

Tweed Sand Plant, Altona Road, Cudgen

Traffic Impact Assessment

Client: Hanson Construction Materials Pty Ltd

Project No: BE190043

Document No: BE190043-RP-TIA-07B

October 2021

Document Control Record

Prepared by:	Aga Szewczak / Dale Kleimeyer
Position:	Senior Traffic Engineer
Signed:	
Date:	27 October 2021

Approved by:	Dale Kleimeyer
Position:	Principal Traffic Engineer RPEQ 6876
Signed:	
Date:	27 October 2021

Version No.	Description	Date	Prepared	Approved
01	DRAFT	19 October 2020	AS	DK
02	DRAFT Rev A	30 October 2020	AS	DK
03	FINAL Rev A	17 November 2020	AS	DK
04	FINAL Rev B	22 January 2021	AS	DK
05	FINAL Rev C	8 February 2021	AS	DK
06	FINAL Rev D	9 February 2021	AS	DK
07	IR Response Rev A	13 August 2021	AS	DK
07B	Final Rev	27 October 2021	AS	DK

Recipients are responsible for eliminating all superseded documents in their possession

Coote Burchills Engineering Pty Ltd ACN: 166 942 365

Level 2, 26 Marine Parade SOUTHPORT QLD 4215
PO Box 3766, Australia Fair SOUTHPORT QLD 4215
Telephone: +61 7 5509 6400
Level 14, 167 Eagle Street BRISBANE QLD 4000
PO Box 83, BRISBANE QLD 4000
Telephone: +61 7 3606 0201
Email: admin@burchills.com.au

RELIANCE, USES and LIMITATIONS

This report is copyright and is to be used only for its intended purpose by the intended recipient, and is not to be copied or used in any other way. The report may be relied upon for its intended purpose within the limits of the following disclaimer.

This study, report and analyses have been based on the information available to Burchills Engineering Solutions at the time of preparation. Burchills Engineering Solutions accepts responsibility for the report and its conclusions to the extent that the information was sufficient and accurate at the time of preparation. Burchills Engineering Solutions does not take responsibility for errors and omissions due to incorrect information or information not available to Burchills Engineering Solutions at the time of preparation of the study, report or analyses.

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Executive Summary

Burchills Engineering Solutions has been commissioned by Hanson Construction Materials Pty Ltd (Hanson) to prepare a Traffic Impact Assessment (TIA) report to support a Development Application (DA) for the expansion of the existing Tweed Sand Plant (TSP) located at Altona Road, Cudgen. The development is located within Tweed Shire Council Local Authority. The current approved sand extraction sites include Lot Plans: 22 on DP1082435, 23 on DP1077509 and 494 on DP720450. The proposed expansion site includes the current site plus Lot Plans; 1 on DP1250570, 2 on DP1192506, 3 on DP1243752, 50 on DP1056966 and 51 on DP1166990.

The total area for the future Tweed Sand Plant site would be approximately 236ha and result in an increase in the sand production rate from the current limit of 500,000 tonnes per annum (tpa) to 950,000 tpa. The applicant proposes to gain access from Tweed Valley Way via a new roundabout, contrary to the current arrangements utilising the local street network involving Altona Road, Crescent Street and Tweed Coast Road.

Tweed Coast Road is a local council-controlled road that provides access to Cudgen, Kingscliff, Casuarina and Cabarita Beach from the M1 Pacific Motorway. The above areas are forecasted to have substantial population growth due to the land development on both sides of the road. Removing heavy vehicles from Tweed Coast Road has significant road safety benefits. The need for private access to the interchange and the relative merits of supporting a direct versus the comparative outcome of previously approved access arrangement via Tweed Coast Road is relevant to the Consent Authority's consideration of Clause 101 of the SEPP Infrastructure.

To quantify the potential benefits of removing heavy vehicle demand from Tweed Coast Road (TCR), a comparative economic analysis of impacts introduced to the Tweed Valley Way interchange in terms of delay and/or safety has been prepared. The Economic Evaluation assessment as contained in Appendix F demonstrated that the proposed Tweed Sand Plant haulage route via Tweed Valley Way including upgrade of the Tweed Valley Way / ABLP intersection does provide economic benefits to the local community which outweighs its cost to residents, Local and State Governments. The Cost-benefit analysis prepared determined that the project will generate a Present Value (PV) total of \$2.59M in benefits at a Present Value cost of \$1.05M above the Base Case, providing a NPV of \$1.54M and a Benefit-Cost Ratio (BCR) of 2.46. The majority of benefits relate to travel time savings along Tweed Coast Road via a reduction in travel time, maintenance costs reduction, environmental and safety benefits. The analysis includes maintenance costs associated with the proposed new Tweed Valley Way roundabout over the life of the project but excludes the capital costs covered by Hanson.

Pacific Motorway (M1) is a declared Freeway and Transport for New South Wales (TfNSW) is the Roads Authority for Freeways in accordance with Section 7 of the Roads Act 1993. Tweed Valley Way (679) is a classified (Regional) Road and a declared Controlled Access Road (CAR) in the subject area. Tweed Shire Council is the Roads Authority for all public roads in the local government area, including Tweed Valley Way. However, TfNSW can exercise Roads Authority powers in relation to classified roads and provides consent to any new connection with a Freeway or CAR in accordance with the Roads Act. Developer works are subject to the terms of a Works Authorisation Deed (WAD).

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Several options for connection to Tweed Valley Way were investigated with the TfNSW with the proposed roundabout being a preferred option. The design vehicle for the TSP is 26m B-Double truck. The preferred site access strategy is contained in Appendix A.

Available traffic surveys were used for traffic analysis adopting the Tweed Shire Council Transport traffic volume forecasts in the analysis. Traffic growth at the rate of 0.6% per annum was calculated from traffic surveys and forecast traffic volumes extracted from the TSC *Tweed Road Development Strategy* and adopted for the capacity analysis of the intersection at the ABLP property. The growth rate is consistent with the medium growth scenario adopted for Tweed Shire Transport Planning.

2020 traffic surveys were completed in early March 2020 (pre COVID -19) and represent the normal situation. The speed surveys identified that the advisory speed of 75km/hr is exceeded by speeds of 87km/hr recorded as the 85th percentile speed. A review of the 2019 AADT volumes along the M1 Pacific Motorway identified that there are seasonal variations in traffic with the highest volumes recorded in January. Based on the above, traffic survey data from March 2020 has been increased to account for the seasonal variations in traffic volumes. The above represents the worst-case scenario under 100th Highest Hour Volumes as adopted for all SIDRA capacity calculations.

Safety and efficiency on the surrounding road network identified that no accidents have been recorded between 2013 and 2019 at the existing ABLP intersection with Tweed Valley Way.

TSP destinations involve 95% delivery trips travelling north and 5% south. Sensitivity testing was undertaken for the 50% north and 50% south distribution.

The SIDRA software capacity analysis identified that the proposed roundabout would operate well within its theoretical capacity in the 2042 assessment year with the proposed development traffic superimposed with minimal delays and satisfactory Degree of Saturation.

The proposed site access arrangements are adequate to service the site. Auxiliary lanes at the roundabout approaches provide additional safety measures by allowing segregation of the heavy vehicles at the approaches.

The Tweed Valley Way / Caltex Service Station roundabout is designed to cater for 26m B-Double heavy vehicles. However, swept path analysis of the U-turn movement at this roundabout identified that modifications to the roundabout island are required. To ensure road safety, it is proposed to provide additional signage with advisory safe turning speed for trucks manoeuvring the roundabout as part of an upgrade that marginally widens the pavement to the circulating lane on the southeast side. Note that the drawing is based on aerial photography and the final extent of widening is subject to swept paths based on the detail survey of the existing roundabout.

Hanson will retain ownership of the site following completion of sand extraction and any proposed subsequent use of the site will be decided via the appropriate consultative, application and regulation processes in place at that time.

Assessment of the impact on public transport (public and school bus routes) and consideration for alternative transport modes such as walking and cycling, recommended access from the existing Tweed Coast Road as part of the Tweed Shire Council bus services and active transport infrastructure.

 \gg —

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Table of Contents

1.	Introduc	tion	1
	1.1 Bac	kground	1
	1.2 Scc	pe	2
2.	Existing	Conditions	4
	2.1 Exis	sting Tweed Sand Plant	
	2.1.1	Existing Tweed Sand Plant Traffic Generation (2017-2018)	5
	2.1.2	Current Operating Hours	6
	2.2 Sur	rounding Road Network	6
	2.2.1	Tweed Valley Way	7
	2.2.2	Altona Road	8
	2.2.3	Crescent Street	9
	2.2.4	Tweed Coast Road	9
	2.2.5	Pacific Motorway	10
	2.3 Exis	sting Road Safety Assessment	11
	2.3.1	Crash data	11
	2.3.2	Intersection Sight Distance	11
	2.3.3	Recorded Speeds	12
	2.4 Driv	vers Code of Conduct	12
3.	Traffic D	Pata	14
	3.1 Ref	erence Documentation	14
	3.1.1	Previous Traffic Reports	14
	3.1.2	Traffic Volume Survey Data Available	14
	3.2 Nev	v Traffic Count Surveys	15
	3.2.1	Survey Results Tweed Valley Way	17
	3.2.2	Historical Traffic Growth	19
	3.2.3	Traffic Growth Projection	20
4.	Committ	ted Development	21
5.	Propose	d Development	23
	5.1 Dev	velopment Details	23
	5.2 Site	Access Strategy	24
	5.2.1	Traffic Distribution	27
	5.3 Ecc	nomic Appraisal	28
	5.3.1	Economic Appraisal Methodology	29
	5.3.2	Traffic Forecast	30
	<u> </u>		- www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

	5.3.3	Base Case and Project Case	30
	5.3.4	Traffic Modelling	31
	5.3.5	Project Costs	31
	5.3.6	Project Benefits	32
	5.3.7	Economic Appraisal Results	33
	5.3.8	Conclusions	33
5	.4 Des	scription of the Types of Haulage Vehicles	33
5		olic and Active Transport	
6.	Traffic D	emands	35
6	.1 Pre	-Development Traffic	35
	6.1.1	Seasonal Variations in Traffic	36
	6.1.2	100 th Highest Hour Volumes.	37
	6.1.3	Background Traffic Growth Rates	38
	6.1.4	Future Year Traffic Volumes	38
	6.1.5	Future Year Traffic Volumes with Committed Development	40
6	.2 Dev	velopment Traffic	40
	6.2.1	Trip Generation	40
	6.2.2	Trip Distribution	42
6	.3 Pos	t Development Traffic	45
7.	Operation	onal Assessment	48
7	.1 Inte	rsection Capacity Analysis	48
7	.2 Twe	eed Valley Way / ABLP Property Site Access Priority T-intersection	48
7	.3 Twe	eed Valley Way / ABLP Property Site Access Proposed Roundabout	51
7	.4 Twe	eed Valley Way / Service Station Access roundabout	52
8.	Propose	d Mitigation Works	56
8		eed Valley Way / Service Station Roundabout	
8	.2 Swe	ept Paths Analysis New Roundabout Eastern Side M1	56
8		ject Phasing Concept Plan	
9.		Shire Council Draft Comments	
10.		ccess Strategy End Use Development	
	10.1.1	Vehicular Access	
	10.1.2	Walking and Cycling Distances	62
	10.1.3	Public Transport	63
11.	Conclus	ions and Recommendations	66
12.	Referen	ces	68

- www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Tables		
	2017-2018 Recorded Heavy Vehicle Movement Volumes	
	Surveyed AM and PM Peak Tweed Sand Plant Traffic Volumes (214,000 tonnes Jur	
Table 2.3	AM and PM Peak Tweed Sand Plant Traffic Volumes 500,000 tonnes extraction limit)	6
Table 3.1	Location 1 - 5-day Average Volumes1	9
Table 5.1	Description of the Types of Vehicles to be used for Transportation of Sand Products 3	3
Table 6.1	2019 Annual Average Traffic Volumes M1 (Eastbound)	6
Table 6.2	January 2019 Peak hour traffic comparison relative to 2019 March data	7
Table 6.3	Traffic Growth Factors3	8
Table 6.4	Recorded Lytton Sand Plant Truck Movements4	1
Table 6.5	Forecast Tweed Sand Plant Redevelopment Truck Movements	2
	Forecast Tweed Sand Plant Redevelopment Annual Truck Movements4	
Table 6.7	Combined Lytton Sand Plant and Tweed Sand Plant Key Destinations4	3
Table 7.1	Tweed Valley Way / ABLP Property Site Access Intersection SIDRA Results – Year 202	20
Table 7.2	Tweed Valley Way / ABLP Property Site Access Intersection SIDRA Results – Year 202	22
	Tweed Valley Way / ABLP property Site Access Intersection SIDRA Results – Year 203	
	Tweed Valley Way / ABLP property Site Access Intersection SIDRA Results – Year 204	
	Tweed Valley Way / ABLP and TSP Access Proposed Roundabout SIDRA – 2022 & 203	32
Table 7.6	Tweed Valley Way / ABLP and TSP Access Proposed Roundabout SIDRA - 2042 5	2
Table 7.7	Tweed Valley Way / Service Station Roundabout SIDRA Results – Year 20205	3
Table 7.8	Tweed Valley Way / Service Station Roundabout SIDRA Results – Year 2022 5	3
Table 7.9	Tweed Valley Way / Service Station Roundabout SIDRA Results – Year 2032 5	;4
Table 7.10	Tweed Valley Way / Service Station Roundabout SIDRA Results – Year 20425	4
Figures	Oursell Assessed Oites	
•	Current Approval Sites	
_	Existing Tweed Sand Plant Truck Routes	
•	TSP Operating Hours	
Ū	Proposed Redevelopment Site. Location Surrounding Roads	
_	Tweed Valley Way Northern Approach to ABLP Property Access	
	Speed Limit along Tweed Valley Way	
Figure 2.7	Altona Road Approach to Intersection with Crescent Street	8

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-TIA-07B
Doc Title: Traffic Impact Assessment

www.burchills.com.au

Figure 2.8 Crescent Street / Tweed Coast Road Intersection	9
Figure 2.9 Tweed Coast Road Cross-section	9
Figure 2.10 Road Classifications and Declarations Tweed Valley Way / Pacific Moto	rway
Interchange	10
Figure 2.11 Existing Crash Records Tweed Valley Way Interchange	11
Figure 2.12 Existing ABLP Property Intersection Sight Visibility	12
Figure 3.1 Pacific Motorway M1 Traffic Volumes	15
Figure 3.2 Location of Traffic Surveys	16
Figure 3.3 Location 1 Bio Directional Weekly Volume Flows Tweed Valley Way Site 1	17
Figure 3.4 Location 1 Speed Distribution Northbound (towards M1 Southbound On-Ramp)	18
Figure 3.5 Location 1 Speed Distribution Southbound Tweed Valley Way	18
Figure 3.6 Location 1 Heavy Vehicle Proportions Travelling Northbound	19
Figure 3.7 Traffic Survey Site Tweed Valley Way (TVW) Mr679 at No 232 LGA Historic Gr Calculation	
Figure 3.8 Traffic Survey Site Tweed Valley Way (TVW) Mr679 at No 232 IGA Future Gr Calculation	
Figure 4.1 Committed Developments	21
Figure 4.2 The Proposed Modification of Existing Aquaculture	22
Figure 4.3 Australian Bay Lobster Producers Limited Committed Development	22
Figure 5.1 Locality Plan of the Proposed Redevelopment Site (Base from Google maps)	24
Figure 5.2 Proposed Site Access Strategy	25
Figure 5.3 Extent of Land Dedication Proposed	27
Figure 5.4 Tweed Sand Plant Haulage Route Northbound	28
Figure 5.5 Tweed Sand Plant Haulage Route Southbound Destinations	28
Figure 5.6 Base Case and Project Case Haulage Route to the M1 Pacific Motorway	29
Figure 6.1 Surveyed 2020 Traffic Flows AM and PM Peak	35
Figure 6.2 2019 Monthly Variation in Traffic along the M1 relative Traffic Recorded in March	36
Figure 6.3 Adjusted 2020 Traffic Flows for 100 th Highest Hour Volumes	37
Figure 6.4 2022 Background Traffic Flows Peak Hours	38
Figure 6.5 2032 'Pre-development' Traffic Flows Peak Hours	39
Figure 6.6 2042 'Pre-development' Traffic Flows Peak Hours	39
Figure 6.7 2022 Base with ABLP Property Committed Development	40
Figure 6.8 Recorded Lytton Sand Plant Wednesday Average Traffic Volumes (Arrivals Only)	41
Figure 6.9 Development Trips Assignment	44
Figure 6.10 Development Trips Assignment (Sensitivity Testing)	45
Figure 6.11 2022 'Post-development' Traffic Flows Peak Hours	45
Figure 6.12 2032 'Post-development' Traffic Flows Peak Hours	46
Figure 6.13 2042 'Post-development' Traffic Flows Peak Hours	46

- www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Figure 6.14 2042 'Post-development' Traffic Flows (Sensitivity Testing) Peak Hours	47
Figure 6.15 2022 Heavy Vehicle Percentages Base 2020 Peak Hours	47
Figure 7.1 Tweed Valley Way / ABLP Property Site Access Intersection (Existing Layout) .	48
Figure 7.2 Tweed Valley Way / ABLP Property Site Access Intersection (Proposed Layout	t) 49
Figure 7.3 Tweed Valley Way / ABLP and TSP Access Proposed Roundabout	51
Figure 7.4 Tweed Valley Way / Service Station Roundabout (Existing Layout)	53
Figure 8.1 Proposed Upgrades to Tweed Valley Way / Service Station Roundabout	56
Figure 8.2 Project Phasing Concept Plan	57
Figure 8.3 Final Concept Plan	58
Figure 10.1 Existing Tweed Coast Road / Crescent Street Priority Intersection	62
Figure 10.2 Existing Walking and Cycling Paths in the Vicinity of the TSP Site (Source Two Council)	
Figure 10.3 Public Transport Accessibility (Source Tweed Shire Council)	64
Figure 10.4 Bus 603 Route (Source Tweed Shire Council)	64

Appendices

Appendix A - Site Layout and Swept Path Analysis

Appendix B - Traffic Surveys

Appendix C – Trip Distribution Diagrams

Appendix D – Drivers Code of Conduct

Appendix E – Intersection Performance Summaries

Appendix F – Economic Evaluation

- www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

1. Introduction

1.1 Background

Burchills Engineering Solutions has been commissioned by Hanson Construction Materials Pty Ltd (Hanson) to prepare a Traffic Impact Assessment (TIA) report to support a Development Application (DA) for the expansion of the existing Tweed Sand Plant located at Altona Road, Cudgen. The development is located within Tweed Shire Council Local Authority.

The current approved sand extraction sites include Lot Plans: 22DP1082435, 23DP1077509 and 494DP720450. The proposed expansion site includes the current site plus Lot Plans; 1 on DP1250570, 2 on DP1192506, 3 on DP1243752, 50 on DP1056966 and 51 on DP1166990. The total area for the future Tweed Sand Plant (TSP) site would be approximately 236ha and results in an increase in the sand production rate from the current approved limit of 500,000 tonnes per annum (tpa) to 950,000 tpa. The applicant proposes to gain access from Tweed Valley Way to the west of the site at the Pacific Motorway Interchange, for the total annual sand production rate, contrary to the current arrangements utilising the local street network involving Altona Road, Crescent Street and Tweed Coast Road.

Pacific Motorway (M1) is a declared Freeway and TfNSW is the Roads Authority for freeways in accordance with Section 7 of the Roads Act 1993. Tweed Valley Way (679) is a classified (Regional) Road and a declared Controlled Access Road (CAR) in the subject area. Tweed Shire Council is the Roads Authority for all public roads in the local government area, including the Tweed Valley Way. However, TfNSW can exercise Roads Authority powers in relation to classified roads and provides consent to any new connection with a Freeway or CAR in accordance with the Roads Act. Developer works are subject to the terms of a Works Authorisation Deed (WAD).

Email correspondence of 22 August 2019 forwarded to Transport for New South Wales (TfNSW) requested comments in relation to the proposed expansion of the abovementioned development and the outcomes of a subsequent pre-lodgment meeting held between the applicant and TfNSW on 23 September 2019 included the following:

 TfNSW requested a Traffic Impact Assessment (TIA) be prepared by suitably qualified person/s in accordance with the Austroads Guide to Traffic Management Part 12, the complementary Roads and Maritime Supplement and RTA Guide to Traffic Generating Developments.

The primary objective of the Traffic Impact Assessment report (TIA) is to consider the safety, efficiency and ongoing operation of the classified road and demonstrate compliance with all relevant standards, guidelines and codes. It concludes that the proposed site access arrangements are adequate to service the site.

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

1.2 Scope

This Traffic Impact Assessment report has been prepared to the following scope:

- Section 2 Describes the site location and the existing road network in the vicinity of the site.
- Section 3 Describes the existing and forecast traffic data in the vicinity of the site.
- Section 4 Outlines Committed Developments in the vicinity of the site.
- Section 5 Outlines the relevant characteristics of the proposed development including site access strategy, including a description of the types of vehicles likely to be used for transportation of sand products by the proposed development, and an explanation of assumptions and justification of adopted parameters informing the TIA. Assessment of existing road safety and consideration for any increased risk arising from trips generated by the proposed development, particularly at affected intersection including available sight distances.

Economic appraisal of the proposed haulage route via Tweed Valley Way (Project Case) including the construction of a new roundabout, evaluated over a 30-year evaluation period against Base Case which includes haulage route via Tweed Coast Road. Project Case includes removal of all Hanson Trucks from Tweed Coast Road.

Assessment and Impact on public transport (public and school bus routes) and consideration for alternative transport modes such as walking and cycling.

Section 6

Estimates the increase in traffic generated by the proposed development including; existing traffic volumes and background traffic growth expected on the surrounding road network and along proposed haulage route/s using actual traffic counts, daily and peak hourly volume distribution of traffic generated by the proposed development, identification of existing and proposed turn treatments warrants at affected intersections.

Section 7

Assess the operation of key intersections in the vicinity of the site by demonstrating the total impact of existing and proposed development on the road network with consideration for 10 year horizons over the life of the proposed operation by modeling of intersection capacity using SIDRA analysis to identify Level of Service (LOS) at affected intersections along the proposed haulage route/s.

Section 8

Assess any proposed mitigation requirements on safety and efficiency on the surrounding road network, swept path analysis; demonstrate accessibility for relevant design vehicles. Functional layout plans of the proposed intersection improvements and internal haulage roads.

Section 9

Tweed Shire Council Draft Comments

Following submission of a draft Traffic Impact Report to Tweed Shire Council, the relevant engineering minutes with respect to Traffic Impact assessment are extracted from Minutes of Assessment Panel held 2 December 2020 with response:

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Section 10 Public Access Strategy End Use Development

Hanson will retain ownership of the site following completion of sand extraction and any proposed subsequent use of the site will be decided via the appropriate consultative, application and regulation processes in place at that time.

lient: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-TIA-07B
Doc Title: Traffic Impact Assessment Page 3

- www.burchills.com.au

2. Existing Conditions

Section 2 of this report details the baseline conditions in the vicinity of the site, including the existing development site, the local road infrastructure and existing traffic volumes.

2.1 Existing Tweed Sand Plant

The current Tweed Sand Plant site shown in Figure 2.1 consists of three lots (Lot 22 on DP1082435, Lot 23 on DP1077509, Lot 494 on DP720450) on Altona Road, Cudgen.

Figure 2.1 Current Approval Sites

The current approval relates to Phases 3 and 4 only, across Lot Plans 22DP1082435, 23DP1077509 and 494DP720450) with approval to produce and transport a maximum of 500,000 tonnes of sand products from the site in any financial year.

Access to and egress from the existing site is obtained via Altona Road, Crescent Street, and Tweed Coast Road as shown in Figure 2.2 below.

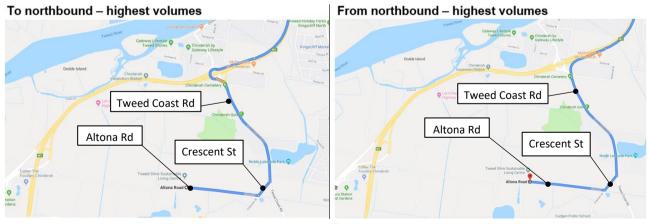


Figure 2.2 Existing Tweed Sand Plant Truck Routes

Client: Hanson Construction Materials Pty Ltd

2.1.1 Existing Tweed Sand Plant Traffic Generation (2017-2018)

<u>Sand Production (up to 150,000m³) Prior to modification (The Development Consent DA152-6-2005)</u> The annual and daily heavy vehicle movements for the existing site were extracted from the following reports:

- "Traffic Impact Assessment for Tweed Sand Plant Lot 22 (DP1082435), Lot 23 (DP1077509) and Lot 494 (DP7240450) Crescent Street Cudgen" report prepared by Bitzios; and
- "Annual Environmental Management Report Tweed Sand Plant Cudgen, NSW July 2017 to June 2018" report prepared by +Gilbert Southerland.

Between July 2017 and June 2018, the total annual extraction of sand was approximately 214,000 tonnes. Heavy vehicle movements recorded for the same period are summarised in Table 2.1 below.

Table	Table 2.1 2017 2010 Recorded Fleavy Vehicle Movement Volumes				
Extraction	2-way Vehicle Movement volumes	Period			
	126	Maximum daily recorded			
214,000 tonnes	20	Max peak volumes recorded (typically occurring between 12:00-14:00)			
	13,958	Annual recorded vehicle movements			

Table 2.1 2017-2018 Recorded Heavy Vehicle Movement Volumes

Further to the above, Schedule 2, Condition 9 of the TSP Development Consent restricted heavy vehicle movements as follows:

- 200 per day (max 2-way);
- 80 per day (rolling quarterly average 2-way); and
- 20 per hour (max peak 2-way).

It is worth noting that the peak period for heavy vehicle movements occurs typically between 12:00 and 14:00, which is outside of typical road network AM Peak hour (08:00-09:00) and PM Peak hour (15:30-16:30).

Truck volumes at Tweed Sand Plant road network during peak hours were recorded in a traffic survey on 15th December 2016. Survey data extracted from Bitzios Traffic Impact Assessment report is summarised in Table 2.2 below.

Table 2.2 Surveyed AM and PM Peak Tweed Sand Plant Traffic Volumes (214,000 tonnes June 2018)

Extraction	AM Peak (08:00-09:00)			PM Peak (15:00-16:00)		
Extraction	In	Out	Two-way	In	Out	Two-way
214,000 tonnes	2	7	9	5	4	9
In/Out % Split	22%	87%	100%	56%	44%	100%

As shown in Figure 2.2 above, during a typical morning and evening peak hours, TSP generated significantly lower truck volumes (9) than the maximum two-way volumes (20) conditioned via Schedule 2, Condition 9 of the TSP Development Consent.

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Approved Sand Extraction up to a maximum 500,000 tonnes per annum

In 2018, a Notice of Modification to the Development Consent (DA152-6-2005) for the Tweed Sand Plant was granted by the Minister for Planning. The modification to the approval increased the sand extraction limit to 500,000 tonnes per annum. In addition, the following has been conditioned:

The Applicant must not dispatch more than 10 laden trucks from the site in any hour until the agreement required by condition 23 of Schedule 3 for the upgrade and maintenance of Altona Road has been entered into and the upgrade of Altona Road under that agreement has been completed.

Following the upgrade of Altona Road, the Applicant must not dispatch more than 18 laden trucks from the site in any hour (Schedule 2, Condition 9).

Based on the above development condition, the Tweed Sand Plant is limited to generate the following heavy vehicles movements based on the sand extraction limit of 500,000 tonnes per annum:

Table 2.3 AM and PM Peak Tweed Sand Plant Traffic Volumes 500,000 tonnes extraction limit)

Extraction	AM F	AM Peak (08:00-09:00)			PM Peak (15:00-16:00)		
Extraction	In	Out	Two-way	In	Out	Two-way	
500,000 tonnes	18	18	36	18	18	36	

The above Table 2.3 represents worst-case scenario as the maximum 36 two-way volumes are unlikely to occur during AM and PM road network peak hours as discussed previously due to the misalignment between the TSP peak hour delivery times and the typical road network peak hour times.

2.1.2 Current Operating Hours

Current operating hours of the TSP are shown in Figure 2.3 below.

Activity	Permissible Hours		
Quarrying operations	7 am to 5 pm Monday to Friday		
(excluding loading and	7 am to 4 pm Saturday		
dispatch of trucks)	At no time on Sundays or public holidays		
Loading and dispatch of	7 am to 5 pm Monday to Friday		
trucks	7 am to 12 pm Saturday		
liucks	At no time on Sundays or public holidays		
Maintenance	May be conducted at any time, provided that these activities are		
	not audible at any privately-owned residence		

Figure 2.3 TSP Operating Hours

Currently the Plant operates within normal business hours.

Surrounding Road Network

The surrounding road network in the vicinity of the proposed redevelopment site includes the Pacific Motorway M1, Tweed Valley Way, Altona Road, Crescent Street and Tweed Coast Road (Refer Figure 2.4).

www.burchills.com.au

Hanson Construction Materials Pty Ltd

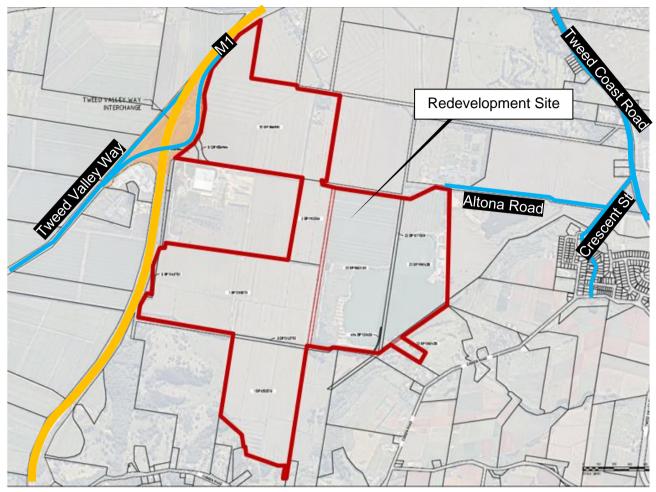


Figure 2.4 Proposed Redevelopment Site. Location Surrounding Roads

2.2.1 Tweed Valley Way

A photograph of Tweed Valley Way off ramp approaching the Australian Bay Lobster Producers Limited (ABLP) property access from the north is presented in Figure 2.5 below.

Figure 2.5 Tweed Valley Way Northern Approach to ABLP Property Access

Client: Hanson Construction Materials Pty Ltd

110 km/h Speed Limit

75km/h Advisory Speed Limit

45km/h Advisory Speed

80km/h Speed Limit

65km/h Truck Speed

The following Figure 2.6 shows the general speed environment.

Figure 2.6 Speed Limit along Tweed Valley Way

110 km/h Speed Limit

The speed limit along Tweed Valley Way off-ramp decreases from 110km/hr to 80km/hr before the ABLP Property access. As shown in Figure 2.6, there is a 75km/h advisory speed limit at the northern approach to the ABLP property intersection and 55km/h at the southern approach.

2.2.2 Altona Road

A photograph of Altona Road approaching Crescent Street is presented in Figure 2.7.

Source: Nearmap.com

Figure 2.7 Altona Road Approach to Intersection with Crescent Street

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-TIA-07B
Doc Title: Traffic Impact Assessment

www.burchills.com.au

Altona Road is a low order standard road with narrow pavement and formation width (One lane past the TSP access). Passing bays are also provided.

2.2.3 Crescent Street

A photograph of recently upgraded Crescent Street / Tweed Coast Road priority T-intersection is presented in Figure 2.8. The priority intersection benefits from a left turn slip lane from Crescent Street into Tweed Coast Road including a dedicated 200m long acceleration lane and right turn lane.

Figure 2.8 Crescent Street / Tweed Coast Road Intersection

Crescent Street connects Altona Road to Tweed Coast Road.

2.2.4 Tweed Coast Road

A photograph of Tweed Coast Road approaching the Tweed Coast Road / Crescent Street priority T-intersection is presented in Figure 2.9.

Figure 2.9 Tweed Coast Road Cross-section

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-TIA-07B
Doc Title: Traffic Impact Assessment

www.burchills.com.au

Tweed Coast Road (679) is a classified (Regional) Road and a declared Controlled Access Road (CAR) in the subject area. Tweed Shire Council is the Roads Authority for the Tweed Coast Road. The road connects Crescent Street to the Tweed Coast Road interchange at the M1 and represents the current haulage route onto the Pacific Motorway.

2.2.5 Pacific Motorway

Pacific Motorway (M1) is a declared Freeway and TfNSW is the Roads Authority for Freeways in accordance with Section 7 of the Roads Act 1993. The Pacific Motorway provides a significant contribution to the east coast of Australia road transport by facilitating the north-south coastal route between Queensland including the Brisbane CBD and Sydney NSW. Locally, the last section in Northern NSW through the Tweed Shire, provides local access for the surrounding towns and suburbs and provides accessibility for Queensland residents travelling to Northern NSW, including tourist destinations such as Byron Bay as well as access for residents in northern NSW commuters to work and shopping in southern Gold Coast. The following Figure 2.10 shows the road classifications and declarations at the Tweed Valley Way / Pacific Motorway Interchange.



Figure 2.10 Road Classifications and Declarations Tweed Valley Way / Pacific Motorway Interchange

Client: Hanson Construction Materials Pty Ltd

2.3 Existing Road Safety Assessment

Assessment of existing road safety and consideration for any increased risk arising from trips generated by the proposed development, particularly at affected intersections includes:

- · Available sight distances identified and addressed by the assessment; and
- Identification of existing and proposed turn treatments at affected intersections along the proposed haulage route/s, having reference to warrants provided in Austroads Guide to Traffic Management Part 6 and treatments identified in Austroads Guide to Road Design Part 4A.

2.3.1 Crash data

Crash data at the Tweed Valley Way / Pacific Motorway M1 interchange has been obtained from the NSW database between 2013 and 2019 and reproduced in the following Figure 2.11.

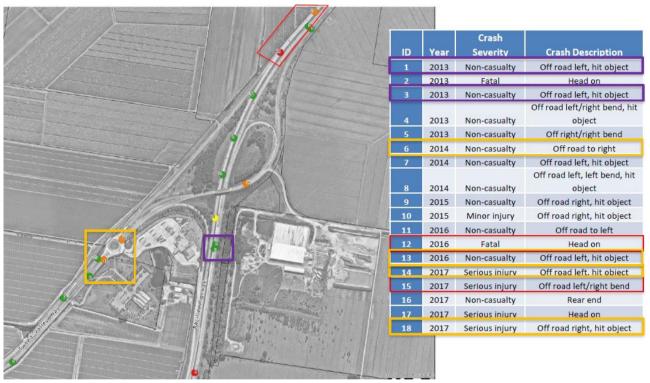


Figure 2.11 Existing Crash Records Tweed Valley Way Interchange

Two fatal accidents were recorded along the M1 as shown by the red colour. Accidents recorded on the Tweed Valley Way that impact on the safety of the existing and proposed operations occurred at the east of the M1 overpass bridge and the two recorded at the Service Centre roundabout. No accidents were recorded at the ABLP property intersection with the Tweed Valley Way off-ramp.

2.3.2 Intersection Sight Distance

The existing ABLP property intersection sight visibility is shown in the following Figure 2.12. Due to the overpass bridge balustrade, there is restricted visibility for vehicles travelling north along Tweed Valley Way to gain access onto the southbound on-ramp onto the Pacific Motorway.

 \gg -

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

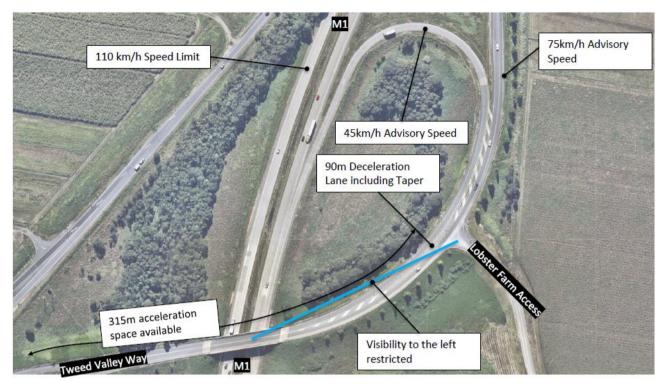


Figure 2.12 Existing ABLP Property Intersection Sight Visibility

2.3.3 Recorded Speeds

At the location of the 75 km /hr advisory speed sign in Tweed Valley Way off-ramp, the recorded 85th percentile speed is as follows:

- 7-day 85th percentile speed in southbound direction of travel was 86.4km/h;
- 7-day 85th percentile speed in northbound direction of travel was 64.9km/h; and
- Bidirectional 85th percentile speed is 84.4km/h.

2.4 Drivers Code of Conduct

In consideration for Clause 16(1) of the Mining SEPP including consideration of impacts on school zones and residential areas, a Drivers Code of Conduct for haulage operators, and assessment of road safety along the proposed haulage route/s is currently in place. Generally, a Driver Code of Conduct includes, but not be limited to:

- A map of the primary haulage route/s highlighting critical locations;
- Safety initiatives for haulage through residential areas and/or school zones;
- An induction process for vehicle operators and regular toolbox meetings;
- A complaint resolution and disciplinary procedure; and
- Any community consultation measures proposed for peak haulage periods.

A copy of the current Operational Traffic Management Plan for Tweed Sand Plant is included in Appendix D as an example document. The updated version of the CoC with respect to the current Application will form part of the standard operating procedures and induction process for all ongoing

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

operations at the Tweed Sand Plant incorporating all relevant approval conditions from TfNSW and TSC.

Where road safety concerns are identified at a specific location along the identified haulage route/s, TfNSW recommend that the TIA be supported by a targeted Road Safety Audit undertaken by suitably qualified persons. No road safety concerns have been identified outside the Tweed Valley Way interchange as the destinations are similar with existing deliveries. However, should operations identify concerns, then it is recommended the safety issues be documented and the CoC modified accordingly.

A new Operational Traffic Management Plan (OTMP), inclusive of a Driver Code of Conduct (CoC) and consistent with the Consent Authorities typical format for SSD, is proposed for the project approval. The document should be prepared in consultation with the relevant Road Authorities and approved by the Consent Authority prior to the commencement of vehicle movements associated with the major project.

≫ ·

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

3. Traffic Data

3.1 Reference Documentation

The traffic volume, speed and vehicle classification survey locations were adopted for the TIA to describe and justify the approach taken for data collection. The most recent update to the Tweed Road Development Strategy (TRDS 2017) as prepared by TSC in consultation with RMS and is considered to be the relevant source reference for forecasting future traffic conditions.

3.1.1 Previous Traffic Reports

Previous relevant traffic reports include the following:

- 1. Traffic Impact Study Proposed Aquaculture (ABLP Property) Development September 2004;
- 2. Proposed modification to existing Aquaculture (ABLP Property) Rytenskild February 2019;
- 3. TTM Chinderah Service Centre Development 1st December 2014;
- 4. Bitzios Report response to RMS comments 2nd November 2017;
- 5. Tweed Sand Plant Response to DPE and Gailes Submission Correspondence 15th February 2018; and
- Tweed Shire Council Tweed Road Development Strategy, (TRDS) Bitzios Consulting, November 2018.
- 7. Proposed Modification of Existing Aquaculture (ABLP Property) prepared by the Rytenskild Traffic Engineering (Doc Reference 18394, Feb 2021).

3.1.2 Traffic Volume Survey Data Available

Existing traffic volumes and background traffic growth is available on the surrounding road network and along the proposed haulage routes. The following sources of traffic data and new actual traffic counts obtained to inform the base case were obtained from the following sources;

- a) Existing sources of traffic volume data:
 - NSW Government Traffic Census Data;
 - Tweed Shire Council Traffic Count Database;
 - Tweed Shire Council traffic studies and forecast traffic volumes; and
 - Previous traffic studies at the Tweed Valley Way / Pacific Motorway interchange as listed in 3.1.1 previous traffic reports above.

Pacific Motorway M1 traffic volumes are recorded in the annual traffic census data. The following Figure 3.1 shows the M1 traffic volumes.

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Figure 3.1 Pacific Motorway M1 Traffic Volumes

The graph shows the daily profile for all census data recorded from 21/11/2008 – 28/06/2019 for all days from 0.00 to 24.00 for all vehicles separately in each direction.

3.2 New Traffic Count Surveys

For the purposes of the assessment of development traffic impact onto the local road network, surveys were undertaken of the roads in the vicinity of the proposed new western access with Tweed Valley Way. New Traffic volume surveys were undertaken at the Tweed Valley Way / Pacific Motorway Interchange and Tweed Valley Way west of the interchange from 4th to 10th March 2020 at the following locations:

- Tweed Valley Way southbound off-ramp. 7 x 24 hr day tube counters located between the start of the Tweed Valley Way southbound off-ramp and the existing ABLP property access 'T' intersection;
- 2. The start of the merge with the northbound off-ramp on the western side and Tweed Valley Way; and
- 3. Tweed Valley Way (M.R.679) at No 232 IGA west of the interchange.

Data collected includes vehicle by type, volumes and travel speed. All traffic counts surveys are provided in Appendix B.

Fully classified turning count surveys were undertaken for the 07.00 to 19.00 periods on a Thursday and for the 10.00 to 15.00 period on a Saturday, including peak hour turning volumes at the following intersections:

The Service Station / Tweed Valley Way roundabout; and

— www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

The existing ABLP property access / Tweed Valley Way off-ramp priority 'T' intersection.

All surveys avoided school and public holiday periods. Figure 3.2 shows the survey locations.

Figure 3.2 Location of Traffic Surveys

Reference Figure 3.2, details of the traffic surveys at each location are as follows:

- 7 day x 24 hr day Tube counters located as follows:
 - Location 1 Tweed Valley Way southbound off-ramp. 7 x 24 hr day tube counters located between the start of the Tweed Valley Way southbound off-ramp and the existing ABLP property access 'T' intersection (two way);
 - <u>Location 2</u> Existing ABLP property access (two way);
 - Location 3 Tweed Valley Way southbound off-ramp. 7 x 24 hr day tube counters located west of the Pacific Highway overpass bridge (two way);
 - Location 4 The start of the merge with the northbound on-ramp on the western side and Tweed Valley Way (one way); and
 - Tweed Valley Way (M.R.679) at No 232 IGA west of the interchange, located at start of merge. (Two way). Not shown on diagram below.

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Data collected includes vehicle by type, volumes and travel speed.

Locations nominated by red circle in Figure 3.2 data collected included:

- AM and PM Peak hour turning volumes at the following intersections:
 - o The Service Station / Tweed Valley Way roundabout; and
 - The existing 'T' intersection at the ABLP property access / Tweed Valley Way southbound off-ramp.

Weekday intersection surveys recorded from 6.00 am until 9.00 am and 3.00 pm until 6.00 pm.

3.2.1 Survey Results Tweed Valley Way

Location 1 near proposed merge. Bio directional Peak Hours summary as follows:

- Weekday peak hour. AM 529vph from 8.00am to 9.00am; PM 596vph from 16.00pm to 17.00pm;
- Saturday peak hour. AM 571vph from 11.00am to 12.00pm; PM 610vph from 13.00pm to 14.00pm; and
- Sunday peak hour. AM 747vph from 8.00am to 9.00am; PM 533vph from 12.00pm to 13.00pm.

The following Figure 3.3 shows the weekly volume traffic flows.

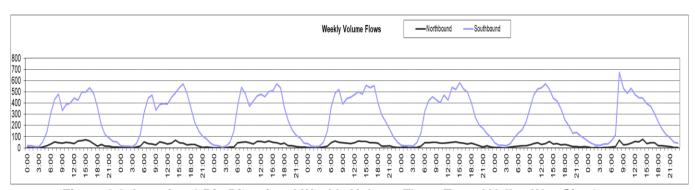


Figure 3.3 Location 1 Bio Directional Weekly Volume Flows Tweed Valley Way Site 1.

The highest weekly peak traffic volume occurred on the Sunday, followed by the Saturday, then the average weekday. During the week the highest AM peak hour 591vph occurred on the Wednesday. The highest PM peak hour 630vph occurred on the Friday. This higher result is consistent with the evening commuter traffic combining with the start of weekend holiday traffic.

Location 1 Tweed Valley Way speed distribution Northbound (towards Tweed Heads then southbound on-ramp) summary as follows

- Weekday average speed 54.2km/hr, 85th percentile speed 65.1km/hr;
- Saturday mean speed 57.0km/hr, 85th percentile 65km/hr; and
- Sunday mean speed 55.8km/hr, 85th percentile 64km/hr.

The following Figure 3.4 shows the Speed Distribution Northbound towards the southbound on-ramp.

_____ www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

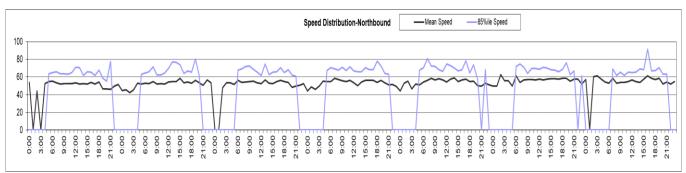


Figure 3.4 Location 1 Speed Distribution Northbound (towards M1 Southbound On-Ramp)

- Tweed Valley Way speed distribution Southbound away from Tweed Heads.
- Weekday Southbound 75.1km/hr; 85th percentile 86.3km/hr.
- Saturday Southbound 74.0km/hr; 85th percentile 87km/hr.
- Sunday Southbound 74.0km/hr; 85th percentile 86km/hr.

The following Figure 3.5 shows the Speed Distribution Southbound away from Tweed Heads.

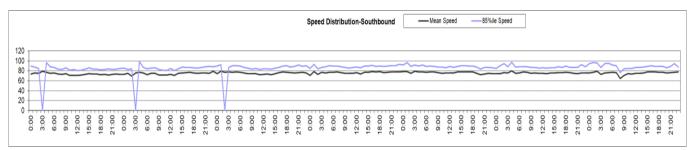


Figure 3.5 Location 1 Speed Distribution Southbound Tweed Valley Way

The higher speeds recorded on the southbound off-ramp compared with the lower speeds northbound towards the M1 southbound on-ramp are consistent with the speed environment expected in each case. Vehicles travelling towards the bend in the southbound on-ramp are slowing due to the 45km/hr advisory speed sign ahead compared to the 75km/hr advisory speed sign on the off-ramp.

87km/hr has been adopted for the 85th percentile speed for the merge from the TSP haul road onto the southbound off-ramp. Weekday traffic volumes have been adopted for the intersection capacity analysis as the distribution loads from the TSP are higher for the weekdays compared to the weekends.

Heavy Vehicles Proportions to M1 Southbound on-ramp are shown in Figure 3.6.

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

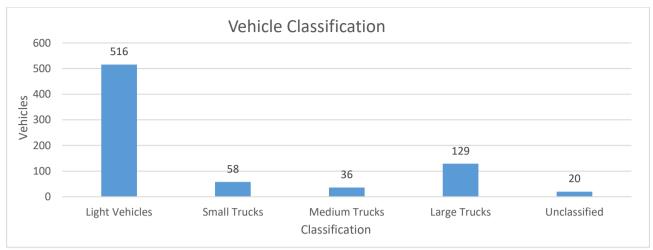


Figure 3.6 Location 1 Heavy Vehicle Proportions Travelling Northbound

The following Table 3.1 shows the volumes for each vehicle class.

	Northhound Couthhound			
	Northbound		Southbound	
	Volume	Percentage	Volume	Percentage
Vehicle Class	Data		Data	
Light Vehicles – Classes 1 to 2	508	70.36%	6,198	90.56%
Small Trucks – Class 3	50	6.93%	305	4.46%
Medium Trucks – Classes 4 to 5	44	6.09%	120	1.75%
Large Trucks – Classes 6 to 12	107	14.82%	220	3.21%
Unclassified – Class 13	13	1.80%	1	0.01%
Total Class 3-13	214	29.64%	646	9.4%
Total	722	100%	6,844	100%

Table 3.1 Location 1 - 5-day Average Volumes

Overall, there is a 29.6% proportion of heavy vehicles currently using the Tweed Valley Way onramp northbound and 9.4% southbound. Note that the high value is a result of heavy vehicles from the M1 accessing the heavy vehicle Service Centre. A further 4 heavy vehicle trips in a peak hour will occur in the future from the Tweed Sand Plant vehicles travelling south. Based on future Tweed Valley Way 2041 volumes and growth in current heavy vehicle and light vehicle trips, the heavy vehicle trips with the development trips superimposed is expected to increase to 30%. Large trucks are 34% of the heavy vehicle percentage southbound off ramp. At the southbound on ramp, large trucks are 50% of the heavy vehicle percentage.

3.2.2 Historical Traffic Growth

Several sources were investigated regarding the growth factor for traffic specifically along Tweed Valley Way. The following Figure 3.7 shows the calculation for the historical traffic growth along Tweed Valley Way.

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

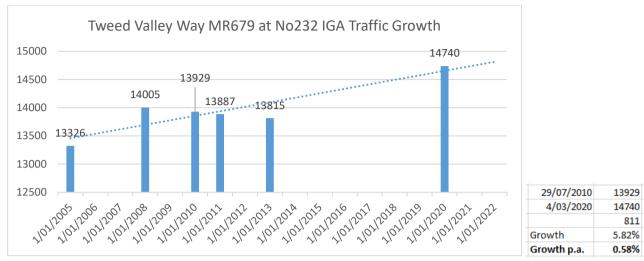


Figure 3.7 Traffic Survey Site Tweed Valley Way (TVW) Mr679 at No 232 LGA Historic Growth Calculation

Based on the above the historical growth along Tweed Valley Way is 0.58% per annum linear growth.

3.2.3 Traffic Growth Projection

An assessment of the growth future forecast was determined by comparing the 2020 pre COVID 19 survey in Tweed Valley Way with the Tweed Shire Council – Tweed Road Development Strategy TRDS, November 2018 output results for the medium yield 2041 base year. The following Figure 3.8 shows the reference material and calculation.

Tweed Road Development Strategy TRDS Report 2041 Scenario 6 (Medium Yield) Tweed Valley Way (TVW) 8090vpd northbound + 8620vpd southbound. ADT 16,710 vehs per day. 2020 Traffic Survey Tweed Valley Way ADT two way 14,740 vehs per day. Growth 2020 to 2041; 1,970 vehs. per day.

Growth 13.36% or 0.006 (0.6)% per annum. ADOPT 0.60% pa compound growth.

Figure 3.8 Traffic Survey Site Tweed Valley Way (TVW) Mr679 at No 232 IGA Future Growth Calculation

The Tweed Valley Way annual growth rate of 0.60% compound was obtained adopting TRDS Scenario 6 as advised by Tweed Shire Council.

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

4. Committed Development

Before considering the implications of the proposed development it is considered appropriate to summarise the changes in traffic flows likely to be associated with ABLP committed development, as part of the construction requirement for their site as detailed in their recent 2019 application to Tweed Shire Council.

The ABLP committed development site is identified as Lot 1 on DP1192506 and has an area of approximately 45 hectares as shown on Figure 4.1 below.

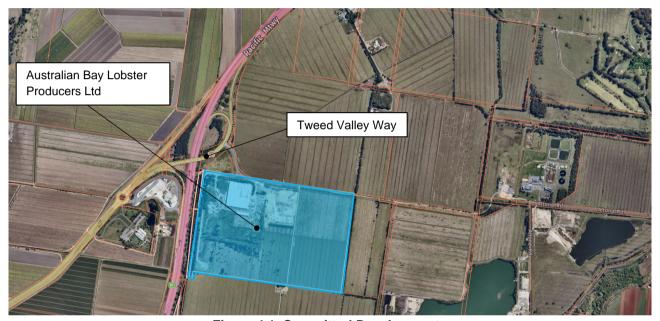


Figure 4.1 Committed Developments

The existing access to the ABLP site is gained via a T-priority intersection with the M1 southbound on and off-ramps at the M1 / Tweed Valley Way Interchange. The speed limit in the vicinity of the intersection is 80km/h. Due to the road geometry, a 75km/h advisory speed is present at the northern approach to the intersection and 55km/h at the southern approach to the intersection.

As part of the construction requirement for their site, ABLP are required to modify the ground level to ensure that the site would be immune to a 1 in 100-year flood event.

It is anticipated that 2,000,000m³ of material will be hauled to the site over five years up to 2025. Details of the forecast haulage volumes are presented below:

Maximum haulage per day - 1,922m³, or 2,500 tonnes.

Average pay load per vehicles - 45 tonnes

Max number of loaded vehicles per day - 56 loaded vehicles

Max number of heavy vehicle trips per day - 112 trips (56 to and 56 from the site)

The proposed committed development layout plan shown in Figure 4.2 below was sourced from the Traffic Impact Assessment for the Proposed Modification of Existing Aquaculture (ABLP Property) prepared by the Rytenskild Traffic Engineering (Doc Reference 18394, Feb 2021).

— www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

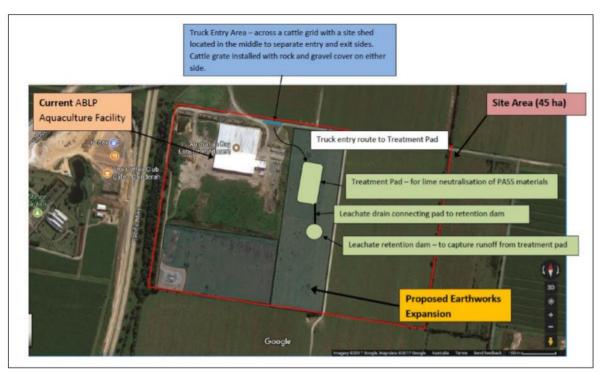


Figure 4.2 The Proposed Modification of Existing Aquaculture

It has been estimated that the proposed works will generate 14 heavy vehicles movements (7 to and 7 from the site) per hour. The committed development traffic flows shown in Figure 4.3 have been extracted from the Traffic Impact Assessment report prepared for the site by Rytenskild Traffic Engineering.

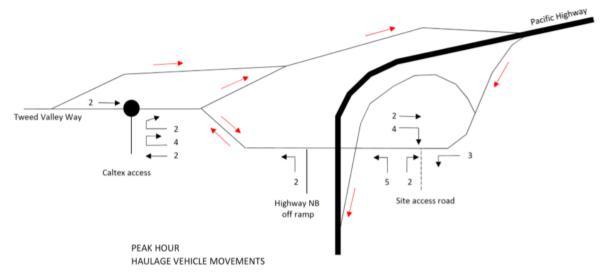


Figure 4.3 Australian Bay Lobster Producers Limited Committed Development

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

5. Proposed Development

5.1 Development Details

The proposed development with Street address as Altona Road, Cudgen comprises the following land parcels:

Lot 22, DP 1082435; Lot 23 DP1077509; Lot 494 DP720450; Lot 1 DP1250570; Lot 2 DP1192506; Lot 3 DP1243752; Lot 51 DP1166990; and Lot 50 DP1056966.

The Tweed Sand Plant proposed development seeks to:

- Increase the sand production rate from the current limit of 500,000 tonnes per annum (tpa) of sand products from site up to 950,000 tpa. The annual extraction and sales rate would be market driven, up to the proposed maximum 950,000 tpa;
- Increase the extraction area yielding a total Tweed Sand Plant re-development site area of 236ha compared to the current 77ha site, of which 46ha is currently approved for extraction;
- All extraction would be via a dredge unit (i.e. wet excavation), piped to an onshore wash
 plant. The dredge and wash plant would have a larger capacity and footprint compared to
 the current operation, albeit noise output, air emissions etc would likely be lower due to
 improvements in technology;
- Consistent with existing operations, loading of the product would be via a front-end loader(s) into standard highway trucks (i.e. truck and dog, and articulated heavy vehicles including B-Doubles);
- Operating hours would be as follows:
 - o Sand dredging & processing, 24 hours/day, 7 days/week;
 - o Haulage, 24 hours/day, 7 days/week; and
 - Maintenance, 24 hours/day, 7 days/week.
- Site personnel would remain at a similar number to present (currently three full-time employees), however the increase in extraction and sales rate requires an increase in truck drivers to transport the material;
- A 'ramp-up' phase may be adopted during the initial phase (first five years) of the expansion, depending upon market conditions, plus ongoing availability of suitable fine sand from alternate sources;
- Transporting material off-site by public roads. The intention is to access TSP via a new roundabout with Tweed Valley Way that also services the ABLP property access;
- Progressive rehabilitation of the site.

Hanson will retain ownership of the site following completion of sand extraction and any proposed subsequent use of the site will be decided via the appropriate consultative, application and regulation processes in place at that time.

The proposed redevelopment site is shown in Figure 5.1 below.

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

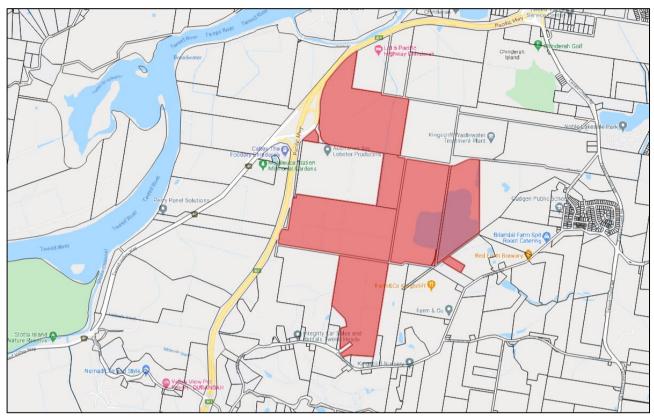


Figure 5.1 Locality Plan of the Proposed Redevelopment Site (Base from Google maps)

5.2 Site Access Strategy

Tweed Coast Road is a local council-controlled road that provides access to Cudgen, Kingscliff, Casuarina and Cabarita Beach from the M1 Pacific Motorway. The above areas are forecasted to have substantial population growth due to the land development on both sides of the road. Removing heavy vehicles from Tweed Coast Road has significant road safety benefits.

As part of initial investigations for the alternate access onto the southbound Tweed Valley Way offramp at the M1 interchange, 4 options were investigated and forwarded to the TfNSW for initial discussion and comment. Based on initial consensus the acceleration lane merge Option 4 was further developed and submitted as the preferred solution.

Upon further review TfNSW advised that It is considered likely that heavy vehicles merging into the off-ramp will find it difficult to regulate speed and will be reliant on through traffic making adjustments to accommodate entering trucks. This presents a safety risk and is contrary to the function of the off-ramp. TfNSW requests that further consideration be given to alternative options for access to the proposed development in consultation with TfNSW.

Section 17.1.1 of the *Austroads Guide to Road Design Part 4C: Interchanges* (2015), provides relevant guidance for considering the access to a Freeway or interchange which states that;

No private access should be allowed to the main carriageways or ramps of a Freeway. The only exception is privately owned generators such as service centres. Access control on freeways provides the greatest single benefit to road safety on these high-speed facilities.

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-TIA-07B
Doc Title: Traffic Impact Assessment

- www.burchills.com.au

This is further reinforced in Section 7.6.4 of the Austroads *Guide to Traffic Management* Part 6 (2020), which states that;

A special case may exist where a road network or major service centre requires access and there is no alternative but to intersect the ramp alignment. In such cases, access should only be permitted through a <u>roundabout</u> or signalised intersection that effectively becomes the ramp terminal.

The preferred option and supported by the TfNSW is a roundabout intersection with Tweed Valley Way. The original submission investigated Option 3 that only considered the benefits of a roundabout located on the existing alignment and further investigation was undertaken to consider the benefits of offsetting a roundabout further to the south-east to increase separation from the Motorway ramps and overpass.

The applicant proposes that all site and ancillary vehicles will gain access from a new roundabout with Tweed Valley Way to the west of the site. No vehicular access will occur via Altona Road, Crescent Street and Tweed Coast Road to the east. The site access approach road via the new proposed roundabout superimposed on the existing ABLP priority intersection is shown in the following Figure 5.2.

Figure 5.2 Proposed Site Access Strategy

ABLP also gains access via the roundabout. The alignment of the roundabout allows potential benefits gained where the new intersection works can be built off-line to minimise impacts on traffic passing through the interchange. All construction occurs on the eastern side with tie-ins to the existing Tweed Valley Way alignment limited to the extremities at either end. The shift east increases

Client: Hanson Construction Materials Pty Ltd

the horizontal curve radius at the southbound on-ramp to the M1 allowing a higher exit speed out of the curve requiring a shorter acceleration distance to the M1 merge. No change to the existing ramps at the M1 termination points is proposed.

Approach to the roundabout will necessitate a change in speed zoning. The proposed treatment is more appropriate for heavy vehicle access in the subject location from a design perspective. The speed zoning of 60km/hr would be extended to incorporate the new roundabout. For the southbound on ramp to the M1 the existing speed advisory speed is 45km/hr on the curve in any case, hence not impacting the on-ramp acceleration and merge operation by maintaining current speed when approaching the Motorway. On the northern approach side to the roundabout, deceleration distances are achieved for the existing 80km/hr to the 60km/hr at the roundabout approach. Safety benefits are achieved when compared to the previously proposed high-speed merge alternative.

In further support of the roundabout access arrangement the following has been considered:

- Detailed Sidra analysis to quantify the capacity of the proposed roundabout including the existing roundabout at the Service Centre on the western side to include the haulage trucks;
- A sensitivity test also considered a 50 % increase in a southerly destinations that utilises the Service Centre roundabout on Tweed Valley Way for return trips;
- Swept path diagrams including 26m B-Double Articulated vehicle;
- Sight distance criterion as per Austroads. Refer Appendix A Drawing BE190043-SK141 Rev A:
- Economic Appraisal Report examines the cost / benefits of using Tweed Valley Way compared to Tweed Coast Road;
- A functional and safe design for the proposed roundabout is achieved by the position of the
 approaches resulting in the arc of the curve passing through the middle of the roundabout.
 The proposed horizontal alignment providing balanced deflection for traffic movement from
 the overpass bridge to roundabout continuing to M1 southbound on-ramp. Similar deflection
 provided for the southbound direction from the southbound off-ramp through roundabout to
 the overpass bridge;
- A further key feature of the roundabout design is the provision of two lanes at each approach.
 This allows separation of through and turning traffic volumes resulting in minimum delays to through traffic movements; and
- The site access and ABLP approach road via the new proposed roundabout will not exceed 3% grade creating a standing area at the approach which ensures that appropriate start up speeds can be achieved.

Drawings detailing the horizontal and vertical geometry are contained in Appendix A. Refer drawing Numbers BE190043:SK123 – SK125 and SK129 to SK 139.

The roundabout would achieve an appropriate interchange form as identified in Section 7.5.3 of the Austroads *Guide to Traffic Management* Part 6. Batter slopes are proposed at 1 vertical to 4 horizontal for stability, safety and maintenance purposes. It is acknowledged the roundabout requires the dedication of land by the Applicant. Reference the previous Figure 2.10 road classifications and declarations at the Tweed Valley Way / Pacific Motorway Interchange, the following Figure 5.3 shows the extent of private (Hanson) land dedication proposed.

≫-

- www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

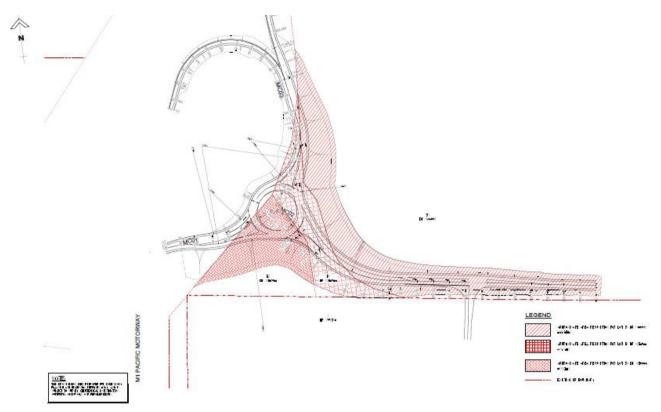


Figure 5.3 Extent of Land Dedication Proposed

Refer Appendix A Drawing BE190043:SK140 Rev B. Overall a roundabout lowers the speed of all vehicles to accommodate the entry speed of trucks. The benefits of a suitably designed and located roundabout, assists TfNSW to support access to the proposed development.

The existing intersection on Tweed Valley Way is licensed to Australian Bay Lobster Producers (ABLP) and DPIE is currently considering DA282-11-2004-I-MOD-4. The most recent TfNSW response to the RTS for this modification was provided on 19 March 2021 and requested further clarification of forecast heavy vehicle movements related to the proposed increase in construction-related fill over the 5 year construction period. Since Construction Traffic Management Plans are typically required by the Department for approved SSD, coordination between the Proponents is recommended to address any potential for overlaps in construction and/or operational activities that have potential to impact on the safety and efficiency of the M1 interchange.

5.2.1 Traffic Distribution

The analysis of published annual operations from the existing Tweed Sand Plant site shows the destinations of the deliveries. The following Figure 5.4 shows the proposed haulage route to / from northbound and southbound destinations.

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Figure 5.4 Tweed Sand Plant Haulage Route Northbound

The following Figure 5.5 shows the haulage route to / from southbound destinations.

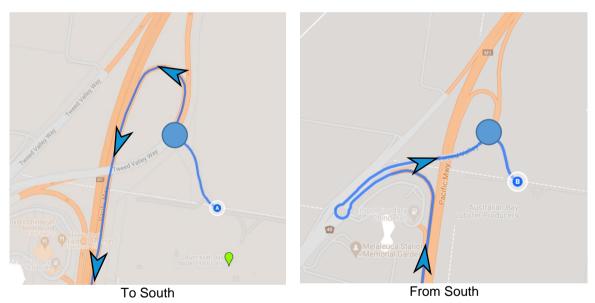


Figure 5.5 Tweed Sand Plant Haulage Route Southbound Destinations

5.3 Economic Appraisal

The need for private access to the interchange and the relative merits of supporting a direct versus the comparative outcome of previously approved access arrangement via Tweed Coast Road is relevant to the Consent Authority's consideration of Clause 101 of the SEPP Infrastructure. To quantify the potential benefits of removing heavy vehicle demand from Tweed Coast Road (TCR), a comparative economic analysis of impacts introduced to the Tweed Valley Way interchange in terms of delay and/or safety has been prepared.

It is noted that the proposed roundabout has potential to provide a safer access arrangement for existing approved uses but will generate a delay to through traffic movements. These costs may be

Client: Hanson Construction Materials Pty Ltd

offset by savings in heavy vehicle demand on Tweed Coast Road and at the Chinderah interchange over the life of the project. The supporting assessment addressing Economic and Transport Impacts is contained in Appendix F.

5.3.1 Economic Appraisal Methodology

The economic appraisal of the proposed haulage route via Tweed Valley Way (Project Case) including the construction of a new roundabout, has been evaluated over a 30-year evaluation period against Base Case which includes haulage route via Tweed Coast Road. Project Case includes removal of all Hanson Trucks from Tweed Coast Road.

The evaluation was conducted using cost-benefit analysis (CBA) framework that applies a discounted cash flow technique to assess the future net benefits of a Project Case against Base Case. CBA includes only benefits to the Tweed Shire Council residents and public, Tweed Shire Council and NSW State Government. Any benefits acquired by Hanson with respect to shorter travel distances have not been included. The analysis includes maintenance costs associated with the proposed new Tweed Valley Way roundabout over the life of the project but excludes the capital costs covered by Hanson.

As part of the CBA, SIDRA traffic modelling was undertaken to determine average intersection delays for the Base Case and Project Case. The evaluation was undertaken in accordance with National and NSW economic frameworks. Figure 5.6 below shows Base Case and Project Case TSP haulage routes via Tweed Coast Road and Tweed Valley Way respectively.

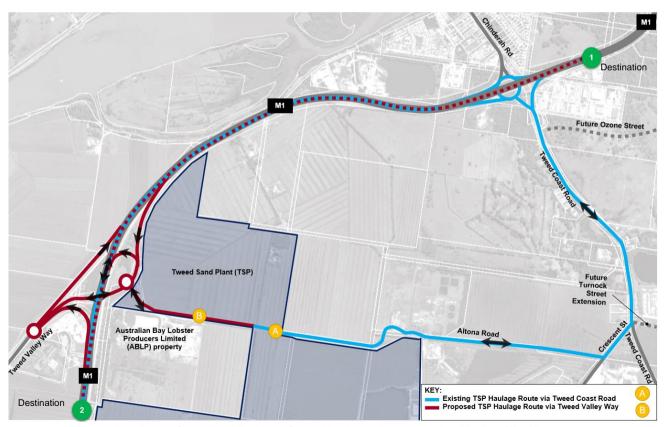


Figure 5.6 Base Case and Project Case Haulage Route to the M1 Pacific Motorway

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-TIA-07B
Doc Title: Traffic Impact Assessment

www.burchills.com.au

5.3.2 Traffic Forecast

To inform SIDRA modelling, traffic count data was sourced for the following intersections:

Intersection	Survey Year	AM Peak Volumes	PM Peak Volumes	
Existing Haulage Route via Tweed	Coast Ro	ad		
Pacific Motorway / Tweed Coast Road interchange	2018	2,336	2,365	
Tweed Coast Road / Morton Street priority intersection	2018	1,930	1,961	
Tweed Coast Road / Morton Street priority intersection	2018	1,931	1,965	
Tweed Coast Road / Crescent Street priority intersection	2016	1,546	1,480	
Altona Road / Crescent Street priority intersection	2016	122	69	
Proposed Haulage Route via Tweed Valley Way				
Tweed Valley Way / Australian Bay Lobster Producers	2020	660	625	
Tweed Valley Way / Service Station Roundabout	2020	828	931	

Background traffic growth in the area was calculated for each haulage route, based on the recorded AADT data and 2041 traffic volumes extracted from the Tweed Strategic Transport Model (2041 medium yield Scenario 6).

The recorded AADT volumes and 2041 Tweed Strategic Transport Model volumes used for the calculation of the growth rates for Tweed Coast Road and Tweed Valley Way are shown below.

Road	Survey Year	Recorded AADT	2041 Strategic Model AADT*	Compound growth p.a.
Tweed Coast Road	2018	17,757	34,280	2.90%
Tweed Valley Way	2020	14,740	16,710	0.60%

^{*} Medium Yield Scenario 6

5.3.3 Base Case and Project Case

The proposed haulage route via Tweed Valley Way including the Tweed Valley Way / Australian Bay Lobster Producers intersection upgrade to a roundabout (Project Case), was tested against the haulage route via Tweed Coast Road (Base Case) using SIDRA traffic modelling software and considering the broader network operations as follows:

- Base Case Tweed Sand Plant haulage route via Tweed Coast Road and no access to Tweed Valley Way; and
- Project Case Tweed Sand Plant haulage route via Tweed Valley Way including the Tweed Valley Way / Australian Bay Lobster Producers intersection upgrades. Project Case includes removal of all Hanson trucks from Tweed Coast Road.

Both Base Case and Project Case include traffic volumes associated with the expansion of the existing Tweed Sand Plant (950,000 tpa sand production rate per annum).

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

5.3.4 Traffic Modelling

Comprehensive traffic modelling studies were undertaken to inform the Cost-Benefit Analysis of the preferred haulage route (Project Case) in comparison with the existing haulage route (Base Case).

Given the project's proximity to the existing and planned major state-controlled roads, the forensic traffic modelling analysis in 2032 and 2042 includes Tweed Coast Road upgrade works from 2-lanes to 4-lanes including individual intersection upgrade works.

SIDRA modelling was undertaken for the morning peak and afternoon peak based on the available intersections traffic count data for the following intersection:

- Altona Road / Crescent Street priority intersection;
- Tweed Coast Road / Crescent Street intersection:
- Tweed Coast Road / Ozone Street extension intersection:
- Tweed Coast Road / M1 Pacific Motorway Interchange intersection;
- Tweed Valley Way / Australian Bay Lobster Producers intersection; and
- Tweed Valley Way / Service Station Roundabout.

The key performance criteria considered as part of the network assessment is intersection average delay (s). A comparison of the travel time benefits along Tweed Coast Road and Tweed Valley Way for the Base Case and Project Case shows the combined AM and PM peak travel time benefit achieved along Tweed Coast Road and additional delay cost along Tweed Valley Way post-development.

5.3.5 Project Costs

The preliminary cost estimates for the proposed roundabout were used for the Economic Appraisal. The above costs were used to establish likely maintenance costs associated with the new roundabout over the 30-years asset design life.

It is important to note that the Benefit Cost Ratio analysis doesn't use the construction cost for the roundabout as Hanson will carry the upgrade works.

The preliminary estimated construction cost for the proposed roundabout is shown in table below.

Cost	Total Construction Cost (Undiscounted, 2021 prices)
Project Case - Roundabout Upgrade	\$4,800,000

For appraisal purposes, it has been assumed that design and construction will occur between 2021 and 2022. The roundabout would be constructed with a durable 30-year design life concrete pavement and maintainable one in four batters. However, for robust assessment a 1% maintenance cost has been adopted. A summary of the ongoing maintenance costs for the proposed roundabout are shown in table below.

Cost	Total Maintenance Cost (Undiscounted, 2021 prices)
Project Case – Roundabout Maintenance Costs	\$1,440,000

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Tweed Valley Way in the vicinity of the ABLP access intersection is currently subject to 80km/h speeds. The proposed roundabout includes the introduction of a 60km/h speed limit at the approach to the roundabout which will result in additional delays for through traffic along Tweed Valley Way. The above has been included in the assessment in addition to SIDRA intersection delay assessment. A summary of the Tweed Valley Way Travel Time Cost is presented in table below.

Cost	Total Tweed Valley Way Travel Time Cost (Undiscounted, 2021 prices)
Travel Time Cost along Tweed Valley Way	\$1,107,887

5.3.6 Project Benefits

CBA includes only benefits to the Tweed Shire Council residents and public, Tweed Shire Council and NSW State Government. Any benefits acquired by Hanson with respect to shorter travel distances have not been included.

The Tweed Shire Council strategic modelling shows that traffic along TCR increases significantly as a result of residential and business growth in the area. Local congestion and delays can be expected into the future as the volume of traffic increases. Removing TSP trucks from Tweed Coast Road will generate substantial benefits to road users, particularly through savings in travel time, reduction in crash costs and environmental benefits. Benefits to local authority include reduction in Tweed Coast Road Maintenance Costs. As part of this economic analysis, potential benefits were quantitatively evaluated against the Base Case. Benefits quantified include:

- Travel Time Saving along Tweed Coast Road;
- Safety Benefits;
- Environmental Benefits; and
- Tweed Coast Road Maintenance Cost Reduction.

The summary of project benefits and costs are presented in table below.

Economic Results	Total (Undiscounted, 2021 prices)	Present Value (7% discount)
Costs		
Travel Time Cost along Tweed Valley Way	\$1,107,887	\$453,685
Proposed Roundabout Maintenance Cost	\$1,440,000	\$595,634
Total Cost	\$2,547,887	\$1,049,319
Benefits		
Travel Time Saving along Tweed Coast Road	\$4,289,900	\$1,269,772
Tweed Coast Road Maintenance Cost Reduction	\$1,001,193	\$474,300
Safety Benefits	\$269,120	\$94,197
Environmental Benefits	\$1,806,952	\$747,418
Total Benefit	\$7,367,165	\$2,585,686
NPV @7%		\$1,536,367

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

The present value of benefits associated with Project Case were calculated over a 30-year evaluation period based on a seven per cent real discount rate.

5.3.7 Economic Appraisal Results

Cost-benefit analysis has determined that the project will generate a Present Value (PV) total of \$2.59M in benefits at a Present Value cost of \$1.05M above the Base Case, providing a NPV of \$1.54M and a Benefit-Cost Ratio (BCR) of 2.46. The majority of benefits relate to travel time savings along Tweed Coast Road via a reduction in travel time, maintenance costs reduction, environmental and safety benefits.

Sensitivity testing of the BCR inputs identified a BCR range of 1.64 to 3.70 for the following tests:

- The NPV discount rate was tested at 3%, 7% (original assessment) and 10%;
- The benefit was reduced by 20% and cost increased by 20%; and
- The benefit was increased by 20% and cost reduced by 20%.

5.3.8 Conclusions

This Economic Evaluation assessment has demonstrated that the proposed Tweed Sand Plant haulage route via Tweed Valley Way including upgrade of the Tweed Valley Way / ABLP intersection does provide economic benefits to the local community which outweighs its cost to residents, local and state governments.

5.4 Description of the Types of Haulage Vehicles

A description of the types of vehicles to be used for transportation of sand products from the proposed development are shown in the following Table 5.1.

Table 5.1 Description of the Types of Vehicles to be used for Transportation of Sand Products

Vehicle Description	PBS Vehicle configuration	Maximum length	GCM	Engine Horsepower	Transmission Model/Rear Axle Ratio
00 - 000	Three Axle prime mover and three axle semi-trailer	20.0m	44 Tonnes	435	mDrive / 3.42
5 00 00	Three Axle truck and Three Axle dog trailer	20.0m	49.5 Tonnes	500	mDrive / 3.42
00 00 00	Three Axle Truck and Four Axle dog trailer	20.0m	57.5 Tonnes	535	mDrive / 3.42
3	Nine Axle B-Double	26.0m	62.5 Tonnes		

Fully laden at maximum GCM 57.5 tonnes (PBS truck & quad trailer) represents the worst case scenario with respect to acceleration. To provide for larger vehicles if required for future use along dedicated freight haulage routes, provision for haulage by 26 metre B-Doubles has been allowed and swept paths within the Tweed Valley Way / Pacific Motorway Interchange have been checked

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-TIA-07B
Doc Title: Traffic Impact Assessment

- www.burchills.com.au

with the design vehicles plus the 26 metre B-Double vehicles. Refer Appendix A Drawings: BE190043: SK126 – SK128

5.5 Public and Active Transport

This section investigates the impact on public transport (public and school bus routes) and consideration for alternative transport modes such as walking and cycling as part of the DA application within the life of the project.

All site, ancillary and haulage vehicles will access the Tweed Sand Plant site via from Tweed Valley Way to the west. No vehicular access is proposed via Altona Road, Crescent Street and Tweed Coast Road to the east. The operations associated with the dredging, stockpiling and loading of the product on site do not require extensive personnel and there is minimal parking of haulage vehicles on site over night at the end of shifts. There are no public and active transport opportunities associated with the proposed access arrangements at the western side of the development and Tweed Valley Way. If fact, pedestrian or cyclist activities in proximity to the interchange are not contemplated or currently exist.

 \gg -

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

6. Traffic Demands

In order to assess the relative impact of the proposal on the surrounding road network, it is necessary to define the existing traffic demands on the road network and estimate future traffic demands on key intersections.

This section of the report details the existing traffic demands as defined in traffic surveys and forecasts these to the future assessment years. These volumes represent the "Pre-Development" scenario.

The traffic generated by the proposed development is estimated, along with its distribution across the surrounding road network. These volumes are added to the "Pre-Development" scenario to provide the "Post Development" traffic scenario.

6.1 Pre-Development Traffic

A traffic survey data and background growth rates have been used to establish background traffic demands. As mentioned in Section 4 of this report, traffic surveys have been undertaken at the following intersections:

- Tweed Valley Way / ABLP Property Site Access priority T-intersection; and
- Tweed Valley Way / Service Station Access Roundabout.

Traffic counts used for analysis have been provided in Appendix B. Figure 6.1 below shows a summary of surveyed AM and PM weekday Peak Hour traffic volumes (March 2020).

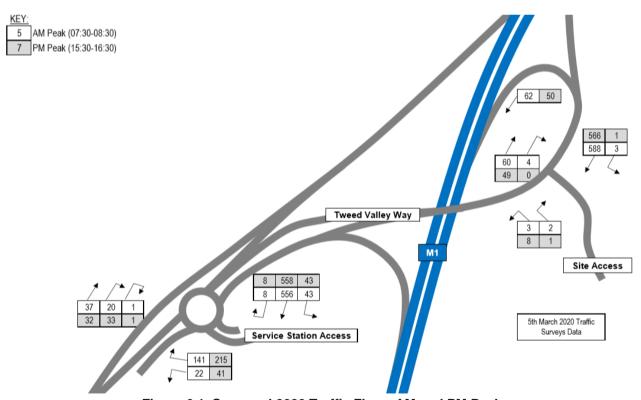


Figure 6.1 Surveyed 2020 Traffic Flows AM and PM Peak

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-TIA-07B
Doc Title: Traffic Impact Assessment

www.burchills.com.au

6.1.1 Seasonal Variations in Traffic

The historical traffic volumes along the M1 Pacific Motorway north from the interchange with Tweed Valley Way were investigated to identify the seasonal variation in traffic.

Table 6.1 2019 Annual Average Traffic Volumes M1 (Eastbour	ıd)
--	-----

Months	2019 Daily Total	AM Peak	PM Peak
January	22,981	1,770	1,850
February	21,703	1,528	1,767
March	20,615	1,512	1,657
April	19,970	1,429	1,592
May	20,876	1,457	1,665
June	20,013	1,433	1,605
July	21,603	1,573	1,762
August	21,024	1,456	1,726
September	21,252	1,528	1,716
October	21,521	1,597	1,721
November	21,496	1,571	1,736
December	21,539	1,680	1,677

As shown in Table 6.1 above, the highest daily volumes were recorded in January 2019 with 22,981 vehicles traveling eastbound along the M1 Pacific Motorway.

As the traffic surveys were undertaken in March, the percentage variations in traffic volumes relative to March volumes were calculated as shown in Figure 6.2 below for each month in 2019.

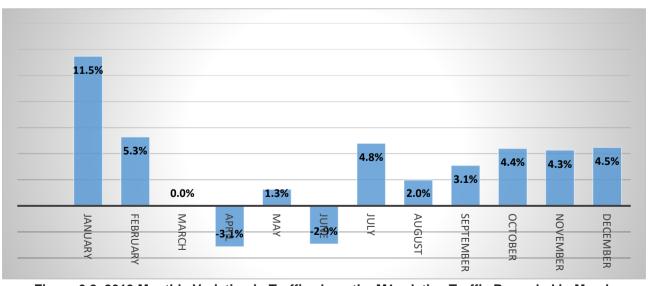


Figure 6.2 2019 Monthly Variation in Traffic along the M1 relative Traffic Recorded in March

Client: Hanson Construction Materials Pty Ltd

As can be seen in Figure 6.2 above, traffic volumes recorded in March 2019 are 11.5% lower than highest traffic volumes recorded in January 2019 traffic surveys.

Table 6.2 below shows the January 2019 Peak hour traffic comparison relative to 2019 March data.

Table 6.2 January	y 2019 Peak hour traffic o	comparison relative to 2019 March data
-------------------	----------------------------	--

	Highest Recorded Volumes (Jan 2019)	Mar-19	Difference	% Difference
AM Peak	1,770	1,512	258	17.1%
PM Peak	1,850	1,657	193	11.6%
Daily	22,981	20,615	2366	11.5%

6.1.2 100th Highest Hour Volumes.

The above percentages have been applied to the 2019 surveyed AM and PM Peak traffic volumes (Refer Figure 6.1) to ensure that the traffic impact assessment is robust and accounts for seasonal variations in traffic volumes. Including the 30% added to the trips for the ABLP construction, the above represents the worst-case scenario analysis of development impacts under 100th Highest Hour Volumes.

The following Figure 6.3 shows the adjusted 2020 traffic volumes which formed the basis for the traffic impact assessment.

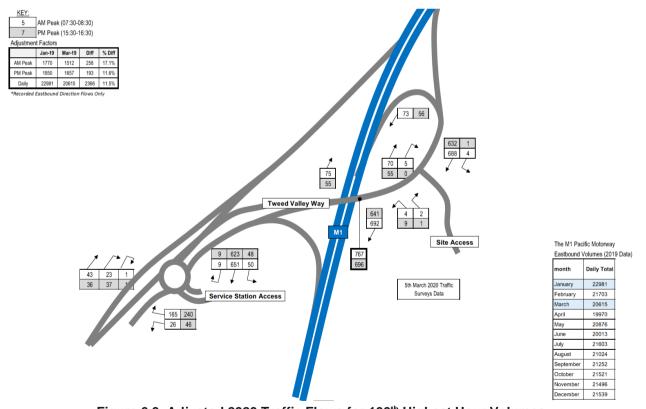


Figure 6.3 Adjusted 2020 Traffic Flows for 100th Highest Hour Volumes.

Client: Hanson Construction Materials Pty Ltd

6.1.3 Background Traffic Growth Rates

The 0.60% p.a. compound traffic growth rate for Tweed Valley Way has been used in the assessment in line with the Tweed Shire Council recommendations. The development is expected to be operational by 2022 and the 10-year design horizon in accordance with TfNSW recommendations, is therefore 2032. For a robust assessment, a 20-year horizon out to 2042 has also been adopted.

The project life would be up to approximately 30 years, accessing an available resource of approximately 30-35 million tonnes. The traffic forecast above 30 years is not recommended due to uncertainty of the traffic forecast over the extended time period.

Table 6.3 below summarises the compound growth rates used in the traffic impact assessment.

Table 6.3 Traffic Growth Factors

Growth Period	2020 to 2022	2020 to 2032	2020 to 2042
Traffic Growth Factor	1.012	1.074	1.140

6.1.4 Future Year Traffic Volumes

Growth factors summarised in Table 6.3 have been applied to the 2020 adjusted surveyed traffic flows (Refer Figure 6.1) to identify future traffic flows in 2022, 2032 and 2042. The resultant future traffic for the year of 2022, 2032 and 2042 AM and PM peak hours is shown in the Figure 6.4, Figure 6.5 and Figure 6.6 respectively.

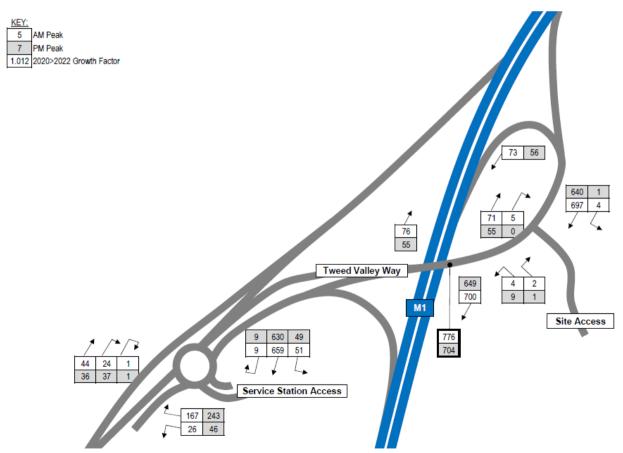


Figure 6.4 2022 Background Traffic Flows Peak Hours

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

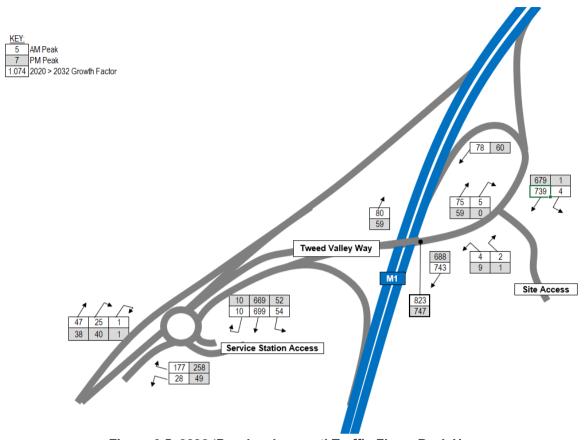


Figure 6.5 2032 'Pre-development' Traffic Flows Peak Hours

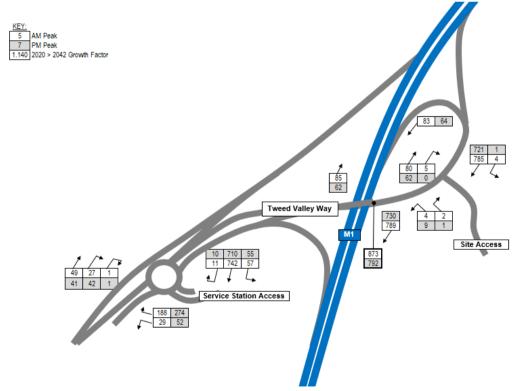


Figure 6.6 2042 'Pre-development' Traffic Flows Peak Hours

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-TIA-07B
Doc Title: Traffic Impact Assessment

www.burchills.com.au

6.1.5 Future Year Traffic Volumes with Committed Development

As mentioned earlier, it is anticipated that 2,000,000 cu.m of material will be hauled by ABLP committed development site over four years up to 2025. Consequently, the committed development traffic volumes have been combined with the 2022 assessment year (previous Figure 6.4). Figure 6.7 shows 'Pre-development' Traffic Flows for the 2022 assessment year with the flows representing the reference case against which the implications of the proposed development can be assessed.

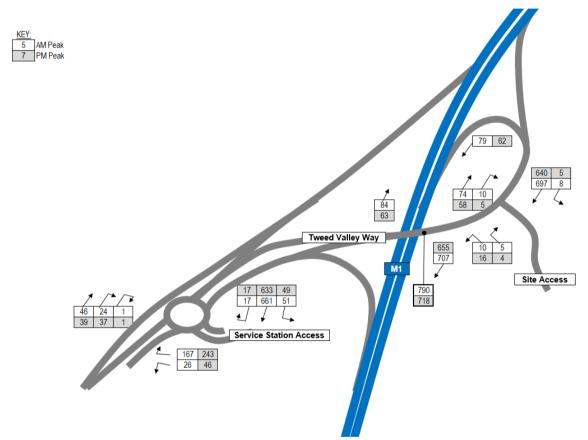


Figure 6.7 2022 Base with ABLP Property Committed Development

For robust assessment ABLP traffic volume flows have been increased by 30% to account for the fluctuations in traffic.

6.2 Development Traffic

6.2.1 Trip Generation

The existing TSP trip generation for the site based on the current maximum 500,000 tpa was previously shown in Table 2.3. In summary, TSP must not dispatch more than 18 laden trucks from the site in any hour following the upgrade of Altona Road and the Crescent Street/Tweed Coast Road intersection.

It is important to note that the existing site truck movements to and from the development are restricted between 7:00am to 5:00pm Monday to Friday and 7:00am to 12.00pm on Saturday with no operation on Sundays and public holidays.

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-TIA-07B
Doc Title: Traffic Impact Assessment

www.burchills.com.au

The additional traffic generated by the proposed redevelopment is calculated pro-rata on the basis of the anticipated increase in haulage trucks compared to the existing traffic volumes generated by the site and volumes generated by a similar site with 24 hours operation.

As TSP is proposing to increase to 24 hours operation, it is considered appropriate to use Hanson's Lytton Sand Plant heavy vehicle movement data which benefits from 24hr operation and similar sand extraction per annum (up to 450,000 tpa).

It is proposed to increase the truck movement period to 24 hours as part of the redevelopment proposal. This reduces the peak hour truck movements as truck volumes are spread over the longer period. For comparison purposes and to forecast future demand, 2018/2019 data for Hanson's Lytton Sand Plant, which extracts up to 450,000 tpa of sand has been used. Figure 6.8 below shows the typical daily trip generation for the Lytton Sand Plant.

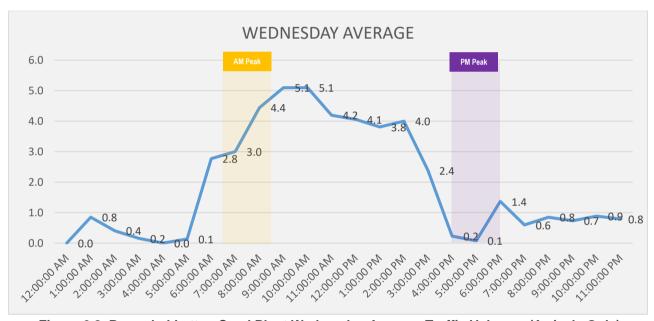


Figure 6.8 Recorded Lytton Sand Plant Wednesday Average Traffic Volumes (Arrivals Only)

As can be seen in the above figure, the highest trip generation occurs between 09:00 and 11:00AM, which is outside the typical network morning peak period (07:00-09:00). However, for robust assessment, the highest recorded trip generation from the site in a year (13 laden trucks dispatched from the site) has been used for the assessment. Table 6.4 below shows the highest recorded trip generation at Lytton Sand Plant.

Table 6.4 Recorded Lytton Sand Plant Truck Movements

Extraction (tonnes)	Plant	In	Out	Two-way
424,025	Highest recorded Lytton Sand Plant Truck Movements (2018 data)	13	13	26
450,000	Pro-rata to 450,000 tonnes	14	14	28

It is worth to note that the highest recorded trips for the 424,025 tonnes have been adopted to pro rata the equivalent number of trips applicable to 450,000 tonnes.

Client: Hanson Construction Materials Pty Ltd

The proposed Tweed Sand Plant redevelopment trip generation was calculated by adding the existing TSP trips (approved 500,000 tonnes) (Refer Table 2.3) and Lytton Sand Plant traffic volumes (450,000 tonnes) (Refer Table 6.3) as summarised in Table 6.5 below.

Table 6.5 Forecast Tweed Sand Plant Redevelopment Truck Movements

Extraction	Plant	In	Out	Two-way
500,000	TSP Approved truck movements	18	18	36
450,000	Lytton Sand Plant truck movements	14	14	28
950,000	Forecast Tweed Sand Plant Redevelopment	32	32	64

As show in Table 6.5 above, the proposed TSP redevelopment is forecast to generate 64 two-way truck movements per hour. In reality this is likely to be a worst-case value as the highest trip generation occurs outside the traditional road network peak hours as presented in the previous Figure 6.8.

Annual trip generation is based on the Tweed Sand Plant trip generation pro-rata to account for the increased extraction from the TSP. Table 6.6 shows the pro-rata calculations of the existing annual trip generation year 2020-2021.

Table 6.6 Forecast Tweed Sand Plant Redevelopment Annual Truck Movements

Year	Two-way Volumes	Yearly tonnage	Minimum Load per truck (Tonnes)	Maximum Load per truck (Tonnes)	Average Load per truck (Tonnes)	Future Extraction (Tonnes)	Forecast Two Way Volumes based on 950,000 extraction tonnes (pro-rata)
2020-2021	11,780	214,932	11.02	40.94	36.49	950,000	52,068

In summary, the proposed TPS expansion site is forecast to generate approximately 52,068 two-way vehicles per year.

6.2.2 Trip Distribution

Trip distribution for the proposed TSP redevelopment is based on the combined Lytton Sand Plant and the existing Tweed Sand Plant key destinations.

It is considered that the geographical spread of the key destinations for delivery are unlikely to be significantly different from those of the existing two plants. For simplicity this existing distribution information was used to determine the distribution of the new truck trips associated with the site redevelopment.

The distribution of trips to the local road network has been undertaken using Google Maps, assigning the trip to the most logical / shortest route available as shown in Table 6.7.

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Table 6.7 Combined Lytton Sand Plant and Tweed Sand Plant Key Destinations

		inbined Lytton Sand Flant and Tweed Sand Fl		
Plant	Trucks	Destination based on 2018 data	Northbound	Southbound
	1	*CLOSED NOOSA HEADS CONCRETE	1	1
	1	{CREEK RD}		1
	192	CABOOLTURE CONCRETE (ROSEBY ROAD)	192	
	267	CALOUNDRA CONCRETE	267	
	871	COOPERS PLAINS CONCRETE (NORBURY ST	871	
	13	FERNY GROVE QUARRY	13	
	3	GLASSHOUSE MOUNTAINS QUARRY	3	
	23	HANSON LABRADOR CONCRETE	23	
	574	HYMIX SPRINGWOOD	574	
	557	HYMIX WACOL	557	
Į.	20	HYMIX BURLEIGH HEADS (WILLIAM BANKS	20	
<u>a</u>	393	HYMIX CLEVELAND	393	
<u>Б</u>	735	HYMIX NARANGBA	735	
an	827	HYMIX PARK RIDGE (MT LINDESAY HWY)	827	
Lytton Sand Plant	21	HYMIX SOUTHPORT	21	
£	710	HYMIX WINDSOR	710	
j	427	IPSWICH CONCRETE (BRIGGS RD)	427	
	954	JINDALEE CONCRETE (SINNAMON RD)	954	
	736	LYTTON CONCRETE (ANTON RD)	736	
-		MAROOCHYDORE CONCRETE		
	588		588	
	513	NORTHGATE CONCRETE (NUDGEE RD)	513	
	203	EXTERNAL VARIOUS*	203	
	567	SPRINGWOOD CONCRETE {HANSON}	567	
	36	STAPYLTON CONCRETE {ELLIOT DR}	36	
	690	STRATHPINE CONCRETE (DUNTROON ST)	690	
	2,539	WEST END CONCRETE (NOTT ST)	2,539	
	1	ZONE 1 GATE 56 EASTBOUND (LOGAN MWY	1	
	360	BALLINA CONCRETE		360
	669	BURLEIGH CONCRETE (HANSON)	669	
	135	BYRON BAY CONCRETE		135
	20	COOPERS PLAINS CONCRETE (NORBURY ST	20	
	285	EXBIN TWEED - BENOWA {BORAL BENOWA}	285	
	165	EXBIN TWEED - CHINDERAH (BORAL CHIN	165	
ant T	558	EXBIN TWEED SANDS - Q CRETE BURLEIGH	558	
Tweed Sand Plant	542	HANSON LABRADOR CONCRETE	542	
pug	522	HYMIX BURLEIGH HEADS (WILLIAM BANKS	522	
Š	809	HYMIX CHINDERAH	809	
99	577	HYMIX SOUTHPORT	577	
≥	9	JINDALEE CONCRETE (SINNAMON RD)	9	
	168	LISMORE CONCRETE		168
	18	LYTTON CONCRETE (ANTON RD)	18	1 30
	506	NERANG QUARRY	506	
	127	Q EXBIN TWEED - WEST BURLEIGH QUARRY	127	+
	127	Q WESTFIELD (FOXWELL RD)	127	1
	679	STAPYLTON CONCRETE (ELLIOT DR)	679	

... .. .

Client: Hanson Construction Materials Pty Ltd

The adopted trip distribution is summarised as follows:

NorthboundSouthbound5%

The above trip generation and trip distribution data has then been combined to represent the likely distribution and volume of highway peak hour trips associated with the proposed TSP redevelopment. The assignment of the development trips onto the local road network is shown in Figure 6.9 below.

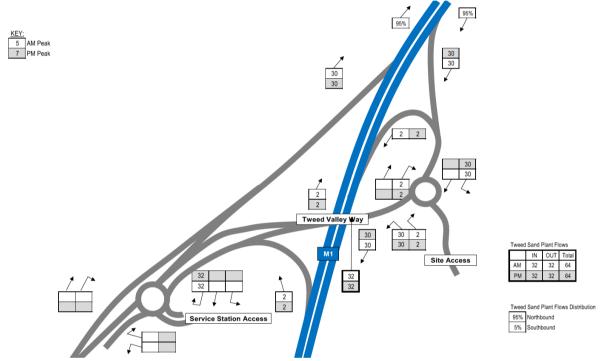


Figure 6.9 Development Trips Assignment

As per TfNSW request, sensitivity testing was undertaken to ensure a robust assessment.

The adopted development trip distribution for sensitivity testing is summarised as follows:

Northbound (Sensitivity Testing)Southbound (Sensitivity Testing)50%

Figure 6.10 shows the results.

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

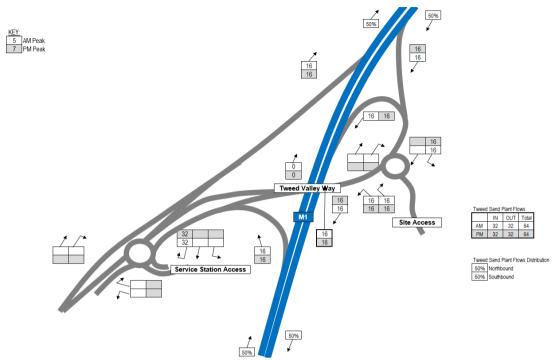


Figure 6.10 Development Trips Assignment (Sensitivity Testing)

6.3 Post Development Traffic

The development traffic (Figure 6.9) has been added to the Pre-Development traffic demands Figure 6.6 and Figure 6.7 to provide the Post Development traffic scenarios. The Post Development traffic demands for the 2022, 2032 and 2042 design years are shown in Figure 6.11, Figure 6.12 and Figure 6.13 respectively with all traffic flow diagrams provided in Appendix C.

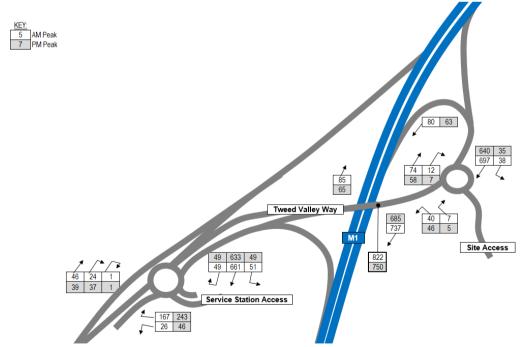


Figure 6.11 2022 'Post-development' Traffic Flows Peak Hours

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

The experience you deserve

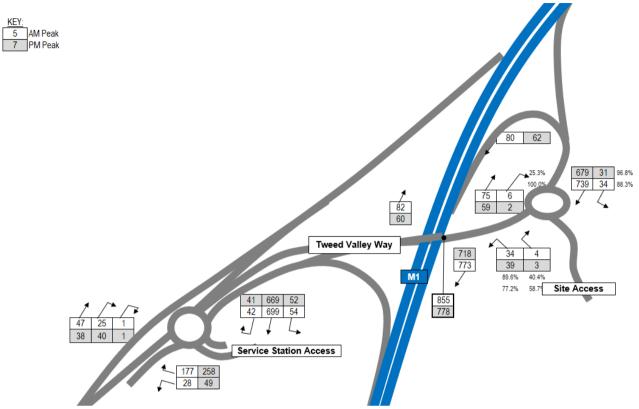


Figure 6.12 2032 'Post-development' Traffic Flows Peak Hours

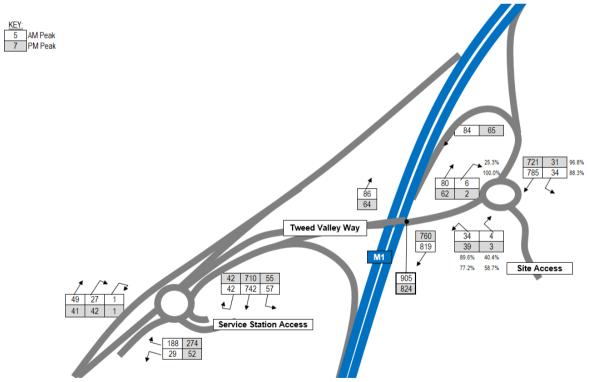


Figure 6.13 2042 'Post-development' Traffic Flows Peak Hours

Client: Hanson Construction Materials Pty Ltd

The experience you deserve

The development traffic with higher southbound truck trip distribution (Figure 6.10) has been added to the Pre-Development traffic demands in 2042 assessment year (Figure 6.6) to provide the Post Development traffic scenarios for sensitivity testing. The Sensitivity Testing Post Development traffic demands for the 2042 design years are shown in Figure 6.14.

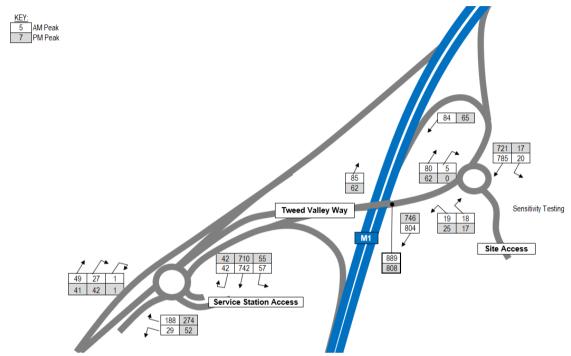


Figure 6.14 2042 'Post-development' Traffic Flows (Sensitivity Testing) Peak Hours.

The following Figure 6.15 shows the 2022 base Heavy vehicle percentages

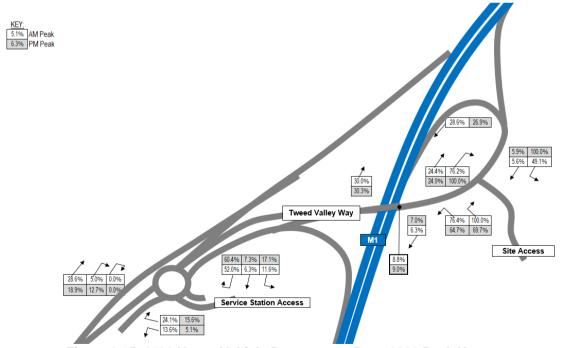


Figure 6.15 2022 Heavy Vehicle Percentages Base 2020 Peak Hours.

Client: Hanson Construction Materials Pty Ltd

7. Operational Assessment

The following assessment scenarios have been undertaken at the Tweed Valley Way / ABLP Property Site Access priority T-intersection and the Tweed Valley Way / Service Station Access roundabout:

- 2020 existing situation Figure 6.1;
- 2022 pre-development scenario (year of opening) Figure 6.7;
- 2022 post -development scenario (year of opening) Figure 6.11;
- 2032 pre-development scenario (10-year design horizon) Figure 6.5;
- 2032 post-development scenario (10-year design horizon) Figure 6.12;
- 2042 pre-development scenario (20-year design horizon) Figure 6.6;
- 2042 post-development scenario (20-year design horizon) Figure 6.13; and
- 2042 post-development sensitivity scenario (20-year design horizon) Figure 6.14.

7.1 Intersection Capacity Analysis

Capacity analysis of the surrounding intersections has been carried out utilising SIDRA INTERSECTION 9 traffic modelling software. This is an advanced micro-analytical traffic evaluation tool that employs lane-by-lane and vehicle drive models and can assess intersections within a network.

The key performance criteria considered are Degree of Saturation (DOS), Delays and Queuing. For a priority-controlled intersection, a DOS in excess of 80% is considered over capacity, 85% for roundabouts and 90% for signalised intersections. A DOS of 90% is the recommended upper limit as above this value performance quickly deteriorates. For priority-controlled intersections, a delay up to 42 seconds is considered satisfactory and a delay greater than 56 seconds is considered over capacity (*Guide to Traffic Generating Developments*, Roads and Traffic Authority, 2002, Tab. 4.2). Acceptable queue lengths are determined on a site by site basis, considering available storage.

7.2 Tweed Valley Way / ABLP Property Site Access Priority T-intersection

The diagrammatic layout of the intersection as well as aerial photo of the existing intersection layout, are shown in the following Figure 7.1.

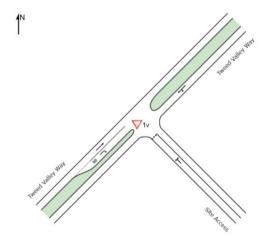


Figure 7.1 Tweed Valley Way / ABLP Property Site Access Intersection (Existing Layout)

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-TIA-07B
Doc Title: Traffic Impact Assessment

www.burchills.com.au

Table 7.1 shows the intersection performance indicators for the Tweed Valley Way / ABLP Property Site intersection for the surveyed 2020 year.

Table 7 1	Twood Valley	, Way / ARI D Di	roperty Site Acces	c Intercoction S	IDDA Doculte -	Vaar 2020
I able 1.1	i weeu vallev	/ Way / ADLF FI	ODELLY SILE ACCES	5 11116156611011 3	IDVA VESUITS -	I Cal ZUZU

Approach / Movement	Year 2020 without development							
		AM Peak Hou	ır	PM Peak Hour				
	DOS	Delay	Queue	DOS	Delay	Queue		
		(seconds)	(metres)		(seconds)	(metres)		
Site Access	0.026	19.3	0.9	0.024	12.7	0.8		
Tweed Valley Way (North East)	0.393	0.2	0.0	0.359	0.1	0.0		
Tweed Valley Way (South West)	0.047	0.9	0.4	0.037	0.2	0.0		
Intersection overall	0.393	0.4	0.9	0.359	0.3	0.8		

SIDRA intersection capacity analysis has demonstrated that the existing Tweed Valley Way / ABLP property intersection currently works within its theoretical operational capacity of 80%. The junction is operating within a satisfactory Level of Service. The Degree of Saturation during AM Peak hour reached a maximum Degree of Saturation (DOS) of 39.3%. 35.2 seconds average delay is achieved for the right turn movement from ABLP site access road into the Tweed Valley Way.

To check the performance on a hypothetical upgraded T junction as the ultimate layout with the TSP development traffic superimposed, for comparison it has been assumed that there will be requirement to provide an Auxiliary Left-turn Lane Treatment (AUL) at Tweed Valley Way northern approach to ensure no disruption to through traffic and that appropriate road safety outcomes are achieved. Consequently, SIDRA analysis for "Post Development" scenario includes AUL lane as shown in Figure 7.2.

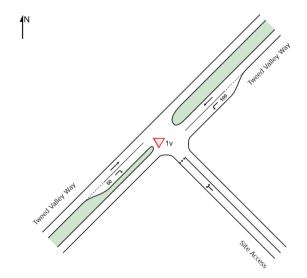


Figure 7.2 Tweed Valley Way / ABLP Property Site Access Intersection (Proposed Layout)

Table 7.2 below shows SIDRA results for the Tweed Valley Way / ABLP property intersection for the 2022 Pre and Post Development Scenarios. It is important to note that 2022 Pre and Post development scenarios includes committed development traffic associated with the ABLP property redevelopment.

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Table 7.2 Tweed Valley Way / ABLP Property Site Access Intersection SIDRA Results - Year 2022

Peak	Approach / Movement	Year 20	22 without de	velopment	Year 2022 with development			
Hour		DOS	Delay (seconds)	Queue (metres)	DOS	Delay (seconds)	Queue (metres)	
AM	Site Access	0.267	12.1	10.0	0.483	56.5	33.9	
	Tweed Valley Way (NE)	0.264	3.2	15.9	0.396	0.5	0.0	
	Tweed Valley Way (SW)	0.069	6.2	3.3	0.067	3.4	2.9	
	Intersection overall	0.267	5.1	15.9	0.483	3.7	33.9	
PM	Site Access	0.368	11.8	14.1	0.354	34.5	23.0	
	Tweed Valley Way (NE)	0.262	3.3	16.1	0.365	0.5	0.0	
	Tweed Valley Way (SW)	0.077	7.6	3.7	0.042	2.8	2.1	
	Intersection overall	0.368	5.8	16.1	0.365	2.9	23.0	

SIDRA analysis indicated that with the anticipated background traffic growth for 2022 and additional committed ABLP property development traffic, the intersection is expected to operate within its theoretical operational capacity with DOS reaching 36.8% in the PM Peak. Superimposing the development traffic results in increased DOS marginally to 48.3%. SIDRA analysis confirmed that the Tweed Valley Way / ABLP property intersection performs with high right turn delay 69.1 sec with development traffic superimposed. The delay at the minor road for right turn is above the recommended maximum delay for priority intersections.

Table 7.3 below shows a SIDRA results for Tweed Valley Way / ABLP property intersection for the 2032 Pre and Post Development Scenarios.

Table 7.3 Tweed Valley Way / ABLP property Site Access Intersection SIDRA Results - Year 2032

Peak	Approach /	Year 20	32 without d	levelopment	Year 2032 with development			
Hour	Movement	DOS	Delay (s)	Queue (m)	DOS	Delay (s)	Queue (m)	
AM	Site Access	0.031	22.3	1.3	0.490	66.72	34.4	
	Tweed Valley Way (NE)	0.422	0.2	0.0	0.420	0.5	0.0	
	Tweed Valley Way (SW)	0.050	0.9	0.6	0.052	2.6	2.6	
	Intersection overall	0.422	0.4	0.7	0.490	3.5	34.4	
PM	Site Access	0.023	12.1	0.7	0.372	41.4	24.3	
	Tweed Valley Way (NE)	0.388	0.1	0.0	0.387	0.4	0.0	
	Tweed Valley Way (SW)	0.039	0.2	0.0	0.047	1.6	1.6	
	Intersection overall	0.388	0.3	0.7	0.387	2.7	24.3	

In the 2032 without the development scenario, the Tweed Valley Way / ABLP property Site continues to operate within its theoretical operational capacity in all peak hours. The maximum DOS value becomes 46.8% during AM Peak hour. It is worth noting that right turn out from the site becomes challenging, the recorded delay is 41.8secs during AM Peak with LOS E. Under the 2032 with the proposed development scenario, the maximum DOS value increases to 49.0% with the maximum queue length also increasing in the weekday AM peak hour. Due to the through traffic volumes, getting out of the side road is very challenging. LOS F with significant delays at the site access

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-TIA-07B
Doc Title: Traffic Impact Assessment

www.burchills.com.au

approach occurs during AM and PM Peak hours with the delays 78.1 secs exceeding the maximum allowable for safe operations.

Table 7.4 below shows SIDRA results for the Tweed Valley Way / ABLP Property intersection for the 2042 Pre and Post Development Scenarios.

Table 7.4 Tweed Valley Way / ABLP property Site Access Intersection SIDRA Results – Year 2042

Peak	Approach / Movement	Year 20	42 without de	velopment	Year 2042 with development			
Hour		DOS	Delay (seconds)	Queue (metres)	DOS	Delay (seconds)	Queue (metres)	
AM	Site Access	0.037	26.0	1.2	0.668	107.7	51.0	
	Tweed Valley Way (NE)	0.454	0.2	0.0	0.446	0.5	0.0	
	Tweed Valley Way (SW)	0.053	0.9	0.5	0.054	1.8	1.5	
	Intersection overall	0.454	0.4	1.2	0.668	4.9	51.0	
PM	Site Access	0.024	12.8	0.8	0.431	51.5	28.8	
	Tweed Valley Way (NE)	0.412	0.2	0.0	0.410	0.4	0.0	
	Tweed Valley Way (SW)	0.041	0.2	0.0	0.042	1.7	1.9	
	Intersection overall	0.412	0.3	0.8	1.431	3.0	28.8	

In summary the analysis of the Tweed Valley Way / ABLP Property Site intersection showed that with proposed traffic superimpose, the priority intersection fails to operate satisfactorily. An increase in the delay 114.4 secs and queue length 51.0 metres at the Site Access approach was recorded with LOS F for the right turn movement during the AM and PM Peak hours.

To cater for the proposed and existing heavy vehicles movements, it is proposed to upgrade the existing Tweed Valley Way / ABLP property Site Access priority intersection a new roundabout.

7.3 Tweed Valley Way / ABLP Property Site Access Proposed Roundabout

The diagrammatic layout of the proposed roundabout and actual design plan is shown in the following Figure 7.3.

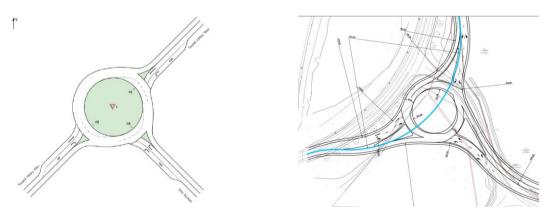


Figure 7.3 Tweed Valley Way / ABLP and TSP Access Proposed Roundabout

www.burchills.com.au

Page 51

Client: Hanson Construction Materials Pty Ltd

Table 7.5 below shows SIDRA results for the proposed Tweed Valley Way / ABLP and TSP access roundabout for the 2022 and 2032 Post Development Scenarios.

Table 7.5 Tweed Valley Way / ABLP and TSP Access Proposed Roundabout SIDRA - 2022 & 2032

Peak	Approach / Movement	Year 2	ear 2022 with development Year 2032 with de				elopment
Hour		DOS	Delay (seconds)	Queue (metres)	DOS	Delay (seconds)	Queue (metres)
AM	Site Access	0.118	15.8	11.6	0.106	14.3	10.0
	Tweed Valley Way (NE)	0.468	2.5	21.9	0.443	2.5	19.9
	Tweed Valley Way (SW)	0.058	3.0	2.8	0.055	3.1	2.7
	Intersection overall	0.468	3.0	21.9	0.443	3.0	19.9
PM	Site Access	0.109	10.9	9.0	0.104	12.1	9.1
	Tweed Valley Way (NE)	0.379	2.5	15.2	0.403	2.4	17.2
	Tweed Valley Way (SW)	0.044	3.4	2.2	0.051	2.8	2.9
	Intersection overall	0.379	3.1	152	0.403	3.0	17.2

SIDRA analysis indicated that with the proposed roundabout will operate well within its theoretical capacity with the proposed development traffic superimposed. DOS reaching 44.3% in the AM Peak and 40.3% in the PM Peak for the 2032 assessment year is achieved with overall intersection LOS A.

Table 7.6 below shows SIDRA results for Tweed Valley Way / ABLP and TSP access roundabout for the 2042 Post Development Scenarios including sensitivity testing.

Table 7.6 Tweed Valley Way / ABLP and TSP Access Proposed Roundabout SIDRA – 2042

Peak Hour	Approach / Movement	Year 2042 with development Year 2042 with develo (sensitivity testin					•
		DOS	Delay (s)	Queue (m)	DOS	Delay (s)	Queue (m)
AM	Site Access	0.118	15.8	11.6	0.108	12.8	9.6
	Tweed Valley Way (NE)	0.468	2.5	21.9	0.428	2.4	18.7
	Tweed Valley Way (SW)	0.058	3.0	2.8	0.045	2.7	2.2
	Intersection overall	0.468	3.0	21.9	0.428	3.0	18.7
PM	Site Access	0.108	12.8	9.6	0.072	15.8	6.6
	Tweed Valley Way (NE)	0.428	2.4	18.7	0.454	2.6	22.0
	Tweed Valley Way (SW)	0.045	2.7	2.2	0.048	4.4	2.5
	Intersection overall	0.428	3.0	18.7	0.454	3.4	22.0

In the 2042 without the development scenario, the proposed Tweed Valley Way / ABLP roundabout continues to operate within its theoretical operational capacity in all peak hours. The maximum DOS value becomes 46.8% during AM Peak hour.

7.4 Tweed Valley Way / Service Station Access roundabout

The schematic layout used for the 2022, 2032 and 2042 intersection analysis is shown in the following Figure 7.4 alongside the aerial photograph of existing roundabout.

______ www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

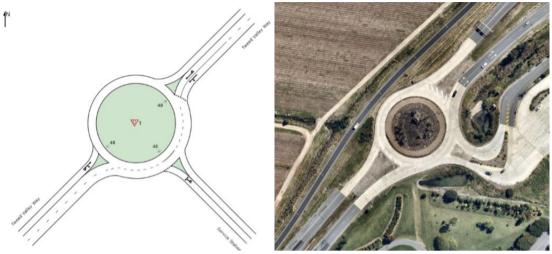


Figure 7.4 Tweed Valley Way / Service Station Roundabout (Existing Layout)

A SIDRA summary of the operation of the existing roundabout is presented in Table 7.7 below.

Table 7.7 Tweed Valley Way / Service Station Roundabout SIDRA Results – Year 2020

Approach / Movement	Year 2020 without development						
		AM Peak Hou	ır	PM Peak Hour			
	DOS	Delay (seconds)	Queue (metres)	DOS	Delay (seconds)	Queue (metres)	
Service Station	0.272	11.0	10.5	0.333	11.0	11.3	
Tweed Valley Way (North East)	0.230	2.7	11.4	0.229	2.7	11.8	
Tweed Valley Way (South West)	0.064	5.6	3.2	0.071	7.1	3.4	
Intersection overall	0.272	4.5	11.4	0.333	5.3	11.8	

The existing roundabout operates within its theoretical capacity during AM and PM peak hours. The maximum DOS value of 33.3% and an associated average queue length of approximately 11.3 vehicles is reached in 2020 assessment year during PM Peak hour. The intersection currently operates with LOS A during AM Peak and PM Peak hours. A SIDRA outputs for the 2022 assessment year scenario are summarised in Table 7.8 below.

Table 7.8 Tweed Valley Way / Service Station Roundabout SIDRA Results – Year 2022

Peak	Approach / Movement	Year 20	22 without de	velopment	Year 2022 with development			
Hour		DOS	Delay (seconds)	Queue (metres)	DOS	Delay (seconds)	Queue (metres)	
AM	Service Station	0.333	11.0	11.3	0.267	12.1	10.0	
	Tweed Valley Way (NE)	0.229	2.7	11.8	0.264	3.2	15.9	
	Tweed Valley Way (SW)	0.071	10.9	3.4	0.069	6.2	3.3	
	Intersection overall	0.333	11.0	11.8	0.267	5.1	15.9	
PM	Service Station	0.370	11.7	14.4	0.368	11.8	14.1	
	Tweed Valley Way (NE)	0.232	2.7	12.1	0.262	3.3	16.1	

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Tweed Valley Way (SW)	0.073	11.0	3.6	0.077	7.6	3.7
Intersection overall	0.370	11.7	14.1	0.368	5.8	16.1

As can be seen in Table 7.8, the intersection operation in the 2022 without the proposed development scenario is expected to operate well within its theoretical operational capacity. With proposed development traffic superimposed, the roundabout is still expected to operate well within its theoretical capacity both during AM and PM Peak hours.

As shown in Table 7.9 above, the Tweed Valley Way / Service Station Roundabout is forecast to operate within its theoretical capacity in 2032 assessment year.

Table 7.9 Tweed Valley Way / Service Station Roundabout SIDRA Results - Year 2032

Peak	Approach / Movement	Year 2032 without development			Year 2032 with development			
Hour		DOS	Delay (seconds)	Queue (metres)	DOS	Delay (seconds)	Queue (metres)	
AM	Service Station	0.297	12.2	11.6	0.288	12.2	10.9	
	Tweed Valley Way (NE)	0.247	2.6	12.6	0.276	3.2	17.3	
	Tweed Valley Way (SW)	0.069	5.9	3.4	0.070	6.3	3.4	
	Intersection overall	0.297	4.8	12.6	0.288	5.1	17.3	
PM	Service Station	0.410	12.3	17.0	0.398	12.1	16.0	
	Tweed Valley Way (NE)	0.266	2.7	13.6	0.278	3.2	16.7	
	Tweed Valley Way (SW)	0.076	7.5	3.7	0.079	7.8	3.8	
	Intersection overall	0.410	5.5	17.0	0.398	5.8	16.7	

As can be seen in Table 7.9, the Tweed Valley Way / Service Station roundabout is expected to operate well within its theoretical operational capacity with the proposed development traffic superimposed in the 2032 assessment year. Table 7.10 shows the Tweed Valley Way / Service Station Roundabout forecast operation in 2042 assessment year.

Table 7.10 Tweed Valley Way / Service Station Roundabout SIDRA Results - Year 2042

Peak	Approach / Movement	Year 2042 without development			Year 2042 with development		
Hour		DOS	Delay (seconds)	Queue (metres)	DOS	Delay (seconds)	Queue (metres)
AM	Service Station	0.398	12.1	16.0	0.308	12.4	11.9
	Tweed Valley Way (NE)	0.278	3.2	16.7	0.288	3.1	17.8
	Tweed Valley Way (SW)	0.079	7.8	3.8	0.077	6.5	3.8
	Intersection overall	0.398	5.8	16.7	0.308	5.1	17.8
PM	Service Station	0.429	12.4	18.1	0.425	12.4	17.7
	Tweed Valley Way (NE)	0.255	2.7	13.8	0.281	3.2	17.6
	Tweed Valley Way (SW)	0.068	6.7	3.3	0.084	7.9	4.0
	Intersection overall	0.429	5.6	18.1	0.425	6.0	17.7

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

The experience you deserve

As can be seen in Table 7.10, the Tweed Valley Way / Service Station roundabout is expected to operate well within its theoretical operational capacity with the proposed development traffic superimposed in the 2042 assessment year with the Hanson traffic superimposed. The results of the sensitivity test with 50 % increase in the southbound travel was analysed as well and the results are similar for the 2042 operating year. All Sidra Outputs are contained in Appendix E.

 \geqslant ——

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

8. Proposed Mitigation Works

8.1 Tweed Valley Way / Service Station Roundabout

The Tweed Valley Way / Service Station Roundabout is required to be upgraded following development of the site to accommodate additional Heavy Vehicles utilising the roundabout and undertaking a U-turn. The proposed layout for the upgraded Tweed Valley Way / Service Station Roundabout is shown in Figure 8.1 below.

The hatched area shows the proposed modification to the roundabout centre island. Currently vehicles either turn into the Service Centre or continue onto Tweed Valley Way. The above effectively represents a U turn from the M1.

Figure 8.1 Proposed Upgrades to Tweed Valley Way / Service Station Roundabout

The swept paths for the B-Double vehicle and HRV shows the extent of the lane widening required to the southern side of the roundabout to accommodate the two heavy vehicles passing. Refer Appendix A Drawing BE190043-SK131 Rev B - Tweed Valley Way and ABLP Access _ Widening Works; Swept path Analysis – 26m B-Double. Note that the drawing is based on aerial photography and the final extent of widening is subject to swept paths based on the detail survey of the existing roundabout.

8.2 Swept Paths Analysis New Roundabout Eastern Side M1

Swept paths analysis has been undertaken for the intersection which demonstrate appropriate clearances are achieved with the pavement widths proposed. The following Drawings in Appendix A show the swept paths adopted.

Client: Hanson Construction Mate

Client: Hanson Construction Materials Pty Ltd

- Drawing BE190043-SK126 Rev C Tweed Valley Way and Australian Bay Lobster Producers Access _ Widening Works; Swept Path Analysis – B- Double.
- Drawing BE190043-SK127 Rev C Tweed Valley Way and Australian Bay Lobster Producers Access _ Widening Works; Swept Path Analysis – B- Double.
- Drawing BE190043-SK128 Rev C Tweed Valley Way and Australian Bay Lobster Producers Access _ Widening Works; Swept Path Analysis – B- Double.

8.3 Project Phasing Concept Plan

The concept phasing plan is shown in the following Figure 8.2 below.

Figure 8.2 Project Phasing Concept Plan

The concept plan shows proposed 11 phases and western migration of the work area, consistent with the vehicle access objectives adopting and maintaining the Tweed Valley Way as the point of access to the external road network. The access onto Tweed Valley Way is proposed with Phase 1. The access arrangements proposed do not change throughout the life of the project.

Refer Appendix A for a copy of the Concept Development Phasing Drawing Z19163-104 Sheet 01 of 01. The following Figure 8.3 shows the final concept plan.

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

The experience **you deserve** \geqslant

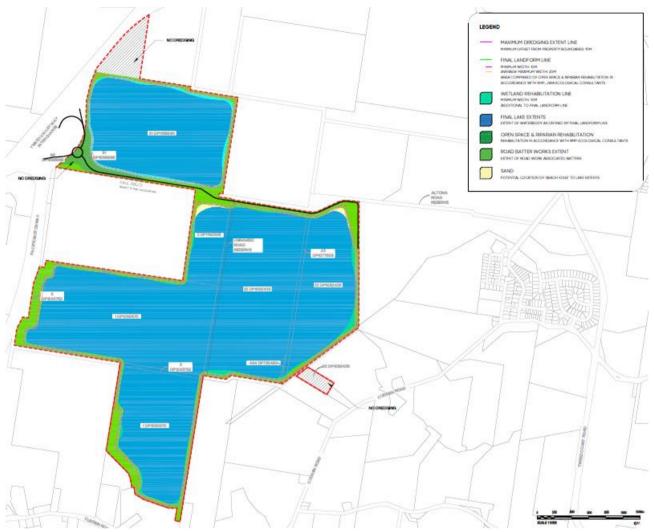


Figure 8.3 Final Concept Plan

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

9. Tweed Shire Council Draft Comments

Following submission of a draft Traffic Impact Report to Tweed Shire Council, the following relevant engineering minutes with respect to Traffic Impact assessment are extracted from Minutes of Assessment Panel held 2 December 2020 as follows (in italics) with response:

• The development site has no existing right of access to the Pacific Highway – Tweed Valley Way interchange. The public road reserve (Altona Road) terminates part way across the frontage of Lot 2 DP 1192506. In order to achieve road access the proponents will need to negotiate the appropriate licenses (for the life of the sand quarry) or easements with the adjoining property owner(s) and Roads and Maritime Services. The access road would need to be sealed to address ongoing management of dust, erosion and sediment export onto the Highway.

RESPONSE

The appropriate licences with the adjoining property owners have been obtained by Hanson, plus relevant applications to TfNSW for access approval form part of the development application. Within the state controlled road reserve, road pavement and widening are to be in accordance with TfNSW requirements and standards and subject to detailed design and approval. The internal haul roads are to be sealed.

• The proposal will require a traffic impact analysis to ensure that the road access for the site (subject to negotiations above) is capable of catering for the forecast truck movements, up to b-double configuration. This assessment will need to include adequacy of the existing intersection with the highway off ramp, and the new roundabout intersection on Tweed Valley Way and merge which would be utilised for each north bound load.

RESPONSE

The new roundabout onto the Tweed Valley Way is adopted for northbound and southbound trips. Southbound trips use the new roundabout for a right from the east approach (TSP and ABLP) sites to the Pacific Motorway southbound on-ramp. The swept path analysis as contained in the text include provisions for B-Double Trucks. Refer preceding sections. Items raised are included in this TIA.

A draft Traffic Impact Assessment was submitted for discussion at the meeting. This report
proposes a graded acceleration lane to reduce risk at the merge point on the southbound
highway off ramp, as the preferred option from previous consultation with RMS/TfNSW. As
this presents a significant conflict point for vehicle safety, further review of the TIA is required
in consultation with TfNSW.

RESPONSE

Initially a number of access options were submitted to TfNSW. In response to subsequent feedback from both TfNSW and TSC, a new roundabout is proposed as preferred access control onto the Tweed Valley Way as detailed in this TIA.

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

• The proposal places a high reliance on turning movements at the Tweed Valley Way / Service Centre roundabout, and will significantly increase heavy vehicle movements (up to b-doubles) impacting on the operation and pavement life of the roundabout, which is a Council asset. A review of the design of the roundabout is warranted and should be added to the TIA with any upgrades proposed. Changes to the roundabout centre island have been identified. It is questioned how this can be achieved under live traffic and to a suitably resilient design.

RESPONSE

As shown in Figure 8.1, there are two circulating lanes on the southern side of the roundabout that follow the alignment of the Tweed Valley Way. Traffic Management proposed for the construction of the lane widening and changes to the roundabout centre island, involves the closure of the inside lane of the two lane section of the roundabout plus utilising the existing additional lane width available in the chevron marked area of the east and west sides of the roundabout. One circulating lane remains open at all times. At the eastern approach to the roundabout, lane designation signs close the inside (RHS) lane creating a single approach lane. Note that the drawing is based on aerial photography and the final extent of widening is subject to swept paths based on the detail survey of the existing roundabout.

The pavement construction is subject to detail investigation and design and further submission to TSC and TfNSW for construction approval. A key goal of the design to achieve a resilient outcome will involve designing uniform surface levels consistent with the existing crossfall, that can be maintained throughout the life of the roundabout similar to concrete pavement widening construction methods.

 The road design does not appear to cater for potential traffic demands from other users along Altona Road to the east. Clarification is sought as to intended tenure and ability for this infrastructure to service a larger area.

RESPONSE

Altona Road reserve is not currently continuous to the west and is not being extended or connected to the Tweed Valley Way off ramp. All heavy vehicle haulage and traffic will use the Tweed Valley Way without any connection to Altona Road. The existing connection between the site / Altona Road to Tweed Coast Road for haulage vehicles will not be retained. The use of the existing intersection by ABLP onto Tweed Valley Way is to be replaced with the roundabout and the capacity calculations submitted allow for the anticipated traffic volumes forecast. Altona Road traffic will not have access to the Pacific Motorway to the west.

 The application should address geotechnical properties of the quarry site, including consideration of long term stability of the excavation batters, to ensure that they are designed and constructed to prevent slumping and instability on adjoining land in perpetuity.

RESPONSE

A geotechnical investigation has been commissioned to investigate bank stability of the dredged submerged batters adjacent to the Tweed Valley Way off-ramp.

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

• Section 94 Plan No. 4 (TRCP) Contributions would be applicable. Any variation to the standard rate would require the submission of a traffic analysis.

RESPONSE

A traffic analysis will be separately submitted regarding any variation to the standard rate.

 Analysis will be required to determine the required amount of car parking and to assist Council in determining the applicable parking provision under the relevant DCP.

RESPONSE

Hanson will retain ownership of the site following completion of sand extraction and any proposed subsequent use of the site will be decided via the appropriate consultative, application and regulation processes in place at that time. The report gives a general outline of public and active infrastructure currently available.

Client: Hanson Construction Materials Pty Ltd

10. Public Access Strategy End Use Development

Hanson will retain ownership of the site following completion of sand extraction and any proposed subsequent use of the site will be decided via the appropriate consultative, application and regulation processes in place at that time.

10.1.1 Vehicular Access

Vehicular access to the end use completed development of the TSP land by the public will be provided via Crescent Street / Tweed Coast Road priority intersection, Crescent Street and Tweed Coast Road as shown in Figure 10.1 below. Sight distance at the Crescent Street / Tweed Coast Road priority intersection accords with the minimum requirement of the Australian Standards for 90km/h Design Speed. The desirable visibility of 185m is achieved in both directions.

In summary, the means of ingress to or egress from the future end use site development are adequate and provide for safe and convenient movement to and from the site.

Figure 10.1 Existing Tweed Coast Road / Crescent Street Priority Intersection

It is recommended for a traffic impact assessment of the Crescent Street / Tweed Coast Road intersection to be undertaken at the appropriate time in the future when the Crescent Street access is required as part of the end use.

10.1.2 Walking and Cycling Distances

The accessibility of the site by active and sustainable modes of transport in the future is important as it is likely to impact upon the number of private car trips made to and from the site and their localised impacts onto the local road network. Facilitating competitive, attractive and sustainable

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

travel mode choices through the provision of quality transport infrastructure and incentives / disincentives has a potential to reduce dependency on car use and car parking demand.

The location of the site with respect to the wider built-up area and active transport facilities is shown in Figure 10.2 below.

Figure 10.2 Existing Walking and Cycling Paths in the Vicinity of the TSP Site (Source Tweed Shire Council)

Comfortable cycling distance of 5km is achieved and covers Kingscliff, Casuarina, Chinderah and Dodds Island.

10.1.3 Public Transport

The existing public transport infrastructure in the vicinity of the site is shown in Figure 10.3 and Figure 10.4 below.

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

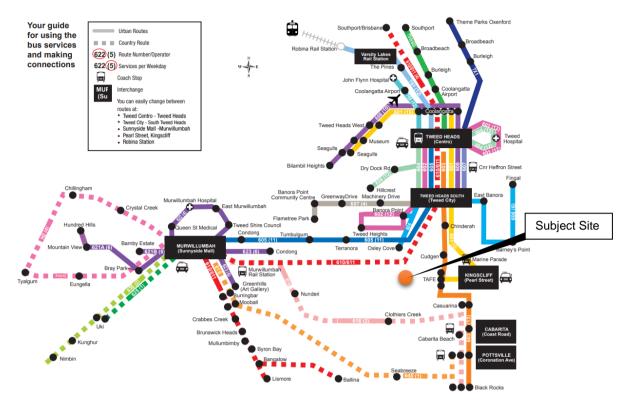


Figure 10.3 Public Transport Accessibility (Source Tweed Shire Council)

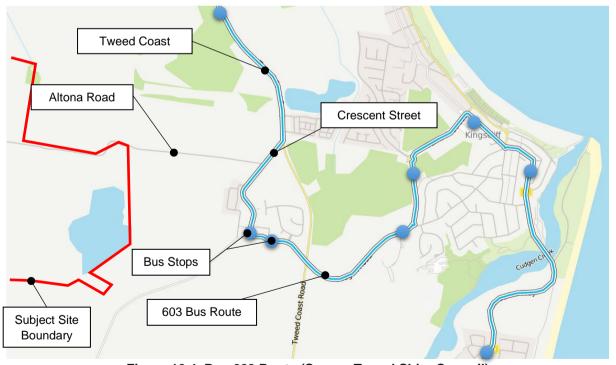


Figure 10.4 Bus 603 Route (Source Tweed Shire Council)

"Streets for People Compendium" document identifies recommended distances to bus stops within 400m from the site and tram stop or high-frequency bus stops within 800m from the site. The above distances could relate to walking journeys to and from the development.

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

There are bus stops along Crescent Street located outside comfortable walking distance from the site. Bus stops located along Crescent Street are accessible within 24-minute walk (1.9km).

The bus service operating at this stop is 603, which provides connection from Tweed Heads to Kingscliff and Pottsville with 60-minute frequency.

≫ −

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

11. Conclusions and Recommendations

Burchills Engineering Solutions has been commissioned by Hanson Construction Materials Pty Ltd (Hanson) to prepare a Traffic Impact Assessment (TIA) report to support a Development Application (DA) for the expansion of the existing Tweed Sand Plant (TSP) located at Altona Road, Cudgen. The development is located within Tweed Shire Council Local Authority.

The current approved sand extraction sites include Lot Plans: 22 on DP1082435, 23 on DP1077509 and 494 on DP720450. The proposed expansion site includes the current site plus Lot Plans; 1 on DP1250570, 2 on DP1192506, 3 on DP1243752, 50 on DP1056966 and 51 on DP1166990. The total area for the future Tweed Sand Plant site would be approximately 236ha and result in an increase in the sand production rate from the current limit of 500,000 tonnes per annum (tpa) to 950,000 tpa. The applicant proposes to gain access from Tweed Valley Way via a new roundabout, contrary to the current arrangements utilising the local street network involving Altona Road, Crescent Street and Tweed Coast Road.

Tweed Coast Road is a local council-controlled road that provides access to Cudgen, Kingscliff, Casuarina and Cabarita Beach from the M1 Pacific Motorway. The above areas are forecasted to have substantial population growth due to the land development on both sides of the road. Removing heavy vehicles from Tweed Coast Road has significant road safety benefits. Other secondary benefits associated with reduced travel distances to the M1 via Tweed Valley Way interchange are associated with reduced fuel and vehicle operating costs and significant reductions in vehicle emissions.

The Economic Evaluation assessment as contained in Appendix F demonstrated that the proposed Tweed Sand Plant haulage route via Tweed Valley Way including upgrade of the Tweed Valley Way / ABLP intersection does provide economic benefits to the local community which outweighs its cost to residents, Local and State Governments. The Cost-benefit analysis prepared determined that the project will generate a Present Value (PV) total of \$2.59M in benefits at a Present Value cost of \$1.05M above the Base Case, providing a NPV of \$1.54M and a Benefit-Cost Ratio (BCR) of 2.46. The majority of benefits relate to travel time savings along Tweed Coast Road via a reduction in travel time, maintenance costs reduction, environmental and safety benefits. The analysis includes maintenance costs associated with the proposed new Tweed Valley Way roundabout over the life of the project but excludes the capital costs covered by Hanson.

Pacific Motorway (M1) is a declared Freeway and Transport for New South Wales (TfNSW) is the Roads Authority for Freeways in accordance with Section 7 of the Roads Act 1993. Tweed Valley Way (679) is a classified (Regional) Road and a declared Controlled Access Road (CAR) in the subject area. Tweed Shire Council is the Roads Authority for all public roads in the local government area, including Tweed Valley Way. However, TfNSW can exercise Roads Authority powers in relation to classified roads and provides consent to any new connection with a Freeway or CAR in accordance with the Roads Act. Developer works are subject to the terms of a Works Authorisation Deed (WAD).

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Several options for connection to Tweed Valley Way were investigated with the TfNSW with the proposed roundabout being a preferred option. The design vehicle for the TSP is 26m B-Double truck. The preferred site access strategy is contained in Appendix A.

Available traffic surveys were used for traffic analysis adopting the Tweed Shire Council Transport traffic volume forecasts in the analysis. Traffic growth at the rate of 0.6% per annum was calculated from traffic surveys and forecast traffic volumes extracted from the TSC *Tweed Road Development Strategy* and adopted for the capacity analysis of the intersection at the ABLP property. The growth rate is consistent with the medium growth scenario adopted for Tweed Shire Transport Planning.

2020 traffic surveys were completed in early March 2020 (pre COVID -19) and represent the normal situation. The speed surveys identified that the advisory speed of 75km/hr is exceeded by speeds of 87km/hr recorded as the 85th percentile speed. A review of the 2019 AADT volumes along the M1 Pacific Motorway identified that there are seasonal variations in traffic with the highest volumes recorded in January. Based on the above, traffic survey data from March 2020 has been increased to account for the seasonal variations in traffic volumes. The above represents the worst-case scenario under 100th Highest Hour Volumes as adopted for all SIDRA capacity calculations.

Safety and efficiency on the surrounding road network identified that no accidents have been recorded between 2013 and 2019 at the existing ABLP intersection with Tweed Valley Way.

TSP destinations involve 95% delivery trips travelling north and 5% south. Sensitivity testing was undertaken for the 50% north and 50% south distribution.

The SIDRA software capacity analysis identified that the proposed roundabout would operate well within its theoretical capacity in the 2042 assessment year with the proposed development traffic superimposed with minimal delays and satisfactory Degree of Saturation. The proposed site access arrangements are adequate to service the site.

The Tweed Valley Way / Caltex Service Station roundabout is designed to cater for 26m B-Double heavy vehicles. However, swept path analysis of the U-turn movement at this roundabout identified that modifications to the roundabout island are required. To ensure road safety, it is proposed to provide additional signage with advisory safe turning speed for trucks manoeuvring the roundabout as part of an upgrade that marginally widens the pavement to the circulating lane on the southeast side. Note that the drawing is based on aerial photography and the final extent of widening is subject to swept paths based on the detail survey of the existing roundabout.

Hanson will retain ownership of the site following completion of sand extraction and any proposed subsequent use of the site will be decided via the appropriate consultative, application and regulation processes in place at that time.

Assessment of the impact on public transport (public and school bus routes) and consideration for alternative transport modes such as walking and cycling, recommended access from the existing Tweed Coast Road as part of the Tweed Shire Council bus services and active transport infrastructure.

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

12. References

Australian / New Zealand Standard 2004, Parking Facilities Part 1: Off-Street Car Parking, Standards Australia, Sydney

Roads and Traffic Authority 2002, *Guide to Traffic Generating Developments*, Roads and Traffic Authority, Sydney

Austroads Guide to Traffic Management Part 6

Austroads Guide to Traffic Management Part 12

Austroads Guide to Road Design - Part 4C Interchanges

Austroads Guide to Road Design – Part 4B Roundabouts

Tweed Shire Council Guidelines

Road Design Guide (RMS)

Austroads "Guide to Road Design - Part 4A Unsignalised and Signalised intersections"

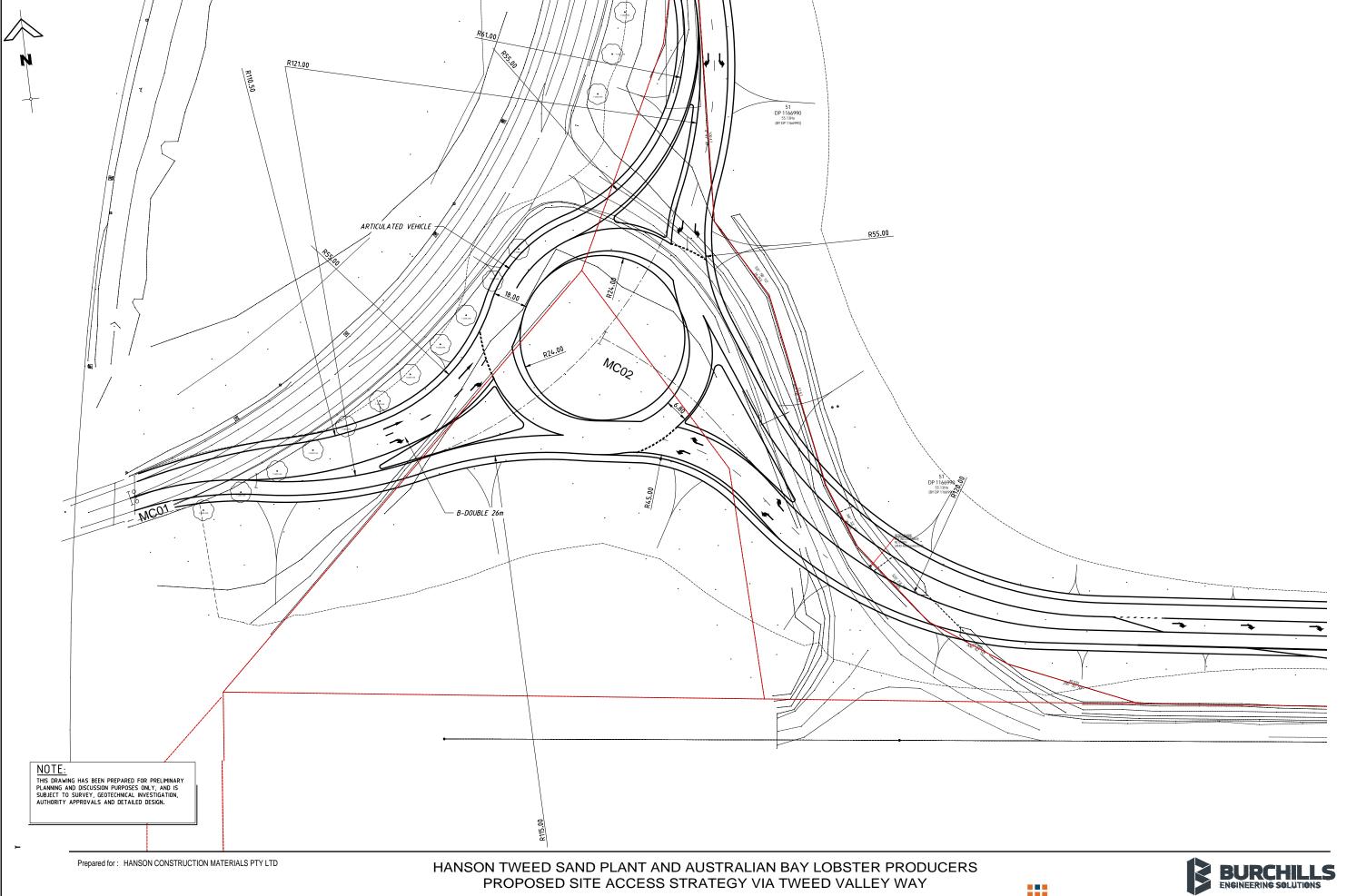
Austroads "Guide to Road Design - Part 3"

Tweed Shire Council Tweed Road Development Strategy

 \geqslant

www.burchills.com.au

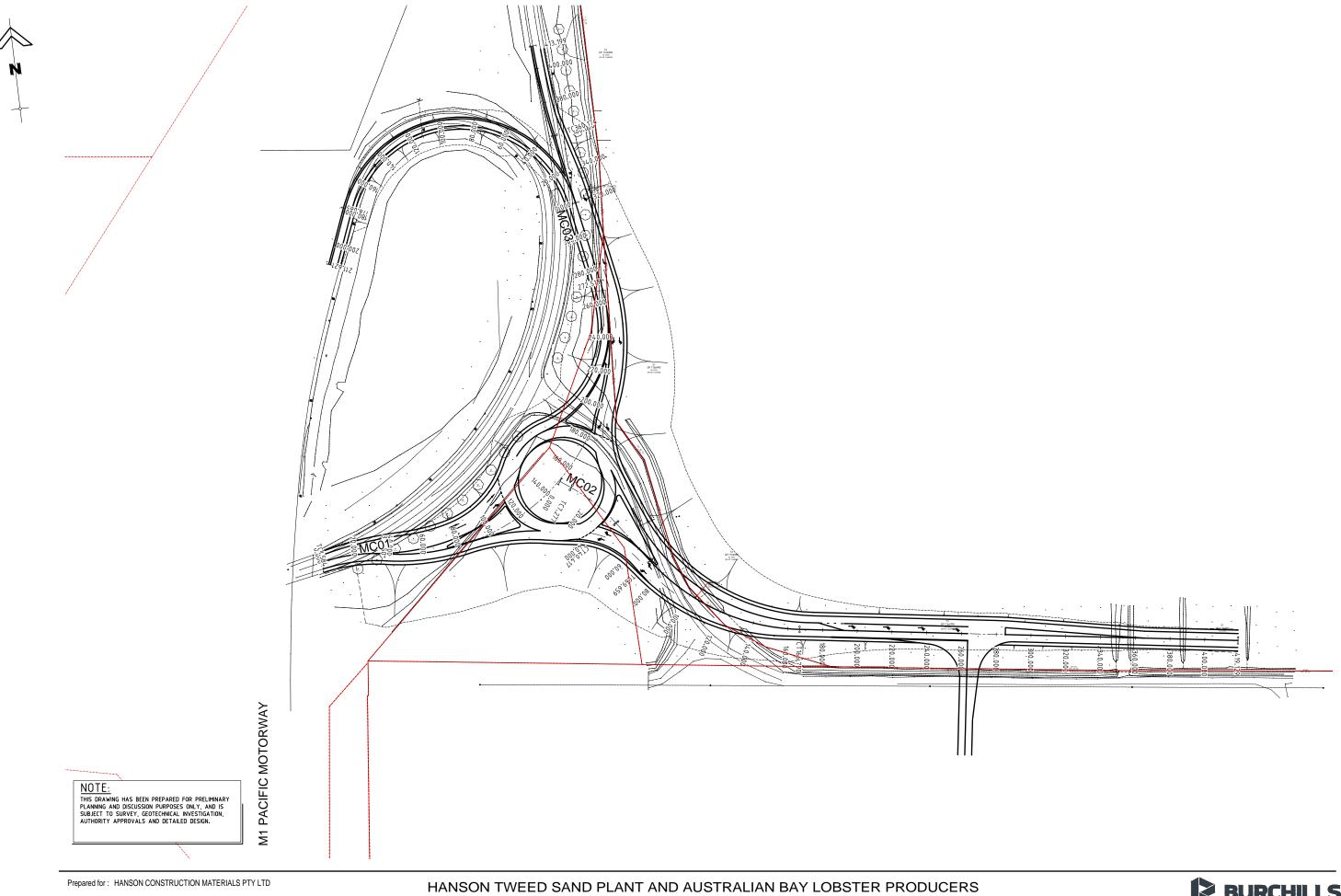
Client: Hanson Construction Materials Pty Ltd



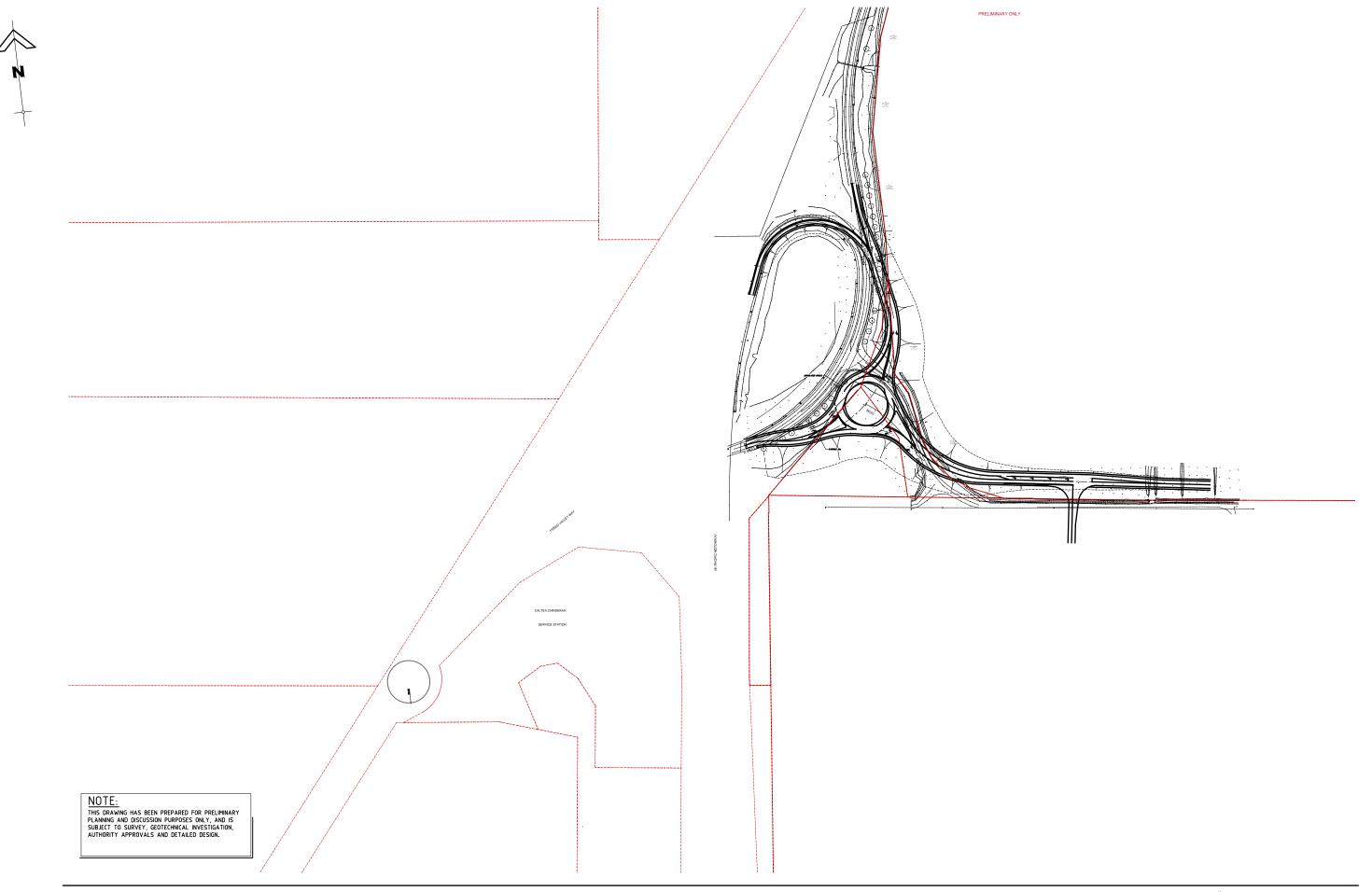
Appendix A – Site Layout and Swept Path Analysis

 \geqslant

www.burchills.com.au


Client: Hanson Construction Materials Pty Ltd

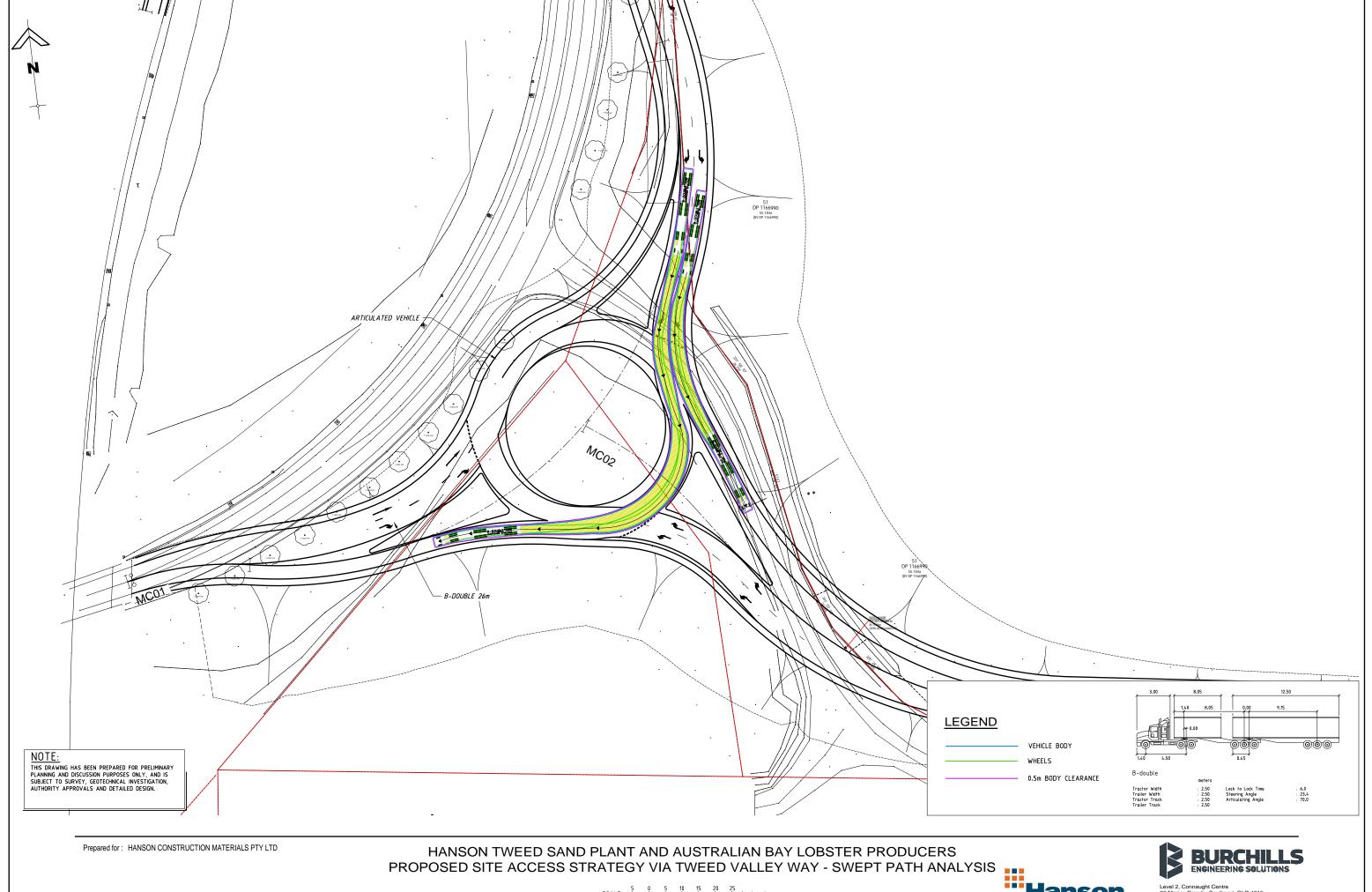
Designer: AGA SZEWCZAK
Date: 25/10/2021


PROPOSED SITE ACCESS STRATEGY VIA TWEED VALLEY WAY

SCALE 10 0 10 20 30 40 50 (metres) 1 : 1000 (FULL SIZE)

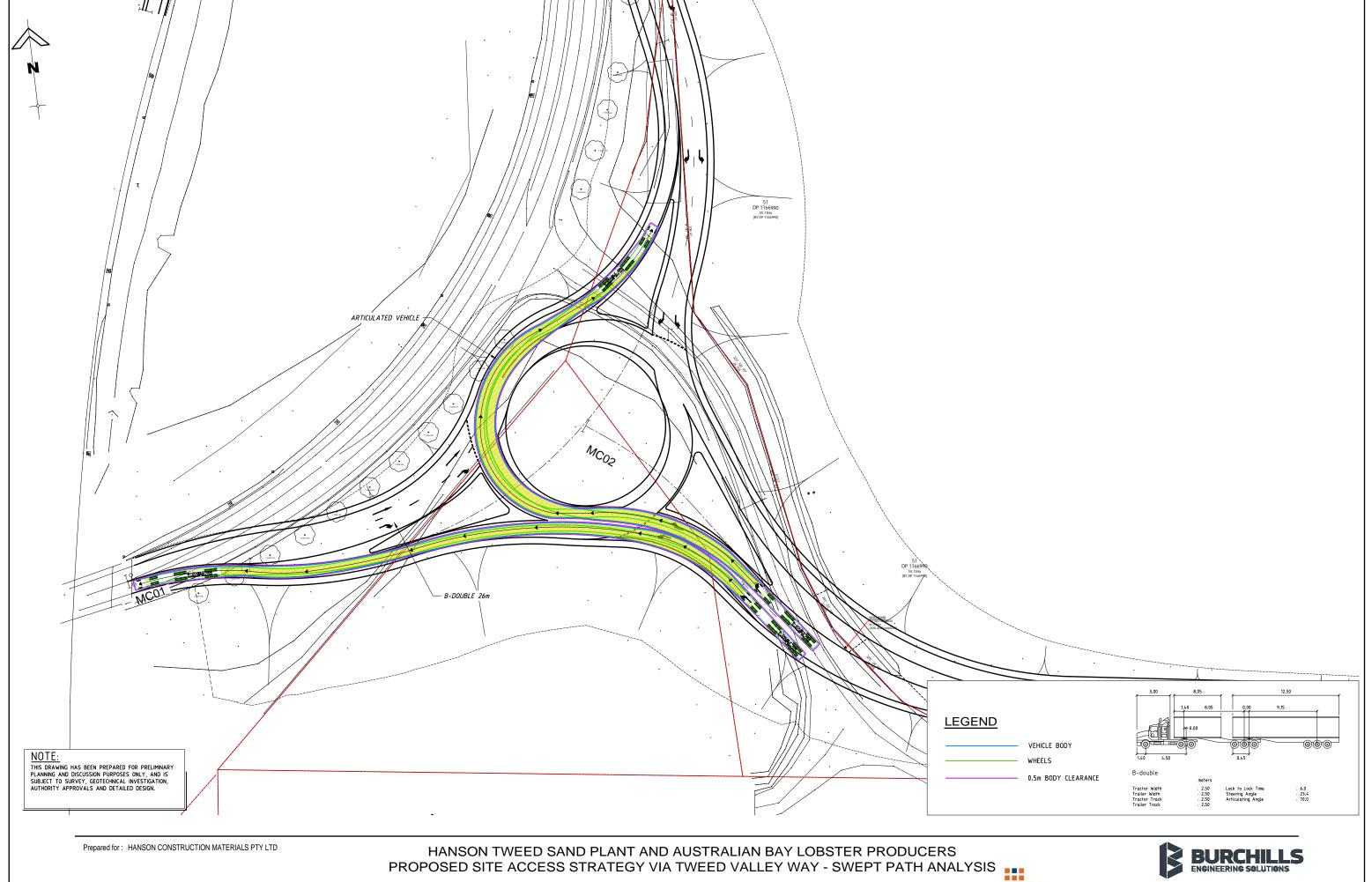
BE190043-SK124 Rev C

HANSON TWEED SAND PLANT AND AUSTRALIAN BAY LOBSTER PRODUCERS PROPOSED SITE ACCESS STRATEGY VIA TWEED VALLEY WAY

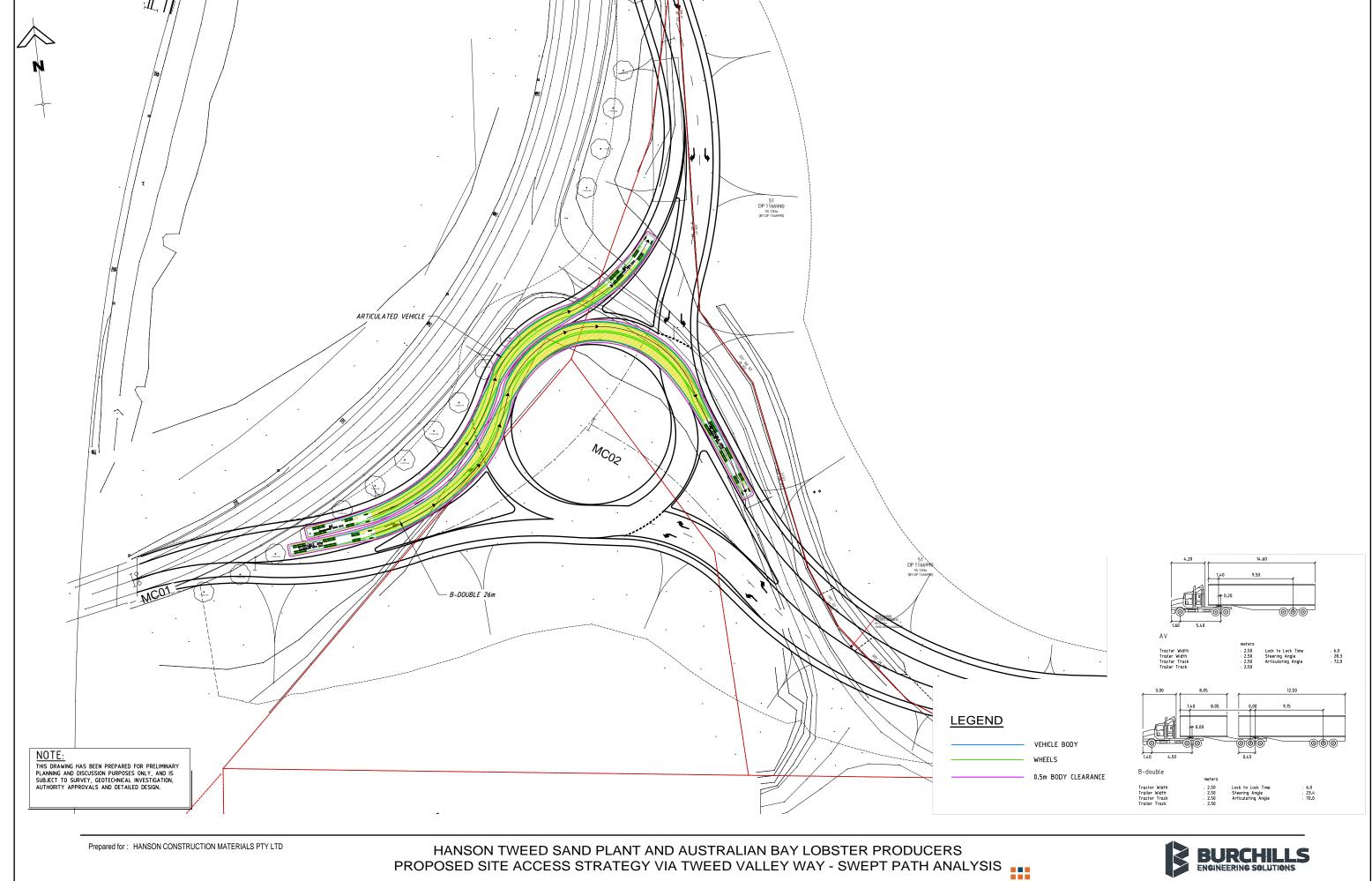

Scale 1:2000

Designer: AGA SZEWCZAK
Date: 25/10/2021

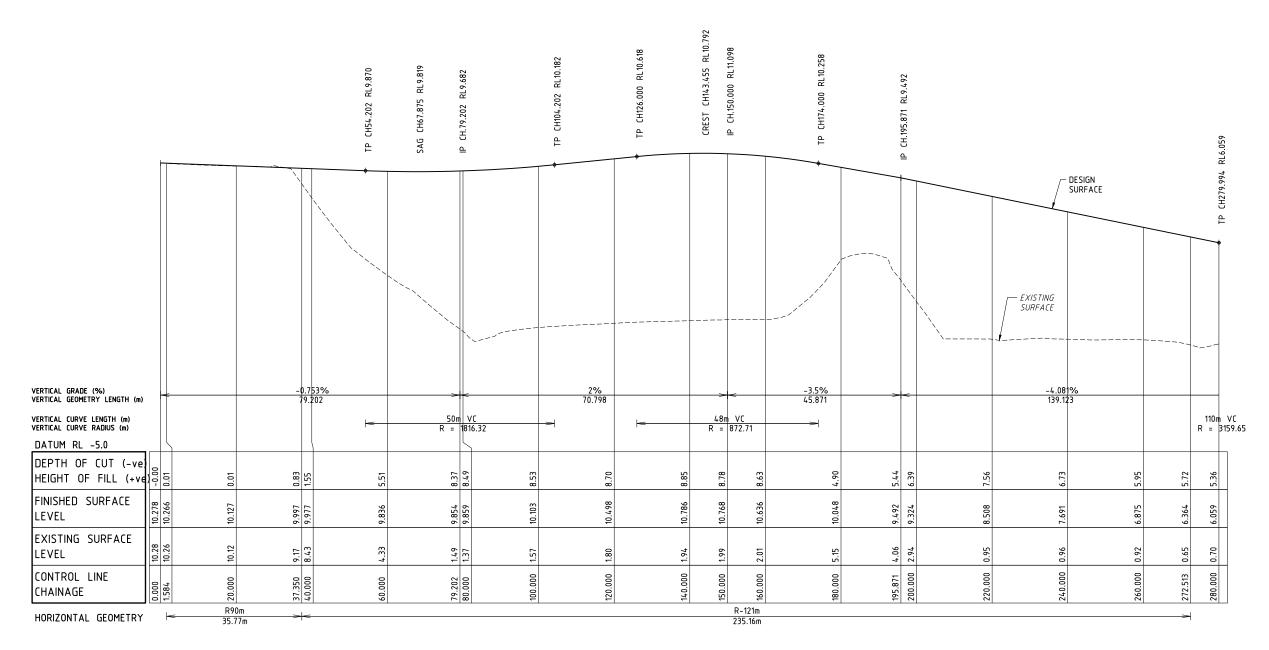
BE190043-SK125 Rev C



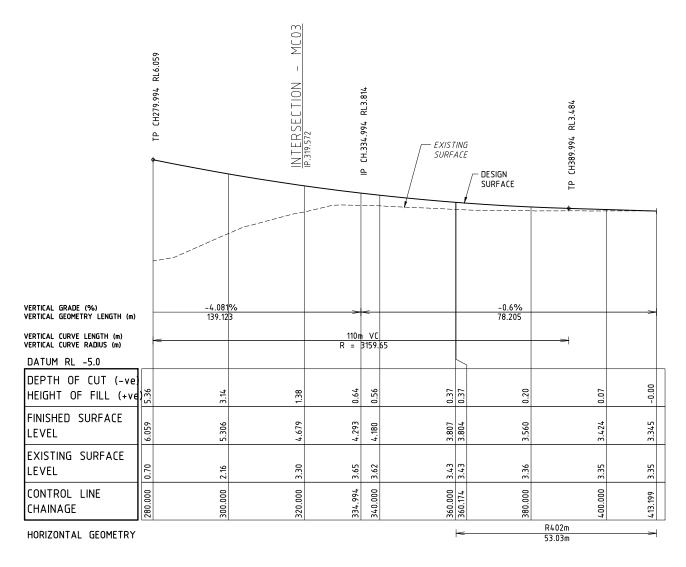
Designer: AGA SZEWCZAK Date: 25/10/2021 BE190043-SK126 Rev C



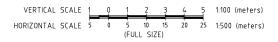
Designer: AGA SZEWCZAK Date: 25/10/2021



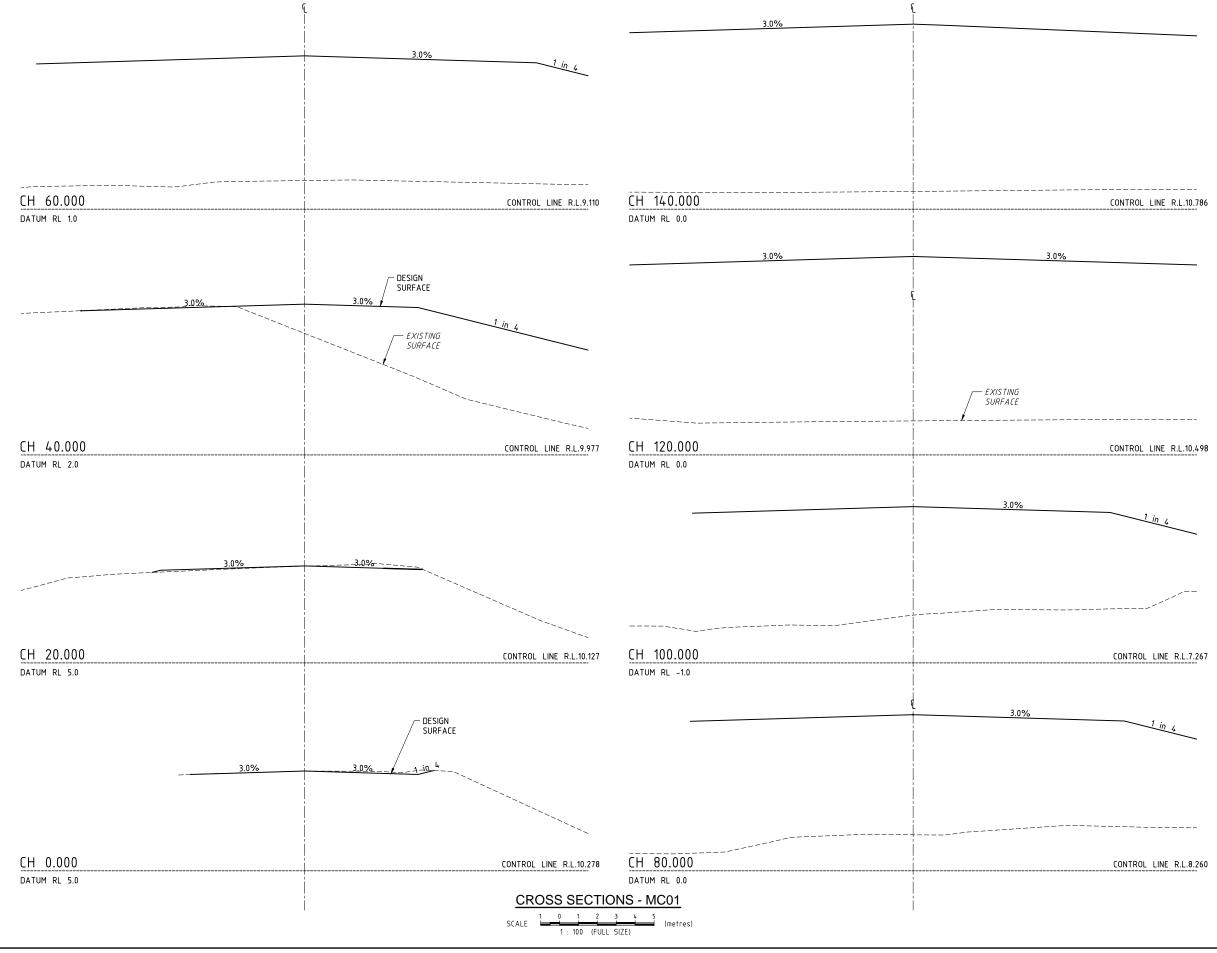
LONGITUDINAL SECTION - MC01



Prepared for: HANSON CONSTRUCTION MATERIALS PTY LTD

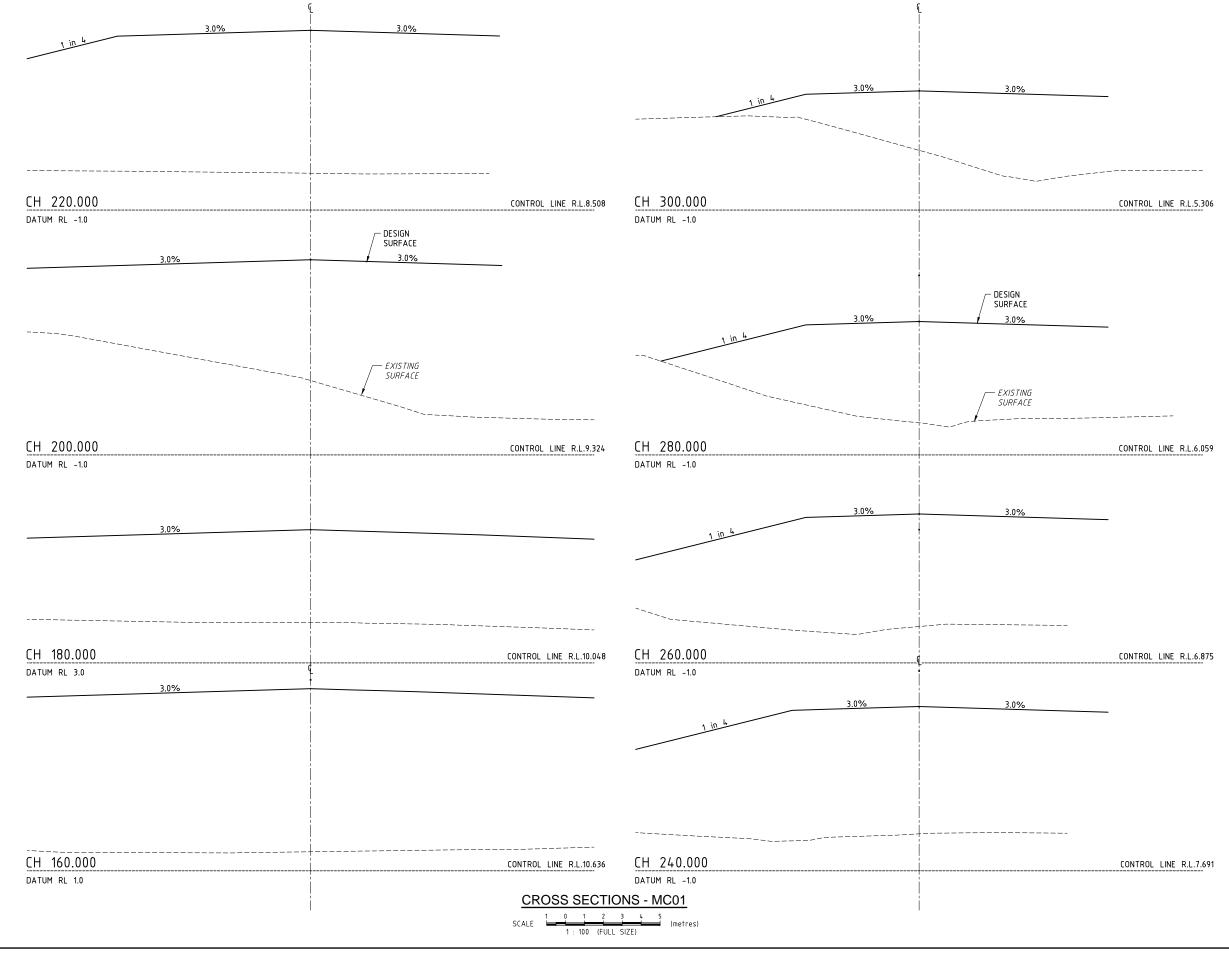

HANSON TWEED SAND PLANT AND AUSTRALIAN BAY LOBSTER PRODUCERS PROPOSED SITE ACCESS STRATEGY VIA TWEED VALLEY WAY

LONGITUDINAL SECTION - MC01

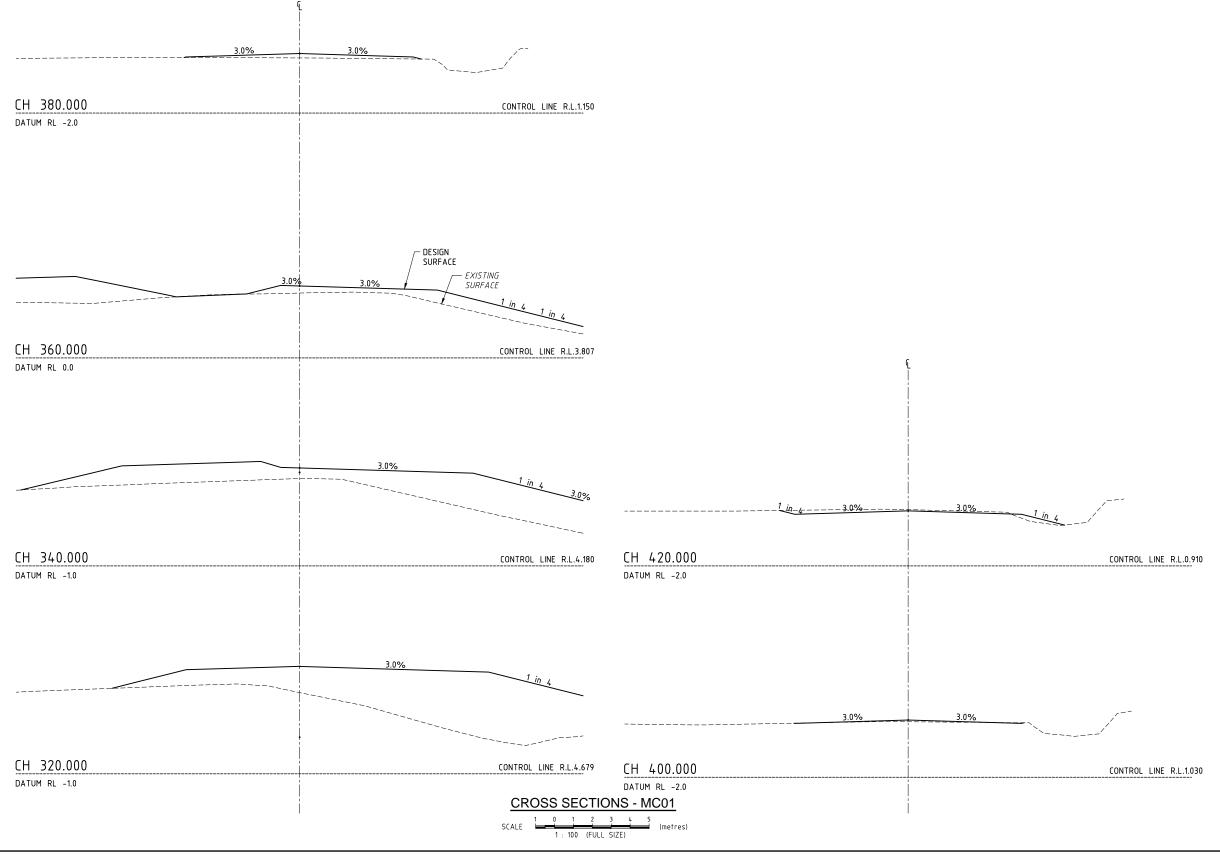


Prepared for: HANSON CONSTRUCTION MATERIALS PTY LTD

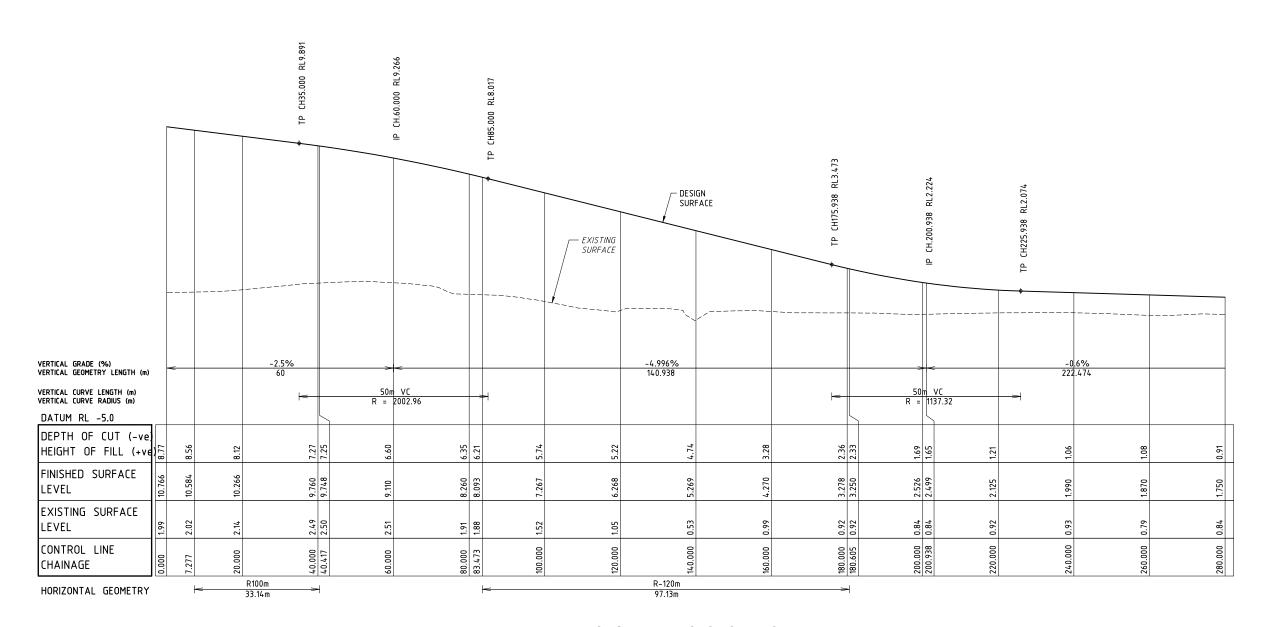
HANSON TWEED SAND PLANT AND AUSTRALIAN BAY LOBSTER PRODUCERS PROPOSED SITE ACCESS STRATEGY VIA TWEED VALLEY WAY



HANSON TWEED SAND PLANT AND AUSTRALIAN BAY LOBSTER PRODUCERS PROPOSED SITE ACCESS STRATEGY VIA TWEED VALLEY WAY

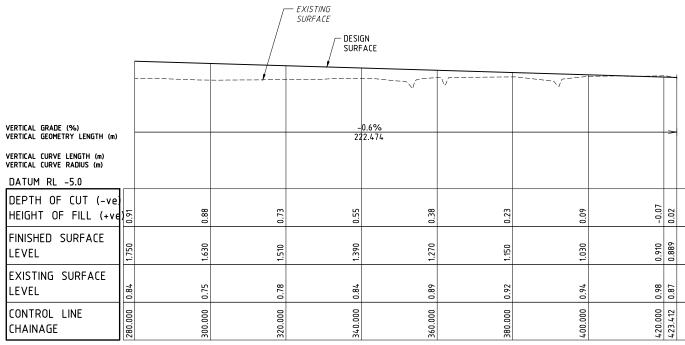


HANSON TWEED SAND PLANT AND AUSTRALIAN BAY LOBSTER PRODUCERS PROPOSED SITE ACCESS STRATEGY VIA TWEED VALLEY WAY



HANSON TWEED SAND PLANT AND AUSTRALIAN BAY LOBSTER PRODUCERS PROPOSED SITE ACCESS STRATEGY VIA TWEED VALLEY WAY

LONGITUDINAL SECTION - MC02



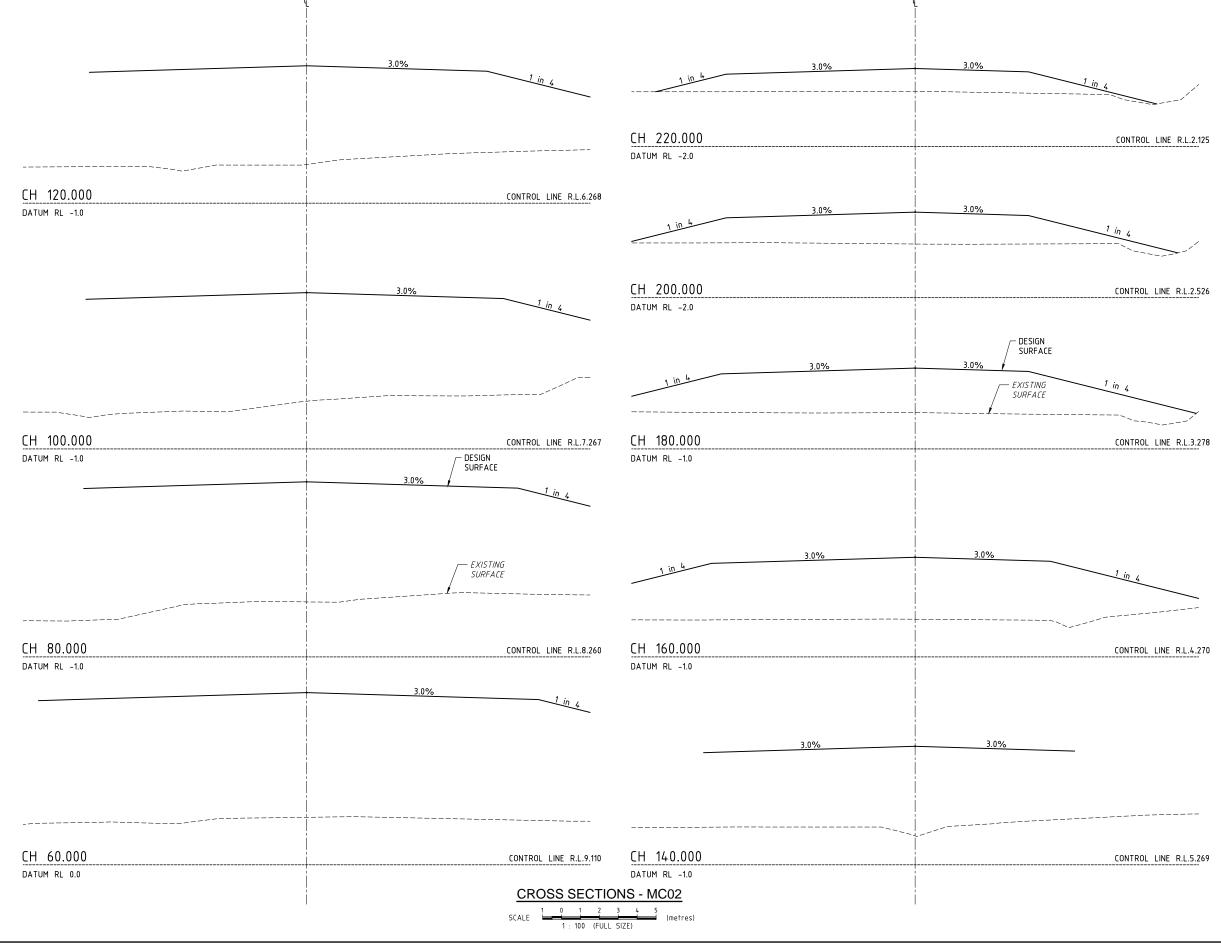
Prepared for: HANSON CONSTRUCTION MATERIALS PTY LTD

Hanson HEIDELBERGCEMENTGroup

HANSON TWEED SAND PLANT AND AUSTRALIAN BAY LOBSTER PRODUCERS PROPOSED SITE ACCESS STRATEGY VIA TWEED VALLEY WAY

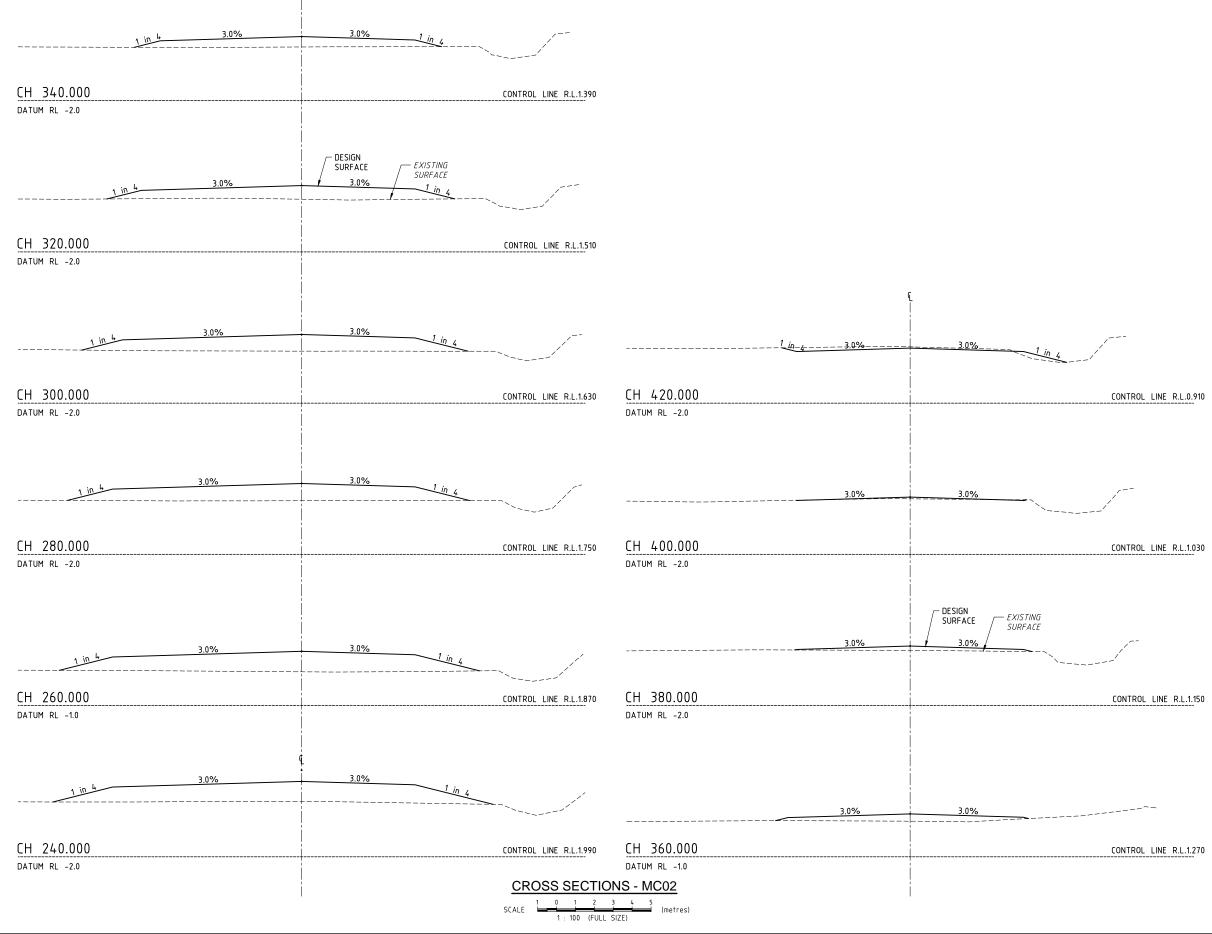
HORIZONTAL GEOMETRY

LONGITUDINAL SECTION - MC02

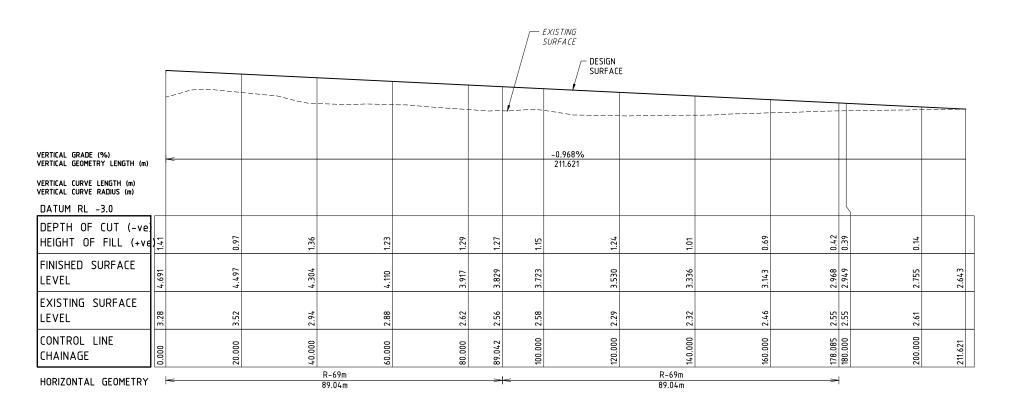


Prepared for: HANSON CONSTRUCTION MATERIALS PTY LTD

HANSON TWEED SAND PLANT AND AUSTRALIAN BAY LOBSTER PRODUCERS PROPOSED SITE ACCESS STRATEGY VIA TWEED VALLEY WAY

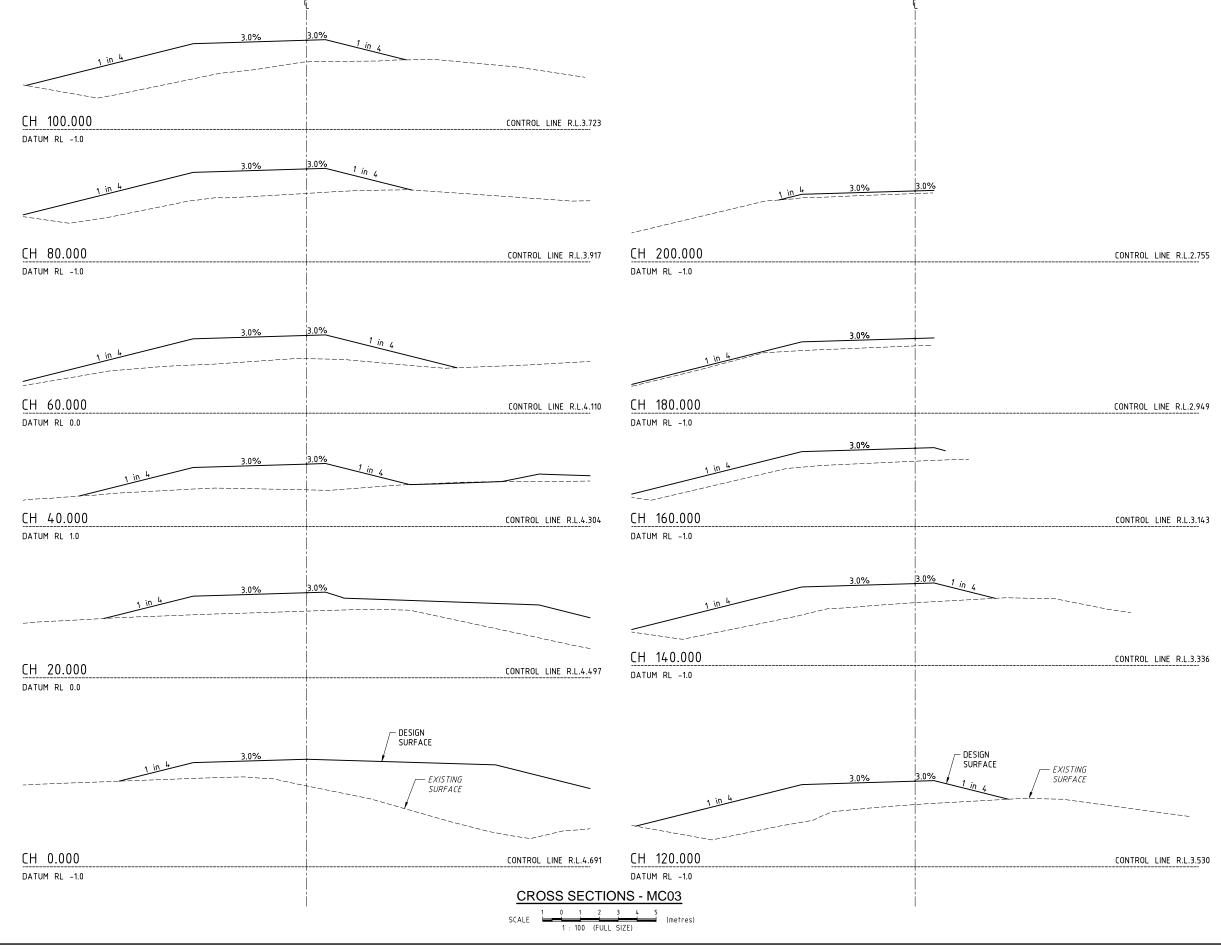


HANSON TWEED SAND PLANT AND AUSTRALIAN BAY LOBSTER PRODUCERS PROPOSED SITE ACCESS STRATEGY VIA TWEED VALLEY WAY



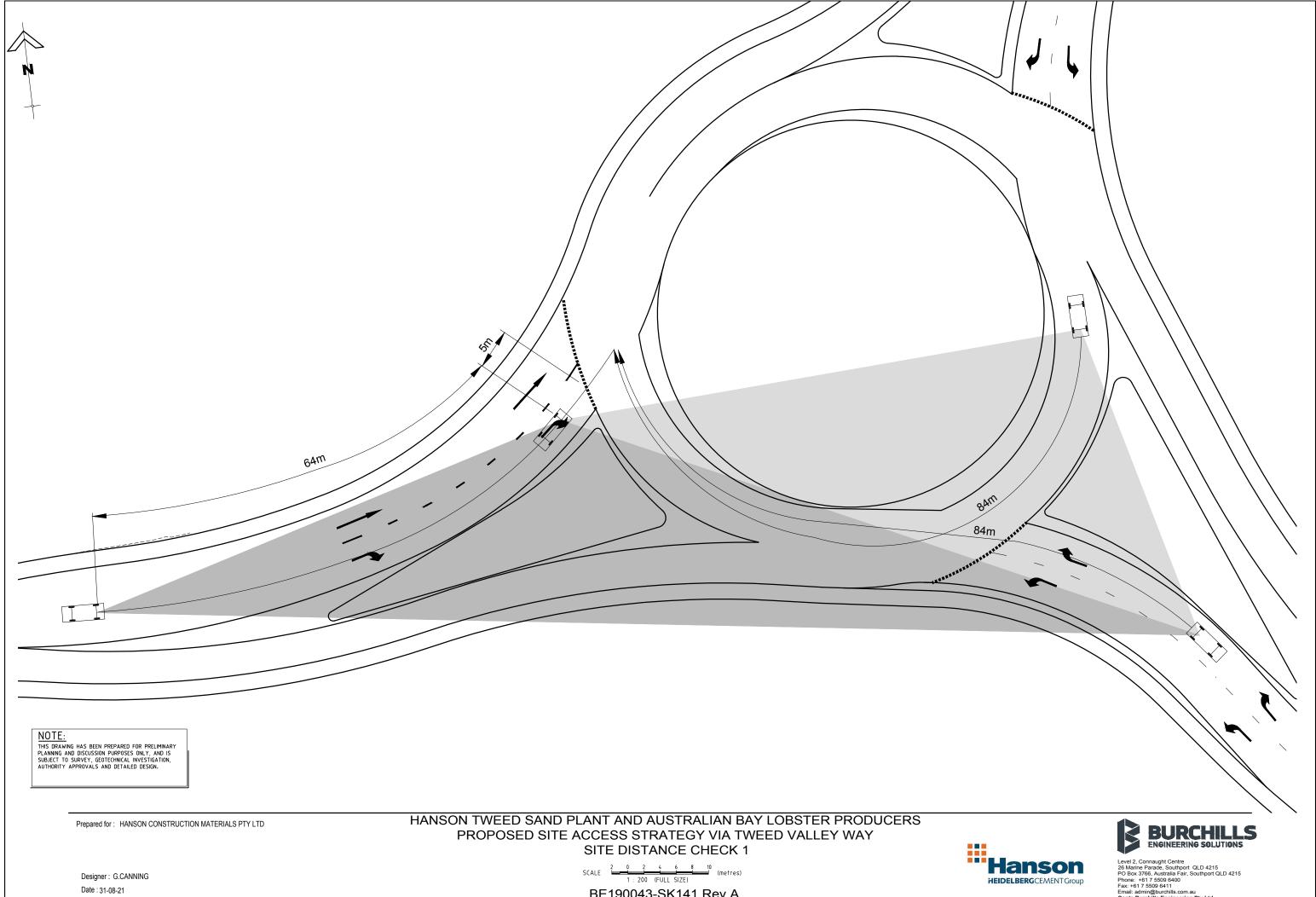
HANSON TWEED SAND PLANT AND AUSTRALIAN BAY LOBSTER PRODUCERS PROPOSED SITE ACCESS STRATEGY VIA TWEED VALLEY WAY

LONGITUDINAL SECTION - MC03

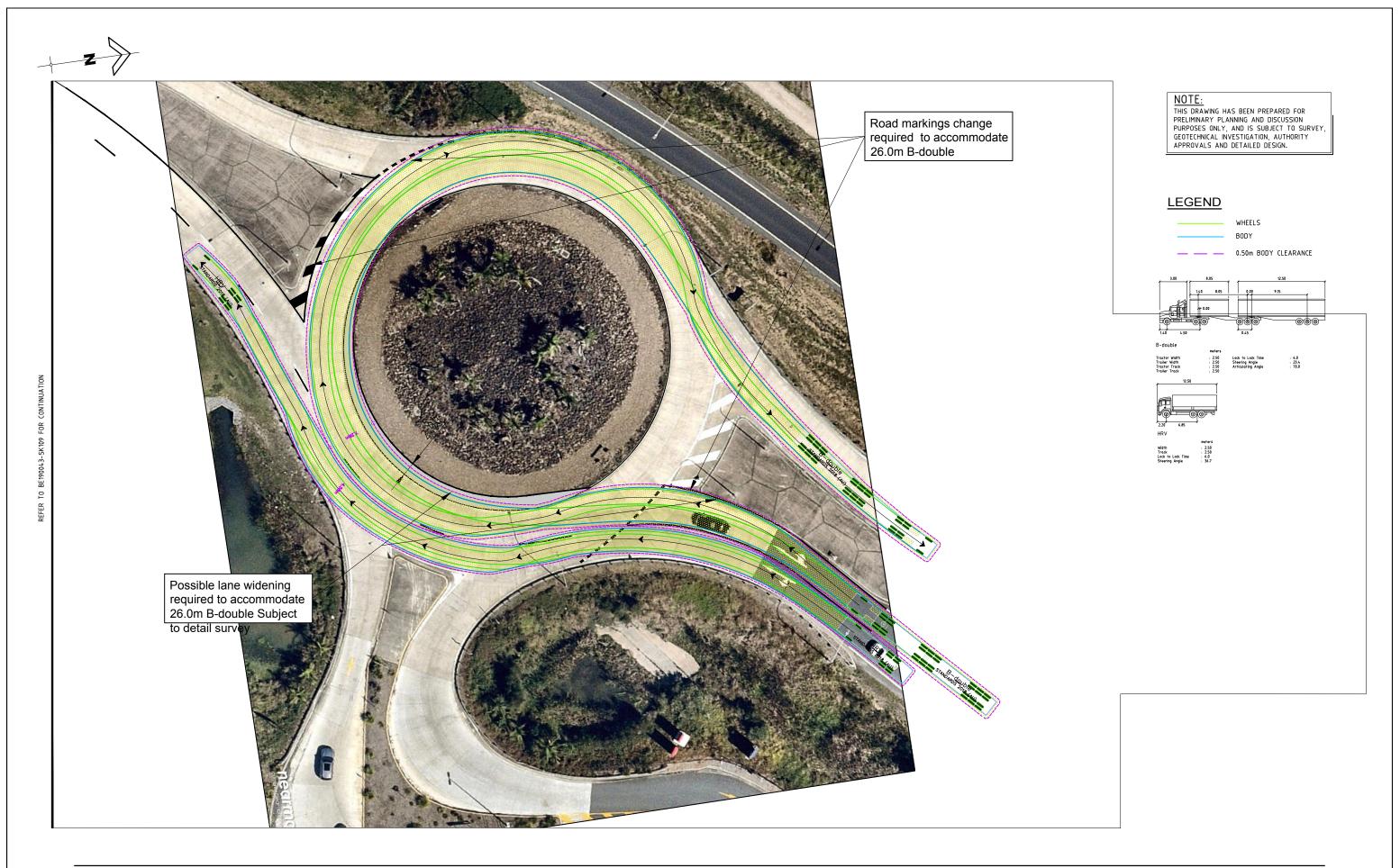


Prepared for: HANSON CONSTRUCTION MATERIALS PTY LTD

HANSON TWEED SAND PLANT AND AUSTRALIAN BAY LOBSTER PRODUCERS PROPOSED SITE ACCESS STRATEGY VIA TWEED VALLEY WAY



HANSON TWEED SAND PLANT AND AUSTRALIAN BAY LOBSTER PRODUCERS PROPOSED SITE ACCESS STRATEGY VIA TWEED VALLEY WAY



SCALE 2 0 2 4 6 8 10 (metres) 1 : 200 (FULL SIZE) BE190043-SK141 Rev A

TWEED VALLEY WAY AND AUSTRALIAN BAY LOBSTER PRODUCERS ACCESS_WIDENING WORKS

SWEPT PATH ANALYSIS - 26.0m B-Double

Scale: 1:500 BE190043-SK311 Rev B

Appendix B – Traffic Surveys

– www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Tweed Valley Way / Lobster Farm (THU) 8:30 AM to 15:30 to 16:30 PM

2

AM

PM

AM PM

AM

PM

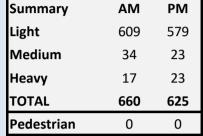
0

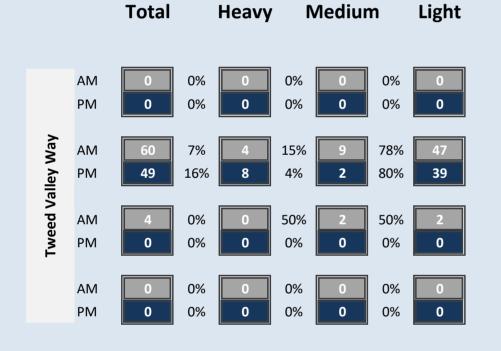
Survey Day, Date Thursday, 5 March 2020 **AM Peak Hour** 8:30 7:30 to to 16:30 **PM Peak Hour** 15:30 Weather Fine

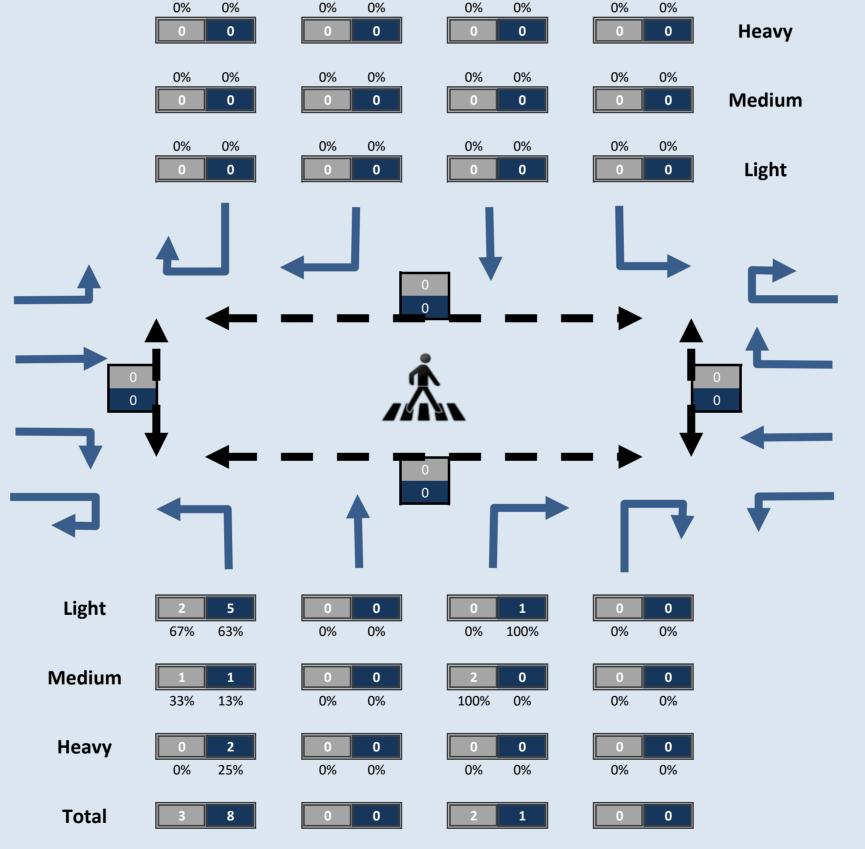
AM PM

0

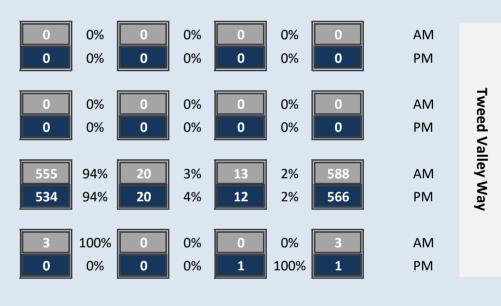
AM PM

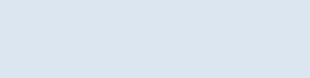

0


Total

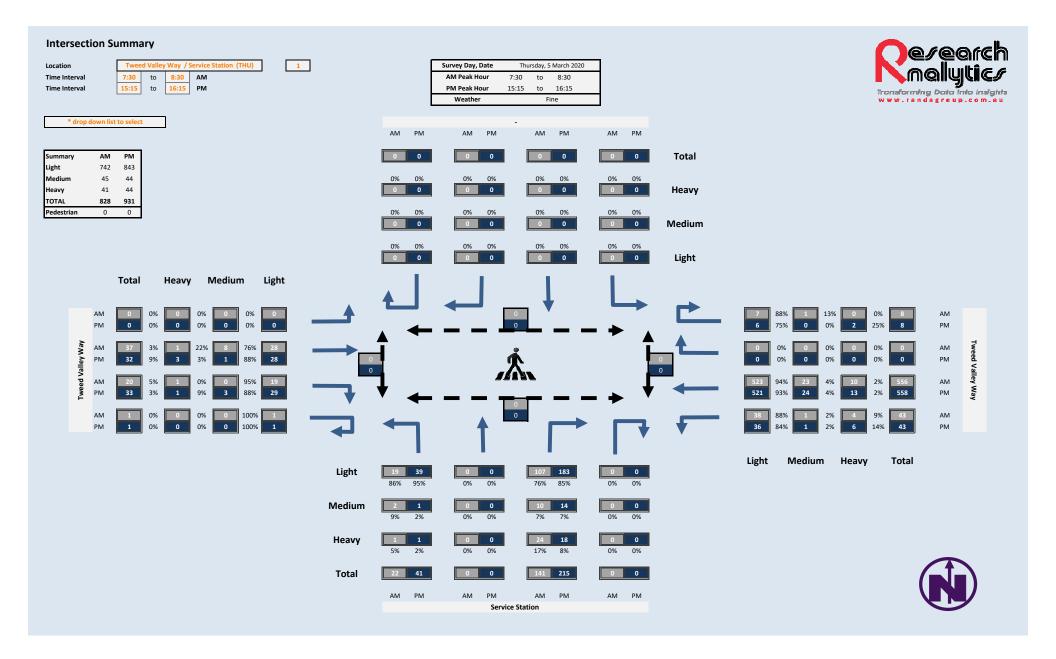

Transforming Data Into Insights www.randagroup.com.au

* c	lrop	down	list to	select
_	-			


Summary	AM	PM
Light	609	579
Medium	34	23
Heavy	17	23
TOTAL	660	625
Pedestrian	0	0


AM PM AM PM Lobster Farm

Heavy


Light

Medium

Total

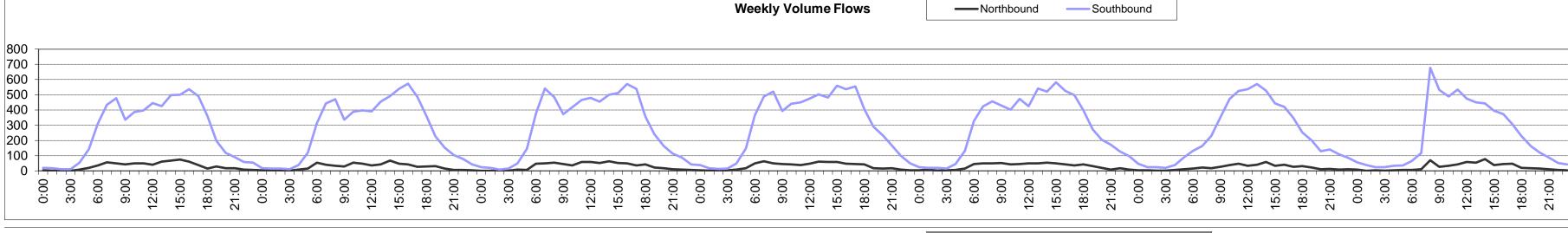
One Page Summary Back to Menu

Street: Site 1, Tweed Valley Way

Suburb: Chinderah

Location: Site 1, Tweed Valley Way, to the electric light pole

Count No.: 1
Speed Limit: 80 km/h


Start Date: Wednesday, 4 March 2020



	5-Day S	peed & Volun	ne Data	
		Т	ravel Direction	
		Bidirectional	Northbound	Southbound
		7,566 vpd	722 vpd	6,844 vpd
Peak Hr AM	08:00	529 vpd	47 vpd	482 vpd
Peak Hr PM	16:00	596 vpd	48 vpd	548 vpd
Speeds	85th%	84.3 km/h	65.1 km/h	86.3 km/h
Speeds Average		73.1 km/h	54.2 km/h	75.1 km/h
Commercia	l Vehicles %	11.2%	27.8%	9.4%

	7-Day S	peed & Volun	ne Data	
		Т	ravel Direction	
		Bidirectional	Northbound	Southbound
		7,226 vpd	676 vpd	6,549 vpd
Peak Hr AM	08:00	520 vpd	46 vpd	474 vpd
Peak Hr PM	14:00	560 vpd	65 vpd	505 vpd
Speeds	85th%	84.4 km/h	64.9 km/h	86.4 km/h
Speeds Average		73.1 km/h	54.7 km/h	75.0 km/h
Commercia	l Vehicles %	9.5%	24.1%	8.0%

Data Record Inerval = 1-Hour	Mc	onday, 09 Mar	r 20	Tu	uesday, 10 Ma	ar 20	We	dnesday, 04 ľ	Mar 20	Th	ursday, 05 Ma	ar 20	Fr	iday, 06 Mar 2	20	Sa	aturday, 07 Ma	ar 20	S	unday, 08 Mar	20
Data Necolu Merval – 1-11001	Northbound	Southbound	Bidirectiona	Northbound	Southbound	l Bidirectional	Northbound	Southbound	d Bidirectional	Northbound	Southbound	d Bidirectional	Northbound	Southbound	Bidirectional	Northbound	Southbound	d Bidirectional	Northbound	Southbound	I Bidirectional
Light Vehicle - Classes 1 to 2	516	5722	6238	465	5872	6337	510	6253	6763	510	6620	7130	537	6521	7058	458	5620	6078	518	5551	6069
Medium Vehicle - Classes 3 to 5	94	423	517	72	396	468	107	481	588	102	426	528	95	397	492	28	186	214	30	142	172
Long Vehicle - Classes 6 to 12	129	225	354	97	191	288	100	242	342	125	243	368	84	200	284	27	61	88	49	66	115
Volume 0700-1900	595	5287	5882	490	5331	5821	589	5696	6285	594	5805	6399	553	5669	6222	408	4836	5244	518	5021	5539
Volume 24-Hour	739	6370	7109	634	6459	7093	717	6976	7693	737	7289	8026	716	7118	7834	513	5867	6380	597	5759	6356
85%ile Speed	63	83	81	65	85	83	64	86	84	66	89	86	67	89	87	65	87	85	64	86	84
Mean Speed	52.3	72.7	70.6	53.8	74.1	72.3	54.1	74.9	72.9	54.9	76.5	74.5	55.8	76.6	74.6	57.0	75.5	74.0	55.8	74.0	72.3
AM Peak Hour Volume	55	478	526	53	471	504	57	542	591	62	521	571	51	473	517	46	525	571	70	677	747
AM Hour Factor	0.07	0.08	0.07	0.08	0.07	0.07	0.08	0.08	0.08	0.08	0.07	0.07	0.07	0.07	0.07	0.09	0.09	0.09	0.12	0.12	0.12
AM Peak 85%	66	97	88	71	98	85	72	93	93	72	93	88	81	96	89	75	97	91	69	97	97
AM Peak Time	7:00	8:00	8:00	9:00	8:00	8:00	11:00	7:00	7:00	7:00	8:00	8:00	9:00	11:00	11:00	11:00	11:00	11:00	10:00	9:00	8:00
PM Peak Hour Volume	74	536	596	68	572	614	63	571	619	61	559	618	54	582	630	57	570	610	77	474	533
PM Hour Factor	0.10	0.08	0.08	0.11	0.09	0.09	0.09	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.11	0.10	0.10	0.13	0.08	0.08
PM Peak 85%	78	86	83	81	89	87	75	92	89	78	93	89	79	90	89	76	93	87	91	94	91
PM Peak Time	15:00	16:00	13:00	14:00	16:00	16:00	14:00	14:00	16:00	13:00	15:00	15:00	14:00	15:00	15:00	14:00	13:00	13:00	14:00	14:00	12:00

																			Spee	ed Dis	stribu	ition-S	South	bour	nd –	-	—Ме	ean Spe	ed		85%ile	Speed	k	-										
120 T																																												
80 60	7											~							>>							~													~					
40 + 20 + 0 +																																												
00.0	3:00	00:90	3.00	15:00	21:00	0:00	3:00	00:9	12:00	15:00	18:00	0:00	3:00	9:00	9:00	15:00	18:00	21:00	0:00	3:00	00:9	12:00	15:00	18:00	21:00	3:00	00:9	9:00	15:00	18:00	21:00	3:00	00:9	9:00	12:00	15:00	18:00	0:00	3:00	9:00	9:00	12:00	15:00 18:00	21:00

Classification	Mon	day, 09 Mar	2020	Tues	day, 10 Maı	r 2020	Wedn	esday, 04 N	Mar 2020	Thurs	sday, 05 Ma	ar 2020	Frida	ay, 06 Mar 2	020	Satur	day, 07 Mar	2020	Sund	day, 08 Mar 2	2020
Ciassilication	Northbound	Southbound	Bidirectiona	Northbound	Southbound	Bidirectional	Northbound	Southbound	d Bidirectional	Northbound	Southbound	d Bidirectional	Northbound	Southbound	Bidirectiona	Northbound	Southbound	Bidirectional	Northbound	Southbound	Bidirectional
Class 1 Car	495	5625	6120	447	5804	6251	477	6120	6597	487	6501	6988	510	6385	6895	430	5484	5914	492	5417	5909
Class 2 Car+Trailer	21	97	118	18	68	86	33	133	166	23	119	142	27	136	163	28	136	164	26	134	160
Class 3 2 axle Truck	58	297	355	37	296	333	45	332	377	47	297	344	64	301	365	23	165	188	23	124	147
Class 4 3 axle Truck	22	94	116	22	69	91	46	114	160	38	101	139	18	64	82	3	14	17	3	14	17
Class 5 4 axle Truck	14	32	46	13	31	44	16	35	51	17	28	45	13	32	45	2	7	9	4	4	8
Class 6 3 axle Semi	4	5	9	3	4	7	0	8	8	3	9	12	4	4	8	1	1	2	1	4	5
Class 7 4 axle Semi	5	8	13	6	14	20	5	9	14	4	9	13	8	11	19	1	3	4	1	2	3
Class 8 5 axle Semi	7	9	16	4	11	15	2	12	14	11	17	28	7	16	23	4	3	7	2	4	6
Class 9 6 axle Semi	55	105	160	40	98	138	55	134	189	62	123	185	35	110	145	11	32	43	24	26	50
Class 10 7/8 axle Truck	54	97	151	42	63	105	34	77	111	43	80	123	25	58	83	10	21	31	20	28	48
Class 11 B-Double	4	1	5	2	1	3	4	1	5	2	5	7	5	1	6	0	1	1	1	2	3
Class 12 Road Train	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Class 13 Unknown	20	3	23	11	1	12	13	0	13	13	0	13	10	2	12	5	0	5	10	1	11

Volume Summary

Street Site 2, Tweed Valley Way

Suburb Chinderah

Location Site 2, Tweed Valley Way, to no through road sign board

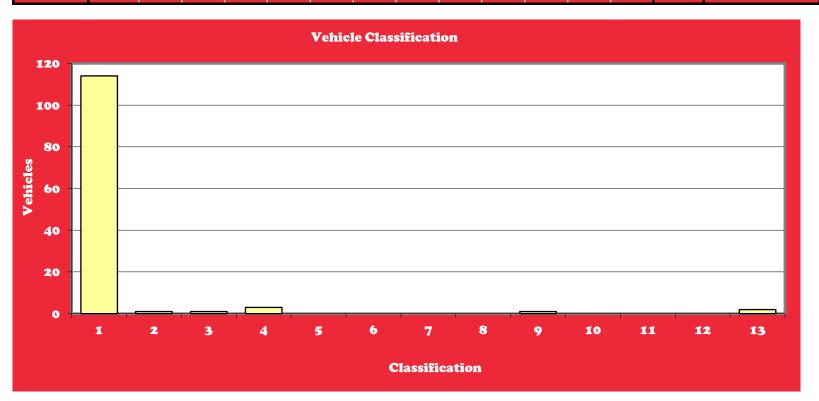
Count No. 2

Start Date Wednesday 04 Mar 2020 Speed Limit 20 km/h

Direction Eastbound

5-Day Average 111
7-Day Average 86
5-Day Heavy (Classes 3 to 12) 7.2%
7-Day Heavy (Classes 3 to 12) 7.3%

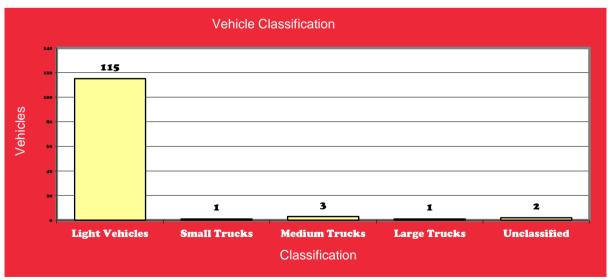
			Day of	Week - Classes	1 to 12				
Hour Starting	Mon	Tue	Wed	Thu	Fri	Sat	Sun	5-Day	7-Day
, and the second se	09/03/2020	10/03/2020	04/03/2020	05/03/2020	06/03/2020	07/03/2020	08/03/2020	Average	Average
AM Peak	27	26	22	26	22	12	9		
PM Peak	10	7	9	6	8	2	2		
0:00	0	0	0	0	0	0	0	0	0
1:00	0	0	0	0	0	0	0	0	0
2:00	0	0	0	0	0	0	0	0	0
3:00	0	0	0	0	0	0	0	0	0
4:00	0	0	0	0	0	0	0	0	0
5:00	27	26	22	26	22	12	9	25	21
6:00	10	13	14	12	10	2	0	12	9
7:00	10	11	7	16	9	2	0	11	8
8:00	8	6	8	6	9	0	3	7	6
9:00	7	8	0	8	7	3	4	6	5
10:00	5	4	8	7	8	2	3	6	5
11:00	7	8	7	6	10	1	0	8	6
12:00	6	3	5	2	6	1	0	4	3
13:00	10	4	4	6	8	0	0	6	5
14:00	9	7	6	6	4	0	0	6	5
15:00	4	4	9	3	4	0	0	5	3
16:00	5	4	3	2	4	0	1	4	3
17:00	8	6	6	5	6	1	2	6	5
18:00	4	5	5	5	5	2	0	5	4
19:00	0	0	0	0	0	0	0	0	0
20:00	0	1	0	0	0	0	0	0	0
21:00	0	0	0	0	0	1	0	0	0
22:00	0	0	0	0	0	0	0	0	0
23:00	0	0	0	0	0	0	0	0	0
Total	120	110	104	110	112	27	22	111	86
Heavy %	4.2%	7.3%	7.7%	10.0%	7.1%	11.1%	4.5%	7.2%	7.3%



Hourly Classification Data

122 Street Site 2, Tweed Valley Way **AADT** 32.5 Suburb **Average Speed** Location Site 2, Tweed Valley Way, to no through road sign board 85th Percentile 10 Direction Eastbound **Heavy Percentage** 4.1% Day Monday Count No. 2 **AM Peak** 5:00 27 vph Date 09 Mar 2020 Speed Limit 20 km/h **PM Peak** 13:00 10 vph Start Date Wednesday 04 Mar 2020

Hour						Vehi	cle Cla	assific	ation						Spe	eed
Starting	1	2	3	4	5	6	7	8	9	10	11	12	13	Total	Average	85%ile
0:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
1:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
2:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
3:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
4:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
5:00	27	0	0	0	0	0	0	0	0	0	0	0	0	27	32.8	44
6:00	10	0	0	0	0	0	0	0	0	0	0	0	0	10	35.2	0
7:00	9	0	0	1	0	0	0	0	0	0	0	0	0	10	38.3	0
8:00	7	1	0	0	0	0	0	0	0	0	0	0	1	9	32.7	0
9:00	6	0	0	1	0	0	0	0	0	0	0	0	0	7	27.0	0
10:00	4	0	0	0	0	0	0	0	1	0	0	0	0	5	29.6	0
11:00	7	0	0	0	0	0	0	0	0	0	0	0	0	7	28.2	0
12:00	6	0	0	0	0	0	0	0	0	0	0	0	0	6	29.8	0
13:00	8	0	1	1	0	0	0	0	0	0	0	0	0	10	30.8	0
14:00	9	0	0	0	0	0	0	0	0	0	0	0	0	9	31.9	0
15:00	4	0	0	0	0	0	0	0	0	0	0	0	0	4	28.2	0
16:00	5	0	0	0	0	0	0	0	0	0	0	0	0	5	37.5	0
17:00	8	0	0	0	0	0	0	0	0	0	0	0	1	9	34.6	0
18:00	4	0	0	0	0	0	0	0	0	0	0	0	0	4	32.5	0
19:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
20:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
21:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
22:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
23:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Total	114	1	1	3	0	0	0	0	1	0	0	0	2	122	32.5	10
Class %	93	1	1	2	0	0	0	0	1	0	0	0	2			



Class Data Summary

Street	Site 2, Tweed Valley Way		Light Vehicles	94.3% veys
Location	Chinderah		Small Trucks	0.8% com
Count No.	Site 2, Tweed Valley Way, to no thro	ugh road sign board	Medium Trucks	2.5% com
Direction	Eastbound		Large Trucks	0.8%
Day	Monday		Unclassified	1.6%
Start Date	Wednesday	AM Peak	5:00	27 vph
Date	09 Mar 2020	PM Peak	13:00	10 vph

Hour			Vehicle Cla	ssification		
Starting	Light Vehicles	Small Trucks	Medium Trucks	Large Trucks	Unclassified	Total
0:00	0	0	0	0	0	0
1:00	0	0	0	0	0	0
2:00	0	0	0	0	0	0
3:00	0	0	0	0	0	0
4:00	0	0	0	0	0	0
5:00	27	0	0	0	0	27
6:00	10	0	0	0	0	10
7:00	9	0	1	0	0	10
8:00	8	0	0	0	1	9
9:00	6	0	1	0	0	7
10:00	4	0	0	1	0	5
11:00	7	0	0	0	0	7
12:00	6	0	0	0	0	6
13:00	8	1	1	0	0	10
14:00	9	0	0	0	0	9
15:00	4	0	0	0	0	4
16:00	5	0	0	0	0	5
17:00	8	0	0	0	1	9
18:00	4	0	0	0	0	4
19:00	0	0	0	0	0	0
20:00	0	0	0	0	0	0
21:00	0	0	0	0	0	0
22:00	0	0	0	0	0	0
23:00	0	0	0	0	0	0
Total	115	1	3	1	2	122

Light Vehicles – Classes 1 to 2

Small Trucks - Class 3

Medium Trucks - Classes 4 to 5

Large Trucks - Classes 6 to 12

Unclassified - Class 13

One Page Summary Back to Menu

Street: Site 3, Tweed Valley Way

Suburb: Chinderah

Location: Site 1, Tweed Valley Way

Count No.: 3
Speed Limit: 80 km/h

Class 2 Car+Trailer

Class 3 2 axle Truck

Class 4 3 axle Truck

Class 5 4 axle Truck

Class 6 3 axle Semi

Class 7 4 axle Semi

Class 8 5 axle Semi

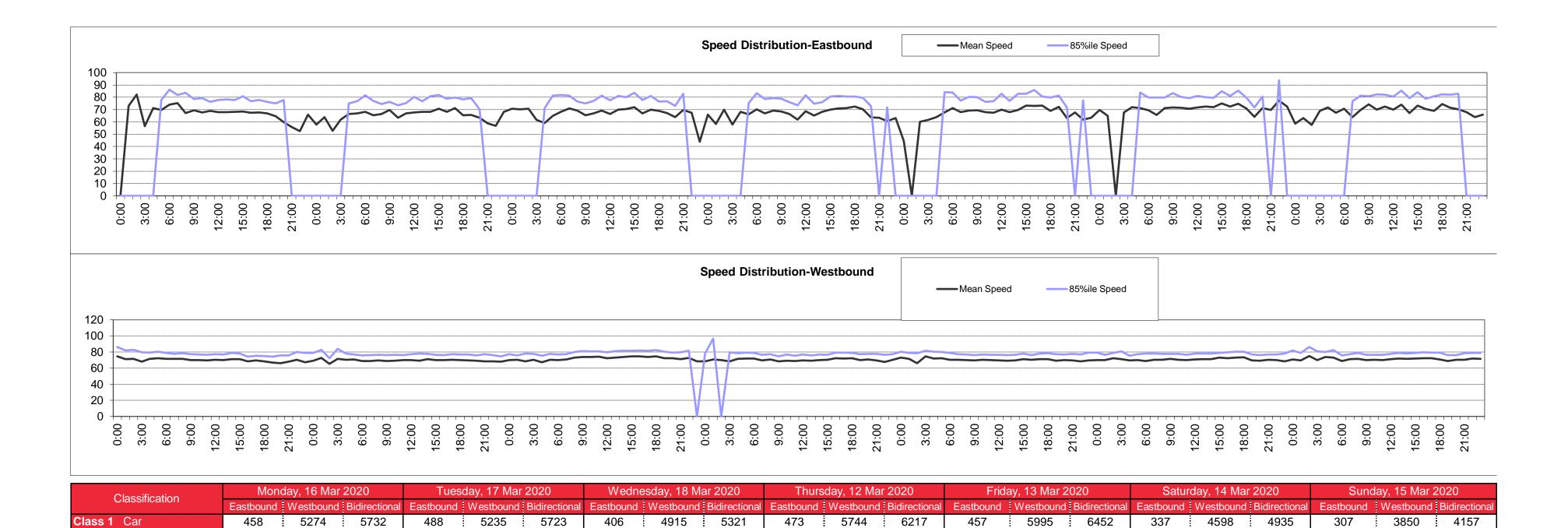
Class 9 6 axle Semi

Class 11 B-Double

Class 13 Unknown

Class 12 Road Train

Class 10 7/8 axle Truck


Start Date: Thursday, 12 March 2020

	5-Day S	peed & Volun	ne Data	
		Т	ravel Direction	
		Bidirectional	Eastbound	Westbound
		6,938 vpd	708 vpd	6,230 vpd
Peak Hr AM	07:00	497 vpd	52 vpd	445 vpd
Peak Hr PM	15:00	557 vpd	57 vpd	500 vpd
Speeds	85th%	77.5 km/h	75.9 km/h	77.7 km/h
Speeds Average		70.4 km/h	68.2 km/h	70.6 km/h
Commercia	l Vehicles %	12.6%	32.4%	10.4%

7-Day Speed & Volume Data										
		Travel Direction								
		Bidirectional	Eastbound	Westbound						
		6,380 vpd	631 vpd	5,749 vpd						
Peak Hr AM	11:00	457 vpd	44 vpd	413 vpd						
Peak Hr PM	15:00	507 vpd	52 vpd	455 vpd						
Speeds	85th%	77.6 km/h	75.7 km/h	77.8 km/h						
Speeds	Average	70.5 km/h	68.7 km/h	70.7 km/h						
Commercia	l Vehicles %	11.0%	30.4%	8.9%						

Data Record Inerval = 1-Hour	Mo	Monday, 16 Mar 20		Tuesday, 17 Mar 20		Wednesday, 18 Mar 20		Thursday, 12 Mar 20		Friday, 13 Mar 20		Saturday, 14 Mar 20		Sunday, 15 Mar 20							
	Eastbound	Westbound	Bidirectional	Eastbound	Westbound	Bidirectional	Eastbound	Westbound	Bidirectional	Eastbound	Westbound	Bidirectional	Eastbound	Westbound	Bidirectional	Eastbound	Westbound	Bidirectional	Eastbound	Westbound	Bidirectional
Light Vehicle - Classes 1 to 2	485	5427	5912	505	5387	5892	418	5043	5461	493	5896	6389	478	6160	6638	354	4751	5105	327	3992	4319
Medium Vehicle - Classes 3 to 5	127	382	509	119	383	502	111	613	724	118	410	528	113	372	485	62	117	179	46	105	151
Long Vehicle - Classes 6 to 12	90	233	323	117	204	321	106	226	332	145	222	367	102	191	293	38	72	110	50	53	103
Volume 0700-1900	563	5119	5682	582	4981	5563	487	4884	5371	597	5352	5949	528	5566	6094	356	4110	4466	348	3517	3865
Volume 24-Hour	702	6042	6744	741	5974	6715	635	5882	6517	756	6528	7284	693	6723	7416	454	4940	5394	423	4150	4573
85%ile Speed	76	77	77	74	77	77	77	80	80	75	77	77	77	77	77	76	78	78	74	78	78
Mean Speed	68.3	70.0	69.9	67.1	69.7	69.4	68.4	73.1	72.6	67.7	70.3	70.0	69.4	70.2	70.1	71.4	71.1	71.1	70.5	71.0	71.0
AM Peak Hour Volume	56	421	452	59	444	503	51	466	517	68	445	513	62	451	513	41	446	487	36	412	448
AM Hour Factor	0.08	0.07	0.07	0.08	0.07	0.07	0.08	0.08	0.08	0.09	0.07	0.07	0.09	0.07	0.07	0.09	0.09	0.09	0.09	0.10	0.10
AM Peak 85%	86	86	86	82	84	77	82	81	81	83	97	90	84	82	81	84	81	79	82	86	79
AM Peak Time	6:00	7:00	7:00	9:00	7:00	7:00	7:00	7:00	7:00	11:00	11:00	11:00	7:00	7:00	7:00	11:00	11:00	11:00	10:00	9:00	11:00
PM Peak Hour Volume	68	546	613	61	491	537	46	508	552	64	500	551	57	564	614	51	492	528	47	403	437
PM Hour Factor	0.10	0.09	0.09	0.08	0.08	0.08	0.07	0.09	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.11	0.10	0.10	0.11	0.10	0.10
PM Peak 85%	81	80	79	82	78	78	84	82	82	82	79	79	86	79	79	94	80	81	85	80	79
PM Peak Time	15:00	16:00	13:00	13:00	17:00	9:00	12:00	14:00	15:00	14:00	16:00	15:00	15:00	14:00	15:00	14:00	13:00	13:00	15:00	14:00	12:00

Volume Summary

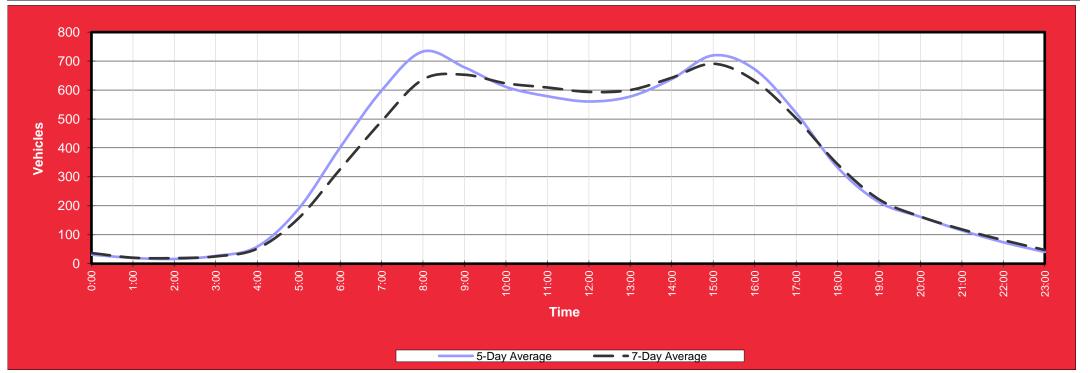
Street Site 4, Tweed Valley Way

Suburb Chinderah

Location Site 4, Tweed Valley Way

Count No. 4

Start Date Wednesday 04 Mar 2020


Direction Northbound

5-Day Average 8,569

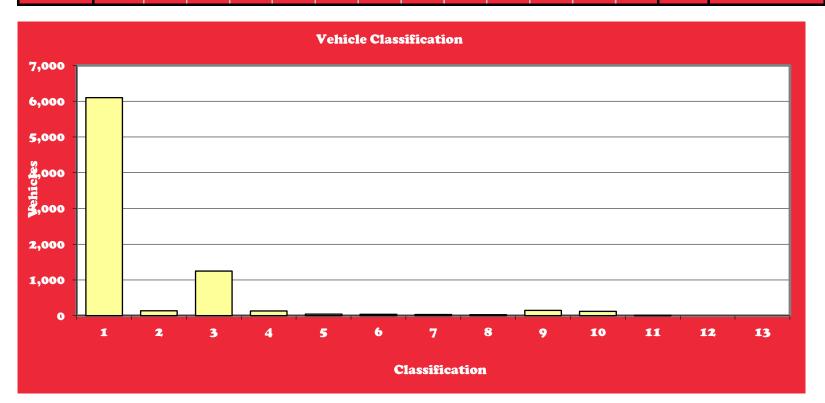
7-Day Average 8,289 **5-Day Heavy (Classes 3 to 12)** 20.9% **7-Day Heavy (Classes 3 to 12)** 19.1%

			Day of	Week - Classes	1 to 12					
Hour Starting	Mon	Tue	Wed	Thu	Fri	Sat	Sun	5-Day	7-Day	
	09/03/2020	10/03/2020	04/03/2020	05/03/2020	06/03/2020	07/03/2020	08/03/2020	Average	Average	
AM Peak	769	731	721	792	709	707	662			
PM Peak	647	680	744	778	750	642	730			
0:00	27	37	31	33	28	43	59	31	37	
1:00	24	16	20	21	18	25	21	20	21	
2:00	19	19	14	16	14	31	22	16	19	
3:00	18	23	35	35	23	28	14	27	25	
4:00	52	46	72	65	59	38	32	59	52	
5:00	186	202	201	174	187	88	64	190	157	
6:00	396	373	431	431	376	156	121	401	326	
7:00	578	591	644	604	574	280	174	598	492	
8:00	769	731	674	792	700	440	351	733	637	
9:00	635	635	721	692	709	658	520	678	653	
10:00	635	548	627	604	641	693	614	611	623	
11:00	559	528	602	595	609	707	662	579	609	
12:00	499	577	524	578	624	631	721	560	593	
13:00	559	510	599	595	625	642	670	578	600	
14:00	617	536	664	654	718	578	730	638	642	
15:00	647	680	744	778	750	584	653	720	691	
16:00	584	676	672	745	682	503	562	672	632	
17:00	435	469	488	614	599	453	460	521	503	
18:00	255	303	308	352	446	388	356	333	344	
19:00	171	169	198	245	282	217	274	213	222	
20:00	130	164	155	165	195	148	183	162	163	
21:00	101	93	127	108	145	142	114	115	119	
22:00	73	67	54	86	90	125	74	74	81	
23:00	40	28	33	46	55	83	47	40	47	
Total	8,009	8,021	8,638	9,028	9,149	7,681	7,498	8,569	8,289	
Heavy %	22.2%	22.3%	20.7%	20.5%	19.1%	14.2%	14.0%	20.9%	19.1%	

Speed Limit 60 km/h

Hourly Classification Data

StreetSite 4, Tweed Valley WayAADT8,009SuburbChinderahAverage Speed87.5LocationSite 4, Tweed Valley Way85th Percentile103

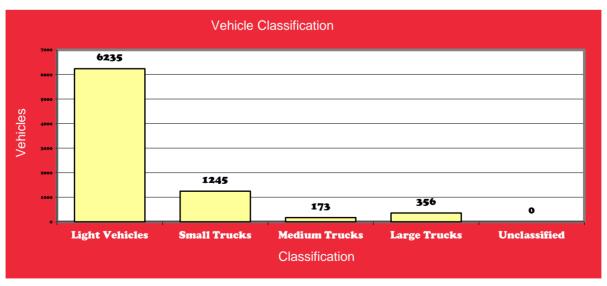

LocationSite 4, Tweed Valley Way85th Percentile103DirectionNorthboundHeavy Percentage22.2%

 Day
 Monday
 Count No. 4
 AM Peak
 8:00
 769 vph

 Date
 09 Mar 2020
 Speed Limit 60 km/h
 PM Peak
 15:00
 647 vph

Start Date Wednesday 04 Mar 2020

Hour						Vehi	cle Cla	assific	ation						Spe	eed
Starting	1	2	3	4	5	6	7	8	9	10	11	12	13	Total	Average	85%ile
0:00	15	0	4	0	0	0	0	1	6	1	0	0	0	27	90.7	108
1:00	15	1	5	0	0	0	0	0	0	3	0	0	0	24	83.0	112
2:00	8	0	2	0	0	0	0	0	4	5	0	0	0	19	88.6	127
3:00	11	0	5	0	0	0	0	0	1	1	0	0	0	18	94.0	119
4:00	27	1	16	1	1	0	0	0	3	3	0	0	0	52	92.3	114
5:00	125	4	39	4	5	1	0	0	2	6	0	0	0	186	94.4	110
6:00	282	6	77	3	6	2	2	2	9	7	0	0	0	396	92.5	110
7:00	435	8	95	10	4	1	3	3	11	8	0	0	0	578	88.2	104
8:00	612	5	109	21	5	5	1	1	8	2	0	0	0	769	87.2	101
9:00	506	6	79	20	1	3	1	2	12	5	0	0	0	635	87.5	102
10:00	469	14	102	24	0	3	3	1	9	10	0	0	0	635	84.9	100
11:00	391	21	100	11	4	6	3	1	14	8	0	0	0	559	84.6	98
12:00	368	19	85	6	2	3	3	1	6	6	0	0	0	499	85.9	103
13:00	409	16	97	12	2	3	4	1	9	6	0	0	0	559	84.4	98
14:00	466	14	100	7	6	1	3	2	8	9	1	0	0	617	87.9	103
15:00	497	9	116	6	1	0	2	0	11	5	0	0	0	647	89.9	104
16:00	484	2	79	3	2	4	0	2	6	2	0	0	0	584	89.1	102
17:00	365	5	51	2	0	1	1	0	7	3	0	0	0	435	88.5	105
18:00	213	1	36	1	0	1	0	1	1	1	0	0	0	255	87.8	101
19:00	144	0	15	0	0	0	0	1	4	7	0	0	0	171	86.2	100
20:00	107	3	9	0	0	0	1	2	5	3	0	0	0	130	84.4	103
21:00	72	0	16	1	1	1	0	1	2	7	0	0	0	101	87.4	106
22:00	50	1	6	1	0	1	1	1	7	5	0	0	0	73	83.9	106
23:00	28	0	2	0	0	0	1	0	4	5	0	0	0	40	86.0	120
Total	6,099	136	1,245	133	40	36	29	23	149	118	1	0	0	8,009	87.5	103
Class %	76	2	16	2	0	0	0	0	2	1	0	0	0			



Class Data Summary

_				
Street	Site 4, Tweed Valley Way		Light Vehicles	77.8% veys
Location	Chinderah		Small Trucks	15.5% cm
Count No.	Site 4, Tweed Valley Way		Medium Trucks	_{2.2%} com
Direction	Northbound		Large Trucks	4.4%
Day	Monday		Unclassified	0.0%
Start Date	Wednesday	AM Peak	8:00	769 vph
Date	09 Mar 2020	PM Peak	15:00	647 vph

Hour	Vehicle Classification										
Starting	Light Vehicles	Small Trucks	Medium Trucks	Large Trucks	Unclassified	Total					
0:00	15	4	0	8	0	27					
1:00	16	5	0	3	0	24					
2:00	8	2	0	9	0	19					
3:00	11	5	0	2	0	18					
4:00	28	16	2	6	0	52					
5:00	129	39	9	9	0	186					
6:00	288	77	9	22	0	396					
7:00	443	95	14	26	0	578					
8:00	617	109	26	17	0	769					
9:00	512	79	21	23	0	635					
10:00	483	102	24	26	0	635					
11:00	412	100	15	32	0	559					
12:00	387	85	8	19	0	499					
13:00	425	97	14	23	0	559					
14:00	480	100	13	24	0	617					
15:00	506	116	7	18	0	647					
16:00	486	79	5	14	0	584					
17:00	370	51	2	12	0	435					
18:00	214	36	1	4	0	255					
19:00	144	15	0	12	0	171					
20:00	110	9	0	11	0	130					
21:00	72	16	2	11	0	101					
22:00	51	6	1	15	0	73					
23:00	28	2	0	10	0	40					
Total	6235	1245	173	356	0	8009					

Light Vehicles – Classes 1 to 2

Small Trucks - Class 3

 $\label{eq:medium Trucks - Classes 4 to 5} \\$

Large Trucks – Classes 6 to 12

Unclassified - Class 13

Volume Summary

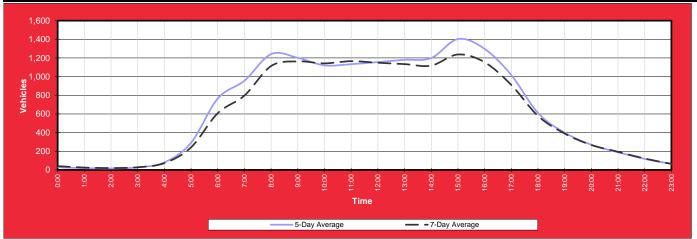
Street Site 5, Tweed vallay Way

Suburb Murwillubah
Location Site 5, Murwillubah, Tweed vallay Way

Count No. 5

Start Date Wednesday 04 Mar 2020 Speed Limit 60 km/h

Direction Bidirectional


 5-Day Average
 15,783

 7-Day Average
 14,740

 5-Day Heavy (Classes 3 to 12)
 8.0%

 7-Day Heavy (Classes 3 to 12)
 7.1%

	Day of Week - Classes 1 to 12								
Hour Starting	Mon	Tue	Wed	Thu	Fri	Sat	Sun	5-Day	7-Day
	09/03/2020	10/03/2020	04/03/2020	05/03/2020	06/03/2020	07/03/2020	08/03/2020	Average	Average
AM Peak	1,244	1,229	1,258	1,313	1,176	1,292	1,201		
PM Peak	1,327	1,316	1,469	1,507	1,398	1,131	1,130		
0:00	23	20	32	38	29	69	74	28	41
1:00	14	16	23	18	23	45	39	19	25
2:00	14	15	17	14	20	31	32	16	20
3:00	28	19	32	30	27	39	27	27	29
4:00	80	70	81	95	76	51	59	80	73
5:00	273	295	306	297	286	153	86	291	242
6:00	690	730	848	862	697	284	148	765	608
7:00	946	922	1,008	1,002	904	486	312	956	797
8:00	1,244	1,229	1,248	1,313	1,173	742	847	1,241	1,114
9:00	1,170	1,172	1,258	1,231	1,176	1,084	1,051	1,201	1,163
10:00	1,074	1,038	1,110	1,204	1,176	1,221	1,171	1,120	1,142
11:00	1,041	1,159	1,184	1,107	1,175	1,292	1,201	1,133	1,166
12:00	1,148	1,092	1,175	1,143	1,221	1,131	1,130	1,156	1,149
13:00	1,093	1,092	1,212	1,207	1,296	1,003	1,034	1,180	1,134
14:00	1,042	1,143	1,257	1,203	1,350	882	949	1,199	1,118
15:00	1,327	1,314	1,469	1,507	1,398	807	838	1,403	1,237
16:00	1,226	1,316	1,311	1,422	1,211	816	774	1,297	1,154
17:00	939	985	1,017	1,095	1,046	705	591	1,016	911
18:00	494	579	598	714	667	541	458	610	579
19:00	308	385	403	465	437	371	357	400	389
20:00	201	244	257	326	321	288	233	270	267
21:00	102	183	208	206	249	255	156	190	194
22:00	91	89	103	120	189	174	87	118	122
23:00	58	57	61	37	106	104	34	64	65
Total	14,626	15,164	16,218	16,656	16,253	12,574	11,688	15,783	14,740
Heavy %	8.3%	8.0%	8.1%	8.4%	7.4%	4.4%	3.7%	8.0%	7.1%

Volume Summary

Street Site 5, Tweed vallay Way

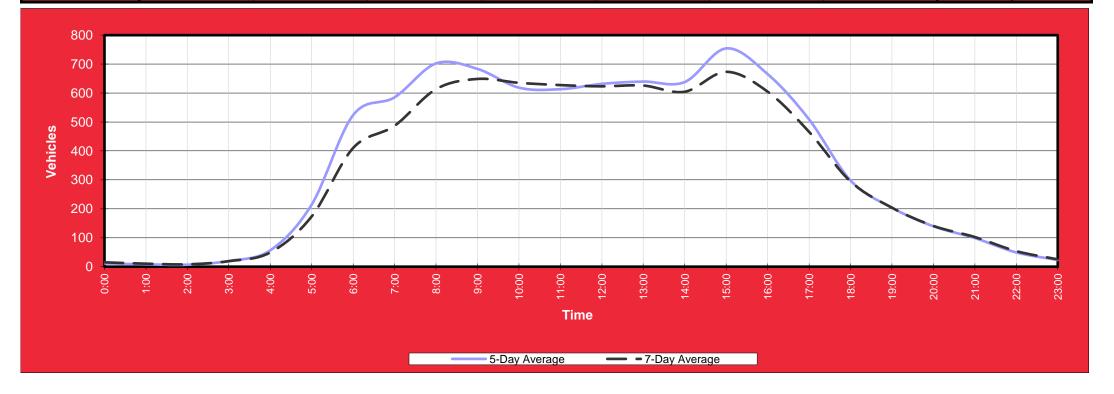
Suburb Murwillubah

Location Site 5, Murwillubah, Tweed vallay Way

Count No. 5

Start Date Wednesday 04 Mar 2020 Speed Limit 60 km/h

Direction Northbound

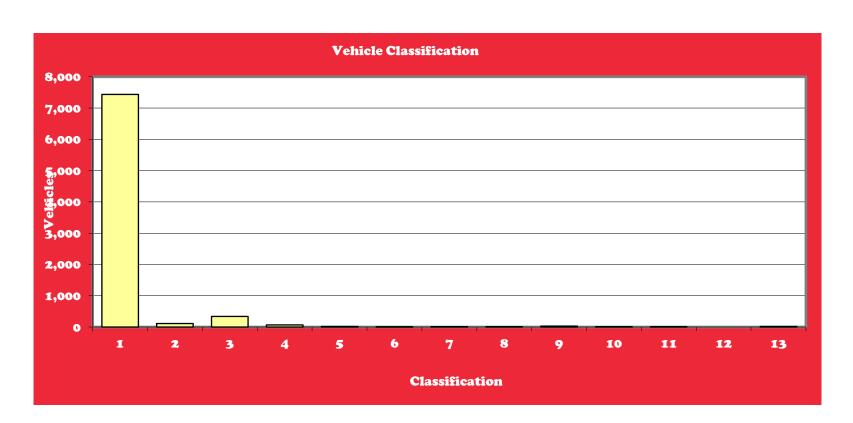

 5-Day Average
 8,694

 7-Day Average
 8,115

 5-Day Heavy (Classes 3 to 12)
 6.1%

 7-Day Heavy (Classes 3 to 12)
 5.2%

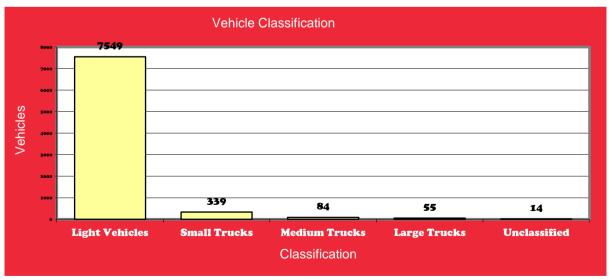
	Day of Week - Classes 1 to 12								
Hour Starting	Mon	Tue	Wed	Thu	Fri	Sat	Sun	5-Day	7-Day
	09/03/2020	10/03/2020	04/03/2020	05/03/2020	06/03/2020	07/03/2020	08/03/2020	Average	Average
AM Peak	707	703	719	754	676	707	666		
PM Peak	711	693	783	823	761	611	617		
0:00	10	7	15	13	12	22	26	11	15
1:00	6	9	9	6	11	18	14	8	10
2:00	6	4	6	8	10	15	9	7	8
3:00	19	13	24	21	22	24	10	20	19
4:00	56	47	56	68	55	27	35	56	49
5:00	205	220	223	222	203	94	49	215	174
6:00	486	499	576	587	471	157	95	524	410
7:00	573	576	607	611	559	284	198	585	487
8:00	707	703	692	754	655	426	357	702	613
9:00	647	680	719	695	676	625	499	683	649
10:00	630	572	620	632	639	688	666	619	635
11:00	557	617	658	597	637	707	619	613	627
12:00	641	611	652	618	636	611	593	632	623
13:00	578	601	669	663	687	566	617	640	626
14:00	549	595	696	660	690	487	554	638	604
15:00	711	693	783	823	761	445	497	754	673
16:00	600	642	661	753	671	441	465	665	605
17:00	454	502	493	566	530	386	330	509	466
18:00	213	290	300	344	343	308	264	298	295
19:00	154	181	214	235	234	193	216	204	204
20:00	107	130	150	160	151	168	120	140	141
21:00	55	100	117	89	134	143	79	99	102
22:00	39	38	38	48	83	92	38	49	54
23:00	24	19	17	10	45	48	14	23	25
Total	8,027	8,349	8,995	9,183	8,915	6,975	6,364	8,694	8,115
Heavy %	6.0%	6.0%	6.1%	6.5%	5.7%	3.0%	2.2%	6.1%	5.2%



Hourly Classification Data

8,041 Street Site 5, Tweed vallay Way **AADT** Suburb 53.5 Murwillubah **Average Speed** Location Site 5, Murwillubah, Tweed vallay Way 85th Percentile 62 Direction Northbound **Heavy Percentage** 5.9% Count No. 5 Day Monday AM Peak 8:00 708 vph 09 Mar 2020 Date Speed Limit 60 km/h **PM Peak** 15:00 712 vph Start Date Wednesday 04 Mar 2020

Hour						Vehi	cle Cla	assific	ation						Spe	eed
Starting	1	2	3	4	5	6	7	8	9	10	11	12	13	Total	Average	85%ile
0:00	8	0	1	0	0	0	0	0	1	0	0	0	0	10	57.0	0
1:00	5	0	0	0	0	0	0	0	1	0	0	0	0	6	49.0	0
2:00	4	0	2	0	0	0	0	0	0	0	0	0	0	6	66.1	0
3:00	19	0	0	0	0	0	0	0	0	0	0	0	0	19	64.9	82
4:00	51	1	3	1	0	0	0	0	0	0	0	0	0	56	58.5	72
5:00	195	2	6	2	0	0	0	0	0	0	0	0	0	205	59.2	70
6:00	455	8	21	1	1	0	0	0	0	0	0	0	0	486	55.0	64
7:00	511	13	32	8	1	1	3	1	3	0	0	0	0	573	54.2	63
8:00	653	9	33	7	1	0	0	0	4	0	0	0	1	708	53.5	62
9:00	602	10	25	5	2	1	0	1	1	0	0	0	0	647	52.8	61
10:00	584	10	26	5	0	0	1	1	2	1	0	0	3	633	52.6	61
11:00	504	9	30	9	1	1	1	0	1	0	1	0	1	558	52.8	61
12:00	598	7	24	4	4	0	2	0	2	0	0	0	2	643	52.1	61
13:00	528	11	29	6	0	1	1	0	2	0	0	0	2	580	53.2	63
14:00	493	4	33	9	1	2	2	0	5	0	0	0	2	551	53.5	62
15:00	663	10	31	3	2	1	1	0	0	0	0	0	1	712	52.9	61
16:00	568	8	17	3	1	0	2	0	1	0	0	0	0	600	53.2	62
17:00	435	6	8	4	0	0	0	0	1	0	0	0	1	455	54.1	63
18:00	208	1	4	0	0	0	0	0	0	0	0	0	0	213	53.3	64
19:00	146	1	4	1	0	0	0	0	2	0	0	0	1	155	53.3	63
20:00	102	1	3	1	0	0	0	0	0	0	0	0	0	107	52.7	65
21:00	49	1	2	1	0	0	0	0	2	0	0	0	0	55	54.3	67
22:00	33	0	5	0	0	0	0	0	1	0	0	0	0	39	57.3	70
23:00	22	1	0	0	0	0	0	0	1	0	0	0	0	24	62.4	103
Total	7,436	113	339	70	14	7	13	3	30	1	1	0	14	8,041	53.5	62
Class %	92	1	4	1	0	0	0	0	0	0	0	0	0			



Class Data Summary

Street	Site 5, Tweed vallay Way		Light Vehicles	93.9% veys
Location	Murwillubah		Small Trucks	4.2% om
Count No.	Site 5, Murwillubah, Tweed vallay Way		Medium Trucks	1.0% com
Direction	Northbound		Large Trucks	0.7%
Day	Monday		Unclassified	0.2%
Start Date	Wednesday	AM Peak	8:00	708 vph
Date	00 Mar 2020	PM Poak	15:00	712 yph

Hour	Hour Vehicle Classification					
Starting	Light Vehicles	Small Trucks	Medium Trucks	Large Trucks	Unclassified	Total
0:00	8	1	0	1	0	10
1:00	5	0	0	1	0	6
2:00	4	2	0	0	0	6
3:00	19	0	0	0	0	19
4:00	52	3	1	0	0	56
5:00	197	6	2	0	0	205
6:00	463	21	2	0	0	486
7:00	524	32	9	8	0	573
8:00	662	33	8	4	1	708
9:00	612	25	7	3	0	647
10:00	594	26	5	5	3	633
11:00	513	30	10	4	1	558
12:00	605	24	8	4	2	643
13:00	539	29	6	4	2	580
14:00	497	33	10	9	2	551
15:00	673	31	5	2	1	712
16:00	576	17	4	3	0	600
17:00	441	8	4	1	1	455
18:00	209	4	0	0	0	213
19:00	147	4	1	2	1	155
20:00	103	3	1	0	0	107
21:00	50	2	1	2	0	55
22:00	33	5	0	1	0	39
23:00	23	0	0	1	0	24
Total	7549	339	84	55	14	8041

Light Vehicles – Classes 1 to 2

Small Trucks - Class 3

Medium Trucks - Classes 4 to 5

Large Trucks - Classes 6 to 12

Unclassified - Class 13

Appendix C – Trip Distribution Diagrams

≫-

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-TIA-07B
Doc Title: Traffic Impact Assessment

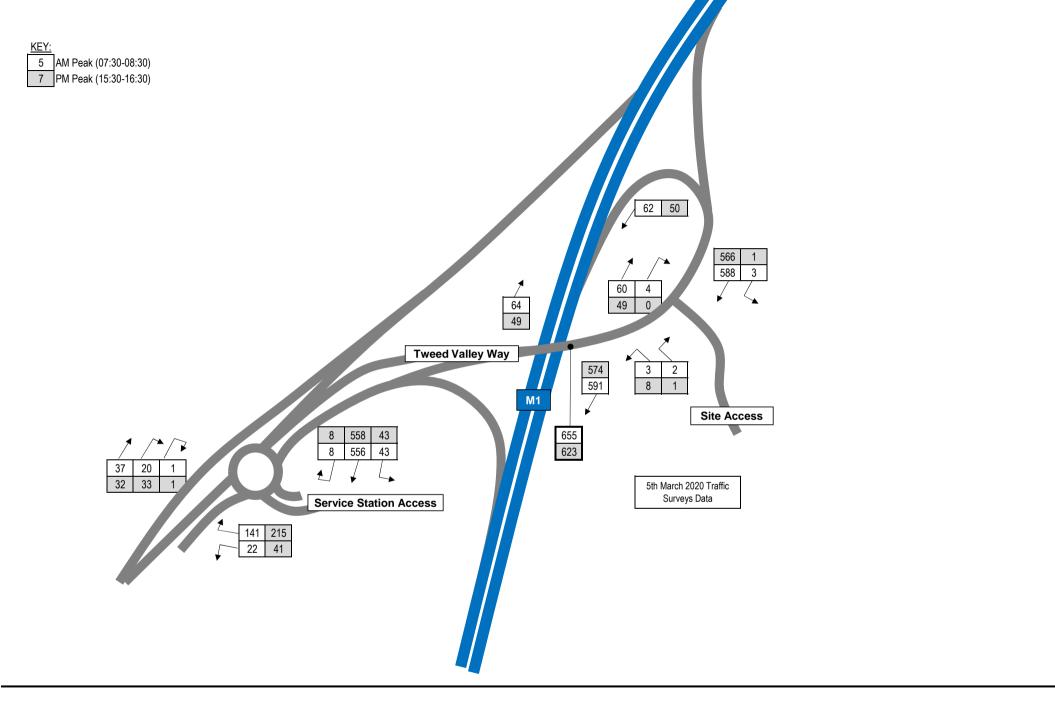
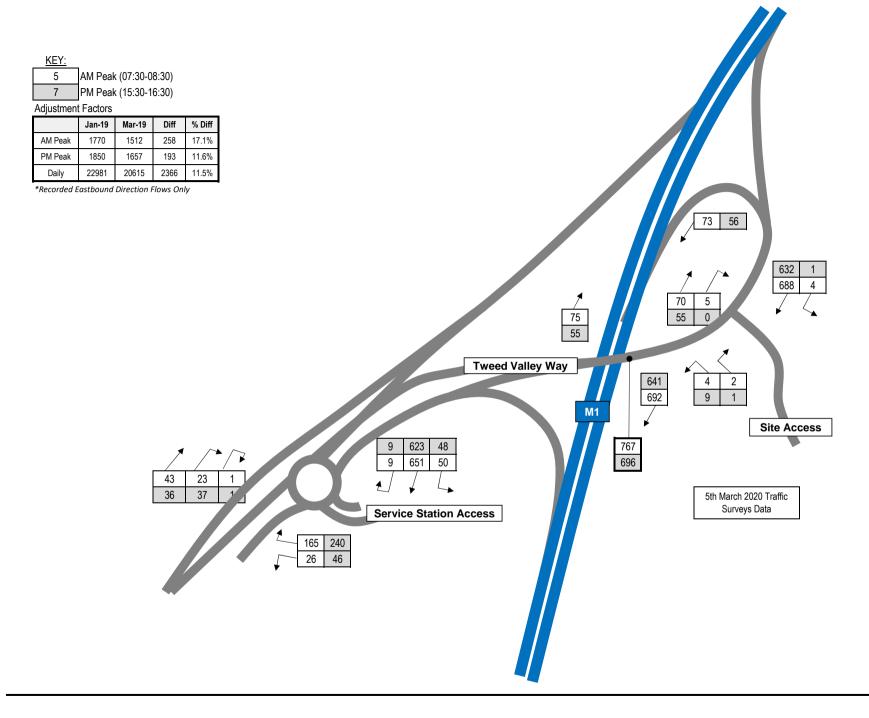
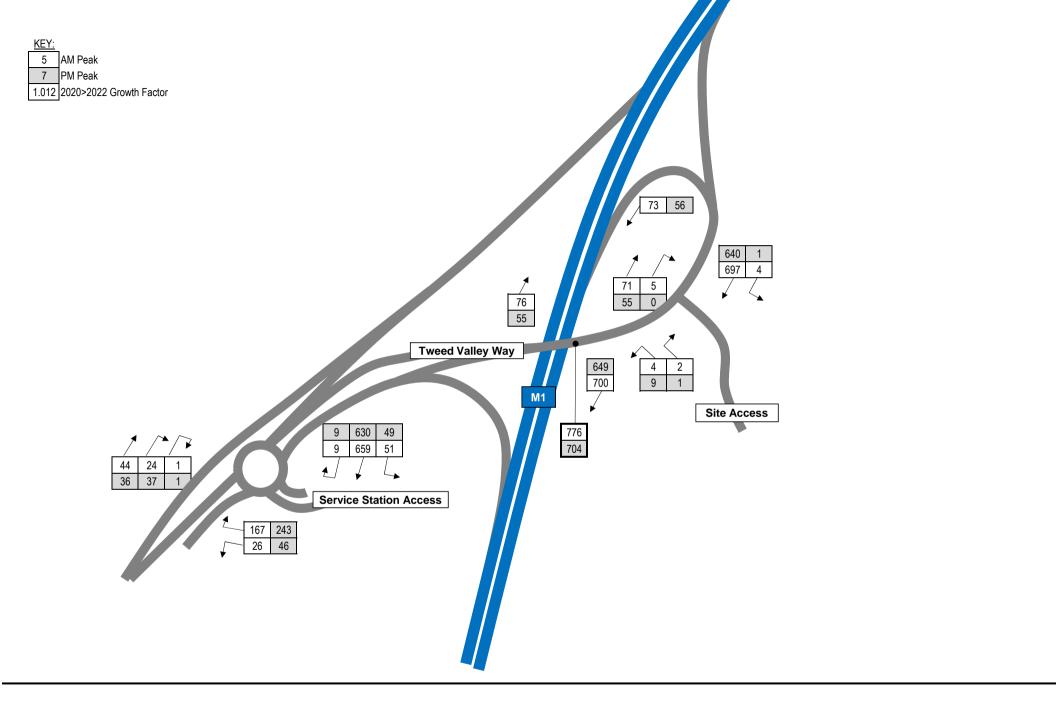
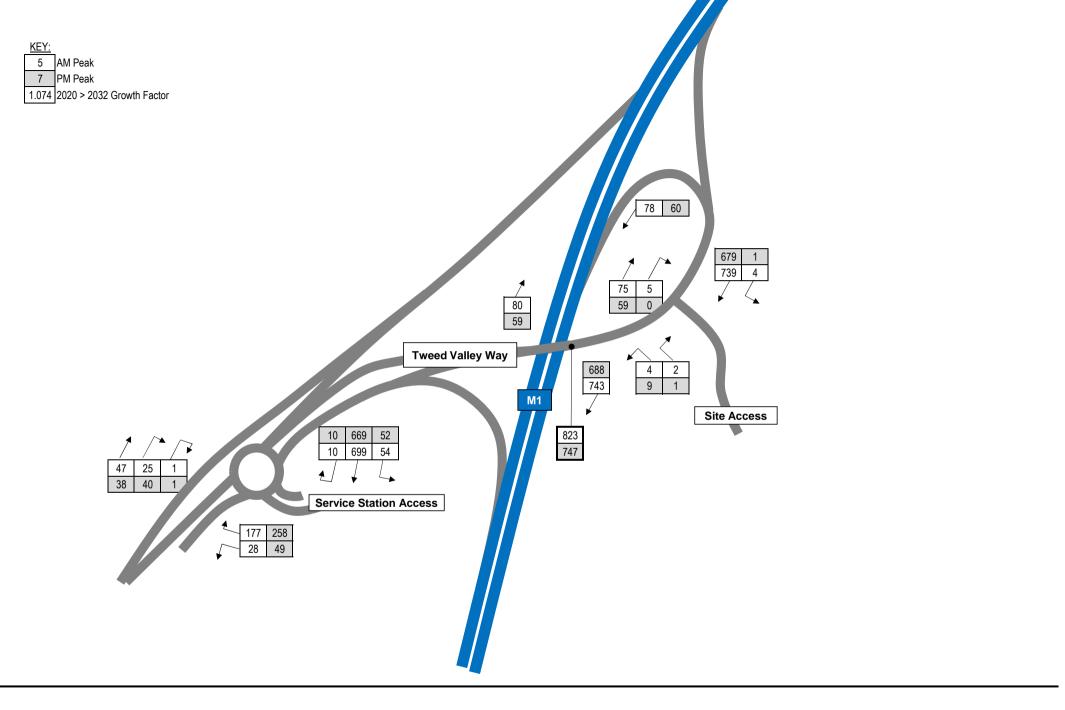



Figure 1a - 2020 Traffic Survey AM and PM Peak Summary

The M1 Pacific Motorway
Eastbound Volumes (2019 Data)

Daily Total
22981
21703
20615
19970
20876
20013
21603
21024
21252
21521
21496
21539

BE190043_Tweed Sand Plant

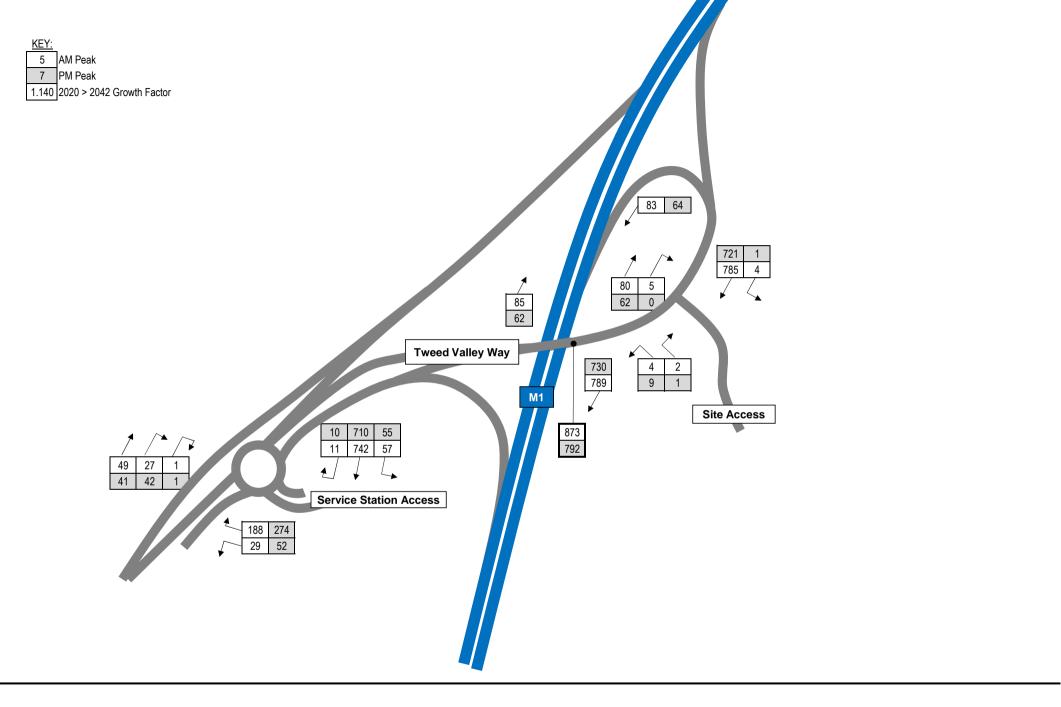
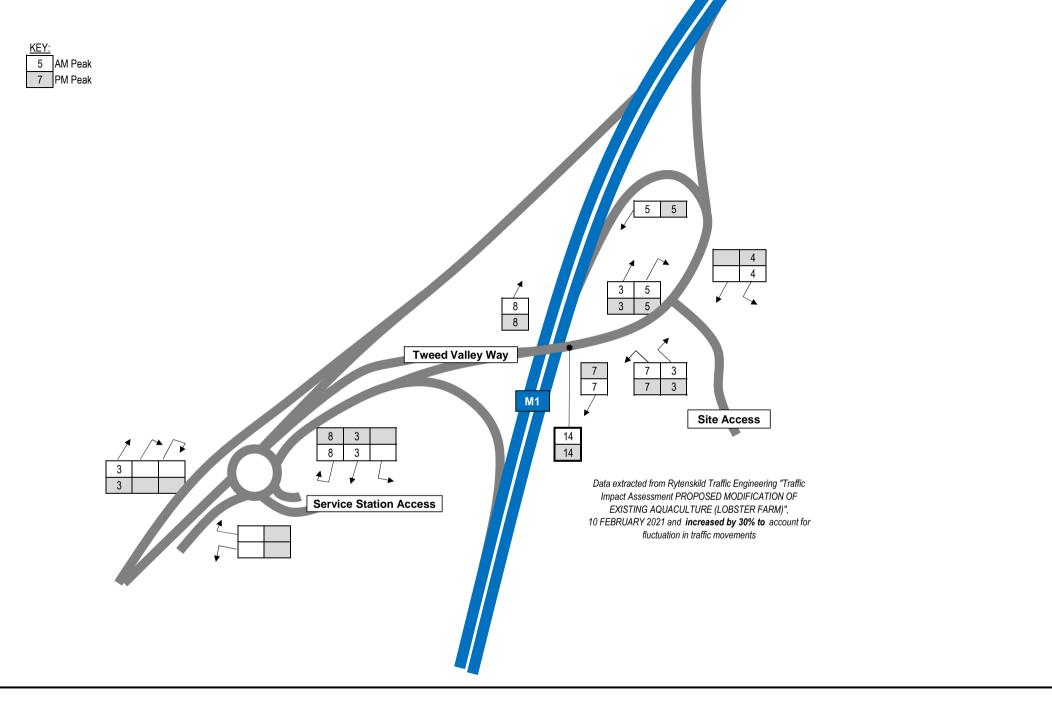
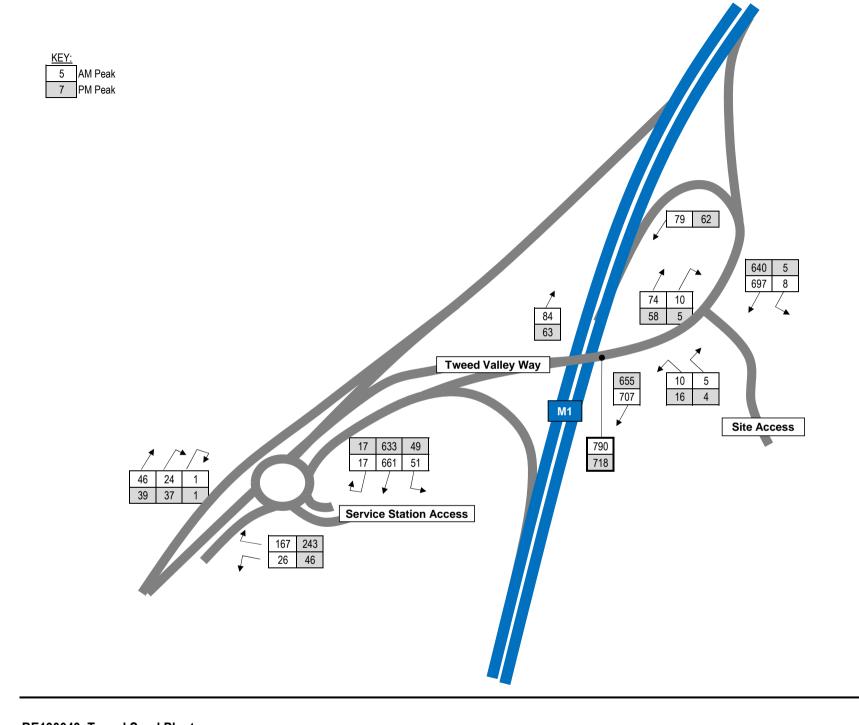


Figure 2 - 2022 Base Traffic Flows





ic

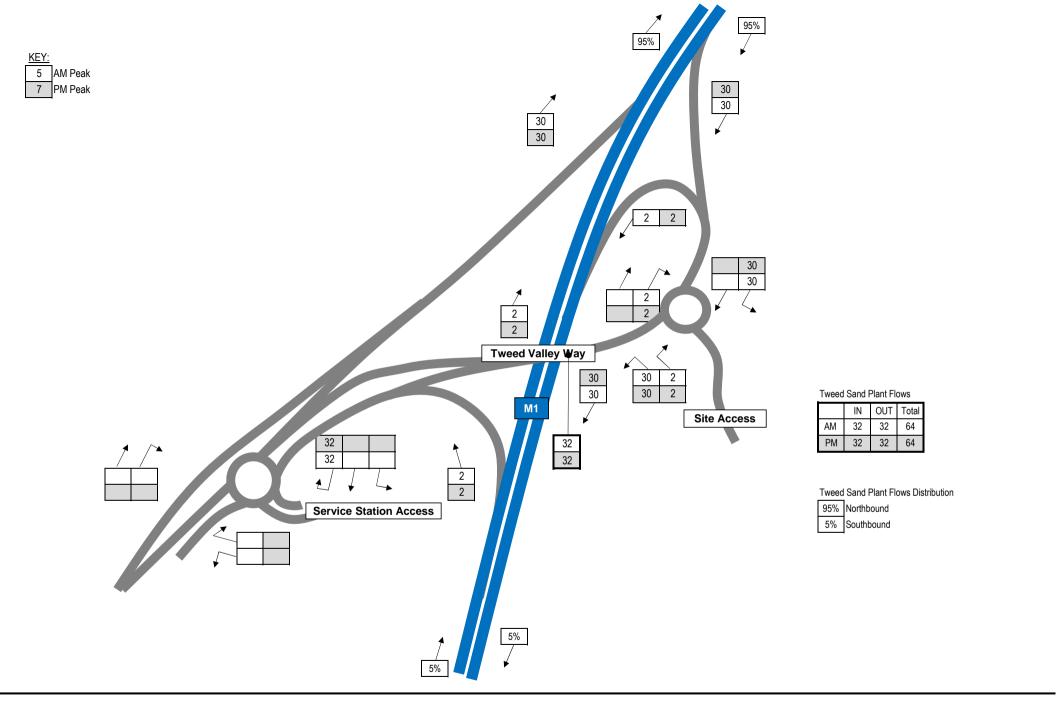
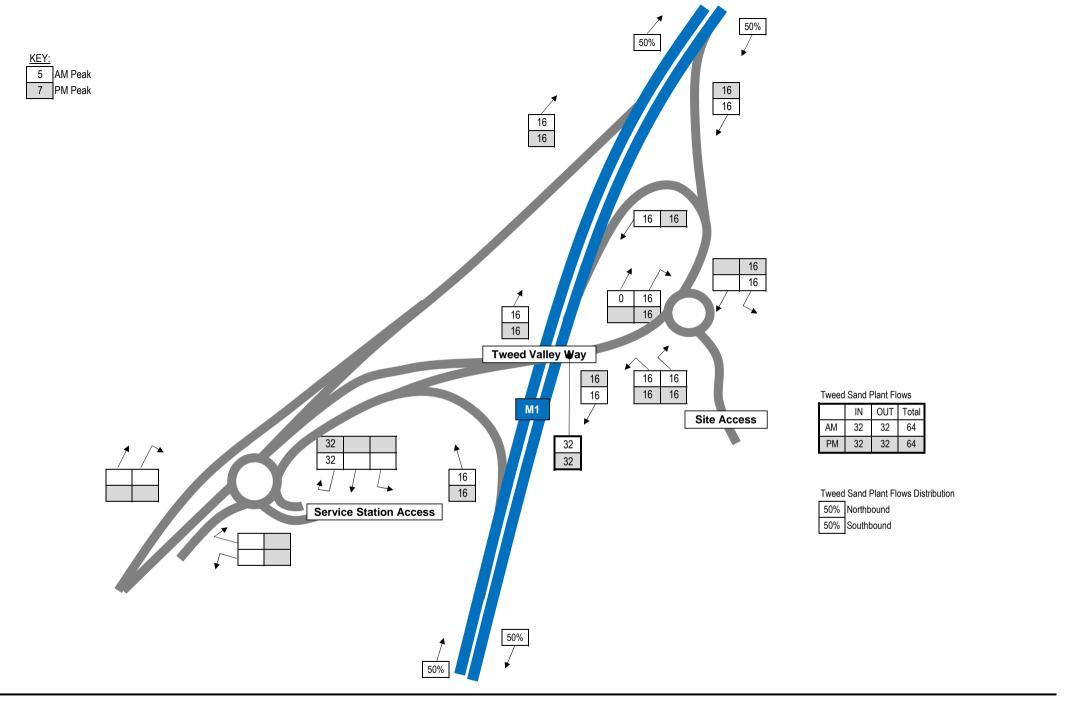
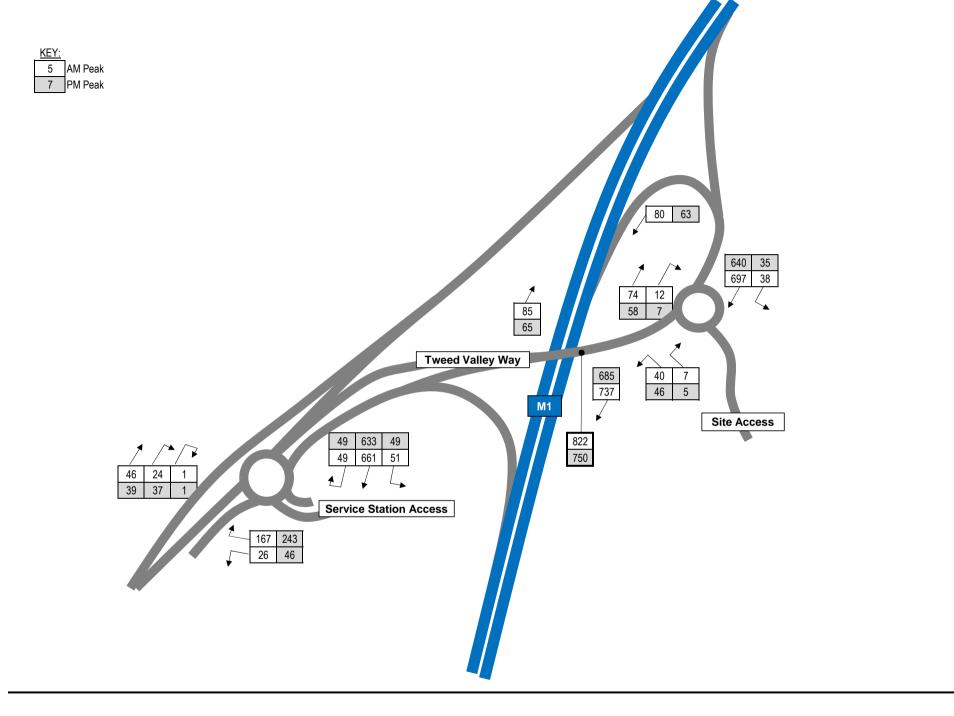



Figure 6 - 2022 Base with Committed Traffic Flows



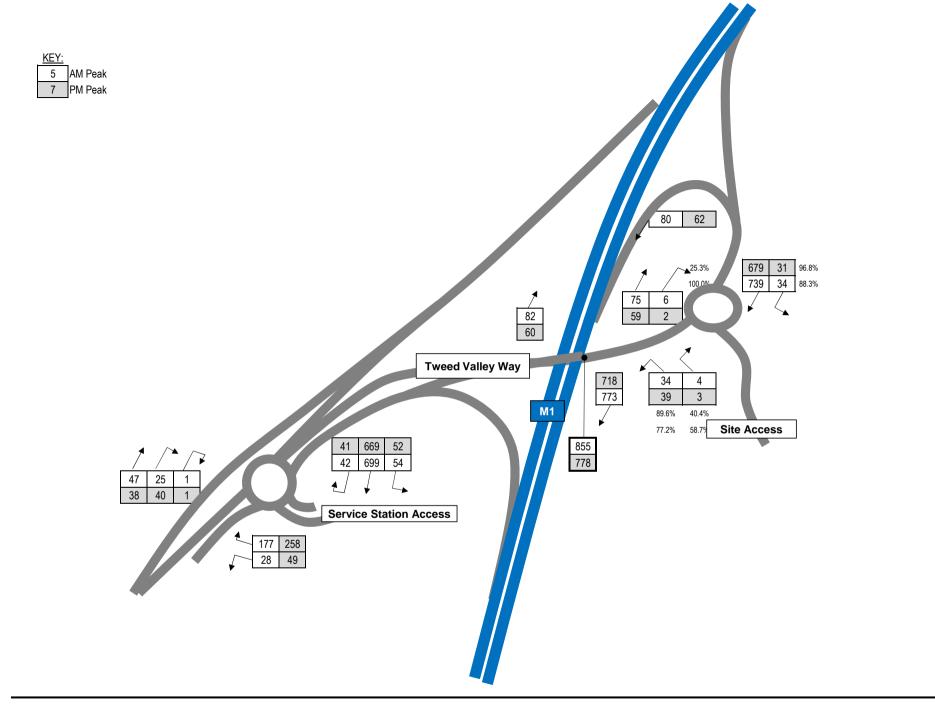
BE190043_Tweed Sand Plant

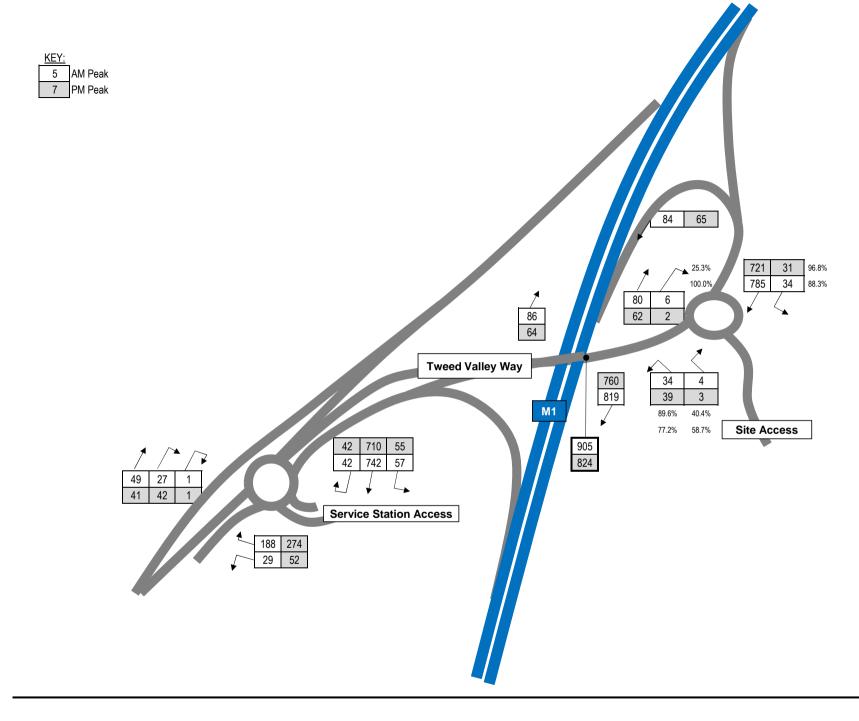
Figure 7 - Tweed Sand Plan Development Traffic Flows

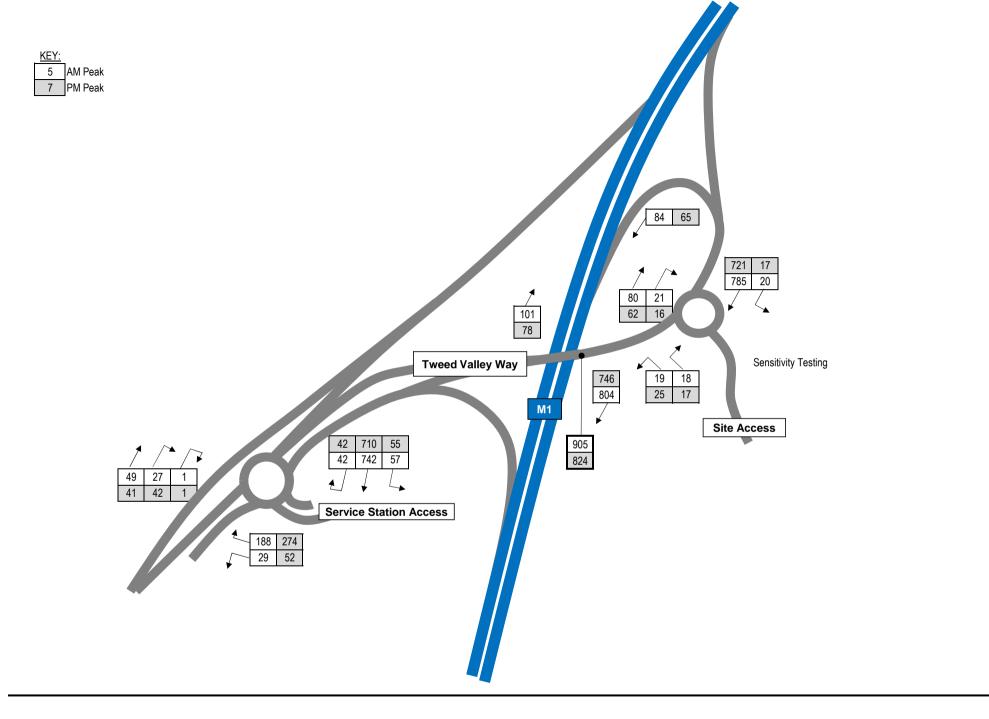


BE190043_Tweed Sand Plant

Figure 8 - Tweed Sand Plan Development Traffic Flows (Sensitivity Testing)







sting)

Appendix D – Drivers Code of Conduct

– www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-TIA-07B
Doc Title: Traffic Impact Assessment

TWEED SAND PLANT

MOD1 Operational Traffic Management Plan

Prepared for:

Hanson Construction Materials C/- Tweed Sand Plant PO Box 2010 Kingscliff NSW 2487

PREPARED BY

SLR Consulting Australia Pty Ltd
ABN 29 001 584 612
Level 2, 15 Astor Terrace
Spring Hill QLD 4000 Australia
(PO Box 26 Spring Hill QLD 4004)
T: +61 7 3858 4800 F: +61 7 3858 4801
E: brisbane@slrconsulting.com www.slrconsulting.com

BASIS OF REPORT

This report has been prepared by SLR Consulting Australia Pty Ltd with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with Hanson Construction Materials C/- Tweed Sand Plant (the Client). Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the Client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR.

SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work.

DOCUMENT CONTROL

Reference	Status	Date	Prepared	Checked	Authorised
620.12479- R02-v0.4	Draft for Road Authority Review	1 November 2018	Chris Lawlor (Associate – Transport Advisory)	Jeffrey Baczynski (Principal – Transport Advisory)	Jeffrey Baczynski (Principal – Transport Advisory)
620.12479- R02-v1.2	Final	20 November 2018	Chris Lawlor (Associate – Transport Advisory)	Jeffrey Baczynski (Principal – Transport Advisory)	Jeffrey Baczynski (Principal – Transport Advisory)
620.12479- R02-v1.3	Revised Final based on DPE Feedback	7 March 2019	Chris Lawlor (Associate – Transport Advisory)	Jeffrey Baczynski (Principal – Transport Advisory)	Jeffrey Baczynski (Principal – Transport Advisory)

CONTENTS

1	OPER	ATIONAL TRAFFIC MANAGEMENT PLAN CONTEXT	5							
	1.1	Background	5							
	1.2	Operational TMP Requirements	5							
2	ROAI	ROAD AUTHORITY CONSULTATION								
	2.1	Consultation Requirements								
	2.2	TSC Consultation	8							
		2.2.1 Initial Consultation	8							
		2.2.2 Review of Draft Operational TMP	8							
	2.3	RMS Consultation	9							
		2.3.1 Initial Consultation	9							
		2.3.2 Review of Draft Operational TMP	10							
3	PROJ	PROJECT OVERVIEW								
	3.1	1 Site Details								
	3.2	Road Use Conditions								
	3.3	Operating Conditions								
	3.4	Surrounding Road Network								
		3.4.1 Altona Road	14							
		3.4.2 Crescent Street	14							
		3.4.3 Tweed Coast Road	15							
	3.5	Permissible Hours of Operation	15							
4	HEAV	HEAVY VEHICLE MANAGEMENT								
	4.1	4.1 General Requirements								
	4.2	Site Management								
	4.3	Haulage Route	17							
	4.4	Driving Standards	18							
		4.4.1 Speed Management	18							
		4.4.2 Heavy Vehicle Noise Management	19							
		4.4.3 Heavy Vehicle Load Restraint and Dust Suppression	19							
	4.5	Construction Traffic Management Plans for Road Upgrade Works	20							
		4.5.1 Altona Road Upgrade and Maintenance Works	20							
		4.5.2 Tweed Coast Road/Crescent Street Intersection Upgrade Works	20							

CONTENTS

Appendix B

Appendix C

Evidence of Consultation

Tweed Sand Plant: Drivers' Code of Conduct

5	INCIDENT REPORTING							
	5.1	Relevant Conditions	22					
6	PROTOCOL FOR MANAGING COMPLAINTS AND/OR NON-COMPLIANCES							
	6.1	Managing Complaints	23					
	6.2	Compliance Monitoring and Non-Compliance Response Procedure	23					
7	PERIO	ODIC REVIEW	25					
8	сом	MUNITY CONSULTATION AND PERFORMANCE MONITORING	26					
	8.1	Community Consultative Committee	26					
	8.2	Public Performance Reporting	26					
DOCU	MEN	NT REFERENCES						
TABLES								
Table 1	Op	perational TMP Requirements: Schedule 3, Condition 25	6					
Table 2		eneric Management Plan Requirements: Schedule 5, Condition 2						
Table 3		MS Initial Consultation Summary						
Table 4 Table 6		MS Draft Operational TMP Summaryhedule 2 Condition 10 – Hours of Operation						
. 4.5.0								
FIGURES								
Figure 1		P and Surrounding Area						
Figure 2	TS	SP Standard Haulage Route	17					
APPENDI	ICES							
Appendi	хА	DPE Approval of Expert						

1 Operational Traffic Management Plan Context

1.1 Background

SLR Consulting Australia Pty Ltd (SLR) has been commissioned by Hanson Construction Materials Pty Ltd (Hanson) to prepare an Operational Traffic Management Plan (Operational TMP) for Hanson's Tweed Sand Plant (TSP) operation in Cudgen, NSW.

The Operational TMP is required to satisfy Schedule 3 (*Specific Environmental Conditions*), Condition 25 (*Transport Management Plan*) of the Notice of Modification for Development Consent DA 152-6-2005 issued by the New South Wales (NSW) Department of Planning and Environment (DPE) on 20 August 2018. The notice was issued following an application lodged by Hanson on 7 February 2017 to change the site's condition from an annual extraction limit of 150,000 m³ to transporting no more than 500,000 tonnes of product (sand) from the site per financial year. This modification will potentially result in increased haulage from the site, and therefore an Operational TMP is required to manage the potential traffic impacts associated with this change.

The Notice of Modification constitutes a revision of the Notice of Modification conditions issued in July 2006 for Phases 3 and 4 of TSP and requires the preparation and update of various management plans to guide management of the site.

1.2 Operational TMP Requirements

This Operational TMP has been prepared to satisfy the requirements of Schedule 3, Condition 25 of the Notice of Modification and in turn minimise the impact of site traffic on the safety and efficiency of the road network.

The specific requirements of the condition to prepare an Operational TMP are reproduced in Table 1. In addition, Table 1 details which section of this Operational TMP addresses each of the individual components identified within Condition 25, in order to validate that all components of the condition are addressed by this Operational TMP.

Further to this, Schedule 5 (*Environmental Management, Reporting and Auditing*), Condition 2 (*Management Plan Requirements*) of the Notice of Modification stipulates further generic requirements in relation to the preparation of management plans. The requirements of this condition are reproduced in Table 2 along with references to the sections of the Operational TMP that address each individual component.

This document has been prepared under the supervision of Jeffrey Baczynski, whom DPE has approved as 'a suitably qualified and experienced person'. A copy of this approval is included at Appendix A.

It is noted that the Operational TMP is not intended to replace the need to prepare Construction Traffic Management Plans to support the road upgrade works imposed under various conditions within the Notice of Modification. The required Construction Traffic Management Plans will be prepared at the time the upgrade work designs are prepared, which is appropriate given that the upgrade works are not required until certain triggers are met, which may mean that the works do not commence for potentially several years depending on commercial conditions. Nevertheless, a high level overview of the mitigation strategies potentially implemented as part of future Construction Traffic Management Plans is detailed herein.

Table 1 Operational TMP Requirements: Schedule 3, Condition 25

Item	Condition Requirement	TMP Section
25	The Applicant must prepare a Traffic Management Plan for the development to the satisfaction of the Secretary. This plan must:	
(a)	be prepared by suitably qualified and experienced person/s whose appointment has been endorsed by the Secretary;	Section 1.2 Appendix A
(b)	be prepared in consultation with RMS and Council, and in accordance with the RTA – Traffic Control at Worksites Manual;	Section 2
(c)	describe the processes in place for the management of truck movements entering and exiting the site;	Section 4
(d)	prohibit trucks departing the site from turning right from Crescent Street to Tweed Coast Road;	Section 4.3
(e)	 include a Drivers' Code of Conduct that includes: details of the safe and quiet driving practices that must be used by drivers travelling to and from the quarry; a map of the primary haulage route; safety initiatives for haulage through residential areas, school zones and along school bus routes; an induction process for vehicle operators and regular toolbox meetings; complaints resolution and disciplinary procedures; and details of community consultation measures for peak haulage periods. 	Section 4 Appendix C
(f)	describe the measures to be put in place to ensure compliance with the Drivers' Code of Conduct;	Section 5 & 6
(g)	include details of the measures to be implemented to minimise traffic safety issues and disruption to local road users during road upgrade works; and	Section 4.5
(h)	propose measures to minimise the transmission of dust and tracking of material onto the surface of public roads from vehicles leaving the quarry.	Section 4.4.3
-	The Applicant must not commence operations under Modification 1 until the Traffic Management Plan is approved by the Secretary.	
	The Applicant must implement the approved Traffic Management Plan as approved from time to time by the Secretary.	

Table 2 Generic Management Plan Requirements: Schedule 5, Condition 2

Item	Requirement	TMP Section
2	The Applicant must ensure that the management plans required under this consent are prepared in accordance with any relevant guidelines, and include:	
(a)	a summary of relevant background or baseline data;	Section 3.1
(b)	 a description of: the relevant statutory requirements (including any relevant approval, licence or lease conditions); 	Section 1.2, 3.2 & 3.3
	 any relevant limits or performance measures/criteria; and the specific performance indicators that are proposed to be used to judge the performance of, or guide the implementation of, the development or any management measures; 	
(c)	a description of the measures to be implemented to comply with the relevant statutory requirements, limits, or performance measures/criteria;	Section 4
(d)	 a program to monitor and report on the: impacts and environmental performance of the development; and effectiveness of any management measures (see (c) above); 	Section 6 & 7
(e)	a contingency plan to manage any unpredicted impacts and their consequences and to ensure that ongoing impacts reduce to levels below relevant impact assessment criteria as quickly as possible.	Section 6
(f)	a program to investigate and implement ways to improve the environmental performance of the development over time;	Section 7
(g)	 a protocol for managing and reporting any: incidents; complaints; and non-compliances with statutory requirements; 	Section 5, 6, 7 & 8
(h)	a protocol for periodic review of the plan; and	Section 7
(i)	a document control table that includes version numbers, dates when the management plan was prepared and reviewed, names and positions of the person/s who prepared and reviewed the management plan, a description of any revisions made and the date of the Secretary's approval.	Document Control Table
	Note: The Secretary may waive some of these requirements if they are unnecessary or unwarranted for particular management plans.	-

2 Road Authority Consultation

2.1 Consultation Requirements

Schedule 5, Condition 6 (*Evidence of Consultation*) of the Notice of Modification states the following with regard to consultation for management plans:

"Where the conditions of this consent require consultation with an identified party, the Applicant must:

- (a) consult with the relevant party prior to submitting the subject document to the Secretary for approval; and
- (b) provide details of the consultation undertaken, including:
 - the outcome of that consultation, matters resolved and unresolved;
 - and details of any disagreement remaining between the party consulted and the Applicant and how the Applicant has addressed any unresolved matters."

Schedule 3, Condition 25 of the Notice of Modification requires that the Operational TMP "be prepared in consultation with RMS and Council", and therefore the Road and Maritime Services (RMS) and Tweed Shire Council (TSC) were contacted by SLR.

2.2 TSC Consultation

2.2.1 Initial Consultation

A representative of TSC (Colleen Forbes – Team Leader Development Assessment) responded to a SLR/Hanson consultation request by email on 2 October 2018, stating:

"With reference to the Traffic Management Plan for the Tweed Sand Quarry, Council's Traffic Engineer has reviewed Schedule 3 Condition 25 and Schedule 5 Condition 2 of DA152-6-2005 MOD1. Please be advised that TSC considers that the information required appears to be sufficient in breadth and scope. Accordingly, no additional traffic considerations are requested by TSC.

Please also be advised that TSC would like to receive a copy of the draft Plan for review / feedback prior to its submission to the Department."

A copy of this response from TSC is included at Appendix B. SLR provided a draft of this Operational TMP to TSC for review prior to submission with DPE.

2.2.2 Review of Draft Operational TMP

A representative of TSC (Colleen Forbes – Team Leader Development Assessment) confirmed the following review of the Operational TMP:

"Council's Traffic Engineer has briefly reviewed the draft TMP. No concerns / objections are raised from Council's perspective."

A copy of this response from TSC is included at Appendix B.

2.3 RMS Consultation

2.3.1 Initial Consultation

A representative of the RMS (Greg Sciffer – Development Assessment Officer – Northern Region) provided comments in response to a SLR/Hanson consultation request during a phone conversation with Glyn Cowie (SLR) on 27 September 2018. RMS's verbal advice is summarised in Table 3, followed by a response to each comment as to how these have been incorporated into the drafting of the Operational TMP.

Table 3 RMS Initial Consultation Summary

RMS Advice SLR Response RMS identified that the term 'Traffic Management Plan' is SLR agrees with the RMS's assertion that a condition to a term that is typically used when referring to managing prepare a 'Traffic Management Plan' in isolation of the traffic associated with road construction activities greater details of the required content could potentially rather than operational activities, and hence RMS would be confused with a requirement to prepare a plan that prefer that the document is instead referred to as an relates to managing traffic associated with road 'Operational Traffic Management Plan' or similar. construction activities. This confusion could also be potentially exacerbated by Schedule 3, Condition 25(b) of the Notice of Modification, which includes a generic requirement for the TMP to be prepared "in accordance with the RTA - Traffic Control at Worksites Manual". Due to this potential for confusion, SLR has previously advocated the use of alternative terms such as "Road Use Management Plan" to identify where a TMP relates to the management of operational activities. In this instance, the naming of this TMP is, however, largely semantics as Schedule 3, Condition 25 of the Notice of Modification specifically stipulates the requirements of the plan and clearly articulates that these requirements relate to the operational activities associated with the site itself and not remote road construction activities, hence the generic reference to the worksite manual for example is not overly confusing in this instance. In response to this specific input received from RMS, this document has been referred to as Tweed Sand Plant: Operational Traffic Management Plan (Operational TMP) to minimise the potential for confusion.

RMS Advice	SLR Response
RMS provided a copy of a sample Operational Traffic Management Plan that has recently been prepared for another extractive industry project. The sample document provides guidance as to the style of TMP that RMS would prefer is prepared for TSP.	SLR appreciates RMS seeking to assist by providing a sample Operational Traffic Management Plan prepared for another project. The content of the <i>Tweed Sand Plant Operational TMP</i> is however dictated by the requirements of Schedule 3, Condition 25 of the Notice of Modification. It would therefore not necessarily be appropriate to replicate the structure of a plan prepared for another facility that responds to a different set of conditions and circumstances. In drafting the <i>Tweed Sand Plant Operational TMP</i> , SLR has specifically sought to ensure that the structure of the reporting and the aspects considered herein directly respond to the conditioned requirements (i.e. to aid verification that the conditioned requirements have been fully addressed). As a result, SLR has not directly replicated the structure of the sample reporting provided by RMS.
RMS offered to review the TMP prior to formal lodgement of the draft to DPE.	SLR has provided a draft of this Operational TMP to RMS for review prior to submission with DPE.

2.3.2 Review of Draft Operational TMP

A representative of the RMS (Greg Sciffer – Development Assessment Officer – Northern Region) provided the comments detailed in Table 4 on the 6 November 2018 following review of the Draft Operational TMP. Table 4 also provides a response as to how this feedback has been incorporated into the drafting of the final Operational TMP.

Table 4 RMS Draft Operational TMP Summary

Table 4 RMS Draft Operational TMP Summary		
RMS Advice	SLR Response	
 The Drivers Code of Conduct should include: Safety initiatives for haulage through residential areas, school zones and along school bus routes. Regular toolbox meetings Details of community consultation measures for peak haulage periods 	During the current and historic planning application process the minimisation of impacts on residential areas and school zones has been considered and hence the adopted safety initiative was that the defined haulage route would exclude access through Cudgen Village except for local deliveries for example. Additional commentary has been added to Section 4.3 (Haulage Route) to reflect this safety initiative in response to the feedback provided. In relation to toolbox meetings no trucks are based at TSP so it is not possible to hold toolbox meetings involving drivers. TSP does however hold regular toolbox meetings, but the only attendees are site personnel. No change has been made in relation to community consultation measures as this is already considered to be sufficiently dealt with within Section 8.1 that details the Community Consultative Committee arrangements for the site.	
Details of measures to be implemented to minimise traffic safety issues and disruption to local road users during road upgrade works.	The Operational TMP is not intended to replace the future need to prepare Construction Traffic Management Plans associated with any external road works delivered by Hanson. In response to the feedback provided by RMS this limitation of the Operational TMP has been clarified by additional commentary being added to Section 1.2. It is however premature to include the Construction Traffic Management Plan considerations within this Operational TMP as the design of the upgrade works to which the Construction Traffic Management Plans relate have not been prepared and are not required to be prepared until certain output thresholds are met as detailed in Section 3.2. It is not possible for example to prepare Traffic Control Plans (TCPs) that are a component of the Construction Traffic Management Plans in the absence of at least conceptual design drawings. This approach is appropriate in this instance as the external works are not required to be completed prior to commencement of use, but rather once certain output thresholds are exceeded, which may not occur for several years depending on commercial conditions. Nevertheless, a high level overview of the mitigation strategies potentially implemented as part of future Construction Traffic Management Plans is provided in Section 4.5 of this document.	
Measures to minimise tracking of materials onto the surface of public roads.	In response to this feedback additional commentary has been added to Section 4.2 to identify that a shaker grid is provided on exit to minimise the tracking of materials onto the surface of public roads.	

3 Project Overview

3.1 Site Details

TSP is located off Altona Road in Cudgen, Northern NSW. The site is formally described as Lot Plans 22DP1082435, 23DP1077509 and 494DP720450, with a total area of approximately 77 hectares (ha), of which 46 hectares (ha) form the approved extraction area. An overview of TSP and the surrounding area is presented on Figure 1.

Sand extraction has been undertaken on the site since 1983, with Hanson taking over operation of the existing site in 2005. TSP operates a single dredge unit which is linked to an onshore wash plant via a floating flow line. Sand product is processed through the wash plant, stock piled and loaded via a front end loader into standard highway trucks. Loaded trucks pass across the site weighbridge (logging product weight and truck departure date/time), exit the site, and then follow the standard haul route of Altona Road, Crescent Street, Tweed Coast Road, and the Pacific Highway to their ultimate destination.

TSP is located within the Tweed Valley flood plain and is surrounded by the following land uses/receptors:

- North: Tweed Shire Council's wastewater treatment facility, the proposed Carbrook Sands Quarry isolated residential receptors; agricultural land (cane, grazing), Pacific Motorway and township of Chinderah in the distance (approximately 2 km);
- East: Cudgen Lake Sand Quarry (Cudgen Lakes), township of Cudgen (approximately 1 km), Township of Kingscliff in the distance (approximately 3 km);
- South: Residential receptors located along Cudgen Road ridge;
- **West**: Australian Bay Lobster Producers Pty Ltd, Melaleuca Station Memorial Gardens and Crematorium, Pacific Motorway, agricultural land (cane, grazing).

LEGEND
TSP site
Approved extraction area
External road network
Site access

Altona Road

Cudgen takes
Sand Quarry

Cudgen takes
Sand Quarry

Cudgen takes
Sand Quarry

Figure 1 TSP and Surrounding Area

Source: Nearmap. Note: Site bounds indicative only.

3.2 Road Use Conditions

Schedule 3, Condition 20 of the Notice of Modification requires that the "Applicant must ensure that all heavy vehicle access to and from the site is via the Tweed Coast Road/Crescent Road (sic)/Altona Road route. Heavy vehicles must not travel via Crescent Street through Cudgen Village, except for local deliveries to Cudgen Village." Furthermore, Schedule 3, Condition 25 (d) of the Notice of Modification requires that the Operational TMP "prohibits trucks departing the site from turning right from Crescent Street to Tweed Coast Road".

Schedule 2, Condition 9 also requires certain upgrades, which are discussed subsequently herein, to be completed before the applicant can dispatch more than 10 laden trucks from the site in any hour. Following completion of these upgrades and the relevant notification requirements as outlined in Schedule 2, Condition 22 the applicant may dispatch up to 18 laden trucks from TSP in any given hour.

Schedule 2, Condition 16 and Schedule 3, Condition 22 impose obligations on the applicant to contribute towards road maintenance activities relating specifically to Altona Road and also the broader local road network.

Schedule 2, Condition 10 details the permissible hours of operation as detailed in Section 3.5 of the Operational TMP.

3.3 Operating Conditions

Relevant to the Operational TMP Schedule 3, Condition 24 requires that:

"The Applicant must:

- (a) provide sufficient parking on the site for all project-related traffic and visitors, in accordance with any applicable Council parking code and ensure that no on street parking is undertaken;
- (b) ensure that on-site parking and pedestrian facilities are adequately signposted;
- (c) ensure that all laden trucks entering or exiting the site have their loads covered;
- (d) ensure that all laden trucks exiting the site are cleaned of material that may fall from vehicles, before leaving the site;
- (e) use its best endeavours to ensure that appropriate signage is displayed on all trucks used to transport quarry products from the development so they can be easily identified by road users; and
- (f) keep accurate records of all laden truck movements to and from the site and publish a summary of these records on its website every month."

3.4 Surrounding Road Network

3.4.1 Altona Road

Altona Road extends approximately 1km from the TSP access to Crescent Street, and incorporates a rural formation with varying seal width. The western section of Altona Road, extending for approximately 400m from the TSP access east towards Crescent Street, incorporates approximately a 6.0m-6.5m wide seal. The remaining approximately 600m long section of Altona Road that ultimately intersects with Crescent Street incorporates approximately a 3.5m wide seal and three passing bays located on the northern (outbound) side of the seal.

Signage is installed on Altona Road near its intersection with Crescent Street and 150m east of the TSP access advising drivers of the presence of soft road edges, the presence of three passing bays and requiring that vehicles give-way to trucks. Additional signage is also currently installed advising that no sand trucks are permitted on Altona Road before 7am (NSW time). The current posted speed limit on Altona Road is 40km/h.

Schedule 3, Condition 21 and 22 of the Notice of Modification also impose obligations on the applicant to contribute towards providing two additional passing bays along Altona Road and contribute towards the maintenance of Altona Road.

3.4.2 Crescent Street

Crescent Street extends approximately 900m from Tweed Coast Road to Cudgen Road. The northern section of Crescent Street extending approximately 250m between the Tweed Coast Road intersection and the Altona Road intersection incorporates a rural formation with approximately an 8m wide seal. The southern section of Crescent Street which extends for approximately 650m between the Altona Road intersection and the Cudgen Road intersection has a varying width and formation with a Gross Load Limit of 14.5t also applicable to this southern section.

Schedule 3, Condition 20 of the Notice of Modification requires that heavy vehicles must not travel via Crescent Street through Cudgen Village, except for local deliveries to Cudgen Village.

3.4.3 Tweed Coast Road

Tweed Coast Road extends approximately 1.5km from Crescent Street to the Pacific Motorway. Tweed Coast Road also extends much further south to Wooyung. The section of Tweed Coast Road between Crescent Street and the Pacific Motorway incorporates approximately a 7.5m wide seal, centre and edge line markings.

Schedule 3, Condition 25 (d) prohibits trucks departing TSP from turning right from Crescent Street into Tweed Coast Road (i.e. southbound). Furthermore, Schedule 3, Condition 23 (d) of the Notice of Modification also imposes obligations on the applicant to contribute towards upgrading of the existing Tweed Coast Road/Crescent Street intersection to include an acceleration lane for vehicles turning left out of the western Crescent Street approach to Tweed Coast Road (northbound), and right from the northern Tweed Coast Road (i.e. southbound) approach into Crescent Street (westbound).

3.5 Permissible Hours of Operation

Schedule 2, Condition 10 of the Notice of Modification states the hours within which TSP may operate. These are reproduced in Table 5.

Table 5 Schedule 2 Condition 10 – Hours of Operation

Activity	Permissible Hours ¹
Quarrying operations (excluding loading and dispatch of trucks)	 7 am to 5 pm Monday to Friday; 7 am to 4 pm Saturday; and At no time on Sundays or public holidays
Loading and dispatch of trucks	 7 am to 5 pm Monday to Friday; 7 am to 12 pm Saturday; and At no time on Sundays or public holidays
Maintenance	 May be conducted at any time, provided that these activities are not audible at any privately-owned residence

Note 1: These hours of operation relate to a NSW operating site which will be one hour ahead of Queensland during daylight saving periods (relevant to interstate truck movements).

In addition to the Hours of Operation stated in Table 5 above, Schedule 2 Condition 11 of the Notice of Modification states:

"The following activities may be carried out outside the hours specified in [Table 5] above:

- (a) delivery or dispatch of materials as requested by Police or other public authorities; and
- (b) emergency work to avoid the loss of lives, property or to prevent environmental harm.

In such circumstances, the Applicant must notify the Secretary and affected residents prior to undertaking the activities, or as soon as is practical thereafter."

4 Heavy Vehicle Management

This Operational TMP provides additional details to supplement the Hanson Tweed Sand Plant: Drivers' Code of Conduct document, which is included at Appendix C. As part of the mandatory site induction required for drivers entering TSP, all drivers are required to read the Tweed Sand Plant: Drivers' Code of Conduct and this Operational TMP. Drivers are to complete and sign the Confirmation of Understanding provided within the Tweed Sand Plant: Drivers' Code of Conduct, and return to an authorised TSP staff member for secure storage onsite.

4.1 General Requirements

All heavy vehicle drivers hauling sand products from TSP must abide by the following:

- Undertake a site induction carried out by an authorised TSP staff member or suitably qualified person under the direction of the site manager;
- All drivers must hold a valid driver's licence which is appropriate for the class of vehicle under their operation;
- All drivers must comply with Chain of Responsibility legislation;
- All drivers are required to operate vehicles in a safe and courteous manner, within and external to TSP;
- All drivers are to comply with the instructions of authorised site personnel when within TSP;
- Any accidents, incidents, complaints, hazards, spillages or near misses must be reported immediately to the site manager. This includes incidents along the designated haulage route on the external road network; and
- Appropriate signage is to be displayed on all trucks used to transport product from TSP so that they can be readily identified by road users.

4.2 Site Management

The following procedures are to be observed by all heavy vehicle drivers accessing TSP:

- Haulage heavy vehicle access to TSP is to be restricted to the following hours (noting that these hours are
 more restrictive than the permissible hours detailed in Section 3.5 to minimise the potential for noncompliance with the permissible hours):
 - 7:15AM 4:45PM Monday to Friday (NSW time);
 - 7:15AM 11:45AM Saturday (NSW time).
- Hanson has a drug and alcohol policy which includes random testing;
- Drivers are to obey all site signage and the directions of TSP staff;
- All site mobile equipment has right of way at all times;
- Vehicles entering TSP are to be registered, roadworthy, and of sound mechanical condition. Hanson may
 request to inspect any vehicle or request maintenance records for any vehicle. Hanson reserves the right
 to prohibit any vehicle from TSP should there be any indication that the vehicle is not roadworthy or safe
 to operate;
- Upon entry to TSP, drivers are required to communicate with the loader operator on UHF channel 19 prior to entering the stockpile area;

- Drivers are to remain within the truck cabin unless instructed by a loader driver;
- Prior to leaving TSP, vehicles are to be weighed using the on-site weighbridge. Vehicles are required to be within the legal Gross Vehicle Mass (GVM) limit before being permitted to leave TSP;
- A shaker grid is installed at the site entry/exit such that all vehicles, including loaded trucks, must pass over the grid prior to leaving site, to minimise the tracking of materials onto the surface of public roads. The layout and fencing of the site is such that the shaker grid cannot be bypassed.

4.3 Haulage Route

To minimise the safety impact on residential areas and school zones the designated haulage route for heavy vehicles for TSP is Altona Road, Crescent Street, Tweed Coast Road and the Pacific Highway. This haulage route is mapped on Figure 2.

Figure 2 TSP Standard Haulage Route

Source: Nearmap. Note: Site bounds indicative only.

Drivers are to abide by the following instructions at each of the specific locations identified:

1. Altona Road:

• Altona Road is not to be accessed by trucks prior to 7:00AM (NSW time) on any day;

- Heavy vehicles travelling outbound from TSP along Altona Road (eastbound) are to give way using
 the provided passing bays. Heavy vehicle drivers travelling inbound to TSP along Altona Road
 (westbound) are to centre vehicles on the carriageway to avoid the soft shoulders on either side,
 and are to provide adequate passing clearance to any vehicles propped in the passing bays; and
- All vehicles must observe the posted speed limit on Altona Road (40km/h).

2. Crescent Street/Altona Road intersection:

- All trucks must STOP at the corner of Altona Road and Crescent Street after exiting TSP;
- Heavy vehicles leaving TSP are not permitted to turn right from Altona Road onto Crescent Street (with the exception of making local deliveries to Cudgen Village); and
- Any vehicle turning right from Altona Road onto Crescent Street to access Cudgen Village must also observe the sign posted load limit (Gross Load Limit 14.5t).
- **3.** Crescent Street/Tweed Coast Road: Heavy vehicles leaving TSP are not permitted to turn right from Crescent Street onto Tweed Coast Road.

Through minimising haulage along roads in the vicinity of the site that include either school zones or that facilitate lower speed residential property access, the designated haulage route minimises the safety impacts on residential areas and school zones through limiting the potential for haulage vehicles to interact with the following:

- Students walking or cycling to school, or boarding/alighting buses;
- Pedestrians and children around residential properties;
- Vehicles or cyclists entering or leaving residential property accesses.

The typical framework applied to risk management seeks to (1) Avoid; (2) Manage, and (3) Mitigate risks (in order of preference). By avoiding residential areas and school zones, the proposed haulage route is consistent with this framework.

As noted, haulage vehicles may be required on occasion to make local deliveries to residential areas or travel past school zones. Safety impacts on residential areas and school zones in these instances will be managed through the driving standards detailed in Section 4.4, and through the *Tweed Sand Plant: Drivers' Code of Conduct*, which is included at Appendix C.

4.4 Driving Standards

4.4.1 Speed Management

Posted speed limits along the haulage route indicated on Figure 2 are as follows:

Within the subject site: 30km/h;

Altona Road: 40km/h;

Crescent Street: 80km/h; and

Tweed Coast Road: 80km/h / 60km/h.

Drivers are to observe posted speed limits at all times, and vehicle speeds should be adjusted in consideration of the road environment (e.g. geometry and traffic conditions) and prevailing weather conditions (e.g. rain and fog).

4.4.2 Heavy Vehicle Noise Management

To limit heavy vehicle noise associated with TSP haulage activities, drivers are to abide by the following requirements:

- Vehicle access to TSP is to be via the designated haulage route of Altona Road Crescent Street Tweed Coast Road - Pacific Motorway;
- Trucks slowing to use the Altona Road/Crescent Street and Crescent Street/Tweed Coast Road
 intersections are not to use engine or compression braking systems (when accessed from either direction)
 except where required for safety reasons;
- Posted speed limits on the external road network are to be observed, and vehicle speeds are to be restricted to 30km/h within TSP site;
- TSP is not to be accessed by heavy vehicles outside of the site operating hours (loading and dispatch of trucks) as follows:
 - 7:15AM 4:45PM Monday to Friday (NSW time);
 - 7:15AM 11:45AM Saturday (NSW time).
- Vehicles are to be turned off when not in use.

4.4.3 Heavy Vehicle Load Restraint and Dust Suppression

To minimise the potential for load spillages and dust production, drivers are required to act in accordance with the following measures:

- Drivers are to ensure their load is legal, secure and side bars, draw bar and tailgate are clear of material;
- Drivers are to ensure that vehicle tailgates are locked following any tipping activities;
- Drivers are to ensure that all loads are tarped prior to leaving TSP. The tarp must cover the whole body without air gaps;
- Haul road watering will be conducted within TSP site on a regular basis to supress dust as per Schedule 3,
 Condition 5 (Operating Conditions) of the Notice of Modification:

"The Applicant must:

- (a) Implement best management practise to minimise the dust emissions of the development, including routinely watering haul roads being used by heavy vehicles and equipment".
- Drivers are to report excessive haul road dust (i.e. internal to TSP) to the site manager.

Page 19

4.5 Construction Traffic Management Plans for Road Upgrade Works

Conditions 21, 22, and 23 of Schedule 3 of the Notice of Modification require that road upgrade works and/or maintenance works be undertaken at a future stage should certain output thresholds be exceeded, as detailed in Section 3.2 of this document. Should these works be triggered at a future stage, Construction Traffic Management Plans and associated Traffic Control Plans would be required to manage any operational or safety impacts of construction activities associated with the works.

Given that the upgrade works are not yet required, conceptual designs of the upgrade works have not been prepared, and hence no detailed assessment of the likely requirements can be undertaken at this stage. Nevertheless, a high level overview of the mitigation strategies that could potentially be implemented as part of future Construction Traffic Management Plans or Traffic Control Plans, which may be required to support future upgrade works, are discussed below.

4.5.1 Altona Road Upgrade and Maintenance Works

Schedule 3, Condition 21 and 22 of the Notice of Modification impose obligations on the applicant to contribute towards providing two additional passing bays along Altona Road and contribute towards the maintenance of Altona Road.

At a high level, upgrade or maintenance works on Altona Road have the potential to impact users of Altona Road and potentially also Crescent Street. To manage any safety impacts during future road upgrade works, and also to minimise the disruption to local road users, the future Construction Traffic Management Plans associated with the upgrade works may therefore need to consider the following:

- Conceptual design of the proposed upgrade works;
- Traffic demand profiles and speed environment of Altona Road and Crescent Street;
- Consultation with Tweed Shire Council and local Stakeholders (i.e. landowners of adjacent properties
 accessed off Altona Road) so that construction works can be scheduled to occur at times which minimise
 inconvenience and disturbance for local road users and landholders;
- Traffic Control Plans that are prepared by a suitably qualified person in accordance with the following relevant references:
 - Traffic control at work sites: Technical Manual (RMS, 2018);
 - Australian Standard 1742.3, Manual of uniform traffic control devices Traffic control for works on roads.

4.5.2 Tweed Coast Road/Crescent Street Intersection Upgrade Works

Schedule 3, Condition 23 of the Notice of Modification also imposes obligations on the applicant to upgrade the existing Tweed Coast Road/Crescent Street intersection to include an acceleration lane for vehicles turning left out of the western Crescent Street approach to Tweed Coast Road (northbound), and right from the northern Tweed Coast Road (i.e. southbound) approach into Crescent Street (westbound). Should these works be triggered at a future stage, Construction Traffic Management Plans and associated Traffic Control Plans would be required to manage any operational or safety impacts associated with the works.

At a high level, upgrade works at the Tweed Coast Road/Crescent Street intersection have the potential to impact users of Tweed Coast Road and Crescent Street. To manage any safety impacts during potential future road upgrade works, and also to minimise the disruption to local road users, the future Construction Traffic Management Plans associated with the upgrade works may therefore need to consider the following:

- Conceptual design of the proposed upgrade works;
- Traffic demand profiles and speed environment of Tweed Coast Road and Crescent Street;
- Consultation with road authorities to ensure that construction works are scheduled to occur at times
 which minimises inconvenience and disturbance for local road users and landholders;
- Consideration of the need for the temporary installation of Variable Messaging Signage (VMS) in appropriate locations in the vicinity of the Tweed Coast Road/Crescent Street intersection for a period prior to the construction works occurring to alert motorists to the timing of the upgrade works, and that delays could be expected. This would enable motorists to allow for delays (i.e. start journey earlier), travel outside construction periods, or select an alternate travel route;
- Traffic Control Plans that are prepared by a suitably qualified person in accordance with the following relevant references:
 - Traffic control at work sites: Technical Manual (RMS, 2018);
 - Australian Standard 1742.3, Manual of uniform traffic control devices Traffic control for works on roads.

5 Incident Reporting

5.1 Relevant Conditions

Schedule 5, Conditions 9 to 11 of the Notice of Modification requires the following:

- 9. "The Department must be notified in writing to compliance@planning.nsw.gov.au immediately after the Applicant becomes aware of an incident.
- 10. Within 7 days of the date of the incident, the Applicant must provide the Secretary and any relevant agencies with a detailed report on the incident, and such further reports as may be requested. This report must include the time and date of the incident, details of the incident, measures implemented to prevent re-occurrence and must identify any non-compliance with this consent.
- 11. Any written requirements of the Secretary or relevant public authority (as determined by the Secretary) which may be given at any point in time, to address the cause or impact of an incident must be complied with and within any timeframe specified by the Secretary or relevant public authority."

In accordance with the Definition section of the Notice of Modification, an 'Incident' is defined as:

"A set of circumstances that:

- i. causes or threatens to cause material harm to the environment; or
- ii. results in non-compliance with this consent."

For the purposes of this Operational TMP, it is foreseen that the most likely cause for a potential 'incident' will be due to a non-compliance with the hourly truck dispatch limit criteria detailed in Section 3.2, use of sections of the road network not approved for haulage as also detailed in Section 3.2 or alternatively haulage that occurs outside the permissible hours identified in Section 3.5.

6 Protocol for Managing Complaints and/or Non-Compliances

6.1 Managing Complaints

All complaints received regarding traffic movements associated with TSP will be responded to within three dispatch days following receipt of the complaint. Dispatch days are taken to be those days during which loading and dispatch of trucks is approved to occur as detailed in Section 3.5.

TSP will keep a record of any complaint made to the site or to any employee or to agent/contractor of TSP in relation to traffic associated with TSP. Records will include:

- Date and time of the complaint;
- Method by which the complaint was made;
- Personal details of the complainant (if provided);
- Nature of the complaint and location;
- The driver/heavy vehicle details;
- Action taken by TSP and any follow up actions;
- If no action was taken, the reason why no action was taken; and
- A copy of the reply made to the complainant.

The Hanson website will include Contact Details and a Complaints Register, in accordance with Schedule 5, Condition 16 of the Notice of Modification.

6.2 Compliance Monitoring and Non-Compliance Response Procedure

Compliance of this Operational TMP with the Notice of Modification conditions will be measured according to the following performance indicators:

- Compliance with the hourly traffic volume dispatch criterion detailed in Section 3.2;
- An authorised TSP staff member or suitably qualified person under the direction of the site manager will undertake formal observations of compliance at yearly intervals;
- Contractor and employee awareness of this Operational TMP; and
- The frequency and nature of complaints reported to TSP in relation to traffic associated with TSP.

Incident reporting is to be undertaken as per the requirements in Section 5.1. In the event of non-compliance, the following actions will be undertaken:

- Establish the details in relation to the incident (location, vehicle, driver etc.);
- Confirm that the reported incident is therefore actually related to a vehicle associated with TSP;
- Conduct an investigation into why the incident occurred and evaluate the effectiveness of the current mitigation strategy; and
- Report details of any non-compliance to DPE in accordance with Section 5.1.

Should any driver be found to have acted in breach of the *Tweed Sand Plant: Drivers' Code of Conduct*, through either the formal complaint process detailed above, or through observations by authorised TSP personnel, disciplinary action will be taken, which could include the following:

- Verbal notification (if possible) and written confirmation to the driver of non-compliance with the *Tweed Sand Plant: Drivers' Code of Conduct*;
- Refusal to load affected trucks and direction to the driver to leave the site;
- Implementation of a temporary ban of the affected vehicle or driver until such time as sufficient evidence has been provided to authorised TSP staff that the breach has been rectified and/or will not occur again;
- In the case of a serious breach or repeated non-compliance with the *Tweed Sand Plant: Drivers' Code of Conduct,* a permanent site ban of the affected vehicle or driver will be considered.

7 Periodic Review

This Operational TMP shall be reviewed and revised and/or updated, in accordance with Schedule 5, Condition 4 of the Notice of Modification, within three (3) months of any of the following:

- The submission of an incident report under Schedule 5, Condition 10;
- The submission of an Annual Review under Schedule 5, Condition 13;
- The submission of an Audit report under Schedule 5, Condition 14; or
- The approval of any modification to the conditions of the Notice of Modification.

Where a review results in revisions to the Operational TMP, within six weeks of the review the revised Operational TMP will be submitted for DPE approval.

Review of this Operational TMP will also take place if monitoring records indicate that it is warranted, or in the event of any significant change to the form of the external road network from that contemplated herein.

8 Community Consultation and Performance Monitoring

8.1 Community Consultative Committee

Schedule 5, Condition 8 of the Notice of Modification states that TSP must operate a Community Consultative Committee (CCC) for the site. The CCC must be operated in general accordance with DPE's Community Consultative Committee Guidelines: State Significant Projects (2016), for the duration of TSP operations and for at least 6 months following the completion of TSP operations. TSP already has an existing CCC in place that meets biannually.

The CCC is to facilitate communication, consultation and information sharing between TSP and the local community.

8.2 Public Performance Reporting

Schedule 3, Condition 24 (f) of the Notice of Modification requires that TSP keep accurate records of all laden truck movements to and from the site and publish a summary of these records on its website every month.

APPENDIX A

DPE Approval of Expert

Planning Services Resource Assessments

Contact: = Phone: Genevieve Seed (02) 9274 6489

Email:

genevieve.seed@planning.nsw.gov.au

Mr Murray Graham Development Manager Hanson Construction Materials Pty Ltd PO Box 1636 Toombul QLD 4012

Dear Mr Graham,

Tweed Sand Quarry (DA 152-6-2005) Approval of Experts

I refer to your email dated 19 September 2018, seeking the approval of various experts to prepare management plans for the Tweed Sand Quarry, including:

- Adam McArthur, Phoebe Chapman and Nicole Davis from JWA Ecological, to prepare the Rehabilitation Management Plan; and
- Jeff Baczynski of SLR, to prepare the Transport Management Plan.

The Secretary has approved the appointment of these experts.

Should you have any enquiries in relation to this matter, please contact Genevieve Seed.

Yours sincerely,

Megan Dawson

A/Director

Resource Assessments as nominee of the Secretary

MgB)a- 20/9/18

APPENDIX B

Evidence of Consultation

Jeffrey Baczynski

From: Colleen Forbes < CForbes@tweed.nsw.gov.au > Sent: Wednesday, 7 November 2018 3:49 PM

To: Glyn Cowie

Cc: Jeffrey Baczynski; Graham, Murray (Skygate) AUS; Erin Holton (holton.el@access.gs); Chris Lawlor Subject: RE: 620.12479 - Tweed Sand Plant MOD1 - Traffic Management Plan Stakeholder Consultation

Hi Glyn,

Council's Traffic Engineer has briefly reviewed the draft TMP. No concerns / objections are raised from Council's perspective.

Regards, Colleen

Colleen Forbes

Team Leader Development Assessment

p (02) 6670 2596

contact us | website | your say tweed | our values

Your actions matter: print less to save more

From: Glyn Cowie [mailto:gcowie@slrconsulting.com]

Sent: Friday, 2 November 2018 2:03 PM

To: Colleen Forbes

Cc: Jeffrey Baczynski; Graham, Murray (Skygate) AUS; Erin Holton (holton.el@access.gs); Chris Lawlor **Subject:** RE: 620.12479 - Tweed Sand Plant MOD1 - Traffic Management Plan Stakeholder Consultation

Hi Colleen,

Thank you for your below response.

Further to your request, please see attached the draft Traffic Management Plan for TSP. We would appreciate your review and any feedback you have so this can be considered prior to Hanson's submission to DPE.

Please note that due to the current time critical nature of the TMP, we would appreciate your feedback no later than COB Friday 9 November 2018.

Should you have any questions that you'd wish to discuss over the phone, please don't hesitate to contact either Jeff Baczynski (07 3858 4800) or myself (0438 763 516).

Kind regards, Glyn From: Colleen Forbes < CForbes@tweed.nsw.gov.au>

Sent: Tuesday, 2 October 2018 12:14 PM **To:** Glyn Cowie <gcowie@slrconsulting.com>

Cc: Jeffrey Baczynski <jbaczynski@slrconsulting.com>; Graham, Murray (Skygate) AUS

<Murray.Graham@hanson.com.au>

Subject: RE: 620.12479 - Tweed Sand Plant MOD1 - Traffic Management Plan Stakeholder Consultation

Dear Glyn,

With reference to the Traffic Management Plan for the Tweed Sand Quarry, Council's Traffic Engineer has reviewed Schedule 3 Condition 25 and Schedule 5 Condition 2 of DA152-6-2005 MOD1. Please be advised that TSC considers that the information required appears to be sufficient in breadth and scope. Accordingly, no additional traffic considerations are requested by TSC.

Please also be advised that TSC would like to receive a copy of the draft Plan for review / feedback prior to its submission to the Department.

Regards, Colleen

Colleen Forbes

Team Leader Development Assessment

p (02) 6670 2596

contact us | website | your say tweed | our values

Your actions matter: print less to save more

From: Glyn Cowie [mailto:gcowie@slrconsulting.com]

Sent: Monday, 24 September 2018 4:15 PM

To: Colleen Forbes

Cc: Jeffrey Baczynski; Graham, Murray (Skygate) AUS

Subject: 620.12479 - Tweed Sand Plant MOD1 - Traffic Management Plan Stakeholder Consultation

Hi Colleen,

You would be aware of the recently approved Tweed Sand Plant (TSP) MOD1 approval relating to an increase in extraction limit and associated heavy vehicle numbers. In accordance with the approved MOD1 Notice for Modification Development Consent (DA 152-6-2005 dated 20 August 2018, 'the Consent'), a traffic management plan is required to be prepared for the development to the satisfaction of the Secretary (DPE). SLR Consulting has been engaged by Hanson Construction Materials (HCM, the operator of TSP) to prepare a traffic management plan in accordance with the Consent.

The specific requirements for the traffic management plan are detailed in Schedule 3 Condition 25 of the Consent, which are copied below.

Transport Management Plan

- 25. The Applicant must prepare a Traffic Management Plan for the development to the satisfaction Secretary. This plan must:
 - (a) be prepared by suitably qualified and experienced person/s whose appointment has been a
 by the Secretary;
 - (b) be prepared in consultation with RMS and Council, and in accordance with the RTA Traffi at Worksites Manual;
 - (c) describe the processes in place for the management of truck movements entering and existe:
 - (d) prohibit trucks departing the site from turning right from Crescent Street to Tweed Coast Re
 - (e) include a Drivers' Code of Conduct that includes:
 - details of the safe and quiet driving practices that must be used by drivers travelling to the quarry;
 - a map of the primary haulage route;
 - safety initiatives for haulage through residential areas, school zones and along sc routes;
 - an induction process for vehicle operators and regular toolbox meetings;
 - complaints resolution and disciplinary procedures; and
 - details of community consultation measures for peak haulage periods.
 - (f) describe the measures to be put in place to ensure compliance with the Drivers' Code of C
 - include details of the measures to be implemented to minimise traffic safety issues and disr local road users during road upgrade works; and
 - (h) propose measures to minimise the transmission of dust and tracking of material onto the s public roads from vehicles leaving the quarry.

In addition to Schedule 3 Condition 25, Schedule 5 Condition 2 details the broader requirements for management plans supporting this MOD1. These are copied below.

Management Plan Requirements

- The Applicant must ensure that the management plans required under this consent are pre accordance with any relevant guidelines, and include:
 - (a) a summary of relevant background or baseline data:
 - (b) a description of:
 - the relevant statutory requirements (including any relevant approval, licence or lease co
 - · any relevant limits or performance measures/criteria; and
 - the specific performance indicators that are proposed to be used to judge the performa guide the implementation of, the development or any management measures;
 - a description of the measures to be implemented to comply with the relevant statutory requirements, or performance measures/criteria;
 - (d) a program to monitor and report on the:
 - impacts and environmental performance of the development; and
 - effectiveness of any management measures (see (c) above);
 - (e) a contingency plan to manage any unpredicted impacts and their consequences and to er ongoing impacts reduce to levels below relevant impact assessment criteria as quickly as
 - a program to investigate and implement ways to improve the environmental performan development over time;
 - (g) a protocol for managing and reporting any:
 - incidents;
 - · complaints; and
 - non-compliances with statutory requirements;
 - (h) a protocol for periodic review of the plan; and
 - (i) a document control table that includes version numbers, dates when the management prepared and reviewed, names and positions of the person/s who prepared and reviewed management plan, a description of any revisions made and the date of the Secretary's appropriate the control of the secretary of the secre

Note: The Secretary may waive some of these requirements if they are unnecessary or unwarranted for management plans.

With regard to specific traffic management plan requirements, it is stated that the plan must be prepared in consultation with Council. To satisfy this requirement, this email serves to commence that consultation. We kindly request a response to the following two (2) points:

- 1. Could you please confirm whether you require any additional considerations into developing the traffic management plan above those specifically stated in the Consent and copied into this email? If you do, could you please state your considerations.
- 2. Do you request a copy of the draft plan for review/feedback prior to HCM's submission to DPE for ultimate approval?

I appreciate your response on this matter. Please note that in accordance with the Consent, HCM must not commence operations under the Consent until a traffic management plan has been approved by DPE. The Stakeholder consultation process will need to be completed prior to HCM submitting the traffic management plan for approval. As the traffic management plan is considered critical path, I would appreciate your response as soon as practical.

Please do not hes	itate to contact	me should you	wish to discuss	further.
-------------------	------------------	---------------	-----------------	----------

Kind	regards,
Glvn	

All official correspondence requiring a formal written response should be addressed to the General Manager, PO Box 816, Murwillumbah, 2484; or emailed to tsc@tweed.nsw.gov.au; or faxed to 02 6670 2429.

We work flexibly. If you have received an email from me outside of normal business hours, I'm sending it at a time that suits me. Unless it's flagged as urgent, I'm not expecting you to read or reply until normal business hours.

This email (including any attachments) is confidential and must only be used by the intended recipient(s) for the purpose(s) for which it has been sent. It may also be legally privileged and/or subject to copyright.

If you are not an intended recipient, any disclosure, distribution, copying or use of or reliance on this email (or any attachment) is strictly prohibited. If you have received this email in error, please promptly notify the sender by return email and then delete all copies of this email (and any attachments).

If you forward or otherwise distribute this email (or any attachment) you may be personally liable for a breach of confidentiality, an infringement of copyright, defamation or other legal liability.

Any opinions, views or conclusions expressed in this email (or any attachment) are those of the individual sender and may not necessarily reflect the official position of the Council.

This e-mail may contain an e-Letter attachment. A digital message is deemed to have been delivered, opened, viewed, presented and provisioned to a customer when the digital message is accessible by the customer to whom it was sent. If an original hard copy of the message is required, please reply to this message requesting a hard copy. www.tweed.nsw.gov.au

This email has been scanned by the MessageLabs Email Security System

All official correspondence requiring a formal written response should be addressed to the General Manager, PO Box 816, Murwillumbah, 2484; or emailed to tsc@tweed.nsw.gov.au; or faxed to 02 6670 2429.

We work flexibly. If you have received an email from me outside of normal business hours, I'm sending it at a time that suits me. Unless it's flagged as urgent, I'm not expecting you to read or reply until normal business hours.

This email (including any attachments) is confidential and must only be used by the intended recipient(s) for the purpose(s) for which it has been sent. It may also be legally privileged and/or subject to copyright.

If you are not an intended recipient, any disclosure, distribution, copying or use of or reliance on this email (or any attachment) is strictly prohibited. If you have received this email in error, please promptly notify the sender by return email and then delete all copies of this email (and any attachments).

If you forward or otherwise distribute this email (or any attachment) you may be personally liable for a breach of confidentiality, an infringement of copyright, defamation or other legal liability.

Any opinions, views or conclusions expressed in this email (or any attachment) are those of the individual sender and may not necessarily reflect the official position of the Council.

This e-mail may contain an e-Letter attachment. A digital message is deemed to have been delivered, opened, viewed, presented and provisioned to a customer when the digital message is accessible by the customer to whom it was sent. If an original hard copy of the message is required, please reply to this message requesting a hard copy. www.tweed.nsw.gov.au

This email has been scanned by the MessageLabs Email Security System

Jeffrey Baczynski

From: Glyn Cowie

Sent: Tuesday, 6 November 2018 11:44 AM

To: SCIFFER Greg

Cc: Development Northern; Gen Seed; Jeffrey Baczynski; Graham, Murray (Skygate) AUS; Erin Holton

(holton.el@access.gs)

Subject: RE: 620.12479 - Tweed Sand Plant MOD1 - Traffic Management Plan Stakeholder Consultation

Thank you Greg for your prompt feedback.

Our Principal Transport Consultant, Jeff Baczynski, will review your below points and be in touch should he wish to discuss further.

Kind regards, Glyn

Glyn Cowie

Associate - Acoustics & Vibration

20819

+61 438 763 516

0 +61 7 3858 4800

gcowie@slrconsulting.com

SLR Consulting Australia Pty Ltd Ground Floor, 194 Varsity Parade, Varsity Lakes, QLD, 4227

From: SCIFFER Greg < Greg.SCIFFER@rms.nsw.gov.au>

Sent: Tuesday, 6 November 2018 11:24 AM **To:** Glyn Cowie <gcowie@slrconsulting.com>

Cc: Development Northern <development.northern@rms.nsw.gov.au>; Gen Seed

<genevieve.seed@planning.nsw.gov.au>

Subject: RE: 620.12479 - Tweed Sand Plant MOD1 - Traffic Management Plan Stakeholder Consultation

Glyn

Thank s for the opportunity to comment on the Draft OTMP for Tweed Sand Plant. Generally the Draft OTMP has addressed most of requirements of Schedule 3, Condition 25. The following comments are provided for your consideration:

- 1. The Drivers Code of Conduct should include:
 - Safety initiatives for haulage through residential areas, school zones and along school bus routes.
 - Regular toolbox meetings
 - Details of community consultation measures for peak haulage periods
- 2. Details of measures to be implemented to minimise traffic safety issues and disruption to local road users during road upgrade works.
- 3. Measures to minimise tracking of materials onto the surface of public roads.

Regards Greg Sciffer Development Assessment Officer Northern Region From: Glyn Cowie [mailto:qcowie@slrconsulting.com]

Sent: Friday, 2 November 2018 2:08 PM

To: SCIFFER Greq

Cc: Jeffrey Baczynski; Chris Lawlor; Graham, Murray (Skygate) AUS; Erin Holton (holton.el@access.gs) **Subject:** RE: 620.12479 - Tweed Sand Plant MOD1 - Traffic Management Plan Stakeholder Consultation

Hi Greg,

Further to the below email, and your verbal request, please see attached the draft Operational Traffic Management Plan for TSP. We would appreciate your review and any feedback you have so this can be considered prior to Hanson's submission to DPE.

Please note that due to the current time critical nature of the TMP, we would appreciate your feedback no later than COB Friday 9 November 2018.

We also note the example OTMP that you provided following our discussion. Please note that this OTMP has been drafted to specifically address the relevant conditions of the TSP Notice of Modification. Those specific conditions are referenced in Section 1.2 of the attached.

Should you have any questions that you'd wish to discuss over the phone, please don't hesitate to contact either Jeff Baczynski (07 3858 4800) or myself (0438 763 516).

Kind regards, Glyn

From: SCIFFER Greg < <u>Greg.SCIFFER@rms.nsw.gov.au</u>>

Sent: Thursday, 27 September 2018 9:31 AM **To:** Glyn Cowie <gcowie@slrconsulting.com>

Subject: RE: 620.12479 - Tweed Sand Plant MOD1 - Traffic Management Plan Stakeholder Consultation

Glyn

I have been reviewing, preparing advice and liaising with DEP for RMS regarding Tweed Sand Quarry. Could you ring me on 02 6604 9328 to discuss your email before RMS formally replies.

Thanks
Greg Sciffer
Development Assessment Officer
Northern Region

From: Glyn Cowie [mailto:gcowie@slrconsulting.com]

Sent: Monday, 24 September 2018 4:17 PM

To: Development Northern

Cc: Jeffrey Baczynski; Graham, Murray (Skygate) AUS

Subject: 620.12479 - Tweed Sand Plant MOD1 - Traffic Management Plan Stakeholder Consultation

Attn: Liz Smith/John Perkins.

Hi Liz/John,

You may be aware of the recently approved Tweed Sand Plant (TSP) MOD1 approval relating to an increase in extraction limit and associated heavy vehicle numbers. In accordance with the approved MOD1 *Notice for Modification Development Consent* (DA 152-6-2005 dated 20 August 2018, 'the Consent'), a traffic management plan is required to be prepared for the development to the satisfaction of the Secretary (DPE). SLR Consulting has

been engaged by Hanson Construction Materials (HCM, the operator of TSP) to prepare a traffic management plan in accordance with the Consent.

The specific requirements for the traffic management plan are detailed in Schedule 3 Condition 25 of the Consent, which are copied below.

Transport Management Plan

- 25. The Applicant must prepare a Traffic Management Plan for the development to the satisfaction Secretary. This plan must:
 - (a) be prepared by suitably qualified and experienced person/s whose appointment has been a
 by the Secretary;
 - (b) be prepared in consultation with RMS and Council, and in accordance with the RTA Traffi at Worksites Manual;
 - (c) describe the processes in place for the management of truck movements entering and existe.
 - (d) prohibit trucks departing the site from turning right from Crescent Street to Tweed Coast Re
 - (e) include a Drivers' Code of Conduct that includes:
 - details of the safe and quiet driving practices that must be used by drivers travelling to the quarry;
 - a map of the primary haulage route;
 - safety initiatives for haulage through residential areas, school zones and along sc routes;
 - an induction process for vehicle operators and regular toolbox meetings;
 - · complaints resolution and disciplinary procedures; and
 - details of community consultation measures for peak haulage periods.
 - (f) describe the measures to be put in place to ensure compliance with the Drivers' Code of C
 - include details of the measures to be implemented to minimise traffic safety issues and disr local road users during road upgrade works; and
 - (h) propose measures to minimise the transmission of dust and tracking of material onto the s public roads from vehicles leaving the quarry.

In addition to Schedule 3 Condition 25, Schedule 5 Condition 2 details the broader requirements for management plans supporting this MOD1. These are copied below.

Management Plan Requirements

- The Applicant must ensure that the management plans required under this consent are pre accordance with any relevant guidelines, and include:
 - (a) a summary of relevant background or baseline data;
 - (b) a description of:
 - the relevant statutory requirements (including any relevant approval, licence or lease co
 - · any relevant limits or performance measures/criteria; and
 - the specific performance indicators that are proposed to be used to judge the performa guide the implementation of, the development or any management measures;
 - a description of the measures to be implemented to comply with the relevant statutory requilimits, or performance measures/criteria;
 - (d) a program to monitor and report on the:
 - impacts and environmental performance of the development; and
 - · effectiveness of any management measures (see (c) above);
 - (e) a contingency plan to manage any unpredicted impacts and their consequences and to er ongoing impacts reduce to levels below relevant impact assessment criteria as quickly as
 - a program to investigate and implement ways to improve the environmental performan development over time;
 - (g) a protocol for managing and reporting any:
 - incidents;
 - · complaints; and
 - non-compliances with statutory requirements;
 - (h) a protocol for periodic review of the plan; and
 - a document control table that includes version numbers, dates when the management prepared and reviewed, names and positions of the person/s who prepared and reviewed management plan, a description of any revisions made and the date of the Secretary's appropriate

Note: The Secretary may waive some of these requirements if they are unnecessary or unwarranted for management plans.

With regard to specific traffic management plan requirements, it is stated that the plan must be prepared in consultation with RMS. To satisfy this requirement, this email serves to commence that consultation. We kindly request a response to the following two (2) points:

- 1. Could you please confirm whether you require any additional considerations into developing the traffic management plan above those specifically stated in the Consent and copied into this email? If you do, could you please state your considerations.
- 2. Do you request a copy of the draft plan for review/feedback prior to HCM's submission to DPE for ultimate approval?

I appreciate your response on this matter. Please note that in accordance with the Consent, HCM must not commence operations under the Consent until a traffic management plan has been approved by DPE. The Stakeholder consultation process will need to be completed prior to HCM submitting the traffic management plan for approval. As the traffic management plan is considered critical path, I would appreciate your response as soon as practical.

Please do not hesitate to contact me should you wish to discuss further.

Kind regards, Glyn

Before printing, please consider the environment

IMPORTANT NOTICE: This email and any attachment to it are intended only to be read or used by the named addressee. It is confidential and may contain legally privileged information. No confidentiality or privilege is waived or lost by any mistaken transmission to you. Roads and Maritime Services is not responsible for any unauthorised alterations to this email or attachment to it. Views expressed in this message are those of the individual sender, and are not necessarily the views of Roads and Maritime Services. If you receive this email in error, please immediately delete it from your system and notify the sender. You must not disclose, copy or use any part of this email if you are not the intended recipient.

Before printing, please consider the environment

IMPORTANT NOTICE: This email and any attachment to it are intended only to be read or used by the named addressee. It is confidential and may contain legally privileged information. No confidentiality or privilege is waived or lost by any mistaken transmission to you. Roads and Maritime Services is not responsible for any unauthorised alterations to this email or attachment to it. Views expressed in this message are those of the individual sender, and are not necessarily the views of Roads and Maritime Services. If you receive this email in error, please immediately delete it from your system and notify the sender. You must not disclose, copy or use any part of this email if you are not the intended recipient.

APPENDIX C

Tweed Sand Plant: Drivers' Code of Conduct

Site Specific Requirements:

- All trucks must only access site via Tweed Coast Rd/Crescent St/Altona Rd (see map below).
- No trucks are permitted on Altona Road before 7:00am NSW time.
- Trucks are not permitted to turn right from Crescent Street onto Tweed Coast Road.
- **UHF 19** must be used to communicate with sales loader.
- Operating Hours for sales:
 Mon Fri = 7:15am to 4:45pm NSW time
 Saturday = 7:15am to 11:45am NSW time
- Maximum speed limits:
 Altona Road = 40kmh
 Sand Plant site = 30kmh
- Tweed Sand Plant is a 'No Smoking' site.
- In addition to this Drivers' Code, drivers are required to read the Tweed Sand Plant: MOD1 Operational Traffic Management Plan prepared by SLR. A copy will be kept onsite and made available to drivers as part of the site induction.

Note: Non-compliance with any directive included in this Drivers' Code, either on or off site, may lead to refusal to load truck and/or further disciplinary action against the driver.

Site Contact Details:

Manager: John McQueen, ph. 0407 180 038

Hanson Construction Materials Pty Ltd

Tweed Sand Plant

Drivers' Code of Conduct

Updated: March 2019

Tweed Sand Plant - Drivers' Code of Conduct

Transport routes may require travel through, or in close proximity to residential areas. Hanson has made a commitment to local authorities and the local community to undertake all activities including delivery of product in a manner which protects the environment and amenity of the local community.

It must be remembered that your driving behaviour is the Company image that the general public see and if tarnished, can severely impact our reputation with the local community.

All heavy vehicle drivers are required to be responsible, professional and drive in accordance with this Drivers' Code.

Hanson will enforce this code and follow up on any complaints. Breaches or blatant disregard of the Drivers' Code of Conduct may lead to exclusion from site and/or further disciplinary action.

This Drivers' Code of Conduct is required to be read and completed by all drivers; signed confirmation will be held on site.

- Professional road courtesy must be displayed at all times towards other road users. Drivers must obey all signage, given directions and instructions.
- The use of engine brakes is prohibited in residential areas in close proximity to all Hanson sites.
- All loads with material <150mm must be tarped prior to exiting site. The tarp must cover the total surface of the truck and trailer body.
- All loads must be secure, with drawbars, tailgates and side combings cleaned down prior to leaving site.
- All drivers must comply with current Chain of Responsibility legislation.
- All site mobile equipment (FEL, dump truck, water truck, etc) has right of way at all times.
- POSITIVE COMMUNICATION <u>MUST</u> be established when approaching any site vehicle, mobile equipment or machine and/or before entering the site vehicle's work area.

- All trucks entering site must be fully maintained and roadworthy.
- No truck will be allowed to leave site if weight is in excess of the Registered Gross Mass of the vehicle.
- You must remain in the truck cabin whilst being loaded unless directed otherwise by the loader driver. Apply park brake if leaving vehicle.
- No children are allowed on site, including in truck cabins. Any vehicle containing children will not be loaded (organised school visits and apprentices under 18 are excluded).
- Inappropriate or unnecessary use of UHF radios is not permitted, so as to allow clear and concise communications on site.
- Steel cap boots and high visibility clothing must be worn on site at all times. Hard hats must be worn if exiting truck.
- Hanson has a Drug and Alcohol Policy which includes random testing. If you refuse to be tested you will not be loaded.
- No soil, fill or other materials are to be brought onto site without the Site Manager's prior approval. All trucks must be free of soil build-up prior to entering site.
- All trucks must drive through the wheel wash and/or across the shaker grid when exiting any site where installed, to remove loose material from tyres and truck body.
- No truck maintenance or repairs are to be performed on site without Site Manager's approval.
- Any litter must be placed in litter bins on site.
- Any accidents, incidents, complaints, hazards, spillages or near misses that occur on or off site, must be reported to the Site Manager as soon as possible after the occurrence.


Hanson Construction Materials Pty Ltd

Tweed Sand Plant

Drivers' Code of Conduct

Confirmation of Understanding

l, (print)
of (company)
have read/had explained to me, the Tweed Sand Plant Drivers' Code of Conduct and understand my obligations with regard to its content.
I further confirm I will comply with all requirements of the Tweed Sand Plant Drivers' Code of Conduct.
Signed:
Date:
Endorsed By:(Hanson Representative)
(Hanson Representative)

ASIA PACIFIC OFFICES

BRISBANE

Level 2, 15 Astor Terrace Spring Hill QLD 4000

Australia

T: +61 7 3858 4800 F: +61 7 3858 4801

MACKAY

21 River Street Mackay QLD 4740

Australia

T: +61 7 3181 3300

ROCKHAMPTON

rockhampton@slrconsulting.com

M: +61 407 810 417

AUCKLAND

68 Beach Road Auckland 1010 New Zealand

T: +64 27 441 7849

T: +61 2 9427 8100

NELSON

5 Duncan Street Port Nelson 7010 New Zealand T: +64 274 898 628

CANBERRA

GPO 410 Canberra ACT 2600

Australia

T: +61 2 6287 0800 F: +61 2 9427 8200

MELBOURNE

Suite 2, 2 Domville Avenue Hawthorn VIC 3122

Australia

T: +61 3 9249 9400 F: +61 3 9249 9499

SYDNEY

2 Lincoln Street Lane Cove NSW 2066

Australia

F: +61 2 9427 8200

NEW PLYMOUTH

Level 2, 10 Devon Street East New Plymouth 4310 New Zealand

DARWIN

Australia

5 Foelsche Street

Darwin NT 0800

T: +61 8 8998 0100

F: +61 2 9427 8200

T: +61 2 4037 3200

F: +61 2 4037 3201

Tamworth NSW 2340

M: +61 408 474 248

F: +61 2 9427 8200

TAMWORTH

PO Box 11034

Australia

New Lambton NSW 2305

NEWCASTLE

10 Kings Road

Australia

GOLD COAST

Ground Floor, 194 Varsity Parade Varsity Lakes QLD 4227

Australia

M: +61 438 763 516

PERTH

Ground Floor, 503 Murray Street

Perth WA 6000

Australia T: +61 8 9422 5900

F: +61 8 9422 5901

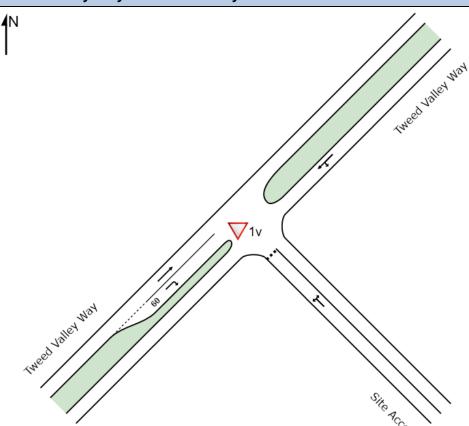
TOWNSVILLE

Level 1, 514 Sturt Street Townsville QLD 4810

Australia

T: +61 7 4722 8000 F: +61 7 4722 8001

Appendix E – Intersection Performance Summaries


 \gg -

- www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-TIA-07B
Doc Title: Traffic Impact Assessment

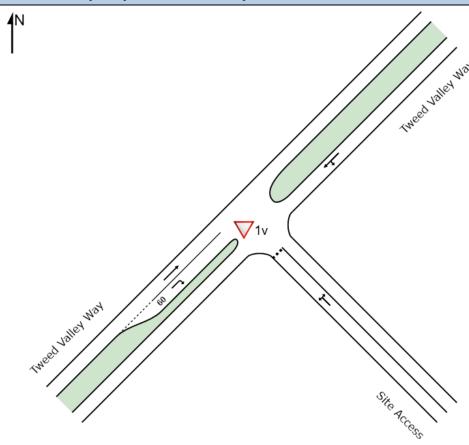
Tweed Valley Way / Australian Bay Lobster Producers Access – 2020 Base

MOVEMENT SUMMARY

Site: 1v [Tweed Valley Way / Site Access 2020 AM (Site Folder: General)]

Three-way intersection with 3-lane major road (Stop control) Site Category: (None) Give-Way (Two-Way)

		,												
Vehicl	e Moveme	ent Performa												
Mov	Turn	INPUT VO	DLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	rum	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
SouthE	ast: Site A	ccess												
1	L2	4	33.3	4	33.3	0.026	11.4	LOS B	0.1	0.9	0.77	0.86	0.77	43.7
2	R2	2	100.0	2	100.0	0.026	35.2	LOS E	0.1	0.9	0.77	0.86	0.77	41.3
Approa	ch	6	55.5	6	55.5	0.026	19.3	LOS C	0.1	0.9	0.77	0.86	0.77	42.9
NorthE	ast: Tweed	Valley Way												
3	L2	4	5.6	4	5.6	0.393	5.7	LOS A	0.0	0.0	0.00	0.00	0.00	57.8
4	T1	688	5.6	724	5.6	0.393	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approa	ch	692	5.6	728	5.6	0.393	0.2	NA	0.0	0.0	0.00	0.00	0.00	59.7
SouthV	Vest: Twee	d Valley Way												
5	T1	70	21.7	74	21.7	0.047	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	5	50.0	5	50.0	0.011	12.7	LOS B	0.0	0.4	0.68	0.76	0.68	46.6
Approa	ch	75	23.6	79	23.6	0.047	0.9	NA	0.0	0.4	0.05	0.05	0.05	58.9
All Veh	icles	773	7.7	814	7.7	0.393	0.4	NA	0.1	0.9	0.01	0.01	0.01	59.4



VSite: 1v [Tweed Valley Way / Site Access 2020 PM (Site Folder: General)]

Vehicle	Moveme	ent Performa	ince											
Mov	Turn	INPUT VOLUMES		DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Turri	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m			_	km/h
SouthEas	st: Site Ad	cess												
1	L2	9	39.3	9	39.3	0.024	10.9	LOS B	0.1	8.0	0.65	0.78	0.65	47.4
2	R2	1	100.0	1	100.0	0.024	28.5	LOS D	0.1	8.0	0.65	0.78	0.65	44.8
Approach	1	10	45.4	11	45.4	0.024	12.7	LOS B	0.1	0.8	0.65	0.78	0.65	47.1
NorthEas	t: Tweed	Valley Way												
3	L2	1	100.0	1	100.0	0.359	6.9	LOS A	0.0	0.0	0.00	0.00	0.00	52.7
4	T1	630	5.6	663	5.6	0.359	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Approach)	631	5.7	664	5.7	0.359	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.7
SouthWe	st: Twee	d Valley Way												
5	T1	55	21.4	58	21.4	0.037	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	1	0.0	1	0.0	0.001	8.4	LOS A	0.0	0.0	0.57	0.60	0.57	50.9
Approach)	56	21.0	59	21.0	0.037	0.2	NA	0.0	0.0	0.01	0.01	0.01	59.8
All Vehic	es	697	7.5	734	7.5	0.359	0.3	NA	0.1	0.8	0.01	0.01	0.01	59.5

Tweed Valley Way / Australian Bay Lobster Producers Access – 2022 Base with Committed Development

MOVEMENT SUMMARY

Site: 1 [Tweed Valley Way / Service Station 2022 AM (Site Folder: General)]

Tweed Valley Way / Service Station

Site Category: (None)
Roundabout

Vehicle	e Moveme	ent Performa	ance											
Mov	Turn	INPUT VO		DEMAND FLOWS		Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Tuili	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
SouthE	ast: Servic	e Station												
4	L2	26	13.6	27	13.6	0.267	5.6	LOS A	1.1	10.0	0.59	0.83	0.59	51.3
6	R2	167	24.1	176	24.1	0.267	13.0	LOS B	1.1	10.0	0.59	0.83	0.59	53.5
6u	U	1	0.0	1	0.0	0.267	14.5	LOS B	1.1	10.0	0.59	0.83	0.59	56.3
Approac	ch	194	22.6	204	22.6	0.267	12.1	LOS B	1.1	10.0	0.59	0.83	0.59	53.2
NorthEa	st: Tweed	Valley Way												
7	L2	52	11.6	55	11.6	0.264	3.1	LOS A	1.8	13.8	0.14	0.26	0.14	57.2
8	T1	674	6.3	709	6.3	0.264	2.4	LOS A	1.8	13.8	0.15	0.28	0.15	59.9
9u	U	49	85.7	52	85.7	0.264	13.6	LOS B	1.7	15.9	0.16	0.31	0.16	59.5
Approad	ch	775	11.7	816	11.7	0.264	3.2	LOS A	1.8	15.9	0.15	0.28	0.15	59.7
SouthW	est: Twee	d Valley Way												
2	T1	46	28.6	48	28.6	0.069	3.7	LOS A	0.4	3.3	0.46	0.49	0.46	56.0
3	R2	24	5.0	25	5.0	0.069	10.8	LOS B	0.4	3.3	0.46	0.49	0.46	57.1
3u	U	1	0.0	1	0.0	0.069	13.3	LOS B	0.4	3.3	0.46	0.49	0.46	59.7
Approad	ch	71	20.2	75	20.2	0.069	6.2	LOS A	0.4	3.3	0.46	0.49	0.46	56.4
All Vehi	cles	1040	14.3	1095	14.3	0.267	5.1	LOS A	1.8	15.9	0.25	0.40	0.25	58.1

MOVEMENT SUMMARY

Site: 1 [Tweed Valley Way / Service Station 2022 PM (Site Folder: General)]

Tweed Valley Way / Service Station

Site Category: (None) Roundabout

Vehicl	e Moveme	ent Perform	ance											
Mov	Turn	INPUT VOLUMES		DEMAND I	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Tulli	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
SouthE	ast: Servic	e Station												
4	L2	46	5.1	48	5.1	0.368	5.6	LOS A	1.7	14.1	0.62	0.86	0.65	51.5
6	R2	243	15.6	256	15.6	0.368	13.0	LOS B	1.7	14.1	0.62	0.86	0.65	53.9
6u	U	1	0.0	1	0.0	0.368	14.8	LOS B	1.7	14.1	0.62	0.86	0.65	56.4
Approa	ch	290	13.9	305	13.9	0.368	11.8	LOS B	1.7	14.1	0.62	0.86	0.65	53.6
NorthE	ast: Tweed	Valley Way												
7	L2	50	17.1	53	17.1	0.262	3.2	LOS A	1.8	14.1	0.19	0.27	0.19	56.8
8	T1	646	7.3	680	7.3	0.262	2.5	LOS A	1.8	14.1	0.19	0.29	0.19	59.6
9u	U	49	87.8	52	87.8	0.262	13.9	LOS B	1.6	16.1	0.21	0.33	0.21	59.1
Approa	ch	745	13.2	784	13.2	0.262	3.3	LOS A	1.8	16.1	0.20	0.29	0.20	59.4
SouthV	/est: Twee	d Valley Way												
2	T1	39	18.9	41	18.9	0.077	3.9	LOS A	0.4	3.7	0.52	0.55	0.52	55.4
3	R2	37	12.7	39	12.7	0.077	11.4	LOS B	0.4	3.7	0.52	0.55	0.52	56.1
3u	U	1	0.0	1	0.0	0.077	13.7	LOS B	0.4	3.7	0.52	0.55	0.52	58.9
Approa	ch	77	15.7	81	15.7	0.077	7.6	LOS A	0.4	3.7	0.52	0.55	0.52	55.8
All Veh	icles	1112	13.6	1171	13.6	0.368	5.8	LOS A	1.8	16.1	0.33	0.46	0.34	57.4

Tweed Valley Way / Australian Bay Lobster Producers Access – 2022 Base with Committed and Proposed Development

MOVEMENT SUMMARY

VSite: 1v [Tweed Valley Way / Site Access 2022WD AM (Site Folder: General)]

Three-way intersection with 3-lane major road (Stop control) Site Category: (None) Give-Way (Two-Way)

Vehicle	• Moveme	ent Perform	ance											
Mov	Turn	INPUT VO	DLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Turri	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
SouthEa	ast: Site Ad	ccess												
1	L2	40	39	42	97.5	0.483	55.0	LOS F	1.8	33.9	0.92	1.08	1.23	29.0
2	R2	5	5	5	100.0	0.483	69.1	LOS F	1.8	33.9	0.92	1.08	1.23	28.8
Approac	ch	45	44	47	97.8	0.483	56.5	LOS F	1.8	33.9	0.92	1.08	1.23	28.
NorthEa	st: Tweed	Valley Way												
3	L2	38	34	40	89.5	0.050	6.9	LOS A	0.0	0.0	0.00	0.57	0.00	48.7
4	T1	697	39	734	5.6	0.396	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approac	ch	735	73	774	9.9	0.396	0.5	NA	0.0	0.0	0.00	0.03	0.00	59.0
SouthW	est: Tweed	d Valley Way												
5	T1	74	20	78	27.0	0.052	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	12	10	13	83.3	0.067	24.5	LOS C	0.2	2.9	0.81	0.93	0.81	39.
Approac	ch	86	30	91	34.9	0.067	3.4	NA	0.2	2.9	0.11	0.13	0.11	55.
All Vehi	cles	866	147	912	17.0	0.483	3.7	NA	1.8	33.9	0.06	0.09	0.08	55.

MOVEMENT SUMMARY

∇ Site: 1v [Tweed Valley Way / Site Access 2022WD PM (Site Folder: General)]

vehicle	e Moveme	ent Performa	ance											
Mov	Turn	INPUT VO	OLUMES	DEMAND FLOWS		Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	rum	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
	_	veh/h	veh/h	veh/h	%	v/c	sec		veh	m			_	km/h
SouthE	ast: Site Ad	ccess												
1	L2	48	42	51	87.5	0.354	34.4	LOS D	1.3	23.0	0.86	1.02	1.06	35.7
2	R2	3	2	3	66.7	0.354	36.5	LOS E	1.3	23.0	0.86	1.02	1.06	36.1
Approac	ch	51	44	54	86.3	0.354	34.5	LOS D	1.3	23.0	0.86	1.02	1.06	35.8
NorthEa	ast: Tweed	Valley Way												
3	L2	35	33	37	94.3	0.048	7.0	LOS A	0.0	0.0	0.00	0.57	0.00	48.5
4	T1	640	38	674	5.9	0.365	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Approac	ch	675	71	711	10.5	0.365	0.5	NA	0.0	0.0	0.00	0.03	0.00	59.0
SouthW	est: Twee	d Valley Way												
5	T1	58	16	61	27.6	0.041	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	7	7	7	100.0	0.042	25.7	LOS D	0.1	2.1	0.80	0.92	0.80	38.0
Approac	ch	65	23	68	35.4	0.042	2.8	NA	0.1	2.1	0.09	0.10	0.09	56.5
All Vehi	cles	791	138	833	17.4	0.365	2.9	NA	1.3	23.0	0.06	0.10	0.08	56.4

Tweed Valley Way / Australian Bay Lobster Producers Access – 2032 Base

MOVEMENT SUMMARY

∇ Site: 1v [Tweed Valley Way / Site Access 2032 AM (Site Folder: General)]

Three-way intersection with 3-lane major road (Stop control) Site Category: (None) Give-Way (Two-Way)

Vehicle	Moveme	ent Performa	ance											
Mov	Turn	INPUT VO	OLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Tulli	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
	_	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
SouthEa	st: Site Ad	ccess												
1	L2	4	35.8	4	35.8	0.031	12.5	LOS B	0.1	1.0	0.81	0.90	0.81	42.1
2	R2	2	100.0	2	100.0	0.031	41.8	LOS E	0.1	1.0	0.81	0.90	0.81	40.0
Approac	:h	6	57.2	6	57.2	0.031	22.3	LOS C	0.1	1.0	0.81	0.90	0.81	41.4
NorthEa	st: Tweed	Valley Way												
3	L2	4	0.0	4	0.0	0.422	5.7	LOS A	0.0	0.0	0.00	0.00	0.00	58.1
4	T1	739	5.6	778	5.6	0.422	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approac	:h	743	5.6	782	5.6	0.422	0.2	NA	0.0	0.0	0.00	0.00	0.00	59.7
SouthWe	est: Tweed	d Valley Way												
5	T1	75	21.7	79	21.7	0.050	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	5	53.7	5	53.7	0.013	14.2	LOS B	0.0	0.5	0.72	0.80	0.72	45.6
Approac	:h	80	23.7	84	23.7	0.050	0.9	NA	0.0	0.5	0.05	0.05	0.05	58.8
All Vehic	cles	829	7.7	873	7.7	0.422	0.4	NA	0.1	1.0	0.01	0.01	0.01	59.4

MOVEMENT SUMMARY

Site: 1v [Tweed Valley Way / Site Access 2032 PM (Site Folder: General)]

Vehicle	• Moveme	ent Performa	ance											
Mov	Turn	INPUT VO	OLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Tulli	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
SouthEa	ast: Site Ad	ccess												
1	L2	9	42.2	9	42.2	0.023	12.0	LOS B	0.1	0.7	0.66	0.79	0.66	47.7
2	R2	1	0.0	1	0.0	0.023	13.6	LOS B	0.1	0.7	0.66	0.79	0.66	48.7
Approac	ch	10	38.0	11	38.0	0.023	12.1	LOS B	0.1	0.7	0.66	0.79	0.66	47.8
NorthEa	st: Tweed	Valley Way												
3	L2	1	100.0	1	100.0	0.388	7.0	LOS A	0.0	0.0	0.00	0.00	0.00	52.7
4	T1	679	5.9	715	5.9	0.388	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approac	ch	680	6.0	716	6.0	0.388	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.7
SouthW	est: Twee	d Valley Way												
5	T1	59	21.4	62	21.4	0.039	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	1	0.0	1	0.0	0.001	8.9	LOS A	0.0	0.0	0.59	0.62	0.59	50.6
Approac	ch	60	21.0	63	21.0	0.039	0.2	NA	0.0	0.0	0.01	0.01	0.01	59.8
All Vehic	cles	750	7.7	789	7.7	0.388	0.3	NA	0.1	0.7	0.01	0.01	0.01	59.5

Tweed Valley Way / Australian Bay Lobster Producers Access – 2032 Base with Proposed Development

MOVEMENT SUMMARY

 ∇ Site: 1v [Tweed Valley Way / Site Access 2032WD AM (Site Folder: General)]

Three-way intersection with 3-lane major road (Stop control)
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance

venicie	e woveme	ent Performa	ance											
Mov	Turn	INPUT VO	DLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	rum	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
SouthEa	ast: Site A	ccess												
1	L2	36	33	38	91.7	0.490	66.1	LOS F	1.7	34.4	0.94	1.08	1.23	27.0
2	R2	2	2	2	100.0	0.490	78.1	LOS F	1.7	34.4	0.94	1.08	1.23	26.7
Approac	ch	38	35	40	92.1	0.490	66.7	LOS F	1.7	34.4	0.94	1.08	1.23	26.9
NorthEa	st: Tweed	Valley Way												
3	L2	34	30	36	88.2	0.046	7.0	LOS A	0.0	0.0	0.00	0.57	0.00	48.7
4	T1	739	41	778	5.5	0.420	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approac	ch	773	71	814	9.2	0.420	0.5	NA	0.0	0.0	0.00	0.02	0.00	59.1
SouthW	est: Twee	d Valley Way												
5	T1	75	18	79	24.0	0.051	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	6	6	6	100.0	0.052	35.1	LOS E	0.2	2.6	0.86	0.95	0.86	34.6
Approac	ch	81	24	85	29.6	0.052	2.6	NA	0.2	2.6	0.06	0.07	0.06	56.9
All Vehi	cles	892	130	939	14.6	0.490	3.5	NA	1.7	34.4	0.05	0.07	0.06	56.0

MOVEMENT SUMMARY

VSite: 1v [Tweed Valley Way / Site Access 2032WD PM (Site Folder: General)]

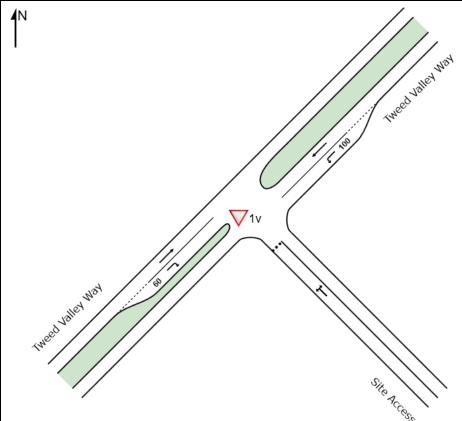
Vehicle	Moveme	ent Performa	ance											
Mov	Т	INPUT VO	DLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Turn	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
SouthEa	ast: Site Ad	ccess												
1	L2	41	36	43	87.8	0.372	42.7	LOS E	1.3	24.3	0.89	1.03	1.10	33.4
2	R2	3	0	3	0.0	0.372	23.3	LOS C	1.3	24.3	0.89	1.03	1.10	35.5
Approac	h	44	36	46	81.8	0.372	41.4	LOS E	1.3	24.3	0.89	1.03	1.10	33.5
NorthEa	st: Tweed	Valley Way												
3	L2	31	31	33	100.0	0.045	7.1	LOS A	0.0	0.0	0.00	0.57	0.00	47.2
4	T1	679	40	715	5.9	0.387	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approac	h	710	71	747	10.0	0.387	0.4	NA	0.0	0.0	0.00	0.02	0.00	59.0
SouthW	est: Twee	d Valley Way												
5	T1	59	26	62	44.1	0.047	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	2	2	2	100.0	0.024	46.9	LOS E	0.1	1.6	0.88	0.95	0.88	30.7
Approac	h	61	28	64	45.9	0.047	1.6	NA	0.1	1.6	0.03	0.03	0.03	58.2
All Vehic	cles	815	135	858	16.6	0.387	2.7	NA	1.3	24.3	0.05	0.08	0.06	56.6

Tweed Valley Way / Australian Bay Lobster Producers Access – 2042 Base

MOVEMENT SUMMARY

VSite: 1v [Tweed Valley Way / Site Access 2042 AM (Site Folder: General)]

Three-way intersection with 3-lane major road (Stop control) Site Category: (None) Give-Way (Two-Way)


Vehicle	e Moveme	ent Performa	ance											
Mov	Т	INPUT VO	OLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Turn	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
SouthE	ast: Site Ad	ccess												
1	L2	4	33.3	4	33.3	0.037	13.5	LOS B	0.1	1.2	0.84	0.93	0.84	40.5
2	R2	2	100.0	2	100.0	0.037	50.9	LOS F	0.1	1.2	0.84	0.93	0.84	38.4
Approa	ch	6	55.5	6	55.5	0.037	26.0	LOS D	0.1	1.2	0.84	0.93	0.84	39.8
NorthEa	ast: Tweed	Valley Way												
3	L2	4	0.0	4	0.0	0.454	5.7	LOS A	0.0	0.0	0.00	0.00	0.00	58.0
4	T1	795	5.6	837	5.6	0.454	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	59.6
Approa	ch	799	5.6	841	5.6	0.454	0.2	NA	0.0	0.0	0.00	0.00	0.00	59.6
SouthW	est: Twee	d Valley Way												
5	T1	80	21.6	84	21.6	0.053	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	5	50.0	5	50.0	0.015	15.3	LOS C	0.1	0.5	0.76	0.83	0.76	45.1
Approa	ch	85	23.3	89	23.3	0.053	0.9	NA	0.1	0.5	0.04	0.05	0.04	58.8
All Vehi	cles	890	7.6	937	7.6	0.454	0.4	NA	0.1	1.2	0.01	0.01	0.01	59.3

MOVEMENT SUMMARY

Site: 1v [Tweed Valley Way / Site Access 2042 PM (Site Folder: General)]

venicie	woveme	ent Performa	ance											
Mov	Turn	INPUT V	OLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Turn	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
SouthEa	st: Site Ad	ccess												
1	L2	9	39.3	9	39.3	0.024	12.6	LOS B	0.1	0.8	0.69	0.82	0.69	47.4
2	R2	1	0.0	1	0.0	0.024	14.8	LOS B	0.1	0.8	0.69	0.82	0.69	48.3
Approac	h	10	35.4	11	35.4	0.024	12.8	LOS B	0.1	0.8	0.69	0.82	0.69	47.5
NorthEa	st: Tweed	Valley Way												
3	L2	1	100.0	1	100.0	0.412	7.0	LOS A	0.0	0.0	0.00	0.00	0.00	52.6
4	T1	721	5.9	759	5.9	0.412	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approac	h	722	6.0	760	6.0	0.412	0.2	NA	0.0	0.0	0.00	0.00	0.00	59.7
SouthWe	est: Tweed	d Valley Way												
5	T1	62	21.4	65	21.4	0.041	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	1	0.0	1	0.0	0.002	9.3	LOS A	0.0	0.0	0.61	0.63	0.61	50.3
Approac	h	63	21.1	66	21.1	0.041	0.2	NA	0.0	0.0	0.01	0.01	0.01	59.8
All Vehic	cles	795	7.6	837	7.6	0.412	0.3	NA	0.1	0.8	0.01	0.01	0.01	59.5

Tweed Valley Way / Australian Bay Lobster Producers Access – 2042 Base with Proposed Development

MOVEMENT SUMMARY

Site: 1v [Tweed Valley Way / Site Access 2042WD AM (Site Folder: General)]

Three-way intersection with 3-lane major road (Stop control) Site Category: (None) Give-Way (Two-Way)

Moveme	nt Perform	ance											
Turn —	INPUT VO	DLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
Turri	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
	veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
st: Site Ad	cess												
L2	36	35	38	97.2	0.668	107.4	LOS F	2.4	51.0	0.97	1.17	1.46	20.6
R2	2	2	2	100.0	0.668	114.4	LOS F	2.4	51.0	0.97	1.17	1.46	20.5
h	38	37	40	97.4	0.668	107.7	LOS F	2.4	51.0	0.97	1.17	1.46	20.6
st: Tweed	Valley Way												
L2	34	30	36	88.2	0.046	7.0	LOS A	0.0	0.0	0.00	0.57	0.00	48.7
T1	785	44	826	5.6	0.446	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
h	819	74	862	9.0	0.446	0.5	NA	0.0	0.0	0.00	0.02	0.00	59.1
est: Tweed	d Valley Way												
T1	80	17	84	21.3	0.054	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
R2	6	3	6	50.0	0.037	25.9	LOS D	0.1	1.5	0.84	0.94	0.84	39.5
h	86	20	91	23.3	0.054	1.8	NA	0.1	1.5	0.06	0.07	0.06	57.9
cles	943	131	993	13.9	0.668	4.9	NA	2.4	51.0	0.04	0.07	0.06	54.8
	Turn ast: Site Ac L2 R2 h st: Tweed L2 T1 h est: Tweec T1 R2	Turn INPUT VC Total veh/h Inst: Site Access L2	Total veh/h veh/h veh/h veh/h veh/h veh/h veh/h veh/h	Turn INPUT VOLUMES Total Total Total Veh/h Veh/h	Turn INPUT VOLUMES Total HV Veh/h Veh/h Veh/h Veh/h Veh/h Veh/h Weh/h We	Turn INPUT VOLUMES Total HV Satin Veh/h Veh/h Veh/h Veh/h Weh/h Weh/h Weh/h V/c Satin V/c Satin	Turn INPUT VOLUMES Total HV Satn Delay Veh/h Veh/h Veh/h Veh/h Weh/h Weh	Turn INPUT VOLUMES Total HV Satn Delay Service Service Service Total HV Veh/h Veh/h Veh/h Weh/h Weh/h	Turn	Turn INPUT VOLUMES Total HV	Turn INPUT VOLUMES Total HV Frop. Total HV Frop. Satn Delay Service Total Frop. Que Veh/h Veh/h	Turn INPUT VOLUMES Total HV Float HV Satn Delay Service Service Turn Float HV Veh/h Veh/h	Turn INPUT VOLUMES Total HV Total HV Veh/h V

MOVEMENT SUMMARY

VSite: 1v [Tweed Valley Way / Site Access 2042WD PM (Site Folder: General)]

Three-way intersection with 3-lane major road (Stop control)
Site Category: (None)
Give-Way (Two-Way)
Vehicle Movement Performance

Vehicle	Moveme	ent Perform	ance											
Mov	Turn	INPUT VO	DLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Turn	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
	-	veh/h	veh/h	veh/h	%	v/c	sec		veh	m			_	km/h
SouthEa	st: Site A	ccess												
1	L2	41	36	43	87.8	0.431	52.1	LOS F	1.5	28.8	0.92	1.06	1.17	30.6
2	R2	1	0	1	0.0	0.431	28.1	LOS D	1.5	28.8	0.92	1.06	1.17	32.3
Approac	h	42	36	44	85.7	0.431	51.5	LOS F	1.5	28.8	0.92	1.06	1.17	30.6
NorthEa	st: Tweed	Valley Way												
3	L2	31	31	33	100.0	0.045	7.1	LOS A	0.0	0.0	0.00	0.57	0.00	47.2
4	T1	721	42	759	5.8	0.410	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approac	h	752	73	792	9.7	0.410	0.4	NA	0.0	0.0	0.00	0.02	0.00	59.1
SouthW	est: Twee	d Valley Way												
5	T1	62	15	65	24.2	0.042	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	2	2	2	100.0	0.029	54.8	LOS F	0.1	1.9	0.90	0.96	0.90	28.8
Approac	h	64	17	67	26.6	0.042	1.7	NA	0.1	1.9	0.03	0.03	0.03	58.0
All Vehic	cles	858	126	903	14.7	0.431	3.0	NA	1.5	28.8	0.05	0.07	0.06	56.4

Tweed Valley Way / Australian Bay Lobster Producers Access Rdb - 2022WD

MOVEMENT SUMMARY

♥Site: 1 [2022WD AM Peak (Site Folder: General)]

Tweed Valley Way / Site Access Roundabout Site Category: (None) Roundabout

Vehicle	e Moveme	nt Performa	nce											
Mov	Turn	INPUT VO	DLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	rum	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
SouthE	ast: Site Ad	cess												
4	L2	34	33	36	97.1	0.118	15.1	LOS B	0.5	11.6	0.69	0.80	0.69	47.6
6	R2	4	4	4	100.0	0.016	22.3	LOS B	0.1	1.1	0.67	0.76	0.67	45.1
Approac	ch	38	37	40	97.4	0.118	15.8	LOS B	0.5	11.6	0.69	0.79	0.69	47.3
NorthEa	ast: Tweed	Valley Way												
7	L2	34	30	36	88.2	0.050	3.7	LOS A	0.2	4.1	0.07	0.34	0.07	55.6
8	T1	785	44	826	5.6	0.468	2.4	LOS A	2.9	21.9	0.07	0.24	0.07	60.6
Approac	ch	819	74	862	9.0	0.468	2.5	LOS A	2.9	21.9	0.07	0.24	0.07	60.4
SouthW	/est: Tweed	d Valley Way												
2	T1	80	17	84	21.3	0.058	2.5	LOS A	0.3	2.8	0.06	0.23	0.06	60.6
3	R2	6	3	6	50.0	0.008	10.2	LOS A	0.0	0.5	0.07	0.55	0.07	54.0
Approac	ch	86	20	91	23.3	0.058	3.0	LOS A	0.3	2.8	0.06	0.25	0.06	60.0
All Vehi	icles	943	131	993	13.9	0.468	3.0	LOS A	2.9	21.9	0.09	0.26	0.09	59.7

MOVEMENT SUMMARY

♥Site: 1 [2022WD PM Peak (Site Folder: General)]

Tweed Valley Way / Site Access Roundabout Site Category: (None)
Roundabout

vehicle	e Moveme	nt Performa	ince											
Mov	Turn	INPUT V	OLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Turn	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
SouthE	ast: Site Ac	cess												
4	L2	46	40	48	87.0	0.109	10.2	LOS A	0.5	9.0	0.62	0.73	0.62	50.9
6	R2	5	4	5	80.0	0.015	18.0	LOS B	0.1	0.9	0.61	0.71	0.61	48.5
Approac	ch	51	44	54	86.3	0.109	10.9	LOS A	0.5	9.0	0.62	0.73	0.62	50.7
NorthEa	ast: Tweed	Valley Way												
7	L2	35	35	37	100.0	0.046	3.6	LOS A	0.2	2.2	0.08	0.34	0.08	55.2
8	T1	640	38	674	6.0	0.379	2.4	LOS A	2.1	15.2	0.07	0.24	0.07	60.6
Approac	ch	675	73	711	10.9	0.379	2.5	LOS A	2.1	15.2	0.07	0.24	0.07	60.3
SouthW	est: Tweed	l Valley Way												
2	T1	58	16	61	27.6	0.044	2.5	LOS A	0.2	2.2	0.06	0.23	0.06	60.5
3	R2	7	7	7	100.0	0.010	10.7	LOS A	0.0	0.7	0.07	0.52	0.07	51.8
Approac	ch	65	23	68	35.4	0.044	3.4	LOS A	0.2	2.2	0.06	0.26	0.06	59.4
All Vehi	cles	791	140	833	17.8	0.379	3.1	LOS A	2.1	15.2	0.11	0.27	0.11	59.5

Tweed Valley Way / Australian Bay Lobster Producers Access Rdb - 2032WD

MOVEMENT SUMMARY

♥Site: 1 [2032WD AM Peak (Site Folder: General)]

Tweed Valley Way / Site Access Roundabout Site Category: (None) Roundabout

Vehicle	e Moveme	nt Performa	nce		<u> </u>									
Mov	Turn	INPUT VC	DLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Tulli	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
SouthE	ast: Site Aco	cess												
4	L2	34	31	36	91.2	0.106	13.4	LOS A	0.4	10.0	0.67	0.78	0.67	48.7
6	R2	4	4	4	100.0	0.015	21.5	LOS B	0.1	1.1	0.66	0.75	0.66	45.5
Approac	ch	38	35	40	92.1	0.106	14.3	LOS A	0.4	10.0	0.67	0.78	0.67	48.3
NorthEa	ast: Tweed \	Valley Way												
7	L2	34	30	36	88.2	0.051	3.8	LOS A	0.2	4.1	0.08	0.34	0.08	55.6
8	T1	739	41	778	5.5	0.443	2.4	LOS A	2.6	19.9	0.07	0.24	0.07	60.6
Approac	ch	773	71	814	9.2	0.443	2.5	LOS A	2.6	19.9	0.07	0.24	0.07	60.4
SouthW	/est: Tweed	d Valley Way												
2	T1	75	18	79	24.0	0.055	2.5	LOS A	0.3	2.7	0.06	0.23	0.06	60.5
3	R2	6	6	6	100.0	0.009	10.7	LOS A	0.0	0.6	0.07	0.51	0.07	51.7
Approac	ch	81	24	85	29.6	0.055	3.1	LOS A	0.3	2.7	0.06	0.25	0.06	59.7
All Vehi	icles	892	130	939	14.6	0.443	3.0	LOS A	2.6	19.9	0.10	0.26	0.10	59.7

MOVEMENT SUMMARY

♥Site: 1 [2032WD PM Peak (Site Folder: General)]

Tweed Valley Way / Site Access Roundabout Site Category: (None)
Roundabout

Vehicle	Moveme	ent Performa	nce											
Mov	Turn	INPUT VO	DLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	rum	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
SouthEa	ast: Site Ad	ccess												
4	L2	39	34	41	87.2	0.104	11.6	LOS A	0.4	9.1	0.64	0.76	0.64	50.0
6	R2	5	2	5	40.0	0.012	16.8	LOS B	0.0	0.7	0.61	0.71	0.61	50.0
Approac	h	44	36	46	81.8	0.104	12.1	LOS A	0.4	9.1	0.64	0.75	0.64	50.0
NorthEas	st: Tweed	Valley Way												
7	L2	31	31	33	100.0	0.046	3.8	LOS A	0.2	3.9	0.05	0.34	0.05	54.7
8	T1	679	40	715	5.9	0.403	2.4	LOS A	2.3	17.2	0.04	0.23	0.04	60.8
Approac	h	710	71	747	10.0	0.403	2.4	LOS A	2.3	17.2	0.04	0.24	0.04	60.5
SouthWe	est: Twee	d Valley Way												
2	T1	59	26	62	44.1	0.051	2.6	LOS A	0.2	2.9	0.06	0.23	0.06	60.3
3	R2	2	2	2	100.0	0.003	10.9	LOS A	0.0	0.3	0.07	0.50	0.07	51.1
Approac	:h	61	28	64	45.9	0.051	2.8	LOS A	0.2	2.9	0.06	0.24	0.06	59.9
All Vehic	cles	815	135	858	16.6	0.403	3.0	LOS A	2.3	17.2	0.08	0.27	0.08	59.8

Tweed Valley Way / Australian Bay Lobster Producers Access Rdb – 2042WD ₩1

MOVEMENT SUMMARY

♥Site: 1 [2042WD AM Peak (Site Folder: General)]

Tweed Valley Way / Site Access Roundabout Site Category: (None)
Roundabout

Vehicle	Moveme	nt Performa	ince											
Mov	Turn	INPUT V	OLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Turri	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
SouthEa	st: Site Ac	cess												
4	L2	34	33	36	97.1	0.118	15.1	LOS B	0.5	11.6	0.69	0.80	0.69	47.6
6	R2	4	4	4	100.0	0.016	22.3	LOS B	0.1	1.1	0.67	0.76	0.67	45.1
Approac	h	38	37	40	97.4	0.118	15.8	LOS B	0.5	11.6	0.69	0.79	0.69	47.3
NorthEa	st: Tweed	Valley Way												
7	L2	34	30	36	88.2	0.050	3.7	LOS A	0.2	4.1	0.07	0.34	0.07	55.6
8	T1	785	44	826	5.6	0.468	2.4	LOS A	2.9	21.9	0.07	0.24	0.07	60.6
Approac	h	819	74	862	9.0	0.468	2.5	LOS A	2.9	21.9	0.07	0.24	0.07	60.4
SouthWe	est: Tweed	Valley Way												
2	T1	80	17	84	21.3	0.058	2.5	LOS A	0.3	2.8	0.06	0.23	0.06	60.6
3	R2	6	3	6	50.0	0.008	10.2	LOS A	0.0	0.5	0.07	0.55	0.07	54.0
Approac	h	86	20	91	23.3	0.058	3.0	LOS A	0.3	2.8	0.06	0.25	0.06	60.0
All Vehic	cles	943	131	993	13.9	0.468	3.0	LOS A	2.9	21.9	0.09	0.26	0.09	59.7

MOVEMENT SUMMARY

♥Site: 1 [2042WD PM Peak (Site Folder: General)]

Tweed Valley Way / Site Access Roundabout Site Category: (None) Roundabout

Vehicle	Moveme	nt Performa	nce											
Mov	Т ж.	INPUT VC	DLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Turn	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
SouthEas	st: Site Ac	cess												
4	L2	39	34	41	87.2	0.108	12.2	LOS A	0.4	9.6	0.66	0.77	0.66	49.5
6	R2	3	2	3	66.7	0.011	20.9	LOS B	0.0	8.0	0.65	0.74	0.65	47.0
Approach	1	42	36	44	85.7	0.108	12.8	LOS A	0.4	9.6	0.66	0.77	0.66	49.3
NorthEas	t: Tweed	Valley Way												
7	L2	31	31	33	100.0	0.046	3.8	LOS A	0.2	3.9	0.05	0.34	0.05	54.7
8	T1	721	42	759	5.8	0.428	2.4	LOS A	2.5	18.7	0.04	0.23	0.04	60.8
Approach	1	752	73	792	9.7	0.428	2.4	LOS A	2.5	18.7	0.04	0.24	0.04	60.5
SouthWe	st: Tweed	Valley Way												
2	T1	62	15	65	24.2	0.045	2.5	LOS A	0.2	2.2	0.05	0.23	0.05	60.6
3	R2	2	2	2	100.0	0.003	10.9	LOS A	0.0	0.3	0.06	0.50	0.06	51.2
Approach)	64	17	67	26.6	0.045	2.7	LOS A	0.2	2.2	0.05	0.24	0.05	60.2
All Vehicle	es	858	126	903	14.7	0.428	3.0	LOS A	2.5	18.7	0.07	0.26	0.07	59.9

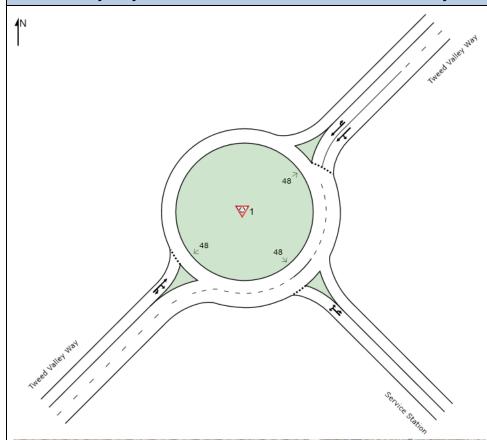
Tweed Valley Way / Australian Bay Lobster Producers Access Rdb – 2042WD (Sensitivity Testing) ₩1

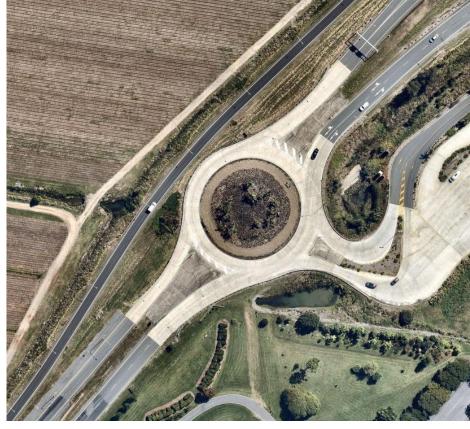
MOVEMENT SUMMARY

♥Site: 1 [2042WD PM Peak (Site Folder: General)]

Tweed Valley Way / Site Access Roundabout Site Category: (None)
Roundabout

Vehicle	Moveme	ent Performa	ınce											
Mov	Turn	INPUT V	OLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Tulli	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
	_	veh/h	veh/h	veh/h	%	v/c	sec		veh	m			_	km/h
SouthEa	ast: Site Ad	ccess												
4	L2	39	34	41	87.2	0.108	12.2	LOS A	0.4	9.6	0.66	0.77	0.66	49.5
6	R2	3	2	3	66.7	0.011	20.9	LOS B	0.0	8.0	0.65	0.74	0.65	47.0
Approac	ch	42	36	44	85.7	0.108	12.8	LOS A	0.4	9.6	0.66	0.77	0.66	49.3
NorthEa	st: Tweed	Valley Way												
7	L2	31	31	33	100.0	0.046	3.8	LOS A	0.2	3.9	0.05	0.34	0.05	54.7
8	T1	721	42	759	5.8	0.428	2.4	LOS A	2.5	18.7	0.04	0.23	0.04	60.8
Approac	ch	752	73	792	9.7	0.428	2.4	LOS A	2.5	18.7	0.04	0.24	0.04	60.5
SouthW	est: Tweed	d Valley Way												
2	T1	62	15	65	24.2	0.045	2.5	LOS A	0.2	2.2	0.05	0.23	0.05	60.6
3	R2	2	2	2	100.0	0.003	10.9	LOS A	0.0	0.3	0.06	0.50	0.06	51.2
Approac	ch	64	17	67	26.6	0.045	2.7	LOS A	0.2	2.2	0.05	0.24	0.05	60.2
All Vehic	cles	858	126	903	14.7	0.428	3.0	LOS A	2.5	18.7	0.07	0.26	0.07	59.9


MOVEMENT SUMMARY


♥Site: 1 [2042WD PM Peak - Sensitivity (Site Folder: General)]

Tweed Valley Way / Site Access Roundabout Site Category: (None)
Roundabout

Vehicle	• Moveme	nt Performa	ince											
Mov	Turn	INPUT V	OLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Tulli	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
SouthEa	ast: Site Ad	cess												
4	L2	25	19	26	76.0	0.063	10.7	LOS A	0.3	5.2	0.66	0.72	0.66	50.7
6	R2	17	16	18	94.1	0.072	23.3	LOS B	0.3	6.6	0.68	0.85	0.68	45.2
Approac	ch	42	35	44	83.3	0.072	15.8	LOS B	0.3	6.6	0.67	0.77	0.67	48.2
NorthEa	st: Tweed	Valley Way												
7	L2	17	17	18	100.0	0.027	4.2	LOS A	0.1	2.3	0.16	0.35	0.16	54.0
8	T1	721	43	759	6.0	0.454	2.5	LOS A	2.9	22.0	0.17	0.25	0.17	59.9
Approac	ch	738	60	777	8.1	0.454	2.6	LOS A	2.9	22.0	0.17	0.26	0.17	59.8
SouthW	est: Tweed	d Valley Way												
2	T1	62	14	65	22.6	0.048	2.6	LOS A	0.2	2.2	0.15	0.25	0.15	59.9
3	R2	16	16	17	100.0	0.025	11.3	LOS A	0.1	2.5	0.18	0.50	0.18	50.4
Approac	ch	78	30	82	38.5	0.048	4.4	LOS A	0.2	2.5	0.16	0.30	0.16	57.6
All Vehic	cles	858	125	903	14.6	0.454	3.4	LOS A	2.9	22.0	0.19	0.29	0.19	58.9

Tweed Valley Way / Service Station Roundabout – 2020 Surveyed Base

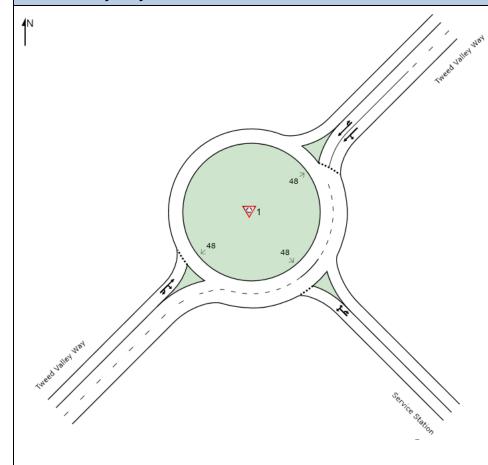
MOVEMENT SUMMARY

♥Site: 1 [Tweed Valley Way / Service Station 2020 AM (Site Folder: General)]

Tweed Valley Way / Service Station

Site Category: (None) Roundabout

Vehicle	e Moveme	nt Performa	nce											
Mov	Turn	INPUT VO	LUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	rum	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
SouthE	ast: Service	Station												
4	L2	26	13.6	27	13.6	0.272	5.5	LOS A	1.1	10.5	0.57	0.82	0.57	51.3
6	R2	165	24.1	174	24.1	0.272	13.0	LOS B	1.1	10.5	0.57	0.82	0.57	53.6
6u	U	1	0.0	1	0.0	0.272	14.3	LOS B	1.1	10.5	0.57	0.82	0.57	56.3
Approa	ch	192	22.6	202	22.6	0.272	12.0	LOS B	1.1	10.5	0.57	0.82	0.57	53.3
NorthEa	ast: Tweed	Valley Way												
7	L2	50	5.6	53	5.6	0.230	3.1	LOS A	1.5	11.4	0.13	0.26	0.13	57.4
8	T1	651	6.3	685	6.3	0.230	2.4	LOS A	1.5	11.4	0.14	0.26	0.14	60.0
9u	U	9	52.0	9	52.0	0.230	13.0	LOS B	1.4	11.4	0.15	0.26	0.15	61.4
Approa	ch	710	6.8	747	6.8	0.230	2.6	LOS A	1.5	11.4	0.14	0.26	0.14	59.8
SouthW	/est: Tweed	d Valley Way												
2	T1	43	28.6	45	28.6	0.064	3.4	LOS A	0.3	3.2	0.41	0.46	0.41	56.3
3	R2	23	5.0	24	5.0	0.064	10.4	LOS B	0.3	3.2	0.41	0.46	0.41	57.4
3u	U	1	0.0	1	0.0	0.064	13.0	LOS B	0.3	3.2	0.41	0.46	0.41	60.0
Approa	ch	67	20.1	71	20.1	0.064	5.9	LOS A	0.3	3.2	0.41	0.46	0.41	56.7
All Vehi	cles	969	10.9	1020	10.9	0.272	4.7	LOS A	1.5	11.4	0.24	0.38	0.24	58.1


MOVEMENT SUMMARY

♥Site: 1 [Tweed Valley Way / Service Station 2020 PM (Site Folder: General)]

Tweed Valley Way / Service Station

Ve	ehicle Moven	nent Performa	ance											
М	lov Turn	INPUT VC	LUMES	DEMAND I	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID) Tuili	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
So	uthEast: Serv	ice Station												
4	L2	46	15.6	48	15.6	0.333	5.7	LOS A	1.4	11.3	0.57	0.80	0.57	51.4
6	R2	240	5.1	253	5.1	0.333	12.0	LOS B	1.4	11.3	0.57	0.80	0.57	54.4
6u	U	1	0.0	1	0.0	0.333	14.4	LOS B	1.4	11.3	0.57	0.80	0.57	56.5
Ар	proach	287	6.8	302	6.8	0.333	11.0	LOS B	1.4	11.3	0.57	0.80	0.57	53.9
No	orthEast: Twee	ed Valley Way												
7	L2	48	17.1	51	17.1	0.229	3.2	LOS A	1.5	11.8	0.18	0.27	0.18	56.9
8	T1	623	7.3	656	7.3	0.229	2.5	LOS A	1.5	11.8	0.19	0.27	0.19	59.6
9u	U	9	60.4	9	60.4	0.229	13.4	LOS B	1.4	11.6	0.20	0.28	0.20	60.7
Ар	proach	680	8.7	716	8.7	0.229	2.7	LOS A	1.5	11.8	0.19	0.27	0.19	59.5
So	outhWest: Twe	ed Valley Way												
2	T1	36	18.9	38	18.9	0.071	3.4	LOS A	0.4	3.4	0.45	0.52	0.45	55.7
3	R2	37	12.7	39	12.7	0.071	10.9	LOS B	0.4	3.4	0.45	0.52	0.45	56.4

Tweed Valley Way / Service Station Roundabout – 2022 Base with Lobster Farm Committed Development

MOVEMENT SUMMARY

Site: 1 [Tweed Valley Way / Service Station 2022 PM (Site Folder: General)]

Tweed Valley Way / Service Station

Site Category: (None)
Roundabout

Vehic	e Moveme	ent Performa	ance											I
Mov	T	INPUT VC	LUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Turn	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
SouthE	ast: Servic	e Station												
4	L2	46	15.6	48	15.6	0.333	5.7	LOS A	1.4	11.3	0.57	0.80	0.57	51.4
6	R2	240	5.1	253	5.1	0.333	12.0	LOS B	1.4	11.3	0.57	0.80	0.57	54.4
6u	U	1	0.0	1	0.0	0.333	14.4	LOS B	1.4	11.3	0.57	0.80	0.57	56.5
Approa	ch	287	6.8	302	6.8	0.333	11.0	LOS B	1.4	11.3	0.57	0.80	0.57	53.9
NorthE	ast: Tweed	l Valley Way												
7	L2	48	17.1	51	17.1	0.229	3.2	LOS A	1.5	11.8	0.18	0.27	0.18	56.9
8	T1	623	7.3	656	7.3	0.229	2.5	LOS A	1.5	11.8	0.19	0.27	0.19	59.6
9u	U	9	60.4	9	60.4	0.229	13.4	LOS B	1.4	11.6	0.20	0.28	0.20	60.7
Approa	ch	680	8.7	716	8.7	0.229	2.7	LOS A	1.5	11.8	0.19	0.27	0.19	59.5
SouthV	Vest: Twee	d Valley Way												
2	T1	36	18.9	38	18.9	0.071	3.4	LOS A	0.4	3.4	0.45	0.52	0.45	55.7
3	R2	37	12.7	39	12.7	0.071	10.9	LOS B	0.4	3.4	0.45	0.52	0.45	56.4

MOVEMENT SUMMARY

▼Site: 1 [Tweed Valley Way / Service Station 2022 PM (Site Folder: General)]

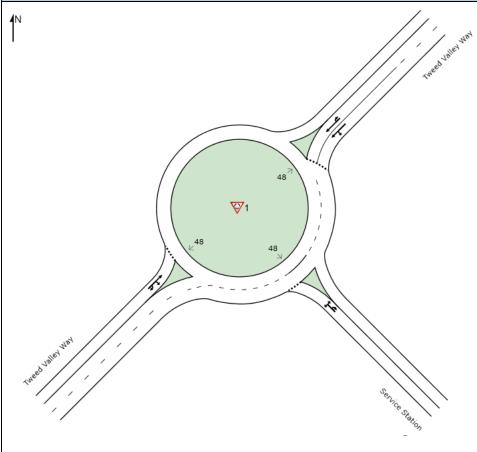
Tweed Valley Way / Service Station

Vehicl	e Movem	ent Performa	ince											
Mov	Т	INPUT VO	LUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Turn	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
SouthE	ast: Servic	e Station												
4	L2	46	5.1	48	5.1	0.370	5.4	LOS A	1.7	14.4	0.60	0.85	0.63	51.6
6	R2	243	15.6	256	15.6	0.370	12.9	LOS B	1.7	14.4	0.60	0.85	0.63	54.0
6u	U	1	0.0	1	0.0	0.370	14.6	LOS B	1.7	14.4	0.60	0.85	0.63	56.5
Approa	ch	290	13.9	305	13.9	0.370	11.7	LOS B	1.7	14.4	0.60	0.85	0.63	53.6
NorthE	ast: Tweed	l Valley Way												
7	L2	49	17.1	52	17.1	0.232	3.2	LOS A	1.5	12.1	0.18	0.27	0.18	56.8
8	T1	630	7.3	663	7.3	0.232	2.5	LOS A	1.5	12.1	0.19	0.27	0.19	59.6
9u	U	9	60.4	9	60.4	0.232	13.4	LOS B	1.5	11.8	0.20	0.28	0.20	60.7
Approa	ch	688	8.7	724	8.7	0.232	2.7	LOS A	1.5	12.1	0.19	0.27	0.19	59.4
SouthV	lest: Twee	d Valley Way												
2	T1	36	18.9	38	18.9	0.073	3.6	LOS A	0.4	3.6	0.48	0.53	0.48	55.6
3	R2	37	12.7	39	12.7	0.073	11.0	LOS B	0.4	3.6	0.48	0.53	0.48	56.3

Tweed Valley Way / Service Station Roundabout – 2022 Base with Committed and Proposed Development **MOVEMENT SUMMARY**

Site: 1 [Tweed Valley Way / Service Station 2022WD AM (Site Folder: General)]

Tweed Valley Way / Service Station Site Category: (None) Roundabout


rtourio	adout													
Vehic	le Movem	ent Perform	ance											
Mov ID	Turn	INPUT VC [Total	HV]	DEMAND [Total	HV]	Deg. Satn	Aver. Delay	Level of Service	[Veh.	OF QUEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
SouthE	East: Servic	e Station												
4	L2	26	13.6	27	13.6	0.267	5.6	LOS A	1.1	10.0	0.59	0.83	0.59	51.3
6	R2	167	24.1	176	24.1	0.267	13.0	LOS B	1.1	10.0	0.59	0.83	0.59	53.5
6u	U	1	0.0	1	0.0	0.267	14.5	LOS B	1.1	10.0	0.59	0.83	0.59	56.3
Approa	ach	194	22.6	204	22.6	0.267	12.1	LOS B	1.1	10.0	0.59	0.83	0.59	53.2
NorthE	ast: Tweed	d Valley Way												
7	L2	52	11.6	55	11.6	0.264	3.1	LOS A	1.8	13.8	0.14	0.26	0.14	57.2
8	T1	674	6.3	709	6.3	0.264	2.4	LOS A	1.8	13.8	0.15	0.28	0.15	59.9
9u	U	49	85.7	52	85.7	0.264	13.6	LOS B	1.7	15.9	0.16	0.31	0.16	59.5
Approa	ach	775	11.7	816	11.7	0.264	3.2	LOS A	1.8	15.9	0.15	0.28	0.15	59.7
SouthV	Vest: Twee	d Valley Way												
2	T1	46	28.6	48	28.6	0.069	3.7	LOS A	0.4	3.3	0.46	0.49	0.46	56.0
3	R2	24	5.0	25	5.0	0.069	10.8	LOS B	0.4	3.3	0.46	0.49	0.46	57.1
3u	U	1	0.0	1	0.0	0.069	13.3	LOS B	0.4	3.3	0.46	0.49	0.46	59.7
Approa	ach	71	20.2	75	20.2	0.069	6.2	LOS A	0.4	3.3	0.46	0.49	0.46	56.4
All Veh	nicles	1040	14.3	1095	14.3	0.267	5.1	LOS A	1.8	15.9	0.25	0.40	0.25	58.1

MOVEMENT SUMMARY

▼Site: 1 [Tweed Valley Way / Service Station 2022WD PM (Site Folder: General)]

Tweed Valley Way / Service Station Site Category: (None) Roundabout

Vehic	le Movem	ent Perform	ance											
Mov ID	Turn	INPUT VO	HV]	DEMAND [Total	HV]	Deg. Satn	Aver. Delay	Level of Service	[Veh.	OF QUEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
Courth	Continue	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
	East: Servic													
4	L2	46	5.1	48	5.1	0.368	5.6	LOS A	1.7	14.1	0.62	0.86	0.65	51.5
6	R2	243	15.6	256	15.6	0.368	13.0	LOS B	1.7	14.1	0.62	0.86	0.65	53.9
6u	U	1	0.0	1	0.0	0.368	14.8	LOS B	1.7	14.1	0.62	0.86	0.65	56.4
Approa	ich	290	13.9	305	13.9	0.368	11.8	LOS B	1.7	14.1	0.62	0.86	0.65	53.6
NorthE	ast: Tweed	l Valley Way												
7	L2	50	17.1	53	17.1	0.262	3.2	LOS A	1.8	14.1	0.19	0.27	0.19	56.8
8	T1	646	7.3	680	7.3	0.262	2.5	LOS A	1.8	14.1	0.19	0.29	0.19	59.6
9u	U	49	87.8	52	87.8	0.262	13.9	LOS B	1.6	16.1	0.21	0.33	0.21	59.1
Approa	ich	745	13.2	784	13.2	0.262	3.3	LOS A	1.8	16.1	0.20	0.29	0.20	59.4
SouthV	Vest: Twee	d Valley Way												
2	T1	39	18.9	41	18.9	0.077	3.9	LOS A	0.4	3.7	0.52	0.55	0.52	55.4
3	R2	37	12.7	39	12.7	0.077	11.4	LOS B	0.4	3.7	0.52	0.55	0.52	56.1
3u	U	1	0.0	1	0.0	0.077	13.7	LOS B	0.4	3.7	0.52	0.55	0.52	58.9
Approa	ich	77	15.7	81	15.7	0.077	7.6	LOS A	0.4	3.7	0.52	0.55	0.52	55.8
All Veh	icles	1112	13.6	1171	13.6	0.368	5.8	LOS A	1.8	16.1	0.33	0.46	0.34	57.4

Tweed Valley Way / Service Station Roundabout – 2032 Base

MOVEMENT SUMMARY

Site: 1 [Tweed Valley Way / Service Station 2032 AM (Site Folder: General)]

Tweed Valley Way / Service Station

Site Category: (None) Roundabout

Vehicle	Moveme	nt Performar	nce											
Mov	Turn	INPUT VO	LUMES	DEMAND F	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Ave
ID	Tulli	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Spee
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/
SouthEa	ast: Service	Station												
4	L2	28	13.6	29	13.6	0.297	5.7	LOS A	1.2	11.6	0.59	0.83	0.59	51
6	R2	177	24.1	186	24.1	0.297	13.2	LOS B	1.2	11.6	0.59	0.83	0.59	53
6u	U	1	0.0	1	0.0	0.297	14.4	LOS B	1.2	11.6	0.59	0.83	0.59	56
Approac	ch	206	22.6	217	22.6	0.297	12.2	LOS B	1.2	11.6	0.59	0.83	0.59	53
NorthEa	st: Tweed \	Valley Way												
7	L2	54	11.6	57	11.6	0.247	3.1	LOS A	1.6	12.6	0.14	0.26	0.14	57
8	T1	699	5.9	736	5.9	0.247	2.4	LOS A	1.6	12.6	0.15	0.26	0.15	59
9u	U	10	12.5	11	12.5	0.247	12.5	LOS B	1.6	12.2	0.15	0.27	0.15	63
Approac	ch	763	6.4	803	6.4	0.247	2.6	LOS A	1.6	12.6	0.15	0.26	0.15	59
SouthW	est: Tweed	d Valley Way												
2	T1	47	24.3	49	24.3	0.069	3.3	LOS A	0.4	3.4	0.43	0.47	0.43	56
3	R2	25	5.0	26	5.0	0.069	10.5	LOS B	0.4	3.4	0.43	0.47	0.43	57
3u	U	1	0.0	1	0.0	0.069	13.0	LOS B	0.4	3.4	0.43	0.47	0.43	60
Approac	ch	73	17.4	77	17.4	0.069	5.9	LOS A	0.4	3.4	0.43	0.47	0.43	56
All Vehic	cles	1042	10.4	1097	10.4	0.297	4.8	LOS A	1.6	12.6	0.25	0.39	0.25	58.

MOVEMENT SUMMARY

▼Site: 1 [Tweed Valley Way / Service Station 2032 PM (Site Folder: General)]

Tweed Valley Way / Service Station

Vehicle	e Moveme	nt Performa	nce											
Mov	Turn	INPUT VO	LUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Tulli	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
SouthEa	ast: Service	Station												
4	L2	49	5.1	52	5.1	0.410	6.0	LOS A	2.0	17.0	0.64	0.88	0.71	51.
6	R2	258	15.6	272	15.6	0.410	13.5	LOS B	2.0	17.0	0.64	0.88	0.71	53.
6u	U	1	0.0	1	0.0	0.410	15.1	LOS B	2.0	17.0	0.64	0.88	0.71	56.
Approac	ch	308	13.9	324	13.9	0.410	12.3	LOS B	2.0	17.0	0.64	0.88	0.71	53.
NorthEa	ast: Tweed	Valley Way												
7	L2	58	17.1	61	17.1	0.266	3.2	LOS A	1.8	13.6	0.19	0.27	0.19	56.8
8	T1	754	7.0	794	7.0	0.266	2.5	LOS A	1.8	13.6	0.20	0.27	0.20	59.
9u	U	11	26.2	12	26.2	0.266	12.7	LOS B	1.8	13.1	0.21	0.28	0.21	62.3
Approac	ch	823	8.0	866	8.0	0.266	2.7	LOS A	1.8	13.6	0.20	0.27	0.20	59.
SouthW	est: Tweed	Valley Way												
2	T1	38	13.1	40	13.1	0.076	3.5	LOS A	0.4	3.7	0.49	0.54	0.49	55.
3	R2	40	12.7	42	12.7	0.076	11.1	LOS B	0.4	3.7	0.49	0.54	0.49	56.3
3u	U	1	0.0	1	0.0	0.076	13.4	LOS B	0.4	3.7	0.49	0.54	0.49	59.
Approac	ch	79	12.7	83	12.7	0.076	7.5	LOS A	0.4	3.7	0.49	0.54	0.49	56.
All Vehi	cles	1210	9.8	1274	9.8	0.410	5.5	LOS A	2.0	17.0	0.33	0.44	0.35	57.

Tweed Valley Way / Service Station Roundabout – 2032 Base with Proposed Development ₩1

MOVEMENT SUMMARY

♥Site: 1 [Tweed Valley Way / Service Station 2032WD AM (Site Folder: General)]

Tweed Valley Way / Service Station

Site Category: (None) Roundabout

Vehicle	Moveme	ent Performa	ance											
Mov	Turn	INPUT VOI		DEMAND F		Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Ave
ID	rum	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Spee
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/
SouthEa	ast: Service	e Station												
4	L2	28	13.6	29	13.6	0.288	5.8	LOS A	1.2	10.9	0.60	0.83	0.60	5
6	R2	177	24.1	186	24.1	0.288	13.2	LOS B	1.2	10.9	0.60	0.83	0.60	5
3u	U	1	0.0	1	0.0	0.288	14.7	LOS B	1.2	10.9	0.60	0.83	0.60	5
Approac	:h	206	22.6	217	22.6	0.288	12.2	LOS B	1.2	10.9	0.60	0.83	0.60	5
NorthEa	st: Tweed	l Valley Way												
7	L2	54	11.6	57	11.6	0.276	3.1	LOS A	1.9	14.6	0.15	0.26	0.15	57
3	T1	699	5.9	736	5.9	0.276	2.4	LOS A	1.9	14.6	0.15	0.28	0.15	59
∂u	U	54	83.7	57	83.7	0.276	13.7	LOS B	1.7	17.3	0.16	0.32	0.16	59
Approac	:h	807	11.5	849	11.5	0.276	3.2	LOS A	1.9	17.3	0.15	0.28	0.15	5
SouthWe	est: Tweed	d Valley Way												
2	T1	47	24.3	49	24.3	0.070	3.8	LOS A	0.4	3.4	0.48	0.50	0.48	56
	R2	25	5.0	26	5.0	0.070	10.9	LOS B	0.4	3.4	0.48	0.50	0.48	5
Bu	U	1	0.0	1_	0.0	0.070	13.4	LOS B	0.4	3.4	0.48	0.50	0.48	5
pproac	:h	73	17.4	77	17.4	0.070	6.3	LOS A	0.4	3.4	0.48	0.50	0.48	5
II Vehic	les	1086	14.0	1143	14.0	0.288	5.1	LOS A	1.9	17.3	0.26	0.40	0.26	5

MOVEMENT SUMMARY

▼Site: 1 [Tweed Valley Way / Service Station 2032WD PM (Site Folder: General)]

Tweed Valley Way / Service Station

Vehic	e Moveme	ent Perform	ance											
Mov	Turn	INPUT VC	DLUMES	DEMAND I	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Tulli	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
SouthE	ast: Servic	e Station												
4	L2	49	5.1	52	5.1	0.398	5.9	LOS A	1.9	16.0	0.64	0.88	0.70	51.3
6	R2	258	15.6	272	15.6	0.398	13.3	LOS B	1.9	16.0	0.64	0.88	0.70	53.7
6u	U	1	0.0	1	0.0	0.398	15.2	LOS B	1.9	16.0	0.64	0.88	0.70	56.2
Approa	ıch	308	13.9	324	13.9	0.398	12.1	LOS B	1.9	16.0	0.64	0.88	0.70	53.3
NorthE	ast: Tweed	Valley Way												
7	L2	54	17.1	57	17.1	0.278	3.3	LOS A	1.9	15.4	0.20	0.27	0.20	56.7
8	T1	699	7.1	736	7.1	0.278	2.5	LOS A	1.9	15.4	0.21	0.29	0.21	59.4
9u	U	41	62.1	43	62.1	0.278	13.7	LOS B	1.8	16.7	0.23	0.32	0.23	59.9
Approa	ıch	794	10.6	836	10.6	0.278	3.2	LOS A	1.9	16.7	0.21	0.29	0.21	59.2
SouthV	Vest: Twee	d Valley Way												
2	T1	38	13.1	40	13.1	0.079	3.8	LOS A	0.4	3.8	0.52	0.56	0.52	55.4
3	R2	40	12.7	42	12.7	0.079	11.4	LOS B	0.4	3.8	0.52	0.56	0.52	56.1
3u	U	1	0.0	1	0.0	0.079	13.6	LOS B	0.4	3.8	0.52	0.56	0.52	58.9
Approa	ıch	79	12.7	83	12.7	0.079	7.8	LOS A	0.4	3.8	0.52	0.56	0.52	55.8
All Veh	icles	1181	11.6	1243	11.6	0.398	5.8	LOS A	1.9	16.7	0.34	0.46	0.36	57.3

Tweed Valley Way / Service Station Roundabout – 2042 Base

MOVEMENT SUMMARY

♥Site: 1 [Tweed Valley Way / Service Station 2042WD PM (Site Folder: General)]

Tweed Valley Way / Service Station

Site Category: (None) Roundabout

Vehicl	e Moveme	ent Performa	ance											
Mov	Turn	INPUT VO	LUMES	DEMAND I	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Turn	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
SouthE	ast: Service	e Station												
4	L2	49	5.1	52	5.1	0.398	5.9	LOS A	1.9	16.0	0.64	0.88	0.70	51.3
6	R2	258	15.6	272	15.6	0.398	13.3	LOS B	1.9	16.0	0.64	0.88	0.70	53.7
6u	U	1	0.0	1	0.0	0.398	15.2	LOS B	1.9	16.0	0.64	0.88	0.70	56.2
Approa	ch	308	13.9	324	13.9	0.398	12.1	LOS B	1.9	16.0	0.64	0.88	0.70	53.3
NorthEa	ast: Tweed	Valley Way												
7	L2	54	17.1	57	17.1	0.278	3.3	LOS A	1.9	15.4	0.20	0.27	0.20	56.7
8	T1	699	7.1	736	7.1	0.278	2.5	LOS A	1.9	15.4	0.21	0.29	0.21	59.4
9u	U	41	62.1	43	62.1	0.278	13.7	LOS B	1.8	16.7	0.23	0.32	0.23	59.9
Approa	ch	794	10.6	836	10.6	0.278	3.2	LOS A	1.9	16.7	0.21	0.29	0.21	59.2
SouthW	/est: Tweed	d Valley Way												
2	T1	38	13.1	40	13.1	0.079	3.8	LOS A	0.4	3.8	0.52	0.56	0.52	55.4
3	R2	40	12.7	42	12.7	0.079	11.4	LOS B	0.4	3.8	0.52	0.56	0.52	56.1
3u	U	1	0.0	1	0.0	0.079	13.6	LOS B	0.4	3.8	0.52	0.56	0.52	58.9
Approa	ch	79	12.7	83	12.7	0.079	7.8	LOS A	0.4	3.8	0.52	0.56	0.52	55.8
All Vehi	icles	1181	11.6	1243	11.6	0.398	5.8	LOS A	1.9	16.7	0.34	0.46	0.36	57.3

MOVEMENT SUMMARY

♥Site: 1 [Tweed Valley Way / Service Station 2042 PM (Site Folder: General)]

Tweed Valley Way / Service Station

Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		km/h
0.88	0.72	51.
0.88	0.72	53.5
0.88	0.72	56.
0.88	0.72	53.
0.26	0.16	57.
0.26	0.17	59.
0.27	0.17	62.
0.26	0.16	59.
0.51	0.50	56.
0.51	0.50	56.
0.51	0.50	59.
0.51	0.50	56.
0.45	0.34	57.
	0.26 0.26 0.27 0.26 0.51 0.51 0.51	0.26

Tweed Valley Way / Service Station Roundabout – 2042 Base with Proposed Development ₩1

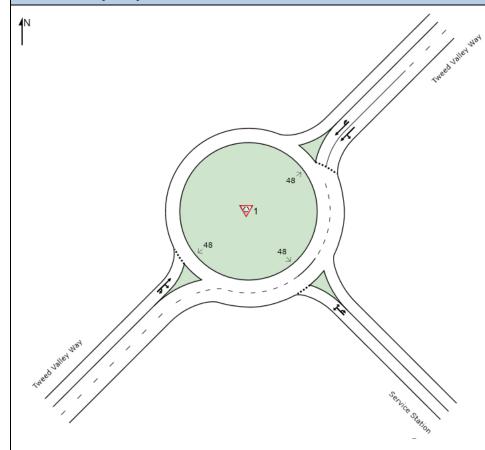
MOVEMENT SUMMARY

▼Site: 1 [Tweed Valley Way / Service Station 2042WD AM (Site Folder: General)]

Tweed Valley Way / Service Station

Site Category: (None) Roundabout

Vehicl	e Movem	ent Performa	ance											
Mov	Turn	INPUT VO	LUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	- Tulli	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
SouthE	ast: Servic	e Station												
4	L2	29	13.6	31	13.6	0.308	5.9	LOS A	1.3	11.9	0.62	0.84	0.62	51.
6	R2	188	24.1	198	24.1	0.308	13.3	LOS B	1.3	11.9	0.62	0.84	0.62	53.3
6u	U	1	0.0	1	0.0	0.308	14.8	LOS B	1.3	11.9	0.62	0.84	0.62	56.
Approa	ch	218	22.6	229	22.6	0.308	12.4	LOS B	1.3	11.9	0.62	0.84	0.62	53.
NorthE	ast: Tweed	l Valley Way												
7	L2	57	11.6	60	11.6	0.288	3.1	LOS A	2.0	15.6	0.16	0.26	0.16	57.1
8	T1	742	5.9	781	5.9	0.288	2.5	LOS A	2.0	15.6	0.16	0.28	0.16	59.8
9u	U	42	91.1	44	91.1	0.288	13.8	LOS B	1.9	17.8	0.17	0.30	0.17	59.2
Approa	ch	841	10.5	885	10.5	0.288	3.1	LOS A	2.0	17.8	0.16	0.28	0.16	59.6
SouthW	/est: Twee	d Valley Way												
2	T1	49	24.3	52	24.3	0.077	3.9	LOS A	0.4	3.8	0.49	0.51	0.49	55.9
3	R2	27	5.0	28	5.0	0.077	10.9	LOS B	0.4	3.8	0.49	0.51	0.49	57.0
3u	U	1	0.0	1	0.0	0.077	13.4	LOS B	0.4	3.8	0.49	0.51	0.49	59.5
Approa	ch	77	17.2	81	17.2	0.077	6.5	LOS A	0.4	3.8	0.49	0.51	0.49	56.4
All Veh	icles	1136	13.3	1196	13.3	0.308	5.1	LOS A	2.0	17.8	0.27	0.40	0.27	58.0


MOVEMENT SUMMARY

Site: 1 [Tweed Valley Way / Service Station 2042WD PM (Site Folder: General)]

Tweed Valley Way / Service Station

Vehicle	• Moveme	ent Perform	ance											
Mov	Turn	INPUT VC	DLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Tulli	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
SouthEa	ast: Servic	e Station												
4	L2	52	5.1	55	5.1	0.425	6.1	LOS A	2.1	17.7	0.65	0.89	0.74	51.1
6	R2	274	15.6	288	15.6	0.425	13.6	LOS B	2.1	17.7	0.65	0.89	0.74	53.5
6u	U	1	0.0	1	0.0	0.425	15.4	LOS B	2.1	17.7	0.65	0.89	0.74	56.0
Approac	ch	327	13.9	344	13.9	0.425	12.4	LOS B	2.1	17.7	0.65	0.89	0.74	53.1
NorthEa	ast: Tweed	Valley Way												
7	L2	55	17.1	58	17.1	0.281	3.3	LOS A	2.0	15.5	0.20	0.27	0.20	56.7
8	T1	710	6.7	747	6.7	0.281	2.5	LOS A	2.0	15.5	0.21	0.29	0.21	59.5
9u	U	42	97.7	44	97.7	0.281	14.2	LOS B	1.8	17.6	0.23	0.32	0.23	58.7
Approac	ch	807	12.1	849	12.1	0.281	3.2	LOS A	2.0	17.6	0.21	0.29	0.21	59.3
SouthW	est: Twee	d Valley Way												
2	T1	41	13.1	43	13.1	0.084	3.9	LOS A	0.5	4.0	0.55	0.57	0.55	55.3
3	R2	42	12.7	44	12.7	0.084	11.5	LOS B	0.5	4.0	0.55	0.57	0.55	56.0
3u	U	1	0.0	1	0.0	0.084	13.8	LOS B	0.5	4.0	0.55	0.57	0.55	58.7
Approac	ch	84	12.7	88	12.7	0.084	7.9	LOS A	0.5	4.0	0.55	0.57	0.55	55.7
All Vehi	cles	1218	12.7	1282	12.7	0.425	6.0	LOS A	2.1	17.7	0.35	0.47	0.38	57.2

Tweed Valley Way / Service Station Roundabout – 2042 Base with Proposed Development Sensitivity

MOVEMENT SUMMARY

Site: 1 [Tweed Valley Way / Service Station 2042WD AM - Sensitivity (Site Folder: General)]

Tweed Valley Way / Service Station

Site Category: (None) Roundabout

Vehicle	Moveme	ent Performa	ance											
Mov	Turn	INPUT VOI	LUMES	DEMAND F	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver
ID	Talli	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/l
SouthEa	ast: Service	Station												
4	L2	29	13.6	31	13.6	0.333	6.3	LOS A	1.4	13.6	0.63	0.86	0.66	50
6	R2	188	24.1	198	24.1	0.333	13.9	LOS B	1.4	13.6	0.63	0.86	0.66	52
6u	U	1	0.0	1	0.0	0.333	14.9	LOS B	1.4	13.6	0.63	0.86	0.66	55
Approac	rh	218	22.6	229	22.6	0.333	12.9	LOS B	1.4	13.6	0.63	0.86	0.66	52
NorthEa	st: Tweed	Valley Way												
7	L2	57	11.6	60	11.6	0.288	3.1	LOS A	2.0	15.7	0.16	0.26	0.16	57.
8	T1	742	5.9	781	5.9	0.288	2.5	LOS A	2.0	15.7	0.16	0.28	0.16	59
9u	U	42	91.1	44	91.1	0.288	13.8	LOS B	1.9	17.8	0.17	0.30	0.17	59
Approac	rh	841	10.5	885	10.5	0.288	3.1	LOS A	2.0	17.8	0.16	0.28	0.16	59
SouthWe	est: Tweed	d Valley Way												
2	T1	49	24.3	52	24.3	0.079	3.9	LOS A	0.4	3.9	0.50	0.51	0.50	55
3	R2	27	5.0	28	5.0	0.079	10.9	LOS B	0.4	3.9	0.50	0.51	0.50	56
3u	U	1	0.0	1	0.0	0.079	13.5	LOS B	0.4	3.9	0.50	0.51	0.50	59
Approac	rh	77	17.2	81	17.2	0.079	6.5	LOS A	0.4	3.9	0.50	0.51	0.50	56
All Vehic	les	1136	13.3	1196	13.3	0.333	5.2	LOS A	2.0	17.8	0.28	0.40	0.28	57

MOVEMENT SUMMARY

Site: 1 [Tweed Valley Way / Service Station 2042WD PM - Sensitivity (Site Folder: General)]

Tweed Valley Way / Service Station

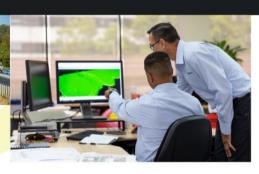
Vehicle	Move <u>me</u>	ent Performa	ance											
Mov	T	INPUT VC	DLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID	Turn	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m -				km/h
SouthEa	ast: Service	e Station												
4	L2	52	5.1	55	5.1	0.421	6.1	LOS A	2.0	17.3	0.64	0.89	0.73	51.
6	R2	274	15.6	288	15.6	0.421	13.5	LOS B	2.0	17.3	0.64	0.89	0.73	53.5
6u	U	1	0.0	1	0.0	0.421	15.4	LOS B	2.0	17.3	0.64	0.89	0.73	56.0
Approac	h	327	13.9	344	13.9	0.421	12.4	LOS B	2.0	17.3	0.64	0.89	0.73	53.
NorthEa	st: Tweed	Valley Way												
7	L2	55	17.1	58	17.1	0.276	3.2	LOS A	1.9	15.2	0.16	0.26	0.16	57.0
8	T1	710	6.7	747	6.7	0.276	2.5	LOS A	1.9	15.2	0.17	0.28	0.17	59.8
9u	U	42	97.7	44	97.7	0.276	13.9	LOS B	1.8	17.3	0.18	0.30	0.18	59.0
Approac	h	807	12.1	849	12.1	0.276	3.1	LOS A	1.9	17.3	0.17	0.28	0.17	59.6
SouthW	est: Tweed	d Valley Way												
2	T1	41	13.1	43	13.1	0.069	3.9	LOS A	0.4	3.3	0.54	0.54	0.54	55.8
3	R2	27	12.7	28	12.7	0.069	11.5	LOS B	0.4	3.3	0.54	0.54	0.54	56.5
3u	U	1	0.0	1	0.0	0.069	13.8	LOS B	0.4	3.3	0.54	0.54	0.54	59.3
Approac	h	69	12.7	73	12.7	0.069	7.0	LOS A	0.4	3.3	0.54	0.54	0.54	56.
All Vehic	cles	1203	12.7	1266	12.7	0.421	5.8	LOS A	2.0	17.3	0.32	0.46	0.34	57.

Appendix F – Economic Evaluation

– www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-TIA-07B
Doc Title: Traffic Impact Assessment



The experience **you deserve**

Proposed TSP Haulage Route Economic Evaluation

Client: Hanson Construction Materials Pty Ltd

Project No: BE190043

Document No: BE190043-RP-EE-02

October 2021

Document Control Record

Prepared by:	Aga Szewczak
Position:	Senior Traffic Engineer
Signed:	Sievale
Date:	25 October 2021

Approved by:	Dale Kleimeyer
Position:	Principal Engineer – RPEQ
Signed:	DIKemp
Date:	25 October 2021

Version No.	Description	Date	Prepared	Approved
01	Preliminary Draft	14 October 2021	AS	DK
02	Final Issue	26 October 2021	AS	DK

Recipients are responsible for eliminating all superseded documents in their possession

Coote Burchills Engineering Pty Ltd ACN: 166 942 365

Level 2, 26 Marine Parade SOUTHPORT QLD 4215 PO Box 3766, Australia Fair SOUTHPORT QLD 4215 Telephone: +61 7 5509 6400

Level 14, 167 Eagle Street BRISBANE QLD 4000 PO Box 83, BRISBANE QLD 4000 Telephone: +61 7 3606 0201

Email: admin@burchills.com.au

RELIANCE. USES and LIMITATIONS

This report is copyright and is to be used only for its intended purpose by the intended recipient, and is not to be copied or used in any other way. The report may be relied upon for its intended purpose within the limits of the following disclaimer.

This study, report and analyses have been based on the information available to Burchills Engineering Solutions at the time of preparation. Burchills Engineering Solutions accepts responsibility for the report and its conclusions to the extent that the information was sufficient and accurate at the time of preparation. Burchills Engineering Solutions does not take responsibility for errors and omissions due to incorrect information or information not available to Burchills Engineering Solutions at the time of preparation of the study, report or analyses.

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

Doc Title: Proposed TSP Haulage Route Economic Evaluation

www.burchills.com.au

Executive Summary

Introduction

Burchills Engineering Solutions have been appointed by Hanson Construction Materials Pty Ltd (Hanson) to prepare an Economic Evaluation of the proposed haulage route associated with the expansion of its Tweed Sand Plant (TSP) located in Cudgen, New South Wales ('the Site').

The existing haulage route from the site to the M1 Pacific Motorway is via Tweed Coast Road (TCR) to the east, which is a key north-south rural arterial road in the area connecting a number of small coastal towns to the M1 Pacific Motorway.

The proposed haulage route is via a new internal haul road to Tweed Valley Way (TVW) and the M1 Pacific Motorway to the west of the site. As part of the proposed new haulage route, it is proposed to upgrade the existing Tweed Valley Way / Australian Bay Lobster Producers (ABLP) priority intersection to a roundabout.

The need for private access to the interchange and the relative merits of supporting a direct access, versus the comparative outcome of previously approved access arrangement via Tweed Coast Road is relevant to the Consent Authority's consideration of Clause 101 of the SEPP Infrastructure. To quantify the potential benefits of removing heavy vehicle demand from Tweed Coast Road (TCR), a comparative economic analysis of impacts introduced to the Tweed Valley Way interchange in terms of delay and/or safety has been prepared.

It is noted that the proposed Tweed Valley Way roundabout has potential to provide a safer access arrangement for existing approved uses but will generate a delay to through traffic movements. These costs may be offset by savings in heavy vehicle demand on Tweed Coast Road and at the Chinderah interchange over the life of the project.

Economic Appraisal Methodology

The economic appraisal of the proposed haulage route via Tweed Valley Way (Project Case) including the construction of a new roundabout, has been evaluated over a 30-year evaluation period against Base Case which includes haulage route via Tweed Coast Road. Project Case includes removal of all Hanson Trucks from Tweed Coast Road.

The evaluation was conducted using cost-benefit analysis (CBA) framework that applies a discounted cash flow technique to assess the future net benefits of a Project Case against Base Case. CBA includes only benefits to the Tweed Shire Council residents and public, Tweed Shire Council and NSW State Government. Any benefits acquired by Hanson with respect to shorter travel distances have not been included. The analysis includes maintenance costs associated with the proposed new Tweed Valley Way roundabout over the life of the project but excludes the capital costs covered by Hanson.

As part of the CBA, SIDRA traffic modelling was undertaken to determine average intersection delays for the Base Case and Project Case. The evaluation was undertaken in accordance with National and NSW economic frameworks.

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

Doc Title: Proposed TSP Haulage Route Economic Evaluation

www.burchills.com.au

Figure 1.0 below shows Base Case and Project Case TSP haulage routes via Tweed Coast Road and Tweed Valley Way respectively.

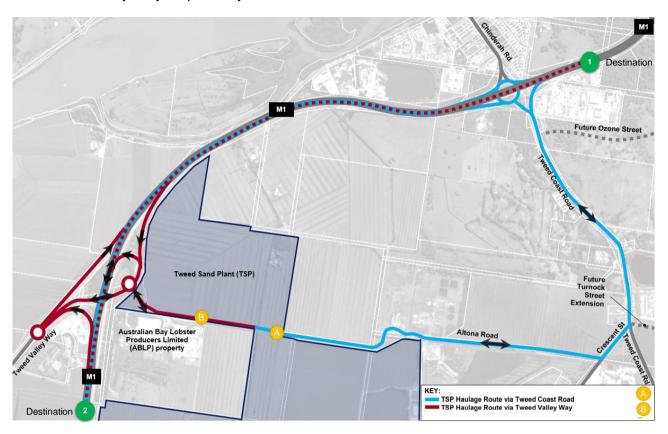


Figure 1.0 Base Case and Project Case Haulage Route to the M1 Pacific Motorway

Traffic Forecast

To inform SIDRA modelling, traffic count data was sourced for the following intersections:

Intersection	Survey Year	AM Peak Volumes	PM Peak Volumes
Existing Haulage Route via Tweed	d Coast Ro	ad	
Pacific Motorway / Tweed Coast Road interchange	2018	2,336	2,365
Tweed Coast Road / Morton Street priority intersection	2018	1,930	1,961
Tweed Coast Road / Morton Street priority intersection	2018	1,931	1,965
Tweed Coast Road / Crescent Street priority intersection	2016	1,546	1,480
Altona Road / Crescent Street priority intersection	2016	122	69
Proposed Haulage Route via Twee	d Valley W	<i>l</i> ay	
Tweed Valley Way / Australian Bay Lobster Producers	2020	660	625
Tweed Valley Way / Service Station Roundabout	2020	828	931

Background traffic growth in the area was calculated for each haulage route, based on the recorded AADT data and 2041 traffic volumes extracted from the Tweed Strategic Transport Model (2041 medium yield Scenario 6).

 \gg —

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

The recorded AADT volumes and 2041 Tweed Strategic Transport Model volumes used for the calculation of the growth rates for Tweed Coast Road and Tweed Valley Way are shown below.

Road	Survey Year	Recorded AADT	2041 Strategic Model AADT*	Compound growth p.a.	
Tweed Coast Road	2018	17,757	34,280	2.90%	
Tweed Valley Way	2020	14,740	16,710	0.60%	

^{*} Medium Yield Scenario 6

Base Case and Project Case

The proposed haulage route via Tweed Valley Way including the Tweed Valley Way / Australian Bay Lobster Producers intersection upgrade to a roundabout (Project Case), was tested against the haulage route via Tweed Coast Road (Base Case) using SIDRA traffic modelling software and considering the broader network operations as follows:

- Base Case Tweed Sand Plant haulage route via Tweed Coast Road and no access to Tweed Valley Way; and
- Project Case Tweed Sand Plant haulage route via Tweed Valley Way including the Tweed Valley Way / Australian Bay Lobster Producers intersection upgrades. Project Case includes removal of all Hanson trucks from Tweed Coast Road.

Both Base Case and Project Case include traffic volumes associated with the expansion of the existing Tweed Sand Plant (950,000 tpa sand production rate per annum).

Traffic Modelling

Comprehensive traffic modelling studies were undertaken to inform the Cost-Benefit Analysis of the preferred haulage route (Project Case) in comparison with the existing haulage route (Base Case).

Given the project's proximity to the existing and planned major state-controlled roads, the forensic traffic modelling analysis in 2032 and 2042 includes Tweed Coast Road upgrade works from 2-lanes to 4-lanes including individual intersection upgrade works.

SIDRA modelling was undertaken for the morning peak and afternoon peak based on the available intersections traffic count data for the following intersection:

- Altona Road / Crescent Street priority intersection;
- Tweed Coast Road / Crescent Street intersection;
- Tweed Coast Road / Ozone Street extension intersection;
- Tweed Coast Road / M1 Pacific Motorway Interchange intersection;
- Tweed Valley Way / Australian Bay Lobster Producers intersection; and
- Tweed Valley Way / Service Station Roundabout.

The key performance criteria considered as part of the network assessment is intersection average delay (s). A comparison of the travel time benefits along Tweed Coast Road and Tweed Valley Way for the Base Case and Project Case shows the combined AM and PM peak travel time benefit achieved along Tweed Coast Road and additional delay cost along Tweed Valley Way post-development.

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

Doc Title: Proposed TSP Haulage Route Economic Evaluation

www.burchills.com.au

Project Costs

The preliminary cost estimates for the proposed roundabout were used for the Economic Appraisal. The above costs were used to establish likely maintenance costs associated with the new roundabout over the 30-years asset design life.

It is important to note that the Benefit Cost Ratio analysis doesn't use the construction cost for the roundabout as Hanson will carry the upgrade works.

The preliminary estimated construction cost for the proposed roundabout is shown in table below.

Cost	Total Construction Cost (Undiscounted, 2021 prices)
Project Case - Roundabout Upgrade	\$4,800,000

For appraisal purposes, it has been assumed that design and construction will occur between 2021 and 2022.

The roundabout would be constructed with a durable 30-year design life concrete pavement and maintainable one in four batters. However, for robust assessment a 1% maintenance cost has been adopted. A summary of the ongoing maintenance costs for the proposed roundabout are shown in table below.

Cost	Total Maintenance Cost (Undiscounted, 2021 prices)
Project Case – Roundabout Maintenance Costs	\$1,440,000

Tweed Valley Way in the vicinity of the ABLP access intersection is currently subject to 80km/h speeds. The proposed roundabout includes the introduction of a 60km/h speed limit at the approach to the roundabout which will result in additional delays for through traffic along Tweed Valley Way. The above has been included in the assessment in addition to SIDRA intersection delay assessment. A summary of the Tweed Valley Way Travel Time Cost is presented in table below.

Cost	Total Tweed Valley Way Travel Time Cost (Undiscounted, 2021 prices)
Travel Time Cost along Tweed Valley Way	\$1,107,887

Project Benefits

CBA includes only benefits to the Tweed Shire Council residents and public, Tweed Shire Council and NSW State Government. Any benefits acquired by Hanson with respect to shorter travel distances have not been included.

The Tweed Shire Council strategic modelling shows that traffic along TCR increases significantly as a result of residential and business growth in the area. Local congestion and delays can be expected into the future as the volume of traffic increases. Removing TSP trucks from Tweed Coast Road will generate substantial benefits to road users, particularly through savings in travel time, reduction in crash costs and environmental benefits. Benefits to local authority include reduction in Tweed Coast

 \gg -

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

Road Maintenance Costs. As part of this economic analysis, potential benefits were quantitatively evaluated against the Base Case. Benefits quantified include:

- Travel Time Saving along Tweed Coast Road;
- · Safety Benefits;
- Environmental Benefits: and
- Tweed Coast Road Maintenance Cost Reduction.

The summary of project benefits and costs are presented in table below.

Economic Results	Total (Undiscounted, 2021 prices)	Present Value (7% discount)	
Costs			
Travel Time Cost along Tweed Valley Way	\$1,107,887	\$453,685	
Proposed Roundabout Maintenance Cost	\$1,440,000	\$595,634 \$1,049,319	
Total Cost	\$2,547,887		
Benefits			
Travel Time Saving along Tweed Coast Road	\$4,289,900	\$1,269,772	
Tweed Coast Road Maintenance Cost Reduction	\$1,001,193	\$474,300	
Net Safety Benefits	\$269,120	\$94,197	
Net Environmental Benefits	\$1,806,952	\$747,418	
Total Benefit	\$7,367,165	\$2,585,686	
Net Benefit (NPV @7%)		\$1,536,367	

The present value of benefits associated with Project Case were calculated over a 30-year evaluation period based on a seven per cent real discount rate.

Economic Appraisal Results

Cost-benefit analysis has determined that the project will generate a Present Value (PV) total of \$2.59M in benefits at a Present Value cost of \$1.05M above the Base Case, providing a NPV of \$1.54M and a Benefit-Cost Ratio (BCR) of 2.46. The majority of benefits relate to travel time savings along Tweed Coast Road via a reduction in travel time, maintenance costs reduction, environmental and safety benefits.

Sensitivity testing of the BCR inputs identified a BCR range of 1.64 to 3.70 for the following tests:

- The NPV discount rate was tested at 3%, 7% (original assessment) and 10%;
- The benefit was reduced by 20% and cost increased by 20%; and
- The benefit was increased by 20% and cost reduced by 20%.

Conclusions

This Economic Evaluation assessment has demonstrated that the proposed Tweed Sand Plant haulage route via Tweed Valley Way including upgrade of the Tweed Valley Way / ABLP intersection

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

Doc Title: Proposed TSP Haulage Route Economic Evaluation

www.burchills.com.au

does provide economic benefits to the local community which outweighs its cost to residents, Local and State Governments.

<u></u>

- www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

Table of Contents

1.		ıntr	oauc	ction	1
	1.	1	Proj	ect Scope	1
	1.	2	Proj	ect Overview	1
		1.2.	.1	Proposed Development	1
		1.2.	2	Base Case Haulage Route via Tweed Coast Road	1
		1.2.	3	Project Case Haulage Route via Tweed Valley Way	2
		1.2.	4	Haulage Route Comparison	3
	1.	3	Sco	pe of this Report	4
	1.	4	Defi	nitions	5
2.		Rel	ated	Projects	6
	2.	1	Twe	eed Coast Road / Pacific Motorway (M1) Interchange Upgrade	6
	2.	2	Twe	eed Coast Road / Ozone Street Intersection Upgrade	7
	2.			eed Coast Road / Crescent Street Intersection Upgrade	
3.		Tra	ffic [Demands	9
	3.			kground Traffic	
		3.1.	.1	Traffic Survey Counts Peak Hours	
		3.1.	2	Background Traffic Growth Rates	10
		3.1.	3	Future Year Traffic Volumes	10
	3.			ed Sand Plant Development Traffic	11
		3.2.	.1	Estimated Development Traffic Generation	11
		3.2.2		Base Case Development Trip Distribution	11
		3.2.	3	Project Case Development Trip Distribution	12
	3.	3	Bas	e Case	13
	3.	4	Proj	ect Case	14
4.		Tra	ffic N	Modelling Overview	16
	4.	1	Ove	erview	16
5.		Pro	ject	Costs	21
		5.1.	.1	Construction Cost	21
		5.1.	2	Operating Cost	21
		5.1.	3	Travel Time Cost along Tweed Valley Way	21
6.		Pro	ject	Benefits	22
		6.1.	.1	Overview	22
		6.1.	2	Travel Time Benefits	22

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

Doc Title: Proposed TSP Haulage Route Economic Evaluation

- www.burchills.com.au

The experience you deserve

6.1.3 Tweed Coast Road Maintenance Cost Reduction	23
6.1.4 Safety-Related Benefits	24
6.1.5 Environmental Benefits	26
6.1.6 Project Benefits Summary	27
7. Economic Appraisal	28
7.6 Economic Appraisal	
7.7 Benefit Cost Ratio	31
7.8 Sensitivity Analysis	33
8. Conclusions	34
9. References	35
Tables Table 1.1. Been Consumal Project Consultanters Bouts to the Mil	Danifia Matamusu (kilamatma)
Table 1.1 Base Case and Project Case Haulage Route to the M1 Table 1.2 List of Abbreviations	,
Table 2.1 Tweed Coast Road / Pacific Motorway (M1) Interchang Table 3.1 Background Growth Rates	
•	
Table 3.2 Forecast TSP Redevelopment Truck Movements (Peak Table 3.3 Forecast Tweed Sand Plant Redevelopment Truck Mov	
Table 4.1 2022 Key Network Statistics	
Table 4.1 2022 Key Network Statistics	
Table 4.3 2042 Key Network Statistics	
Table 4.4 Traffic Modelling Annual Hour Travelled Savings	
Table 6.5 Crash Cost Benefits	
Table 6.6 Parameters for Environmental Benefits	
Table 7.1 Key Inputs and Reference Sources	
Table 7.3 BCR Calculations	32
Table 7.4 Economic Appraisal Results (at 7% real discount rate).	
Table 7.5 CBA Sensitivity Tests	
Table 7.6 CBA Sensitivity Tests Results	
Figures	
Figure 1.1 Base Case Haulage Route to the M1 Pacific Motorway	
Figure 1.2 Project Case Haulage Route to the M1 Pacific Motorw	
Figure 1.3 Base Case and Project Case - Haulage Route to the N	•
Figure 2.1 Proposed Upgrades to the Tweed Coast Road / M1 Int	•
Figure 2.2 Proposed Ozone Street Extension (Source: 2017 TRD	• •
Figure 2.3 Proposed Turnock Street Extension (Source: 2017 TR	
Figure 3.1 Traffic Surveys (AM and PM Peak)	
<u> </u>	www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

The experience you deserve

Figure 3.2	NET Traffic Surveys (AM and PM Peak)	10
Figure 3.3	Base Case Development Traffic Flows	12
Figure 3.4	Project Case Development Traffic Flows	12
Figure 3.5	2022 Base Case Traffic Flows	13
Figure 3.6	2032 Base Case Traffic Flows	13
Figure 3.7	2042 Base Case Traffic Flows	14
Figure 3.8	2022 Project Case Traffic Flows	14
Figure 3.9	2032 Project Case Traffic Flows	15
Figure 3.10	2042 Project Case Traffic Flows	15

Appendices

Appendix A – Traffic Flow Diagrams

Appendix B - SIDRA Outputs

Appendix C – BCR Calculations

- www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

1. Introduction

1.1 Project Scope

Burchills Engineering Solutions have been appointed by Hanson Construction Materials Pty Ltd (Hanson) to prepare an Economic Evaluation of the proposed haulage route associated with the expansion of its Tweed Sand Plant (TSP) located in Cudgen, New South Wales ('the Site').

The proposed haulage route is via a new internal haul road to Tweed Valley Way and the M1 Pacific Motorway to the west of the site. As part of the proposed new haulage route, it is proposed to upgrade the existing Tweed Valley Way / Australian Bay Lobster Producers (ABLP) priority intersection to a roundabout.

This Economic Evaluation reports the results of the comprehensive studies, which include traffic modelling, cost estimation and cost-benefit analysis.

1.2 Project Overview

1.2.1 Proposed Development

The proposed development includes the expansion of the existing Tweed Sand Plant (TSP) located at Altona Road, Cudgen. The total area for the future Tweed Sand Plant site would be approximately 236ha and result in an increase in the sand production rate from the current limit of 500,000 tonnes per annum (tpa) to 950,000 tpa.

The following options have been assessed for the proposed development:

- Base Case Tweed Sand Plant haulage route via Tweed Coast Road; and
- Project Case Tweed Sand Plant haulage route via Tweed Valley Way including the Tweed Valley Way / Australian Bay Lobster Producers intersection upgrades.

Both Base Case and Project Case include traffic volumes associated with the expansion of the existing Tweed Sand Plant (950,000 tpa sand production rate per annum).

1.2.2 Base Case Haulage Route via Tweed Coast Road

The Base Case TSP haulage route to the M1 Pacific Motorway is via Tweed Coast Road, which is a key north-south rural arterial road in the area connecting a number of small coastal towns to the M1 Pacific Motorway.

Figure 1.1 below shows the Base Case TSP haulage route.

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

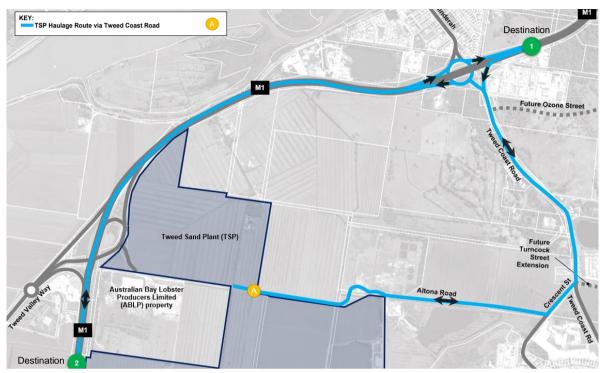


Figure 1.1 Base Case Haulage Route to the M1 Pacific Motorway

1.2.3 Project Case Haulage Route via Tweed Valley Way

The proposed TSP haulage route to the M1 Pacific Motorway is via Tweed Valley Way to the west from the site as shown in Figure 1.2 below.

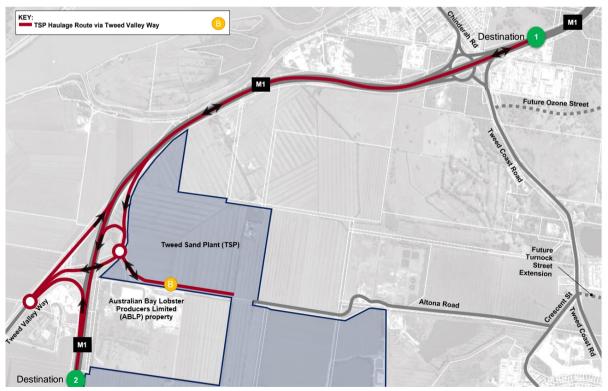


Figure 1.2 Project Case Haulage Route to the M1 Pacific Motorway

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

As part of the new haulage route, it is proposed to upgrade the existing Tweed Valley Way / Australian Bay Lobster Producers (ABLP) priority intersection to a roundabout.

1.2.4 Haulage Route Comparison

Table 1.1 and Figure 1.3 below shows a comparison between the base case and the project case TSP haulage route via Tweed Coast Road and Tweed Valley Way respectively.

Table 1.1 Base Case and Project Case Haulage Route to the M1 Pacific Motorway (kilometres)

Base Case Haulage Route A via Tweed Co				Road	Project Case Haulage Route B via Tweed Valley Way				
Haulage Route A	M1 North		M1 South		Haulage Route B	M1 North		M1 South	
length to destinations 1 & 2	То	From	То	From	length to	То	From	То	From
(km)		1	2	2 (km)		1		2	
Internal Road	0.12	0.12	0.12	0.12	Internal Road	0.77	0.77	0.77	0.77
Altona Rd Unsealed	0.52	0.52	0.52	0.52	M1 west of access	0.25	N/A	N/A	0.30
Altona Road Sealed	1.43	1.43	1.43	1.43	Tweed Valley Way	0.57	N/A	N/A	0.81
Crescent Street	0.24	0.24	0.24	0.24	M1 off ramp	N/A	0.76	N/A	488
Tweed Coast Road	1.42	1.42	1.42	1.42	M1 on ramp	923	N/A	0.71	N/A
M1 off ramp	N/A	0.67	N/A	0.74	Along M1	2.96	2.67	3.29	N/A
M1 on ramp	1.03	N/A	0.55	N/A	Total	5.47	4.20	1.81	2.36
Along M1	N/A	N/A	2.94	2.91	Difference	0.71	-0.20	-5.41	-5.02
Total	4.76	4.40	7.22	7.38					

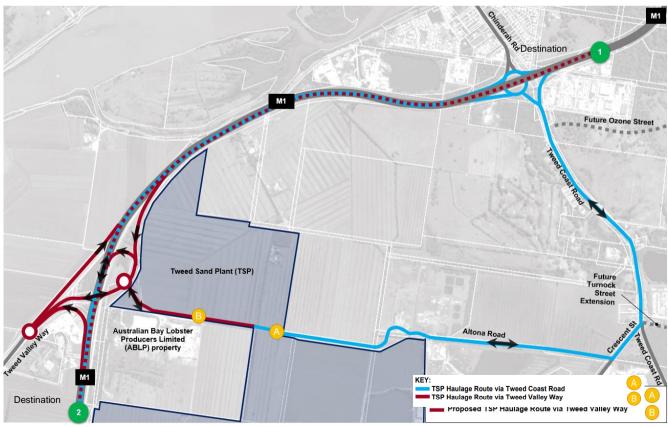


Figure 1.3 Base Case and Project Case - Haulage Route to the M1 Pacific Motorway

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

In summary, the Base Case haulage route via Tweed Coast Road is more than 5km longer than the proposed haulage route via Tweed Coast Road for trips to and from the south.

Trips from the north via Tweed Valley Way are approximately 200m shorter, directly accessed from the M1 off ramp with no impact onto the other local roads. Trips to the north via Tweed Valley are slightly longer, but there is significant reduction of number of trips along Urban Roads in comparison to the existing haulage route.

1.3 Scope of this Report

The structure of this report is summarised below:

Section 2 Related Projects

Outlines relevant future road upgrade works along TCR and TVW.

Section 3 Traffic Demands

Estimate the increase in traffic generated by the proposed development.

Section 4 Traffic Modelling Overview

Describes methodology adopted for the traffic modelling

Section 5 Project Costs

Reports the results of the preliminary cost estimate of the Project Case.

Section 6 Project Benefits

Outlines anticipated benefits for Project Case.

Section 7 Economic Appraisal

Outlines the Benefit Cost Ratio (BCR) calculations undertaken for Project Case.

Section 8 Conclusions

Provides a summary of the report, including the project impacts and benefits.

Section 9 References

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

1.4 Definitions

Table 1.2 below presents a list of abbreviations used in this document

Table 1.2 List of Abbreviations

Abbreviation	Definition
AADT	Annual Average Daily Traffic Volume
ABS	Australian Bureau of Statistics
AM	Ante Meridiem (before midday)
AS	Australian Standards
AWE	Average Weekly Earnings
ATAP	Australian Transport Assessment and Planning
BCR	Benefit Cost Ratio
CBA	Cost-Benefit Analysis
CBD	Central Business District
CBR	California Bearing Ratio
COVID-19	The Coronavirus Disease of 2019
CPI	Consumer Price Index
EMME	Equilibre Multimodal/Multimodal Equilibrium
GIS	Geographic Information System
LGIP	Local Government Infrastructure Plan
LOS	Level of Service
NPV	Net Present Value
PM	Post Meridiem (after midday)
TCR	Tweed Coast Road
TfNSW	Transport for New South Wales
TVW	Tweed Valley Way
VHT	Vehicle Hours Travelled
VKT	Vehicle Kilometres Travelled
VPD	Vehicles per Day
VTTS	Value of Travel Time Savings

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

2. Related Projects

2.1 Tweed Coast Road / Pacific Motorway (M1) Interchange Upgrade

The current 2017 Tweed Road Development Strategy (TRDS) was developed in 2017 and provides the Tweed Shire's Road network requirements to cater for long term growth.

It is worth noting that the TRDS is based on practical rather than "aspirational" road network infrastructure (i.e. which can be funded, and which can provide practical benefits to the Tweed community within the expected timeframes). Findings rely on projected changes in demographics, economics and land use patterns.

The recommendations within the 2017 Tweed Road Development Strategy (TRDS) document relating to the proposed development are discussed in this section.

Table 2.1 and Figure 2.1 below shows the recommended upgrade to the Pacific Motorway / Tweed Coast Road interchange sourced from the 2017 TRDS report.

Table 2.1 Tweed Coast Road / Pacific Motorway (M1) Interchange Upgrade

ID#	Recommendation	Road Authority	Priority/ Trigger	Inclusions	Issue/s Addressed	Comments
32	Upgrade Pacific Highway/ Tweed Coast Road interchange	RMS/ TSC	Medium Term	short additional lane on	Removes weave to access Morton St (Issue 13). Increase intersection capacity and improve operations and safety.	

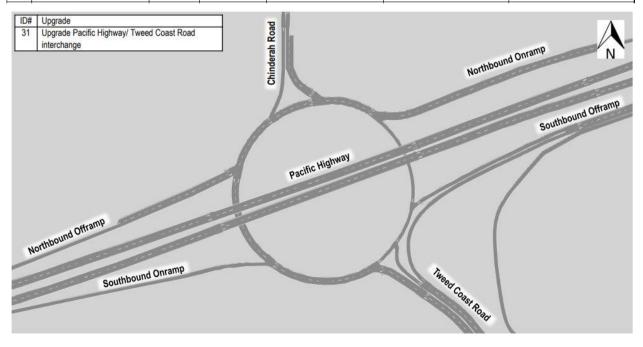


Figure 2.1 Proposed Upgrades to the Tweed Coast Road / M1 Interchange

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

In addition to the above, the TRDS document recommends widening the existing Tweed Coast Road from 2-lanes to 4-lanes along an approximately 6.2km section between the M1 interchange and Casuarina Way Intersection. The proposed Tweed Coast Road upgrade works have been estimated to cost \$4,542,800 (Source: Tweed Road Contribution Plan (TRCP) 2011 V6.0 Schedule 5).

For the traffic analysis, it has been assumed that the Tweed Coast Road upgrades including the M1 interchange upgrade works will be completed by 2032. The 2032 cost for the Tweed Coast Road upgrade has been estimated to be \$6,549,162 from Crescent Street north to the M1 Interchange.

2.2 Tweed Coast Road / Ozone Street Intersection Upgrade

The 2017 Tweed Road Development Strategy (TRDS) recommends Ozone Street extension, which is required to provide additional network capacity necessary to cater for a growing population in the area. The (TRDS) proposes a new road between Elrond Drive and Ozone Street, which will reduce reliance on the Cudgen Road intersection. For the purposes of the traffic analysis, it has been assumed that the above upgrade works will be completed by 2032.

Figure 2.2 below shows the planned new infrastructure, which includes a new roundabout with Tweed Coast Road to the west, a new roundabout with Rotuma Street and a new roundabout with Elrond Drive.

Figure 2.2 Proposed Ozone Street Extension (Source: 2017 TRDS report)

2.3 Tweed Coast Road / Crescent Street Intersection Upgrade

The 2017 Tweed Road Development Strategy (TRDS) also recommends the Tweed Coast Road / Crescent Street intersection upgrade to a 2-lane roundabout as shown in Figure 2.3. The above will provide additional network capacity, especially along Tweed Coast Road.

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

As part of the TRDS, a new east-west link between south Kingscliff and Tweed Coast Road will be established, aimed to cater for future development in the area and increasing capacity of Tweed Coast Road / Cudgen Road intersection.

Figure 2.3 Proposed Turnock Street Extension (Source: 2017 TRDS report)

For the purposes of the traffic analysis, it has been assumed that the above upgrade works will be completed by 2032. Tweed Coast Road intersection upgrade works costs included in the estimate.

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

3. Traffic Demands

In order to assess the relative impact of the proposal on the surrounding road network, it is necessary to define the existing traffic demands on the road network and estimate future traffic demands on key intersections.

This section of the report details the existing Tweed Sand Plant haulage route via Tweed Coast Road and forecasts these to the future assessment years. These volumes represent the "Base Case".

The traffic generated by the proposed development is distributed via Tweed Valley Way. These volumes area forecasts to the future assessment years. These volumes represent the "Project Case".

3.1 Background Traffic

3.1.1 Traffic Survey Counts Peak Hours

Traffic count data were sourced for the intersections along the existing (Base Case) and proposed haulage route (Project Case). The AM and PM peak hours are shown in the following Figure 3.1.

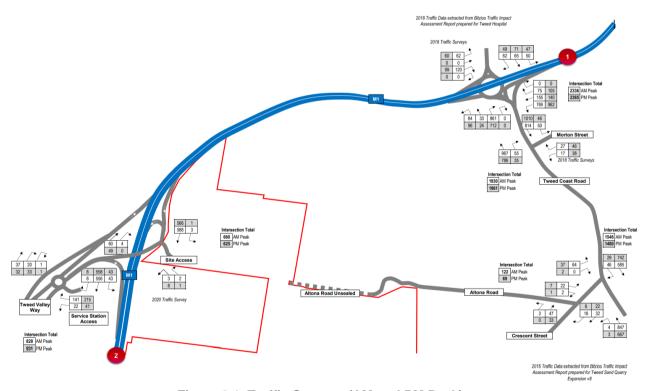


Figure 3.1 Traffic Surveys (AM and PM Peak)

The existing Tweed Sant Plant volumes have been subtracted from Figure 3.1. Figure 3.2 below shows the NET Survey Traffic Flows (without existing TSP truck volumes).

 \gg ——

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

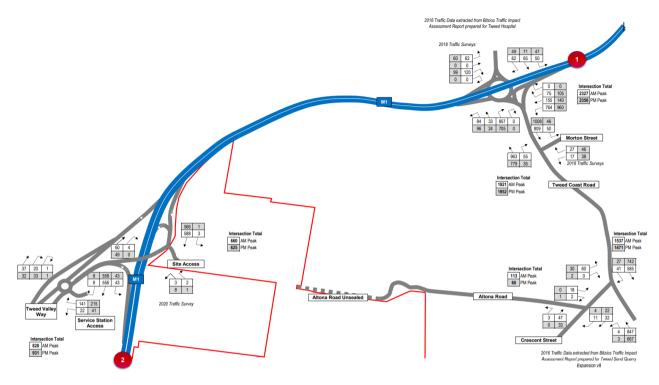


Figure 3.2 NET Traffic Surveys (AM and PM Peak)

3.1.2 Background Traffic Growth Rates

Background traffic growth in the area was calculated for each haulage route, based on the recorded AADT data and 2041 traffic forecast volumes extracted from the Tweed Strategic Transport Model (2041 medium yield Scenario 6).

Table 3.1 below shows the recorded AADT volumes and 2041 Tweed Strategic Transport Model volumes used for the calculation of the growth rates for Tweed Coast Road and Tweed Valley Way.

Recorded 2041 Strategic Compound Road **Survey Year AADT Model AADT*** growth p.a. Tweed Coast Road 2018 17,757 34,280 2.90% Tweed Valley Way 14,740 16,710 2020 0.60%

Table 3.1 Background Growth Rates

3.1.3 Future Year Traffic Volumes

Growth factors summarised in Table 3.2 have been applied to the surveyed traffic flows (Figure 4.1) to identify the future traffic flows in 2022, 2032 and 2033. The resultant future traffic for the year of 2022, 2032 and 2042 AM and PM peak hours are contained in Appendix A to this report.

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

^{*} Medium Yield Scenario 6

3.2 Tweed Sand Plant Development Traffic

3.2.1 Estimated Development Traffic Generation

The proposed development includes the expansion of the existing Tweed Sand Plant (TSP), which results in an increase in sand production rate from the current limit of 500,000 tonnes per annum (tpa) to 950,000 tpa. Table 3.2 below shows the forecast development trips:

Table 3.2 Forecast TSP Redevelopment Truck Movements (Peak Hour)

Extraction	Plant	In	Out	Two-way
950,000	Forecast Tweed Sand Plant Redevelopment	32	32	64

Table 3.3 below shows forecast project development daily truck movements estimated pro-rata based on the TSP truck volumes recorded in 2021-2021 and yearly sand extraction of 214,932 tonnes.

Table 3.3 Forecast Tweed Sand Plant Redevelopment Truck Movements

Year	Recorded Two-way Volumes	Recorded Yearly Sand Extraction (Tonnes)	Recorded Minimum Load per truck (Tonnes)	Recorded Maximum Load per truck (Tonnes)	Average Load per truck (Tonnes)	Future Extraction (Tonnes)	Forecast Two Way Volumes based on 950,000 extraction tonnes (pro-rata)
2020-2021	11,780	214,932	11.02	40.94	36.49	950,000	52,068

In summary, the proposed TPS expansion site is forecast to generate approximately 52,068 two-way vehicles per year.

In/Out Directional Split

Trip distribution for the proposed TSP expansion is summarised as follows:

NorthboundSouthbound5%

3.2.2 Base Case Development Trip Distribution

Figure 3.3 below shows the proposed development trip distribution via Tweed Coast Road.

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

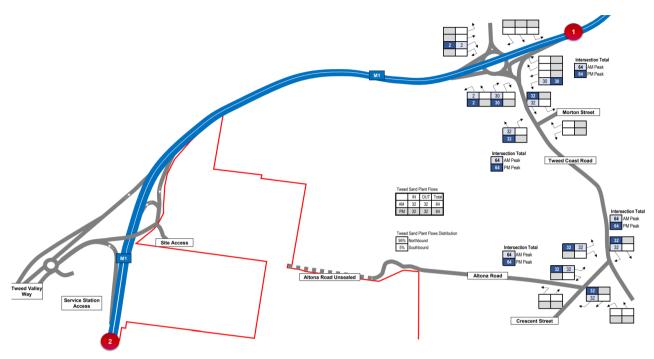


Figure 3.3 Base Case Development Traffic Flows

3.2.3 Project Case Development Trip Distribution

Figure 3.4 below shows the proposed development trip distribution via Tweed Valley Way.

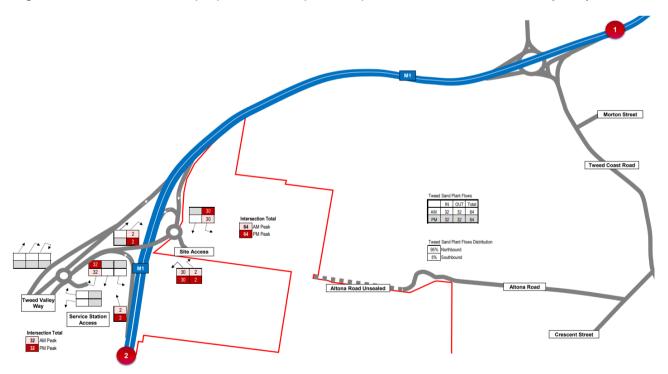


Figure 3.4 Project Case Development Traffic Flows

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

Doc Title: Proposed TSP Haulage Route Economic Evaluation

www.burchills.com.au

3.3 Base Case

The Base Case traffic demands for the 2022, 2032 and 2042 design years are shown in Figure 3.5, Figure 3.6 and Figure 3.7 respectively.

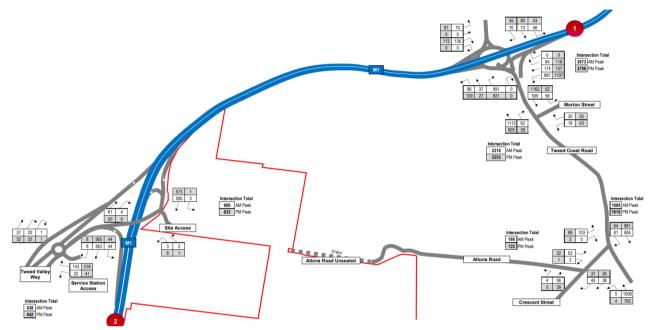


Figure 3.5 2022 Base Case Traffic Flows

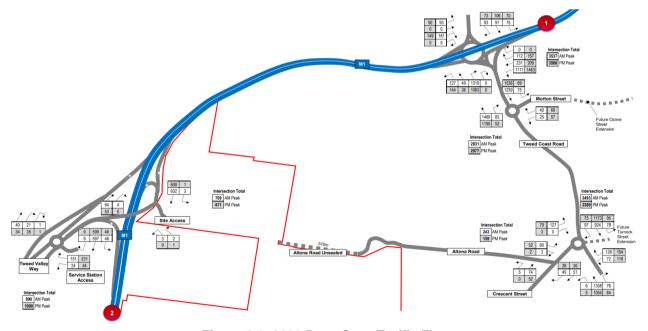


Figure 3.6 2032 Base Case Traffic Flows

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

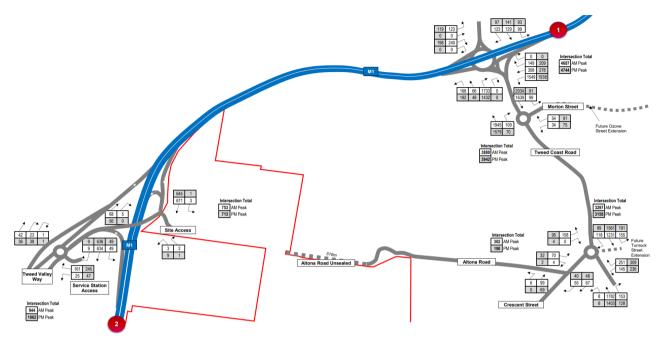


Figure 3.7 2042 Base Case Traffic Flows

3.4 Project Case

The Project Case traffic demands for the 2022, 2032 and 2042 design years are shown in Figure 3.8, Figure 3.9 and Figure 3.10.

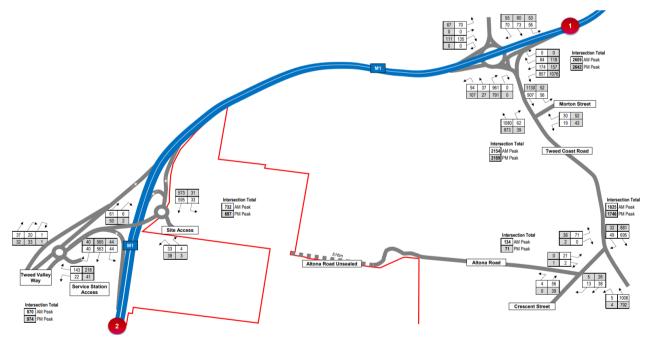


Figure 3.8 2022 Project Case Traffic Flows

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

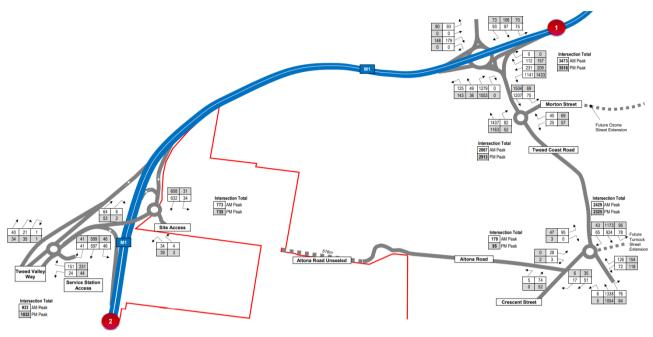


Figure 3.9 2032 Project Case Traffic Flows

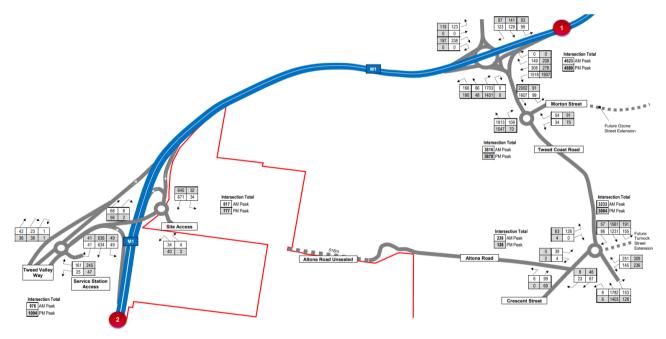


Figure 3.10 2042 Project Case Traffic Flows

All traffic flow diagrams provided in Appendix A.

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

4. Traffic Modelling Overview

4.1 Overview

The outcomes and recommendations of this Economic Evaluation are based on forensic traffic modelling, including all known impacts.

Capacity analysis of the surrounding intersections has been carried out utilising SIDRA INTERSECTION 9 traffic modelling software. This is an advanced micro-analytical traffic evaluation tool that employs lane-by-lane and vehicle drive models and can assess intersections within a network.

The key performance criteria considered are Degree of Saturation (DOS), Delays and Queuing. For a priority-controlled intersection, a DOS in excess of 80% is considered over capacity, 85% for roundabouts and 90% for signalised intersections. A DOS of 90% is the recommended upper limit as above this value performance quickly deteriorates. For priority-controlled intersections, a delay up to 42 seconds is considered satisfactory and a delay greater than 56 seconds is considered over capacity (*Guide to Traffic Generating Developments*, Roads and Traffic Authority, 2002, Tab. 4.2). Acceptable queue lengths are determined on a site-by-site basis, considering available storage.

A key assessment criterion adopted for the evaluation of the network performance includes average interaction delay.

Traffic modelling has been undertaken for the Base Case (existing haulage route via Tweed Coast Road) and the Project Case (proposed haulage route via Tweed Valley Way).

Key Network Statistics are shown in Table 4.1, Table 4.2 and Table 4.3 for the 2022, 2032 and 2042 assessment years respectively.

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

The experience you deserve

Table 4.1 2022 Key Network Statistics

		AM Peak			PM Peak		AM	PM	AM	PM
Intersection	Delay	Light Veh	Heavy Veh	Delay	Light Veh	Heavy Veh	Light Veh	Light Veh	Heavy Veh	Heavy Veh
	seconds	veh/hour	veh/hour	seconds	veh/hour	veh/hour		Annual Delay in P	eak Hours (hours)	
			202	22 Base Case						
Crescent Street / Altona Road	3.9	124	74	4.0	70	65	35.1	20.3	20.9	18.9
Tweed Coast Road / Crescent Street	9.0	1765	123	2.2	1674	136	1,151.5	266.9	80.5	21.8
Tweed Coast Rd / M1 Interchange	7.5	2463	210	6.3	2538	167	1,338.9	1,159.0	114.2	76.4
Tweed Valley Way / ABLP Site Access	0.3	608	60	0.3	576	57	13.2	12.5	1.3	1.2
Approach to the rdb delay due to the speed limit change	11.6	608	60	11.6	576	57	511.3	484.1	50.2	47.6
Tweed Valley Way / Service Station	4.6	735	103	5.2	839	103	244.9	316.2	34.4	38.9
TOTAL	36.9	6304	630	29.6	6273	585	3,295.0	2,258.9	301.4	204.8
			2022	2 Project Case						
Crescent Street / Altona Road	1.8	124	10	0.6	70	1	16.2	3.0	1.3	0.1
Tweed Coast Road / Crescent Street	1.0	1765	59	0.7	1674	72	127.9	84.9	4.3	3.7
Tweed Coast Rd / M1 Interchange	7.2	2463	146	6.1	2538	103	1,285.3	1,122.2	76.2	45.7
Tweed Valley Way / ABLP Site Access	3.0	608	124	3.0	576	121	132.2	125.2	26.9	26.2
Approach to the rdb delay due to the speed limit change	15.5	608	124	15.5	576	121	683.2	646.9	139.0	135.6
Tweed Valley Way / Service Station	5.0	735	135	5.6	839	135	266.2	340.5	49.0	54.9
TOTAL	33.5	6304	598	31.5	6273	553	2,511.2	2,322.7	296.7	266.0
			Travel	Time Savings	(s)					
							AM Annual	PM Annual	AM Annual	PM Annual
Intersection		ravel Time		ravel Time	AM and PM		Delay (hours)	Delay (hours)	Delay (hours)	Delay (hours)
	Savir	ıgs (s)	Savin	gs (s)	Travel Time	Savings (s)	Light Veh	Light Veh	Heavy Veh	Heavy Veh
Crescent Street / Altona Road		2.1	-3	3.4	-5	5.5	-18.9	-17.3	-19.6	-18.8
Tweed Coast Road / Crescent Street		3.0	_	.5		0.5	-1,023.5	-182.0	-76.2	-18.1
Tweed Coast Rd / M1 Interchange		0.3		0.2).5	-53.6	-36.8	-38.0	-30.7
Tweed Valley Way / ABLP Site Access		2.7	_	.7		.4	119.0	112.7	25.6	25.0
Approach to the rdb delay due to the speed limit change		.9	3	.9		.8	171.9	162.8	88.8	87.9
Tweed Valley Way / Service Station	C	.4	0	.4	0	.8	21.3	24.3	14.6	16.0
TOTAL	1 4	3.4	1	.9	-1	.5	-783.8	63.7	-4.8	61.3

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

The experience you deserve \geqslant

Table 4.2 2032 Key Network Statistics

		AM Peak			PM Peak		AM	PM	AM	PM
Intersection	Delay	Light Veh	Heavy Veh	Delay	Light Veh	Heavy Veh	Light Veh	Light Veh	Heavy Veh	Heavy Veh
	seconds	seconds veh/hour veh/hour seconds veh/hour veh/hour			veh/hour	Annual Delay in Peak Hours (hours)				
			203	32 Base Case						
Crescent Street / Altona Road	3.7	165	77	3.6	93	66	44.4	24.3	20.7	17.1
Tweed Coast Road / Crescent Street	6.8	2350	143	6.3	2228	160	1,158.0	1,017.3	70.5	73.2
Tweed Coast Road / Ozone Rd Extension	4.7	2755	176	4.8	2810	167	938.4	977.5	59.9	58.1
Tweed Coast Rd / M1 Interchange	8.6	3279	258	6.9	3379	201	2,043.6	1,689.6	161.0	100.7
Tweed Valley Way / ABLP Site Access	0.3	646	63	0.3	611	60	14.0	13.3	1.4	1.3
Approach to the rdb delay due to the speed limit change	11.6	646	63	11.6	611	60	542.8	513.9	53.3	50.6
Tweed Valley Way / Service Station	4.5	780	110	5.3	891	110	254.4	342.1	35.7	42.1
TOTAL	40.2	10620	891	38.8	10623	824	4,995.5	4,578.0	402.6	343.1
			2032	2 Project Case						
Crescent Street / Altona Road	2.9	165	13	0.6	93	2	34.8	4.1	2.8	0.1
Tweed Coast Road / Crescent Street	5.5	2350	79	5.5	2228	96	936.6	888.1	31.5	38.4
Tweed Coast Road / Ozone Rd Extension	4.6	2755	112	4.7	2810	103	918.4	957.1	37.3	35.1
Tweed Coast Rd / M1 Interchange	8.2	3279	194	6.7	3379	137	1,948.5	1,640.6	115.5	66.7
Tweed Valley Way / ABLP Site Access	3.0	646	127	3.0	611	124	140.4	132.9	27.7	27.0
Approach to the rdb delay due to the speed limit change	15.5	646	127	15.5	611	124	725.3	686.7	143.1	139.5
Tweed Valley Way / Service Station	4.9	780	142	5.6	891	142	277.0	361.4	50.3	57.5
TOTAL	44.6	10620	795	41.6	10623	728	4,981.0	4,671.0	408.2	364.2
				BENEFITS						
Intersection	AM Peak 1	ravel Time	PM Peak T	ravel Time	AM and PM	Peak Total	AW Annual	PM Annuai	AW Annual	PW Annual
		ıgs (s)	Savin		Travel Time		Light Veh	Light Veh	Heavy Veh	Heavy Veh
Crescent Street / Altona Road		0.8	_	3.0	_	3.8	-9.6	-20.3	-17.9	-17.0
Tweed Coast Road / Crescent Street		1.3	-0	0.8		2.1	-221.4	-129.2	-39.0	-34.8
Tweed Coast Road / Ozone Rd Extension	-(0.1	-0).1	-0).2	-20.0	-20.4	-22.6	-23.0
Tweed Coast Rd / M1 Interchange	1).4).2	_	0.6	-95.0	-49.0	-45.5	-34.0
Tweed Valley Way / ABLP Site Access		2.7	2			.4	126.3	119.6	26.3	25.7
Approach to the rdb delay due to the speed limit change	3	.9	3	.9	7	.8	182.5	172.8	89.8	88.9
Tweed Valley Way / Service Station	C).4	0	.3	0	.7	22.6	19.4	14.5	15.4
TOTAL	4	.4	2	.8	7	.2	-14.6	93.0	5.6	21.1

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

The experience you deserve >>

Table 4.3 2042 Key Network Statistics

		AM Peak			PM Peak		AM	PM	AM	PM
Intersection	Delay	Light Veh	Heavy Veh	Delay	Light Veh	Heavy Veh	Light Veh	Light Veh	Heavy Veh	Heavy Veh
	seconds	veh/hour	veh/hour	seconds	veh/hour	veh/hour		Annual Delay in P	eak Hours (hours)	
			204	2 Base Case						
Crescent Street / Altona Road	3.5	220	81	3.3	124	66	55.9	29.7	20.7	15.8
Tweed Coast Road / Crescent Street	18.5	3128	169	10.6	2966	192	4,193.6	2,278.4	226.8	147.7
Tweed Coast Road / Ozone Rd Extension	5.2	3667	213	5.5	3741	201	1,381.9	1,491.2	80.3	80.1
Tweed Coast Rd / M1 Interchange	61.2	4364	323	11.3	4497	247	19,357.3	3,683.1	1,431.5	202.2
Tweed Valley Way / ABLP Site Access	0.3	685	67	0.4	649	64	14.9	18.8	1.5	1.9
Approach to the rdb delay due to the speed limit change	11.6	685	67	11.6	649	64	576.2	545.5	56.6	53.7
Tweed Valley Way / Service Station	4.6	828	116	5.3	945	116	276.0	363.1	38.8	44.7
TOTAL	104.9	13578	1037	48.0	13572	950	25,855.8	8,409.8	1,856.0	546.1
				Project Case						
Crescent Street / Altona Road	1.9	220	17	0.6	124	2	30.3	5.4	2.4	0.1
Tweed Coast Road / Crescent Street	11.4	3128	105	8.6	2966	128	2,584.2	1,848.5	86.9	80.0
Tweed Coast Road / Ozone Rd Extension	5.1	3467	149	5.3	3741	137	1,281.4	1,436.9	55.1	52.6
Tweed Coast Rd / M1 Interchange	45.4	4364	259	10.1	4497	183	14,359.8	3,292.0	851.3	133.9
Tweed Valley Way / ABLP Site Access	3.0	685	131	3.0	649	128	149.0	141.1	28.5	27.8
Approach to the rdb delay due to the speed limit change	15.5	685	131	15.5	649	128	769.9	728.9	147.5	143.6
Tweed Valley Way / Service Station	4.9	828	148	5.7	945	148	294.0	390.5	52.7	61.3
TOTAL	87.2	13378	941	48.8	13572	854	19,468.7	7,843.4	1,224.4	499.3
			ا	BENEFITS						
	AM Poak	Travel Time	PM Peak T	ravel Time	AM and PM	Poak Total	AM Annual	PM Annual	AM Annual	PM Annual
Intersection		ngs (s)	Savin		Travel Time		Delay (hours)	Delay (hours)	Delay (hours)	Delay (hours)
	Javii	igs (s)	Javiii	gs (s)	liavei iiiie	Savings (s)	Light Veh	Light Veh	Heavy Veh	Heavy Veh
Crescent Street / Altona Road	-	1.6	-2	2.7	-4	.3	-25.5	-24.3	-18.3	-15.7
Tweed Coast Road / Crescent Street	-	7.1	-2	2.0	-6).1	-1,609.4	-429.9	-139.9	-67.8
Tweed Coast Road / Ozone Rd Extension	-	0.1	-0	1.2		1.3	-100.5	-54.2	-25.2	-27.5
Tweed Coast Rd / M1 Interchange		5.8		.2	-	7.0	-4,997.5	-391.1	-580.1	-68.3
Tweed Valley Way / ABLP Site Access		2.7		.6		.3	134.1	122.3	27.1	25.9
Approach to the rdb delay due to the speed limit change		3.9	_	.9		.8	193.7	183.4	90.9	89.9
Tweed Valley Way / Service Station	().3	0	.4	0	.7	18.0	27.4	13.9	16.6
TOTAL	-1	7.7	0	.8	-10	6.9	-6,387.1	-566.4	-631.6	-46.8

— www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

Table 4.4 below shows the annual hours travelled benefits.

Table 4.4 Traffic Modelling Annual Hour Travelled Savings

		Base Case Annual Hrs Project Case Annual Hrs			Benefit Annual Hrs		
	Year	AM and PM Peak		AM and	PM Peak	AM and PM Peak	
	Tear	Light	Heavy	Light	Heavy	Light	Heavy
Entire Network	2022	5,554	506	4,834	563	720	-56
Entire Network	2032	9,574	746	9,652	772	-78	-27
Entire Network	2042	34,266	2,402	27,312	1,724	6,954	678

≫-

- www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

5. Project Costs

5.1.1 Construction Cost

Table 5.1 shows the construction cost estimates for the proposed roundabout works (Project Case).

Table 5.1 Construction Cost

Option	Total Construction Cost (Undiscounted, 2021 prices)
Project Case	\$4,800,000

For appraisal purposes, it has been assumed that design / construction occurs between 2021 and 2022. Hanson is responsible for construction of the roundabout. Consequently, construction cost of the roundabout has been removed from the Economic Evaluation. This Economic Evaluation considers costs and benefits for local residents, the general public, Tweed Shire Council and NSW State Government only. Tweed Shire Council maintenance costs of the roundabout are included.

5.1.2 Operating Cost

The roundabout would be constructed with a durable 30-year design life concrete pavement and maintainable one in four batters. However, for robust assessment a 1% maintenance cost has been adopted. A summary of the ongoing maintenance costs for the proposed roundabout are shown in table below.

Table 5.2 Maintenance Cost

Option	Total Maintenance Cost (Undiscounted, 2021 prices)
Project Case	\$1,440,000

5.1.3 Travel Time Cost along Tweed Valley Way

The proposed development will result in additional delays along Tweed Valley Way. Table 5.3 below shows additional Tweed Valley Way Travel Time Cost associated with the proposed haulage and new roundabout at the ABLP access. The delay analysis includes reduction of the through traffic speeds as well as individual intersection delay, which was determined based on SIDRA outputs.

Table 5.3 Tweed Valley Way Travel Time Cost

	Base Case		Proje	ect Case	Be	nefit		
	AM and F	PM Peak	AM an	d PM Peak	AM and	PM Peak	Annual Travel	
Year	Annual Delay (hrs) Light Vehicles	Annual Delay (hrs) Heavy Vehicles	Annual Delay (hrs) Light Vehicles	Annual Delay (hrs) Heavy Vehicles	Annual Delay (hrs) Light Vehicles	Annual Delay (hrs) Heavy Vehicles	Time Costs(\$) (Undiscounted, 2021 prices)	
2022	1,582	174	2,194	432	612	258	\$35,371	
2031	1,680	184	2,324	445	643	261	\$36,537	
2041	1,795	197	2,474	461	679	264	\$37,907	

Over a 30-year evaluation period, the additional total travel time cost along Tweed Valley Way has been calculated as \$1,107,887 (undiscounted 2021 values).

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

6. Project Benefits

6.1 Quantifiable Benefits

6.1.1 Overview

CBA includes only benefits to the Tweed Shire Council residents and public, Tweed Shire Council and NSW State Government. Any benefits acquired by Hanson with respect to shorter travel distances have not been included.

The Tweed Shire Council strategic modelling shows that traffic along TCR is expected to increase significantly as a result of residential and business growth in the area. Local congestion and delays can be expected into the future as the volume of traffic increases. Removing TSP haulage trucks from TCR will generate substantial benefits to road users, particularly through savings in travel time, reduction in crash costs and environmental benefits. Benefits to Tweed Shire Council include reduction in Tweed Coast Road Maintenance Costs.

Project benefits have been calculated as the sum of the following:

- Travel Time Benefits Travel Time Saving along Tweed Coast Road for light and heavy vehicles:
- Tweed Coast Road Maintenance Cost Reduction;
- · Safety-Related Benefits; and
- Environmental Benefits.

6.1.2 Travel Time Benefits

The Value of Travel Time Savings (VTTS) is a dominant user benefit of road upgrade infrastructure projects. Research indicates that travel time savings can provide up to 80% of the total monetised benefits of road projects (Mackie et al. 2001a and BTE 1999a).

The following values of travel time of occupants have been used in the Travel Time Benefits estimates:

- Value of travel time (private) = \$17.89 per person hour
- Value of travel time (business) = \$58.27 per person hour

The above values of travel time for the occupants of a passenger car were calculated using the Average Weekly Earnings (AWE) extracted from the TfNSW Economic Parameter Values - Appendix E, 2020. The private travel time was valued at 40% of seasonally adjusted full time AWE for NSW.

Table 6.1 below shows the calculation of Value of Travel Time for light and heavy vehicles for peak hour times.

>

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

Table 6.1	Value of Ti	ravel Time for	Light and H	Heavy Ve	ehicles (Peak	(Hours)
-----------	-------------	----------------	-------------	----------	---------------	----------

	Adjusted %		Occupancy	VTT for c	ccupants	Total VTT (2021\$	
Vehicle Type	Vehicle type in the fleet	for the weighted average calculation	rate (persons /vehicle)	\$/person hr	S/vehicle hr	/vehicle-hr) weighted average	
Private Car	71.0%	73.95%	1.41	\$17.89	\$25.23		
Business Car	9.0%	9.38%	1.07	\$58.27	\$62.35	\$31.90	
Light commercial vehicle (LCV)	16.0%	16.67%	1.21	\$36.65	\$44.35	ψ01.00	
Heavy commercial vehicle (HCV)	4.0%	100%	1.0	\$61.47	\$61.47	\$61.47	

Source: TfNSW "Principles and Guidelines for Economic Appraisal of Transport Investment and Initiatives"

Travel time savings were calculated by taking the difference between travel time costs for the Base Case along the Tweed Coast Road corridor and the Project Case utilising Tweed Valley Way.

Table 6.2 below shows a comparison of the annual peak hours (AM + PM) delay forecast (hrs) for Base Case and Project Case.

Table 6.2 Tweed Coast Road Travel Time Cost Saving

Year	Base Case Peak Hours Annual Delay (hrs)	Project Case Peak Hours Annual Delay (hrs)	Benefit Peak Hours Annual Delay (hrs)	Annual Delay Benefits (\$) (Undiscounted, 2021 prices)	
2022	4,304	2,771	1,533	\$54,865	
2032	8,454	7,656	799	\$32,393	
2042	34,676	26,101	8,575	\$301,411	

^{*}Peak Hour Annual Volumes calculated utilising 260.9 volume expansion factor

The year-by-year annual delays (hrs) benefits between the 2022, 2032, 2042 and 2052 assessment year, have been calculated by way of interpolation and extrapolation of the Base Case and Project Travel Demands results for 2022, 2032 and 2042 assessment years summarised in the above table.

Over the 30-year evaluation period, the total travel time saving along Tweed Coast Road corridor has been calculated as **\$4,289,900** (undiscounted 2021 values).

6.1.3 Tweed Coast Road Maintenance Cost Reduction

The benefits of diverting traffic away from Tweed Coast Road were calculated based on the TfNSW recommendations summarized in Table 48 - Unit cost of road maintenance by vehicle types Economic Parameter Values – January 2020. Table 6.3 below shows summary of the forecast VKT along Tweed Coast Road corridor.

Table 6.3 Forecast VKT along Tweed Coast Road

	<u> </u>								
Direction	Nor	th	So	Total					
Direction	From	То	From	То					
Distribution	95%	95%	5%	5%	N/A				
Annual TSP Volumes	27,732	27,732	1,302	1,302	52,068				
Tweed Coast Road Corridor Distance (km)	1.424	1.424	1.424	1.424	1.424				

- www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

Tweed Coast Road VKT	35,219 35,219	1,854 1,8	54 74,144
----------------------	---------------	-----------	-----------

Unit cost of 16.45 cents / VKT was applied to the total 74,144 VKT along Tweed Coast Road only.

Annual maintenance cost saving was calculated as \$12,197. There are also additional \$647,488 savings associated with the Tweed Coast Road upgrade from 2-lanes to 4-lanes due to the different pavement depth requirement.

Over the 30-year evaluation period, the Tweed Coast Road Maintenance Cost Reduction inclusive of reduced construction cost amounts to \$1,001,193 (undiscounted values).

6.1.4 Safety-Related Benefits

The network crash costs have been estimated based on the forecast TSP truck volumes along local roads for the Base Case and Project Case. The assessment contains the average accident cost for NSW and the accident rate for each road type.

Table 6.4 Forecast Crash Costs and Road Safety-Related Benefits

Year	Base Case Crash Cost	Project Case Crash Cost	Road Safety Benefits
2022	\$32,033	\$27,354	\$4,679
2032*	\$38,164	\$27,354	\$10,810
2042*	\$38,164	\$27,354	\$10,810

^{*}Includes Tweed Coast Road upgrade from rural 2-lane to urban 4-lane road

The year-by-year annual benefits between the 2022 and 2052 assessment years, have been calculated by way of interpolation and extrapolation of the Base Case and Project Travel Demands results for 2022, 2032 and 2042 assessment years summarised in the above table.

Over the 30-year evaluation period, the total road safety benefits have been calculated as **\$269,120** (undiscounted 2021 values). Appendix C details the Road Safety Benefits.

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

The experience you deserve

Table 6.5 below shows Crash Cost Benefit Calculation (Undiscounted, 2021 prices).

Table 6.5 Crash Cost Benefits

Network Crash Cost Saving

					Base Case					Project Case										
Link Name	VK i per vear	VKT per year	VKT per year	MVKT per year	Road Type	Road Width Description	Crash Cost (\$/year)	Fatal crash	Injury Crash Rate	crash	ost (\$)	VKT per year	MVKT per year	I Road Type	Road Width Description	Crash Cost (\$/year)	Fatal crash	Injury Crash Rate	crash o	cost (\$)
		year		Description	(\$/year)	rate	rate	Rural Fatal	Rural Injury		year		Description	(\$/year)	rate	Rate	Rural Fatal	Rural Injury		
Altona Road Unsealed	26,867	0.027	Local	Rural Single	\$3,598	0.009	0.1254	\$7,808,768	\$507,553											
Altona Road Sealed	74,613	0.075	Local	Rural Single	\$9,993	0.009	0.1254	\$7,808,768	\$507,553											
Crescent Street	12,288	0.012	Local	Rural Single	\$1,646	0.009	0.1254	\$7,808,768	\$507,553											
Tweed Coast Road (existing 2-lanes)	74,144	0.074	Arterial	Rural Single	\$9,930	0.009	0.1254	\$7,808,768	\$507,553											
M1 off-ramp / on-ramp and M1	51,270	0.051	Freeway	Rural Single	\$6,866	0.009	0.1254	\$7,808,768	\$507,553	189,173	0.189	Freeway	Rural Single	\$25,335	0.009	0.1254	\$7,808,768	\$507,553		
Tweed Valley Way										15,071	0.015	Arterial	Rural Single	\$2,018	0.009	0.1254	\$7,808,768	\$507,553		
Total	239,182	0.239			\$32,033					204,244	0.204			\$27,354						

Tweed Coast Road Upgrade Crash Cost

		Base Case							
Link Name	VKT per year	MVKT per year	Road Type	Road Width Description	Crash Cost (\$/year)	Fatal crash rate	Injury Crash Rate	crash cos	t (\$/mvkt)
		,			(4-)/			Rural Fatal	Rural Injury
Tweed Coast Road (proposed 4-lanes)	74,144	0.074	Arterial	Urban Divided	\$16,061	0.0044	0.2513	\$9,242,523	\$700,151

Haulage Route via Tweed Coast Road	M1 P	North	M1 9	South	Annual VKT
naulage Route via Tweed Coast Road	To	From	To	From	Alliluai VK1
Altona Road Unsealed	516	516	516	516	26,867
Altona Road Sealed	1,433	1,433	1,433	1,433	74,613
Crescent Street	236	236	236	236	12,288
Tweed Coast Road	1,424	1,424	1,424	1,424	74,144
M1	1,026	671	3,491	3,653	51,270
Total	4,635	4,280	7,100	7,262	239,182
Trip Distribution	95%	95%	5%	5%	
Annual TSP Volumes	24,732	24,732	1,302	1,302	
VKT	114,633	105,853	9,242	9,453	

Haulage Route via Tweed	M1 N	lorth	M1 S	Annual VKT	
Valley Way	То	From	To	From	Alliluai VKI
Tweed Valley Way	567	0	0	805	15,071
M1 on/off ramp two way	4,128	3,425	1,037	785	189,173
Total	4,695	3,425	1,037	1,590	204,244
Trip Distribution	95%	95%	5%	5%	
Annual TSP Volumes	24,732	24,732	1,302	1,302	
VKT	116.117	84,708	1.350	2.070	1

— www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

6.1.5 Environmental Benefits

The proposed haulage route via Tweed Valley Way has many environmental benefits associated with removal of 52,068 annual truck volumes from Tweed Coast Road.

The Environmental Benefits cover four environmental impact categories as follows:

- Air pollution;
- GHG emissions:
- Noise: and
- Water pollution.

The parameter values for environmental externalities were extracted from the TfNSW Economic Parameters Values – Jan 2020 Table 39 and Table 40 for freight vehicles in urban and rural areas respectively.

Trucks activity levels have been characterized in terms of traffic volumes in vehicle-kilometers travelled (VKT). Annual VKT along Tweed Coast Road has been defined as the number of kilometers travelled by all Hanson Trucks during a year and it is expressed as VKT = number of vehicles x distance travelled. A comparison between the base case and the project case TSP haulage route via Tweed Coast Road and Tweed Valley Way was previously shown in Table 1.1 and Figure 1.3.

Table 6.6 below shows a summary of relevant data used for the assessment:

Total North South **Direction** From То From То Distribution 95% 95% 5% 5% N/A Annual TSP Volumes 24.732 24,732 1.302 1,302 52.068 Base Case Distance (Urban TCR only) (km) 1.424 1.424 1.424 1.424 N/A Base Case VKT (Urban TCR only) 35.219 35.219 1.854 74.144 1.854 Base Case Distance Rural (km) 2.979 5.799 5.961 18.073 3.334 Base Case VKT Rural 7,759 82,457 73,677 7,549 171,442 Project Case Distance Rural (km) 5.469 4.199 1.811 2.364 13.843 Project Case VKT Rural 135,260 103,850 2,357 3,077 244,545

Table 6.6 Parameters for Environmental Benefits

In summary 74,144 VKT will be removed from Tweed Coast Road resulting in significant reduction in the environmental costs along Tweed Coast Road. Table 6.7 below shows a summary of the environmental benefits over a 30-year evaluation period. Appendix C details the Environmental Cost Benefits.

Table 6.7 Environmental Benefits

Roads	Base Case VKT	Project Case VKT	Change in VKT	Base Case Environmental Cost	Project Case Environmental Cost	Environmental Cost Benefit
Urban*	74,144	0	-74,144	¢2 200 000	£4 402 046	\$4.906.0E2
Rural	171,442	244,545	73,103	\$3,299,898	\$1,492,946	\$1,806,952

^{*}Tweed Coast Road only

Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

Doc Title: Proposed TSP Haulage Route Economic Evaluation

Page 26

www.burchills.com.au

6.1.6 Project Benefits Summary

Table 6.8 below shows a summary of project benefits over a 30-year evaluation period.

Table 6.8 Project Benefits Summary

Project Benefits	Total (Undiscounted, 2021 prices)
Travel Time Saving along Tweed Coast Road	\$4,289,900
Tweed Coast Rd Maintenance Cost Reduction	\$1,001,193
Safety Benefits	\$269,120
Environmental Benefits	\$1,806,952
Total Benefit	\$7,367,165

Doc No.: BE190043-RP-EE-02
Doc Title: Proposed TSP Haulage Route Economic Evaluation

Page 27

Client: Hanson Construction Materials Pty Ltd

7. Economic Appraisal

7.1 Background

An economic assessment was undertaken for the proposed haulage route via Tweed Valley Way including the proposed new roundabout at the Tweed Valley Way Australian Bay Lobster Producers access intersection.

The Cost-Benefit Analysis (CBA) measures the incremental direct benefits associated with the proposed infrastructure upgrades required to obtain access via Tweed Valley Way and removal of Hanson trucks from Tweed Coast Road against a Base Case of future truck movements remaining via the existing Tweed Coast Road haulage route. The proposed roundabout upgrade project will be considered economically viable if the ratio of the overall benefits along Tweed Coast Road is demonstrated to exceed the estimated costs associated with additional delay along Tweed Coast Road and roundabout maintenance costs.

7.2 Reference Documents

The cost-benefit analysis generally complies with Australian Transport Assessment and Planning Guidelines (ATAP) guidelines, supplemented with data sourced from other documents. The following sources and guidelines were referenced to develop the CBA:

- Transport for NSW "Cost-Benefit Analysis Guide" (2019);
- Transport for NSW "Principles and Guidelines for Economic Appraisal of Transport Investment and Initiatives" (2018)
- Transport for NSW "Economic Parameter Values" (2020);
- Australian Transport Assessment and Planning Guidelines (ATAP), Transport and Infrastructure Council (2016), Commonwealth Department of Infrastructure and Regional Development;
- Building Queensland "Business Case Development Framework Cost-Benefit Analysis Guide" (2016);
- Transport and Main Roads "Cost-benefit Analysis Manual Road Projects" (2011) and Project Cost Estimating Manual 7th (PCEM); and
- Austroads.

7.3 Methodology

This adopted CBA process is summarised below:

- Identification of the costs and benefits that are expected for the Project Case (haulage route via Tweed Valley Way) compared with the 'Base Case' (haulage route via Tweed Coast Rd);
- Calculation/identification of the key values and parameters required for the CBA (e.g. discount rate, CPI, AWE, TTC);
- Forecast of future travel demand;
- Traffic modelling of the Base Case and Project Case;
- Estimate capital and ongoing costs over the 30-year evaluation horizon;
- Estimate the following benefits:

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

- Travel Time Benefits and Costs using SIDRA transport modelling outputs;
- Estimate reduced maintenance costs;
- Estimate accidents reductions using accident rate history and VKT;
- Estimate environmental benefits:
- Discount future benefits and costs;
- Estimate of the NPV and BCR: and
- CBA Sensitivity Testing based on different inputs (i.e. discount rate, increase/decrease of capital costs/benefits).

7.4 Selection of Decision Criteria

Two key decision criteria were estimated as part of this economic appraisal as follows:

Net Present Value (NPV)

The Net Present Value (NPV) - the difference between present value of the benefits and the present value of operating costs taking into account the timing of benefits and costs.

Present Value (PV) has been calculated utilising the discount rate of 7% per annum. The above reflects the notion that future benefits and costs have less value compared to current benefits and costs. A positive Net Present Value means that the project is viable, with the opposite being true for a negative NPV.

Benefit-Cost Ratio (BCR):

The Benefit-Cost Ratio (BCR) measures the return received per dollar of costs and is defined as the present value of benefits divided by the present value of total costs.

A project with BCR greater than one is considered economically viable, whereas a project with a BCR less than one indicates that a project is not viable.

7.5 Key Parameters and Assumptions

Key parameters and assumptions used in the analysis are discussed as follows:

Discount Rate:

In line with Transport for NSW "Cost-Benefit Analysis Guide" (2019), 7% per annum real discount rate was adopted in the economic assessment to calculate present values. As part of this study, sensitivity tests were undertaken at the reduced discount rate (3%) and an increased discount rate (10%).

• Evaluation Horizon:

The likely opening year for the Project has been identified as 2022. Tweed Valley Way Roundabout built with concrete pavement has a design life of 30 years. Consequently, an evaluation horizon of 30 years from the project opening year has been adopted for this study.

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

Doc Title: Proposed TSP Haulage Route Economic Evaluation

www.burchills.com.au

Travel Demands between 2022, 2032 and 2042 have been estimated based on the Base Case and Project Case Travel Demands for 2022, 2032 and 2042 assessment years. The interpolation of benefits is also based on the demand forecast profile for the key assessment years.

Residual Value

The economic life of the proposed infrastructure asset, which includes system infrastructure such as underground services, stormwater drainage and road pavement, involves a number of factors due to the design standards and construction materials incorporated. For the concrete pavement proposed, a design life of 30 years for new pavements has been adopted for the analysis.

As the project is not expected to have benefits beyond the 30-year evaluation period, a residual value has been assumed to be zero (0).

Base Case and Project Case

The Base Case is defined as Tweed Sand Plant haulage route via Tweed Coast Road including additional TSP truck volumes associated with the TSP expansion.

The Project Case is defined as Tweed Sand Plant haulage route via Tweed Valley Way including Tweed Valley Way / Australian Bay Lobster Producers intersection upgrade to a roundabout. Traffic flows include all TSP truck volumes associated with the TSP future operations.

Key Input Values and Parameters

The majority of key input values were adopted from the ATAP guidelines and indexed to the current year. When economic parameters were not available within ATAP or TfNSW guidelines, they were sourced from Austroads or TMR. Key input values and parameters used in the analysis are summarised in Table 7.1.

Table 7.1 Key Inputs and Reference Sources

-		
Key Input	Value / Factor	Source
Net Present Value Discount Rate	7%	TfNSW Economic Parameter Values
Vehicle-hour Travelled	VHT	SIDRA modelling outputs
Forecast Traffic Volumes	vph	Refer Section 4
Peak hour to peak hour annual Expansion Factor	260.9	TMR Cost Benefit Analysis Manual
Value of Travel Time (Light)	\$31.90	Calculated for peak hour only based on the TfNSW Economic Parameter Values
Value of Travel Time (Heavy)	\$61.47	Calculated for peak hour only based on the TfNSW Economic Parameter Values
Vehicle Composition Percentage in peak hours:		
Private	71.0%	TfNSW Economic Parameter Values
Business	9.0%	
Light Commercial Vehicle	16.0%	
Heavy Vehicle	4%	

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

The experience you deserve

Traffic modelling was undertaken using SIDRA traffic modelling software. It is important to note that SIDRA models produce estimates of travel for an AM and PM peak periods only. As per TfNSW "Cost-Benefit Analysis Guide" (2019), 'expansion' factors were used to estimate the impacts for AM and PM Peak hours, and 'annualisation' factors to estimate the impact for the entire year.

7.6 Economic Appraisal

Table 7.2 below summarises the results of the economic evaluation for the Project Case.

Table 7.2 Costs and Benefits Summary

Economic Results	Total (Undiscounted, 2021 prices)	Present Value (7% discount)
Costs	priocoy	
Travel Time Cost along Tweed Valley Way	\$1,107,887	\$453,685
Proposed Roundabout Maintenance Cost	\$1,440,000	\$595,634
Total Cost	\$2,547,887	\$1,049,319
Benefits		
Travel Time Saving along Tweed Coast Road	\$4,289,900	\$1,269,772
Tweed Coast Rd Maintenance Cost Reduction	\$1,001,193	\$474,300
Net Safety Benefit	\$269,120	\$94,197
Net Environmental Benefit	\$1,806,952	\$747,418
Total Benefit	\$7,367,165	\$2,585,686

7.7 Benefit Cost Ratio

Table 7.3 summarises detailed NPV and BCR calculations for the project.

 \geqslant

- www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

The experience you deserve

Table 7.3 BCR Calculations

				Cost				Benefits			
	V		Travel Time Cost	Proposed		Travel Time Saving	Tweed Coast Rd		Environmental		NET BENEFIT
	Year		along Tweed Valley	Roundabout	Total Cost	along Tweed Coast	Maintenance Cost	Safety Benefits	Environmental	Total Benefit	(COST)
			Way	Maintenance Cost		Road	Reduction		Benefits		, ,
2022	Base Year	0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2023	Year 1	1	\$35,500	\$48,000	\$83,500	\$52,368	\$12,197	\$4,679	\$60,232	\$129,476	\$45,975
2024	Year 2	2	\$35,630	\$48,000	\$83,630	\$49,871	\$12,197	\$4,679	\$60,232	\$126,979	\$43,349
2025	Year 3	3	\$35,760	\$48,000	\$83,760	\$47,374	\$12,197	\$4,679	\$60,232	\$124,482	\$40,722
2026	Year 4	4	\$35,889	\$48,000	\$83,889	\$44,878	\$12,197	\$4,679	\$60,232	\$121,985	\$38,096
2027	Year 5	5	\$36,019	\$48,000	\$84,019	\$42,381	\$12,197	\$4,679	\$60,232	\$119,488	\$35,470
2028	Year 6	6	\$36,148	\$48,000	\$84,148	\$39,884	\$12,197	\$4,679	\$60,232	\$116,991	\$32,843
2029	Year 7	7	\$36,278	\$48,000	\$84,278	\$37,387	\$12,197	\$4,679	\$60,232	\$114,495	\$30,217
2030	Year 8	8	\$36,407	\$48,000	\$84,407	\$34,890	\$12,197	\$4,679	\$60,232	\$111,998	\$27,591
2031	Year 9	9	\$36,537	\$48,000	\$84,537	\$32,393	\$12,197	\$4,679	\$60,232	\$109,501	\$24,964
2032	Year 10	10	\$36,537	\$48,000	\$84,537	\$32,393	\$647,488	\$10,810	\$60,232	\$750,923	\$666,386
2033	Year 11	11	\$36,674	\$48,000	\$84,674	\$59,295	\$12,197	\$10,810	\$60,232	\$142,534	\$57,860
2034	Year 12	12	\$36,811	\$48,000	\$84,811	\$86,197	\$12,197	\$10,810	\$60,232	\$169,435	\$84,624
2035	Year 13	13	\$36,948	\$48,000	\$84,948	\$113,099	\$12,197	\$10,810	\$60,232	\$196,337	\$111,389
2036	Year 14	14	\$37,085	\$48,000	\$85,085	\$140,000	\$12,197	\$10,810	\$60,232	\$223,239	\$138,154
2037	Year 15	15	\$37,222	\$48,000	\$85,222	\$166,902	\$12,197	\$10,810	\$60,232	\$250,141	\$164,919
2038	Year 16	16	\$37,359	\$48,000	\$85,359	\$193,804	\$12,197	\$10,810	\$60,232	\$277,042	\$191,683
2039	Year 17	17	\$37,496	\$48,000	\$85,496	\$220,706	\$12,197	\$10,810	\$60,232	\$303,944	\$218,448
2040	Year 18	18	\$37,633	\$48,000	\$85,633	\$247,607	\$12,197	\$10,810	\$60,232	\$330,846	\$245,213
2041	Year 19	19	\$37,770	\$48,000	\$85,770	\$274,509	\$12,197	\$10,810	\$60,232	\$357,748	\$271,977
2042	Year 20	20	\$37,907	\$48,000	\$85,907	\$301,411	\$12,197	\$10,810	\$60,232	\$384,649	\$298,742
2043	Year 21	21	\$37,222	\$48,000	\$85,222	\$166,902	\$12,197	\$10,810	\$60,232	\$250,141	\$164,919
2044	Year 22	22	\$37,359	\$48,000	\$85,359	\$193,804	\$12,197	\$10,810	\$60,232	\$277,042	\$191,683
2045	Year 23	23	\$37,496	\$48,000	\$85,496	\$220,706	\$12,197	\$10,810	\$60,232	\$303,944	\$218,448
2046	Year 24	24	\$37,633	\$48,000	\$85,633	\$247,607	\$12,197	\$10,810	\$60,232	\$330,846	\$245,213
2047	Year 25	25	\$37,770	\$48,000	\$85,770	\$274,509	\$12,197	\$10,810	\$60,232	\$357,748	\$271,977
2048	Year 26	26	\$37,633	\$48,000	\$85,633	\$247,607	\$12,197	\$10,810	\$60,232	\$330,846	\$245,213
2049	Year 27	27	\$37,496	\$48,000	\$85,496	\$220,706	\$12,197	\$10,810	\$60,232	\$303,944	\$218,448
2050	Year 28	28	\$37,359	\$48,000	\$85,359	\$193,804	\$12,197	\$10,810	\$60,232	\$277,042	\$191,683
2051	Year 29	29	\$37,222	\$48,000	\$85,222	\$166,902	\$12,197	\$10,810	\$60,232	\$250,141	\$164,919
2052	Year 30	30	\$37,085	\$48,000	\$85,085	\$140,000	\$12,197	\$10,810	\$60,232	\$223,239	\$138,154
	Total		\$1,107,887	\$1,440,000	\$2,547,887	\$4,289,900	\$1,001,193	\$269,120	\$1,806,952	\$7,367,165	\$4,819,278
		Propor	tion of total benefits			58%	14%	4%	25%	100%	

— www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

Table 7.4 Economic Appraisal Results (at 7% real discount rate)

Indicator	Project Case
Present Value Benefits	\$2,585,686
Present Value Costs	\$1,049,319
Net Present Value	\$1,536,367
Benefit Cost Ratio (BCR)	2.46

The project is economically justifiable with a benefit cost ratio (BCR) of 2.46 and a net present value (NPV) of \$1,536,367.

7.8 Sensitivity Analysis

It is important to note that all benefits and costs that are included in this economic appraisal are based on forecasts, which contain an element of uncertainty and therefore risk. For robust assessment, the CBA includes Sensitivity Testing undertaken based on various changes in the underlying assumptions. Table 7.5 below shows a summary of adopted sensitivity testing data variations.

Table 7.5 CBA Sensitivity Tests

Sensitivity Test	Discount rate	Capital Costs	Benefit Costs
Test 1	3%	N/A	N/A
Test 2	10%	N/A	N/A
Test 3	7%	+20%	-20%
Test 4	7%	-20%	+20%

Results of the Sensitivity Testing shows positive BCR under all scenarios tested as shown in Table 7.6 below.

Table 7.6 CBA Sensitivity Tests Results

	Test 1	Test 2	Test 3	Test 4
	@ 3%	@ 10%	@ 7%	@ 7%
Sensitivity Testing	N/A	N/A	PV Benefits - 20% PV Cost +20%	PV Benefits +20% PV Cost -20%
Present Value Benefits	\$4,500,563	\$1,661,527	\$2,068,549	\$3,102,824
Present Value Costs	\$1,661,527	\$795,826	\$1,259,183	\$839,455
Net Present Value	\$2,839,036	\$1,033,039	\$809,366	\$2,263,368
Benefit Cost Ratio (BCR)	2.71	2.09	1.64	3.70

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

8. Conclusions

This report presents the economic evaluation using a cost benefit analysis framework for the proposed haulage route via Tweed Valley Way including the Tweed Valley Way / Australian Bay Lobster Producers (ABLP) intersection upgrade to a roundabout (Project Case). The Base Case haulage route is via Tweed Coast Road. Both options include all traffic volumes associated with the proposed expansion of the Tweed Sand Plant (TSP) enabling an increase in sand production rate from the current limit of 500,000 tonnes per annum (tpa) to 950,000 tpa.

The Tweed Shire Council strategic modelling shows that traffic along Tweed Coast Road is expected to increase significantly as a result of residential and business growth in the area. Local congestion and delays can be expected into the future as the volume of traffic increases.

Removing all TSP haulage trucks from Tweed Coast Road will generate substantial benefits to road users, particularly through savings in travel time, reduction in crash costs and environmental benefits. There is a further benefit to Tweed Shire Council via a reduction in Tweed Coast Road maintenance costs. As part of this economic analysis, potential benefits were quantitatively evaluated against a Base Case. Benefits quantified include:

- Travel Time Saving along Tweed Coast Road;
- · Safety Benefits;
- Environmental Benefits; and
- Tweed Coast Road Maintenance Cost Reduction.

The summary of project benefits and costs are presented in the table below.

Economic Results	Total (Undiscounted, 2021 prices)	Present Value (7% discount)
Costs		
Travel Time Cost along Tweed Valley Way	\$1,107,887	\$453,685
Proposed Roundabout Maintenance Cost	\$1,440,000	\$595,634
Total Cost	\$2,547,887	\$1,049,319
Benefits		
Travel Time Saving along Tweed Coast Road	\$4,289,900	\$1,269,772
Tweed Coast Road Maintenance Cost Reduction	\$1,001,193	\$474,300
Net Safety Benefit	\$269,120	\$94,197
Net Environmental Benefit	\$1,806,952	\$747,418
Total Benefit	\$7,367,165	\$2,585,686

In summary, the project is economically justifiable with a benefit cost ratio (BCR) of 2.46 and a net present value (NPV) of \$1,536,367. This Economic Evaluation assessment has demonstrated that the proposed Tweed Sand Plant haulage route via Tweed Valley Way including upgrade of the Tweed Valley Way / ABLP intersection does provide an overall economic benefit to the local community outweighing Local and State Government costs.

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

Doc Title: Proposed TSP Haulage Route Economic Evaluation

www.burchills.com.au

9. References

Transport for NSW Economic Parameter Values. September 2019

Australian Transport Assessment and Planning Guidelines

Building Queensland "Business Case Development Framework"

Transport for NSW "Principles and Guidelines for Economic Appraisal of Transport Investment and Initiatives" June 2018

Austroads "Guide to Road Design - Part 4A"

Austroads "Guide to Road Design - Part 3"

Tweed Shire Council Revenue Policy and Statement 2021/2022

Tweed Shire Council Tweed Road Development Strategy

TMR "Cost-benefit Analysis Manual - Road Projects", 2011

TMR "Project Cost Estimating Manual" Seventh Edition, July 2017

 \geqslant

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

The experience you deserve

Appendix A – Traffic Flow Diagrams

<u></u>

www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

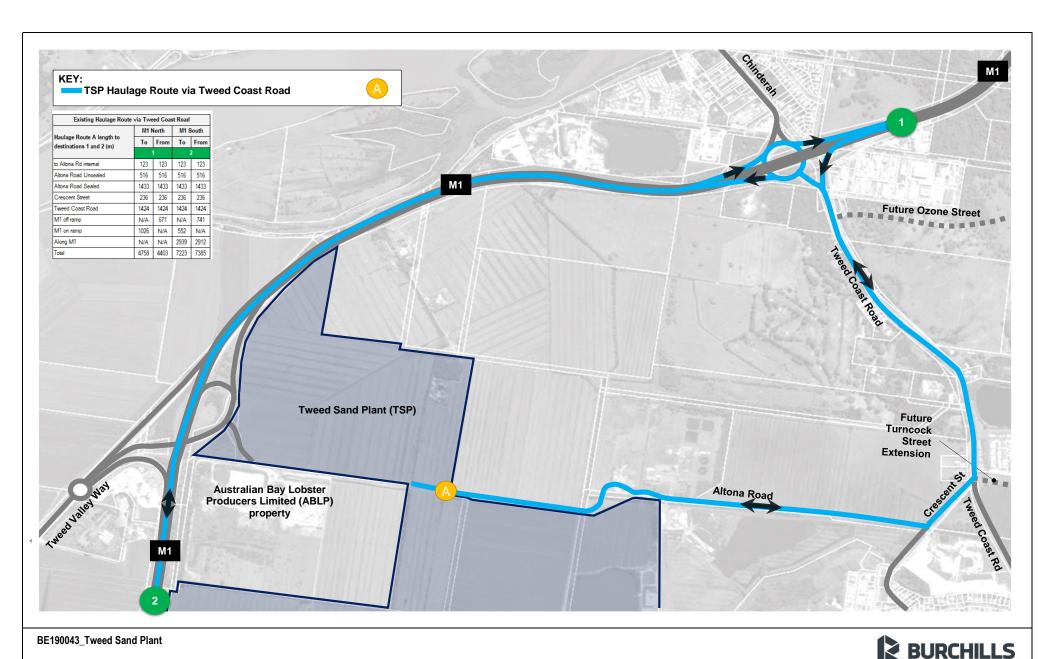


Figure 1 - Haulage Route via Tweed Coast Road (Base Case)

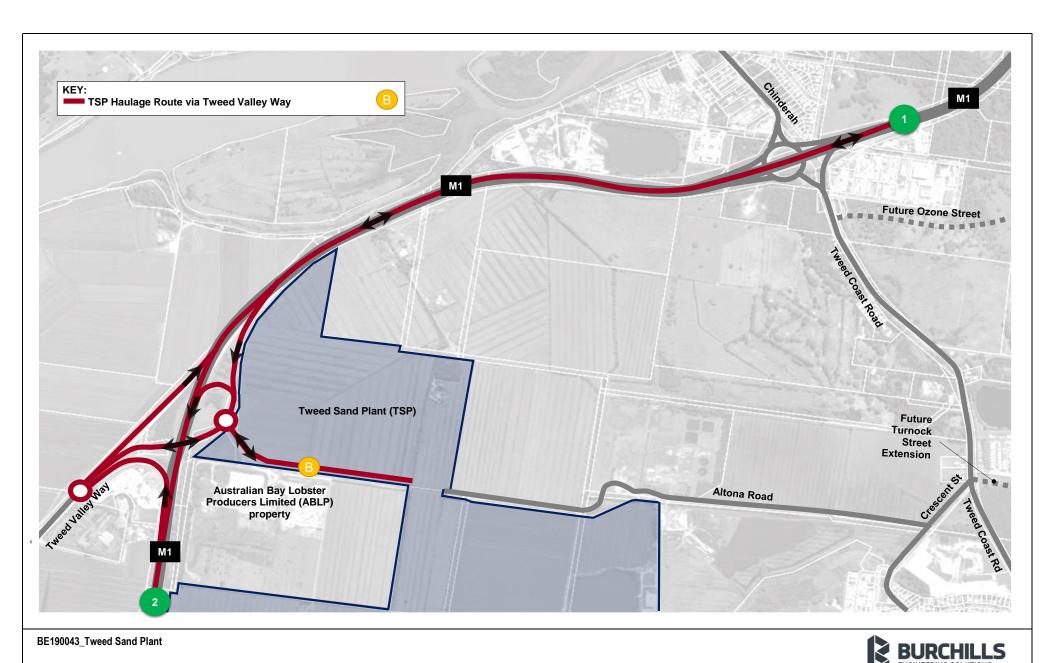


Figure 2 - Haulage Route via Tweed Valley Way (Project Case)

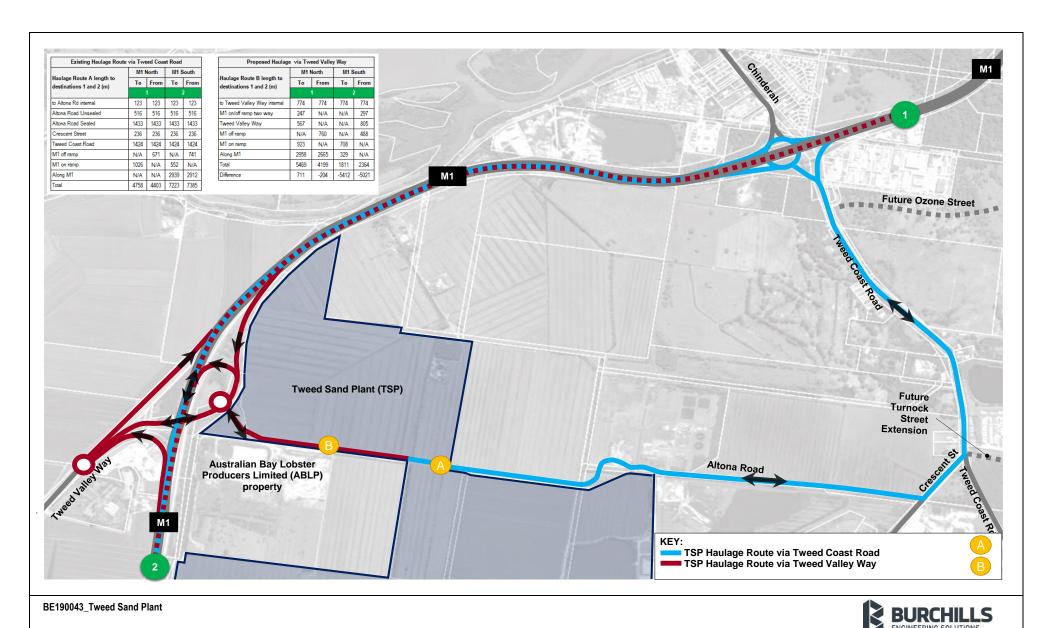


Figure 3 - Haulage Route Comparison (Base Case vs Project Case)

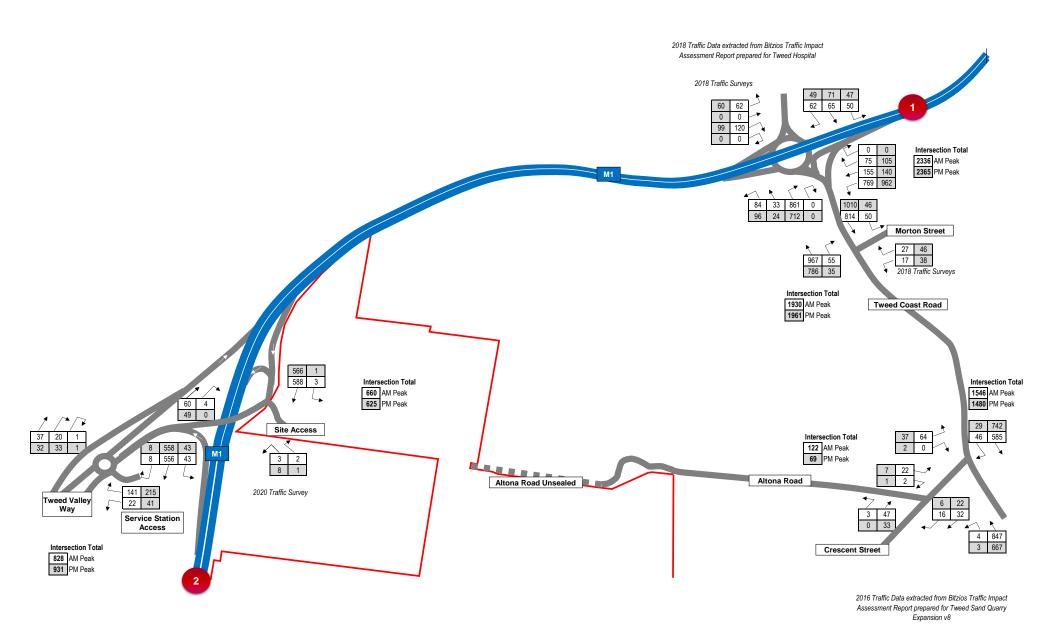
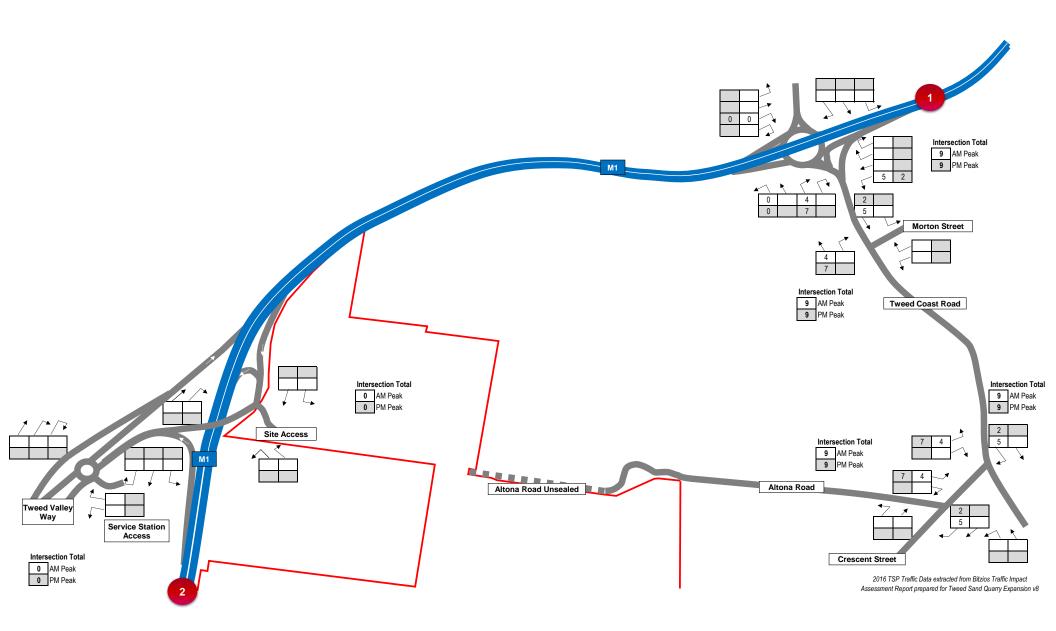
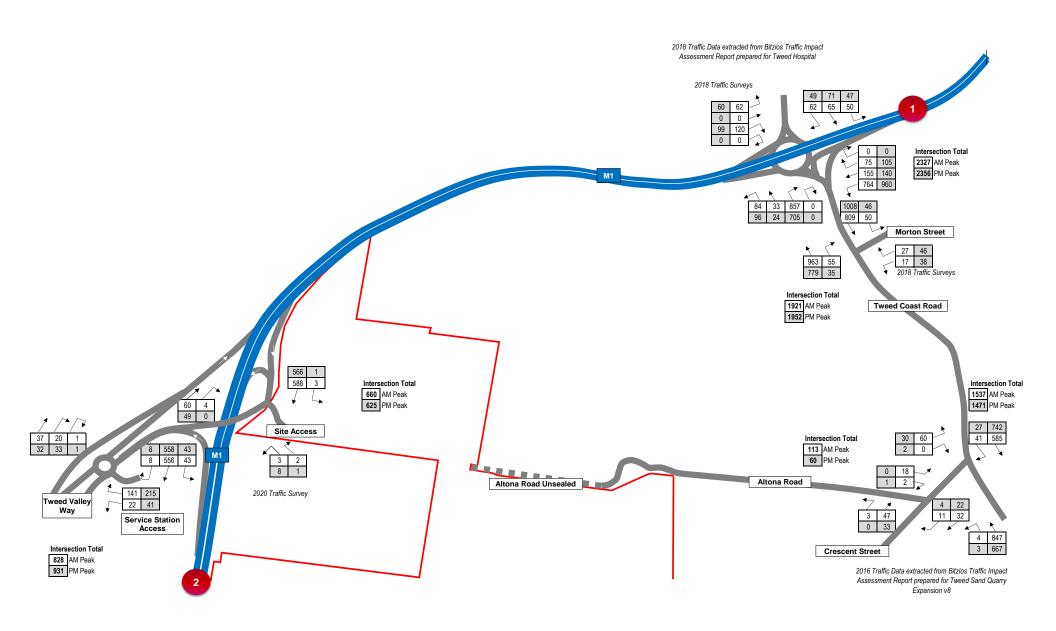
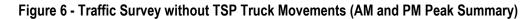
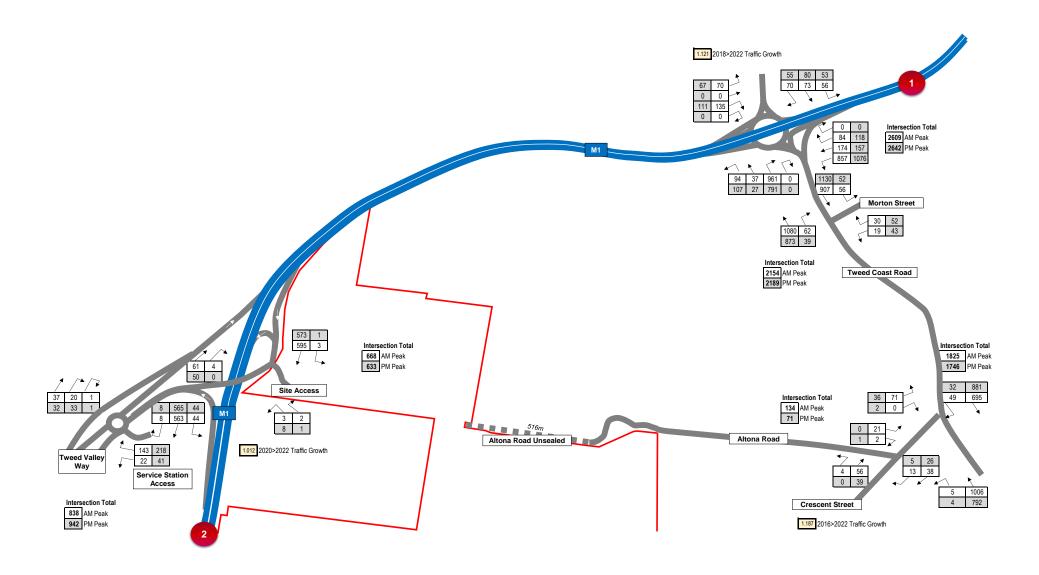
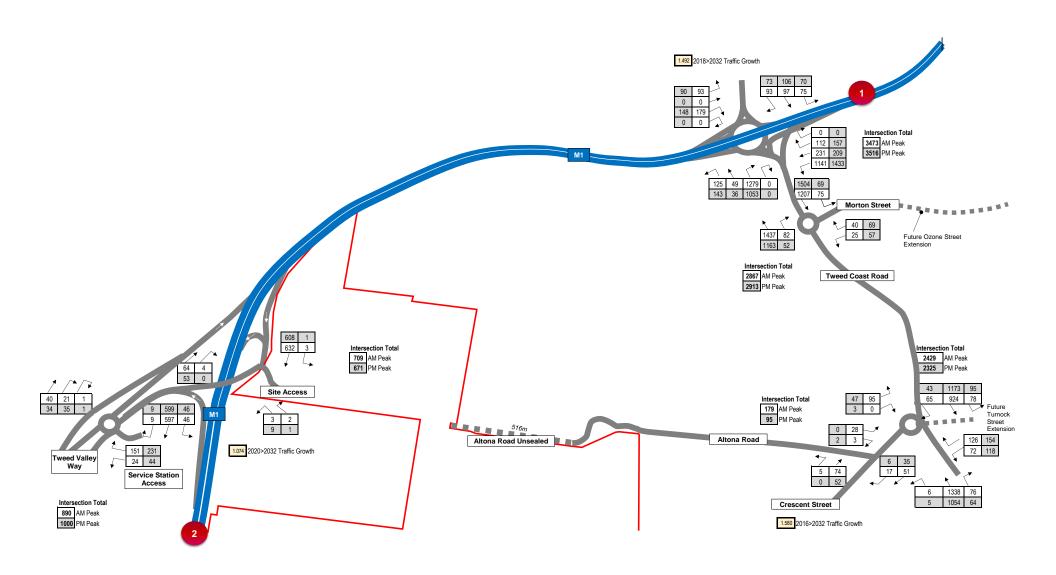
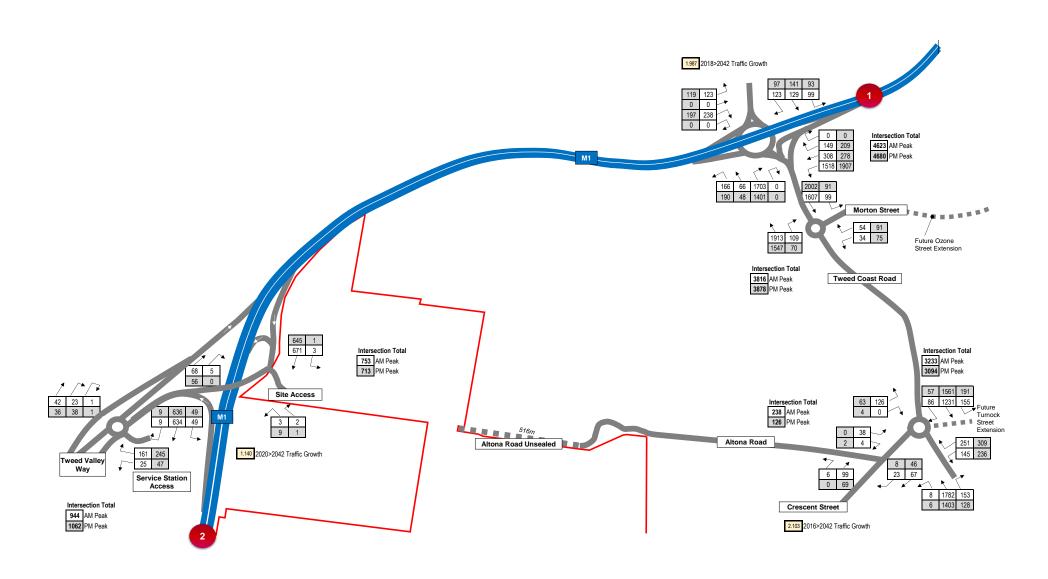
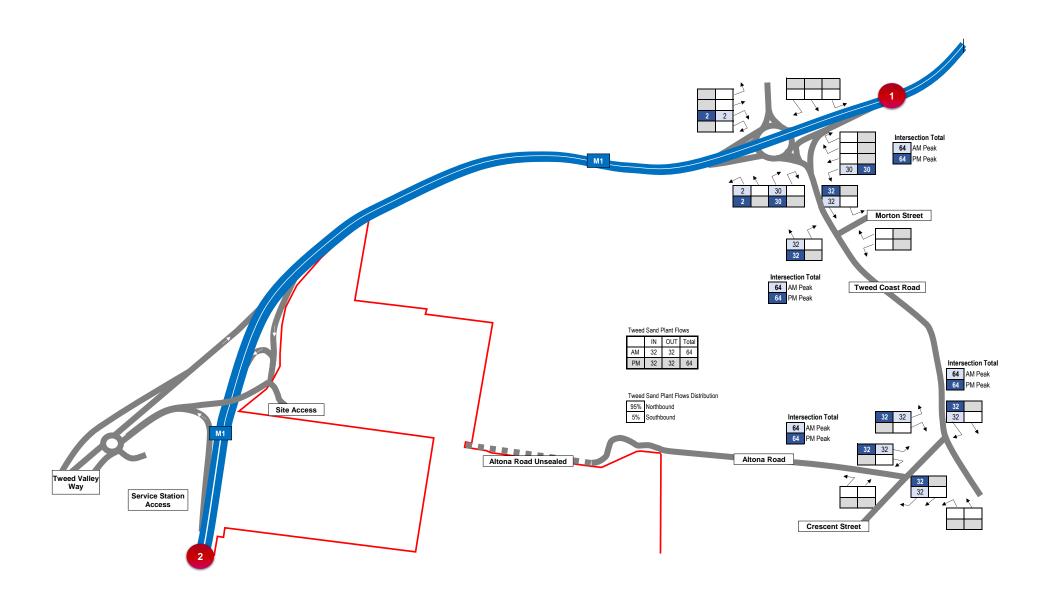
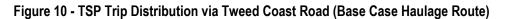


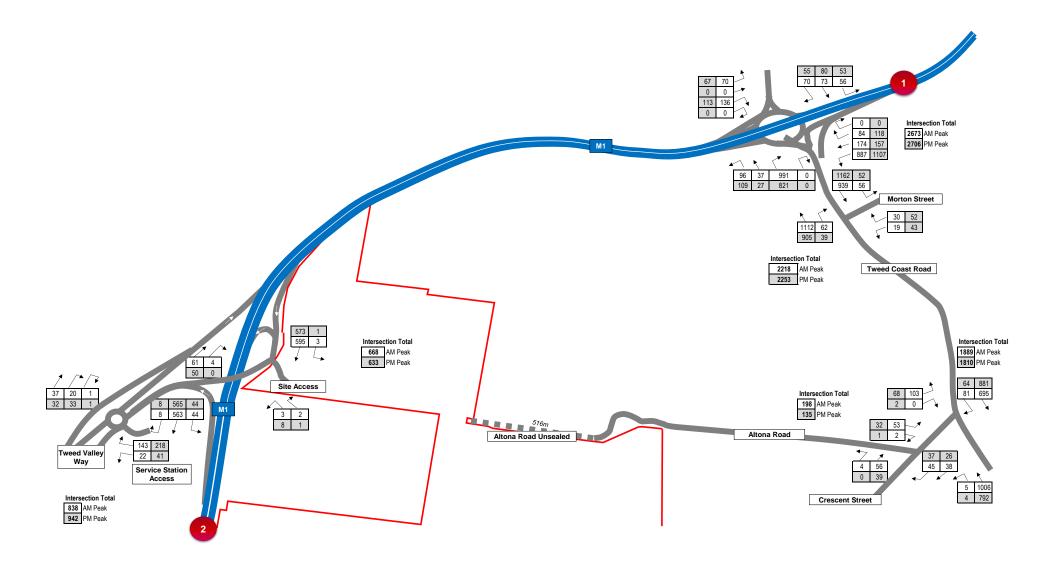
Figure 4 - Traffic Survey AM and PM Peak Summary


Figure 5 - 2016 Peak Hour Tweed Sand Plan Truck Movements




Figure 9 - 2032 Base Traffic Flows (without TSP Trucks)

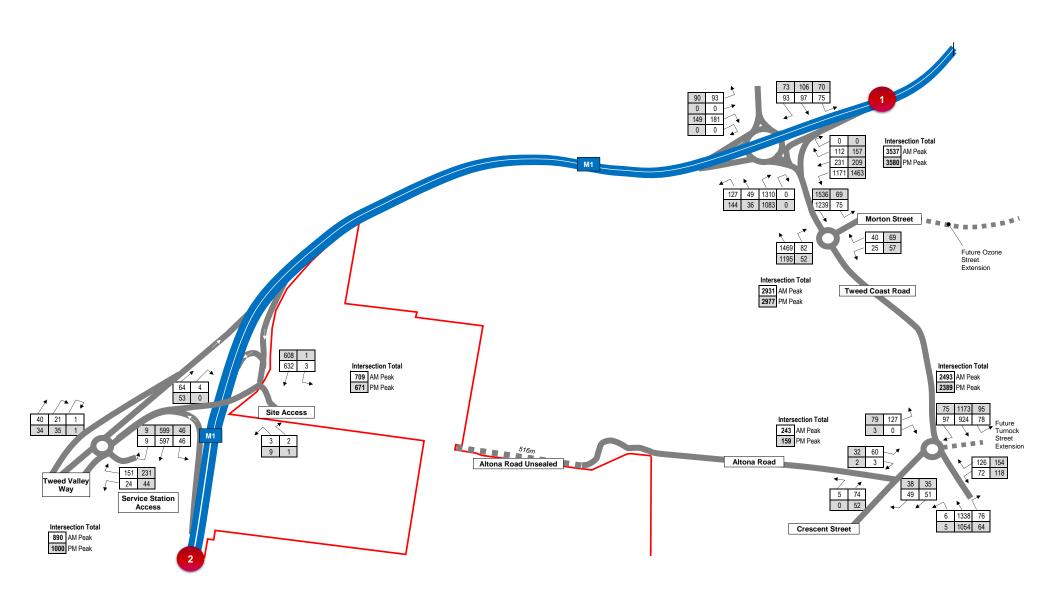
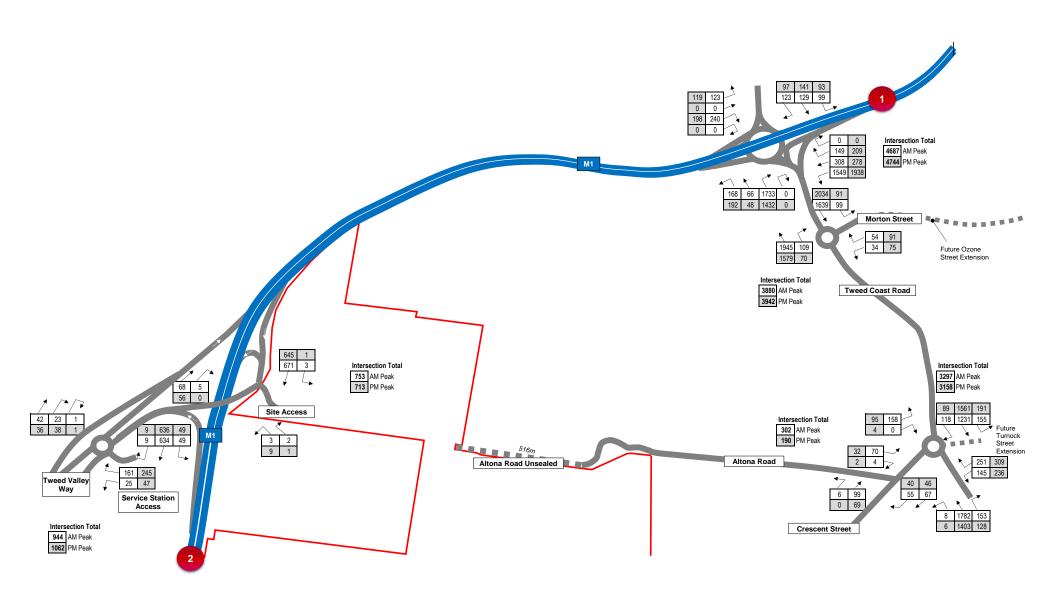
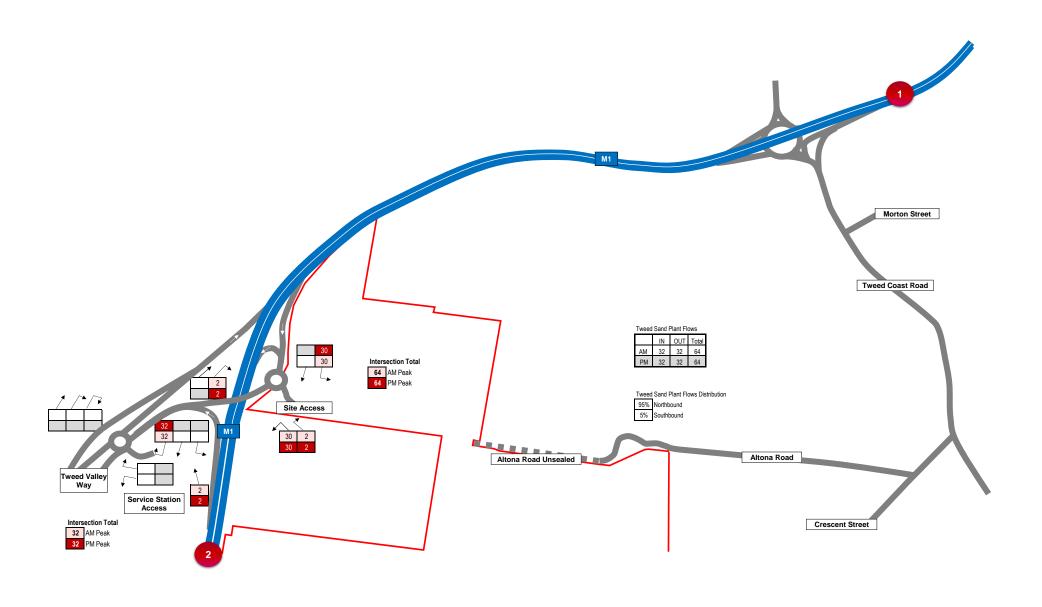
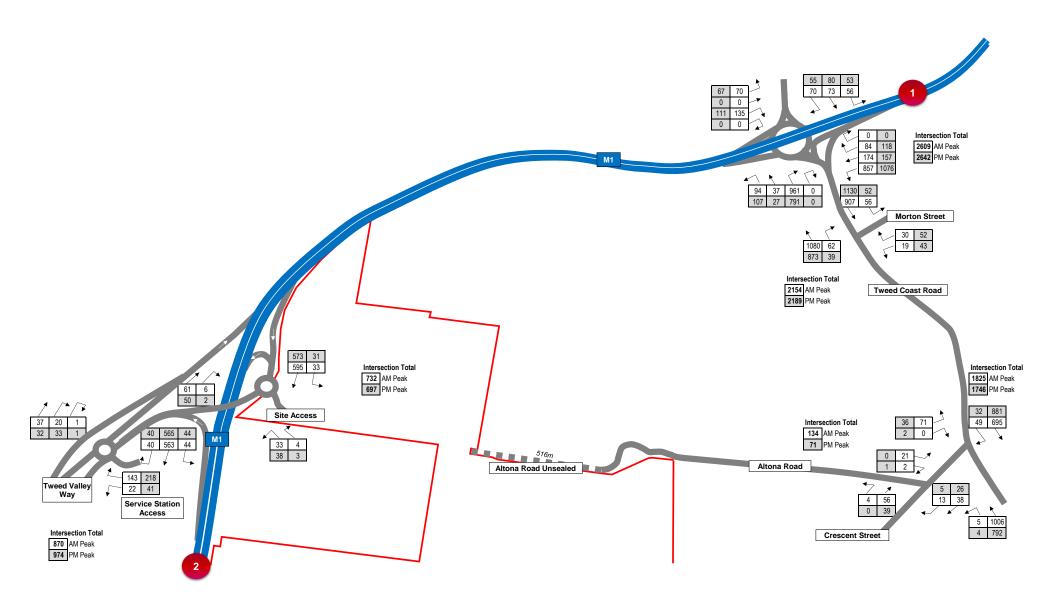
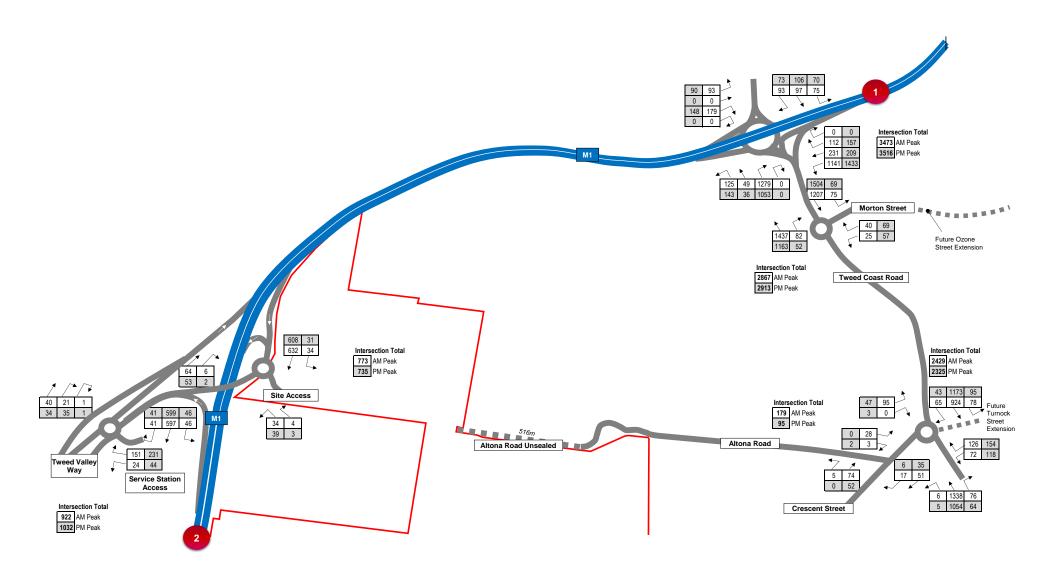
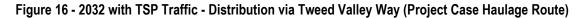


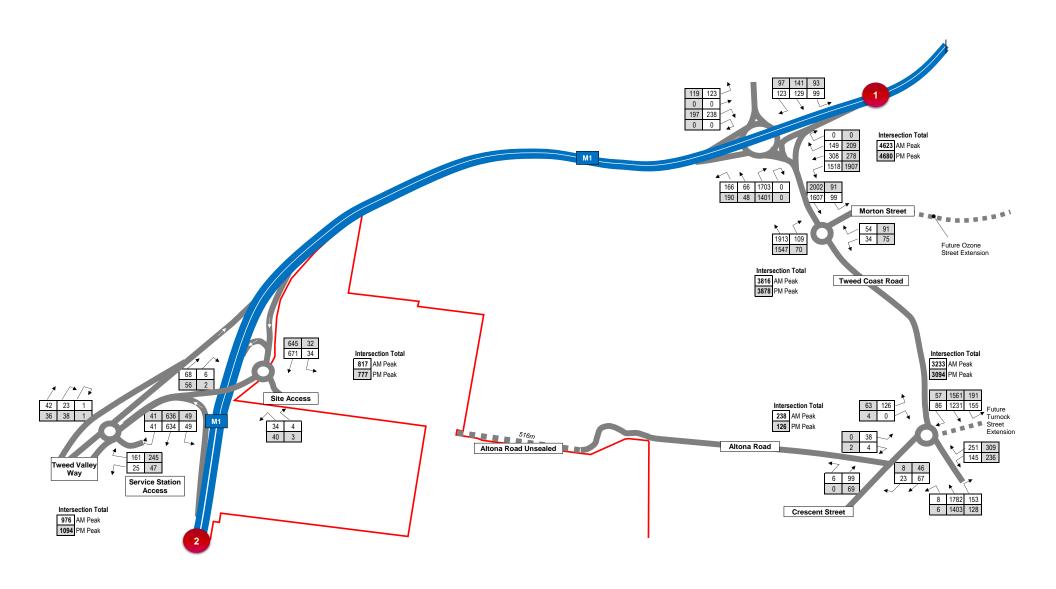
Figure 12 - 2032 with TSP Traffic - Distribution via Tweed Coast Road (Base Case Haulage Route)


Figure 13 - 2042 with TSP Traffic - Distribution via Tweed Coast Road (Base Case Haulage Route)




BE190043_Tweed Sand Plant



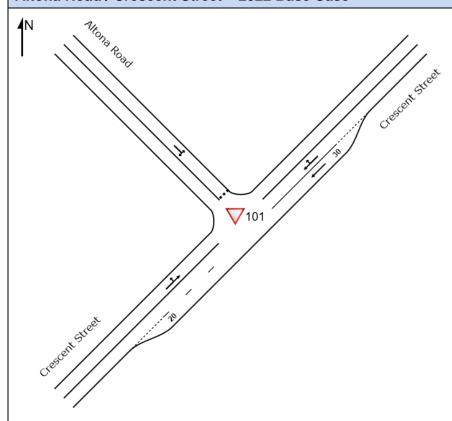
BE190043_Tweed Sand Plant

BE190043_Tweed Sand Plant

Figure 17 - 2042 with TSP Traffic - Distribution via Tweed Valley Way (Project Case Haulage Route)

The experience **you deserve** \geqslant

Appendix B - SIDRA Outputs


– www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

Doc Title: Proposed TSP Haulage Route Economic Evaluation

Altona Road / Crescent Street – 2022 Base Case

MOVEMENT SUMMARY

▼ Site: 101 [1. Crescent St / Altona Rd 2022 AM Peak - Base Case (Site Folder: General)]

New Site Site Category: Existing Design Give-Way (Two-Way)

Vehicle	Moveme	nt Performa	nce											
Mov ID	Tum	INPUT V([Total veh/h	DLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
NorthEa	st: Crescer	nt Street												
25	T1	38	0	40	0.0	0.074	0.3	LOS A	0.4	6.4	0.07	0.12	0.07	58.7
26	R2	45	36	47	80.0	0.074	7.6	LOS A	0.4	6.4	0.25	0.42	0.25	54.8
Approac	h	83	36	87	43.4	0.074	4.2	NA	0.4	6.4	0.16	0.28	0.16	55.6
NorthWe	est: Altona I	Road												
27	L2	53	38	56	71.7	0.076	7.3	LOS A	0.3	5.7	0.21	0.55	0.21	52.2
29	R2	2	0	2	0.0	0.076	6.6	LOS A	0.3	5.7	0.21	0.55	0.21	56.6
Approac	h	55	38	58	69.1	0.076	7.3	LOS A	0.3	5.7	0.21	0.55	0.21	52.4
SouthWe	est: Cresce	nt Street												
30	L2	4	0	4	0.0	0.032	5.5	LOS A	0.0	0.0	0.00	0.04	0.00	59.2
31	T1	56	0	59	0.0	0.032	0.0	LOS A	0.0	0.0	0.00	0.04	0.00	59.5
Approac	h	60	0	63	0.0	0.032	0.4	NA	0.0	0.0	0.00	0.04	0.00	59.4
All Vehic	les	198	74	208	37.4	0.076	3.9	NA	0.4	6.4	0.13	0.28	0.13	54.9

MOVEMENT SUMMARY

▼ Site: 101 [1. Crescent St / Altona Rd 2022 PM Peak - Base Case (Site Folder: General)]

Vehicle	e Moveme	nt Performa	ince											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Ave Spee km
NorthEa	ast: Crescer	nt Street												
25	T1	38	0	40	0.0	0.071	0.2	LOS A	0.3	6.0	0.06	0.13	0.06	58.
26	R2	45	33	47	73.3	0.071	7.2	LOS A	0.3	6.0	0.19	0.43	0.19	54.
Approac	ch	83	33	87	39.8	0.071	4.0	NA	0.3	6.0	0.13	0.29	0.13	55.
NorthW	est: Altona l	Road												
27	L2	53	32	56	60.4	0.071	6.9	LOS A	0.3	5.2	0.17	0.54	0.17	52.
29	R2	2	0	2	0.0	0.071	6.4	LOS A	0.3	5.2	0.17	0.54	0.17	56.
Approac	ch	55	32	58	58.2	0.071	6.9	LOSA	0.3	5.2	0.17	0.54	0.17	53.
SouthW	est: Cresce	nt Street												
30	L2	1	0	1	0.0	0.022	5.5	LOS A	0.0	0.0	0.00	0.01	0.00	59.
31	T1	39	0	41	0.0	0.022	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.
Approac	ch	40	0	42	0.0	0.022	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.
All Vehic	cles	178	65	187	36.5	0.071	4.0	NA	0.3	6.0	0.11	0.31	0.11	54.

Altona Rd / Crescent Street - 2022 Project Case

MOVEMENT SUMMARY

V Site: 101 [1. Crescent St / Altona Rd 2022 AM Peak - Project Case (Site Folder: General)]

New Site Site Category: Existing Design Give-Way (Two-Way)

Vehicle M	ovement	Performance	;											
Mov ID	Turn	INPUT VO [Total veh/h	DLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
NorthEast:	Crescent 9	Street												
25	T1	38	0	40	0.0	0.026	0.1	LOS A	0.1	0.7	0.08	0.13	80.0	58.3
26	R2	13	4	14	30.8	0.026	6.0	LOS A	0.1	0.7	0.11	0.18	0.11	57.4
Approach		51	4	54	7.8	0.026	1.6	NA	0.1	0.7	0.09	0.15	0.09	57.8
NorthWest:	Altona Ro	ad												
27	L2	21	6	22	28.6	0.018	6.1	LOS A	0.1	0.6	0.15	0.54	0.15	55.0
29	R2	2	0	2	0.0	0.018	6.0	LOS A	0.1	0.6	0.15	0.54	0.15	56.7
Approach		23	6	24	26.1	0.018	6.1	LOS A	0.1	0.6	0.15	0.54	0.15	55.2
SouthWest:	Crescent	Street												
30	L2	4	0	4	0.0	0.032	5.5	LOS A	0.0	0.0	0.00	0.04	0.00	59.2
31	T1	56	0	59	0.0	0.032	0.0	LOS A	0.0	0.0	0.00	0.04	0.00	59.5
Approach		60	0	63	0.0	0.032	0.4	NA	0.0	0.0	0.00	0.04	0.00	59.4
All Vehicles		134	10	141	7.5	0.032	1.8	NA	0.1	0.7	0.06	0.17	0.06	57.4

MOVEMENT SUMMARY

▽ Site: 101 [1. Crescent St / Altona Rd 2022 PM Peak - Project Case (Site Folder: General)]

Vehicle	Movement	Performanc	е											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
NorthEas	t: Crescent	Street												
25	T1	26	0	27	0.0	0.015	0.0	LOS A	0.0	0.2	0.04	0.09	0.04	58.8
26	R2	5	1	5	20.0	0.015	5.8	LOSA	0.0	0.2	0.05	0.12	0.05	57.9
Approach	1	31	1	33	3.2	0.015	1.0	NA	0.0	0.2	0.04	0.10	0.04	58.5
NorthWes	st: Altona Ro	oad												
27	L2	1	0	1	0.0	0.002	5.6	LOS A	0.0	0.0	0.13	0.54	0.13	56.7
29	R2	1	0	1	0.0	0.002	5.8	LOSA	0.0	0.0	0.13	0.54	0.13	56.8
Approach	1	2	0	2	0.0	0.002	5.7	LOS A	0.0	0.0	0.13	0.54	0.13	56.7
SouthWe	st: Crescent	t Street												
30	L2	1	0	1	0.0	0.022	5.5	LOS A	0.0	0.0	0.00	0.01	0.00	59.3
31	T1	39	0	41	0.0	0.022	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.8
Approach	1	40	0	42	0.0	0.022	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8
All Vehicl	es	73	1	77	1.4	0.022	0.6	NA	0.0	0.2	0.02	0.06	0.02	59.0

Altona Rd / Crescent Street – 2032 Base Case

MOVEMENT SUMMARY

▼ Site: 101 [1. Crescent St / Altona Rd 2032 AM Peak - Base Case (Site Folder: General)]

New Site Site Category: Existing Design Give-Way (Two-Way)

Vehicle Mo	vement P	erformance												
Mov ID	Tum	INPUT VO [Total veh/h	DLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
NorthEast: 0	Crescent St	reet												
25	T1	49	0	52	0.0	0.085	0.4	LOS A	0.4	6.8	0.10	0.14	0.10	58.3
26	R2	51	37	54	72.5	0.085	7.6	LOS A	0.4	6.8	0.28	0.39	0.28	55.0
Approach		100	37	105	37.0	0.085	4.1	NA	0.4	6.8	0.19	0.27	0.19	55.8
NorthWest: A	Altona Road	d												
27	L2	60	40	63	66.7	0.085	7.4	LOS A	0.4	6.0	0.24	0.56	0.24	52.5
29	R2	3	0	3	0.0	0.085	6.8	LOS A	0.4	6.0	0.24	0.56	0.24	56.6
Approach		63	40	66	63.5	0.085	7.4	LOS A	0.4	6.0	0.24	0.56	0.24	52.7
SouthWest:	Crescent S	treet												
30	L2	5	0	5	0.0	0.043	5.5	LOS A	0.0	0.0	0.00	0.04	0.00	59.2
31	T1	74	0	78	0.0	0.043	0.0	LOS A	0.0	0.0	0.00	0.04	0.00	59.5
Approach		79	0	83	0.0	0.043	0.4	NA	0.0	0.0	0.00	0.04	0.00	59.5
All Vehicles		242	77	255	31.8	0.085	3.7	NA	0.4	6.8	0.14	0.27	0.14	55.2

MOVEMENT SUMMARY

▼ Site: 101 [1. Crescent St / Altona Rd 2032 PM Peak - Base Case (Site Folder: General)]

Mov Tu ID	ım INPU [Total	T VOLUMES											
	veh/h	HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
NorthEast: Cresce	ent Street												
25 T	1 35	0	37	0.0	0.068	0.3	LOS A	0.3	6.4	0.07	0.11	0.07	59.0
26 R	2 38	34	40	89.5	0.068	7.8	LOS A	0.3	6.4	0.24	0.40	0.24	54.8
Approach	73	34	77	46.6	0.068	4.2	NA	0.3	6.4	0.16	0.26	0.16	55.8
NorthWest: Altona	a Road												
27 L2	2 32	32	34	100.0	0.060	8.1	LOS A	0.2	5.9	0.23	0.55	0.23	52.7
29 R	2 2	0	2	0.0	0.060	6.4	LOS A	0.2	5.9	0.23	0.55	0.23	56.0
Approach	34	32	36	94.1	0.060	8.0	LOS A	0.2	5.9	0.23	0.55	0.23	52.9
SouthWest: Creso	cent Street												
30 L2	2 1	0	1	0.0	0.029	5.5	LOS A	0.0	0.0	0.00	0.01	0.00	59.3
31 T	1 52	0	55	0.0	0.029	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.8
Approach	53	0	56	0.0	0.029	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8
All Vehicles	160	66	168	41.3	0.068	3.6	NA	0.3	6.4	0.12	0.24	0.12	55.5

Altona Rd / Crescent Street - 2032 Project Case

MOVEMENT SUMMARY

▼ Site: 101 [1. Crescent St / Altona Rd 2032 AM Peak - Project Case (Site Folder: General)]

New Site Site Category: Existing Design Give-Way (Two-Way)

Vehicle Mo	vement P	erformance												
Mov ID	Turn	INPUT VO [Total veh/h	DLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
NorthEast: 0	rescent Str	eet												
25	T1	17	0	18	0.0	0.036	0.1	LOS A	0.2	1.2	0.04	0.11	0.04	58.4
26	R2	51	5	54	9.8	0.036	5.8	LOS A	0.2	1.2	0.19	0.52	0.19	56.3
Approach		68	5	72	7.4	0.036	4.4	NA	0.2	1.2	0.15	0.42	0.15	56.5
NorthWest: A	Altona Road	l												
27	L2	28	8	29	28.6	0.025	6.2	LOS A	0.1	0.9	0.18	0.54	0.18	55.0
29	R2	3	0	3	0.0	0.025	6.2	LOS A	0.1	0.9	0.18	0.54	0.18	56.7
Approach		31	8	33	25.8	0.025	6.2	LOS A	0.1	0.9	0.18	0.54	0.18	55.2
SouthWest:	Crescent St	reet												
30	L2	5	0	5	0.0	0.043	5.5	LOS A	0.0	0.0	0.00	0.04	0.00	59.2
31	T1	74	0	78	0.0	0.043	0.0	LOS A	0.0	0.0	0.00	0.04	0.00	59.5
Approach		79	0	83	0.0	0.043	0.4	NA	0.0	0.0	0.00	0.04	0.00	59.5
All Vehicles		178	13	187	7.3	0.043	2.9	NA	0.2	1.2	0.09	0.27	0.09	56.9

MOVEMENT SUMMARY

▼ Site: 101 [1. Crescent St / Altona Rd 2032 PM Peak - Project Case (Site Folder: General)]

Vehicle I	Movement Pe	erformance												
Mov ID	Tum	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
NorthEast	t: Crescent Stre	eet												
25	T1	35	0	37	0.0	0.020	0.1	LOSA	0.0	0.3	0.05	0.08	0.05	59.0
26	R2	6	2	6	33.3	0.020	6.1	LOSA	0.0	0.3	0.06	0.10	0.06	57.7
Approach		41	2	43	4.9	0.020	0.9	NA	0.0	0.3	0.05	0.09	0.05	58.5
NorthWes	t: Altona Road	l												
27	L2	1	0	1	0.0	0.003	5.7	LOSA	0.0	0.1	0.17	0.54	0.17	56.6
29	R2	2	0	2	0.0	0.003	5.9	LOSA	0.0	0.1	0.17	0.54	0.17	56.7
Approach		3	0	3	0.0	0.003	5.8	LOS A	0.0	0.1	0.17	0.54	0.17	56.7
SouthWes	st: Crescent St	reet												
30	L2	1	0	1	0.0	0.029	5.5	LOSA	0.0	0.0	0.00	0.01	0.00	59.3
31	T1	52	0	55	0.0	0.029	0.0	LOSA	0.0	0.0	0.00	0.01	0.00	59.8
Approach		53	0	56	0.0	0.029	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8
All Vehicle	es	97	2	102	2.1	0.029	0.6	NA	0.0	0.3	0.03	0.06	0.03	59.0

Altona Rd / Crescent Street – 2042 Base Case

MOVEMENT SUMMARY

▼ Site: 101 [1. Crescent St / Altona Rd 2042 AM Peak - Base Case (Site Folder: General)]

New Site Site Category: Existing Design Give-Way (Two-Way)

Vehicle Mo	vement P	erformance												
Mov ID	Turn	INPUT VO [Total veh/h	DLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
NorthEast: 0	Crescent Str	reet												
25	T1	67	0	71	0.0	0.101	0.6	LOS A	0.5	7.6	0.14	0.15	0.14	58.1
26	R2	55	38	58	69.1	0.101	7.9	LOS A	0.5	7.6	0.32	0.33	0.32	55.2
Approach		122	38	128	31.1	0.101	3.9	NA	0.5	7.6	0.22	0.23	0.22	56.0
NorthWest:	Altona Road	d												
27	L2	70	43	74	61.4	0.098	7.5	LOS A	0.4	6.4	0.28	0.57	0.28	52.7
29	R2	4	0	4	0.0	0.098	7.2	LOS A	0.4	6.4	0.28	0.57	0.28	56.5
Approach		74	43	78	58.1	0.098	7.5	LOS A	0.4	6.4	0.28	0.57	0.28	53.0
SouthWest:	Crescent S	treet												
30	L2	6	0	6	0.0	0.057	5.6	LOS A	0.0	0.0	0.00	0.03	0.00	59.2
31	T1	99	0	104	0.0	0.057	0.0	LOS A	0.0	0.0	0.00	0.03	0.00	59.6
Approach		105	0	111	0.0	0.057	0.3	NA	0.0	0.0	0.00	0.03	0.00	59.5
All Vehicles		301	81	317	26.9	0.101	3.5	NA	0.5	7.6	0.16	0.25	0.16	55.4

MOVEMENT SUMMARY

▼ Site: 101 [1. Crescent St / Altona Rd 2042 PM Peak - Base Case (Site Folder: General)]

Vehicle Mov	vement Pe	rformance												
Mov ID	Turn	INPUT Vo [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
NorthEast: Ci	rescent Stre	et												
25	T1	46	0	48	0.0	0.077	0.4	LOS A	0.4	6.9	0.10	0.13	0.10	58.7
26	R2	40	34	42	85.0	0.077	8.0	LOS A	0.4	6.9	0.27	0.34	0.27	54.9
Approach		86	34	91	39.5	0.077	3.9	NA	0.4	6.9	0.18	0.23	0.18	55.9
NorthWest: A	ltona Road													
27	L2	32	32	34	100.0	0.062	8.5	LOS A	0.3	6.1	0.27	0.56	0.27	52.6
29	R2	2	0	2	0.0	0.062	6.6	LOS A	0.3	6.1	0.27	0.56	0.27	55.9
Approach		34	32	36	94.1	0.062	8.4	LOS A	0.3	6.1	0.27	0.56	0.27	52.8
SouthWest: C	Crescent Str	eet												
30	L2	1	0	1	0.0	0.038	5.5	LOS A	0.0	0.0	0.00	0.01	0.00	59.3
31	T1	69	0	73	0.0	0.038	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.9
Approach		70	0	74	0.0	0.038	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.9
All Vehicles		190	66	200	34.7	0.077	3.3	NA	0.4	6.9	0.13	0.21	0.13	55.7

Altona Rd / Crescent Street – 2042 Project Case

MOVEMENT SUMMARY

▼ Site: 101 [1. Crescent St / Altona Rd 2042 AM Peak - Project Case (Site Folder: General)]

New Site Site Category: Existing Design Give-Way (Two-Way)

Vehicle Mo	vement F	Performance												
Mov ID	Tum	INPUT V([Total veh/h	DLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
NorthEast: 0	Crescent St	treet												
25	T1	67	0	71	0.0	0.046	0.2	LOS A	0.2	1.2	0.11	0.13	0.11	58.0
26	R2	23	6	24	26.1	0.046	6.2	LOS A	0.2	1.2	0.15	0.18	0.15	57.4
Approach		90	6	95	6.7	0.046	1.7	NA	0.2	1.2	0.12	0.15	0.12	57.7
NorthWest: A	Altona Roa	ıd												
27	L2	38	11	40	28.9	0.035	6.3	LOS A	0.1	1.2	0.21	0.54	0.21	54.9
29	R2	4	0	4	0.0	0.035	6.5	LOS A	0.1	1.2	0.21	0.54	0.21	56.6
Approach		42	11	44	26.2	0.035	6.3	LOSA	0.1	1.2	0.21	0.54	0.21	55.1
SouthWest:	Crescent S	Street												
30	L2	6	0	6	0.0	0.057	5.6	LOS A	0.0	0.0	0.00	0.03	0.00	59.2
31	T1	99	0	104	0.0	0.057	0.0	LOS A	0.0	0.0	0.00	0.03	0.00	59.6
Approach		105	0	111	0.0	0.057	0.3	NA	0.0	0.0	0.00	0.03	0.00	59.5
All Vehicles		237	17	249	7.2	0.057	1.9	NA	0.2	1.2	0.08	0.17	0.08	57.3

MOVEMENT SUMMARY

V Site: 101 [1. Crescent St / Altona Rd 2042 PM Peak - Project Case (Site Folder: General)]

ement Pei	rformance												
Tum	INPUT VC [Total veh/h	DLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
escent Stree	et												
T1	46	0	48	0.0	0.026	0.1	LOS A	0.1	0.4	0.06	0.08	0.06	58.9
R2	8	2	8	25.0	0.026	6.0	LOS A	0.1	0.4	0.07	0.11	0.07	57.8
	54	2	57	3.7	0.026	0.9	NA	0.1	0.4	0.06	0.09	0.06	58.5
tona Road													
L2	1	0	1	0.0	0.003	5.7	LOS A	0.0	0.1	0.20	0.54	0.20	56.6
R2	2	0	2	0.0	0.003	6.1	LOS A	0.0	0.1	0.20	0.54	0.20	56.7
	3	0	3	0.0	0.003	5.9	LOS A	0.0	0.1	0.20	0.54	0.20	56.7
rescent Stre	eet												
L2	1	0	1	0.0	0.038	5.5	LOS A	0.0	0.0	0.00	0.01	0.00	59.3
T1	69	0	73	0.0	0.038	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.9
	70	0	74	0.0	0.038	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.9
	127	2	134	1.6	0.038	0.6	NA	0.1	0.4	0.03	0.05	0.03	59.0
t	Tum escent Stree T1 R2 ona Road L2 R2 rescent Stree L2	Tum INPUT VO [Total veh/h escent Street T1	Tum INPUT VOLUMES [Total HV] veh/h veh/h escent Street T1	Tum INPUT VOLUMES Total Total Total Veh/h Ve	Tum INPUT VOLUMES [Total HV] veh/h veh/h veh/h veh/h weh/h web/h w	Tum	Turn INPUT VOLUMES Total HV Satin Delay veh/h veh/h veh/h veh/h Weh/h We	Turn	Turn	Turn	Tum	Turn	Turn

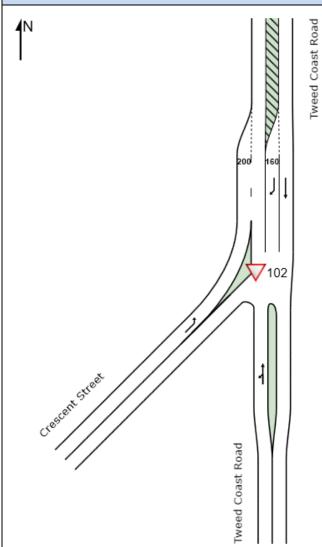
Tweed Coast Road / Crescent Street- 2022 Base Case Tweed Coast Road

MOVEMENT SUMMARY

V Site: 102 [2. Tweed Coast Rd / Crescent St 2022AM Peak - Base Case (Site Folder: General)]

Tweed Coast Road / Crescent Street intersection Site Category: Existing Design Give-Way (Two-Way)

Vehicle	Moveme	nt Performa	nce											
Mov ID	Turn	INPUT VO [Total veh/h	DLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Tv	veed Coas	st Road												
1b	L3	5	0	5	0.0	0.554	6.7	LOS A	0.0	0.0	0.00	0.00	0.00	57.9
2	T1	1006	22	1059	2.2	0.554	0.3	LOS A	0.0	0.0	0.00	0.00	0.00	59.5
Approach	1	1011	22	1064	2.2	0.554	0.3	NA	0.0	0.0	0.00	0.00	0.00	59.5
North: Tw	eed Coas	st Road												
8	T1	695	27	732	3.9	0.388	0.4	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
9a	R1	81	35	85	43.2	1.023	192.9	LOS F	8.3	118.8	1.00	1.75	3.32	19.0
Approach	1	776	62	817	8.0	1.023	20.4	NA	8.3	118.8	0.10	0.18	0.35	50.0
SouthWe	st: Cresce	ent Street												
30a	L1	103	39	108	37.9	0.087	9.0	LOS A	0.0	0.0	0.00	0.56	0.00	54.6
Approach	١	103	39	108	37.9	0.087	9.0	NA	0.0	0.0	0.00	0.56	0.00	54.6
All Vehicl	es	1890	123	1989	6.5	1.023	9.0	NA	8.3	118.8	0.04	0.11	0.14	55.0


MOVEMENT SUMMARY

▼ Site: 102 [2. Tweed Coast Rd / Crescent St 2022PM Peak - Base Case (Site Folder: General)]

Tweed Coast Road / Crescent Street intersection Site Category: Existing Design Give-Way (Two-Way)

noverner	nt Ре птогта	nce											
Turn	INPUT VO [Total veh/h	DLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
eed Coas	t Road												
L3	4	0	4	0.0	0.443	6.6	LOS A	0.0	0.0	0.00	0.00	0.00	58.1
T1	792	38	834	4.8	0.443	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
	796	38	838	4.8	0.443	0.2	NA	0.0	0.0	0.00	0.00	0.00	59.6
eed Coast	t Road												
T1	881	32	927	3.6	0.489	0.5	LOS A	0.0	0.0	0.00	0.00	0.00	59.6
R1	64	35	67	54.7	0.483	44.7	LOS E	2.0	32.7	0.92	1.09	1.26	38.1
	945	67	995	7.1	0.489	3.5	NA	2.0	32.7	0.06	0.07	0.09	57.7
t: Cresce	nt Street												
L1	68	32	72	47.1	0.065	7.6	LOS A	0.0	0.0	0.00	0.56	0.00	54.2
	68	32	72	47.1	0.065	7.6	NA	0.0	0.0	0.00	0.56	0.00	54.2
:s	1809	137	1904	7.6	0.489	2.2	NA	2.0	32.7	0.03	0.06	0.04	58.4
	Turn eed Coas T1 R1 t: Cresce L1	Turn INPUT VO [Total veh/h] eed Coast Road L3 4 T1 792 796 eed Coast Road T1 881 R1 64 945 t: Crescent Street L1 68 68	[Total veh/h	Turn INPUT VOLUMES [Total HV] veh/h	Turn INPUT VOLUMES [Total HV] veh/h veh/h veh/h weh/h weh/h weh/h weh/h weh/h weh/h % eed Coast Road L3	Turn INPUT VOLUMES [Total HV] Sath veh/h veh/h veh/h weh/h weh/h weh/h % veh/h veh/h % veh/h weh/h % veh/h weh/h % veh/h weh/h % veh/h veh/h % veh/h % veh/h % veh/h veh/h % veh/h % veh/h veh/h % veh/h veh/h % veh/h veh/h % veh/h % veh/h veh/h % veh/h veh/h veh/h % veh/h veh/h veh/h veh/h % veh/h veh/h veh/h % veh/h % veh/h veh	Turn INPUT VOLUMES Total HV Saftn Delay Veh/h Ve	Turn INPUT VOLUMES [Total HV] [Total HV] Satn Delay Service seed Coast Road L3	Turn INPUT VOLUMES DEMAND FLOWS Total HV Total HV Veh/h Veh/	Turn	Turn INPUT VOLUMES Total HV Veh/h Veh/h	Turn INPUT VOLUMES Total HV Total HV Total HV Total HV Satn Delay Sec Service Service	Turn INPUT VOLUMES Total HV Total HV Weh/h veh/h veh/h veh/h veh/h weh/h Weh/h

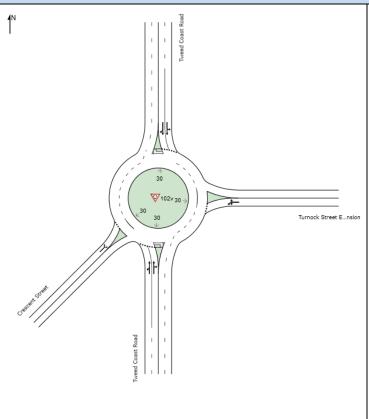
Tweed Coast Road / Crescent Street – 2022 Project Case

MOVEMENT SUMMARY

▼ Site: 102 [2. Tweed Coast Rd / Crescent St 2022AM Peak - Project Case (Site Folder: General)]

Tweed Coast Road / Crescent Street intersection Site Category: Existing Design Give-Way (Two-Way)

Vehicle M	lovement	t Performance	;											
Mov ID	Turn	INPUT VO [Total veh/h	DLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Twe	ed Coast		venni	ven/m	76	V/C	sec		ven	m				KIII/II
1b	L3	5	0	5	0.0	0.554	6.7	LOS A	0.0	0.0	0.00	0.00	0.00	57.9
2	T1	1006	22	1059	2.2	0.554	0.3	LOS A	0.0	0.0	0.00	0.00	0.00	59.5
Approach		1011	22	1064	2.2	0.554	0.3	NA	0.0	0.0	0.00	0.00	0.00	59.5
North: Twe	ed Coast l	Road												
8	T1	695	27	732	3.9	0.387	0.3	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
9a	R1	49	3	52	6.1	0.140	14.3	LOS B	0.5	3.6	0.81	0.92	0.81	50.9
Approach		744	30	783	4.0	0.387	1.3	NA	0.5	3.6	0.05	0.06	0.05	59.2
SouthWest	: Crescent	t Street												
30a	L1	71	7	75	9.9	0.042	8.4	LOS A	0.0	0.0	0.00	0.56	0.00	55.8
Approach		71	7	75	9.9	0.042	8.4	NA	0.0	0.0	0.00	0.56	0.00	55.8
All Vehicles	S	1826	59	1922	3.2	0.554	1.0	NA	0.5	3.6	0.02	0.05	0.02	59.2


MOVEMENT SUMMARY

▼ Site: 102 [2. Tweed Coast Rd / Crescent St 2022PM Peak - Project Case (Site Folder: General)]

Tweed Coast Road / Crescent Street intersection Site Category: Existing Design Give-Way (Two-Way)

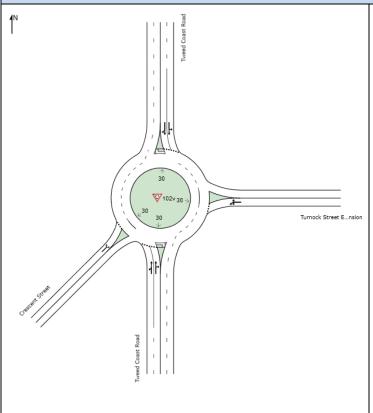
Vehicle N	lovement	Performance	;											
Mov ID	Turn	INPUT VO [Total veh/h	DLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Twe	eed Coast I	Road												
1b	L3	4	0	4	0.0	0.443	6.6	LOS A	0.0	0.0	0.00	0.00	0.00	58.1
2	T1	792	38	834	4.8	0.443	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approach		796	38	838	4.8	0.443	0.2	NA	0.0	0.0	0.00	0.00	0.00	59.6
North: Twe	ed Coast F	Road												
8	T1	881	32	927	3.6	0.487	0.5	LOS A	0.0	0.0	0.00	0.00	0.00	59.6
9a	R1	32	3	34	9.4	0.059	10.2	LOS B	0.2	1.6	0.68	0.84	0.68	52.6
Approach		913	35	961	3.8	0.487	0.9	NA	0.2	1.6	0.02	0.03	0.02	59.4
SouthWes	t: Crescent	Street												
30a	L1	36	0	38	0.0	0.020	6.8	LOS A	0.0	0.0	0.00	0.55	0.00	56.1
Approach		36	0	38	0.0	0.020	6.8	NA	0.0	0.0	0.00	0.55	0.00	56.1
All Vehicle	S	1745	73	1837	4.2	0.487	0.7	NA	0.2	1.6	0.01	0.03	0.01	59.4

Tweed Coast Road / Crescent Street – 2032 Base Case

MOVEMENT SUMMARY

♥ Site: 102v [2. Tweed Coast Rd / Crescent St 2032AM Peak - Base Case (Site Folder: General)]

Tweed Coast Road / Crescent Street intersection Site Category: Proposed Design 1 Roundabout


Vehicle I	Movement P													
Mov ID	Tum	INPUT V [Total	OLUMES HV]	DEMAND [Total	FLOWS HV]	Deg. Satn	Aver. Delay	Level of Service	95% BACK [Veh.	OF QUEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Ave Spee
		veh/h	veh/h	veh/h	%	v/c	sec	2011100	veh	m		Ctop reato	0,000	Spee km/
South: Tv	veed Coast Ro	ad												
1b	L3	6	0	6	0.0	0.590	5.5	LOS A	5.6	40.0	0.69	0.54	0.69	50
2	T1	1338	30	1408	2.2	0.590	5.7	LOS A	5.6	40.0	0.71	0.59	0.71	56.
3	R2	76	4	80	5.3	0.590	12.1	LOS B	5.5	39.5	0.73	0.65	0.75	54.
Approach	1	1420	34	1495	2.4	0.590	6.1	LOS A	5.6	40.0	0.71	0.59	0.72	56.
East: Turr	nock Street Ex	tension												
4	L2	72	4	76	5.6	0.304	7.1	LOS A	1.3	9.7	0.68	0.87	0.68	51.
4a	L1	1	0	1	0.0	0.304	6.6	LOSA	1.3	9.7	0.68	0.87	0.68	50.
6	R2	126	6	133	4.8	0.304	12.9	LOS B	1.3	9.7	0.68	0.87	0.68	55.
Approach	1	199	10	209	5.0	0.304	10.8	LOS B	1.3	9.7	0.68	0.87	0.68	54.
North: Tw	eed Coast Ro	ad												
7	L2	78	4	82	5.1	0.403	4.1	LOS A	3.7	27.2	0.36	0.39	0.36	56.
8	T1	924	36	973	3.9	0.403	4.1	LOS A	3.7	27.2	0.38	0.41	0.38	57.
9a	R1	97	36	102	37.1	0.403	9.8	LOS A	3.6	30.2	0.40	0.44	0.40	54.
Approach	1	1099	76	1157	6.9	0.403	4.6	LOS A	3.7	30.2	0.38	0.41	0.38	57.
SouthWe	st: Crescent St	treet												
30a	L1	127	42	134	33.1	0.634	26.6	LOSC	3.3	39.7	0.93	1.10	1.35	47.
32a	R1	1	0	1	0.0	0.634	24.2	LOS C	3.3	39.7	0.93	1.10	1.35	38.
Approach	1	128	42	135	32.8	0.634	26.6	LOSC	3.3	39.7	0.93	1.10	1.35	47.
All Vehicle	es	2846	162	2996	5.7	0.634	6.8	LOSA	5.6	40.0	0.59	0.56	0.61	56.

MOVEMENT SUMMARY

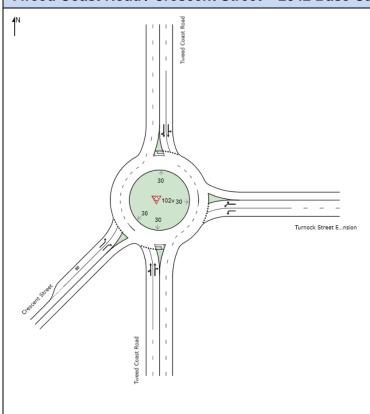
♥ Site: 102v [2. Tweed Coast Rd / Crescent St 2032PM Peak - Base Case (Site Folder: General)]

		erformance												
Mov ID	Turn	INPUT V	HV]	DEMAND [Total	HV]	Deg. Satn	Aver. Delay	Level of Service	[Veh.	OF QUEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Av Spe kn
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				kn
South: Twe	eed Coast Ro	ad												
1b	L3	5	0	5	0.0	0.481	5.3	LOS A	4.2	30.3	0.65	0.52	0.65	50
2	T1	1054	50	1109	4.7	0.481	5.4	LOS A	4.2	30.3	0.66	0.55	0.66	56
3	R2	64	3	67	4.7	0.481	11.6	LOS B	3.9	28.8	0.68	0.60	0.68	54
Approach		1123	53	1182	4.7	0.481	5.8	LOSA	4.2	30.3	0.66	0.56	0.66	56
East: Turn	ock Street Ex	tension												
4	L2	118	6	124	5.1	0.460	9.3	LOSA	2.4	17.7	0.76	0.95	0.93	49
4a	L1	1	0	1	0.0	0.460	8.7	LOSA	2.4	17.7	0.76	0.95	0.93	48
6	R2	154	8	162	5.2	0.460	15.0	LOS B	2.4	17.7	0.76	0.95	0.93	5
Approach		273	14	287	5.1	0.460	12.5	LOS B	2.4	17.7	0.76	0.95	0.93	5
North: Twe	ed Coast Ro	ad												
7	L2	95	5	100	5.3	0.478	4.1	LOSA	4.8	34.9	0.36	0.39	0.36	56
8	T1	1173	42	1235	3.6	0.478	4.1	LOSA	4.8	34.9	0.38	0.40	0.38	57
9a	R1	75	36	79	48.0	0.478	10.1	LOS B	4.6	38.1	0.40	0.42	0.40	53
Approach		1343	83	1414	6.2	0.478	4.5	LOS A	4.8	38.1	0.38	0.40	0.38	57
SouthWes	t: Crescent S	treet												
30a	L1	79	33	83	41.8	0.426	21.9	LOSC	1.9	26.5	0.87	1.00	1.08	49
32a	R1	3	0	3	0.0	0.426	16.9	LOS B	1.9	26.5	0.87	1.00	1.08	41
Approach		82	33	86	40.2	0.426	21.8	LOS C	1.9	26.5	0.87	1.00	1.08	48
All Vehicle	·s	2821	183	2969	6.5	0.481	6.3	LOSA	4.8	38.1	0.54	0.53	0.56	5

Tweed Coast Road / Crescent Street – 2032 Project Case

MOVEMENT SUMMARY

♥ Site: 102v [2. Tweed Coast Rd / Crescent St 2032AM Peak - Project Case (Site Folder: General)]


Tweed Coast Road / Crescent Street intersection Site Category: Proposed Design 1 Roundabout

Vehicle N	lovement F	Performance												
Mov ID	Turn		OLUMES	DEMAND		Deg. Satn	Aver.	Level of Service	95% BACK [Veh.	OF QUEUE	Prop. Que	Effective	Aver. No.	Aver.
טו		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	Delay sec	Service	į ven. veh	Dist] m	Que	Stop Rate	Cycles	Speed km/h
South: Twe	eed Coast R	oad												
1b	L3	6	0	6	0.0	0.551	4.9	LOS A	5.3	37.9	0.60	0.48	0.60	51.0
2	T1	1338	30	1408	2.2	0.551	4.9	LOS A	5.3	37.9	0.61	0.51	0.61	57.1
3	R2	76	4	80	5.3	0.551	11.1	LOS B	5.1	36.7	0.64	0.55	0.64	54.9
Approach		1420	34	1495	2.4	0.551	5.3	LOS A	5.3	37.9	0.62	0.51	0.62	57.0
East: Turn	ock Street E	xtension												
4	L2	72	4	76	5.6	0.290	6.9	LOS A	1.2	9.1	0.65	0.86	0.65	51.3
4a	L1	1	0	1	0.0	0.290	6.3	LOS A	1.2	9.1	0.65	0.86	0.65	50.3
6	R2	126	6	133	4.8	0.290	12.6	LOS B	1.2	9.1	0.65	0.86	0.65	55.9
Approach		199	10	209	5.0	0.290	10.5	LOS B	1.2	9.1	0.65	0.86	0.65	54.7
North: Twe	ed Coast Ro	oad												
7	L2	78	4	82	5.1	0.372	4.1	LOS A	3.3	23.6	0.34	0.39	0.34	56.9
8	T1	924	36	973	3.9	0.372	4.1	LOS A	3.3	23.6	0.35	0.41	0.35	57.8
9a	R1	65	4	68	6.2	0.372	8.7	LOS A	3.2	23.0	0.37	0.43	0.37	56.6
Approach		1067	44	1123	4.1	0.372	4.4	LOS A	3.3	23.6	0.35	0.41	0.35	57.7
SouthWest	t: Crescent S	Street												
30a	L1	95	10	100	10.5	0.253	10.2	LOS B	1.2	9.1	0.81	0.88	0.81	54.7
32a	R1	1	0	1	0.0	0.253	14.4	LOS B	1.2	9.1	0.81	0.88	0.81	50.4
Approach		96	10	101	10.4	0.253	10.2	LOS B	1.2	9.1	0.81	0.88	0.81	54.7
All Vehicle	S	2782	98	2928	3.5	0.551	5.5	LOSA	5.3	37.9	0.52	0.51	0.52	57.0

MOVEMENT SUMMARY

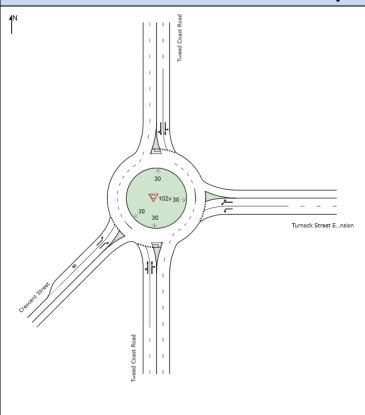
	icle Mo	vement F	Performance												
1b L3 5 0 5 0.0 0.449 4.7 LOS A 4.0 28.9 0.56 2 T1 1054 50 1109 4.7 0.449 4.8 LOS A 4.0 28.9 0.58 3 R2 64 3 67 4.7 0.449 10.9 LOS B 3.8 27.7 0.60 Approach 1123 53 1182 4.7 0.449 5.2 LOS A 4.0 28.9 0.58 East: Turnock Street Extension 4 L2 118 6 124 5.1 0.438 8.7 LOS A 2.2 16.4 0.74 4a L1 1 0 1 0.0 0.438 8.1 LOS A 2.2 16.4 0.74 4a L1 1 0 1 0.0 0.438 8.1 LOS A 2.2 16.4 0.74 Approach 273 <t< th=""><th></th><th>Turn</th><th>[Total</th><th>HV]</th><th>[Total</th><th>HV]</th><th>Satn</th><th>Delay</th><th></th><th>[Veh.</th><th>Dist]</th><th></th><th>Effective Stop Rate</th><th>Aver. No. Cycles</th><th>Aver. Speed km/h</th></t<>		Turn	[Total	HV]	[Total	HV]	Satn	Delay		[Veh.	Dist]		Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
2 T1 1054 50 1109 4.7 0.449 4.8 LOS A 4.0 28.9 0.58 3 R2 64 3 67 4.7 0.449 10.9 LOS B 3.8 27.7 0.60 Approach 1123 53 1182 4.7 0.449 5.2 LOS A 4.0 28.9 0.58 East: Turnock Street Extension 4 L2 118 6 124 5.1 0.438 8.7 LOS A 2.2 16.4 0.74 4a L1 1 0 1 0.0 0.438 8.1 LOS A 2.2 16.4 0.74 4a L1 1 0 1 0.0 0.438 8.1 LOS A 2.2 16.4 0.74 4a L1 1 0 1 0.0 0.438 8.1 LOS B 2.2 16.4 0.74 Approach 273 14	th: Twee	d Coast Ro	oad												
3 R2 64 3 67 4.7 0.449 10.9 LOS B 3.8 27.7 0.60 Approach 1123 53 1182 4.7 0.449 5.2 LOS A 4.0 28.9 0.58 East: Turnock Street Extension 4 L2 118 6 124 5.1 0.438 8.7 LOS A 2.2 16.4 0.74 4a L1 1 0 1 0.0 0.438 8.1 LOS A 2.2 16.4 0.74 6 R2 154 8 162 5.2 0.438 14.5 LOS B 2.2 16.4 0.74 Approach 273 14 287 5.1 0.438 12.0 LOS B 2.2 16.4 0.74 North: Tweed Coast Road 7 L2 95 5 100 5.3 0.448 4.1 LOS A 4.3 30.9 0.34		L3	5	0	5	0.0	0.449	4.7	LOS A	4.0	28.9	0.56	0.46	0.56	51.1
Approach 1123 53 1182 4.7 0.449 5.2 LOS A 4.0 28.9 0.58 East: Turnock Street Extension 4 L2 118 6 124 5.1 0.438 8.7 LOS A 2.2 16.4 0.74 4a L1 1 0 1 0.0 0.438 8.1 LOS A 2.2 16.4 0.74 6 R2 154 8 162 5.2 0.438 14.5 LOS B 2.2 16.4 0.74 Approach 273 14 287 5.1 0.438 12.0 LOS B 2.2 16.4 0.74 North: Tweed Coast Road 7 L2 95 5 100 5.3 0.448 4.1 LOS A 4.3 30.9 0.34 8 T1 1173 42 1235 3.6 0.448 4.1 LOS A 4.3 30.9 0.35 9a R1 43 4 45 9.3 0.448 8.7 LOS A 4.2 30.3			1054	50	1109	4.7	0.449	4.8	LOS A	4.0	28.9	0.58	0.49	0.58	57.2
East: Turnock Street Extension 4		R2	64	3	67	4.7	0.449	10.9	LOS B	3.8	27.7	0.60	0.53	0.60	55.1
4 L2 118 6 124 5.1 0.438 8.7 LOS A 2.2 16.4 0.74 4a L1 1 0 1 0.0 0.438 8.1 LOS A 2.2 16.4 0.74 6 R2 154 8 162 5.2 0.438 14.5 LOS B 2.2 16.4 0.74 Approach 273 14 287 5.1 0.438 12.0 LOS B 2.2 16.4 0.74 North: Tweed Coast Road 7 L2 95 5 100 5.3 0.448 4.1 LOS A 4.3 30.9 0.34 8 T1 1173 42 1235 3.6 0.448 4.1 LOS A 4.3 30.9 0.35 9a R1 43 4 45 9.3 0.448 8.7 LOS A 4.2 30.3 0.37	roach		1123	53	1182	4.7	0.449	5.2	LOS A	4.0	28.9	0.58	0.49	0.58	57.1
4a L1 1 0 1 0.0 0.438 8.1 LOS A 2.2 16.4 0.74 6 R2 154 8 162 5.2 0.438 14.5 LOS B 2.2 16.4 0.74 Approach 273 14 287 5.1 0.438 12.0 LOS B 2.2 16.4 0.74 North: Tweed Coast Road 7 L2 95 5 100 5.3 0.448 4.1 LOS A 4.3 30.9 0.34 8 T1 1173 42 1235 3.6 0.448 4.1 LOS A 4.3 30.9 0.35 9a R1 43 4 45 9.3 0.448 8.7 LOS A 4.2 30.3 0.37	: Turnocl	k Street E	xtension												
6 R2 154 8 162 5.2 0.438 14.5 LOS B 2.2 16.4 0.74 Approach 273 14 287 5.1 0.438 12.0 LOS B 2.2 16.4 0.74 North: Tweed Coast Road 7 L2 95 5 100 5.3 0.448 4.1 LOS A 4.3 30.9 0.34 8 T1 1173 42 1235 3.6 0.448 4.1 LOS A 4.3 30.9 0.35 9a R1 43 4 45 9.3 0.448 8.7 LOS A 4.2 30.3 0.37		L2	118	6	124	5.1	0.438	8.7	LOS A	2.2	16.4	0.74	0.94	0.88	50.3
Approach 273 14 287 5.1 0.438 12.0 LOS B 2.2 16.4 0.74 North: Tweed Coast Road 7 L2 95 5 100 5.3 0.448 4.1 LOS A 4.3 30.9 0.34 8 T1 1173 42 1235 3.6 0.448 4.1 LOS A 4.3 30.9 0.35 9a R1 43 4 45 9.3 0.448 8.7 LOS A 4.2 30.3 0.37		L1	1	0	1	0.0	0.438	8.1	LOS A	2.2	16.4	0.74	0.94	0.88	49.0
North: Tweed Coast Road 7		R2	154	8	162	5.2	0.438	14.5	LOS B	2.2	16.4	0.74	0.94	0.88	55.2
7 L2 95 5 100 5.3 0.448 4.1 LOS A 4.3 30.9 0.34 8 T1 1173 42 1235 3.6 0.448 4.1 LOS A 4.3 30.9 0.35 9a R1 43 4 45 9.3 0.448 8.7 LOS A 4.2 30.3 0.37	roach		273	14	287	5.1	0.438	12.0	LOS B	2.2	16.4	0.74	0.94	0.88	53.6
8 T1 1173 42 1235 3.6 0.448 4.1 LOS A 4.3 30.9 0.35 9a R1 43 4 45 9.3 0.448 8.7 LOS A 4.2 30.3 0.37	h: Tweed	d Coast Ro	oad												
9a R1 43 4 45 9.3 0.448 8.7 LOSA 4.2 30.3 0.37		L2	95	5	100	5.3	0.448	4.1	LOS A	4.3	30.9	0.34	0.39	0.34	56.9
		T1	1173	42	1235	3.6	0.448	4.1	LOS A	4.3	30.9	0.35	0.40	0.35	57.9
Approach 1311 51 1380 3.9 0.448 4.3 LOS A 4.3 30.9 0.35		R1	43	4	45	9.3	0.448	8.7	LOS A	4.2	30.3	0.37	0.41	0.37	56.5
	roach		1311	51	1380	3.9	0.448	4.3	LOS A	4.3	30.9	0.35	0.39	0.35	57.8
SouthWest: Crescent Street	thWest: (Crescent S	Street												
30a L1 47 1 49 2.1 0.104 8.2 LOSA 0.5 3.4 0.75		L1	47	1	49	2.1	0.104	8.2	LOS A	0.5	3.4	0.75	0.84	0.75	55.7
32a R1 3 0 3 0.0 0.104 13.0 LOSB 0.5 3.4 0.75		R1	3	0	3	0.0	0.104	13.0	LOS B	0.5	3.4	0.75	0.84	0.75	52.0
Approach 50 1 53 2.0 0.104 8.5 LOS A 0.5 3.4 0.75	roach		50	1	53	2.0	0.104	8.5	LOSA	0.5	3.4	0.75	0.84	0.75	55.6
All Vehicles 2757 119 2902 4.3 0.449 5.5 LOS A 4.3 30.9 0.49	/ehicles		2757	119	2902	4.3	0.449	5.5	LOS A	4.3	30.9	0.49	0.50	0.50	57.1

Tweed Coast Road / Crescent Street – 2042 Base Case

MOVEMENT SUMMARY

♥ Site: 102v [2. Tweed Coast Rd / Crescent St 2042AM Peak - Base Case (Site Folder: General)]

Tweed Coast Road / Crescent Street intersection Site Category: Proposed Design 1 Roundabout


Vehicle M	ovement F	Performance												
Mov ID	Tum		OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Twe	ed Coast R													
1b	L3	8	0	8	0.0	0.941	24.0	LOS C	32.0	228.3	1.00	1.40	2.13	39.2
2	T1	1782	40	1876	2.2	0.941	26.1	LOS C	32.0	228.3	1.00	1.44	2.22	49.2
3	R2	153	8	161	5.2	0.941	35.6	LOS D	29.7	212.9	1.00	1.52	2.34	41.3
Approach		1943	48	2045	2.5	0.941	26.9	LOSC	32.0	228.3	1.00	1.45	2.23	48.7
East: Turno	ck Street E	xtension												
4	L2	145	8	153	5.5	0.314	8.7	LOS A	1.5	11.0	0.79	0.89	0.82	52.3
4a	L1	1	0	1	0.0	0.389	6.9	LOSA	2.2	16.1	0.82	0.96	0.89	48.2
6	R2	251	12	264	4.8	0.389	13.2	LOS B	2.2	16.1	0.82	0.96	0.89	54.7
Approach		397	20	418	5.0	0.389	11.5	LOS B	2.2	16.1	0.81	0.93	0.86	54.1
North: Twee	ed Coast Ro	oad												
7	L2	155	8	163	5.2	0.605	4.9	LOS A	7.1	51.8	0.65	0.48	0.65	55.9
8	T1	1231	48	1296	3.9	0.605	5.0	LOS A	7.1	51.8	0.68	0.52	0.68	56.8
9a	R1	118	37	124	31.4	0.605	11.5	LOS B	6.7	54.1	0.71	0.56	0.71	53.5
Approach		1504	93	1583	6.2	0.605	5.5	LOS A	7.1	54.1	0.68	0.52	0.68	56.5
SouthWest:	Crescent 5	Street												
30a	L1	158	45	166	28.5	0.855	56.3	LOS E	6.5	72.3	0.98	1.35	1.97	37.9
32a	R1	1	0	1	0.0	0.004	19.3	LOS B	0.0	0.2	0.90	0.74	0.90	43.6
Approach		159	45	167	28.3	0.855	56.0	LOS E	6.5	72.3	0.98	1.34	1.97	37.9
All Vehicles		4003	206	4214	5.1	0.941	18.5	LOS B	32.0	228.3	0.86	1.04	1.50	51.4

MOVEMENT SUMMARY

♥ Site: 102v [2. Tweed Coast Rd / Crescent St 2042PM Peak - Base Case (Site Folder: General)]

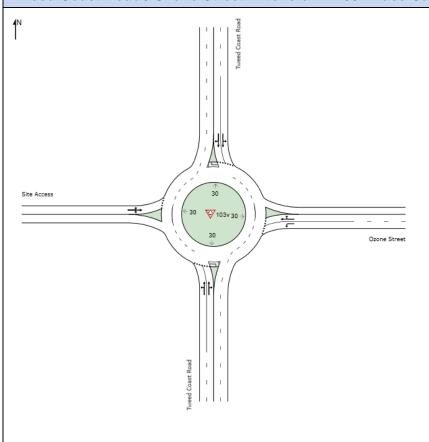
Vehicle M	lovement P	erformance												
Mov ID	Turn	INPUT V [Total	OLUMES HV]	DEMAND [Total	FLOWS HV]	Deg. Satn	Aver. Delay	Level of Service	95% BACK [Veh.	OF QUEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
ID		veh/h	veh/h	veh/h	%	v/c	sec	Service	veh	m Dist j	wuc	Stop Rate	Cycles	speed km/h
South: Twe	ed Coast Ro	ad												
1b	L3	6	0	6	0.0	0.793	12.2	LOS B	14.0	102.0	1.00	1.03	1.39	46.8
2	T1	1403	66	1477	4.7	0.793	13.3	LOS B	14.0	102.0	1.00	1.07	1.43	54.2
3	R2	128	6	135	4.7	0.793	20.9	LOS C	13.1	95.7	1.00	1.12	1.49	49.0
Approach		1537	72	1618	4.7	0.793	14.0	LOS B	14.0	102.0	1.00	1.07	1.44	53.9
East: Turno	ock Street Ex	tension												
4	L2	236	12	248	5.1	0.642	15.5	LOS B	3.9	28.8	0.90	1.06	1.26	47.7
4a	L1	1	0	1	0.0	0.581	10.5	LOS B	4.0	29.0	0.92	1.06	1.18	45.5
6	R2	309	16	325	5.2	0.581	16.9	LOS B	4.0	29.0	0.92	1.06	1.18	53.1
Approach		546	28	575	5.1	0.642	16.3	LOS B	4.0	29.0	0.91	1.06	1.21	51.4
North: Twe	ed Coast Ro	ad												
7	L2	161	10	169	6.2	0.702	5.0	LOS A	9.7	70.5	0.70	0.49	0.70	55.8
8	T1	1561	56	1643	3.6	0.702	5.1	LOS A	9.7	70.5	0.73	0.52	0.73	56.7
9a	R1	89	37	94	41.6	0.702	12.4	LOS B	9.2	73.4	0.77	0.56	0.77	52.7
Approach		1811	103	1906	5.7	0.702	5.4	LOS A	9.7	73.4	0.73	0.52	0.73	56.4
SouthWest	: Crescent S	treet												
30a	L1	75	33	79	44.0	0.316	24.5	LOS C	1.4	21.1	0.92	0.98	1.01	48.0
32a	R1	4	0	4	0.0	0.316	20.6	LOS C	1.3	17.5	0.93	1.00	1.03	36.9
Approach		79	33	83	41.8	0.316	24.3	LOS C	1.4	21.1	0.92	0.98	1.01	47.6
All Vehicles	s	3973	236	4182	5.9	0.793	10.6	LOS B	14.0	102.0	0.86	0.81	1.08	54.6

Tweed Coast Road / Crescent Street – 2042 Project Case

MOVEMENT SUMMARY

₩ Site: 102v [2. Tweed Coast Rd / Crescent St 2042AM Peak - Project Case (Site Folder: General)]

Tweed Coast Road / Crescent Street intersection Site Category: Proposed Design 1 Roundabout


Vehicle M	lovement l	Performance												
Mov	Turn		OLUMES	DEMAND		Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	Satn v/c	Delay sec	Service	[Veh. veh	Dist] m	Que	Stop Rate	Cycles	Speed km/h
South: Twe	ed Coast R		VOIDII	VOIDII	~	470	300		VC11					KIIVII
1b	L3	8	0	8	0.0	0.881	13.8	LOS B	21.3	151.8	1.00	1.04	1.48	45.6
2	T1	1782	40	1876	2.2	0.881	15.2	LOS B	21.3	151.8	1.00	1.08	1.54	53.5
3	R2	153	8	161	5.2	0.881	23.3	LOS C	20.8	148.9	1.00	1.15	1.63	47.6
Approach		1943	48	2045	2.5	0.881	15.8	LOS B	21.3	151.8	1.00	1.08	1.54	53.1
East: Turno	ock Street E	xtension												
4	L2	145	8	153	5.5	0.295	8.2	LOS A	1.4	10.0	0.76	0.87	0.78	52.6
4a	L1	1	0	1	0.0	0.369	6.5	LOS A	2.0	14.7	0.79	0.92	0.84	48.3
6	R2	251	12	264	4.8	0.369	12.8	LOS B	2.0	14.7	0.79	0.92	0.84	54.8
Approach		397	20	418	5.0	0.369	11.1	LOS B	2.0	14.7	0.78	0.90	0.82	54.2
North: Twe	ed Coast R	oad												
7	L2	155	8	163	5.2	0.569	4.8	LOS A	6.4	46.5	0.63	0.48	0.63	56.0
8	T1	1231	48	1296	3.9	0.569	4.9	LOS A	6.4	46.5	0.64	0.50	0.64	56.9
9a	R1	86	5	91	5.8	0.569	9.6	LOS A	6.1	44.4	0.66	0.52	0.66	55.6
Approach		1472	61	1549	4.1	0.569	5.2	LOS A	6.4	46.5	0.64	0.50	0.64	56.8
SouthWest	: Crescent S	Street												
30a	L1	126	13	133	10.3	0.443	17.2	LOS B	2.8	21.5	0.97	1.04	1.14	51.3
32a	R1	1	0	1	0.0	0.004	19.4	LOS B	0.0	0.2	0.90	0.74	0.90	43.5
Approach		127	13	134	10.2	0.443	17.3	LOS B	2.8	21.5	0.97	1.04	1.14	51.2
All Vehicles	s	3939	142	4146	3.6	0.881	11.4	LOS B	21.3	151.8	0.84	0.85	1.12	54.5

MOVEMENT SUMMARY

♥ Site: 102v [2. Tweed Coast Rd / Crescent St 2042PM Peak - Project Case (Site Folder: General)]

Mov	Tum	INPUT V		DEMAND		Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Ave
ID		[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Spee km
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km
South: Twe	eed Coast Ro	oad												
1b	L3	6	0	6	0.0	0.742	9.1	LOS A	11.2	81.6	0.94	0.87	1.14	48
2	T1	1403	66	1477	4.7	0.742	9.9	LOS A	11.2	81.6	0.95	0.91	1.18	5
3	R2	128	6	135	4.7	0.742	17.0	LOS B	10.8	78.9	0.97	0.97	1.25	5
Approach		1537	72	1618	4.7	0.742	10.5	LOS B	11.2	81.6	0.96	0.91	1.19	55
East: Turn	ock Street E	tension												
4	L2	236	12	248	5.1	0.584	13.2	LOS B	3.4	25.0	0.87	1.02	1.16	4
4a	L1	1	0	1	0.0	0.537	9.3	LOS A	3.5	25.5	0.89	1.03	1.10	4
6	R2	309	16	325	5.2	0.537	15.6	LOS B	3.5	25.5	0.89	1.03	1.10	5
Approach		546	28	575	5.1	0.584	14.6	LOS B	3.5	25.5	0.88	1.03	1.13	5
North: Twe	ed Coast Ro	ad												
7	L2	161	10	169	6.2	0.666	4.9	LOS A	8.7	63.0	0.66	0.48	0.66	5
8	T1	1561	56	1643	3.6	0.666	5.0	LOS A	8.7	63.0	0.69	0.50	0.69	5
9a	R1	57	5	60	8.8	0.666	9.7	LOS A	8.4	60.9	0.71	0.52	0.71	5
Approach		1779	71	1873	4.0	0.666	5.1	LOS A	8.7	63.0	0.68	0.50	0.68	5
SouthWest	t: Crescent S	treet												
30a	L1	63	1	66	1.6	0.104	10.9	LOS B	0.6	4.2	0.89	0.92	0.89	5
32a	R1	4	0	4	0.0	0.104	17.2	LOS B	0.5	3.7	0.87	0.92	0.87	4
Approach		67	1	71	1.5	0.104	11.2	LOS B	0.6	4.2	0.89	0.92	0.89	5
All Vehicle	_	3929	172	4136	4.4	0.742	8.6	LOSA	11.2	81.6	0.82	0.74	0.95	;

Tweed Coast Road / Ozone Street Extension – 2032 Base Case

MOVEMENT SUMMARY

♥ Site: 103v [3. Tweed Coast Rd / Ozone St Extension 2032AM Peak - Base Case (Site Folder: General)]

New Site Site Category: Proposed Design 1 Roundabout

Vehicle N	Novement P	erformance												
Mov	Tum		OLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID		[Total	HV]	[Total	HV]	Satin	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South: Twe	eed Coast Ro													
1	L2	10	0	11	0.0	0.540	4.0	LOS A	5.9	44.6	0.38	0.38	0.38	56.9
2	T1	1469	66	1546	4.5	0.540	4.1	LOS A	5.9	44.6	0.40	0.40	0.40	57.1
3	R2	82	3	86	3.7	0.540	9.9	LOS A	5.8	43.7	0.42	0.42	0.42	57.7
Approach		1561	69	1643	4.4	0.540	4.4	LOS A	5.9	44.6	0.40	0.40	0.40	57.1
East: Ozor	ne Street													
4	L2	25	4	26	16.0	0.058	9.6	LOSA	0.2	2.0	0.72	0.82	0.72	55.0
5	T1	10	0	11	0.0	0.086	7.0	LOSA	0.4	3.4	0.73	0.86	0.73	51.8
6	R2	40	13	42	32.5	0.086	14.1	LOS B	0.4	3.4	0.73	0.86	0.73	46.4
Approach		75	17	79	22.7	0.086	11.7	LOS B	0.4	3.4	0.73	0.85	0.73	51.1
North: Twe	ed Coast Ro	ad												
7	L2	75	24	79	32.0	0.484	4.7	LOS A	4.4	34.3	0.41	0.42	0.41	51.8
8	T1	1239	65	1304	5.2	0.484	4.4	LOS A	4.4	34.3	0.43	0.43	0.43	57.3
9	R2	10	0	11	0.0	0.484	10.1	LOS B	4.3	33.1	0.45	0.44	0.45	55.2
Approach		1324	89	1394	6.7	0.484	4.5	LOS A	4.4	34.3	0.43	0.43	0.43	57.1
West: Site	Access													
10	L2	10	0	11	0.0	0.057	8.4	LOS A	0.3	1.8	0.73	0.84	0.73	49.2
11	T1	10	0	11	0.0	0.057	8.5	LOSA	0.3	1.8	0.73	0.84	0.73	53.0
12	R2	10	0	11	0.0	0.057	14.2	LOS B	0.3	1.8	0.73	0.84	0.73	56.0
Approach		30	0	32	0.0	0.057	10.4	LOS B	0.3	1.8	0.73	0.84	0.73	53.6
All Vehicles	s	2990	175	3147	5.9	0.540	4.7	LOSA	5.9	44.6	0.42	0.43	0.42	57.0

MOVEMENT SUMMARY

♥ Site: 103v [3. Tweed Coast Rd / Ozone St Extension 2032PM Peak - Base Case (Site Folder: General)]

Mov	Tum		OLUMES		FLOWS	Deg. Satn	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Ave
ID		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	Satn v/c	Delay sec	Service	[Veh. veh	Dist]	Que	Stop Rate	Cycles	Spee km
South: Twe	eed Coast Ro		Veli/II	VCII/II	76	V/C	SCL		Veli	m				MII
1	L2	10	0	11	0.0	0.459	4.1	LOSA	4.5	34.4	0.41	0.40	0.41	56
2	T1	1195	74	1258	6.2	0.459	4.3	LOSA	4.5	34.4	0.43	0.42	0.43	56
3	R2	52	6	55	11.5	0.459	10.2	LOS B	4.3	33.4	0.45	0.44	0.45	57
Approach		1257	80	1323	6.4	0.459	4.5	LOSA	4.5	34.4	0.43	0.42	0.43	56
East: Ozor	ne Street													
4	L2	57	1	60	1.8	0.135	10.5	LOS B	0.6	4.4	0.78	0.88	0.78	54
5	T1	10	0	11	0.0	0.133	8.3	LOSA	0.7	5.1	0.79	0.92	0.79	50
6	R2	69	6	73	8.7	0.133	14.4	LOS B	0.7	5.1	0.79	0.92	0.79	48
Approach		136	7	143	5.1	0.135	12.3	LOS B	0.7	5.1	0.78	0.90	0.78	52
North: Twe	ed Coast Ro	ad												
7	L2	69	6	73	8.7	0.562	4.2	LOS A	5.8	44.0	0.39	0.39	0.39	52
8	T1	1536	74	1617	4.8	0.562	4.3	LOSA	5.8	44.0	0.41	0.40	0.41	57
9	R2	10	0	11	0.0	0.562	9.9	LOS A	5.8	43.8	0.43	0.41	0.43	55
Approach		1615	80	1700	5.0	0.562	4.3	LOSA	5.8	44.0	0.41	0.40	0.41	57
West: Site	Access													
10	L2	10	0	11	0.0	0.051	7.2	LOS A	0.2	1.5	0.68	0.79	0.68	50
11	T1	10	0	11	0.0	0.051	7.3	LOS A	0.2	1.5	0.68	0.79	0.68	53
12	R2	10	0	11	0.0	0.051	13.0	LOS B	0.2	1.5	0.68	0.79	0.68	56
Approach		30	0	32	0.0	0.051	9.2	LOSA	0.2	1.5	0.68	0.79	0.68	54
All Vehicle		3038	167	3198	5.5	0.562	4.8	LOSA	5.8	44.0	0.44	0.43	0.44	56

Tweed Coast Road / Ozone Street Extension – 2032 Project Case

MOVEMENT SUMMARY

♥ Site: 103v [3. Tweed Coast Rd / Ozone Street 2032AM Peak - Project Case (Site Folder: General)]

New Site Site Category: Proposed Design 1 Roundabout

Vohicle M	ovement D	erformance												
Mov	Turn		OLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID		[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m .				km/h
South: Twe	ed Coast Ro	ad												
1	L2	10	0	11	0.0	0.513	4.0	LOSA	5.4	38.5	0.36	0.38	0.36	56.9
2	T1	1437	34	1513	2.4	0.513	4.1	LOSA	5.4	38.5	0.38	0.39	0.38	57.3
3	R2	82	3	86	3.7	0.513	9.8	LOSA	5.3	37.9	0.40	0.42	0.40	57.8
Approach		1529	37	1609	2.4	0.513	4.4	LOS A	5.4	38.5	0.38	0.40	0.38	57.4
East: Ozone	e Street													
4	L2	25	4	26	16.0	0.055	9.2	LOS A	0.2	1.8	0.71	0.81	0.71	55.1
5	T1	10	0	11	0.0	0.082	6.8	LOSA	0.4	3.2	0.71	0.84	0.71	52.0
6	R2	40	13	42	32.5	0.082	13.8	LOS B	0.4	3.2	0.71	0.84	0.71	46.6
Approach		75	17	79	22.7	0.082	11.3	LOS B	0.4	3.2	0.71	0.83	0.71	51.3
North: Twee	ed Coast Ro	ad												
7	L2	75	24	79	32.0	0.455	4.6	LOSA	4.0	29.4	0.39	0.41	0.39	52.1
8	T1	1207	33	1271	2.7	0.455	4.3	LOSA	4.0	29.4	0.41	0.42	0.41	57.5
9	R2	10	0	11	0.0	0.455	10.0	LOS B	3.9	28.2	0.42	0.43	0.42	55.4
Approach		1292	57	1360	4.4	0.455	4.3	LOS A	4.0	29.4	0.41	0.42	0.41	57.3
West: Site A	Access													
10	L2	10	0	11	0.0	0.055	8.0	LOSA	0.2	1.6	0.71	0.82	0.71	49.5
11	T1	10	0	11	0.0	0.055	8.1	LOSA	0.2	1.6	0.71	0.82	0.71	53.2
12	R2	10	0	11	0.0	0.055	13.8	LOS B	0.2	1.6	0.71	0.82	0.71	56.2
Approach		30	0	32	0.0	0.055	10.0	LOS A	0.2	1.6	0.71	0.82	0.71	53.8
All Vehicles		2926	111	3080	3.8	0.513	4.6	LOSA	5.4	38.5	0.40	0.42	0.40	57.2

MOVEMENT SUMMARY

♥ Site: 103v [3. Tweed Coast Rd / Ozone Street 2032PM Peak - Project Case (Site Folder: General)]

Vehicle Me	ovement F	Performance												
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Twee	ed Coast Ro	oad												
1	L2	10	0	11	0.0	0.430	4.1	LOS A	4.1	29.2	0.39	0.40	0.39	56.8
2	T1	1163	42	1224	3.6	0.430	4.2	LOS A	4.1	29.2	0.41	0.41	0.41	57.2
3	R2	52	6	55	11.5	0.430	10.1	LOS B	3.9	28.6	0.42	0.44	0.42	57.6
Approach		1225	48	1289	3.9	0.430	4.4	LOS A	4.1	29.2	0.41	0.41	0.41	57.2
East: Ozone	Street													
4	L2	57	1	60	1.8	0.126	10.0	LOS A	0.6	4.1	0.76	0.87	0.76	54.9
5	T1	10	0	11	0.0	0.127	7.9	LOS A	0.6	4.7	0.77	0.90	0.77	51.1
6	R2	69	6	73	8.7	0.127	14.0	LOS B	0.6	4.7	0.77	0.90	0.77	48.3
Approach		136	7	143	5.1	0.127	11.9	LOS B	0.6	4.7	0.77	0.89	0.77	52.3
North: Twee	ed Coast Ro	ad												
7	L2	69	6	73	8.7	0.535	4.2	LOS A	5.3	38.2	0.36	0.39	0.36	53.0
8	T1	1504	42	1583	2.8	0.535	4.2	LOS A	5.3	38.2	0.38	0.39	0.38	57.6
9	R2	10	0	11	0.0	0.535	9.9	LOS A	5.3	37.9	0.40	0.40	0.40	55.6
Approach		1583	48	1666	3.0	0.535	4.2	LOS A	5.3	38.2	0.38	0.39	0.38	57.4
West: Site A	Access													
10	L2	10	0	11	0.0	0.049	6.9	LOS A	0.2	1.4	0.66	0.77	0.66	50.2
11	T1	10	0	11	0.0	0.049	7.0	LOS A	0.2	1.4	0.66	0.77	0.66	53.9
12	R2	10	0	11	0.0	0.049	12.7	LOS B	0.2	1.4	0.66	0.77	0.66	56.6
Approach		30	0	32	0.0	0.049	8.9	LOS A	0.2	1.4	0.66	0.77	0.66	54.3
All Vehicles		2974	103	3131	3.5	0.535	4.7	LOSA	5.3	38.2	0.41	0.43	0.41	57.1

Tweed Coast Road / Ozone Street Extension – 2042 Base Case

MOVEMENT SUMMARY

♥ Site: 103v [3. Tweed Coast Rd / Ozone Street 2042AM Peak - Base Case (Site Folder: General)]

New Site Site Category: Proposed Design 1 Roundabout

Mov	Tum		OLUMES	DEMAND		Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Ave
ID		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	Satn v/c	Delay sec	Service	[Veh. veh	Dist] m	Que	Stop Rate	Cycles	Spee km
South: Twe	eed Coast Ro		VC10/11	VCIDII	,,,	¥/C	300		VGII					KIII
1	L2	10	0	11	0.0	0.725	4.4	LOS A	11.2	83.1	0.58	0.42	0.58	56
2	T1	1945	78	2047	4.0	0.725	4.6	LOS A	11.2	83.1	0.61	0.44	0.61	56
3	R2	109	4	115	3.7	0.725	10.4	LOS B	10.9	80.7	0.65	0.47	0.65	57
Approach		2064	82	2173	4.0	0.725	4.9	LOS A	11.2	83.1	0.61	0.45	0.61	56
East: Ozoi	ne Street													
4	L2	34	6	36	17.6	0.112	12.1	LOS B	0.5	4.2	0.81	0.89	0.81	53
5	T1	10	0	11	0.0	0.152	8.6	LOS A	0.8	6.7	0.84	0.93	0.84	50
6	R2	54	18	57	33.3	0.152	16.0	LOS B	0.8	6.7	0.84	0.93	0.84	44
Approach		98	24	103	24.5	0.152	13.9	LOS B	8.0	6.7	0.83	0.92	0.83	49
North: Twe	eed Coast Ro	ad												
7	L2	99	32	104	32.3	0.657	5.3	LOS A	7.8	60.1	0.60	0.47	0.60	50
8	T1	1639	76	1725	4.6	0.657	4.9	LOS A	7.8	60.1	0.63	0.49	0.63	56
9	R2	10	0	11	0.0	0.657	10.6	LOS B	7.7	57.6	0.66	0.51	0.66	53
Approach		1748	108	1840	6.2	0.657	5.0	LOS A	7.8	60.1	0.63	0.49	0.63	56
West: Site	Access													
10	L2	10	0	11	0.0	0.091	12.4	LOS B	0.5	3.2	0.86	0.93	0.86	46.
11	T1	10	0	11	0.0	0.091	12.5	LOS B	0.5	3.2	0.86	0.93	0.86	50
12	R2	10	0	11	0.0	0.091	18.2	LOS B	0.5	3.2	0.86	0.93	0.86	54
Approach		30	0	32	0.0	0.091	14.4	LOS B	0.5	3.2	0.86	0.93	0.86	51
All Vehicle	·s	3940	214	4147	5.4	0.725	5.2	LOSA	11.2	83.1	0.63	0.48	0.63	56

MOVEMENT SUMMARY

♥ Site: 103v [3. Tweed Coast Rd / Ozone Street 2042PM Peak - Base Case (Site Folder: General)]

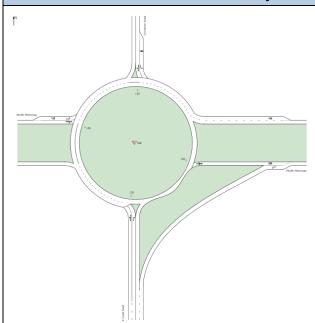
Mov	Tum		OLUMES	DEMAND		Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Ave
D		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	Satn v/c	Delay sec	Service	[Veh. veh	Dist] m	Que	Stop Rate	Cycles	Spee km
South: Twe	eed Coast Ro		VOIDII	VOIDII	,,,	V 10	300		Voli					KIII
1	L2	10	0	11	0.0	0.618	4.4	LOS A	7.6	57.2	0.58	0.44	0.58	56
2	T1	1579	88	1662	5.6	0.618	4.7	LOS A	7.6	57.2	0.60	0.46	0.60	56
3	R2	70	8	74	11.4	0.618	10.7	LOS B	7.3	55.5	0.62	0.49	0.62	56
Approach		1659	96	1746	5.8	0.618	4.9	LOS A	7.6	57.2	0.60	0.47	0.60	56
East: Ozor	ne Street													
4	L2	75	2	79	2.7	0.304	16.9	LOS B	1.6	11.2	0.89	0.96	0.95	51
5	T1	10	0	11	0.0	0.261	11.6	LOS B	1.5	11.5	0.93	0.97	0.93	48
6	R2	91	8	96	8.8	0.261	17.9	LOS B	1.5	11.5	0.93	0.97	0.93	45
Approach		176	10	185	5.7	0.304	17.1	LOS B	1.6	11.5	0.91	0.97	0.94	49
North: Twe	ed Coast Ro	ad												
7	L2	91	8	96	8.8	0.756	4.7	LOS A	11.8	87.6	0.61	0.45	0.61	51.
В	T1	2034	88	2141	4.3	0.756	4.9	LOS A	11.8	87.6	0.65	0.46	0.65	56
9	R2	10	0	11	0.0	0.756	10.6	LOS B	11.4	84.5	0.69	0.48	0.69	53.
Approach		2135	96	2247	4.5	0.756	4.9	LOS A	11.8	87.6	0.65	0.46	0.65	56
West: Site	Access													
10	L2	10	0	11	0.0	0.069	9.1	LOS A	0.3	2.2	0.78	0.89	0.78	48
11	T1	10	0	11	0.0	0.069	9.2	LOS A	0.3	2.2	0.78	0.89	0.78	52
12	R2	10	0	11	0.0	0.069	14.9	LOS B	0.3	2.2	0.78	0.89	0.78	55.
pproach		30	0	32	0.0	0.069	11.1	LOS B	0.3	2.2	0.78	0.89	0.78	53
All Vehicle	s	4000	202	4211	5.1	0.756	5.5	LOSA	11.8	87.6	0.64	0.49	0.64	56

Tweed Coast Road / Ozone Street Extension – 2042 Project Case

MOVEMENT SUMMARY

♥ Site: 103v [3. Tweed Coast Rd / Ozone Street 2042AM Peak - Project Case (Site Folder: General)]

New Site Site Category: Proposed Design 1 Roundabout


Vehicle N	Movement I	Performance												
Mov ID	Tum	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Tw	eed Coast R													
1	L2	10	0	11	0.0	0.696	4.3	LOS A	10.0	71.8	0.54	0.42	0.54	56.4
2	T1	1913	46	2014	2.4	0.696	4.5	LOS A	10.0	71.8	0.57	0.44	0.57	56.6
3	R2	109	4	115	3.7	0.696	10.3	LOS B	9.8	70.4	0.60	0.46	0.60	57.1
Approach		2032	50	2139	2.5	0.696	4.8	LOS A	10.0	71.8	0.57	0.44	0.57	56.7
East: Ozo	ne Street													
4	L2	34	6	36	17.6	0.104	11.5	LOS B	0.5	3.8	0.80	0.89	0.80	54.1
5	T1	10	0	11	0.0	0.142	8.2	LOS A	0.7	6.2	0.82	0.93	0.82	50.7
6	R2	54	18	57	33.3	0.142	15.6	LOS B	0.7	6.2	0.82	0.93	0.82	45.2
Approach		98	24	103	24.5	0.142	13.4	LOS B	0.7	6.2	0.81	0.91	0.81	50.1
North: Twe	eed Coast R	oad												
7	L2	99	32	104	32.3	0.625	5.2	LOSA	7.1	52.0	0.57	0.46	0.57	51.0
8	T1	1607	44	1692	2.7	0.625	4.8	LOS A	7.1	52.0	0.59	0.47	0.59	56.8
9	R2	10	0	11	0.0	0.625	10.6	LOS B	6.9	49.7	0.61	0.49	0.61	54.1
Approach		1716	76	1806	4.4	0.625	4.8	LOS A	7.1	52.0	0.59	0.47	0.59	56.6
West: Site	Access													
10	L2	10	0	11	0.0	0.083	11.5	LOS B	0.4	2.8	0.84	0.92	0.84	46.7
11	T1	10	0	11	0.0	0.083	11.6	LOS B	0.4	2.8	0.84	0.92	0.84	50.7
12	R2	10	0	11	0.0	0.083	17.3	LOS B	0.4	2.8	0.84	0.92	0.84	54.6
Approach		30	0	32	0.0	0.083	13.5	LOS B	0.4	2.8	0.84	0.92	0.84	51.6
All Vehicle	s	3876	150	4080	3.9	0.696	5.1	LOSA	10.0	71.8	0.58	0.47	0.58	56.5

MOVEMENT SUMMARY

♥ Site: 103v [3. Tweed Coast Rd / Ozone Street 2042PM Peak - Project Case (Site Folder: General)]

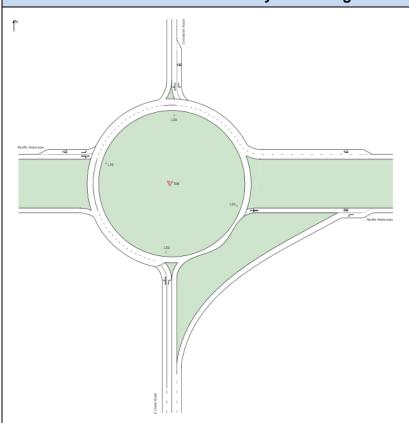
Mov	Tum	INPUT V		DEMAND		Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Ave
ID		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	Satn v/c	Delay sec	Service	[Veh. veh	Dist]	Que	Stop Rate	Cycles	Spee km
South: Tw	eed Coast Ro		venn	ven/n	70	V/C	sec		ven	m				KII
1	L2	10	0	11	0.0	0.588	4.4	LOS A	6.9	49.6	0.54	0.43	0.54	56
2	T1	1547	56	1628	3.6	0.588	4.5	LOS A	6.9	49.6	0.56	0.45	0.56	56
3	R2	70	8	74	11.4	0.588	10.6	LOS B	6.7	48.4	0.59	0.48	0.59	57
Approach		1627	64	1713	3.9	0.588	4.8	LOS A	6.9	49.6	0.56	0.46	0.56	56
East: Ozo	ne Street													
4	L2	75	2	79	2.7	0.273	15.0	LOS B	1.4	9.8	0.87	0.93	0.89	52
5	T1	10	0	11	0.0	0.239	10.9	LOS B	1.4	10.3	0.90	0.96	0.90	49
3	R2	91	8	96	8.8	0.239	17.1	LOS B	1.4	10.3	0.90	0.96	0.90	45
Approach		176	10	185	5.7	0.273	15.8	LOS B	1.4	10.3	0.89	0.95	0.90	50
North: Tw	eed Coast Ro	ad												
7	L2	91	8	96	8.8	0.727	4.7	LOS A	10.5	75.2	0.57	0.44	0.57	51
8	T1	2002	56	2107	2.8	0.727	4.7	LOS A	10.5	75.2	0.60	0.45	0.60	56
9	R2	10	0	11	0.0	0.727	10.5	LOS B	10.2	73.1	0.64	0.47	0.64	54
Approach		2103	64	2214	3.0	0.727	4.7	LOS A	10.5	75.2	0.60	0.45	0.60	56
West: Site	e Access													
10	L2	10	0	11	0.0	0.065	8.6	LOS A	0.3	2.1	0.76	0.87	0.76	49
11	T1	10	0	11	0.0	0.065	8.8	LOS A	0.3	2.1	0.76	0.87	0.76	52
12	R2	10	0	11	0.0	0.065	14.4	LOS B	0.3	2.1	0.76	0.87	0.76	55
Approach		30	0	32	0.0	0.065	10.6	LOS B	0.3	2.1	0.76	0.87	0.76	53
All Vehicle	25	3936	138	4143	3.5	0.727	5.3	LOSA	10.5	75.2	0.60	0.48	0.60	56

Tweed Coast Road / Pacific Motorway Interchange – 2022 Base Case

MOVEMENT SUMMARY

🗑 Site: 104 [4. Tweed Coast Rd / Pacific Motorway Interchange 2022 AM Peak - Base Case (Site Folder: General)]

Tweed Coast Rd / Pacific Motorway Interchange Site Category: Existing Design Roundabout


Mov	Turn	INPUT V	OLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver
ID		[Total	HV]	[Total	HV]	Deg. Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/
South: Twe	eed Coast Roa	ad												
1	L2	96	9	101	9.4	0.099	3.2	LOS A	0.6	4.5	0.49	0.35	0.49	57.
2	T1	37	1	39	2.7	0.099	3.2	LOS A	0.6	4.5	0.49	0.35	0.49	58.
3	R2	991	50	1043	5.0	0.617	10.7	LOS B	5.8	44.8	0.68	0.67	0.68	59.
Approach		1124	60	1183	5.3	0.617	9.8	LOS A	5.8	44.8	0.66	0.63	0.66	59.
East: Pacif	fic Motorway													
4	L2	887	65	934	7.3	0.347	2.4	LOS A	2.6	20.7	0.18	0.27	0.18	59.
5	T1	174	29	183	16.7	0.347	3.2	LOS A	2.6	20.7	0.53	0.38	0.53	57.
6	R2	84	8	88	9.5	0.347	10.0	LOS B	2.6	20.7	0.53	0.38	0.53	68.
Approach		1145	102	1205	8.9	0.347	3.1	LOSA	2.6	20.7	0.26	0.30	0.26	59.
North: Chir	nderah Road													
7	L2	56	3	59	5.4	0.143	17.1	LOS B	1.1	7.9	0.98	0.88	0.98	51.
8	T1	73	10	77	13.7	0.297	12.6	LOS B	2.6	21.6	1.00	0.91	1.00	48.
9	R2	70	21	74	30.0	0.297	20.1	LOS C	2.6	21.6	1.00	0.91	1.00	58.
Approach		199	34	209	17.1	0.297	16.5	LOS B	2.6	21.6	0.99	0.90	0.99	53.
West: Paci	ific Motorway													
10	L2	70	4	74	5.7	0.128	7.2	LOS A	0.8	5.6	0.83	0.80	0.83	56.
11	T1	1	0	1	0.0	0.181	10.2	LOS B	1.3	9.7	0.87	0.84	0.87	52.
12	R2	136	9	143	6.6	0.181	13.3	LOS B	1.3	9.7	0.87	0.84	0.87	49.
Approach		207	13	218	6.3	0.181	11.2	LOS B	1.3	9.7	0.86	0.83	0.86	51
All Vehicles	s	2675	209	2816	7.8	0.617	7.5	LOSA	5.8	44.8	0.53	0.52	0.53	58.

MOVEMENT SUMMARY

♥ Site: 104 [4. Tweed Coast Rd / Pacific Motorway Interchange 2022 PM Peak - Base Case (Site Folder: General)]

Vehicle N	lovement Pe	erformance												
Mov ID	Turn	INPUT VI [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Ave Sper km
South: Twe	ed Coast Roa		VOIBII	VOIDII		*/-	300		7011					1511
1	L2	109	9	115	8.3	0.103	3.1	LOS A	0.6	4.8	0.48	0.35	0.48	57
2	T1	27	6	28	22.2	0.103	3.4	LOS A	0.6	4.8	0.48	0.35	0.48	58
3	R2	821	52	864	6.3	0.515	10.5	LOS B	4.4	34.7	0.62	0.64	0.62	59
Approach		957	67	1007	7.0	0.515	9.4	LOS A	4.4	34.7	0.60	0.60	0.60	59
East: Pacif	ic Motorway													
4	L2	1107	60	1165	5.4	0.405	2.4	LOS A	3.2	24.3	0.19	0.28	0.19	59
5	T1	157	18	165	11.5	0.405	3.1	LOS A	3.2	24.3	0.51	0.38	0.51	57
6	R2	118	4	124	3.4	0.405	9.9	LOS A	3.2	24.3	0.51	0.38	0.51	68
Approach		1382	82	1455	5.9	0.405	3.1	LOS A	3.2	24.3	0.25	0.30	0.25	59
North: Chir	nderah Road													
7	L2	53	1	56	1.9	0.096	11.1	LOS B	0.7	4.7	0.87	0.76	0.87	55
8	T1	80	6	84	7.5	0.185	8.0	LOS A	1.5	11.2	0.93	0.80	0.93	52
9	R2	55	2	58	3.6	0.185	14.7	LOS B	1.5	11.2	0.93	0.80	0.93	62
Approach		188	9	198	4.8	0.185	10.9	LOS B	1.5	11.2	0.91	0.79	0.91	56
West: Paci	fic Motorway													
10	L2	67	1	71	1.5	0.099	5.6	LOS A	0.5	3.9	0.74	0.65	0.74	56
11	T1	1	0	1	0.0	0.128	7.6	LOS A	0.8	6.1	0.76	0.75	0.76	52
12	R2	113	8	119	7.1	0.128	12.0	LOS B	0.8	6.1	0.76	0.75	0.76	49
Approach		181	9	191	5.0	0.128	9.6	LOS A	0.8	6.1	0.75	0.72	0.75	52
All Vehicle	s	2708	167	2851	6.2	0.515	6.3	LOSA	4.4	34.7	0.45	0.47	0.45	58

Tweed Coast Road / Pacific Motorway Interchange – 2022 Project Case

MOVEMENT SUMMARY

🗑 Site: 104 [4. Tweed Coast Rd / Pacific Motorway Interchange 2022 AM Peak - Project Case (Site Folder: General)]

Tweed Coast Rd / Pacific Motorway Interchange Site Category: Existing Design Roundabout

Vehicle M	lovement l	Performance												
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Twe	ed Coast R		VCII/II	ACIMI		V/C	ಎ ರ್.		VCII					KIIVII
1	L2	94	7	99	7.4	0.095	3.1	LOS A	0.6	4.2	0.48	0.35	0.48	57.1
2	T1	37	1	39	2.7	0.095	3.2	LOS A	0.6	4.2	0.48	0.35	0.48	58.1
3	R2	961	20	1012	2.1	0.568	10.5	LOS B	5.2	36.9	0.64	0.65	0.64	61.0
Approach		1092	28	1149	2.6	0.568	9.6	LOS A	5.2	36.9	0.62	0.61	0.62	60.6
East: Pacif	ic Motorway													
4	L2	857	35	902	4.1	0.324	2.3	LOS A	2.4	18.4	0.17	0.27	0.17	59.4
5	T1	174	29	183	16.7	0.324	3.2	LOS A	2.4	18.4	0.51	0.38	0.51	57.5
6	R2	84	8	88	9.5	0.324	10.0	LOS A	2.4	18.4	0.51	0.38	0.51	68.1
Approach		1115	72	1174	6.5	0.324	3.0	LOS A	2.4	18.4	0.25	0.29	0.25	59.7
North: Chir	nderah Road	i												
7	L2	56	3	59	5.4	0.123	14.2	LOS B	0.9	6.5	0.93	0.83	0.93	53.3
8	T1	73	10	77	13.7	0.255	10.4	LOS B	2.1	17.7	1.00	0.89	1.00	50.6
9	R2	70	21	74	30.0	0.255	17.9	LOS B	2.1	17.7	1.00	0.89	1.00	60.2
Approach		199	34	209	17.1	0.255	14.1	LOS B	2.1	17.7	0.98	0.87	0.98	54.8
West: Paci	fic Motorway	у												
10	L2	70	4	74	5.7	0.116	6.5	LOS A	0.7	4.9	0.78	0.75	0.78	56.2
11	T1	1	0	1	0.0	0.160	8.9	LOS A	1.1	7.9	0.82	0.79	0.82	52.5
12	R2	135	7	142	5.2	0.160	12.6	LOS B	1.1	7.9	0.82	0.79	0.82	49.4
Approach		206	11	217	5.3	0.160	10.5	LOS B	1.1	7.9	0.81	0.78	0.81	51.6
All Vehicles	s	2612	145	2749	5.6	0.568	7.2	LOSA	5.2	36.9	0.51	0.51	0.51	58.9

MOVEMENT SUMMARY

♥ Site: 104 [4. Tweed Coast Rd / Pacific Motorway Interchange 2022 PM Peak - Project Case (Site Folder: General)] Tweed Coast Rd / Pacific Motorway Interchange Site Category: Existing Design Roundabout

Mov	Tum	INPUT V		DEMAND		Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Ave
ID		[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Spe
South: Tw	eed Coast Ro	veh/h	veh/h	veh/h	%	v/c	sec		veh	m				kn
4	L2	107	7	113	0.5	0.099	3.0	LOSA	0.6	4.5	0.40	0.35	0.40	5
1	T1				6.5		3.4	LOSA	0.6	4.5	0.48	0.35	0.48 0.48	5
2	R2	27 791	6 22	28 833	22.2 2.8	0.099 0.466	10.3	LOS A	3.9	4.5 27.9	0.48 0.59	0.35	0.48	6
	R2													
Approach		925	35	974	3.8	0.466	9.2	LOS A	3.9	27.9	0.57	0.59	0.57	6
East: Paci	fic Motorway													
4	L2	1076	30	1133	2.8	0.381	2.3	LOS A	3.0	21.6	0.18	0.27	0.18	5
5	T1	157	18	165	11.5	0.381	3.0	LOS A	3.0	21.6	0.48	0.37	0.48	5
6	R2	118	4	124	3.4	0.381	9.8	LOS A	3.0	21.6	0.48	0.37	0.48	6
Approach		1351	52	1422	3.8	0.381	3.0	LOS A	3.0	21.6	0.24	0.29	0.24	5
North: Chi	nderah Road													
7	L2	53	1	56	1.9	0.085	9.5	LOS A	0.6	4.0	0.82	0.71	0.82	5
8	T1	80	6	84	7.5	0.164	6.9	LOS A	1.3	9.5	0.87	0.74	0.87	5
9	R2	55	2	58	3.6	0.164	13.6	LOS B	1.3	9.5	0.87	0.74	0.87	6
Approach		188	9	198	4.8	0.164	9.6	LOS A	1.3	9.5	0.85	0.73	0.85	5
West: Pac	ific Motorway													
10	L2	67	1	71	1.5	0.091	5.1	LOS A	0.5	3.4	0.70	0.59	0.70	5
11	T1	1	0	1	0.0	0.112	6.7	LOS A	0.7	4.9	0.71	0.72	0.71	5
12	R2	111	6	117	5.4	0.112	11.5	LOS B	0.7	4.9	0.71	0.72	0.71	4
Approach		179	7	188	3.9	0.112	9.1	LOS A	0.7	4.9	0.70	0.67	0.70	5
All Vehicle	e.	2643	103	2782	3.9	0.466	6.1	LOSA	3.9	27.9	0.43	0.45	0.43	5

Tweed Coast Road / Pacific Motorway Interchange – 2032 Base Case

MOVEMENT SUMMARY

♥ Site: 104 [4. Tweed Coast Rd / Pacific Motorway Interchange 2032 AM Peak - Base Case (Site Folder: General)]

Tweed Coast Rd / Pacific Motorway Interchange Site Category: Proposed Design 1 Roundabout

Vehicle N	Novement F	Performance												
Mov	Turn	INPUT V	OLUMES	DEMAND		Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID		[Total	HV]	[Total	HV]	Satīn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
Courtle Tour	1 O 1 D	veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South: Twe	eed Coast Ro													
1	L2	127	11	134	8.7	0.587	4.4	LOS A	5.9	44.1	0.77	0.68	0.79	51.4
2	T1	49	1	52	2.0	0.587	4.4	LOS A	5.9	44.1	0.77	0.68	0.79	52.1
3	R2	1310	57	1379	4.4	0.587	14.7	LOS B	5.9	44.1	0.79	0.76	0.85	60.9
Approach		1486	69	1564	4.6	0.587	13.5	LOS B	5.9	44.1	0.79	0.75	0.84	59.6
East: Pacif	fic Motorway													
4	L2	1171	77	1233	6.6	0.465	2.6	LOS A	3.9	30.5	0.21	0.29	0.21	59.0
5	T1	231	39	243	16.9	0.465	3.8	LOS A	3.9	30.5	0.65	0.45	0.65	56.8
6	R2	112	10	118	8.9	0.465	10.6	LOS B	3.9	30.5	0.65	0.45	0.65	67.0
Approach		1514	126	1594	8.3	0.465	3.4	LOS A	3.9	30.5	0.31	0.32	0.31	59.2
North: Chir	nderah Road													
7	L2	75	4	79	5.3	0.129	10.3	LOS B	0.7	4.9	0.80	0.64	0.80	56.1
8	T1	97	13	102	13.4	0.263	5.3	LOSA	1.6	13.0	0.84	0.69	0.84	53.1
9	R2	93	28	98	30.1	0.263	12.5	LOS B	1.6	13.0	0.84	0.69	0.84	63.0
Approach		265	45	279	17.0	0.263	9.2	LOS A	1.6	13.0	0.83	0.67	0.83	57.5
West: Paci	ific Motorway	1												
10	L2	93	6	98	6.5	0.183	6.5	LOS A	1.0	7.2	0.83	0.74	0.83	56.0
11	T1	1	0	1	0.0	0.248	10.4	LOS B	1.6	12.1	0.88	0.79	0.88	52.3
12	R2	181	11	191	6.1	0.248	12.6	LOS B	1.6	12.1	0.88	0.79	0.88	49.1
Approach		275	17	289	6.2	0.248	10.5	LOS B	1.6	12.1	0.86	0.78	0.86	51.3
All Vehicle	s	3540	257	3726	7.3	0.587	8.6	LOSA	5.9	44.1	0.59	0.56	0.61	58.5

MOVEMENT SUMMARY

♥ Site: 104 [4. Tweed Coast Rd / Pacific Motorway Interchange 2032 PM Peak - Base Case (Site Folder: General)]

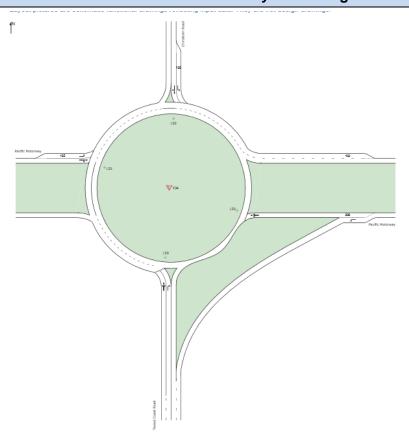
Vehicle M	lovement Po	erformance												
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Ave Spee km
South: Twe	ed Coast Ro	ad												
1	L2	114	12	120	10.5	0.489	3.9	LOS A	4.4	33.6	0.72	0.65	0.72	51
2	T1	36	7	38	19.4	0.489	4.2	LOS A	4.4	33.6	0.72	0.65	0.72	52
3	R2	1083	59	1140	5.4	0.489	12.8	LOS B	4.4	33.6	0.73	0.69	0.73	61
Approach		1233	78	1298	6.3	0.489	11.7	LOS B	4.4	33.6	0.73	0.69	0.73	60
East: Pacif	ic Motorway													
4	L2	1463	70	1540	4.8	0.541	2.6	LOS A	4.8	36.0	0.22	0.29	0.22	58
5	T1	209	24	220	11.5	0.541	3.6	LOS A	4.8	36.0	0.63	0.44	0.63	56
6	R2	157	6	165	3.8	0.541	10.4	LOS B	4.8	36.0	0.63	0.44	0.63	67
Approach		1829	100	1925	5.5	0.541	3.4	LOS A	4.8	36.0	0.30	0.32	0.30	59
North: Chir	nderah Road													
7	L2	70	1	74	1.4	0.102	7.4	LOS A	0.5	3.5	0.73	0.55	0.73	56
8	T1	106	7	112	6.6	0.194	4.4	LOS A	1.1	8.1	0.76	0.59	0.76	53
9	R2	73	3	77	4.1	0.194	11.2	LOS B	1.1	8.1	0.76	0.59	0.76	64
Approach		249	11	262	4.4	0.194	7.2	LOS A	1.1	8.1	0.75	0.58	0.75	57
West: Paci	fic Motorway													
10	L2	90	1	95	1.1	0.149	5.6	LOS A	0.8	5.4	0.77	0.65	0.77	56
11	T1	1	0	1	0.0	0.176	7.4	LOS A	1.1	7.9	0.79	0.74	0.79	52
12	R2	149	9	157	6.0	0.176	11.7	LOS B	1.1	7.9	0.79	0.74	0.79	49
Approach		240	10	253	4.2	0.176	9.4	LOS A	1.1	7.9	0.78	0.71	0.78	52
All Vehicles	s	3551	199	3738	5.6	0.541	6.9	LOS A	4.8	36.0	0.52	0.49	0.52	58

Tweed Coast Road / Pacific Motorway Interchange – 2032 Project Case

MOVEMENT SUMMARY

♥ Site: 104 [4. Tweed Coast Rd / Pacific Motorway Interchange 2032 AM Peak - Project Case (Site Folder: General)]

Tweed Coast Rd / Pacific Motorway Interchange Site Category: Proposed Design 1 Roundabout


Mov	Tum		OLUMES	DEMAND		Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Avei
D		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	Satin v/c	Delay sec	Service	[Veh. veh	Dist] m	Que	Stop Rate	Cycles	Spee km/
South: Twe	ed Coast Roa		¥61911	VOIDII	,,,	Vic	300		YOU					KIII
1	L2	125	9	132	7.2	0.551	4.1	LOS A	5.2	37.4	0.75	0.66	0.75	51.
2	T1	49	1	52	2.0	0.551	4.2	LOS A	5.2	37.4	0.75	0.66	0.75	52.
3	R2	1279	27	1346	2.1	0.551	13.9	LOS B	5.2	37.4	0.77	0.72	0.79	61.
Approach		1453	37	1529	2.5	0.551	12.7	LOS B	5.2	37.4	0.77	0.72	0.79	59.
East: Pacifi	c Motorway													
4	L2	1141	47	1201	4.1	0.441	2.5	LOSA	3.7	27.7	0.20	0.29	0.20	59.
5	T1	231	39	243	16.9	0.441	3.8	LOSA	3.7	27.7	0.63	0.44	0.63	56.9
6	R2	112	10	118	8.9	0.441	10.5	LOS B	3.7	27.7	0.63	0.44	0.63	67.
Approach		1484	96	1562	6.5	0.441	3.3	LOS A	3.7	27.7	0.30	0.32	0.30	59.3
North: Chin	derah Road													
7	L2	75	4	79	5.3	0.122	9.4	LOSA	0.6	4.6	0.78	0.62	0.78	56.3
8	T1	97	13	102	13.4	0.249	5.0	LOSA	1.4	12.0	0.82	0.66	0.82	53.3
9	R2	93	28	98	30.1	0.249	12.3	LOS B	1.4	12.0	0.82	0.66	0.82	63.
Approach		265	45	279	17.0	0.249	8.8	LOS A	1.4	12.0	0.81	0.65	0.81	57.
West: Pacif	ic Motorway													
10	L2	93	6	98	6.5	0.171	6.1	LOSA	0.9	6.7	0.80	0.70	0.80	56.
11	T1	1	0	1	0.0	0.225	9.3	LOSA	1.4	10.5	0.85	0.76	0.85	52.4
12	R2	179	9	188	5.0	0.225	12.1	LOS B	1.4	10.5	0.85	0.76	0.85	49.3
Approach		273	15	287	5.5	0.225	10.0	LOS B	1.4	10.5	0.83	0.74	0.83	51.5
All Vehicles		3475	193	3658	5.6	0.551	8.2	LOSA	5.2	37.4	0.57	0.54	0.58	58.7

MOVEMENT SUMMARY

🗑 Site: 104 [4. Tweed Coast Rd / Pacific Motorway Interchange 2032 PM Peak - Project Case (Site Folder: General)]

Vehicle M	lovement P	erformance												
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Twe	ed Coast Ro	ad												
1	L2	143	10	151	7.0	0.465	3.8	LOS A	4.1	30.0	0.70	0.62	0.70	52.0
2	T1	36	7	38	19.4	0.465	4.2	LOS A	4.1	30.0	0.70	0.62	0.70	52.6
3	R2	1053	29	1108	2.8	0.465	12.4	LOS B	4.1	30.0	0.72	0.68	0.72	61.6
Approach		1232	46	1297	3.7	0.465	11.2	LOS B	4.1	30.0	0.71	0.67	0.71	60.1
East: Pacif	fic Motorway													
4	L2	1433	40	1508	2.8	0.518	2.5	LOS A	4.5	32.9	0.21	0.29	0.21	58.9
5	T1	209	24	220	11.5	0.518	3.6	LOSA	4.5	32.9	0.61	0.43	0.61	57.0
6	R2	157	6	165	3.8	0.518	10.3	LOS B	4.5	32.9	0.61	0.43	0.61	67.3
Approach		1799	70	1894	3.9	0.518	3.3	LOS A	4.5	32.9	0.29	0.32	0.29	59.4
North: Chir	nderah Road													
7	L2	70	1	74	1.4	0.098	7.0	LOS A	0.5	3.4	0.71	0.54	0.71	56.7
8	T1	106	7	112	6.6	0.187	4.3	LOS A	1.1	7.7	0.74	0.58	0.74	53.9
9	R2	73	3	77	4.1	0.187	11.1	LOS B	1.1	7.7	0.74	0.58	0.74	64.3
Approach		249	11	262	4.4	0.187	7.1	LOS A	1.1	7.7	0.73	0.57	0.73	57.8
West: Paci	fic Motorway													
10	L2	90	1	95	1.1	0.140	5.3	LOS A	0.7	5.0	0.74	0.61	0.74	56.5
11	T1	1	0	1	0.0	0.162	6.8	LOS A	0.9	6.9	0.76	0.72	0.76	52.8
12	R2	148	7	156	4.7	0.162	11.4	LOS B	0.9	6.9	0.76	0.72	0.76	49.7
Approach		239	8	252	3.3	0.162	9.1	LOS A	0.9	6.9	0.75	0.68	0.75	52.2
All Vehicles	S	3519	135	3704	3.8	0.518	6.7	LOS A	4.5	32.9	0.50	0.48	0.50	58.9

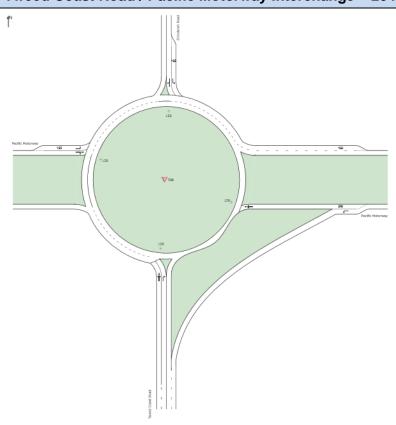
Tweed Coast Road / Pacific Motorway Interchange – 2042 Base Case

MOVEMENT SUMMARY

♥ Site: 104 [4. Tweed Coast Rd / Pacific Motorway Interchange 2042 AM Peak - Base Case (Site Folder: General)]

Tweed Coast Rd / Pacific Motorway Interchange Site Category: Proposed Design 1

Rounda	


Vehicle N	lovement P	erformance												
Mov ID	Turn	INPUT V [Total	OLUMES HV]	DEMAND [Total	FLOWS HV]	Deg. Satn	Aver. Delay	Level of Service	95% BACK [Veh.	OF QUEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South: Twe	eed Coast Ro	ad												
1	L2	168	14	177	8.3	0.907	18.4	LOS B	27.0	201.2	1.00	1.34	1.99	43.9
2	T1	66	2	69	3.0	0.907	18.4	LOS B	27.0	201.2	1.00	1.34	1.99	44.4
3	R2	1733	66	1824	3.8	0.907	139.0	LOS F	27.0	201.2	1.00	1.40	2.10	49.0
Approach		1967	82	2071	4.2	0.907	124.7	LOS F	27.0	201.2	1.00	1.40	2.09	48.4
East: Pacif	fic Motorway													
4	L2	1549	92	1631	5.9	0.640	3.2	LOS A	7.6	58.6	0.24	0.35	0.27	58.6
5	T1	308	52	324	16.9	0.640	5.9	LOS A	7.6	58.6	0.85	0.70	0.95	55.7
6	R2	149	14	157	9.4	0.640	12.6	LOS B	7.6	58.6	0.85	0.70	0.95	65.4
Approach		2006	158	2112	7.9	0.640	4.3	LOS A	7.6	58.6	0.38	0.43	0.43	58.6
North: Chi	nderah Road													
7	L2	99	6	104	6.1	0.240	212.3	LOS F	1.5	10.7	0.93	0.95	0.93	54.9
8	T1	129	18	136	14.0	0.536	13.1	LOS B	4.3	35.5	1.00	1.09	1.24	48.7
9	R2	123	38	129	30.9	0.536	20.1	LOS C	4.3	35.5	1.00	1.09	1.24	58.1
Approach		351	62	369	17.7	0.536	71.8	LOSF	4.3	35.5	0.98	1.05	1.15	53.9
West: Pac	ific Motorway													
10	L2	123	8	129	6.5	0.404	14.2	LOS B	2.6	19.3	0.97	1.02	1.09	51.0
11	T1	1	0	1	0.0	0.567	221.3	LOS F	5.2	38.6	1.00	1.11	1.31	46.9
12	R2	240	14	253	5.8	0.567	24.8	LOS C	5.2	38.6	1.00	1.11	1.31	43.3
Approach		364	22	383	6.0	0.567	21.7	LOS C	5.2	38.6	0.99	1.08	1.23	45.7
All Vehicle	S	4688	324	4935	6.9	0.907	61.2	LOS E	27.0	201.2	0.73	0.93	1.24	52.2

MOVEMENT SUMMARY

👿 Site: 104 [4. Tweed Coast Rd / Pacific Motorway Interchange 2042 PM Peak - Base Case (Site Folder: General)]

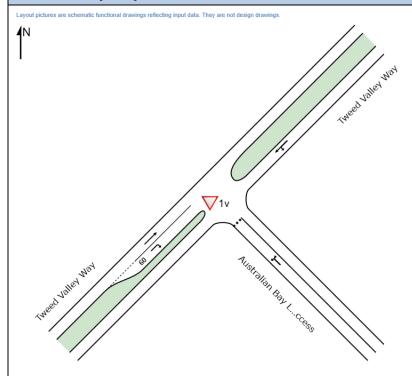
Mov	Turn	INPUT V			FLOWS	Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Ave
ID		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	Satn v/c	Delay sec	Service	[Veh. veh	Dist]	Que	Stop Rate	Cycles	Spee km
South: Twe	ed Coast Ro		ven/n	ven/m	76	V/C	sec		ven	m				KIII
1	L2	192	15	202	7.8	0.769	9.3	LOSA	13.3	100.8	1.00	1.00	1.35	49.
2	T1	48	10	51	20.8	0.769	9.7	LOSA	13.3	100.8	1.00	1.00	1.35	50
3	R2	1432	68	1507	4.7	0.769	22.1	LOS C	13.3	100.8	1.00	1.06	1.41	57
Approach	11/2	1672	93	1760	5.6	0.769	20.3	LOS C	13.3	100.8	1.00	1.05	1.40	56
East: Paci	ic Motorway													
4	L2	1938	84	2040	4.3	0.740	3.6	LOS A	10.7	79.7	0.28	0.39	0.33	58
5	T1	278	32	293	11.5	0.740	6.3	LOS A	10.7	79.7	0.84	0.77	0.99	55
6	R2	209	8	220	3.8	0.740	13.0	LOS B	10.7	79.7	0.84	0.77	0.99	65
Approach		2425	124	2553	5.1	0.740	4.7	LOS A	10.7	79.7	0.39	0.47	0.46	58
North: Chi	nderah Road													
7	L2	93	2	98	2.2	0.190	15.1	LOS B	1.1	7.8	0.88	0.82	0.88	55
8	T1	141	10	148	7.1	0.385	7.6	LOS A	2.8	20.4	0.96	0.89	1.01	52
9	R2	97	4	102	4.1	0.385	14.4	LOS B	2.8	20.4	0.96	0.89	1.01	62
Approach		331	16	348	4.8	0.385	11.7	LOS B	2.8	20.4	0.94	0.87	0.97	56
West: Pac	fic Motorway													
10	L2	119	2	125	1.7	0.314	9.3	LOS A	1.9	13.2	0.92	0.94	0.94	54
11	T1	1	0	1	0.0	0.366	16.7	LOS B	2.7	20.5	1.00	0.99	1.03	51
12	R2	198	12	208	6.1	0.366	15.5	LOS B	2.7	20.5	1.00	0.99	1.03	48
Approach		318	14	335	4.4	0.366	13.2	LOS B	2.7	20.5	0.97	0.98	0.99	50
All Vehicle		4746	247	4996	5.2	0.769	11.3	LOS B	13.3	100.8	0.68	0.73	0.86	56

Tweed Coast Road / Pacific Motorway Interchange – 2042 Project Case

MOVEMENT SUMMARY

♥ Site: 104 [4. Tweed Coast Rd / Pacific Motorway Interchange 2042 AM Peak - Project Case (Site Folder: General)]

Tweed Coast Rd / Pacific Motorway Interchange Site Category: Proposed Design 1 Roundabout


Vehicle N	lovement l	Performance												
Mov	Turn		OLUMES	DEMAND		Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	_Aver.
ID		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	Satn v/c	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed km/h
South: Two	eed Coast R		venim	ven/n	70	VIC	sec		veh	m				KIII/II
South. Twe			40	475	7.0	0.000	44.0		24.4	454.0		4.47	4.00	40.0
1	L2	166	12	175	7.2	0.863	14.0	LOS B	21.1	151.3	1.00	1.17	1.68	46.6
2	T1	66	2	69	3.0	0.863	14.1	LOS B	21.1	151.3	1.00	1.17	1.68	47.1
3	R2	1703	36	1793	2.1	0.863	101.4	LOS F	21.1	151.3	1.00	1.23	1.77	52.8
Approach		1935	50	2037	2.6	0.863	90.9	LOS F	21.1	151.3	1.00	1.23	1.76	52.0
East: Pacif	fic Motorway	/												
4	L2	1518	62	1598	4.1	0.615	3.0	LOS A	6.9	51.9	0.23	0.33	0.25	58.7
5	T1	308	52	324	16.9	0.615	5.5	LOS A	6.9	51.9	0.83	0.64	0.90	55.7
6	R2	149	14	157	9.4	0.615	12.2	LOS B	6.9	51.9	0.83	0.64	0.90	65.5
Approach		1975	128	2079	6.5	0.615	4.1	LOS A	6.9	51.9	0.37	0.40	0.40	58.7
North: Chir	nderah Roa	d												
7	L2	99	6	104	6.1	0.232	152.7	LOS F	1.4	10.2	0.92	0.94	0.92	55.2
8	T1	129	18	136	14.0	0.509	11.6	LOS B	3.9	32.6	1.00	1.07	1.20	49.9
9	R2	123	38	129	30.9	0.509	18.6	LOS B	3.9	32.6	1.00	1.07	1.20	59.4
Approach		351	62	369	17.7	0.509	53.8	LOS E	3.9	32.6	0.98	1.04	1.12	54.9
West: Paci	ific Motorwa	у												
10	L2	123	8	129	6.5	0.380	12.6	LOS B	2.4	17.7	0.96	1.00	1.05	52.1
11	T1	1	0	1	0.0	0.519	158.8	LOS F	4.6	33.3	1.00	1.08	1.23	48.6
12	R2	238	12	251	5.0	0.519	21.4	LOS C	4.6	33.3	1.00	1.08	1.23	45.1
Approach		362	20	381	5.5	0.519	18.8	LOS B	4.6	33.3	0.99	1.05	1.17	47.4
All Vehicle	s	4623	260	4866	5.6	0.863	45.4	LOS D	21.1	151.3	0.73	0.85	1.09	54.2

MOVEMENT SUMMARY

♥ Site: 104 [4. Tweed Coast Rd / Pacific Motorway Interchange 2042 PM Peak - Project Case (Site Folder: General)]

Mov	Turn	INPUT V	OLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Ave
ID		[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Spee
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km
South: Twe	ed Coast Ro	ad												
1	L2	190	13	200	6.8	0.725	7.9	LOS A	11.3	81.9	0.97	0.93	1.22	50
2	T1	48	10	51	20.8	0.725	8.4	LOS A	11.3	81.9	0.97	0.93	1.22	51
3	R2	1401	38	1475	2.7	0.725	19.5	LOS B	11.3	81.9	0.98	0.99	1.29	58
Approach		1639	61	1725	3.7	0.725	17.8	LOS B	11.3	81.9	0.98	0.98	1.28	57
East: Pacif	ic Motorway													
4	L2	1907	54	2007	2.8	0.715	3.4	LOS A	9.6	70.0	0.27	0.37	0.31	58.
5	T1	278	32	293	11.5	0.715	5.8	LOS A	9.6	70.0	0.82	0.71	0.93	55
6	R2	209	8	220	3.8	0.715	12.5	LOS B	9.6	70.0	0.82	0.71	0.93	65
Approach		2394	94	2520	3.9	0.715	4.5	LOS A	9.6	70.0	0.38	0.44	0.43	58.
North: Chi	nderah Road													
7	L2	93	2	98	2.2	0.181	13.0	LOS B	1.0	7.3	0.86	0.77	0.86	55.
8	T1	141	10	148	7.1	0.360	6.8	LOS A	2.5	18.4	0.94	0.82	0.96	52
9	R2	97	4	102	4.1	0.360	13.6	LOS B	2.5	18.4	0.94	0.82	0.96	63.
Approach		331	16	348	4.8	0.360	10.5	LOS B	2.5	18.4	0.92	0.80	0.93	56
West: Paci	fic Motorway													
10	L2	119	2	125	1.7	0.291	8.3	LOS A	1.7	12.0	0.90	0.92	0.90	55.
11	T1	1	0	1	0.0	0.333	13.9	LOS B	2.4	17.7	0.98	0.91	0.98	51
12	R2	197	10	207	5.1	0.333	14.4	LOS B	2.4	17.7	0.98	0.91	0.98	48
Approach		317	12	334	3.8	0.333	12.1	LOS B	2.4	17.7	0.95	0.92	0.95	51
All Vehicle	s	4681	183	4927	3.9	0.725	10.1	LOS B	11.3	81.9	0.67	0.69	0.80	57.

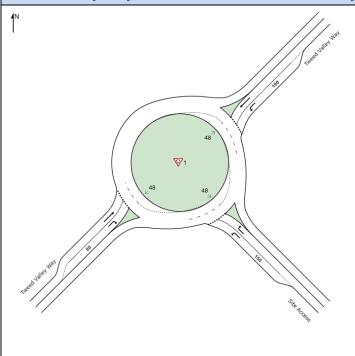
Tweed Valley Way / ABLP Site Access – 2022 Base Case

MOVEMENT SUMMARY

Site: 1v [5. Tweed Valley Way / ABLP Site Access 2022 AM Peak - Base Case (Site Folder: General)]

Three-way intersection with 3-lane major road (Stop control) Site Category: (None) Give-Way (Two-Way)

Vehicle	Moveme	nt Performa	nce											
Mov ID	Tum	INPUT VC [Total veh/h	DLUMES HV] veh/h	DEMANE [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEa	st: Australi	an Bay Lobste	r Producers I	Ltd (ABLP) Ac	cess									
1	L2	3	1	3	33.3	0.017	9.9	LOS A	0.1	0.6	0.70	0.80	0.70	45.4
2	R2	2	2	2	100.0	0.017	25.4	LOS D	0.1	0.6	0.70	0.80	0.70	42.9
Approac	h	5	3	5	60.0	0.017	16.1	LOSC	0.1	0.6	0.70	0.80	0.70	44.4
NorthEa	st: Tweed \	/alley Way												
3	L2	3	0	3	0.0	0.337	5.6	LOS A	0.0	0.0	0.00	0.00	0.00	58.2
4	T1	595	39	626	6.6	0.337	0.1	LOSA	0.0	0.0	0.00	0.00	0.00	59.8
Approac	h	598	39	629	6.5	0.337	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.7
SouthWe	est: Tweed	Valley Way												
5	T1	61	15	64	24.6	0.038	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	4	2	4	50.0	0.007	10.8	LOS B	0.0	0.3	0.61	0.69	0.61	47.8
Approac	h	65	17	68	26.2	0.038	0.7	NA	0.0	0.3	0.04	0.04	0.04	59.1
All Vehic	eles	668	59	703	8.8	0.337	0.3	NA	0.1	0.6	0.01	0.01	0.01	59.5


MOVEMENT SUMMARY

∇ Site: 1v [5. Tweed Valley Way / ABLP Site Access 2022 PM Peak - Base Case (Site Folder: General)]

Three-way intersection with 3-lane major road (Stop control) Site Category: (None) Give-Way (Two-Way)

Vehicle	Moveme	nt Performa	nce											
Mov ID	Turn	INPUT V([Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEa	ast: Australi	an Bay Lobste	er Producers L	td (ABLP) Acc	ess									
1	L2	8	4	8	50.0	0.020	10.6	LOS B	0.1	0.7	0.61	0.75	0.61	47.5
2	R2	1	1	1	100.0	0.020	23.4	LOS C	0.1	0.7	0.61	0.75	0.61	45.2
Approac	h	9	5	9	55.6	0.020	12.0	LOS B	0.1	0.7	0.61	0.75	0.61	47.2
NorthEa	st: Tweed \	/alley Way												
3	L2	1	0	1	0.0	0.323	5.6	LOS A	0.0	0.0	0.00	0.00	0.00	58.2
4	T1	573	37	603	6.5	0.323	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Approac	h	574	37	604	6.4	0.323	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.8
SouthW	est: Tweed	Valley Way												
5	T1	50	12	53	24.0	0.031	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	1	1	1	100.0	0.002	13.6	LOS B	0.0	0.1	0.65	0.66	0.65	44.1
Approac	:h	51	13	54	25.5	0.031	0.3	NA	0.0	0.1	0.01	0.01	0.01	59.6
All Vehic	cles	634	55	667	8.7	0.323	0.3	NA	0.1	0.7	0.01	0.01	0.01	59.5

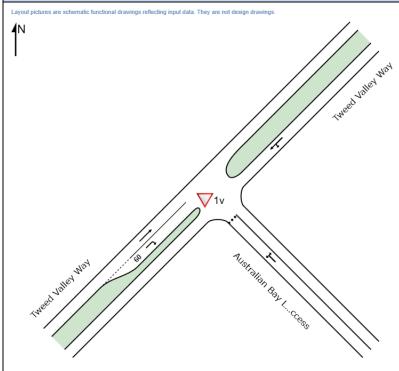
Tweed Valley Way / ABLP Site Access – 2022 Project Case

MOVEMENT SUMMARY

♥ Site: 1 [5. Tweed Valley Way / ABLP Site Access 2022 AM Peak - Project Case (Site Folder: General)]

Tweed Valley Way / Site Access Roundabout Site Category: (None) Roundabout

Vehicle N	Novement	Performance	е											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEast	: Site Acce	ss												
4	L2	33	31	35	93.9	0.092	11.2	LOS A	0.4	8.5	0.61	0.73	0.61	50.1
6	R2	4	4	4	100.0	0.013	19.2	LOS B	0.0	0.9	0.61	0.71	0.61	46.8
Approach		37	35	39	94.6	0.092	12.0	LOS A	0.4	8.5	0.61	0.73	0.61	49.7
NorthEast	Tweed Va	lley Way												
7	L2	33	30	35	90.9	0.049	3.8	LOS A	0.2	4.0	0.07	0.34	0.07	55.5
8	T1	595	39	626	6.6	0.352	2.4	LOS A	1.8	13.7	0.06	0.24	0.06	60.7
Approach		628	69	661	11.0	0.352	2.5	LOS A	1.8	13.7	0.06	0.24	0.06	60.4
SouthWes	t: Tweed V	alley Way												
2	T1	61	15	64	24.6	0.041	2.4	LOS A	0.2	1.6	0.05	0.23	0.05	60.6
3	R2	6	4	6	66.7	0.009	10.4	LOS A	0.0	0.5	0.07	0.54	0.07	53.6
Approach		67	19	71	28.4	0.041	3.2	LOS A	0.2	1.6	0.05	0.26	0.05	59.9
All Vehicle	s	732	123	771	16.8	0.352	3.0	LOS A	1.8	13.7	0.09	0.27	0.09	59.7


MOVEMENT SUMMARY

♥ Site: 1 [5. Tweed Valley Way / ABLP Site Access 2022 PM Peak - Project Case (Site Folder: General)]

Tweed Valley Way / Site Access Roundabout Site Category: (None) Roundabout

<i>l</i> lovement	Performanc	e											
Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMANE [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Ave Spec km
t: Site Acces	ss												
L2	38	34	40	89.5	0.094	10.1	LOS A	0.4	8.1	0.60	0.71	0.60	50
R2	4	4	4	100.0	0.013	18.8	LOS B	0.0	0.9	0.60	0.71	0.60	47
	42	38	44	90.5	0.094	10.9	LOS A	0.4	8.1	0.60	0.71	0.60	50
: Tweed Val	lley Way												
L2	31	31	33	100.0	0.046	3.8	LOSA	0.2	3.9	0.05	0.34	0.05	54
T1	573	37	603	6.5	0.336	2.4	LOS A	1.7	12.7	0.04	0.23	0.04	60
	604	68	636	11.3	0.336	2.4	LOS A	1.7	12.7	0.04	0.24	0.04	60
t: Tweed Va	alley Way												
T1	50	12	53	24.0	0.033	2.4	LOS A	0.2	1.3	0.05	0.23	0.05	60
R2	3	2	3	66.7	0.004	10.5	LOS A	0.0	0.3	0.07	0.53	0.07	53
	53	14	56	26.4	0.033	2.9	LOS A	0.2	1.3	0.05	0.25	0.05	60
s	699	120	736	17.2	0.336	3.0	LOSA	17	12 7	0.08	0.27	0.08	59
	Tum E Site Acces L2 R2 Tweed Val L2 T1 Triveed Val T1 R2	Turn INPUT V [Total veh/h] : Site Access L2	Total veh/h veh/h Site Access L2 38 34 R2 4 4 42 38 Tiweed Valley Way L2 31 31 T1 573 37 604 68 Tite Tweed Valley Way T1 50 12 R2 3 2 53 14	Turn INPUT VOLUMES [Total HV] [Total veh/h	Turn INPUT VOLUMES Total HV Veh/h Veh/h Veh/h Veh/h Veh/h Veh/h Weh/h We	Turn INPUT VOLUMES [Total HV] [Total HV] Satin veh/h veh/h veh/h weh/h % Satin v/c Site Access L2 38 34 40 89.5 0.094 R2 4 4 4 4 100.0 0.013 42 38 44 90.5 0.094 ETweed Valley Way L2 31 31 31 33 100.0 0.046 T1 573 37 603 6.5 0.336 604 68 636 11.3 0.336 ETweed Valley Way T1 50 12 53 24.0 0.033 R2 3 2 3 66.7 0.004 53 14 56 26.4 0.033	Tum INPUT VOLUMES [Total HV] [Total HV] Sath Deg. Sath Veh/h veh/h veh/h % % veh/h % veh/h % veh/h % veh/h % veh/h % veh/h veh/h % veh/h % veh/h % veh/h veh/h % veh/h % veh/h veh/h %	Tum	Turn	Turn	Turn INPUT VOLUMES Total HV Total HV Veh/h Veh	Turn INPUT VOLUMES Total HV Veh/h Veh/h	Tum INPUT VOLUMES Total HV Veh/h V

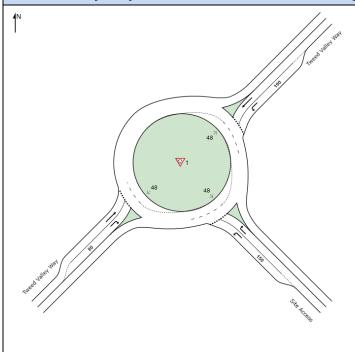
Tweed Valley Way / ABLP Site Access – 2032 Base Case

MOVEMENT SUMMARY

▽ Site: 1v [5. Tweed Valley Way / ABLP Site Access 2032 AM Peak - Base Case (Site Folder: General)]

Three-way intersection with 3-lane major road (Stop control) Site Category: (None) Give-Way (Two-Way)

Vehicle M	lovement P	erformance												
Mov ID	Tum	INPUT VO [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEast:	Australian B	ay Lobster Produ	icers Ltd (ABLP)	Access										
1	L2	3	1	3	33.3	0.019	10.4	LOS B	0.1	0.7	0.73	0.83	0.73	44.6
2	R2	2	2	2	100.0	0.019	28.3	LOS D	0.1	0.7	0.73	0.83	0.73	42.2
Approach		5	3	5	60.0	0.019	17.5	LOSC	0.1	0.7	0.73	0.83	0.73	43.6
NorthEast:	Tweed Valle	y Way												
3	L2	3	0	3	0.0	0.358	5.6	LOSA	0.0	0.0	0.00	0.00	0.00	58.1
4	T1	632	42	665	6.6	0.358	0.1	LOSA	0.0	0.0	0.00	0.00	0.00	59.7
Approach		635	42	668	6.6	0.358	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.7
SouthWest	: Tweed Valle	ey Way												
5	T1	64	16	67	25.0	0.040	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	4	2	4	50.0	0.008	11.4	LOS B	0.0	0.3	0.63	0.71	0.63	47.4
Approach		68	18	72	26.5	0.040	0.7	NA	0.0	0.3	0.04	0.04	0.04	59.1
All Vehicles	S	708	63	745	8.9	0.358	0.3	NA	0.1	0.7	0.01	0.01	0.01	59.5


MOVEMENT SUMMARY

▽ Site: 1v [5. Tweed Valley Way / ABLP Site Access 2032 PM Peak - Base Case (Site Folder: General)]

Three-way intersection with 3-lane major road (Stop control) Site Category: (None) Give-Way (Two-Way)

Vehicle M	lovement P	erformance												
Mov ID	Turn	INPUT VO [Total veh/h	OLUMES HV] veh/h	DEMANI [Total veh/h	D FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEast:	: Australian B	ay Lobster Produ	icers Ltd (ABLP)	Access										
1	L2	9	4	9	44.4	0.029	10.8	LOS B	0.1	1.0	0.66	0.80	0.66	46.7
2	R2	2	2	2	100.0	0.029	26.0	LOS D	0.1	1.0	0.66	0.80	0.66	44.3
Approach		11	6	12	54.5	0.029	13.6	LOS B	0.1	1.0	0.66	0.80	0.66	46.2
NorthEast:	Tweed Valle	y Way												
3	L2	1	1	1	100.0	0.343	6.8	LOS A	0.0	0.0	0.00	0.00	0.00	53.5
4	T1	608	40	640	6.6	0.343	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Approach		609	41	641	6.7	0.343	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.8
SouthWest	t: Tweed Valle	ey Way												
5	T1	53	13	56	24.5	0.033	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	1	0	1	0.0	0.001	8.2	LOS A	0.0	0.0	0.56	0.59	0.56	51.1
Approach		54	13	57	24.1	0.033	0.2	NA	0.0	0.0	0.01	0.01	0.01	59.8
All Vehicles	s	674	60	709	8.9	0.343	0.3	NA	0.1	1.0	0.01	0.01	0.01	59.5

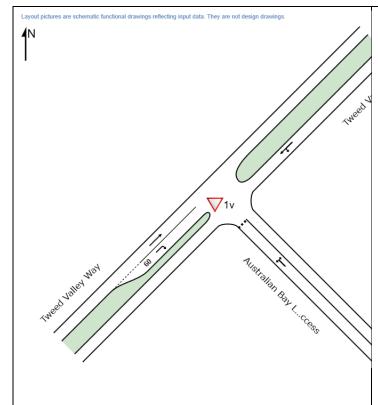
Tweed Valley Way / ABLP Site Access – 2032 Project Case

MOVEMENT SUMMARY

♥ Site: 1 [5. Tweed Valley Way / ABLP Site Access 2032 AM Peak - Project Case (Site Folder: General)]

Tweed Valley Way / Site Access Roundabout Site Category: (None) Roundabout

Vehicle N	lovement P	erformance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Av
SouthEast	: Site Access												
4	L2	34	31	36	91.2	0.095	11.5	LOS A	0.4	8.7	0.63	0.74	
6	R2	4	4	4	100.0	0.014	19.7	LOS B	0.1	1.0	0.62	0.72	
Approach		38	35	40	92.1	0.095	12.3	LOS A	0.4	8.7	0.63	0.74	
NorthEast:	Tweed Valley	/ Way											
7	L2	34	30	36	88.2	0.051	3.7	LOS A	0.2	4.1	0.07	0.34	
8	T1	632	42	665	6.6	0.374	2.4	LOS A	2.0	14.9	0.06	0.24	
Approach		666	72	701	10.8	0.374	2.5	LOSA	2.0	14.9	0.06	0.24	
SouthWes	t: Tweed Valle	y Way											
2	T1	64	16	67	25.0	0.043	2.4	LOS A	0.2	1.7	0.05	0.23	
3	R2	6	4	6	66.7	0.009	10.4	LOS A	0.0	0.5	0.07	0.54	
Approach		70	20	74	28.6	0.043	3.1	LOS A	0.2	1.7	0.05	0.26	
All Vehicle	s	774	127	815	16.4	0.374	3.0	LOSA	2.0	14.9	0.09	0.27	


MOVEMENT SUMMARY

♥ Site: 1 [5. Tweed Valley Way / ABLP Site Access 2032 PM Peak - Project Case (Site Folder: General)]

Tweed Valley Way / Site Access Roundabout Site Category: (None) Roundabout

Mov	Turn		OLUMES	DEMANE	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective
ID		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	Satn v/c	Delay sec	Service	[Veh. veh	Dist] m	Que	Stop Rate
SouthEast:	Site Access											
4	L2	39	34	41	87.2	0.098	10.4	LOS A	0.4	8.4	0.61	0.72
6	R2	4	4	4	100.0	0.013	19.3	LOS B	0.0	0.9	0.61	0.72
Approach		43	38	45	88.4	0.098	11.2	LOS A	0.4	8.4	0.61	0.72
NorthEast:	Tweed Valley	Way										
7	L2	31	31	33	100.0	0.046	3.8	LOS A	0.2	3.9	0.05	0.34
8	T1	608	40	640	6.6	0.357	2.4	LOS A	1.9	13.9	0.05	0.23
Approach		639	71	673	11.1	0.357	2.4	LOS A	1.9	13.9	0.05	0.24
SouthWest	: Tweed Valle	y Way										
2	T1	53	13	56	24.5	0.035	2.4	LOS A	0.2	1.4	0.05	0.23
3	R2	3	2	3	66.7	0.004	10.5	LOS A	0.0	0.3	0.07	0.53
Approach		56	15	59	26.8	0.035	2.9	LOS A	0.2	1.4	0.05	0.25
All Vehicles	s	738	124	777	16.8	0.357	3.0	LOSA	1.9	13.9	0.08	0.27

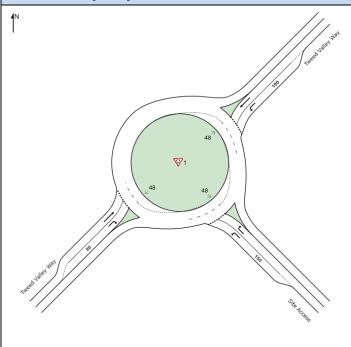
Tweed Valley Way / ABLP Site Access – 2042 Base Case

MOVEMENT SUMMARY

▽ Site: 1v [5. Tweed Valley Way / ABLP Site Access 2042 AM Peak - Base Case (Site Folder: General)]

Three-way intersection with 3-lane major road (Stop control) Site Category: (None) Give-Way (Two-Way)

Vehicle Mo	ovement P	erformance												
Mov	Tum	INPUT V			FLOWS	Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Aver
ID		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	Satn v/c	Delay sec	Service	[Veh. veh	Dist] m	Que	Stop Rate	Cycles	Speed km/h
SouthEast: /	Australian B		icers Ltd (ABLP)											
1	L2	3	1	3	33.3	0.022	10.9	LOS B	0.1	0.7	0.76	0.85	0.76	43.
2	R2	2	2	2	100.0	0.022	31.9	LOS D	0.1	0.7	0.76	0.85	0.76	41.3
Approach		5	3	5	60.0	0.022	19.3	LOS C	0.1	0.7	0.76	0.85	0.76	42.
NorthEast: 1	Tweed Valley	/ Way												
3	L2	3	0	3	0.0	0.379	5.7	LOS A	0.0	0.0	0.00	0.00	0.00	58.1
4	T1	671	44	706	6.6	0.379	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approach		674	44	709	6.5	0.379	0.2	NA	0.0	0.0	0.00	0.00	0.00	59.7
SouthWest:	Tweed Valle	y Way												
5	T1	68	17	72	25.0	0.043	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	5	2	5	40.0	0.010	11.4	LOS B	0.0	0.3	0.64	0.73	0.64	47.7
Approach		73	19	77	26.0	0.043	8.0	NA	0.0	0.3	0.04	0.05	0.04	58.9
All Vehicles		752	66	792	8.8	0.379	0.3	NA	0.1	0.7	0.01	0.01	0.01	59.5


MOVEMENT SUMMARY

▽ Site: 1v [5. Tweed Valley Way / ABLP Site Access 2042 PM Peak - Base Case (Site Folder: General)]

Three-way intersection with 3-lane major road (Stop control) Site Category: (None) Give-Way (Two-Way)

Vehicle N	Movement P	erformance												
Mov ID	Tum	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMANE [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed km/h
SouthEast	t: Australian B	ay Lobster Produ	ucers Ltd (ABLP)	Access										
1	L2	9	5	9	55.6	0.034	12.2	LOS B	0.1	1.2	0.70	0.84	0.70	45.4
2	R2	2	2	2	100.0	0.034	28.9	LOS D	0.1	1.2	0.70	0.84	0.70	43.4
Approach		11	7	12	63.6	0.034	15.2	LOSC	0.1	1.2	0.70	0.84	0.70	45.0
NorthEast	: Tweed Valle	y Way												
3	L2	1	1	1	100.0	0.364	6.8	LOS A	0.0	0.0	0.00	0.00	0.00	53.5
4	T1	645	42	679	6.5	0.364	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approach		646	43	680	6.7	0.364	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.7
SouthWes	st: Tweed Valle	ey Way												
5	T1	56	14	59	25.0	0.035	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	1	0	1	0.0	0.001	8.5	LOS A	0.0	0.0	0.58	0.60	0.58	50.9
Approach		57	14	60	24.6	0.035	0.2	NA	0.0	0.0	0.01	0.01	0.01	59.8
All Vehicle	es	714	64	752	9.0	0.364	0.4	NA	0.1	1.2	0.01	0.01	0.01	59.4

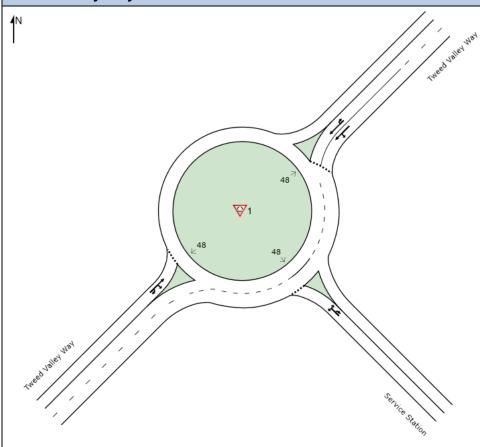
Tweed Valley Way / ABLP Site Access – 2042 Project Case

MOVEMENT SUMMARY

♥ Site: 1 [5. Tweed Valley Way / ABLP Site Access 2042 AM Peak - Project Case (Site Folder: General)]

Tweed Valley Way / Site Access Roundabout Site Category: (None) Roundabout

Vehicle M	lovement P	erformance												
Mov ID	Turn	INPUT VO [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEast:	: Site Access													
4	L2	34	31	36	91.2	0.099	12.1	LOS A	0.4	9.1	0.64	0.76	0.64	49.5
6	R2	4	4	4	100.0	0.014	20.3	LOS B	0.1	1.0	0.63	0.73	0.63	46.2
Approach		38	35	40	92.1	0.099	12.9	LOS A	0.4	9.1	0.64	0.76	0.64	49.1
NorthEast:	Tweed Valle	y Way												
7	L2	34	30	36	88.2	0.051	3.7	LOS A	0.2	4.1	0.07	0.34	0.07	55.6
8	T1	671	44	706	6.6	0.397	2.4	LOS A	2.2	16.3	0.06	0.24	0.06	60.7
Approach		705	74	742	10.5	0.397	2.5	LOS A	2.2	16.3	0.07	0.24	0.07	60.4
SouthWest	t: Tweed Valle	ey Way												
2	T1	68	17	72	25.0	0.045	2.4	LOS A	0.2	1.9	0.05	0.23	0.05	60.6
3	R2	6	4	6	66.7	0.009	10.4	LOS A	0.0	0.5	0.07	0.54	0.07	53.6
Approach		74	21	78	28.4	0.045	3.1	LOS A	0.2	1.9	0.06	0.25	0.06	59.9
All Vehicles	s	817	130	860	15.9	0.397	3.0	LOS A	2.2	16.3	0.09	0.27	0.09	59.7


MOVEMENT SUMMARY

♥ Site: 1 [5. Tweed Valley Way / ABLP Site Access 2042 PM Peak - Project Case (Site Folder: General)]

Tweed Valley Way / Site Access Roundabout Site Category: (None) Roundabout

Vehicle N	lovement Po	erformance												
Mov ID	Tum	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEast	: Site Access													
4	L2	40	35	42	87.5	0.102	10.8	LOS A	0.4	8.7	0.62	0.73	0.62	50.5
6	R2	4	4	4	100.0	0.014	19.9	LOS B	0.1	1.0	0.62	0.72	0.62	46.4
Approach		44	39	46	88.6	0.102	11.6	LOS A	0.4	8.7	0.62	0.73	0.62	50.0
NorthEast:	Tweed Valley	Way												
7	L2	32	31	34	96.9	0.047	3.8	LOS A	0.2	4.0	0.05	0.34	0.05	55.5
8	T1	645	42	679	6.5	0.378	2.4	LOS A	2.0	15.1	0.05	0.23	0.05	60.8
Approach		677	73	713	10.8	0.378	2.4	LOS A	2.0	15.1	0.05	0.24	0.05	60.5
SouthWest	t: Tweed Valle	y Way												
2	T1	56	14	59	25.0	0.037	2.4	LOS A	0.2	1.5	0.05	0.23	0.05	60.6
3	R2	3	2	3	66.7	0.004	10.5	LOS A	0.0	0.3	0.07	0.53	0.07	53.4
Approach		59	16	62	27.1	0.037	2.9	LOSA	0.2	1.5	0.05	0.24	0.05	60.2
All Vehicle	S	780	128	821	16.4	0.378	3.0	LOS A	2.0	15.1	0.08	0.27	0.08	59.8

Tweed Valley Way / Service Station Roundabout – 2022 Base Case

MOVEMENT SUMMARY

♥ Site: 1 [6. Tweed Valley Way / Service Station 2022 AM Peak - Base Case (Site Folder: General)]

Tweed Valley Way / Service Station

Site Category: (None) Roundabout

Vehicle	Moveme	nt Performa	ince											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEa	st: Service	Station												
4	L2	22	4	23	18.2	0.200	4.9	LOS A	8.0	6.7	0.51	0.76	0.51	51.6
6	R2	143	40	151	28.0	0.200	12.1	LOS B	8.0	6.7	0.51	0.76	0.51	54.0
6u	U	1	0	1	0.0	0.200	13.9	LOS B	0.8	6.7	0.51	0.76	0.51	56.8
Approac	h	166	44	175	26.5	0.200	11.1	LOS B	0.8	6.7	0.51	0.76	0.51	53.7
NorthEa	st: Tweed \	Valley Way												
7	L2	44	6	46	13.6	0.195	3.1	LOS A	1.2	8.8	0.14	0.26	0.14	57.2
8	T1	563	39	593	6.9	0.195	2.4	LOS A	1.2	8.8	0.15	0.26	0.15	59.9
9u	U	8	1	8	12.5	0.195	12.5	LOS B	1.2	8.6	0.15	0.27	0.15	63.2
Approac	h	615	46	647	7.5	0.195	2.6	LOS A	1.2	8.8	0.15	0.26	0.15	59.7
SouthWe	est: Tweed	Valley Way												
2	T1	37	11	39	29.7	0.056	2.9	LOS A	0.3	2.4	0.35	0.47	0.35	56.0
3	R2	30	1	32	3.3	0.056	10.2	LOS B	0.3	2.4	0.35	0.47	0.35	57.2
3u	U	1	0	1	0.0	0.056	12.8	LOS B	0.3	2.4	0.35	0.47	0.35	59.6
Approac	h	68	12	72	17.6	0.056	6.3	LOS A	0.3	2.4	0.35	0.47	0.35	56.6
All Vehic	les	849	102	894	12.0	0.200	4.6	LOS A	1.2	8.8	0.23	0.38	0.23	58.2

MOVEMENT SUMMARY

♥ Site: 1 [6. Tweed Valley Way / Service Station 2022 PM Peak - Base Case (Site Folder: General)]

Tweed Valley Way / Service Station

Vehicle	Moveme	nt Performa	ince											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Ave Spee km/
SouthEas	st: Service	Station												
4	L2	41	2	43	4.9	0.293	4.8	LOS A	1.2	9.8	0.53	0.77	0.53	51.9
6	R2	218	37	229	17.0	0.293	12.0	LOS B	1.2	9.8	0.53	0.77	0.53	54.4
6u	U	1	0	1	0.0	0.293	14.1	LOS B	1.2	9.8	0.53	0.77	0.53	56.9
Approach	1	260	39	274	15.0	0.293	10.8	LOS B	1.2	9.8	0.53	0.77	0.53	54.0
NorthEas	t: Tweed \	/alley Way												
7	L2	44	8	46	18.2	0.198	3.2	LOS A	1.2	9.3	0.16	0.26	0.16	57.0
8	T1	565	44	595	7.8	0.198	2.5	LOS A	1.2	9.3	0.16	0.27	0.16	59.8
9u	U	8	2	8	25.0	0.198	12.6	LOS B	1.2	9.0	0.17	0.27	0.17	62.6
Approach	1	617	54	649	8.8	0.198	2.7	LOS A	1.2	9.3	0.16	0.27	0.16	59.6
SouthWe	st: Tweed	Valley Way												
2	T1	32	5	34	15.6	0.057	3.1	LOS A	0.3	2.5	0.42	0.50	0.42	55.9
3	R2	33	5	35	15.2	0.057	10.7	LOS B	0.3	2.5	0.42	0.50	0.42	56.6
3u	U	1	0	1	0.0	0.057	13.1	LOS B	0.3	2.5	0.42	0.50	0.42	59.4
Approach	1	66	10	69	15.2	0.057	7.0	LOS A	0.3	2.5	0.42	0.50	0.42	56.3
All Vehicl	es	943	103	993	10.9	0.293	5.2	LOSA	1.2	9.8	0.28	0.42	0.28	57.7

Tweed Valley Way / Service Station Roundabout – 2022 Project Case

MOVEMENT SUMMARY

♥ Site: 1 [6. Tweed Valley Way / Service Station 2022 AM Peak - Project Case (Site Folder: General)]

Tweed Valley Way / Service Station

Site Category: (None) Roundabout

Vehicle M	ovement	Performance	;											
Mov ID	Turn	INPUT VO [Total veh/h	DLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEast:	Service S	tation												
4	L2	22	4	23	18.2	0.207	5.1	LOS A	0.8	7.0	0.53	0.78	0.53	51.6
6	R2	143	40	151	28.0	0.207	12.3	LOS B	8.0	7.0	0.53	0.78	0.53	53.9
6u	U	11	0	1	0.0	0.207	14.1	LOS B	0.8	7.0	0.53	0.78	0.53	56.7
Approach		166	44	175	26.5	0.207	11.4	LOS B	8.0	7.0	0.53	0.78	0.53	53.6
NorthEast:	Tweed Va	lley Way												
7	L2	44	6	46	13.6	0.220	3.1	LOS A	1.4	10.4	0.15	0.26	0.15	57.2
8	T1	563	39	593	6.9	0.220	2.4	LOS A	1.4	10.4	0.15	0.28	0.15	59.8
9u	U	40	33	42	82.5	0.220	13.6	LOS B	1.3	12.2	0.16	0.32	0.16	59.6
Approach		647	78	681	12.1	0.220	3.2	LOS A	1.4	12.2	0.15	0.28	0.15	59.6
SouthWest	Tweed V	alley Way												
2	T1	37	11	39	29.7	0.059	3.3	LOS A	0.3	2.5	0.41	0.49	0.41	55.8
3	R2	30	1	32	3.3	0.059	10.5	LOS B	0.3	2.5	0.41	0.49	0.41	57.0
3u	U	1	0	1	0.0	0.059	13.1	LOS B	0.3	2.5	0.41	0.49	0.41	59.4
Approach		68	12	72	17.6	0.059	6.6	LOS A	0.3	2.5	0.41	0.49	0.41	56.3
All Vehicles	;	881	134	927	15.2	0.220	5.0	LOSA	1.4	12.2	0.24	0.39	0.24	58.1

MOVEMENT SUMMARY

♥ Site: 1 [6. Tweed Valley Way / Service Station 2022 PM Peak - Project Case (Site Folder: General)]

Tweed Valley Way / Service Station

Vehicle	Movement	Performanc	е											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEas	st: Service S	tation												
4	L2	41	2	43	4.9	0.302	5.0	LOS A	1.3	10.1	0.56	0.79	0.56	51.8
6	R2	218	37	229	17.0	0.302	12.2	LOS B	1.3	10.1	0.56	0.79	0.56	54.3
6u	U	11	0	1	0.0	0.302	14.3	LOS B	1.3	10.1	0.56	0.79	0.56	56.8
Approach	1	260	39	274	15.0	0.302	11.1	LOS B	1.3	10.1	0.56	0.79	0.56	53.9
NorthEas	t: Tweed Va	lley Way												
7	L2	44	8	46	18.2	0.223	3.2	LOS A	1.4	10.9	0.16	0.26	0.16	57.0
8	T1	565	44	595	7.8	0.223	2.5	LOS A	1.4	10.9	0.17	0.28	0.17	59.7
9u	U	40	34	42	85.0	0.223	13.7	LOS B	1.3	12.6	0.18	0.32	0.18	59.5
Approach	1	649	86	683	13.3	0.223	3.2	LOS A	1.4	12.6	0.17	0.28	0.17	59.5
SouthWe	st: Tweed Va	alley Way												
2	T1	32	5	34	15.6	0.060	3.4	LOSA	0.3	2.6	0.47	0.53	0.47	55.7
3	R2	33	5	35	15.2	0.060	11.0	LOS B	0.3	2.6	0.47	0.53	0.47	56.4
3u	U	11	0	1	0.0	0.060	13.4	LOS B	0.3	2.6	0.47	0.53	0.47	59.1
Approach	1	66	10	69	15.2	0.060	7.4	LOS A	0.3	2.6	0.47	0.53	0.47	56.1
All Vehicl	es	975	135	1026	13.8	0.302	5.6	LOS A	1.4	12.6	0.29	0.44	0.29	57.6

Tweed Valley Way / Service Station Roundabout – 2032 Base Case

MOVEMENT SUMMARY

♥ Site: 1 [6. Tweed Valley Way / Service Station 2032 AM Peak - Base Case (Site Folder: General)]

Tweed Valley Way / Service Station

Site Category: (None) Roundabout

Vehicle Mo	vement P	erformance												
Mov ID	Tum	INPUT VO [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEast: 9	Service Stat	ion												
4	L2	24	4	25	16.7	0.215	5.0	LOS A	8.0	7.2	0.52	0.77	0.52	51.7
6	R2	151	43	159	28.5	0.215	12.2	LOS B	0.8	7.2	0.52	0.77	0.52	54.0
6u	U	1	0	1	0.0	0.215	14.0	LOS B	0.8	7.2	0.52	0.77	0.52	56.8
Approach		176	47	185	26.7	0.215	11.2	LOS B	8.0	7.2	0.52	0.77	0.52	53.7
NorthEast: T	weed Valley	y Way												
7	L2	46	6	48	13.0	0.205	3.1	LOS A	1.3	9.4	0.12	0.25	0.12	57.4
8	T1	597	42	628	7.0	0.205	2.4	LOS A	1.3	9.4	0.12	0.26	0.12	60.0
9u	U	9	1	9	11.1	0.205	12.4	LOS B	1.2	9.2	0.13	0.26	0.13	63.4
Approach		652	49	686	7.5	0.205	2.6	LOS A	1.3	9.4	0.12	0.26	0.12	59.9
SouthWest:	Tweed Valle	ey Way												
2	T1	40	12	42	30.0	0.052	2.9	LOS A	0.3	2.3	0.36	0.44	0.36	56.5
3	R2	21	1	22	4.8	0.052	10.2	LOS B	0.3	2.3	0.36	0.44	0.36	57.7
3u	U	1	0	1	0.0	0.052	12.8	LOS B	0.3	2.3	0.36	0.44	0.36	60.2
Approach		62	13	65	21.0	0.052	5.6	LOSA	0.3	2.3	0.36	0.44	0.36	57.0
All Vehicles		890	109	937	12.2	0.215	4.5	LOS A	1.3	9.4	0.22	0.37	0.22	58.3

MOVEMENT SUMMARY

♥ Site: 1 [6. Tweed Valley Way / Service Station 2032 PM Peak - Base Case (Site Folder: General)]

Tweed Valley Way / Service Station

Vehicle M	Novement P	erformance												
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed km/h
SouthEast:	: Service Stat	ion												
4	L2	44	2	46	4.5	0.316	4.9	LOS A	1.4	10.7	0.55	0.79	0.55	51.8
6	R2	231	40	243	17.3	0.316	12.1	LOS B	1.4	10.7	0.55	0.79	0.55	54.3
6u	U	1	0	11	0.0	0.316	14.2	LOS B	1.4	10.7	0.55	0.79	0.55	56.8
Approach		276	42	291	15.2	0.316	11.0	LOS B	1.4	10.7	0.55	0.79	0.55	53.9
NorthEast:	: Tweed Valley	y Way												
7	L2	46	9	48	19.6	0.210	3.2	LOS A	1.3	10.0	0.16	0.26	0.16	57.0
8	T1	599	46	631	7.7	0.210	2.5	LOS A	1.3	10.0	0.17	0.27	0.17	59.7
9u	U	9	2	9	22.2	0.210	12.6	LOS B	1.3	9.7	0.18	0.27	0.18	62.7
Approach		654	57	688	8.7	0.210	2.7	LOS A	1.3	10.0	0.17	0.27	0.17	59.6
SouthWest	t: Tweed Valle	y Way												
2	T1	34	5	36	14.7	0.060	3.1	LOS A	0.3	2.6	0.43	0.51	0.43	55.8
3	R2	35	5	37	14.3	0.060	10.7	LOS B	0.3	2.6	0.43	0.51	0.43	56.6
3u	U	1	0	1	0.0	0.060	13.1	LOS B	0.3	2.6	0.43	0.51	0.43	59.3
Approach		70	10	74	14.3	0.060	7.1	LOS A	0.3	2.6	0.43	0.51	0.43	56.2
All Vehicles	s	1000	109	1053	10.9	0.316	5.3	LOS A	1.4	10.7	0.29	0.43	0.29	57.6

Tweed Valley Way / Service Station Roundabout – 2032 Project Case

MOVEMENT SUMMARY

♥ Site: 1 [6. Tweed Valley Way / Service Station 2032 AM Peak - Project Case (Site Folder: General)]

Tweed Valley Way / Service Station

Site Category: (None) Roundabout

Vehicle Mo	vement Po	erformance												
Mov ID	Turn	INPUT V([Total veh/h	DLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEast: 5	Service Stati	ion												
4	L2	24	4	25	16.7	0.222	5.2	LOS A	0.9	7.5	0.54	0.80	0.54	51.6
6	R2	151	43	159	28.5	0.222	12.5	LOS B	0.9	7.5	0.54	0.80	0.54	53.9
6u	U	1	0	1	0.0	0.222	14.2	LOS B	0.9	7.5	0.54	0.80	0.54	56.7
Approach		176	47	185	26.7	0.222	11.5	LOS B	0.9	7.5	0.54	0.80	0.54	53.6
NorthEast: T	weed Valley	/ Way												
7	L2	46	6	48	13.0	0.229	3.1	LOSA	1.5	11.0	0.12	0.25	0.12	57.4
8	T1	597	42	628	7.0	0.229	2.4	LOS A	1.5	11.0	0.13	0.28	0.13	60.0
9u	U	41	33	43	80.5	0.229	13.5	LOS B	1.4	12.8	0.14	0.31	0.14	59.9
Approach		684	81	720	11.8	0.229	3.1	LOS A	1.5	12.8	0.13	0.28	0.13	59.8
SouthWest:	Tweed Valle	y Way												
2	T1	40	12	42	30.0	0.055	3.3	LOSA	0.3	2.4	0.42	0.47	0.42	56.2
3	R2	21	1	22	4.8	0.055	10.6	LOS B	0.3	2.4	0.42	0.47	0.42	57.4
3u	U	1	0	1	0.0	0.055	13.1	LOS B	0.3	2.4	0.42	0.47	0.42	59.9
Approach		62	13	65	21.0	0.055	5.9	LOS A	0.3	2.4	0.42	0.47	0.42	56.7
All Vehicles		922	141	971	15.3	0.229	4.9	LOSA	1.5	12.8	0.23	0.39	0.23	58.3

MOVEMENT SUMMARY

♥ Site: 1 [6. Tweed Valley Way / Service Station 2032 PM Peak - Project Case (Site Folder: General)]

Tweed Valley Way / Service Station

Vehicle M	ovement P	erformance												
Mov	Turn		OLUMES	DEMAND		Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	Satn v/c	Delay sec	Service	[Veh. veh	Dist] m	Que	Stop Rate	Cycles	Speed km/h
SouthEast:	Service Stat		VCIVII	VGIVII	76	VIC	300		VGII	""				KIIVII
4	L2	44	2	46	4.5	0.327	5.1	LOS A	1.4	11.1	0.58	0.81	0.58	51.7
6	R2	231	40	243	17.3	0.327	12.4	LOS B	1.4	11.1	0.58	0.81	0.58	54.2
6u	U	1	0	1	0.0	0.327	14.4	LOS B	1.4	11.1	0.58	0.81	0.58	56.7
Approach		276	42	291	15.2	0.327	11.2	LOS B	1.4	11.1	0.58	0.81	0.58	53.8
NorthEast:	Tweed Valley	/ Way												
7	L2	46	9	48	19.6	0.236	3.2	LOS A	1.6	11.7	0.17	0.26	0.17	56.9
8	T1	599	46	631	7.7	0.236	2.5	LOS A	1.6	11.7	0.18	0.29	0.18	59.7
9u	U	41	34	43	82.9	0.236	13.7	LOS B	1.4	13.4	0.19	0.32	0.19	59.5
Approach		686	89	722	13.0	0.236	3.2	LOS A	1.6	13.4	0.18	0.29	0.18	59.5
SouthWest:	: Tweed Valle	y Way												
2	T1	34	5	36	14.7	0.064	3.5	LOS A	0.4	2.8	0.49	0.54	0.49	55.6
3	R2	35	5	37	14.3	0.064	11.1	LOS B	0.4	2.8	0.49	0.54	0.49	56.3
3u	U	1	0	1	0.0	0.064	13.5	LOS B	0.4	2.8	0.49	0.54	0.49	59.1
Approach		70	10	74	14.3	0.064	7.4	LOS A	0.4	2.8	0.49	0.54	0.49	56.0
All Vehicles	;	1032	141	1086	13.7	0.327	5.6	LOSA	1.6	13.4	0.31	0.44	0.31	57.6

Tweed Valley Way / Service Station Roundabout – 2042 Base Case

MOVEMENT SUMMARY

♥ Site: 1 [6. Tweed Valley Way / Service Station 2042 AM Peak - Base Case (Site Folder: General)]

Tweed Valley Way / Service Station

Site Category: (None) Roundabout

Vehicle Mo	ovement F	erformance												
Mov ID	Turn	INPUT VO	OLUMES HV]	DEMAND [Total	FLOWS HV]	Deg. Satn	Aver. Delay	Level of Service	95% BACK [Veh.	OF QUEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver.
ID		veh/h	veh/h	veh/h	пv ј %	v/c	Sec	Service	veh	m Dist j	Que	Stop Rate	Cycles	Speed km/h
SouthEast: 5	Service Sta	tion												
4	L2	25	5	26	20.0	0.233	5.2	LOS A	0.9	7.9	0.54	0.79	0.54	51.5
6	R2	161	46	169	28.6	0.233	12.4	LOS B	0.9	7.9	0.54	0.79	0.54	53.9
6u	U	1	0	11	0.0	0.233	14.2	LOS B	0.9	7.9	0.54	0.79	0.54	56.7
Approach		187	51	197	27.3	0.233	11.4	LOS B	0.9	7.9	0.54	0.79	0.54	53.6
NorthEast: T	weed Valle	y Way												
7	L2	49	7	52	14.3	0.218	3.1	LOS A	1.4	10.2	0.12	0.26	0.12	57.3
8	T1	634	44	667	6.9	0.218	2.4	LOS A	1.4	10.2	0.13	0.26	0.13	60.0
9u	U	9	1	9	11.1	0.218	12.4	LOS B	1.3	9.9	0.14	0.26	0.14	63.4
Approach		692	52	728	7.5	0.218	2.6	LOS A	1.4	10.2	0.13	0.26	0.13	59.8
SouthWest:	Tweed Vall	ey Way												
2	T1	42	13	44	31.0	0.056	3.0	LOS A	0.3	2.5	0.38	0.45	0.38	56.4
3	R2	23	1	24	4.3	0.056	10.3	LOS B	0.3	2.5	0.38	0.45	0.38	57.6
3u	U	1	0	1	0.0	0.056	12.9	LOS B	0.3	2.5	0.38	0.45	0.38	60.1
Approach		66	14	69	21.2	0.056	5.7	LOS A	0.3	2.5	0.38	0.45	0.38	56.8
All Vehicles		945	117	995	12.4	0.233	4.6	LOS A	1.4	10.2	0.23	0.38	0.23	58.2

MOVEMENT SUMMARY

♥ Site: 1 [6. Tweed Valley Way / Service Station 2042 PM Peak - Base Case (Site Folder: General)]

Tweed Valley Way / Service Station

nent Performance Im INPUT \ Total	OLUMES											
	OLUMES											
Total			FLOWS	Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Ave
veh/h	HV] veh/h	[Total veh/h	HV] %	Satn v/c	Delay	Service	[Veh. veh	Dist]	Que	Stop Rate	Cycles	Spee km/
	ven/m	ven/n	76	V/C	sec		ven	m				KIII/
	_											
_												51.8
		258										54.3
J 1	0	1	0.0	0.342	14.4	LOS B	1.5	11.7	0.57	0.80	0.57	56.7
293	44	308	15.0	0.342	11.1	LOS B	1.5	11.7	0.57	0.80	0.57	53.9
d Valley Way												
2 49	9	52	18.4	0.224	3.2	LOSA	1.4	10.9	0.17	0.27	0.17	56.9
1 636	49	669	7.7	0.224	2.5	LOS A	1.4	10.9	0.18	0.27	0.18	59.6
J 9	2	9	22.2	0.224	12.6	LOS B	1.4	10.5	0.19	0.28	0.19	62.
694	60	731	8.6	0.224	2.7	LOS A	1.4	10.9	0.18	0.27	0.18	59.5
ed Valley Way												
1 36	6	38	16.7	0.067	3.2	LOSA	0.4	3.0	0.45	0.52	0.45	55.
2 38	6	40	15.8	0.067	10.8	LOS B	0.4	3.0	0.45	0.52	0.45	56.4
J 1	0	1	0.0	0.067	13.2	LOS B	0.4	3.0	0.45	0.52	0.45	59.
75	12	79	16.0	0.067	7.2	LOS A	0.4	3.0	0.45	0.52	0.45	56.
1062	116	1118	10.9	0.342	5.3	1084	15	11.7	0.31	0.43	0.31	57.5
2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 245 1 293 Valley Way 49 636 9 694 d Valley Way 36 2 38	47 2 245 42 1 0 293 44 Valley Way 49 9 636 49 9 2 694 60 d Valley Way 36 6 2 38 6 1 0 75 12	2 49 2 245 42 258 1 0 1 293 44 308 Valley Way 2 49 9 52 636 49 669 9 2 9 694 60 731 d Valley Way 36 6 38 2 38 6 40 1 0 1 75 12 79	2 49 4.3 2 258 17.1 1 0 1 0.0 293 44 308 15.0 Valley Way 49 9 52 18.4 636 49 669 7.7 9 2 9 22.2 694 60 731 8.6 d Valley Way 36 6 38 16.7 2 38 6 40 15.8 1 0 1 0.0 75 12 79 16.0	2 49 4.3 0.342 2 245 42 258 17.1 0.342 1 0 1 0.0 0.342 293 44 308 15.0 0.342 Valley Way Valley Way 49 9 52 18.4 0.224 636 49 669 7.7 0.224 9 2 9 22.2 0.224 694 60 731 8.6 0.224 d Valley Way 36 6 38 16.7 0.067 2 38 6 40 15.8 0.067 1 0 1 0.0 0.067 75 12 79 16.0 0.067	47 2 49 4.3 0.342 5.0 245 42 258 17.1 0.342 12.3 1 0 1 0.0 0.342 14.4 293 44 308 15.0 0.342 11.1 Valley Way 49 9 52 18.4 0.224 3.2 636 49 669 7.7 0.224 2.5 9 2 9 22.2 0.224 12.6 694 60 731 8.6 0.224 2.7 d Valley Way 4 Valley Way 36 6 38 16.7 0.067 3.2 4 Valley Way 38 6 40 15.8 0.067 10.8 1 0 1 0.0 0.067 13.2 75 12 79 16.0 0.067 7.2	47 2 49 4.3 0.342 5.0 LOS A 2 245 42 258 17.1 0.342 12.3 LOS B 1 0 1 0.0 0.342 14.4 LOS B 293 44 308 15.0 0.342 11.1 LOS B Valley Way 49 9 52 18.4 0.224 3.2 LOS A 636 49 669 7.7 0.224 2.5 LOS A 9 2 9 22.2 0.224 12.6 LOS B 694 60 731 8.6 0.224 2.7 LOS A d Valley Way 36 6 38 16.7 0.067 3.2 LOS A 2 38 6 40 15.8 0.067 10.8 LOS B 1 0 1 0.0 0.067 13.2 LOS B 75 12 79 16.0 0.067 7.2 LOS A	47	47	2 47 2 49 4.3 0.342 5.0 LOSA 1.5 11.7 0.57 2 245 42 258 17.1 0.342 12.3 LOSB 1.5 11.7 0.57 1 0 1 0.0 0.342 14.4 LOSB 1.5 11.7 0.57 293 44 308 15.0 0.342 11.1 LOSB 1.5 11.7 0.57 Valley Way 2 49 9 52 18.4 0.224 3.2 LOSA 1.4 10.9 0.17 636 49 669 7.7 0.224 2.5 LOSA 1.4 10.9 0.18 9 2 9 22.2 0.224 12.6 LOSB 1.4 10.5 0.19 694 60 731 8.6 0.224 2.7 LOSA 1.4 10.9 0.18 d Valley Way 3 6 6 38 16.7 0.067 3.2 LOSA 1.4 10.9 0.18 2 38 6 40 15.8 0.067 10.8 LOSB 0.4 3.0 0.45 1 0 1 0 0 1 0.0 0.067 13.2 LOSB 0.4 3.0 0.45 7 5 12 79 16.0 0.067 7.2 LOSB 0.4 3.0 0.45	477 2 49 43 0.342 5.0 LOS A 1.5 11.7 0.57 0.80 2.245 42 258 17.1 0.342 12.3 LOS B 1.5 11.7 0.57 0.80 1.00 1 0.0 0.342 14.4 LOS B 1.5 11.7 0.57 0.80 2.293 44 308 15.0 0.342 11.1 LOS B 1.5 11.7 0.57 0.80 2.293 44 308 15.0 0.342 11.1 LOS B 1.5 11.7 0.57 0.80 2.293 2.20 2.24 12.6 LOS A 1.4 10.9 0.17 0.27 636 49 669 7.7 0.224 2.5 LOS A 1.4 10.9 0.18 0.27 9 2 9 22.2 0.224 12.6 LOS B 1.4 10.5 0.19 0.28 694 60 731 8.6 0.224 2.7 LOS A 1.4 10.9 0.18 0.27 2.24 2.5 LOS A 1.4 10.9 0.18 0.27 2.24 2.5 LOS A 1.4 10.9 0.18 0.27 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2	47 2 49 4.3 0.342 5.0 LOSA 1.5 11.7 0.57 0.80 0.57 2.45 4.2 2.58 17.1 0.342 12.3 LOSB 1.5 11.7 0.57 0.80 0.57 1 0.0 1 0.0 0.342 14.4 LOSB 1.5 11.7 0.57 0.80 0.57 0.80 0.57 0.93 14.4 308 15.0 0.342 11.1 LOSB 1.5 11.7 0.57 0.80 0.57 0.80 0.57 0.93 14.4 0.0 0.57 0.80 0.57 0.50 0.50 0.50 0.50 0.50 0.50 0.5

Tweed Valley Way / Service Station Roundabout – 2042 Project Case

MOVEMENT SUMMARY

♥ Site: 1 [6. Tweed Valley Way / Service Station 2042 AM Peak - Project Case (Site Folder: General)]

Tweed Valley Way / Service Station

Site Category: (None) Roundabout

Vehicle N	Novement P	erformance												
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEast	: Service Stat	tion												
4	L2	25	5	26	20.0	0.240	5.4	LOS A	1.0	8.2	0.56	0.81	0.56	51.5
6	R2	161	46	169	28.6	0.240	12.6	LOS B	1.0	8.2	0.56	0.81	0.56	53.8
6u	U	1	0	1	0.0	0.240	14.4	LOS B	1.0	8.2	0.56	0.81	0.56	56.6
Approach		187	51	197	27.3	0.240	11.7	LOS B	1.0	8.2	0.56	0.81	0.56	53.5
NorthEast:	Tweed Valle	y Way												
7	L2	49	7	52	14.3	0.242	3.1	LOS A	1.6	11.8	0.13	0.25	0.13	57.3
8	T1	634	44	667	6.9	0.242	2.4	LOS A	1.6	11.8	0.14	0.28	0.14	59.9
9u	U	41	33	43	80.5	0.242	13.5	LOS B	1.5	13.6	0.15	0.31	0.15	59.9
Approach		724	84	762	11.6	0.242	3.1	LOS A	1.6	13.6	0.14	0.28	0.14	59.7
SouthWes	t: Tweed Valle	ey Way												
2	T1	42	13	44	31.0	0.059	3.4	LOS A	0.3	2.6	0.43	0.48	0.43	56.1
3	R2	23	1	24	4.3	0.059	10.6	LOS B	0.3	2.6	0.43	0.48	0.43	57.3
3u	U	1	0	1	0.0	0.059	13.2	LOS B	0.3	2.6	0.43	0.48	0.43	59.8
Approach		66	14	69	21.2	0.059	6.1	LOS A	0.3	2.6	0.43	0.48	0.43	56.6
All Vehicle	s	977	149	1028	15.3	0.242	4.9	LOSA	1.6	13.6	0.24	0.39	0.24	58.2

MOVEMENT SUMMARY

♥ Site: 1 [6. Tweed Valley Way / Service Station 2042 PM Peak -Project Case (Site Folder: General)]

Tweed Valley Way / Service Station

Vehicle N	Movement P	erformance												
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Ave Spee km
SouthEast	t: Service Sta		VOIDII	VOIDII		V/ 0	300		¥0II					1011
4	L2	47	2	49	4.3	0.353	5.3	LOS A	1.6	12.3	0.60	0.83	0.61	51
6	R2	245	42	258	17.1	0.353	12.6	LOS B	1.6	12.3	0.60	0.83	0.61	54
6u	U	1	0	1	0.0	0.353	14.6	LOS B	1.6	12.3	0.60	0.83	0.61	56.
Approach		293	44	308	15.0	0.353	11.4	LOS B	1.6	12.3	0.60	0.83	0.61	53.
NorthEast	: Tweed Valle	y Way												
7	L2	49	9	52	18.4	0.250	3.2	LOS A	1.7	12.7	0.18	0.26	0.18	56.
8	T1	636	49	669	7.7	0.250	2.5	LOS A	1.7	12.7	0.19	0.29	0.19	59.
9u	U	41	34	43	82.9	0.250	13.8	LOS B	1.5	14.3	0.20	0.32	0.20	59.
Approach		726	92	764	12.7	0.250	3.2	LOS A	1.7	14.3	0.19	0.29	0.19	59.
SouthWes	t: Tweed Vall	ey Way												
2	T1	36	6	38	16.7	0.070	3.6	LOS A	0.4	3.1	0.50	0.54	0.50	55.
3	R2	38	6	40	15.8	0.070	11.2	LOS B	0.4	3.1	0.50	0.54	0.50	56.
3u	U	1	0	1	0.0	0.070	13.5	LOS B	0.4	3.1	0.50	0.54	0.50	59.
Approach		75	12	79	16.0	0.070	7.6	LOS A	0.4	3.1	0.50	0.54	0.50	55.
All Vehicle	s	1094	148	1152	13.5	0.353	5.7	LOS A	1.7	14.3	0.32	0.45	0.32	57.

The experience you deserve

Appendix C – BCR Calculations

 \geqslant

– www.burchills.com.au

Client: Hanson Construction Materials Pty Ltd

Doc No.: BE190043-RP-EE-02

Doc Title: Proposed TSP Haulage Route Economic Evaluation

Tweed Coast Road Maintenance Cost Saving

	Base Case	Project Case	
Year	VKT along Tweed	VKT along Tweed Coast	NET VKT
	Coast Road Only	Road Only	
Annually*	74.144	0	-74.144

Year	Annual Maintenance	Annual Maintenance	Annual Maintenance
	Costs (\$)	Cost (\$)	Cost Savings (\$)
2022	\$0	\$0	\$0
2023	\$64,000	\$51,803	\$12,197
2024	\$64,000	\$51,803	\$12,197
2025	\$64,000	\$51,803	\$12,197
2026	\$64,000	\$51,803	\$12,197
2027	\$64,000	\$51,803	\$12,197
2028	\$64,000	\$51,803	\$12,197
2029	\$64,000	\$51,803	\$12,197
2030	\$64,000	\$51,803	\$12,197
2031	\$64,000	\$51,803	\$12,197
2032*	\$6,549,162	\$5,901,674	\$647,488
2033	\$98,237	\$86,041	\$12,197
2034	\$98,237	\$86,041	\$12,197
2035	\$98,237	\$86,041	\$12,197
2036	\$98,237	\$86,041	\$12,197
2037	\$98,237	\$86,041	\$12,197
2038	\$98,237	\$86,041	\$12,197
2039	\$98,237	\$86,041	\$12,197
2040	\$98,237	\$86,041	\$12,197
2041	\$98,237	\$86,041	\$12,197
2042	\$98,237	\$86,041	\$12,197
2043	\$98,237	\$86,041	\$12,197
2044	\$98,237	\$86,041	\$12,197
2045	\$98,237	\$86,041	\$12,197
2046	\$98,237	\$86,041	\$12,197
2047	\$98,237	\$86,041	\$12,197
2048	\$98,237	\$86,041	\$12,197
2049	\$98,237	\$86,041	\$12,197
2050	\$98,237	\$86,041	\$12,197
2051	\$98,237	\$86,041	\$12,197
2052	\$98,237	\$86,041	\$12,197
Total	\$9,089,911	\$8,088,717	\$1,001,193

Existing Tweed Coast Road (2-lanes) Maintenance Costs

*Tweed Coast Road upgraded to 4 Lanes from the M1 Interchange to Crescent St intersection

Tweed Coast Road Upgrades to 4-lanes	Base Case TCR 4-lanes Upgrade Cost	Project Case TCR 4-lanes Upgrade Cost
Capital Cost to Upgrade Tweed Coast Road from 2 lanes to 4 lanes*	\$6,549,162	\$5,901,674
1.5% p.a. maintenance cost assumed for the proposed road geometry with TSP trucks (valued at \$4.5m)	\$98,237	

Data extracted from the Tweed Office Council 20 year growth Tweed Noda Cont	ilbullott i latt atta growlit to 200
	Base Case TCR 2-lanes
4% p.a. maintenance cost assumed for the existing road geometry (valued at \$1.6m)	\$64,000

Vehicle Type	Unit costs (cents / vkt)	Unit costs (dollar / vkt)	Annual Maintenance Cost Savings (\$)					
Rigid 3 axle plus trailer 16.45 \$0.16 \$12,196.74								
Source: TfNSW "Economic Parameter Values" (2020)	Source: TfNSW "Economic Parameter Values" (2020) Table 48 - Unit cost of road maintenance by vehicle types							

· · · · · · · · · · · · · · · · · · ·				
PROJECT: Tweed Sand Plant (TSP)	Tweed Coast Road Maintenance Cost Reduction	REVISION: B	AUTHOR: D.KLEIMEYER	BURCHILLS ENGINEERING SOLUTIONS

Network Crash Cost Saving

Base Case				Project Case																			
Link Name	VKT per year	MVKT per year	Road Type	Road Width Description	Crash Cost (\$/year)	Fatal crash	Injury Crash Rate	crash	cost (\$)	VKT per year WVKT per vear		er veari	VK I per vear	VK I per vear .	VK I per vear	VK I ner veari	Road Type	Road Width Description	Crash Cost (\$/year)	Fatal crash	Injury Crash Rate	crash	cost (\$)
		yeur		Description	(w/year)	rate	rtato	Rural Fatal	Rural Injury		yeui		Description	(\$/year)	iale	Nate	Rural Fatal	Rural Injury					
Altona Road Unsealed	26,867	0.027	Local	Rural Single	\$3,598	0.009	0.1254	\$7,808,768	\$507,553														
Altona Road Sealed	74,613	0.075	Local	Rural Single	\$9,993	0.009	0.1254	\$7,808,768	\$507,553														
Crescent Street	12,288	0.012	Local	Rural Single	\$1,646	0.009	0.1254	\$7,808,768	\$507,553														
Tweed Coast Road (existing 2-lanes)	74,144	0.074	Arterial	Rural Single	\$9,930	0.009	0.1254	\$7,808,768	\$507,553														
M1 off-ramp / on-ramp and M1	51,270	0.051	Freeway	Rural Single	\$6,866	0.009	0.1254	\$7,808,768	\$507,553	189,173	0.189	Freeway	Rural Single	\$25,335	0.009	0.1254	\$7,808,768	\$507,553					
Tweed Valley Way										15,071	0.015	Arterial	Rural Single	\$2,018	0.009	0.1254	\$7,808,768	\$507,553					
Total	239,182	0.239			\$32,033					204,244	0.204			\$27,354									

Tweed Coast Road Upgrade Crash Cost

		Base Case								
Link Name	VKT per year	MVKT per year	Road Type	Road Width Description	Crash Cost (\$/year)	Fatal crash	Injury Crash Rate	crash cos	t (\$/mvkt)	
		,			(,			Rural Fatal	Rural Injury	
Tweed Coast Road (proposed 4-lanes)	74,144	0.074	Arterial	Urban Divided	\$16,061	0.0044	0.2513	\$9,242,523	\$700,151	

Haulana Bauta via Turand Canat Band	M1 N	lorth	M1 S	Annual VKT	
Haulage Route via Tweed Coast Road	То	From	То	From	Alliluai VKI
Altona Road Unsealed	516	516	516	516	26,867
Altona Road Sealed	1,433	1,433	1,433	1,433	74,613
Crescent Street	236	236	236	236	12,288
Tweed Coast Road	1,424	1,424	1,424	1,424	74,144
M1	1,026	671	3,491	3,653	51,270
Total	4,635	4,280	7,100	7,262	239,182
Trip Distribution	95%	95%	5%	5%	
Annual TSP Volumes	24,732	24,732	1,302	1,302	
VKT	114,633	105,853	9,242	9,453	

Haulage Route via Tweed	M1 North		M1	Annual VKT	
Valley Way	То	From	То	From	Ailliuai VICI
Tweed Valley Way	567	0	0	805	15,071
M1 on/off ramp two way	4,128	3,425	1,037	785	189,173
Total	4,695	3,425	1,037	1,590	204,244
Trip Distribution	95%	95%	5%	5%	
Annual TSP Volumes	24,732	24,732	1,302	1,302	
VKT	116,117	84,708	1,350	2,070	

NSW Crash Rates - Rural and Urban Carriageway (crashes per 100MVKT)

	Fatal Crash	Injury Crash	Fatal Crash	Injury Crash	
Attribute	Rate	Rate	Rate	Rate	
	Rural by c	arriageway	Urban by carriageway		
Divided	0.41	10.23	0.44	25.13	
Single	0.9	12.54	0.7	35.19	
Cost	\$7,808,768	\$507,553	\$9,242,523	\$700,151	

Source: Table 25 Average Crash Costs by Road Type

Two-way Volumes	Extraction (Tonnes)				
11,780	214,932	recorded data (2018)			
27,404	500,000 forecast to approved tonnes extraction				
52,068	950,000	forecast to future tonnes extraction			

Hanson's TSP trucks distribution						
95% to/from north						
5%	to /from south					

Tweed Sand Plant (TSP)	Road Safety Benefits	20/10/2021	REVISION:	AUTHOR: A.Szewczak	BURCHILLS ENGINEERING SOLUTIONS
------------------------	----------------------	------------	-----------	--------------------	---------------------------------

Road Safety Benefits

	Base Case	Project Case	
Year	Crash Cost	Crash Cost	Road Safety Benefits
2022	\$32,033	\$27,354	\$4,679
2032	\$38,164	\$27,354	\$10,810
2042	\$38,164	\$27,354	\$10,810

Year	Annual Maintenance	Annual Maintenance	Annual Maintenance
2022	Costs (\$)	Cost (\$)	Cost Savings (\$)
	\$0	\$0 \$07.054	\$0
2023	\$32,033	\$27,354	\$4,679
2024	\$32,033	\$27,354	\$4,679
2025	\$32,033	\$27,354	\$4,679
2026	\$32,033	\$27,354	\$4,679
2027	\$32,033	\$27,354	\$4,679
2028	\$32,033	\$27,354	\$4,679
2029	\$32,033	\$27,354	\$4,679
2030	\$32,033	\$27,354	\$4,679
2031	\$32,033	\$27,354	\$4,679
2032	\$38,164	\$27,354	\$10,810
2033	\$38,164	\$27,354	\$10,810
2034	\$38,164	\$27,354	\$10,810
2035	\$38,164	\$27,354	\$10,810
2036	\$38,164	\$27,354	\$10,810
2037	\$38,164	\$27,354	\$10,810
2038	\$38,164	\$27,354	\$10,810
2039	\$38,164	\$27,354	\$10,810
2040	\$38,164	\$27,354	\$10,810
2041	\$38,164	\$27,354	\$10,810
2042	\$38,164	\$27,354	\$10,810
2043	\$38,164	\$27,354	\$10,810
2044	\$38,164	\$27,354	\$10,810
2045	\$38,164	\$27,354	\$10,810
2046	\$38,164	\$27,354	\$10,810
2047	\$38,164	\$27,354	\$10,810
2048	\$38,164	\$27,354	\$10,810
2049	\$38,164	\$27,354	\$10,810
2050	\$38,164	\$27,354	\$10,810
2051	\$38,164	\$27,354	\$10,810
2052	\$38,164	\$27,354	\$10,810
Total	\$1,089,729	\$820,609	\$269,120

Existing Tweed Coast Road (2-lanes) Crash Costs

Tweed Coast Road upgraded to 4 Lanes Crash Costs

PROJECT: Tweed Sand Plant (TSP)	TITLE: Road Safety Benefits	REVISION: B	AUTHOR: A.Szewczak	BURCHILLS ENGINEERING SOLUTIONS
---------------------------------	--------------------------------	----------------	------------------------------	---------------------------------

Environmental Cost Benefits

	Base Case	Project Case	NET VKT	
Year	VKT	VKT		
Annually Urban*	74,144	0	-74,144	
Annually Rural	171,442	244,545	73,103	

^{*} Tweed Coast Road Only

Year	Base Case	Project Case	Environmental
i eai	Environmental	Environmental	Benefits (\$)
2022	\$0	\$0	\$0
2023	\$109,997	\$49,765	\$60,232
2024	\$109,997	\$49,765	\$60,232
2025	\$109,997	\$49,765	\$60,232
2026	\$109,997	\$49,765	\$60,232
2027	\$109,997	\$49,765	\$60,232
2028	\$109,997	\$49,765	\$60,232
2029	\$109,997	\$49,765	\$60,232
2030	\$109,997	\$49,765	\$60,232
2031	\$109,997	\$49,765	\$60,232
2032	\$109,997	\$49,765	\$60,232
2033	\$109,997	\$49,765	\$60,232
2034	\$109,997	\$49,765	\$60,232
2035	\$109,997	\$49,765	\$60,232
2036	\$109,997	\$49,765	\$60,232
2037	\$109,997	\$49,765	\$60,232
2038	\$109,997	\$49,765	\$60,232
2039	\$109,997	\$49,765	\$60,232
2040	\$109,997	\$49,765	\$60,232
2041	\$109,997	\$49,765	\$60,232
2042	\$109,997	\$49,765	\$60,232
2043	\$109,997	\$49,765	\$60,232
2044	\$109,997	\$49,765	\$60,232
2045	\$109,997	\$49,765	\$60,232
2046	\$109,997	\$49,765	\$60,232
2047	\$109,997	\$49,765	\$60,232
2048	\$109,997	\$49,765	\$60,232
2049	\$109,997	\$49,765	\$60,232
2050	\$109,997	\$49,765	\$60,232
2051	\$109,997	\$49,765	\$60,232
2052	\$109,997	\$49,765	\$60,232
Total	\$3,299,898	\$1,492,946	\$1,806,952

Direction	North		South		Total	
Direction	From	То	From	To	Total	
Distribution	95%	95%	5%	5%	N/A	
Annual TSP Volumes	24,732	24,732	1,302	1,302	52,068	
Base Case Distance (Urban TCR only) (km)	1.424	1.424	1.424	1.424	N/A	
Base Case VKT (Urban TCR only)	35,219	35,219	1,854	1,854	74,144	
Base Case Distance Rural (km)	3.334	2.979	5.799	5.961	18.073	
Base Case VKT Rural	82,457	73,677	7,549	7,759	171,442	
Project Case Distance Rural (km)	5.469	4.199	1.811	2.364	13.843	
Project Case VKT Rural	135,260	103,850	2,357	3,077	244,545	

RURAL

Cost in dollars per kilometre travelled

Externality type	Articulated Trucks - Rural (Medium)
Air pollution	\$0.0065
GHG emissions	\$0.1464
Noise	\$0.0111
Water pollution	\$0.0395
Total	\$0.2035

Source: TfNSW "Economic Parameter Values" (2020) Table 40 - Externality unit costs for freight vehicles (cents per kilometre travelled) – rural

URBAN

Cost in dollars per kilometre travelled

Externality type	Articulated Trucks - Urban (Medium)
Air pollution	\$0.6582
GHG emissions	\$0.1464
Noise	\$0.1097
Water pollution	\$0.0987
Total	\$1.0130

Source: TfNSW "Economic Parameter Values" (2020) Table 39 - Externality unit costs for freight vehicles (cents per kilometre travelled) – urban

PROJECT: Tweed Sand Plant (TSP)	Environmental Costs Benefits	REVISION:	AUTHOR: A.Szewczak	BURCHILLS ENGINEERING SOLUTIONS
---------------------------------	---------------------------------	-----------	------------------------------	---------------------------------

Travel Time Cost along Tweed Valley Way (Project Case)

	Base	Case	Project Case		Difference		
Year	AM and	PM Peak	AM and PM Peak		AM and PM Peak		Annual Travel Time
i cai	Annual Delay (hours)	Costs (\$)					
	Light Vehicles	Heavy Vehicles	Light Vehicles	Heavy Vehicles	Light Vehicles	Heavy Vehicles	
2022	1,582	174	2,194	432	612	258	\$35,371
2031	1,680	184	2,324	445	643	261	\$36,537
2041	1,795	197	2,474	461	679	264	\$37,907

	Annual Travel Time
Year	Cost (\$)
2022	\$0
2023	\$35,500
2024	\$35,630
2025	\$35,760
2026	\$35,889
2027	\$36,019
2028	\$36,148
2029	\$36,278
2030	\$36,407
2031	\$36,537
2032	\$36,537
2033	\$36,674
2034	\$36,811
2035	\$36,948
2036	\$37,085
2037	\$37,222
2038	\$37,359
2039	\$37,496
2040	\$37,633
2041	\$37,770
2042	\$37,907
2043	\$37,222
2044	\$37,359
2045	\$37,496
2046	\$37,633
2047	\$37,770
2048	\$37,633
2049	\$37,496
2050	\$37,359
2051	\$37,222
2052	\$37,085
Total	\$1,107,887

Assumptions					
Light Vehicle TTC	\$31.90				
Heavy Vehicle TTC	\$61.47				

PROJECT: Tweed Sand Plant (TSP)	TITLE: Tweed Valley Way Travel Time Costs	DATE: 20/10/2021	REVISION: B	AUTHOR: A.SZEWCZAK	BURCHILLS ENGINEERING SOLUTIONS	
---------------------------------	---	---------------------	----------------	-----------------------	---------------------------------	--

Cost					Benefits						
Year		Travel Time Cost along Tweed Valley Way	Proposed Roundabout Maintenance Cost	Total Cost	Travel Time Saving along Tweed Coast Road	Tweed Coast Rd Maintenance Cost Reduction	Safety Benefits	Environmental Benefits	Total Benefit	NET BENEFIT (COST)	
2022	Base Year	0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2023	Year 1	1	\$35,500	\$48,000	\$83,500	\$52,368	\$12,197	\$4,679	\$60,232	\$129,476	\$45,975
2024	Year 2	2	\$35,630	\$48,000	\$83,630	\$49,871	\$12,197	\$4,679	\$60,232	\$126,979	\$43,349
2025	Year 3	3	\$35,760	\$48,000	\$83,760	\$47,374	\$12,197	\$4,679	\$60,232	\$124,482	\$40,722
2026	Year 4	4	\$35,889	\$48,000	\$83,889	\$44,878	\$12,197	\$4,679	\$60,232	\$121,985	\$38,096
2027	Year 5	5	\$36,019	\$48,000	\$84,019	\$42,381	\$12,197	\$4,679	\$60,232	\$119,488	\$35,470
2028	Year 6	6	\$36,148	\$48,000	\$84,148	\$39,884	\$12,197	\$4,679	\$60,232	\$116,991	\$32,843
2029	Year 7	7	\$36,278	\$48,000	\$84,278	\$37,387	\$12,197	\$4,679	\$60,232	\$114,495	\$30,217
2030	Year 8	8	\$36,407	\$48,000	\$84,407	\$34,890	\$12,197	\$4,679	\$60,232	\$111,998	\$27,591
2031	Year 9	9	\$36,537	\$48,000	\$84,537	\$32,393	\$12,197	\$4,679	\$60,232	\$109,501	\$24,964
2032	Year 10	10	\$36,537	\$48,000	\$84,537	\$32,393	\$647,488	\$10,810	\$60,232	\$750,923	\$666,386
2033	Year 11	11	\$36,674	\$48,000	\$84,674	\$59,295	\$12,197	\$10,810	\$60,232	\$142,534	\$57,860
2034	Year 12	12	\$36,811	\$48,000	\$84,811	\$86,197	\$12,197	\$10,810	\$60,232	\$169,435	\$84,624
2035	Year 13	13	\$36,948	\$48,000	\$84,948	\$113,099	\$12,197	\$10,810	\$60,232	\$196,337	\$111,389
2036	Year 14	14	\$37,085	\$48,000	\$85,085	\$140,000	\$12,197	\$10,810	\$60,232	\$223,239	\$138,154
2037	Year 15	15	\$37,222	\$48,000	\$85,222	\$166,902	\$12,197	\$10,810	\$60,232	\$250,141	\$164,919
2038	Year 16	16	\$37,359	\$48,000	\$85,359	\$193,804	\$12,197	\$10,810	\$60,232	\$277,042	\$191,683
2039	Year 17	17	\$37,496	\$48,000	\$85,496	\$220,706	\$12,197	\$10,810	\$60,232	\$303,944	\$218,448
2040	Year 18	18	\$37,633	\$48,000	\$85,633	\$247,607	\$12,197	\$10,810	\$60,232	\$330,846	\$245,213
2041	Year 19	19	\$37,770	\$48,000	\$85,770	\$274,509	\$12,197	\$10,810	\$60,232	\$357,748	\$271,977
2042	Year 20	20	\$37,907	\$48,000	\$85,907	\$301,411	\$12,197	\$10,810	\$60,232	\$384,649	\$298,742
2043	Year 21	21	\$37,222	\$48,000	\$85,222	\$166,902	\$12,197	\$10,810	\$60,232	\$250,141	\$164,919
2044	Year 22	22	\$37,359	\$48,000	\$85,359	\$193,804	\$12,197	\$10,810	\$60,232	\$277,042	\$191,683
2045	Year 23	23	\$37,496	\$48,000	\$85,496	\$220,706	\$12,197	\$10,810	\$60,232	\$303,944	\$218,448
2046	Year 24	24	\$37,633	\$48,000	\$85,633	\$247,607	\$12,197	\$10,810	\$60,232	\$330,846	\$245,213
2047	Year 25	25	\$37,770	\$48,000	\$85,770	\$274,509	\$12,197	\$10,810	\$60,232	\$357,748	\$271,977
2048	Year 26	26	\$37,633	\$48,000	\$85,633	\$247,607	\$12,197	\$10,810	\$60,232	\$330,846	\$245,213
2049	Year 27	27	\$37,496	\$48,000	\$85,496	\$220,706	\$12,197	\$10,810	\$60,232	\$303,944	\$218,448
2050	Year 28	28	\$37,359	\$48,000	\$85,359	\$193,804	\$12,197	\$10,810	\$60,232	\$277,042	\$191,683
2051	Year 29	29	\$37,222	\$48,000	\$85,222	\$166,902	\$12,197	\$10,810	\$60,232	\$250,141	\$164,919
2052	Year 30	30	\$37,085	\$48,000	\$85,085	\$140,000	\$12,197	\$10,810	\$60,232	\$223,239	\$138,154
	Total		\$1,107,887	\$1,440,000	\$2,547,887	\$4,289,900	\$1,001,193	\$269,120	\$1,806,952	\$7,367,165	\$4,819,278
		Proport	tion of total benefits			58%	14%	4%	25%	100%	

	Discounted Cash Flows								
Discount Rate	Travel Time Cost along Tweed Valley Way	Proposed Roundabout Maintenance Cost	TOTAL COST	Travel Time Saving	Tweed Coast Rd Maintenance Cost	Safety Benefits	Environmental Benefits	Total Benefit	NET BENEFIT (COST)
	Tweed valley way	Maintenance Cost			Reduction		Dellelits		
NPV at 7%	\$453,685	\$595,634	\$1,049,319	\$1,269,772	\$474,300	\$94,197	\$747,418	\$2,585,686	\$1,536,367
NPV at 3%	\$720,706	\$940,821	\$1,661,527	\$2,444,073	\$711,778	\$164,144	\$1,180,569	\$4,500,563	\$2,839,036
NPV at 10%	\$343,334	\$452,492	\$795,826	\$834,559	\$359,910	\$66,596	\$567,799	\$1,828,864	\$1,033,039

SUMMARY OF RESULTS					
Present Value Benefits @ 7%	\$2,585,686				
Present Value Costs @ 7%	\$1,049,319				
Benefit Cost Ratio 1(BCR) @ 7%	2.46				
Net Present Value @ 7%	\$1 536 367				

	TEST 3	TEST 4	TEST 3	TEST 4
Sensitivity Testing			@ 7%	@ 7%
Sensitivity resting	@ 3%	@ 10%	PV Benefits -20%	PV Benefits + 20%
			PV Cost +20%	PV Cos t- 20%
Present Value Benefits	\$4,500,563	\$1,661,527	\$2,068,549	\$3,102,824
Present Value Costs	\$1,661,527	\$795,826	\$1,259,183	\$839,455
Net Present Value	\$2,839,036	\$1,033,039	\$809,366	\$2,263,368
Benefit Cost Ratio (BCR)	2.71	2.09	1.64	3.70

TITLE: BCR Base Case vs Project Case	PROJECT: Tweed Sand Plant (TSP)	REF NUMBER: BE190043	DATE: 20/10/2021	REVISION:	AUTHOR: A.SZEWCZAK	BURCHILLS
--------------------------------------	---------------------------------	-------------------------	---------------------	-----------	--------------------	-----------

Travel Time Savings along Tweed Coast Road (Project Case)

	Base	Case	Project Case			Benefit		
Year	AM and PM Peak		AM and PM Peak		AM and	Annual Travel Time		
i cai	Annual Delay (hours)	Savings (\$)						
	Light Vehicles	Heavy Vehicles	Light Vehicles	Heavy Vehicles	Light Vehicles	Heavy Vehicles		
2022	3,972	333	2,640	131	1,332	201	\$54,865	
2031	7,893	561	7,328	327	565	234	\$32,393	
2041	32,471	2,205	24,839	1,262	7,632	943	\$301,411	

	Annual Travel Time
Year	Benefits (\$)
2022	\$0
2022	\$52,368
2024	\$49,871
2025	\$47,374
2026	\$44,878
2027	\$42,381
2028	\$39,884
2029	\$37,387
2030	\$34,890
2031	\$32,393
2032	\$32,393
2033	\$59,295
2034	\$86,197
2035	\$113,099
2036	\$140,000
2037	\$166,902
2038	\$193,804
2039	\$220,706
2040	\$247,607
2041	\$274,509
2042	\$301,411
2043	\$166,902
2044	\$193,804
2045	\$220,706
2046	\$247,607
2047	\$274,509
2048	\$247,607
2049	\$220,706
2050	\$193,804
2051	\$166,902
2052	\$140,000
Total	\$4,289,900

Assumptions	
Light Vehicle TTC	\$31.90
Heavy Vehicle TTC	\$61.47

PROJECT: Tweed Sand Plant (TSP)	TITLE: Tweed Coast Road Travel Time Savings	DATE: 07/10/2021	REVISION:	AUTHOR: A. Szewczak	BURCHILLS ENGINEERING SOLUTIONS	
---------------------------------	---	---------------------	-----------	-------------------------------	---------------------------------	--