as infant. Information provided by parents when he was 8 months old and 2 months after moving away. | Case History H1 | | Pre-exposure | During exposure* | Post-exposure** | |---|---------------------|---|--|--| | Person
Mr. H | Sleep | Good; not disturbed
by traffic/train noise
at former home | Awakened by turbine noise 2–3 times a week, tired next day | Sleeps through night,
better rested | | Age | Headache | Rare headache | No change | No change | | Pre-exposure health status Good | Cognition | Memory problems since
event which caused PTSD,
forgets experiences and
things to do until reminded | No change | No change | | nealth mstory
No significant other
than PTSD | Mood | PTSD/depression 4 years before exposure | No exacerbation | No change | | Previous noise exposure | Balance/equilibrium | Balance/equilibrium Never carsick or seasick, no h/o vertigo | No change | No change | | Served in army; arrives
buses and milk tanker
truck | Ear/hearing | "Near perfect" hearing,
no tinnitus | Mild continuous "static
noise" tinnitus, not
affecting hearing | Unknown | | Time to onset of symptoms | Eye/vision | Normal with glasses | No change | No change | | immediate for sleep
disturbance | Other neurological | Normal, mild
concussion age 39 | No change | No change | **Family has not moved but was away from home for 2 weeks in the 2 months preceding the interview. *Exposure period 2 years; away from house 3 am to 4-5 pm daily for work. No change Normal, occasional diarrhea Normal except smokes Gastrointestinal Cardiovascular Normal including BP No change No change Unknown Arthritis in one finger joint No joint problems Rheumatologic Respiratory No change No change | Case History H2 | | Pre-exposure | During exposure* | Post-exposure** | |---|-------------------------|--|--|--------------------------| | (page 1 of 2) Person Mrs. H Age 57 Pre-exposure health status Lupus with arthritis and normal renal function; takes | Sleep | Slept well through night | Delayed onset and frequent awakening, 5–6 per night; awakens with sense of fear, compulsion to check house, "very disturbed sort of waking up, you jolt awake, like someone has broken a pane of glass to get into the house; you know what it is but you've got to check it—go open the front door—it's horrific"; nocturia; unable to go back to sleep | Slept well through night | | quinine; also diagnosed
with fibromyalgia
Health history | Headache | Rare, mild | Headaches continuous unless turbines off; takes analgesics only when headache very bad in night. | No headaches while away | | Hysterectomy and lipoma removal Previous noise exposure | Cognition | Concentration/memory problems when first diagnosed with lupus, then improved | Concentration/memory
slightly worse, writing
herself more reminders | At pre-exposure baseline | | Urban life to age 54 Time to onset of symptoms | Mood | No h/o mood problem or anxiety | Irritable and angry, shouting more | Improved while away | | Immediate with progression | Balance/
equilibrium | Never carsick or seasick; 4 episodes of vertigo, all 6 or more years before exposure | 10–20 minute episodes of dizziness, sometimes with nausea | Did not occur while away | | | Ear/hearing | Tinnitus and hearing loss | Ongoing tinnitus and 3 incidents, each 1 hour at 3–4 am, of "real high-pitched noise, holding my head, not in ears, just in head, not something I could hear." Also intermittent ear pain, "not earache." | Did not occur while away | # Case History H2 (page 2 of 2) | | Pre-expositre | During exposure* | Post-exposure** | |-------------------------|---|--|---| | Eye/vision | Diplopia requiring prisms in glasses
began at least 6 years before exposure | Intermittent blurring (can't read letters on TV) and dry, sore feeling in eyes | Unknown | | Other
neurological | Diplopia; concussion around beginning of exposure period | No change | No change | | Cardiovascular | Normal including BP | No change | No change | | Gastrointestinal Normal | Normal | Repetitive belching with feeling of air trapping and soreness of chest wall; rubs chest, lies on side to release air and obtain relief. | Unknown | | Respiratory | Short of breath around polish or perfumes; feather allergy; smokes | No change | No change | | Rheumatologic | Joint and muscle pains, not
exacerbated by weather | Pain worse and continuous. Began with exacerbation of muscle and joint pains, then neck pain and headaches; when returned from trip, pain built back up over a week. | Improved to baseline level | | Other | No problem with noise from truck traffic
or living in flight path of small airport | Turbine noise different, "unnatural"; sounds like "When I'm away it's so different, airplane stuck over house; pulsation prevents it's like I'm in a normal life." sleep; sound intensifies in cold weather. | "When I'm away it's so different,
it's like I'm in a normal life." | | | Cottage heated by two open coal fires | Both chimneys taken down and roof replaced, with extra insulation, in attempt to keep noise out; coal fires replaced by electric oilfilled radiators; cottage became damper. | | *Exposure period 2 years; family lived here 1 year before turbines went into operation. ^{**}Family has not moved but was away from home for 2 weeks in the 2 months preceding the interview. No change Normal, no concussion Other has normal acuity No change No change No change No change No change No change | Case History H3 | | Pre-exposure | During exposure* | Post-exposure** | |--|-------------------------|--|--|--------------------------| | Person Grandson H Age | Sleep | Slept quietly through night | Difficulty falling asleep, irritable at bedtime. When asleep, kicking and moving all night. In bed 11 hours/night. | Slept well | | ∞ | Headache | Rare | Increased but still infrequent | No headache | | Pre-exposure health
status Healthy with normal development | Cognition | Does well in reading, spelling,
and math; excellent memory. | Teacher told him he was not concentrating and needed to go to bed earlier; resistant to doing homework. | Not in school while away | | No significant Previous noise exposure | Mood | Calm, intelligent child with
good language abilities | Irritable, tired, lethargic, aggressive; shouts, stamps, refuses. | Improved while away | | No significant Time to onset of symptoms | Balance/
equilibrium | Normal, never carsick | No change | No change | | Immediate for sleep, gradual | Ear/hearing | Normal, no h/o otitis media | No change | No change | | for mood and concentration | Eye/vision | Poor vision (shapes only) in left eye; right | Started to "squint," eye exam pending. | No change | **Family has not moved but was away from home for 2 weeks in the 2 months preceding the interview. *Exposure period two years; away from home at school 6 hours per day during school year. Normal, no asthma Respiratory Gastrointestinal Normal Normal neurological Cardiovascular | Case History I1 | | Pre-exposure | During exposure* | Post-exposure** | |--|-------------------------|---|---|-----------------| | (page 1 of 2) | Sleep | Slept well | One long awakening
each noisy night | | | Mr. I | Headache | None | No change | | | Age 59 Pre-exposure health status Healthy, active | Cognition | Normal, no concentration
or memory problems | Cannot concentrate on his outdoor gardening and building tasks; "after half an hour you have to leave, escape, close the door." | | | Health history No significant Previous noise exposure Church bell ringer as child: | Mood | Нарру | Anger, anxiety, depression, feeling of shame and powerlessness; well motivated to work for others but not outside in own garden | | | lawn mowers, chain saws as
gardener, mostly with hearing | Balance/
equilibrium | Never carsick or seasick,
no h/o vertigo | No change | | | protection Time to onset of symptoms 2 months | Ear/hearing | Difficulty following conversation in loud restaurant; no tinnitus | Tinnitus "like waterfall noise" | | | | Eye/vision | Normal with glasses | No change | | | | Other
neurological | Normal, mild
concussion age 9 | No change | | | | Cardiovascular | Normal including BP | No change | | # Case History I1 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure** | |-------------------------|--|---|-----------------| | Gastrointestinal Normal | Normal | Ill-defined problem with digestion in the morning, long-term; noise at times "so irritating I want to be sick." | | | Respiratory | Normal | No change | | | Other | "My wife had a small firm; as a
gardener I had enough money." | "All we had saved is gone [went into new house]; no one will buy our house." | | *Interviewed after 13 months of ongoing exposure. **Has not gone away for a prolonged period or moved. | Case History I2 | | Pre-exposure | During exposure* | Post-exposure** | |--|-----------|---|--|--| | (page 1 of 3) | Sleep | Normal with culturally appropriate nap in summer | 1–3 awakenings on noisy nights after 4 hours of sleep, weeping | Slept well | | Ferson
Mrs. I | | | in night; "When I wake up,
more a feeling of pressure and | | | Age 52 | | | tightness in chest; it makes
me panic and feel afraid"; "a | | | Pre-exposure health status | | | startling sort of waking up, a feeling there was something | | | Excellent with minor back pain | | | and I don't know what it was"; feelings of panic keep her from | | | Health history
Tonsillectomy age 24, | | | going back to sleep; once woke thinking there had been an earth | | | hysterectomy age 39, 3 births | | | tremor (there had not); no delay | | | Previous noise exposure | | | getting to sleep or nocturia;
tired only after wakeful night | | | urban airport | Headache | No headaches | "Not excruciating" or major problem; pressure in front, | No headaches | | Time to onset of symptoms | | | sides, back; rare aspirin | | | z montus | Cognition | Good, master's level
multilingual teacher,
ran own business | No change in concentration
or memory | No change | | | Mood | Depression 3 months at age 19 and brief | Anxiety, foreboding, and anger evolving to depression; "strong mental and physical | Resolved, felt normal, no depression. When | | | | with first baby only; "usually cheerful nature" | agitation"; takes pains not to be irritable; frequent unexpected | "immediately struck
by uncontrollable | | | | • | crying; despairing of future;
consulted psychiatrist | bouts of crying" | # Case History I2 (page 2 of 3) | | Pre-exposure | During exposure* | Post-exposure** | |-------------------------|---|--|---| | Balance/
equilibrium | Very carsick as child, still carsick as passenger and seasick; no h/o vertigo | No change; no dizziness or
balance disturbance | No change | | Ear/hearing | Hearing normal, no tinnitus | Episodic bilateral sensation of "pressure in my ears and sometimes ringing" and sometimes pain; "feeling the vibration is in my head, behind my ear drums, somewhere inside, very local" or "around the canal that leads to the ear drum"; tinnitus noticeable but not loud, low to medium pitch, does not interfere with understanding conversation; 2–3 episodes per week, including on awakening at night | Resolves after half a day when leaves or turbines completely silent and still | | Eye/vision | Normal with glasses | No change | No change | | Other
neurological | Normal, no concussion | Episodic "trembling in arms, legs, fingers" | No change | | Cardiovascular | Normal including BP | Twice awoke with palpitations, "feeling your heart is beating very fast and very loud, so I can feel the blood pumping"; no change in BP | Resolved | | Gastrointestinal Normal | Normal | Episodic "queasiness and
nausea," loss of appetite | Resolved | | Respiratory | Normal, smoked age 15–25,
then none to once a month | Vibratory feeling mostly in chest, feels like "pins and needles"; chest tightness on awakening at night | Resolved | # Case History I2 (page 3 of 3) | | Pre-exposure | During exposure* | Post-exposure** | |------------------------------|--|--|-----------------| | Rheumatologic Mild back pain | Mild back pain | No change | No change | | Other | | Noise inside house "low, pulsating, almost a vibration" not shut out by earplugs; "It affects my body; this is the feeling I get when I say I'm agitated or jittery. It's this that gives me pressure or ringing in my ears" | Resolved | | | | "A feeling someone has invaded not only
my health and my territory, but my body" | Resolved | | Animals | Bees swarm in spring; locally, other
bee problems before turbines | Repetitive, chaotic swarming through summer | | *Exposure 10 months, left home for 10 weeks, back home for 2 weeks at time of interview. Provided journal maintained throughout exposure period. **During 10 weeks away from home. | Case History J1 | | Pre-exposure | During exposure* | Post-exposure** | |--|-----------|--|---|--| | (page 1 of 2) Person Dr. J | Sleep | Long-term difficulty with returning to sleep started during medical training, had been improving | Delayed sleep onset and frequent
awakening when turbines
running fast; awakens with racing
heart; can't get back to sleep;
taking prescription sleep aid | Improved sleep, no
need for sleep aid | | 49
Pre-exposure health status | Headache | Infrequent sinus
headache, no migraines | Bilateral temporo-parietal
headaches 3–4 times a week;
may follow a "jittery" episode | No headaches | | Health history Broken nose repair as teen; thyroglossal duct | Cognition | Good; specialist physician | Difficulty with focus and mental energy after nights of poor sleep; marked concentration problem when doing accounts/bills at home |
Concentration seemed fine but demand low | | cyst excision as child Previous noise exposure Uses tractors and chain saws on property with hearing protection | Mood | Good, no history of
anxiety or depression | "Jittery" episodes begin with sensation of "internal quivering" or awakening with rapid or pounding heart; gets "real anxious"; has to stop outdoor or family activities and go indoors; | No "jittery" episodes
or anxiety when
away or at work; no
need for anxiolytic | | Time to onset of symptoms Immediate with progression | | | at night has to move to basement where the turbines cannot be heard or felt; on arriving home from work, he can judge from the rotational speed of the turbines or the noise and feeling of vibration in the garage whether symptoms will be triggered; increased irritability; taking two anti-anxiety medications | | # Case History J1 (page 2 of 2) | e) tery" ng heart oisy. k | | Pre-exposure | During exposure* | Post-exposure** | |---|-------------------------|---|--|--------------------------| | Slight left hearing loss on test 10 years prior; tinnitus during sinus infections turbines spinning rapidly sion Normal with glasses Normal with mild concussion age 7 Normal including BP; no palpitations by intestinal Normal without GER or nausea atory Normal without asthma; smoked age 18–23 Farming, building, and hunting activities for relaxation at home activities for relaxation at home priors with rons, and hunting prior for maning, puilding, and hunting prior for form farming activities for relaxation at home priors and reduced appetite in evening inside from farming activities, picnics, playing with sons, and hunting by turbine | Balance/
equilibrium | Good, seasick once in life | 3 episodes of transient vertigo/dizziness
while in tree stands late in day | No dizziness or vertigo | | sion Normal with glasses Developing presbyopia (expected for age) logical Normal with mild concussion age 7 No change wascular Normal including BP; no palpitations BP normal but not measured during "jittery" episodes; awakens with rapid or pounding heart and "jittery" sensations when turbines noisy. wintestinal Normal without GER or nausea Queasiness and reduced appetite in evening with onset as he arrives home from work atom work and hunting and hunting and hunting activities, picnics, playing with sons, and hunting by turbine playing with sons, and hunting by turbine | Ear/hearing | Slight left hearing loss on test 10 years prior; tinnitus during sinus infections | No subjective change in hearing; occasional tinnitus outdoors when turbines spinning rapidly | At baseline; no tinnitus | | logical Normal with mild concussion age 7 No change vyascular Normal including BP; no palpitations BP normal but not measured during "jittery" episodes; awakens with rapid or pounding heart and "jittery" sensations when turbines noisy. vintestinal Normal without GER or nausea Queasiness and reduced appetite in evening with onset as he arrives home from work with onset as he arrives home from work smoked age 18–23 No change Farming, building, and hunting activities for relaxation at home activities for relaxation at home playing with sons, and hunting by turbine playing with sons, and hunting by turbine | Eye/vision | Normal with glasses | Developing presbyopia (expected for age) | No change | | ations BP normal but not measured during "jittery" episodes; awakens with rapid or pounding heart and "jittery" sensations when turbines noisy. Queasiness and reduced appetite in evening with onset as he arrives home from work No change Home more stressful than work; driven inside from farming activities, picnics, playing with sons, and hunting by turbine | Other
neurological | Normal with mild concussion age 7 | No change | No change | | Queasiness and reduced appetite in evening with onset as he arrives home from work No change Home more stressful than work; driven inside from farming activities, picnics, playing with sons, and hunting by turbine | Cardiovascular | Normal including BP; no palpitations | BP normal but not measured during "jittery" episodes; awakens with rapid or pounding heart and "jittery" sensations when turbines noisy. | No "jittery" episodes | | No change smoked age 18–23 Farming, building, and hunting activities for relaxation at home playing with sons, and hunting by turbine | Gastrointestinal | Normal without GER or nausea | Queasiness and reduced appetite in evening with onset as he arrives home from work | No nausea, appetite good | | Farming, building, and hunting Home more stressful than work; driven activities for relaxation at home inside from farming activities, picnics, playing with sons, and hunting by turbine | Respiratory | Normal without asthma; smoked age 18–23 | No change | No change | | noise provoking symptomatic episodes. | Other | Farming, building, and hunting activities for relaxation at home | Home more stressful than work; driven inside from farming activities, picnics, playing with sons, and hunting by turbine noise provoking symptomatic episodes. | Able to relax outdoors | *Interviewed after 9 months of exposure. Family has not moved. Animals Horse, 5 beef cattle, ducks unaffected ^{**}Away for vacation for 2 weeks during the first 3 months of exposure and 10 days during the month before the interview. | Case History J2 | | Pre-exposure | During exposure* | Post-exposure** | |---|-------------------------|---|---|--| | (page 1 of 2) $_{ m Person}$ | Sleep | Slept well under any
circumstances | Falls asleep easily; if
awakened, can usually
go back to sleep | Slept well | | Age 47 | Headache | No headaches | Evening headache at least every 2 weeks requiring ibuprofen | No headaches | | Pre-exposure health status Good Health history 2 term births Previous noise exposure | Cognition | Good; acute/critical care
nurse; teaches nursing
at university; organized
mother; no problem
with focus or memory | Noticeable trouble focusing and remembering at home; has to write down what children tell her or any item to be picked up at store; easily distracted; started vitamins and supplements | Memory improved when
away but not to baseline
(also less demand) | | Aircraft during medical evacuations Time to onset of symptoms 1–3 months to headaches; | Mood | Happy, energetic,
busy, "up" person | Marked decrease in energy
and motivation at home;
frustrated; "on edge"; feels
rejuvenated at work | Felt great, lots of energy | | 1–3 months to concentration and memory problems; | Balance/
equilibrium | Never carsick or seasick,
no h/o vertigo | No change | No change | | 4–5 months to continuous
palpitations;
6 months to exacerbation | Ear/hearing | Normal, tested yearly;
no tinnitus | No change, no ear symptoms | No change | | of irritable bowel | Eye/vision | Normal, wears contact lenses | No change | No change | | | Other
neurological | Normal, no concussion | No change | No change | # Case History J2 (page 2 of 2) | | Pre-exposure | During exposure* | Post-exposure** | |------------------|--|--|--| | Cardiovascular | Normal BP except during first pregnancy; dysrhythmia (trigeminy) 10/06 resolved with caffeine restriction | Continuous palpitations began 10/07 and did not respond to caffeine restriction or trials of two medications; evaluated including electrophysiology; right ventricular focus | Decreased frequency of palpitations | | Gastrointestinal | Gastrointestinal Irritable bowel (cramping and diarrhea) since young adulthood with exacerbations before exams; normal colonoscopy x 2 | Continuous symptoms for 3 months before interview, except during week after return from vacation | Symptoms unchanged while
away in tropical country | | Respiratory | Normal, no asthma, never smoked | No change | No change | | Other | | Feels vibration in feet/lower legs when stands still in house or barn, which feels like it is coming from vibrations in the structure; worse in barn, which is not insulated; does not feel this outside/on the ground | | | | | Sounds like helicopter starting up or iet circling house every 3–4 seconds | | *Interviewed after 9 months of exposure. Family has not moved.
^{**}Away for vacation for 2 weeks during the first 3 months of exposure and 10 days during the month before the interview. | Case History J3 | | Pre-exposure | During exposure* | Post-exposure** | |---|-------------------------|--|--|--| | Person
First son J | Sleep | Slept well | Needs "white noise machine" to fall asleep, and more recently MP3 player, too; sleeps well once asleep | Slept well | | A ge
13 | Headache | No headaches | No change | No change | | Pre-exposure health status
Good | Cognition | Good, intelligent, gets all
A's, finishes home projects | Mother and teachers note distractibility, many grades of B, home projects half done, | Organized and persistent about buying presents on vacation | | Health history
Normal growth and
development | | | needs constant reminders for
homework and chores; "he just
can't seem to focus on anything
for more than 5 or 10 minutes" | | | Previous noise exposure
No significant | Mood | Good, never "mouthy" | "Snippy, mouthy," talking
back, frustrated | Good mood on vacation | | Time to onset of symptoms Immediate for sleep problem; | Balance/
equilibrium | Carsick about
once a month | No change | No change | | 3-4 months for problems | Ear/hearing | Good hearing | No change | No change | | with focus and concentration | Eye/vision | Good with glasses | No change | No change | | | Other
neurological | Normal, no concussion | No change | No change | | | Cardiovascular | Normal | No change | No change | | | Gastrointestinal Normal | Normal | No change | No change | | | Respiratory | Normal, no asthma | No change | No change | *Information provided by parents after 9 months of exposure. Family has not moved. ^{**}Away for vacation for 2 weeks during the first 3 months of exposure and 10 days during the month before the interview. | Case History J4 | | Pre-exposure | During exposure* | Post-exposure** | |--|-------------------------|--|---|-------------------------------| | Person | Sleep | Sleeps very soundly | No change | No change | | Second son J | Headache | No headaches | No change | No change | | Age
8 | Cognition | Bright, very focused, gets
100 on every paper | Distracted, getting a few wrong on every paper, teacher noted distraction | Low demand
during vacation | | Pre-exposure health status
Good | Mood | Good, calm, happy | Grumpy, irritable, talking back Good mood during vacation | Good mood during vacation | | Health history
Normal health and | Balance/
equilibrium | Carsick every 1–2 weeks | No change | Not noted | | development | Ear/hearing | Good hearing | No change | No change | | Previous noise exposure | Eye/vision | Good | Just got glasses | No change | | No significant Time to onset of symptoms | Other
neurological | Normal, no concussion | No change | No change | | 6 months for mood changes, | Cardiovascular | Normal | No change | No change | | 7 months for focus problems | Gastrointestinal Normal | Normal | No change | No change | *Information provided by parents after 9 months of exposure. Family has not moved. No change No change Normal, no asthma Respiratory ^{**}Away for vacation for 2 weeks during the first 3 months of exposure and 10 days during the month before the interview. ### **Abbreviations** χ^2 chi-squared statistic or test ACL anterior cruciate ligament BP blood pressure CAT computerized axial tomography dB decibels dBA decibels measured with an A-weighted filter decibels measured with a C-weighted filter CSF cerebrospinal fluid EEG electroencephalogram EH endolymphatic hydrops ft feet GER gastroesophageal reflux GI gastrointestinal h/o history of Hz Hertz (frequency in per second or sec⁻¹) INCE Institute of Noise Control Engineering INR international normalized ratio of prothrombin times (see GLOSSARY: anticoagulation) kHz kiloHertz (1000 Hz) km kilometers (1000 m) m meters mcg micrograms mi miles MI myocardial infarction MRA magnetic resonance angiography MRI magnetic resonance imaging MW megawatts N/A not applicable OTC over-the-counter (non-prescription) OVEMP ocular vestibular evoked myogenic potential p when used in the context of a statistical test, p means probability that the compared distributions are no different from each other P.E. professional engineer PE pressure equalization PET positron emission tomography PTSD post-traumatic stress disorder TENS transcutaneous electrical nerve stimulation URI upper respiratory infection (viral cold) VAD vibroacoustic disease VEMP vestibular evoked myogenic potential VVVD Visceral Vibratory Vestibular Disturbance WHO World Health Organization WTS Wind Turbine Syndrome ### Glossary **A-weighting network**: an electronic filter that reduces the contribution of low frequencies to a sound measurement; see pp. 36–38, 214–15. **Acute gastrointestinal infection**: nausea, vomiting, abdominal pain, and diarrhea, generally self-limited and caused by a viral infection of the gastrointestinal tract. Agoraphobia: an abnormal fear of leaving the house. **Air-conducted sound**: sound that travels through the air and reaches the inner ear by way of the external auditory canal, tympanic membrane (eardrum) and the three ossicles of the middle ear. See *bone-conducted sound*. **Airways**: trachea, bronchi, and bronchioles, the tubular structures through which air passes to reach the air sacs or alveoli of the lungs. Amaurosis fugax: temporary loss of vision in one eye. Analgesic: pain medication. Anticoagulation: use of medications such as heparin or warfarin to decrease the tendency of the blood to clot. Higher INR (international normalized ratio of prothrombin time) values, used in the monitoring of warfarin administration, indicate slower or less effective clotting. Antihypertensive: blood pressure medication. Anxiolytic: anti-anxiety medication. **Arthralgia**: joint pain without objective signs of inflammation (see *arthritis*). **Arthritis**: pain and/or stiffness in joints with accompanying objective signs of inflammation, such as redness or swelling. **Asthma**: intermittent and reversible respiratory difficulty caused by partial obstruction of small airways by inflammation/swelling and constriction of smooth muscle around the airways. Asthma attacks may be provoked by any kind of respiratory infection, allergic exposures, or irritant exposures. **Ataxia**, **ataxic**: in reference to gait, unsteady on feet, difficulty with balance or coordination in walking, or difficulty maintaining posture, for neurologic reasons. Atrial fibrillation: an abnormal heart rhythm in which the small chambers do not pump rhythmically, but instead vibrate erratically, placing patients at risk for stroke from blood clots that can form inside the heart. Autonomic nervous system: the involuntary part of the nervous system that regulates automatic body functions such as heart rate, blood pressure, gastrointestinal function, sweating, glandular output, pupillary reflexes, airway smooth muscle tone, and others. The autonomic system includes sensory receptors (for afferent signals or input to the central nervous system) and effector neurons (for efferent signals or output to organs). It consists of opposing sympathetic and parasympathetic networks. Sympathetic stimulation speeds the heart and readies the body for optimal "fight or flight" activity. Parasympathetic stimulation slows the heart, lowers blood pressure, and facilitates digestion. **Baroreceptors**: pressure detectors, as in blood vessels or lungs. Basilar migraine: migraine with auras representing brainstem effects, including vertigo, tinnitus, fluctuations in level of consciousness, and temporary motor deficits. **Bilateral**: on both sides of the body. Binaural processing: brain integration of hearing signals from both ears. Bone-conducted sound: sound or vibratory stimulus reaching the inner ear via direct solid-to-solid and solid-to-fluid transmission, without passing through or utilizing the tympanic membrane or middle ear ossicles. It is created by placing a vibrating object against the skin over a skull bone, - typically the mastoid process immediately behind the ear. See air-conducted sound. - **Bronchodilator:** medication used to relax airway smooth muscle in the treatment of asthma, usually inhaled. - **C-weighting network**: an electronic filter that reduces the contribution of very low frequencies to a sound measurement, but less so than an A-weighting network; see pp. 36–38, 214–215. - **Caloric test**: a test of semicircular canal function and the vestibuloocular response. In the caloric response to ice water in the external auditory canal, thermal convection induces fluid movement within the horizontal semicircular canal, creating an illusion of head movement that is reflected in eye movement via the vestibulo-ocular reflex. - **Cardiac arrhythmia or dysrhythmia**: specific types of irregular heartbeat, often occurring episodically. - **Catecholamine**: a class of biochemicals that function as neurotransmitters in the brain and as hormones produced by the sympathetic part of the autonomic nervous system, such as epinephrine (adrenaline), norepinephrine, and dopamine. - **Central**: occurring in the brain (central nervous system), as opposed to a peripheral neural receptor, effector, or organ. For example, central processing, central origin, central dysfunction. - **Cerebellum**, **cerebellar**: a posterior/inferior portion of the brain with important functions in coordination and
integration of movement. - **Cerebrospinal fluid**: clear fluid that circulates from fluid spaces (lateral ventricles) in the brain, where it is produced, through the other ventricles and around the brain and spinal cord. - **Chemotherapy**: in this report, refers specifically to medications given for cancer treatment. - **Cilium, cilia**: actively motile, hair-like projections from epithelial cell surfaces in the airways and Eustachian tubes that beat in - synchrony to move mucus out of these moist, air-filled spaces, towards the pharynx. - Circadian rhythm: a daily physiologic cycle, such as sleep and wakefulness or the peaks and troughs of cortisol secretion. - Cochlea: spiral-shaped sensory organ of hearing, part of the innerear membranous labyrinth. See pp. 200–201. - Collagen: a protein which is the chief substance of connective tissue, cartilage, tendons, etc. - **Concussion**: mild brain injury produced by impact to the head resulting in brief unconsciousness, disorientation, or memory problem. - **Conductive hearing loss:** hearing loss due to problems in the outer ear, tympanic membrane, or middle ear. - Coronary artery disease: partial obstruction or narrowing of the small arteries that supply the heart muscle. - Cortex, cortical: the outer cellular layers of the two cerebral hemispheres of the brain. - **Cortisol**: a major natural glucocorticoid hormone produced by the adrenal cortex in a regular daily rhythm and in response to stress, which exerts diverse effects on tissues and metabolic processes throughout the body. - **Cranial vault**: the space in the skull that contains the brain. - Diaphragm: the dome-shaped sheet of skeletal muscle that separates the thoracic (chest) and abdominal cavities and enables breathing. - **Dysfunction**: malfunction or poor functioning. - Elastin: an elastic connective tissue protein, which gives elasticity to certain structures, such as arterial walls. - **Electroencephalogram** (**EEG**): a recording of brain waves monitored in a specific fashion, used in studies of seizure disorder and sleep. - Endolymphatic hydrops (EH): a condition of distorted fluid and pressure relationships between the endolymph and perilymph, which are the two fluid compartments in the inner ear. This - causes erratic and distorted balance and, often, hearing signals to be sent to the brain. Meniere's disease and perilymphatic fistula are examples of conditions with endolymphatic hydrops. - **Epithelial basement membrane**: a thin layer of extracellular proteins and mucopolysaccharides that lies at the base of and supports the layers of cells comprising an epithelium, such as the linings of airways, mouth, esophagus, intestine, pleura, etc. - **Eustachian tube**: a tube that connects the middle ear with the nasopharynx, or upper part of the throat behind the nose. It allows equalization of air pressure on either side of the tympanic membrane. - **Fibromyalgia**: a condition of chronic pain of unclear origin, in muscles, ligaments, and tendons, without inflammation. - **Gastritis**: inflammation of the lining of the stomach causing pain and nausea. - **Gastroesophageal reflux (GER)**: reflux or intrusion of acidic stomach contents into the esophagus; heartburn. - **Gastrointestinal (GI) tract**: stomach, small intestine, and colon or large intestine. - **Glucose instability**: in diabetes, fluctuating blood sugar levels that go too high or too low. - Glucosuria: glucose in urine, a sign of poor diabetic control. - **Graviceptors**: neural detectors of gravity and acceleration; see pp. 73–74, 234–35. - **Great vessels**: the large arteries and veins immediately around the heart, including the aorta, pulmonary artery, pulmonary veins, and superior and inferior vena cavae. - Hair cells: mechanoreceptive cells in the inner-ear labyrinthine organs (cochlea, semicircular canals, utricle, and saccule). These cells send neural signals when mechanically perturbed or bent. Local properties of parts of the membranous labyrinth control how the hair cells are perturbed. - **Hippocampus**: a brain region in the medial temporal lobe critical to spatial navigation and formation of new episodic memories. **Hyperacusis**: oversensitivity to sound, with normal sounds seeming painfully loud. **Hypertension**: high blood pressure. **Hypopharynx**: the lower part of the throat, just above the larynx (vocal cords). Immissions: in acoustics, sound from the point of view of the person or location receiving the sound. Emissions in this context refers to the sound as it leaves the source. **In utero**: in the uterus during pregnancy. Infrasonic: sound frequency below hearing range, generally considered to be 20 Hz or less. **Irritable bowel syndrome**: recurrent episodes of abdominal pain and diarrhea, often with alternating periods of constipation, without any pathologic or inflammatory changes in the gastrointestinal tract. Labyrinthine organs, membranous labyrinth: the inner-ear organs, including the cochlea, utricle, saccule, and semicircular canals. See *otolith organs* and *semicircular canals*, and pp. 200–201. **Lower respiratory infection**: bronchitis, pneumonia, or pneumonia with pleural effusion (pleurisy). **Lupus**: systemic lupus erythematosus, a systemic inflammatory or autoimmune disease affecting the skin, joints, gastrointestinal tract, kidney, blood, and brain. Macula: in the otolith organs (utricle and saccule), the patch of sensory hair cells plus superimposed mass of otoconia in a protein matrix (sometimes called *macule*). See p. 200. Magnetic resonance angiography (MRA): a noninvasive imaging method for examining the patency of blood vessels. Magnetic resonance imaging (MRI): soft-tissue imaging using magnetic fields, providing the most detailed images of living brain structure available. Functional magnetic resonance imaging (fMRI) quantifies blood flow to different brain structures during specific activities. Malaise: a vague sense of not feeling well. **Mastoid**: a bony structure immediately behind the ear that contains air-filled cells connected to the middle ear. **Mediastinum**: the central portion of the chest or thorax between the lungs, containing the heart, great vessels, trachea, esophagus, lymph nodes, and other structures. **Mesentery**: a fold of membranous tissue encasing and attaching the small intestine and other abdominal organs to the inside of the peritoneal (abdominal) cavity, also supporting blood vessels and nerves to the organs. **Microvilli**: hair-like projections from epithelial cell surfaces that increase absorptive surface area, for example, in the small intestine. Migraine: a hereditary, episodic, neurologic condition generally involving severe headaches that may be preceded by visual or other sensory phenomena such as tingling or numbness (aura), with symptoms of nausea and sensitivity to light and sound commonly accompanying headaches. A headache may be one-sided or pounding. Aura and accompanying symptoms may include vertigo, tinnitus, temporary focal weakness or paralysis, temporary loss of vision, vomiting, or loss of consciousness. Sensory sensitivities and triggers include motion, odors, a wide variety of foods (especially products of fermentation or aging, caffeine, chocolate, and varieties of plants), hormonal state, and sleep deprivation. Migraineur: a person who gets migraines. **Myocardial infarction (MI)**: heart attack, or obstructed coronary blood flow leading to death of cardiac muscle. **Near-field sound**: sound at distances significantly less than one wavelength, especially applicable to hearing under water (e.g., in fish), where wavelengths of sound are much longer than in air (by a factor of 5 at the same frequency), and for lower sound frequencies (which have longer wavelengths in any medium). Near-field sound detection involves detection of particle movement or bulk flow of the medium, rather than a repetitive pressure fluctuation as for far-field sound detection in air, for which the mammalian ear and cochlea are specialized. **Neuroanatomic**: referring to the anatomy of neural linkages in the brain. **Neuroendocrine**: relating to cells or tissues that release hormones into the blood in response to a neural stimulus. Night terror: a parasomnia, or sleep disturbance occurring during disordered arousal from the deeper stages of sleep, in which a person (usually a child) may scream, act afraid, say nonsensical things, or get up to do irrational or fearful things, all without memory in the morning. Nocturia: awakening and getting up repeatedly in the night to urinate. **Nocturnal enuresis**: bed-wetting while asleep. Norepinephrine: a central catecholamine neurotransmitter, sympathetic nervous system neurotransmitter, and vasoactive adrenal medullary hormone. Nystagmus: a pattern of eye movement indicating a disordered vestibulo-ocular reflex that is often due to disordered vestibular signaling or processing, as in the caloric test. **Orbit**: the eye socket or hollow space in the skull that contains the eyeball and its associated structures. Otitis media: middle-ear infection. Otoconia: microscopic calcium carbonate stones positioned in a protein matrix over the mechanically sensing hair cells of the mammalian utricle and saccule. Otolith organs: the utricle and saccule, labyrinthine organs of the inner ear that detect linear acceleration, including gravity, by virtue of microscopic calcium carbonate stones or otoconia positioned in a protein matrix over the mechanically sensing hair cells. See pp. 200-201. Palpitations: irregular or pounding heart at times not expected from activity or exertion. - **Panic attack**: an episode of sudden intense fear out of proportion to circumstances, which may be accompanied by symptoms of dizziness, sweating, trembling, chest pain, palpitations, and the feeling of not being able to get enough breath. - **Parabrachial nucleus**: brain center involved in extended vestibular system influence, located in
the pons. - **Parasomnia**: a sleep disturbance occurring during disordered arousal from the deeper stages of sleep, such as sleep walking, sleep talking, and night terrors. - **Paresthesia**: tingling or "pins and needles" sensation, as when a numb extremity is waking up. - **Parkinson's disease**: a neurologic degenerative disease involving dopamine-producing neural tracts in the brain and affecting movement and psychiatric status. - **Pericardium**: the two-layered membranous sac that encloses the heart and the roots of the great vessels, in which the heart beats. - **Perilymphatic fistula syndrome**: see *endolymphatic hydrops* and pp. 93, 227. - Pharynx: the throat. - **Pleura**: the outer epithelial surface of the lung and the lining of the thoracic cavity, providing low friction surfaces for lung movement. - **Pleurisy:** inflammation or infection of pleura, which can accompany pneumonia. - **Polyuria**: excessive daily volume of urine, a typical sign of high glucose levels in diabetics. - **Positron emission tomography** (**PET**): a method of functional imaging that quantifies glucose uptake by different brain regions as a measure of activity. - **Posturography:** a form of balance testing that is sensitive to the vestibulo-spinal reflexes, including the influence of innerear, visual, somatosensory, and central processing on the movements by which a subject remains balanced and upright. - Pressure equalization (PE) tube: a tube inserted through a small, surgically placed hole in the tympanic membrane after removal of middle-ear fluid, to provide aeration. - Proton pump inhibitor: medication used to limit stomach acid production in the treatment of gastroesophageal reflux, gastritis, or ulcer. **Resonance**: a property of sound; see pp. 36, 211–14. **Retina**, retinal: the light-sensing neural structure at the back of the **Saccule**: one of the two otolith organs of the vestibular (balance) organs of the inner ear (also called sacculus). **Scotoma**: temporary loss of vision in one part of the visual field. Semicircular canals: bilateral labyrinthine organs of the inner ear that detect angular acceleration of the head by virtue of fluid shifts deflecting mechanically sensing hair cells. See pp. 200– 201 and caloric test. **Sensorineural hearing loss:** hearing loss due to problems in the inner ear/cochlea, vestibulocochlear nerve (cranial nerve VIII), or brain centers that process sound. **Sequela**, **sequelae**: a pathologic condition that develops from another pathologic condition, such as chronic middle-ear fluid and hearing loss being sequelae of repeated acute ear infections. **Serotonin**: a brain and gastrointestinal neurotransmitter. Serous otitis media: viscous fluid in the middle ear (middleear effusion) that may obstruct sound transmission, usually occurring after a series of acute ear infections. **Somatic nervous system**: the sensory and motor nervous system from and to the skin, skeletal muscles, and associated tendons and ligaments, whose signals may be consciously perceived and voluntarily modified. Somatosensory: sensory input from the skin, skeletal muscles, tendons, and ligaments. **Sonic**: sound frequency in the range of human hearing. - **Syncope**, **syncopal**: fainting caused by low blood flow to brain. - Tachycardia: rapid heartbeat. - **Taxon, taxa**: a group or groups in the scientific categorization (Linnaean taxonomy) of living things. - **Temporal bone**: solid bone at the base of the skull, in which the labyrinthine organs lie. - **Thalamus**: a part of the brain involved in part in relaying sensory information to the cerebral cortex. - **Tinnitus**: "ringing in the ears," which may be a tonal sound, buzzing, white noise, or other types of sound heard in one or both ears. The sound itself is not present in the outside environment. - **Trachea**: the large central airway between the larynx (voice box) and the split or bifurcation of the right and left bronchi. - **Tympanic membrane**: eardrum; the layer of taut, thin tissue that separates the external auditory canal from the middle ear. - **Ultrasonic**: sound frequency above hearing range, generally considered to be 20,000 Hz or more. - **Upper gastrointestinal symptoms**: gastroesophageal reflux, gastritis, and/or ulcer. - **Utricle**: one of the two otolith organs of the vestibular (balance) organs of the inner ear (also called utriculus). - **Vasculitis**: inflammation of blood vessels, which can cause restriction of blood flow. - **Vasoconstriction**: constriction of a blood vessel. - **Vertigo**: the spinning form of dizziness, in which the visual surround seems to move. - **Vestibular**: pertaining to the balance organs in the inner ear (utricle, saccule, and semicircular canals) or to the integrated balance system in general, as in "vestibular areas of the brain." - Vestibular evoked myogenic potential (VEMP): a vestibular reflex neural response, used clinically and in research to test specifically for otolith function or stimulation. Ocular vestibular evoked myogenic potential (OVEMP) is similar. See pp. 85–86, 203. - **Vestibulo-collic reflex**: a fast or "short-latency" neural response across a short, three-neuron brain arc from the otolith organs to brainstem vestibular nuclei to brain nuclei controlling the muscles of the neck to neck muscles, whose purpose is immediate, automatic stabilization of the head in response to detected motion. - Vestibulo-ocular reflex: a fast or "short-latency" neural response across a short, three-neuron brain arc from the semicircular canals and otolith organs to brainstem vestibular nuclei to brain nuclei controlling extraocular eye muscles to eye muscles, whose purpose is immediate, automatic compensatory movements of the eyes in response to detected head motion, to stabilize the visual field during movement. - **Vestibulo-spinal reflex**: like the vestibulo-collic reflex but involving muscles below the neck (along the spinal column and in the legs) to stabilize posture during movement and rapidly correct potential falls. - **Vibroacoustic disease (VAD):** a type of noise-related illness. See pp. 109 - 11. - Visceral Vibratory Vestibular Disturbance (VVVD): a sensation of internal quivering, vibration, or pulsation accompanied by agitation, anxiety, alarm, irritability, rapid heartbeat, nausea, and sleep disturbance. See pp. 55–60, 76–79, 224, and 235–36. - Whiplash injury: an injury to the neck (cervical vertebrae) caused by abrupt acceleration or deceleration, as in an automobile accident. ### References Académie nationale de médecine de France. 2006. "Le retentissement du fonctionnement des éoliennes sur la santé de l'homme, le Rapport, ses Annexes et les Recommandations de l'Académie nationale de médecine." 17 pp. www.academie-medecine. fr/sites_thematiques/EOLIENNES/chouard_rapp_14mars_2006.htm. Ahlbom IC, Cardis E, Green A, Linet M, Savitz D, Swerdlow A; INCIRP (International Commission for Non-Ionizing Radiation Protection) Standing Committee on Epidemiology. 2001. Review of the epidemiologic literature on EMF and health. Environ Health Perspect 109 Suppl 6: 911–33. Babisch W. 2003. Stress hormones in the research on cardiovascular effects of noise. Noise Health 5(18): 1-11. Babisch W. 2005. Guest editorial: Noise and health. Environ Health Perspect 113(1): A14–15. Babisch W, Beule B, Schust M, Kersten N, Ising H. 2005. Traffic noise and risk of myocardial infarction. Epidemiology 16(1): 33–40. Baerwald EF, d'Amours GH, Klug BJ, Barclay RM. 2008. Barotrauma is a significant cause of bat fatalities at wind turbines. Curr Biol 18(16): R695–96. Balaban CD. 2002. Neural substrates linking balance control and anxiety. Physiol Behav 77: 469–75. Balaban CD. 2004. Projections from the parabrachial nucleus to the vestibular nuclei: potential substrates for autonomic and limbic influences on vestibular responses. Brain Res 996: 126–37. Balaban CD, Thayer JF. 2001. Neurological bases for balance-anxiety links. J Anxiety Disord 15: 53–79. Balaban CD, Yates BJ. 2004. The vestibuloautonomic interactions: a teleologic perspective. Chapter 7 in *The Vestibular System*, ed. Highstein SM, Fay RR, Popper AN, pp. 286–342. Springer-Verlag, New York. Baron, Robert Alex. 1970. The Tyranny of Noise: The World's Most Prevalent Pollution, Who Causes It, How It's Hurting You, and How to Fight It. St. Martin's Press, New York. Beasley R, Clayton T, Crane J, von Mutius E, Lai CK, Montefort S, Stewart A; ISAAC Phase Three Study Group. 2008. Association between paracetamol use in infancy and childhood, and the risk of asthma, rhinoconjunctivitis, and eczema in children aged 6–7 years: analysis from Phase Three of the ISAAC programme. Lancet 372(9643): 1039-48. Beranek LL. 2006. Basic acoustical quantities: levels and decibels. Chapter 1 in *Noise and Vibration Control and Engineering: Principles and Applications*, ed. Ver IL, Beranek LL, pp. 1–24. John Wiley & Sons, Hoboken, NJ. Berglund B, Hassmen P, Job RFS. 1996. Sources and effects of low frequency noise. J Acoust Soc Am 99(5): 2985–3002. Brandt T, Bartenstein P, Janek A, Dieterich M. 1998. Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121(Pt. 9): 1749–58. Brandt T, Dieterich M. 1999. The vestibular cortex: its locations, functions, and disorders. Ann NY Acad Sci 871: 293–312. Brandt T, Schautzer F, Hamilton DA, Bruning R, Markowitsch HJ, Kalla R, Darlington C, Smith P, Strupp M. 2005. Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 128: 2732-41. Cappa S, Sterzi R, Vallar G, Bisiach E. 1987. Remission of hemineglect and anosognosia during vestibular stimulation. Neuropsychologia 25: 775–82. Castelo Branco NAA. 1999. A unique case of vibroacoustic disease: a tribute to an extraordinary patient. Aviat Space Environ Med 70(3): A27–31. Castelo Branco NAA, Aguas AP, Pereira AS, Monteiro E, Fragata JIG, Tavares F,
Grande NR. 1999. The human pericardium in vibroacoustic disease. Aviat Space Environ Med 70(3): A54–62. Castelo Branco NAA, Alves-Pereira M. 2004. Vibroacoustic disease. Noise Health 6(23): 3–20. Castelo Branco NAA, Monteiro M, Ferreira JR, Monteiro E, Alves-Pereira M. 2007. Bronchoscopy in vibroacoustic disease III: electron microscopy. Inter-Noise 2007, August 28–31, Istanbul, Turkey. Clark C, Martin R, van Kempen E, Alfred T, Head J, Davies HW, Haines MM, Barrio IL, Matheson M, Stansfeld SA. 2005. Exposure-effect relations between aircraft and road traffic noise exposure at school and reading comprehension: the RANCH project. Am J Epidemiol 163: 27–37. Claussen CF, Claussen E. 1995. Neurootological contributions to the diagnostic follow-up after whiplash injuries. Acta Otolaryngol Suppl 520, Pt. 1: 53–56. Coermann RR, Ziegenruecker GH, Wittwer AL, von Gierke HE. 1960. The passive dynamic mechanical properties of the human thorax-abdominal system and of the whole body system. Aerosp Med 31(6): 443–55. Cohen S, Glass DC, Singer JE. 1973. Apartment noise, auditory discrimination, and reading ability in children. J Exp Soc Psychol 9: 407–22. Colebatch JG, Day BL, Bronstein AM, Davies RA, Gresty MA, Luxon LM, Rothwell JC. 1998. Vestibular hypersensitivity to clicks is characteristic of the Tullio phenomenon. J Neurol Neurosurg Psychiatry 65: 670–78. Colebatch JG, Halmagyi GM, Skuse NF. 1994. Myogenic potentials generated by a click-evoked vestibulocollic reflex. J Neurol Neurosurg Psychiatry 57(2): 190–97. Curthoys IS, Kim J, McPhedran SK, Camp AJ. 2006. Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig. Exp Brain Res 175(2): 256–67. Dieterich M, Brandt T. 2008. Functional brain imaging of peripheral and central vestibular disorders. Brain 131(10): 2538–52. Eckhardt-Henn A, Breuer P, Thomalske C, Hoffmann SO, Hopf HC. 2003. Anxiety disorders and other psychiatric subgroups in patients complaining of dizziness. J Anxiety Disord 17(4): 369–88. Edge PM, Mayes WH. 1966. Description of Langley low-frequency noise facility and study of human response to noise frequencies below 50 cps. NASA Technical Note, NASA TN D-3204, 11 pp. Eriksson C, Rosenlund M, Pershagen G, Hilding A, Ostenson C-G, Bluhm G. 2007. Aircraft noise and incidence of hypertension. Epidemiology 18(6): 716–21. Ernst A, Basta D, Seidl RO, Todt I, Scherer H, Clarke A. 2005. Management of posttraumatic vertigo. Otolaryngol Head Neck Surg 132(4): 554–58. Evans GW, Maxwell L. 1997. Chronic noise exposure and reading deficits: the mediating effects of language acquisition. Environ Behav 29(5): 638–56. Evans GW. 2006. Child development and the physical environment. Annu Rev Psychol 57: 423–51. Fay RR, Simmons AM. 1999. The sense of hearing in fishes and amphibians. In *Comparative Hearing: Fish and Amphibians*, ed. Fay RR, Popper AN, pp. 269–317. Springer-Verlag, New York. Feldmann J, Pitten FA. 2004. Effects of low-frequency noise on man: a case study. Noise Health 7(25): 23–28. Findeis H, Peters E. 2004. Disturbing effects of low-frequency sound immissions and vibrations in residential buildings. Noise Health 6(23): 29–35. Foudriat BA, Di Fabio RP, Anderson JH. 1993. Sensory organization of balance responses in children 3–6 years of age: a normative study with diagnostic implications. Int J Pediatr Otorhinolaryngol 27(3): 255–71. Frey, Barbara J, and Hadden, Peter J. 2007. Noise radiation from wind turbines installed near homes: effects on health. 137 pp. www. windturbinenoisehealthhumanrights.com/wtnhhr_june2007.pdf. Furman JM, Balaban CD, Jacob RG. 2001. Interface between vestibular dysfunction and anxiety: more than just psychogenicity. Otol Neurotol 22(3): 426–27. Furman JM, Balaban CD, Jacob RG, Marcus DA. 2005. Migraineanxiety related dizziness (MARD): a new disorder? J Neurol Neurosurg Psychiatry 76: 1–8. Furman JM, Redfern MS, Jacob RG. 2006. Vestibulo-ocular function in anxiety disorders. J Vestib Res 16: 209–15. Garcia J, Ervin FR. 1968. Gustatory-visceral and telereceptorcutaneous conditioning: adaptation in internal and external milieus. Commun Behav Biol 1: 389–415. Geminiani G, Bottini G. 1992. Mental representation and temporary recovery from unilateral neglect after vestibular stimulation. J Neurol Neurosurg Psychiatry 55(4): 332–33. Giacomin J. 2005. Absorbed power of small children. Clin Biomech 20(4): 372–80. Grimm RJ, Hemenway WG, Lebray PR, Black FO. 1989. The perilymph fistula syndrome defined in mild head trauma. Acta Otolaryngol Suppl 464: 1–40. Gurney JG, van Wijngaarden E. 1999. Extremely low frequency electromagnetic fields (EMF) and brain cancer in adults and children: review and comment. Neuro Oncol 1(3): 212–20. Hadamard J. 1996. The Mathematician's Mind: The Psychology of *Invention in the Mathematical Field.* Princeton University Press, Princeton, NJ. Haines MM, Stansfeld SA, Job RFS, Berglund B, Head J. 2001. A follow-up study of effects of chronic aircraft noise exposure on child stress responses and cognition. Int J Epidemiol 30: 839–45. Halberstadt A, Balaban CD. 2003. Organization of projections from the raphe nuclei to the vestibular nuclei in rats. Neuroscience 120(2): 573-94. Hanes DA, McCollum G. 2006. Cognitive-vestibular interactions: a review of patient difficulties and possible mechanisms. J Vestib Res 16(3): 75-91. Haralabidis AS, Dimakopoulou K, Vigna-Taglianti F, Giampaolo M, Borgini A, Dudley M-L, Pershagen G, Bluhm G, Houthuijs D, Babisch W, Velonakis M, Katsouyanni K, Jarup L. 2008. Acute effects of night-time noise exposure on blood pressure in populations living near airports. European Heart J 29(5): 658–64. Harry, Amanda. 2007. Wind turbines, noise, and health. 32 pp. www. windturbinenoisehealthhumanrights.com/wtnoise_health_2007_a_ barry.pdf. Hedge, Alan. 2007. Department of Design and Environmental Analysis, Cornell University. Syllabus/lecture notes for DEA 350: Whole-body vibration (January), found at http://ergo.human.cornell.edu/studentdownloads/DEA325pdfs/Human%20Vibration.pdf. Hillis HE, Caramazza A. 1995. Spatially specific deficits in processing graphemic representations in reading and writing. Brain Lang 48(3): 263–308. Hygge S, Evans GW, Bullinger M. 2002. A prospective study of some effects of aircraft noise on cognitive performance in schoolchildren. Psychol Sci 13: 469–74. Indovina I, Maffei V, Bosco G, Zago M, Macaluso E, Lacquaniti F. 2005. Representation of visual gravitational motion in the human vestibular cortex. Science 308: 416–19. Ishizaki K, Mori N, Takeshima T, Fukuhara Y, Ijiri T, Kusumi M, Yasui K, Kowa H, Nakashima K. 2002. Static stabilometry in patients with migraine and tension-type headache during a headache-free period. Psychiatry Clin Neurosci 56(1): 85–90. Ising H, Braun C. 2000. Acute and chronic endocrine effects of noise: review of the research conducted at the Institute for Water, Soil and Air Hygiene. Noise Health 7: 7–24. Ising H, Ising M. 2002. Chronic cortisol increases in the first half of the night caused by road traffic noise. Noise Health 4: 13–21. Jacob RG, Furman JM, Durrant JD, Turner SM. 1996. Panic, agoraphobia, and vestibular dysfunction. Am J Psychiatry 153(4): 503–12. Jacob RG, Redfern MS, Furman JM. 2009. Space and motion discomfort and abnormal balance control in patients with anxiety disorders. J Neurol Neurosurg Psychiatry 80(1): 74–78. E-pub 2008 July 24. Jacob RG, Woody SR, Clark DB, Lilienfeld SO, Hirsch BE, Kucera GD, Furman JM, Durrant JD. 1993. Discomfort with space and motion: a possible marker of vestibular dysfunction assessed by the Situational Characteristics Questionnaire. J Psychopathol Behav Assess 15(4): 299–324. Jarup L, Babisch W, Houthuijs D, Pershagen G, Katsouyanni K, Cadum E, Dudley M-L, Savigny P, Seiffert I, Swart W, Breugelmans O, Bluhm G, Selander J, Haralabidis A, Dimakopoulou K, Sourtzi P, Velonakis M, Vigna-Taglianti F. 2008. Hypertension and exposure to noise near airports: the HYENA study. Environ Health Perspect 116(3): 329-33. Johansen C. 2004. Electromagnetic fields and health effects: epidemiologic studies of cancer, diseases of the central nervous system and arrhythmia-related heart disease. Scand J Work Environ Health 30 Suppl 1: 1–30. Kamperman GW, James RR. 2008a. Simple guidelines for siting wind turbines to prevent health risks. Noise-Con, July 28-31, Institute of Noise Control Engineering/USA. Kamperman GW, James RR. 2008b. The "how to" guide to siting wind turbines to prevent health risks from sound. 44 pp. www. windturbinesyndrome.com. Karlsen HE, Piddington RW, Enger PS, Sand O. 2004. Infrasound initiates directional fast-start escape responses in juvenile roach Rutilus rutilus. J Exp Biol 207(Pt. 24): 4185–93. Kayan A, Hood JD. 1984. Neuro-otological manifestations of migraine. Brain 107:1123–42. Lee H, Sohn SI, Jung DK, Cho YW, Lim JG, Yi SD, Yi HA. 2002. Migraine and isolated recurrent vertigo of unknown cause. Neurol Res 24(7): 663–65. Lercher P, Evans GW, Meis M. 2003. Ambient noise and cognitive processes among primary schoolchildren. Environ Behav 35(6): 725-35. Leventhall, Geoff. 2004. Notes on low frequency noise from wind turbines with special reference to the Genesis Power Ltd. Proposal near Waiuku, NZ. Prepared for Genesis Power/Hegley Acoustic Consultants, June 4. Lipton RB, Bigal ME, Diamond M, Freitag F, Reed ML, Stewart WF; AMPP Advisory Group. 2007. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology 68(5): 343–49. Maguire EA, Valentine ER, Wilding JM, Kapur N. 2003. Routes to remembering: the brains behind superior memory. Nat Neurosci 6(1): 90–95. Marcus DA, Furman JM, Balaban CD. 2005. Motion sickness in migraine sufferers. Expert Opin Pharmacother 6(15): 2691–97. Martinho Pimenta AJ, Castelo Branco NAA. 1999. Neurological aspects of vibroacoustic disease. Aviat Space Environ Med 70(3): A91–95. Mast FW, Merfeld DM, Kosslyn SM. 2006. Visual mental imagery during caloric vestibular
stimulation. Neuropsychologia 44(1): 101–9. Minor, LB. 2003. Labyrinthine fistulae: pathobiology and management. Curr Opin Otolaryngol Head Neck Surg 11(5): 340–46. Mittelstaedt H. 1996. Somatic graviception. Biol Psychol 42(1–2): 53–74. Mittelstaedt H. 1999. The role of the otoliths in perception of the vertical and in path integration. Ann NY Acad Sci 871: 334–44. Monteiro M, Ferreira JR, Alves-Pereira M, Castelo Branco NAA. 2007. Bronchoscopy in vibroacoustic disease I: "pink lesions." Inter-Noise 2007, August 28–31, Istanbul, Turkey. Murakami DM, Erkman L, Hermanson O, Rosenfeld MG, Fuller CA. 2002. Evidence for vestibular regulation of autonomic functions in a mouse genetic model. Proc Natl Acad Sci USA 99(26): 17078–82. Muzet A, Miedema H. 2005. Short-term effects of transportation noise on sleep with specific attention to mechanisms and possible health impact. Draft paper presented at the Third Meeting on Night Noise Guidelines, WHO European Center for Environment and Health, Lisbon, Portugal, April 26–28. Pp. 5–7 in *Report on the Third Meeting on Night Noise Guidelines*, available at www.euro.who. int/Document/NOH/3rd_NNG_final_rep_rev.pdf. National Institute on Deafness and Other Communication Disorders, USA, website, "Prevalence of chronic tinnitus." 2009. www.nidcd.nih.gov/health/statistics/prevalence.htm. National Research Council. 2007. Environmental Impacts of Wind-Energy Projects. The National Academies Press, Washington, DC. 185 pp. Neuhauser H, Leopold M, von Brevern M, Arnold G, Lempert T. 2001. The interactions of migraine, vertigo, and migrainous vertigo. Neurology 56: 436–41. Oliveira MJR, Pereira AS, Castelo Branco NAA, Grande NR, Aguas AP. 2002. In utero and postnatal exposure of Wistar rats to low frequency/high intensity noise depletes the tracheal epithelium of ciliated cells. Lung 179: 225–32. Oliveira MJR, Pereira AS, Ferreira PG, Guinaraes L, Freitas D, Carvalho APO, Grande NR, Aguas AP. 2004. Arrest in ciliated cell expansion on the bronchial lining of adult rats caused by chronic exposure to industrial noise. Environ Res 97: 282–86. Omalu BI, DeKosky ST, Minster RL, Kamboh MI, Hamilton RL, Wecht CH. 2005. Chronic traumatic encephalopathy in a National Football League player. Neurosurgery 57: 128–34. Omalu BI, DeKosky ST, Hamilton RL, Minster RL, Kamboh MI, Shakir AM, Wecht CH. 2006. Chronic traumatic encephalopathy in a National Football League player: part II. Neurosurgery 59: 1086–93. Pawlaczyk-Luszczynska M, Dudarewicz A, Waszkowska M, Szymczak W, Sliwinska-Kowalska M. 2005. The impact of low-frequency noise on human mental performance. Int J Occup Med Environ Health 18(2): 185–98. Pedersen E. 2007. Human response to wind turbine noise: perception, annoyance and moderating factors. PhD diss., Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Göteborg University, Göteborg, Sweden. 86 pp. Pedersen E, Bouma J, Bakker R, van den Berg GP. 2008. Response to wind turbine noise in the Netherlands. J Acoust Soc Am 123(5): 3536 (abstract). Pedersen E, Persson Waye K. 2004. Perception and annoyance due to wind turbine noise: a dose-response relationship. J Acoust Soc Am 116(6): 3460–70. Pedersen E, Persson Waye K. 2007. Wind turbine noise, annoyance and self-reported health and wellbeing in different living environments. Occup Environ Med 64(7): 480–86. Pereira AS, Grande NR, Monteiro E, Castelo Branco MSN, Castelo Branco NAA. 1999. Morphofunctional study of rat pleural mesothelial cells exposed to low frequency noise. Aviat Space Environ Med 70(3): A78–85. Perna G, Dario A, Caldirola D, Stefania B, Cesarani A, Bellodi L. 2001. Panic disorder: the role of the balance system. J Psychiatr Res 35(5): 279–86. Persson Waye K. 2004. Effects of low frequency noise on sleep. Noise Health 6(23): 87–91. Phipps, Robyn. 2007. Evidence of Dr. Robyn Phipps in the matter of Moturimu wind farm application heard before the Joint Commissioners, March 8-26. Palmerston North, New Zealand. 43 pp. www.wind-watch.org/documents/wp-content/uploads/phippsmoturimutestimony.pdf. Rasmussen G. 1982. Human body vibration exposure and its measurement. Bruel & Kjaer Technical Paper No. 1, Naerum, Denmark. Abstract: Rasmussen G. 1983. Human body vibration exposure and its measurement. J Acoust Soc Am 73(6): 2229. Redfern MS, Furman JM, Jacob RG. 2007. Visually induced postural sway in anxiety disorders. J Anxiety Disord 21(5): 704–16. NIH Public Access Author Manuscript, pp. 1–14. Redfern MS, Yardley L, Bronstein AM. 2001. Visual influences on balance. J Anxiety Disord 15(1–2): 81–94. Reid A, Cottingham CA, Marchbanks RJ. 1993. The prevalence of perilymphatic hypertension in subjects with tinnitus: a pilot study. Scand Audiol 22: 61-63. Rennie, Gary. 2009. Wind farm noise limits urged. The Windsor Star (Ontario, Canada). February 24. Rilke, Rainer Maria. 1981. "The Neighbor." Selected Poems of Rainer Maria Rilke: A Translation from the German and Commentary by Robert Bly, p. 93. Harper & Row, New York. Rilke, Rainer Maria. 1991. "The Angels," trans. Snow. The Book of *Images: A Bilingual Edition*, rev. ed., p. 31. North Point Press, New York. Rinne T, Bronstein AM, Rudge P, Gresty MA, Luxon LM. 1998. Bilateral loss of vestibular function: clinical findings in 53 patients. J Neurol 245(6–7): 314–21. Rosenhall U, Johansson G, Orndahl G. 1996. Otoneurologic and audiologic findings in fibromyalgia. Scand J Rehabil Med 28(4): 225–32. Salt AN. 2004. Acute endolymphatic hydrops generated by exposure of the ear to nontraumatic low-frequency tones. J Assoc Res Otolaryngol 5(2): 203–14. Sand O, Karlsen HE. 1986. Detection of infrasound by the Atlantic cod. J Exp Biol. 125: 197–204. Sand O, Karlsen HE. 2000. Detection of infrasound and linear acceleration in fishes. Phil Trans R Soc Lond B 355: 1295–98. Sand O, Karlsen HE, Knudsen FR. 2008. Comment on "Silent research vessels are not quiet" [J Acoust Soc Am 2007; 121(4): EL145–50]. J Acoust Soc Am 123(4): 1831–33. Saunders RD, Jefferys JGR. 2002. Weak electric field interactions in the central nervous system. Health Physics 83(3): 366–75. Schlindwein P, Mueller M, Bauermann T, Brandt T, Stoeter P, Dieterich M. 2008. Cortical representation of saccular vestibular stimulation: VEMPs in fMRI. Neuroimage 39: 19–31. Schore, Allan N. 1994. *Affect Regulation and the Origin of the Self: The Neurobiology of Emotional Development*. Lawrence Earlbaum Associates, Hillsdale, NJ. 700 pp. Sinclair, Upton. 1935. *I, Candidate for Governor: And How I Got Licked*. Farrar & Rinehart, New York. Sokal RR, Rohlf FJ. 1969. Biometry. W. H. Freeman, San Francisco. Staud R, Cannon RC, Mauderli AP, Robinson ME, Price DD, Vierck CJ Jr. 2003. Temporal summation of pain from mechanical stimulation of muscle tissue in normal controls and subjects with fibromyalgia syndrome. Pain 102: 87–95. Steindl R, Kunz K, Schrott-Fischer A, Scholtz AW. 2006. Effect of age and sex on maturation of sensory systems and balance control. Dev Med Child Neurol 48(6): 477–82. Stewart WF, Simon D, Shechter A, Lipton RB. 1995. Population variation in migraine prevalence: a meta-analysis. J Clin Epidemiol 48(2): 269–80. Styles P, Stimpson I, Toon S, England R, and Wright M. 2005. Microseismic and infrasound monitoring of low frequency noise and vibrations from wind farms: recommendations on the siting of wind farms in the vicinity of Eskdalemuir, Scotland. 125 pp. www. esci.keele.ac.uk/geophysics/News/windfarm_monitoring.html. Takahashi Y, Kanada K, Yonekawa Y, Harada N. 2005. A study on the relationship between subjective unpleasantness and body surface vibrations induced by high-level low-frequency pure tones. Ind Health 43: 580–87. Takahashi Y, Yonekawa Y, Kanada K, Maeda S. 1999. A pilot study on the human body vibration induced by low-frequency noise. Ind Health 37: 28–35. Todd NPMc, Rosengren SM, Colebatch JG. 2008. Tuning and sensitivity of the human vestibular system to low-frequency vibration. Neurosci Lett 444: 36–41. Todd NP, Rosengren SM, Colebatch JG. 2009. A utricular origin of frequency tuning to low-frequency vibration in the human vestibular system? Neurosci Lett 451(3): 175–80. Uzun-Coruhlu H, Curthoys IS, Jones AS. 2007. Attachment of utricular and saccular maculae to the temporal bone. Hear Res 233(1–2): 77–85. Vaitl D, Mittelstaedt H, Baisch F. 2002. Shifts in blood volume alter the perception of posture: further evidence for somatic graviception. Int J Psychophysiol 44(1): 1–11. van den Berg, GP. 2004a. Do wind turbines produce significant low frequency sound levels? 11th International Meeting on Low Frequency Noise and Vibration and Its Control, Maastricht, Netherlands, August 30-September 1. van den Berg, GP. 2004b. Effects of the wind profile at night on wind turbine sound. J Sound Vib 277: 955–70. van den Berg, GP. 2005. The beat is getting stronger: the effect of atmospheric stability on low frequency modulated sound of wind turbines. J Low Freq Noise Vib Active Contr 24(1): 1–24. van den Berg, GP. 2006. The sound of high winds: the effect of atmospheric stability on wind turbine sound and microphone noise. PhD diss., University of Groningen, Netherlands. 177 pp. http://irs.ub.rug.nl/ppn/294294104. van den Berg GP, Pedersen E, Bakker R, Bouma J. 2008a. Wind farm aural and visual impact in the Netherlands. J Acoust Soc Am 123(5): 3682 (abstract). van den Berg GP, Pedersen E, Bouma J, Bakker R. 2008b. Project WINDFARMperception: visual and acoustic impact of wind turbine farms on residents. Final report, June 3. 63 pp. Summary: http://umcg.wewi.eldoc.ub.rug.nl/FILES/root/Rapporten/2008/WINDFARMperception/WFp-final-summary.pdf. Entire report: https://dspace.hh.se/dspace/bitstream/2082/2176/1/WFp-final.pdf. von Gierke HE. 1971. Biodynamic models and their applications. J Acoust Soc Am 50(6): 1397–413. von Gierke HE, Parker DE. 1994. Differences in otolith and abdominal viscera graviceptor dynamics: implications for motion sickness and perceived body position. Aviat
Space Environ Med 65(8): 747–51. Vuilleumier P, Ortigue S, Brugger P. 2004. The number space and neglect. Cortex 40(2): 399–410. Welgampola MS, Rosengren SM, Halmagyi GM, Colebatch JG. 2003. Vestibular activation by bone conducted sound. J Neurol Neurosurg Psychiatry 74: 711–18. Welgampola MS, Day BL. 2006. Craniocentric body-sway responses to 500 Hz bone-conducted tones in man. J Physiol 577(1): 81–95. Wilson TD, Cotter LA, Draper JA, Misra SP, Rice CD, Cass SP, Yates BJ. 2006. Vestibular inputs elicit patterned changes in limb blood flow in conscious cats. J Physiol 575(2): 671–84. World Health Organization. 1999. *Guidelines for Community Noise*, ed. Berglund B, Lindvall T, Schwela DH. 159 pp. www.who. int/docstore/peh/noise/guidelines2.html. Yardley L, Britton J, Lear S, Bird J, Luxon LM. 1995. Relationship between balance system function and agoraphobic avoidance. Behav Res Ther 33(4): 435–39. Yardley L, Luxon LM, Lear S, Britton J, Bird J. 1994. Vestibular and posturographic test results in people with symptoms of panic and agoraphobia. J Audiol Med 3: 58–65. Yates BJ, Aoki M, Burchill P, Bronstein AM. 1999. Cardiovascular responses elicited by linear acceleration in humans. Exp Brain Res 125: 476–84. Zorzi M, Priftis K, Umilta C. 2002. Brain damage: neglect disrupts the mental number line. Nature 417: 138–39. # Referee reports Dr. Pierpont's report deserves publication. Although the case numbers are not large, the careful documentation of serious physical, neurological, and emotional problems provoked by living close to wind turbines must be brought to the attention of physicians who, like me, were unaware of them until now. By a well devised questionnaire/interview the author has been able to obtain data demonstrating the correlation of symptoms induced by active wind turbines, the improvement/resolution of symptoms when the interviewees have moved away, and the re-emergence of the same symptoms when returning to their homes near the turbines. With the pressure on our governments to go "green," eliminating coal-powered sources of electricity, the United States Environmental Protection Agency in conjunction with Dr. Pierpont and this report should expand this investigation and establish the necessary guidelines for creating wind turbine "farms" and protect those near to them. JEROME S. HALLER, MD, Professor of Neurology and Pediatrics (retired 2008), Albany Medical College, Albany, New York. Dr. Haller is a member of the American Academy of Pediatrics, the American Academy of Neurology (Child Neurology Section), and the Child Neurology Society. June 10, 2008 Dr. Pierpont's study addresses an under-reported facet of Noise Induced Illnesses in a fashion that is detailed in its historical documentation, multi-systemic in its approach and descriptions, and painstakingly and informatively referenced. The study provides a scientific underpinning for viewing symptom complexes that are generally unappreciated and difficult to comprehend for the great majority of medical practitioners who have to rely, in their daily practice, on identifying anatomical or chemical abnormalities in order to establish a diagnosis. This approach opens up an avenue to diagnosis and comprehension that was exciting to me, and, I feel, would excite the interest of a large group of practitioners who are open to looking at the patient as a person, rather than as a machine. It will encourage physicians to listen carefully to their patients and place their patients in the environment rather than the lab. Dr. Pierpont's study is particularly important because of the present energy crisis (and the role of environment-changing technologies to address it), it is very readable, extremely well referenced and most informative. The patients described are true "sufferers" (the root of the word patient) whose lives have been seriously disrupted. As I mentioned above, it is particularly relevant at a time when wind energy technology and its applications are growing worldwide. It alerts the medical profession to the potential for illness caused by low frequency vibrations. It encourages the medical profession to scrutinize other, new energy technology for potential side effects. It is my hope that this study, when published, will stimulate research not only on the deleterious effects of low frequency vibration on the human species, but also on its effects upon the animal world in general. I would also hope that the symptom complexes that are described will be studied more intensely so as to gain a greater understanding of the human body as regards its physiology and pathophysiology. I am convinced that successful analysis of the physical forces that impact on humans will add an important dimension to our understanding of physiology and disease states. This study opens up the area of low frequency vibration to the medical community. Other physical forces, both mechanical and electrical, could play a role in certain human diseases. This study could encourage recognition of the research accomplishments in analyzing disease states through analysis of these physical forces. Since the analysis of these forces is presently outside of the medical model of disease diagnosis, many of these sufferers have been labeled as having a purely psychological problem. The author has provided a basis to describe such a group of symptom complexes as pathophysiological, and I applaud her. JOEL F. LEHRER, MD, Fellow of the American College of Surgeons, Clinical Professor of Otolaryngology, University of Medicine & Dentistry of New Jersey. Formerly Professor of Otolaryngology, Mount Sinai School of Medicine, New York, New York. June 29, 2008 I congratulate you on your case-series investigation on Wind Turbine Syndrome. That is, the conception, the data gathering, the analysis and the write-up. As an epidemiologist I fully appreciate your truly remarkable effort, one that smacks of being well done and with a full respect for honest inquiry. Given your initial suspicions on this matter, your high level of scientific integrity is revealed both in your design decisions and in your writing, both of which are of the highest order. What you have accomplished is, at once, both remarkable and limited (as you fully appreciate). I see several noteworthy outcomes of your admirable and remarkable presentation of this case-series report on Wind Turbine Syndrome from your perspective as a concerned, practicing physician from the community. - 1) Creation of a case-definition for Wind Turbine Syndrome. You have initiated a critical first step needed to convert "an issue of concern" into a "researchable topic" by your putting forth a clear case-definition of Wind Turbine Syndrome, including the recognition and development of a newly defined symptom which you document and call Visceral Vibratory Vestibular Disturbance (VVVD). - 2) Creation of a thoughtful list of future research suggestions into Wind Turbine Syndrome. By your deep and obvious commitment to get at the truth of this matter, you have proposed a thoughtful and rich list of directions for others to pursue in this line of inquiry, something that involved investigators can uniquely do as a result of the depth of their intellectual investment in the line of inquiry. - 3) Candidly presented an insightful list of the limitations of your case-series study. It instills confidence in the reader that you, indeed, conducted a study aimed at discovering the truth of the matter, which always demands candor and insights from the investigator who best knows the range of limitations, from minor up to major (if any), in one's own study. As you fully appreciate, the biggest overall limitation of your work is the lack of "generalizability" of the specific findings to broader populations due to the specific (but both appropriate and necessary) eligibility criteria for subjects in your case-series. This is nothing to worry about, merely something to appreciate and build upon, as this limitation is inherent to any early-stage epidemiologic investigation into an evolving subject area. You have laid a remarkable, high quality, and honest foundation for others to build upon with the next stages of scientific investigation. In doing so, you have made a commendable, thorough, careful, honest, and significant contribution to the study of (what we can now call) Wind Turbine Syndrome. RALPH V. KATZ, DMD, MPH, PhD, Fellow of the American College of Epidemiology, Professor and Chair, Department of Epidemiology & Health Promotion, New York University College of Dentistry, New York, New York October 5, 2008 Dr. Pierpont has gathered a strong series of case studies of deleterious effects on the health and well being of many people living near large wind turbines. Furthermore she has reviewed medical studies that support a plausible physiological mechanism directly linking low frequency noise and vibration, like that produced by wind turbines, which may not in itself be reported as irritating, to potentially debilitating effects on the inner ear and other sensory systems associated with balance and sense of position. Thus the effects are likely to have a physiological component, rather than being exclusively psychological. More extensive and statistically controlled observations may be needed to discover just how far from the turbines the deleterious effects occur, and in what proportion of the population. However, it is already clear that many people are affected at far greater distances than the minimum set-backs currently allowed between turbines and residences. Accordingly, it would be prudent to establish much longer set-backs from houses as a criterion for siting new turbines, pending further studies on this newly documented "wind turbine syndrome." Documentation of the syndrome itself is strong evidence that current set-backs are woefully inadequate. HENRY S. HORN, PhD, Professor of Ecology and Evolutionary Biology, and Associate of the Princeton
Environmental Institute, Princeton University, Princeton, New Jersey October 17, 2008 # About the author I am a New Englander by many generations, growing up in a family of teachers and writers. My grandfather, like me, was a physician and ecologist. After being blessed by a fine elementary school (New Canaan Country School, 1970) and high school (Milton Academy, 1973), I attended Yale on a National Merit Scholarship, graduating in 1977 with a BA in biology. I earned a PhD (1985) in behavioral ecology at Princeton (training that I use substantially in my work in behavioral pediatrics), did a post-doctoral fellowship in ornithology at the American Museum of Natural History (NYC), and, as an over-the-hill woman of thirty-two, went to the Johns Hopkins University School of Medicine, where I earned the MD degree (1991). I wanted to give my ecology training a human face. I chose the face of a child, becoming a pediatrician by completing internship at the Children's National Medical Center, Washington, DC, and residency at the Dartmouth-Hitchcock Medical Center, Lebanon, NH (because my husband, a country lad, detested Washington). Despite his feelings toward Washington, and his improbable name (Calvin Luther Martin), my husband is a respectable man (retired Rutgers University professor and author of well-known scholarly books). Our two children (my stepchildren) are grown and have made us grandparents. I am 54 years old. I am an unabashed lover of wildness. I did my PhD research living in a tent in the Amazon jungle for several years, studying bird behavior. In pursuit of wildness and native cultures, my husband and I lived for another several years with Yup'ik Eskimos on the Alaska tundra, near the Bering Sea, where I became chief of pediatrics at a native-run hospital. Likewise, we spent a summer living on the Navajo reservation, as I did a sub-internship in medical school. For three years I ran a general pediatrics practice in Malone, Franklin County, NY (poorest county in the state), where I was, as well, the pediatrician for the St. Regis Mohawk Nation (Hogansburg, NY). For the next three years (2000–03) I was Senior Attending in Pediatrics at Bassett Healthcare, Cooperstown, NY (and, must confess, never darkened the door of the Baseball Hall of Fame). Bassett is a teaching hospital of Columbia University, and I was Assistant Clinical Professor of Pediatrics at Columbia's College of Physicians & Surgeons. I am a board-certified pediatrician licensed in the State of New York and Fellow of the American Academy of Pediatrics. These days I limit my practice to behavioral medicine, seeing both adults and (chiefly) children, drawing my patients from an extensive area of rural upstate New York. I have had considerable post-graduate training in behavioral medicine, which I have been able to integrate with my doctoral training in behavioral ecology. My research on Wind Turbine Syndrome is the offspring of behavioral medicine married to behavioral ecology. Most of all, I love what I do. I believe in compassion and grace and get tremendous pleasure and joy out of my patients. (To children's delight, I carefully count their toes.) I run my practice out of my home as an old-fashioned doctor's office. Cheerful, light, airy, perhaps the faint smell of my husband's burnt toast wafting through the house. Norman Rockwell's America. ### Nina Pierpont, M.D., Ph.D., FAAP ### February 24, 2010 ### **HOME ADDRESS** Same as office. ### **PERSONAL** Place of birth: Stamford, CT Date of birth: May 18, 1955 Married with two adult stepchildren ### **EDUCATION AND TRAINING** #### Education | 1991 | M.D. | The Johns Hopkins University School of Medicine | |------|-------|---| | 1985 | Ph.D. | Princeton University (Ecology, Evolution, and Behavior) | | 1981 | M.A. | Princeton University (Ecology, Evolution, and Behavior) | | 1977 | B.A. | Yale University (cum laude) | | 1973 | | Milton Academy, Milton, Mass. | | 1970 | | New Canaan Country School, Conn. | ### Post-Doctoral Training | 1992 to 94 | Pediatrics | Dartmouth-Hitchcock Medical Center, Lebanon, NH | |------------|-------------|--| | 1991 to 92 | Pediatrics | Children's National Medical Center, Washington, DC | | 1985 to 86 | Ornithology | American Museum of Natural History, New York, NY | #### Licensure and Certification | 1997
1997
1995 | Licensed Physician, New York
Licensed Physician, New Hampshire (expired)
Pediatric Advanced Life Support (recertified 2002) | |----------------------|---| | 1994 | Diplomate, American Board of Pediatrics (recertified 2008, expires 2015) | | 1994 | Licensed Physician, Alaska (expired) | | 1994 | DEA Registration | | 1994 | Advanced Trauma Life Support Provider (expired) | | 1994 | Advanced Cardiac Life Support Provider (expired) | | 1992 | Neonatal Advanced Life Support Provider (recertified 2003) | # Continuing Education 2009 Spectrum of Developmental Disabilities XXX I: A Pragmatic View of the Social Brain (Johns Hopkins, 18.25 hours) | 2008 | IntermediateTraining in the Psychological Treatment of Children with Trauma-Attachment Problems - Daniel A. Hughes, Ph.D. (32 hours) | |------|--| | 2007 | Training in the Psychological Treatment of Children with Trauma-Attachment | | 200. | Problems - Daniel A. Hughes, Ph.D. (32 hours) | | 2006 | Workshop in Basic Pediatric Hypnosis (20 hours) | | 2006 | Introductory Theraplay Training (27 hours) | | 2005 | Psychiatry: Comprehensive Update and Board Preparation (Harvard, 51 hours) | | 2005 | ADHD Across the Life Span (Harvard, 22 hours) | | 2004 | Gesell Developmental Evaluation, Anthony Malone, M.D., Latham, NY (6 days) | | 2002 | Promoting Student Success (Melvin Levine, M.D., U. of N. Carolina, 20.5 hours) | | 2002 | Psychiatric Neuroscience Home Study Course (Harvard, 16.5 hours) | | 2000 | Child and Adolescent Psychopharmacology (Harvard, 20 hours) | | 1998 | Clinical Diagnosis and Treatment of Fetal Alcohol Syndrome (7.5 hours) | | 1997 | Pediatric and Adolescent Gynecology (Harvard, 14 hours) | ### PROFESSIONAL APPOINTMENTS # Hospital or Affiliated Institution Appointments | 2004 to | Consulting Pediatrician Alice Hyde Medical Center, Malone, NY | |------------|---| | 2000 to 03 | Senior Attending in Pediatrics Bassett Healthcare, Cooperstown, NY | | 1997 to 00 | Attending Pediatrician Alice Hyde Medical Center, Malone, NY | | 1995 to 96 | Chief of Pediatrics Yukon-Kuskokwim Delta Regional Hospital, Bethel, AK | | | (Yup'ik Eskimo) | | 1994 to 95 | Staff Pediatrician Yukon-Kuskokwim Delta Regional Hospital, Bethel, AK | #### Other Professional Positions | 1998 to 00 | Private Practice (S | Solo) Pediatrics Malone, NY | |------------|---------------------|--| | 1997 to 00 | Staff Pediatrician | St. Regis Mohawk Health Services, Hogansburg, NY | | 1997 to 98 | Staff Pediatrician | North Country Children's Clinic, Malone, NY | ### Academic Appointments | 2000 to 03 | Assistant Clinical Professor of Pediatrics Columbia University College of | |------------|---| | | Physicians and Surgeons | | 1980 to 85 | Teaching Assistant Princeton University | | 1978 | Teacher Children's School of Science, Woods Hole, MA | | 1977 to 78 | Research Assistant Yale University | | | | # LANGUAGES SPOKEN Spanish, French # **AWARDS AND HONORS** | 1984 | National Science Foundation Dissertation Grant (Princeton) | |------------|---| | 1979 to 82 | National Science Foundation Predoctoral Fellowship (Princeton) | | 1979, 80 | Dunlop Prize, Biology Department, Princeton University | | 1981 to 83 | Research grants from the National Academy of Sciences, American | | | Museum of Natural History, American Ornithologists' Union, and others | | 1973 | National Merit Scholar to Yale University | ### MAJOR ADMINISTRATIVE RESPONSIBILITIES 1995 to 96 Chief of Pediatrics Yukon-Kuskokwim Delta Regional Hospital, Bethel, AK #### PROFESSIONAL SOCIETY INVOLVEMENT | 1997 to | American Academy of Pediatrics Fellow | |------------|--| | 2000 to | Medical Society of the State of New York | | 2006 to | Franklin County Medical Society | | 2000 to 03 | Otsego County Medical Society | #### **COMMUNITY SERVICE** | 1998 to 00 | Physician member, Child Abuse Response Team, Franklin County, NY | |------------|--| | 1994 to 96 | Physician member, Child Abuse Response Team, Yukon-Kuskokwim | | | Delta. AK | #### **GRAND ROUNDS** | May 1994 | "Infectious Diseases in Yup'ik Eskimos" at Dartmouth-Hitchcock Medical | |------------|---| | | Center (Lebanon, NH) | | May 2001 | "Vaccinations: The Debate" at Bassett Healthcare (Cooperstown, NY) | | March 2002 | "Evaluation of Children and Adolescents with Behavior and Learning | | | Problems" at Bassett Healthcare (Cooperstown, NY) | | April 2002 | "Vaccinations: An Overview for Family Practitioners" at Bassett Hospital of | | | Schoharie County (Cobleskill, NY) | | Feb 2003 | "A Neurodevelopmental Approach to ADHD" at Bassett Healthcare (Cooperstown, NY) | | | (, | #### **BIBLIOGRAPHY** #### Books Pierpont N. *Wind Turbine Syndrome: A Report on a Natural Experiment*. K-Selected Books, Santa Fe, NM, 2009, 294 pp. ### Original reports - Pierpont N, Fitzpatrick JW. Specific status and behavior of *Cymbilaimus
sanctaemariae*, the Bamboo Antshrike, from southwestern Amazonia. Auk (Journal of the American Ornithologists' Union) 1983; 100: 645-52. - Terborgh JT, Robinson SK, Parker TA, Munn CA, Pierpont N. Structure and organization of an Amazonian forest bird community. Ecological Monographs 1990; 60: 213-38. #### Proceedings of Meetings Pierpont, N. Competencia y coexistencia de trepadores [Competition and coexistence of woodcreepers]. In: Rios MA, ed. Reporte Manu. Lima, Peru: Centro de Datos para Conservacion, 1985, 13 pp. #### <u>Abstracts</u> Pierpont N. Interspecific dominance and the structure of woodcreeper guilds [Abstract]. American Zoologist 1983; 23: 1001. - Pierpont N. Interspecific aggression and the ecology of woodcreepers (Aves: Dendrocolaptidae). Ph.D. Dissertation, Princeton University, Princeton, NJ. Ann Arbor, Michigan: University Microfilms, 1986; Abstract No. 8602443. - Pierpont N. Habitat selection induced by interspecific aggression in Amazonian birds [Abstract]. Proceedings of the IV International Congress of Ecology, Syracuse, N.Y., 1986, p. 271. - Karron RA, Singleton RJ, Petersen KM, Bonilla D, Hughes B, Davidson N, Bulkow L, Pierpont N, Wainwright R, Santosham M, Harrison LH. RSV is a frequent cause of hospitalization in Alaska Native infants. Poster, ICAAC meeting, 1995. ### Newspaper column, The Malone (NY) Telegram | 9/9/06 | ADHD: Young Children, Self-Regulation, and Look-Alike Problems | |----------|---| | 9/23/06 | ADHD: Older Children: Mental Energy and Consistency | | 10/7/06 | ADHD: In One Ear and Out the Other (Processing Controls) | | 10/23/06 | What Elephants Teach Us about Children | | 11/4/06 | ADHD: Look Before You Leap (Production Controls) | | 11/18/06 | Mapping the World onto the Brain: Neurological Templates for Learning | | 12/2/06 | Childhood Adverse Experiences and Long-Term Health (ACE Study) | | 12/16/06 | Autism from the Inside (Temple Grandin) | | 1/7/07 | Mirror Neurons and Autism | | 1/20/06 | Autism, Asperger's, and Non-Verbal Learning Disabilities | | 2/3/07 | Concussions: Short- and Long-Term Effects | | 2/17/03 | Play + Therapy = Theraplay | | 3/3/07 | Sick Of Poverty: Poverty, Stress, and Health | | 3/17/07 | TV, Video Games, and Kids | | 4/3/07 | Punished by Rewards: Research on Behaviorism | | 4/21/07 | The Genius of Inner Motivation | | 5/12/07 | Warbler Wave: Healing and Nature | | 5/26/07 | Plan B: Collaborative Problem Solving | | 6/9/07 | Try Collaborative Problem Solving |