

REPORT TO KINCOPPAL-ROSE BAY SCHOOL

ON PRELIMINARY (STAGE 1) SITE INVESTIGATION

FOR

PROPOSED DEVELOPMENT AT KINCOPPAL-ROSE BAY SCHOOL

AT CORNER NEW SOUTH HEAD ROAD AND VAUCLUSE ROAD, VAUCLUSE, NSW

Date: 14 May 2021 Ref: E32915BArpt-Rev1

JKEnvironments.com.au

T: +61 2 9888 5000 JK Environments Pty Ltd ABN 90 633 911 403

Report prepared by:

Anthony Barkway Senior Environmental Engineer

Report reviewed by:

Vittal Boggaram Principal Associate

For and on behalf of JKE PO BOX 976 NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date
E32915BDrpt	Final Report	2 March 2020
E32915BArpt-Rev1	Revised Report based on updated information	14 May 2021

© Document copyright of JK Environments (JKE)

This Report (which includes all attachments and annexures) has been prepared by JKE for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKE and the Client and is therefore subject to:

- a) JKE's proposal in respect of the work covered by the Report;
- b) The limitations defined in the client's brief to JKE; and
- c) The terms of contract between JKE and the Client, including terms limiting the liability of JKE.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKE which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

Executive Summary

Mr. Terry Mahady of Mahady Management on behalf of Kincoppal-Rose Bay, School of the Sacred Heart (KRB) ('the client') commissioned JK Environments (JKE) to undertake a Preliminary (Stage 1) Site Investigation (PSI) for the proposed development at KRB situated on the corner of New South Head Road and Vaucluse Road, Vaucluse, NSW. The site location is shown on Figure 1. The assessment was limited to the proposed development areas only as shown on Figure 2. For the purpose of this report, proposed development areas subject of this assessment has been referred to as 'the site', whilst the whole property has been referred to as 'the wider site'.

This report has been prepared to support the lodgement of a State Significant Development Application (SSDA).

The proposed development includes the following:

- Construction of a new one and two-storey Early Learning Centre (ELC) building in the north-western part of the wider site. Excavation to a maximum depth of approximately 4m below ground level (BGL) will be required within the north-eastern portion of the proposed ELC building development;
- Construction of a new elevated walkway and an entry road off Vaucluse Road in central and northern parts of the wider site area. The entry road is proposed to be connected to the existing concrete driveway in the area which will be widened to accommodate a new "drop-off" zone. It is assumed that the proposed new roadways will be at, or close to, existing surface levels with anticipated soil disturbances limited to shallow depths of up to 1.0m below the ground level (BGL); and
- A new bus parking area underlain by a basement parking level is proposed in the south-eastern corner of the wider site. A driveway area and vehicle ramp are proposed off the south-western corner of the basement. Excavation to a maximum depth of approximately 6mBGL will be required along the northern side of the proposed basement. A reconfigured on-grade car parking area have also been proposed to the west of the future basement area, with the southern extent of the car parking partially suspended over an existing heritage sandstone block retaining wall.

Outlines of the proposed ELC building, bus parking area with basement and elevated walkway and road are shown on the attached Figure 2.

The primary aims of the assessment were to identify any past or present potentially contaminating activities at the site, identify the potential for site contamination, and make an assessment of the soil and groundwater contamination conditions. The assessment objectives were to:

- Provide an appraisal of the past site use(s) based on a review of historical records;
- Assess the current site conditions and use(s) via a site walkover inspection;
- Identify potential contamination sources/areas of environmental concern (AEC) and contaminants of potential concern (CoPC);
- Assess the soil and groundwater contamination conditions via implementation of a sampling and analysis program;
- Prepare a conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Provide a preliminary waste classification for off-site disposal of soil;
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint); and
- Assess whether further intrusive investigation and/or remediation is required.

The scope of work included a review of historical information, a site inspection, and sampling from 10 boreholes and one groundwater monitoring well. Based on the historical information and site observations, JKE identified the site as being historically used as school grounds including onboarding facilities (accommodation) as well as possibly for religious use. Potential sources of contamination identified within the site included; historical site filling activities; possible use of pesticides; and hazardous building materials within current and former structures on the site.

The investigation identified asbestos, lead and Carcinogenic PAHs contamination in soils in northern and southern parts of the site within areas of proposed development works. The source of contamination was identified as the fill material historically imported onto the site. The contaminants requiring remediation include: lead and Carcinogenic PAHs

contamination hotspots in the northern part of the site where the new ELC building is proposed and southern part of the site area where the new bus/carpark is proposed, and TRH F3 identified also within northern and southern parts of the site which poses a risk to ecological receptors. Some of the TRH F3 exceedances where co-located with lead and Carcinogenic PAHs requiring remediation due to the potential risk to human health.

Significant contamination of groundwater was not identified. Elevated concentrations of heavy metals zinc and copper were detected in groundwater samples, though were representative of groundwater conditions within an urban environment and considered to be a regional issue. A number of PAH compounds namely: phenanthrene, anthracene, fluoranthene and benzo(a)pyrene were also detected above the ecological and human health SAC in the groundwater samples from MW2. However, JKE are of the opinion that slow groundwater recharge and sediment present within the well during sampling may have cause interference with the PAH analysis. In addition, groundwater conditions and quality should be further confirmed during the remediation/validation process.

Based on the findings of the assessment, JKE are of the opinion that the site can be made suitable for the proposed development, subject to the implementation of the following recommendations:

- Prepare a Remediation Action Plan (RAP) to address the contamination issues identified at the site. The RAP will include the requirements for a data gap investigation (DGI) to address the data gaps identified in this assessment and for the preparation of an unexpected find protocol (UFP). Due to the presence of deep filling (approximately 6mBGL) encountered in the north-west section of the site, the DGI should include a screening for hazardous ground gas (HGG) as outlined in the NSW EPA guidelines for HGG; and
- Undertake a validation assessment documenting the remediation works.

The conclusions and recommendations should be read in conjunction with the limitations presented in the body of this report.

Table of Contents

1	INTRO	DUCTION	1
	1.1	PROPOSED DEVELOPMENT DETAILS	1
	1.2	AIMS AND OBJECTIVES	1
	1.3	Scope of Work	2
2	SITE I	NFORMATION	3
	2.1	SITE IDENTIFICATION	3
	2.2	SITE LOCATION AND REGIONAL SETTING	3
	2.3	Тородгарну	3
	2.4	SITE INSPECTION	4
	2.5	Surrounding Land Use	5
	2.6	UNDERGROUND SERVICES	5
	2.7	SECTION 10.7 PLANNING CERTIFICATE	6
3	GEOL	OGY AND HYDROGEOLOGY	7
	3.1	REGIONAL GEOLOGY	7
	3.2	ACID SULFATE SOIL (ASS) RISK AND PLANNING	7
	3.3	HYDROGEOLOGY	7
	3.4	RECEIVING WATER BODIES	8
4	SITE H	IISTORY INFORMATION	9
	4.1	REVIEW OF HISTORICAL AERIAL PHOTOGRAPHS	9
	4.2	SAFEWORK NSW RECORDS	9
	4.3	NSW EPA AND DEPARTMENT OF DEFENCE RECORDS	10
	4.4	HISTORICAL BUSINESS DIRECTORY AND ADDITIONAL LOTSEARCH INFORMATION	11
	4.5	SUMMARY OF SITE HISTORY INFORMATION	11
	4.6	INTEGRITY OF SITE HISTORY INFORMATION	12
5	CONC	EPTUAL SITE MODEL	13
	5.1	POTENTIAL CONTAMINATION SOURCES/AEC AND COPC	13
	5.2	Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways	13
6	SAMF	LING, ANALYSIS AND QUALITY PLAN	15
	6.1	DATA QUALITY OBJECTIVES (DQO)	15
	6.2	Soil Sampling Plan and Methodology	17
	6.3	GROUNDWATER SAMPLING PLAN AND METHODOLOGY	19
	6.4	LABORATORY ANALYSIS	20
7	SITE A	SSESSMENT CRITERIA (SAC)	21
	7.1	Soil	21
	7.2	GROUNDWATER	23
8	RESU	ITS	25
	8.1	SUMMARY OF DATA (QA/QC) EVALUATION	25
	8.2	SUBSURFACE CONDITIONS	25
	8.3	FIELD SCREENING	25
	8.4	Soil Laboratory Results	26

	8.5	GROUNDWATER LABORATORY RESULTS	29
9	WASTE	CLASSIFICATION ASSESSMENT	32
	9.1	PRELIMINARY CLASSIFICATION OF FILL	32
	9.2	PRELIMINARY CLASSIFICATION OF NATURAL SOIL AND BEDROCK	32
10	DISCUS	SION	33
	10.1	CONTAMINATION SOURCES/AEC AND POTENTIAL FOR SITE CONTAMINATION	33
	10.2	TIER 1 RISK ASSESSMENT AND REVIEW OF CSM	33
	10.3	DECISION STATEMENTS	36
	10.4	DATA GAPS	38
11	CONCLU	JSIONS AND RECOMMENDATIONS	39
12	2 LIMITATIONS		40

List of Tables

Table 2-1: Site Identification	3
Table 4-1: Summary of Historical Aerial Photographs	9
Table 4-2: NSW EPA and Department of Defence Records	10
Table 4-3: Historical Business Directory and other Records	11
Table 4-4: Summary of Historical Land Uses / Activities	12
Table 5-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern	13
Table 5-2: CSM	14
Table 6-1: Soil Sampling Plan and Methodology	17
Table 6-2: Groundwater Sampling Plan and Methodology	19
Table 6-3: Laboratory Details	20
Table 7-1: Details for Asbestos SAC	21
Table 7-2: Waste Categories	22
Table 8-1: Summary of Subsurface Conditions	25
Table 8-2: Summary of Field Screening	26
Table 8-3: Summary of Soil Laboratory Results – Human Health and Environmental (Ecological)	26
Table 8-4: Summary of Soil Laboratory Results Compared to CT and SCC Criteria	28
Table 8-5: Summary of Soil Laboratory Results Compared to TCLP Criteria	29
Table 8-6: Summary of Groundwater Laboratory Results – Human Health and Environmental (Ecological)	29
Table 10-1: Data Gap Assessment	38

Attachments

Appendix A: Report Figures Appendix B: Site Information and Site History Appendix C: Laboratory Results Summary Tables Appendix D: Borehole Logs Appendix E: Laboratory Reports & COC Documents Appendix F: Report Explanatory Notes Appendix G: Data (QA/QC) Evaluation Appendix H: Field Work Documents Appendix I: Guidelines and Reference Documents

Abbreviations

	/
Asbestos Fines/Fibrous Asbestos	AF/FA
Ambient Background Concentrations	ABC
Added Contaminant Limits	ACL
Asbestos Containing Material	ACM
Australian Drinking Water Guidelines	ADWG
Area of Environmental Concern	AEC
Australian Height Datum Acid Sulfate Soil	AHD ASS
	ASS
Above-Ground Storage Tank Below Ground Level	BGL
Benzo(a)pyrene Toxicity Equivalent Factor	BaP TEQ
Bureau of Meteorology	BOM
Benzene, Toluene, Ethylbenzene, Xylene	BTEX
Cation Exchange Capacity	CEC
Contaminated Land Management	CLM
Contaminant(s) of Potential Concern	CoPC
Chain of Custody	COC
Conceptual Site Model	CSM
Development Application	DA
Dial Before You Dig	DBYD
Data Quality Indicator	DQI
Data Quality Objective	DQO
Detailed Site Investigation	DSI
Ecological Investigation Level	EIL
Ecological Screening Level	ESL
Environmental Management Plan	EMP
Excavated Natural Material	ENM
Environment Protection Authority	EPA
Environmental Site Assessment	ESA
Ecological Screening Level	ESL
Fibre Cement Fragment(s)	FCF
General Approval of Immobilisation	GAI
Hazardous Ground Gas	HGG
Health Investigation Level	HILS
Hardness Modified Trigger Values	HMTV
Health Screening Level	HSL
Health Screening Level-Site Specific Assessment	HSL-SSA
International Organisation of Standardisation	ISO
JK Environments	JKE
Lab Control Spike	LCS
Light Non-Aqueous Phase Liquid	LNAPL
Map Grid of Australia	MGA
National Association of Testing Authorities	NATA
National Environmental Protection Measure	NEPM
Organochlorine Pesticides	OCP
Organophosphate Pesticides	OPP
Polycyclic Aromatic Hydrocarbons	PAH
Potential ASS	PASS
Polychlorinated Biphenyls	PCBs
Per-and Polyfluoroalkyl Substances	PFAS
Photo-ionisation Detector	PID
Protection of the Environment Operations	POEO
Practical Quantitation Limit	PQL

Quality Assurance	QA
Quality Control	QC
Remediation Action Plan	RAP
Relative Percentage Difference	RPD
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
Site Audit Statement	SAS
Site Audit Report	SAR
Site Specific Assessment	SSA
Source, Pathway, Receptor	SPR
Specific Contamination Concentration	SCC
Standard Penetration Test	SPT
Standing Water Level	SWL
Trip Blank	ТВ
Toxicity Characteristic Leaching Procedure	TCLP
Total Recoverable Hydrocarbons	TRH
Trip Spike	TS
Upper Confidence Limit	UCL
United States Environmental Protection Agency	USEPA
Underground Storage Tank	UST
Virgin Excavated Natural Material	VENM
Volatile Organic Compounds	VOC
World Health Organisation	WHO
Work Health and Safety	WHS

Units

Litres	L
Metres BGL	mBGL
Metres	m
Millivolts	mV
Millilitres	ml or mL
Milliequivalents	meq
micro Siemens per Centimetre	μS/cm
Micrograms per Litre	μg/L
Milligrams per Kilogram	mg/kg
Milligrams per Litre	mg/L
Parts Per Million	ppm
Percentage	%

1 INTRODUCTION

Mr. Terry Mahady of Mahady Management on behalf of Kincoppal-Rose Bay, School of the Sacred Heart (KRB) ('the client') commissioned JK Environments (JKE) to undertake a Preliminary (Stage 1) Site Investigation (PSI) for the proposed development at KRB situated on the corner of New South Head Road and Vaucluse Road, Vaucluse, NSW. The site location is shown on Figure 1. The assessment was limited to the proposed development areas only as shown on Figure 2. For the purpose of this report, proposed development areas subject of this assessment has been referred to as 'the site', whilst the whole property has been referred to as 'the wider site'.

This report has been prepared to support the lodgement of a State Significant Development Application (SSDA).

Geotechnical investigations were undertaken in conjunction with this assessment by JK Geotechnics (JKG). The results of these investigations are presented in separate reports (Ref: 32915SH1rpt Rev1, 32915SHrpt Rev1 and 32915SH3rpt Rev1 dated 20-26 April 2021)¹. This report should be read in conjunction with the JKG reports referenced above.

1.1 Proposed Development Details

The proposed development includes the following:

- Construction of a new one and two-storey Early Learning Centre (ELC) building in the north-western part of the wider site. Excavation to a maximum depth of approximately 4mBGL will be required within the north-eastern portion of the proposed ELC building development;
- Construction of a new elevated walkway and an entry road off Vaucluse Road in central and northern parts of the wider site area. The entry road is proposed to be connected to the existing concrete driveway in the area which will be widened to accommodate a new "drop-off" zone. It is assumed that the proposed new roadways will be at, or close to, existing surface levels with anticipated soil disturbances limited to shallow depths of up to 1mBGL; and
- A new bus parking area underlain by a basement parking level is proposed in the south-eastern corner of the wider site. A driveway area and vehicle ramp are proposed off the south-western corner of the basement. Excavation to a maximum depth of approximately 6mBGL will be required along the northern side of the proposed basement. A reconfigured on-grade car parking area have also been proposed to the west of the future basement area, with the southern extent of the car parking partially suspended over an existing heritage sandstone block retaining wall.

Outlines of the proposed ELC building, bus parking area with basement and elevated walkway and road are shown on the attached Figure 2.

1.2 Aims and Objectives

The primary aims of the investigation were to identify any past or present potentially contaminating activities at the site, identify the potential for site contamination, and make a preliminary assessment of the soil and groundwater contamination conditions. The objectives were to:

¹ Referred to as JKG reports

- Provide an appraisal of the past site use(s) based on a review of historical records;
- Assess the current site conditions and use(s) via a site walkover inspection;
- Identify potential contamination sources/areas of environmental concern (AEC) and contaminants of potential concern (CoPC);
- Assess the soil and groundwater contamination conditions via implementation of a preliminary sampling and analysis program;
- Prepare a conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Provide a preliminary waste classification for off-site disposal of soil;
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint); and
- Assess whether further intrusive investigation and/or remediation is required.

1.3 Scope of Work

The investigation was undertaken generally in accordance with JKE proposals (Ref: EP50877BD and EP53690BA) of 16 December 2019 and 11 March 2021. The scope of work included the following:

- Review of site information, including background and site history information from various sources outlined in the report;
- Preparation of a CSM;
- Design and implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);
- Data Quality Assessment; and
- Preparation of a report including a Tier 1 risk assessment.

The scope of work was undertaken with reference to the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)², other guidelines made under or with regards to the Contaminated Land Management Act (1997)³ and State Environmental Planning Policy No.55 – Remediation of Land (1998)⁴. A list of reference documents/guidelines is included in the appendices.

² National Environment Protection Council (NEPC), (2013). *National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013).* (referred to as NEPM 2013)

³ Contaminated Land Management Act 1997 (NSW) (referred to as CLM Act 1997)

⁴ State Environmental Planning Policy No. 55 – Remediation of Land 1998 (NSW) (referred to as SEPP55)

2 SITE INFORMATION

2.1 Site Identification

Table 2.1. Site Identification

Table 2-1: Site Identification	
Current Site Owner (certificate of title):	Kincoppal-Rose Bay School
Site Address:	Corner of New South Head Road and Vaucluse Road, Vaucluse, NSW
Lot & Deposited Plan:	Lot 104 in DP1092747
Current Land Use:	Educational Establishment
Proposed Land Use:	Educational Establishment
Local Government Authority:	Woollahra Municipal Council
Current Zoning:	SP2 – Educational Establishment
Site Area (m²) (approx.):	Approximately 4,500m ² - the site (i.e. targeted assessment areas as part of the PSI) Approximately 60,380 m ² (KRB total site area)
RL (AHD in m) (approx.):	10-60 mAHD
Geographical Location (decimal degrees) (approx.):	Latitude: -33.862451 Longitude: 151.270816
Site Location Plan:	Figure 1
Sample Location Plan:	Figure 2
Contamination Location Plan:	Figure 3

2.2 Site Location and Regional Setting

The wider site is located in a predominantly residential area of Vaucluse. The wider site is bounded by mainly residential properties to the north, east and south, Hermitage Reserve to the west, Forsyth Park to the south/south-east and St. Michael's Anglican Church which is located on the property adjoining the site to the north/north-east. The wider site is located approximately 28m to the east of Rose Bay.

2.3 Topography

The regional topography is characterised by a west facing hillside that falls towards Rose Bay. The site area is situated across the length of the hillside which has slope towards the west at an approximate average of 10.5°. Parts of the site appear to have been levelled to account for the slope and accommodate the existing buildings and infrastructure across the wider site area.

2.4 Site Inspection

A walkover inspection of the site was undertaken by JKE on 28 January 2020 and subsequently on the 14 March 2021. The inspection was limited to accessible areas of the site and immediate surrounds. A detailed inspection of the wider site was outside the scope of the assessment. An internal inspection of buildings was not undertaken.

A summary of the inspection findings is outlined in the following subsections:

2.4.1 Current Site Use and/or Indicators of Former Site Use

At the time of the inspection, the wider site was occupied by Kincoppal-Rose Bay School which was originally founded in 1882.

2.4.2 Buildings, Structures and Roads

Numerous single and multi-storey buildings and structures including accessing roads, footpaths and landscaping areas were identified across the wider property, including on or within close proximity to the proposed development areas comprising the site. Buildings identified to be present at the wider site appeared to have been constructed in different time periods, and some are heritage listed items. Based on the age of some of these buildings, it is considered likely that hazardous building materials including asbestos could potentially be present at the site.

2.4.3 Boundary Conditions, Soil Stability and Erosion

The wider site boundaries were observed to have property fence. However, site areas were not fenced. Obvious signs of soil erosion were not observed.

2.4.4 Presence of Drums/Chemical Storage and Waste

A review of the chemicals used and stored within the site was not undertaken. JKE presumed general domestic-grade and cleaning chemicals were used at the wider site.

Fill soils were encountered within all boreholes drilled during fieldworks. Deeper fill was also identified in some parts of the site, and is indicative of cut/fill activities which historically took place across parts of the site for levelling purposes. No information regarding potential source of identified fill material was provided.

2.4.5 Evidence of Cut and Fill

Based on our observations it was considered likely that fill material was used on site in order to achieve the existing levels and to accommodate the existing structures. Uncontrolled fill material may have been historically imported onto site for levelling purposes.

2.4.6 Visible or Olfactory Indicators of Contamination (odours, spills etc)

Fibre cement fragments (FCF) potentially containing asbestos was detected in the fill during sampling. The FCF was sampled and analysed for asbestos.

2.4.7 Drainage and Services

Surface water is not expected to accumulate at the site due to the presence of adequate drainage in the form of stormwater pits and drainage channels throughout the wider site. The majority of surface water runoff from the site is expected to be discharged into the municipal stormwater system. Some runoff from the site is also expected to eventuate into Rose Bay which is located to the east.

2.4.8 Sensitive Environments

Sensitive environments such as wetlands, ponds, creeks or extensive areas of natural vegetation were not identified at the site. Hermitage Foreshore Reserve area was located to the east of the site. The Rose Bay foreshore is located beyond the reserve.

2.4.9 Landscaped Areas and Visible Signs of Plant Stress

Numerous mature native trees, landscaped areas and strips of vegetation were observed throughout the wider site. No obvious signs of vegetation stress or grass dieback were observed anywhere in the vicinity of the site.

2.5 Surrounding Land Use

During our inspection, JKE observed the following land uses in the immediate surrounds:

- North residential and St. Michaels Anglican Church;
- South residential and Forsyth Park recreational area;
- East school playing fields and sporting grounds further across Vaucluse Road and residential further across New South Head Road; and
- West Hermitage Foreshore Reserve area and Rose Bay.

JKE did not observe any land uses in the immediate surrounds that were identified as potential contamination sources for the site.

2.6 Underground Services

The 'Dial Before You Dig' (DBYD) plans were reviewed for the assessment in order to establish whether any major underground services exist at the site or in the immediate vicinity that could act as a preferential pathway for contamination migration. Major services were not identified that would be expected to act as preferential pathways for contamination migration.

2.7 Section 10.7 Planning Certificate

The section 10.7 (2 and 5) planning certificates were reviewed for the assessment. Copies of the certificates are attached in the appendices. A summary of the relevant information is outlined below:

- The land is not deemed to be: significantly contaminated; subject to a management order; subject of an approved voluntary management proposal; or subject to an on-going management order under the provisions of the CLM Act 1997;
- The land is not the subject of a Site Audit Statement (SAS);
- The land is not located in a heritage conservation area; and
- The land is located within an acid sulfate soil (ASS) risk area.

3 GEOLOGY AND HYDROGEOLOGY

3.1 Regional Geology

Regional geological information was reviewed for the investigation. The information was sources from the Lotsearch report attached in the appendices. The report indicates that the site is underlain by Hawkesbury Sandstone, which typically consists of medium to coarse grained quartz sandstone with minor shale and laminite lenses. The geological map also indicates an igneous dyke to pass through the site. The subsurface conditions within, and adjacent to a dyke can be extremely variable. The bedrock in contact with the dyke can vary considerably in terms of its depth below the surface.

3.2 Acid Sulfate Soil (ASS) Risk and Planning

The site is not located in an ASS risk area according to the risk maps prepared by the Department of Land and Water Conservation.

ASS information presented in the Lotsearch report indicated that the site is located within a Class 5 ASS risk area in accordance with the Woollahra Local Environmental Plan (LEP 2014). Works in a Class 5 risk area that could pose an environmental risk in terms of ASS include works within 500m of adjacent Class 1,2,3,4 land which are likely to lower the water table below 1m AHD on the adjacent Class 1,2,3,4 land. This is unlikely to be the case due to site's elevation above the sea level (i.e. 10-60 mAHD) and the anticipated depth of soil disturbance as part of the proposed development works.

3.3 Hydrogeology

Hydrogeological information presented in the Lotsearch report indicated that the regional aquifer on-site and in the areas immediately surrounding the site includes porous, extensive aquifers of low to moderate productivity. There was a total of seven (7) registered bores within the report buffer of 700m. In summary:

- The nearest registered bore was located approximately 260m north from the site. This was utilised for domestic purposes;
- The majority of the bores were registered for domestic purposes;
- There were no nearby (i.e. within 700m) registered downgradient or cross gradient bores which could potentially become impacted by contaminated groundwater (if present) from the site; and
- Information from the closest registered bores identified standing water levels (SWLs) which ranged from 1.83 to 7.63m below surface.

The information reviewed for the PSI indicates that the subsurface conditions at the site are likely to consist of moderate to high permeability sandy type (alluvial) soils overlying sandstone bedrock which is typically encountered at moderate to shallow depths. Abstraction and use of groundwater at the site or in the immediate surrounds may be viable under these conditions, however the use of groundwater is not proposed as part of the development. There is a reticulated water supply in the area and consumption of groundwater is not expected to occur.

Considering the local topography and surrounding land features, JKE anticipate groundwater to flow east towards the Rose Bay.

3.4 Receiving Water Bodies

The site location and regional topography indicates that excess surface water flows have the potential to enter the Rose Bay located approximately 28 metres west of the site. This water body is a potential receptor.

4 SITE HISTORY INFORMATION

4.1 Review of Historical Aerial Photographs

Historical aerial photographs were reviewed for the investigation. The information was sourced for the Lotsearch report. JKE has reviewed the photographs, and summarised relevant information in the following table:

Year	Details	
1930	The wider site appeared to have been occupied by a number of currently present buildings in southern parts on the western side of Vaucluse Road. Majority of the surrounding properties to the north, east and south appeared to have been residential in nature at this time. Land to the west appeared to have been vegetated throughout and was followed by Rose Bay.	
1943	A number of currently existing buildings were further confirmed to have been present around central parts of the wider site. One of the properties adjoining the wider site area to the north appeared to be a place of public worship. Overall, the site and surrounding features appeared to be generally similar to the previous historical aerial photograph.	
1955	The site and surrounding features appeared generally similar to the previous photograph.	
1961	The site and surrounding features appeared generally similar to the previous photograph.	
1965	New buildings appeared to have been developed or under construction in the northern part of wider site. No other discernible changes were noted for the site and the surrounding areas whappeared generally similar to the 1961 photograph.	
1970	The buildings in the northern part of the wider site appeared to have been completed and are san or similar to the once currently present. No other discernible changes were noted for the site a the surrounding areas.	
1982	A number of structural additions/alterations appeared to have been completed in various ar across the wider site. The surrounding areas appeared generally similar to the 1970 photograph.	
1991	Upgrades to the school playing fields to the east of Vaucluse Road were noted including addition structures. No other discernible changes were noted for the site and the surrounding areas.	
2000	Structural additions/alterations were noted in various parts of the wider site areas. No oth discernible changes were noted for the site and the surrounding areas.	
2007	The site and surrounding features appeared generally similar to the previous photograph.	
2014	Further upgrades and various structural additions were noted for the site including the school play fields. They overall layout of the wider site appeared to have been same or very similar to wha currently present. No other significant changes were noted for the site and the surrounding area	

4.2 SafeWork NSW Records

SafeWork NSW records in relation to the registered storage of dangerous goods were reviewed for the investigation. Copies of relevant documents are attached in the appendices. The search did not identify any licences to store dangerous goods including underground fuel storage tanks (USTs), above ground storage tanks (ASTs) or chemicals at the site.

4.3 NSW EPA and Department of Defence Records

A review of the NSW EPA and Department of Defence databases was undertaken for the PSI. Information from the following databases were sourced from the Lotsearch report:

- Records maintained in relation to contaminated land under Section 58 of the CLM Act 1997;
- Records of sites notified in accordance with the Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997 (2015)⁵;
- Licensed activities under the Protection of the Environment Operations Act (1997)⁶;
- Sites being investigated under the NSW EPA per-and polyfluoroalkyl substances (PFAS) investigation program;
- Sites being investigated by the Department of Defence for PFAS contamination; and
- Sites being managed by the Department of Defence for PFAS contamination.

The search included the site and surrounding areas in the report buffer. A summary of the information is provided below:

Records	On-site	Off-site
Records under Section 58 of the CLM Act 1997	None	There was one property listed in the report buffer. This property was a service station located approximately 788m south of the site. This property was recorded as "Contamination currently regulated under the CLM Act". Due to the distance and cross-gradient location, the property is not considered to represent an off- site source of contamination.
Records under the Duty to Report Contamination under Section 60 of the CLM Act 1997	None	The service station property south of the site (i.e. same as above) has two current and seven former notices. Due to the distance and cross- gradient location, the property is not considered to represent an off-site source of contamination.
Licences under the POEO Act 1997	None	Historical licenses were identified for several properties within the report buffer, including the application of herbicides along waterways. However, these activities are considered unlikely to pose a contamination risk to the site or represent and off-site source of contamination.
Records relating to the NSW EPA PFAS Investigation Program	None	None

Table 4-2: NSW EPA and Department of Defence Records

⁵ NSW EPA, (2015). *Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997.* (referred to as Duty to Report Contamination)

⁶ Protection of the Environment Operations Act 1997 (NSW) (referred to as POEO Act 1997)

Records	On-site	Off-site
Records relating to the Department of Defence PFAS management and investigation programs	None	None

4.4 Historical Business Directory and Additional Lotsearch Information

Historical business records and other relevant information were reviewed for the investigation. The information was sourced from the Lotsearch report and summarised in the following table:

Records	On-site	Off-site
Historical dry cleaners, motor garages and service stations	None	There was one motor garage/service station listed in the report buffer in 1983. This property was matched to the nearby New South Head Road. Due to the uncertainties associated with the exact location of this property it is not considered to represent an off-site risk of contamination.
Other historical businesses that could represent potential sources of contamination	None	None
National waste management site database	None	None
Mapped heritage items	None	Various heritage items were mapped in the report buffer. These are not considered to have any relevance in the context of the PSI objectives.
Mapped ecological constraints	None	Various ecological items were mapped in the report buffer. These are not considered to have any relevance in the context of the PSI objectives.
Mapped naturally occurring asbestos	None	None

Table 4-3: Historical Business Directory and other Records

4.5 Summary of Site History Information

A time line summary of the historical land uses and activities is presented in the following table. The information presented in the table is based on a weight of evidence assessment of the site history documentation and observations made by JKE.

Table 4-4: Summary of Historical Land Uses / Activities			
Year(s)	On-site - Potential Land Use / Activities	Off-site - Potential Land Use / Activities	
Pre-1930 - Current	School grounds and accommodation as well as possibly for religious use.	Predominantly residential as well as some commercial/retail uses.	

4.6 **Integrity of Site History Information**

The majority of the site history information was obtained from government organisations as outlined in the relevant sections of this report. The veracity of the information from these sources is considered to be relatively high. A certain degree of information loss can be expected given the lack of specific land use details over time. JKE have relied upon the Lotsearch report and have not independently verified any information contained within. However, it is noted that the Lotsearch report is generated based on databases maintained by various government agencies and is expected to be reliable.

5 CONCEPTUAL SITE MODEL

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is presented in the following sub-sections and is based on the site information (including the site inspection information) and the review of site history information. Reference should also be made to the figures attached in the appendices.

A review of the CSM in relation to source, pathway and receptor (SPR) linkages has been undertaken as part of the Tier 1 risk assessment process, as outlined in Section 10.

5.1 Potential Contamination Sources/AEC and CoPC

The potential contamination sources/AEC and CoPC are presented in the following table:

Source / AEC	СоРС
Fill material – The site appears to have been historically	Heavy metals (arsenic, cadmium, chromium, copper,
filled to achieve the existing levels. The fill may have	lead, mercury, nickel and zinc), petroleum hydrocarbons
been imported from various sources and could be	(referred to as total recoverable hydrocarbons – TRHs),
contaminated.	benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs),
Fill material extending down to 4.2-6.9m depths was	organochlorine pesticides (OCPs), organophosphate
identified during the course of this investigation in the	pesticides (OPPs), polychlorinated biphenyls (PCBs) and
vicinity of the proposed new ELC building.	asbestos.
Use of pesticides – Pesticides may have been used	Heavy metals and OCPs
beneath the buildings and/or around the site.	
Hazardous Building Material – Hazardous building	Asbestos, lead and PCBs
materials may be present as a result of former building	
and demolition activities. These materials may also be	
present in the existing buildings/ structures on site.	

Table 5-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern

The deep fill encountered in the north-west section of the site appeared to be uncontrolled filling associated with leveling of some sections of the site. There is potential for the inclusions within the fill to generate hazardous ground gas (HGG). A screening for HGG was not undertaken for the PSI and has been identified as a data gap in Section 10.4. JKE recommend additional HGG screening to assess the risk posed by HGG in this section of the site.

5.2 Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways

The mechanisms for contamination, affected media, receptors and exposure pathways relevant to the potential contamination sources/AEC are outlined in the following CSM table:

Table 5-2: CSM	
Potential mechanism for contamination	 Potential mechanisms for contamination include: Fill material – importation of impacted material, 'top-down' impacts (e.g. placement of fill, leaching from surficial material etc), or sub-surface release (e.g. impacts from buried material); Use of pesticides – 'top-down' and spills (e.g. during normal use, application and/or improper storage); and Hazardous building materials – 'top-down' (e.g. demolition resulting in surficial impacts in unpaved areas).
Affected media	Soil and groundwater have been identified as potentially affected media. The potential for soil vapour or HGG impacts is considered to be relatively low. However, soil vapour would need to be considered in the event significant contamination is identified in soil and/or groundwater. Screening for HGG in the north-west section of the site is required and has been identified as a data gap.
Receptor identification	Human receptors include site occupants/users (including adults and children), construction workers and intrusive maintenance workers. Off-site human receptors include adjacent land users, and recreational water users within Rose Bay. Ecological receptors include terrestrial organisms and plants within unpaved areas (including the proposed landscaped areas), and marine ecology in Rose Bay.
Potential exposure pathways	 Potential exposure pathways relevant to the human receptors include ingestion, dermal absorption and inhalation of dust (all contaminants) and vapours (volatile TRH, naphthalene and BTEX). The potential for exposure would typically be associated with the construction and excavation works, and future use of the site. Potential exposure pathways for ecological receptors include primary contact and ingestion. Exposure during future site use could occur via direct contact with soil in unpaved areas such as gardens, inhalation of airborne asbestos fibres during soil disturbance, or inhalation of vapours within enclosed spaces such as buildings and basements. Exposure to groundwater may potentially occur through direct migration and potential exposure to groundwater seepage through sandstone outcrops within Hermitage Reserve area and in Rose Bay.
Potential exposure mechanisms	 The following have been identified as potential exposure mechanisms for site contamination: Vapour intrusion into the proposed basement and/or building (either from soil contamination or volatilisation of contaminants from groundwater); Contact (dermal, ingestion or inhalation) with exposed soils in landscaped areas and/or unpaved areas; Migration of groundwater off-site and into nearby water body (Rose Bay), including aquatic ecosystems and those being used for recreation; and Contact (dermal, ingestion or inhalation) with groundwater seepage through sandstone outcrops within Hermitage Reserve area.
Presence of preferential pathways for contaminant movement	Local underground services such as sewer and stormwater have the potential to act as preferential pathways for contaminant migration at the site.

6 SAMPLING, ANALYSIS AND QUALITY PLAN

6.1 Data Quality Objectives (DQO)

Data Quality Objectives (DQOs) were developed to define the type and quality of data required to achieve the project objectives outlined in Section 1.2. The DQOs were prepared with reference to the process outlined in Schedule B2 of NEPM (2013) and the Guidelines for the NSW Site Auditor Scheme, 3rd Edition (2017)⁷. The seven-step DQO approach for this project is outlined in the following sub-sections.

The DQO process is validated in part by the Data Quality Assurance/Quality Control (QA/QC) Evaluation. The Data (QA/QC) Evaluation is summarised in Section 8.1 and the detailed evaluation is provided in the appendices.

6.1.1 Step 1 - State the Problem

The CSM identified potential sources of contamination/AEC at the site that may pose a risk to human health and the environment. Investigation data is required to assess the contamination status of the site, assess the risks posed by the contaminants in the context of the proposed development/intended land use, and assess whether remediation is required. This information will be considered by the consent authority in exercising its planning functions in relation to the development proposal.

A waste classification is required prior to off-site disposal of excavated soil/bedrock.

The DQOs were developed by the author of this report and checked by the reviewer. Both the author and reviewer were joint decision-makers in relation to Step 2 of the DQO process. The investigation was constrained by the timeline imposed by the client and, in-part, by access limitations associated with the existing structures on site.

6.1.2 Step 2 - Identify the Decisions of the Study

The objectives of the investigation are outlined in Section 1.2. The decisions to be made reflect these objectives and are as follows:

- Did the site inspection, or does the historical information identify potential contamination sources/AEC at the site?
- Are any results above the SAC?
- Do potential risks associated with contamination and acid sulfate soils exist, and if so, what are they?
- Is remediation required?
- Is the site characterisation sufficient to provide adequate confidence in the above decisions?
- Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?

6.1.3 Step 3 - Identify Information Inputs

The primary information inputs required to address the decisions outlined in Step 2 include the following:

⁷ NSW EPA (2017). *Guidelines for the NSW Site Auditor Scheme, 3rd ed.* (referred to as Site Auditor Guidelines 2017)

- Site information, including site observations and site history documentation;
- Sampling of potentially affected media, including soil and groundwater;
- Observations of sub-surface variables such as soil type, photo-ionisation detector (PID) concentrations, odours and staining, and groundwater physiochemical parameters;
- Laboratory analysis of soils, fibre cement and groundwater for the CoPC identified in the CSM; and
- Field and laboratory QA/QC data.

6.1.4 Step 4 - Define the Study Boundary

The sampling was confined to the site boundaries as shown in Figure 2 and was limited vertically to a depth of approximately 8.7mBGL (spatial boundary). The sampling was completed on between 28 January 2020 and 1 April 2021 (temporal boundary).

Sampling was not undertaken within footprints of the existing structures due to access constraints.

6.1.5 Step 5 - Develop an Analytical Approach (or Decision Rule)

6.1.5.1 Tier 1 Screening Criteria

The laboratory data will be assessed against relevant Tier 1 screening criteria (referred to as SAC), as outlined in Section 7. Exceedances of the SAC do not necessarily indicate a requirement for remediation or a risk to human health and/or the environment. Exceedances are considered in the context of the CSM and valid SPR-linkages.

For this investigation, the individual results have been assessed as either above or below the SAC. Statistical evaluation of the dataset via calculation of mean values and/or 95% upper confidence limit (UCL) values has not been undertaken due to the spatial distribution of the data and the number of samples submitted for analysis.

6.1.5.2 Field and Laboratory QA/QC

Field QA/QC included analysis of inter-laboratory duplicates, intra-laboratory duplicates, trip spike, trip blank and rinsate samples. Further details regarding the sampling and analysis undertaken, and the acceptable limits adopted, is provided in the Data Quality (QA/QC) Evaluation in the appendices.

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which is outlined in the attached laboratory reports. These criteria were developed and implemented in accordance with the laboratory's National Association of Testing Authorities, Australia (NATA) accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

In the event that acceptable limits are not met by the laboratory analysis, other lines of evidence are reviewed (e.g. field observations of samples, preservation, handling etc) and, where required, consultation with the laboratory is undertaken in an effort to establish the cause of the non-conformance. Where uncertainty exists, JKE typically adopt the most conservative concentration reported (or in some cases, consider the data from the affected sample as an estimate).

6.1.5.3 Appropriateness of Practical Quantitation Limits (PQLs)

The PQLs of the analytical methods are considered in relation to the SAC to confirm that the PQLs are less than the SAC. In cases where the PQLs are greater than the SAC, a discussion of this is provided.

6.1.6 Step 6 – Specify Limits on Decision Errors

To limit the potential for decision errors, a range of quality assurance processes are adopted. A quantitative assessment of the potential for false positives and false negatives in the analytical results is undertaken with reference to Schedule B(3) of NEPM (2013) using the data quality assurance information collected.

Decision errors can be controlled through the use of hypothesis testing. The test can be used to show either that the baseline condition is false or that there is insufficient evidence to indicate that the baseline condition is false. The null hypothesis is an assumption that is assumed to be true in the absence of contrary evidence. For this investigation, the null hypothesis has been adopted which is that, there is considered to be a complete SPR linkage for the CoPC identified in the CSM unless this linkage can be proven not to (or unlikely to) exist. The null hypothesis has been adopted for this investigation.

6.1.7 Step 7 - Optimise the Design for Obtaining Data

The most resource-effective design will be used in an optimum manner to achieve the investigation objectives. Adjustment of the investigation design can occur following consultation or feedback from project stakeholders. For this investigation, the design was optimised via consideration of the various lines of evidence used to select the sample locations, the media being sampled, and also by the way in which the data were collected.

The sampling plan and methodology are outlined in the following sub-sections.

6.2 Soil Sampling Plan and Methodology

The soil sampling plan and methodology adopted for this investigation is outlined in the table below:

Aspect	Input
Sampling	The sampling density for asbestos in soil included sampling from 13 locations across the site (shown
Density	on Figure 2) which were selected for broad site coverage. This sampling density was not designed
	to meet the minimum sampling density recommended in the Guidelines for the Assessment,
	Remediation and Management of Asbestos-Contaminated Sites in Western Australia (2009)8
	(endorsed in NEPM 2013) and was considered adequate to make a preliminary assessment of
	potential risks across the site and to assess if further characterisation is required.
	Samples for other contaminants were collected from a total of 16 locations as shown on the
	attached Figure 2. The sampling plan was not designed to meet the minimum sampling density for

Table 6-1: Soil Sampling Plan and Methodology

⁸ Western Australian (WA) Department of Health (DoH), (2009). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. (referred to as WA DoH 2009)

Aspect	Input
	hotspot identification, as outlined in the NSW EPA Contaminated Sites Sampling Design Guidelines (1995) ⁹ .
Sampling Plan	The sampling locations were placed on a judgemental sampling plan and were broadly positioned for site coverage, taking into consideration areas that were not easily accessible. This sampling plan was considered suitable to make a preliminary assessment of potential risks associated with the AEC and CoPC identified in the CSM, and assess whether further investigation is warranted.
Set-out and Sampling Equipment	Sampling locations were set out using a tape measure. In-situ sampling locations were checked for underground services by an external contractor prior to sampling.
Lyupment	Samples were collected using a hand auger and a drill rig equipped with spiral flight augers (150mm diameter). Soil samples were obtained from a Standard Penetration Test (SPT) split-spoon sampler, and/or directly from the auger.
Sample Collection and Field QA/QC	Soil samples were obtained on 28 January 2020, 3 February 2020, 14 March 2021, 25 March 2021 and 29 March 2021 in accordance with our standard field procedures. Soil samples were collected from the fill and natural profiles based on field observations. The sample depths are shown on the logs attached in the appendices.
	Samples were placed in glass jars with plastic caps and teflon seals with minimal headspace. Samples for asbestos analysis were placed in zip-lock plastic bags. During sampling, soil at selected depths was split into primary and duplicate samples for field QA/QC analysis. The field splitting procedure included alternately filling the sampling containers to obtain a representative split sample.
Field Screening	A portable Photoionisation Detector (PID) fitted with a 10.6mV lamp was used to screen the samples for the presence of volatile organic compounds (VOCs). PID screening for VOCs was undertaken on soil samples using the soil sample headspace method. VOC data was obtained from partly filled ziplock plastic bags following equilibration of the headspace gases. PID calibration records are maintained on file by JKE.
	 The field screening for asbestos quantification included the following: A representative bulk sample was collected from fill at 1m intervals, or from each distinct fill profile. The quantity of material for each sample varied based on whatever return could be achieved using the auger. The bulk sample intervals are shown on the attached borehole logs; Each sample was weighed using an electronic scale; Each bulk sample was passed through a sieve with a 7.1mm aperture and inspected for the presence of fibre cement; The condition of fibre cement or any other suspected asbestos materials was noted on the field records; and If observed, any fragments of fibre cement in the bulk sample were collected, placed in a ziplock bag and assigned a unique identifier. Calculations for asbestos content were undertaken based on the requirements outlined in Schedule B1 of NEPM (2013), as summarised in Section 7.1.

⁹ NSW EPA, (1995), *Contaminated Sites Sampling Design Guidelines*. (referred to as EPA Sampling Design Guidelines 1995)

Aspect	Input
	The scale used to weigh the 10L samples was not calibrated, however this is not considered significant as this method of providing a weight for the bulk sample is considered to be considerably more accurate than applying a nominal soil density conversion.
Decontami- nation and Sample	Sampling personnel used disposable nitrile gloves during sampling activities. Re-usable sampling equipment was decontaminated in accordance with our standard field procedures.
Preservation	Soil samples were preserved by immediate storage in an insulated sample container with ice. On completion of the fieldwork, the samples were stored temporarily in fridges in the JKE warehouse before being delivered in the insulated sample container to a NATA registered laboratory for analysis under standard chain of custody (COC) procedures.

6.3 Groundwater Sampling Plan and Methodology

The groundwater sampling plan and methodology is outlined in the table below:

Aspect	Input
Sampling Plan	Groundwater monitoring wells were installed in BH2 (MW2) and BH202 (MW202). The wells were positioned to gain baseline groundwater conditions at the site. Considering the topography and the location of the nearest down-gradient water body, MW2 was considered to be in the down-gradient area of the proposed ELC building and would be expected to provide an indication of groundwater flowing across (beneath) this part of the site and beyond the down-gradient wider site boundary. Whilst MW202 was considered to be in the up-gradient area of the proposed new bus parking area and would be expected to provide an indication of groundwater flowing onto (beneath) the site from the east.
Monitoring Well Installation Procedure	 The monitoring well construction details are documented on the appropriate borehole logs attached in the appendices. The monitoring wells were installed to depths of approximately 9.05 to 9.32mBGL. The wells were generally constructed as follows: 50mm diameter Class 18 PVC (machine slotted screen) was installed in the lower section of the well to intersect groundwater; 50mm diameter Class 18 PVC casing was installed in the upper section of the well (screw fixed); A 2mm sand filter pack was used around the screen section for groundwater infiltration; A hydrated bentonite seal/plug was used on top of the sand pack to seal the well; and A gatic cover was installed at the surface with a concrete plug to limit the inflow of surface water. The monitoring well installation, including the screen lengths, were considered suitable for assessment of general groundwater quality with regards to Table 5 in Schedule B2 of NEPM 2013.
Monitoring Well Development	The monitoring wells were developed on 28 January 2020 and 25 March 2021 using a submersible electrical pump. Due to the hydrogeological conditions, groundwater inflow into the wells was relatively low, therefore the wells were pumped until they were effectively dry. The field monitoring records and calibration data are attached in the appendices.

Table 6-2: Groundwater Sampling Plan and Methodology

Aspect	Input
Groundwater Sampling	The monitoring wells were allowed to recharge for approximately five to seven days after development. Groundwater samples were obtained on 3 February 2020 and 1 April 2021.
	 Prior to sampling, the monitoring wells were checked for the presence of Light Non-Aqueous Phase Liquids (LNAPLs) using an inter-phase probe electronic dip meter. The monitoring well head space was checked for VOCs using a calibrated PID unit. The samples were obtained using a peristaltic pump. During sampling, the following parameters were monitored using calibrated field instruments: Standing water level (SWL) using an electronic dip meter; and pH, temperature, electrical conductivity (EC), dissolved oxygen (DO) and redox potential (Eh) using a YSI Multi-probe water quality meter.
	Steady state conditions were considered to have been achieved when the difference in the pH measurements was less than 0.2 units, the difference in conductivity was less than 10%, and when the SWL was not in drawdown.
	Groundwater samples were obtained directly from the single use PVC tubing and placed in the sample containers. Duplicate samples were obtained by alternate filling of sample containers. This technique was adopted to minimise disturbance of the samples and loss of volatile contaminants associated with mixing of liquids in secondary containers, etc.
	Groundwater removed from the wells during development and sampling was transported to JKE in jerry cans and stored in holding drums prior to collection by a licensed waste water contractor for off-site disposal.
	The field monitoring record and calibration data are attached in the appendices.
Decontaminant and Sample Preservation	During development, the pump was flushed between monitoring wells with potable water (single-use tubing was used for each well). The pump tubing was discarded after each sampling event and replaced therefore no decontamination procedure was considered necessary.
	The samples were preserved with reference to the analytical requirements and placed in an insulated container with ice or ice bricks. On completion of the fieldwork, the samples were temporarily stored in a fridge at the JKE office, before being delivered in the insulated sample container to a NATA registered laboratory for analysis under standard COC procedures.

6.4 Laboratory Analysis

Samples were analysed by an appropriate, NATA Accredited laboratory using the analytical methods detailed in Schedule B(3) of NEPM 2013. Reference should be made to the laboratory reports attached in the appendices for further details.

Table	6-3:	Laboratory	Details
-------	------	------------	---------

Samples	Laboratory	Report Reference
All primary samples and field QA/QC samples including (intra-laboratory duplicates, trip blanks, trip spikes and field rinsate samples)	Envirolab Services Pty Ltd NSW, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	235671, 235671-A, 236009, 236009-A, 236004, 264278, 265221, 265348, 265348-A and 265688.
Inter-laboratory duplicates	Envirolab Services Pty Ltd VIC, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	25101.

7 SITE ASSESSMENT CRITERIA (SAC)

The SAC were derived from the NEPM 2013 and other guidelines as discussed in the following sub-sections. The guideline values for individual contaminants are presented in the attached report tables and further explanation of the various criteria adopted is provided in the appendices.

7.1 Soil

Soil data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013) as outlined below.

7.1.1 Human Health

- Health Investigation Levels (HILs) for a 'residential with accessible soils' exposure scenario (HIL-A);
- Health Screening Levels (HSLs) for a 'low-high density residential' exposure scenario (HSL-A & HSL-B).
 HSLs were calculated based on conservative assumptions including a 'sand' type and a depth interval of 0m to 1m;
- HSLs for direct contact presented in the CRC Care Technical Report No. 10 Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document (2011)¹⁰; and
- Asbestos was assessed on the basis of presence/absence. Asbestos in bulk field samples was assessed against the HSL-A criteria. A summary of the asbestos criteria is provided in the table below:

Guideline	Applicability	
Asbestos in Soil	 The HSL-A criteria were adopted for the assessment of asbestos in soil. The SAC adopte asbestos were derived from the NEPM 2013 and are based on WA DoH (2009) guidance SAC include the following: No visible asbestos at the surface/in the top 10cm of soil; <0.01% w/w bonded asbestos containing material (ACM) in soil; and <0.001% w/w asbestos fines/fibrous asbestos (AF/FA) in soil. Concentrations for bonded ACM concentrations in soil are based on the following equivalence which is presented in Schedule B1 of NEPM (2013): 	
	% w/w asbestos in soil = <u>% asbestos content x bonded ACM (kg)</u> Soil volume (L) x soil density (kg/L)	
	However, we are of the opinion that the actual soil volume in a 10L bucket varies considerably due to the presence of voids, particularly when assessing cohesive soils. Therefore, each bucket sample was weighed using electronic scales and the above equation was adjusted as follows (we note that the units have also converted to grams):	
	% w/w asbestos in soil = <u>% asbestos content x bonded ACM (g)</u> Soil weight (g)	

Table 7-1: Details for Asbestos SAC

¹⁰ Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC Care), (2011). Technical Report No. 10 - *Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document*

7.1.2 Environment (Ecological – terrestrial ecosystems)

- Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) for an 'urban residential and public open space' (URPOS) exposure scenario. These have only been applied to the top 2m of soil as outlined in NEPM (2013). The criterion for benzo(a)pyrene has been increased from the value presented in NEPM (2013) based on the Canadian Soil Quality Guidelines¹¹;
- ESLs were adopted based on the soil type; and
- EILs for selected metals were calculated using site specific soil parameters for pH, cation exchange capacity and clay content. Sample BH2 (0.75-0.95) was analysed, with laboratory soil parameter values adopted to select the added contaminant limit (ACL) values presented in Schedule B(1) of NEPM (2013), and published ambient background concentration (ABC) presented in the document titled Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (1995)¹². This method is considered to be adequate for the Tier 1 screening.

7.1.3 Management Limits for Petroleum Hydrocarbons

Management limits for petroleum hydrocarbons (as presented in Schedule B1 of NEPM 2013) were considered (if required).

7.1.4 Waste Classification

Data for the waste classification assessment were assessed in accordance with the Waste Classification Guidelines, Part 1: Classifying Waste (2014)¹³ as outlined in the following table:

Category	Description				
General Solid Waste (non-putrescible)	 If Specific Contaminant Concentration (SCC) ≤ Contaminant Threshold (CT1) then Toxicity Characteristics Leaching Procedure (TCLP) not needed to classify the soil as general solid waste; and If TCLP ≤ TCLP1 and SCC ≤ SCC1 then treat as general solid waste. 				
Restricted Solid Waste (non-putrescible)	 If SCC ≤ CT2 then TCLP not needed to classify the soil as restricted solid waste; and If TCLP ≤ TCLP2 and SCC ≤ SCC2 then treat as restricted solid waste. 				
Hazardous Waste	 If SCC > CT2 then TCLP not needed to classify the soil as hazardous waste; and If TCLP > TCLP2 and/or SCC > SCC2 then treat as hazardous waste. 				
Virgin Excavated Natural Material (VENM)	 Natural material (such as clay, gravel, sand, soil or rock fines) that meet the following: That has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial mining or agricultural activities; That does not contain sulfidic ores or other waste; and Includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved from time to time by a notice published in the NSW Government Gazette. 				

Table	7-2:	Waste	Categories
-------	------	-------	------------

¹¹ Canadian Council of Ministers of the Environment, (1999). *Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)* (referred to as the Canadian Soil Quality Guidelines)

 ¹² Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4.* Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission.
 ¹³ NSW EPA, (2014). *Waste Classification Guidelines, Part 1: Classifying Waste.* (referred to as Waste Classification Guidelines 2014)

7.2 Groundwater

Groundwater data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013), following an assessment of environmental values in accordance with the Guidelines for the Assessment and Management of Groundwater Contamination (2007)¹⁴. Environmental values for this investigation include aquatic ecosystems, human uses, and human-health risks in non-use scenarios.

7.2.1 Human Health

- HSLs for a 'low-high density residential' exposure scenario (HSL-A/HSL-B). HSLs were calculated based on the soil type and the observed depth to groundwater;
- Where NEPM (2013) HSLs are not applicable as the groundwater was recorded at depths shallower than 2m and/or due to the proposed basement intersecting the groundwater table, JKE have undertaken a site-specific assessment (SSA) for the Tier 1 screening of human health risks posed by volatile contaminants in groundwater. The assessment included selection of alternative Tier 1 criteria that were considered suitably protective of human health. These criteria are based on drinking water guidelines and have been referred to as HSL-SSA. The criteria were based on the following (as shown in the attached report tables):
 - Australian Drinking Water Guidelines 2011 (updated 2018)¹⁵ for BTEX compounds and selected VOCs;
 - World Health Organisation (WHO) document titled Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality (2008)¹⁶ for petroleum hydrocarbons;
 - o USEPA Region 9 screening levels for naphthalene (threshold value for tap water); and
 - The use of the laboratory PQLs for other contaminants where there were no Australian guidelines.
- The Australian Drinking Water Guidelines 2011 (updated 2018)¹⁷ were multiplied by a factor of 10 to assess potential risks associated with incidental/recreational-type exposure to groundwater (e.g. within down-gradient water bodies, and/or associated with the groundwater seepage through sandstone outcrops within Hermitage Reserve area, and/or with seepage water in the proposed basement). These have been deemed as 'recreational' SAC;

7.2.2 Environment (Ecological - aquatic ecosystems)

Groundwater Investigation Levels (GILs) for 95% protection of marine species were adopted based on the Default Guideline Values in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2018)¹⁸.

¹⁴ NSW Department of Environment and Conservation, (2007). *Guidelines for the Assessment and Management of Groundwater Contamination*.

¹⁵ National Health and Medical Research Council (NHMRC), (2018). *National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011* (referred to as ADWG 2011)

¹⁶ World Health Organisation (WHO), (2008). *Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality* (referred to as WHO 2008)

¹⁷ National Health and Medical Research Council (NHMRC), (2018). *National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011* (referred to as ADWG 2011)

¹⁸ Australian and New Zealand Governments (ANZG), (2018). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia (referred to as ANZG 2018)

The 99% trigger values were adopted where required to account for bioaccumulation. Low and moderate reliability trigger values were also adopted for some contaminants where high-reliability trigger values don't exist.

8 RESULTS

8.1 Summary of Data (QA/QC) Evaluation

The data evaluation is presented in the appendices. In summary, JKE are of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

8.2 Subsurface Conditions

A summary of the subsurface conditions encountered during the investigation is presented in the following table. Reference should be made to the borehole logs attached in the appendices for further details.

Profile	Description
Pavement	Asphaltic Concrete (AC) pavement was encountered at the surface in BH1, BH2, BH3, BH101, BH103, BH201 and BH202 ranging in thickness between 50mm and 90mm.
Fill	Fill was encountered at the surface or beneath the AC pavement in all boreholes and extended to depths of approximately 0.2 to 6.9mBGL. BH10 was terminated in the fill at a depth of approximately 0.45m. Relatively deep fill greater than 2mBGL was encountered in boreholes BH2, BH3, BH101, BH102 and BH103 located near the proposed ELC building and in BH4 near the proposed elevated walkway.
	The fill typically comprised gravelly silty sand, silty sand, gravelly sand or sandstone and ironstone gravel, fine to coarse grained, with inclusions comprising varying sizes and fractions of sandstone, ironstone and igneous gravel, traces of clay and silt fines, roots, brick, tile, glass, plastic and metal fragments, slag, ash and organic matter, and with occasional sandstone cobbles and boulders at depth. FCF fragments were encountered within the fill in some boreholes. The FCF was tested for asbestos.
Natural Soil	Natural soil was encountered in BH2, BH6, BH7, BH8, BH101, BH103 and BH202 beneath the fill and extended down to at least between 0.4 and 11.10mBGL. Natural soil typically comprised sand, silty sand, clayey sand and gravelly sand.
Bedrock	Sandstone bedrock was encountered in most of the boreholes at depths varying from approximately 0.4-11.1mBGL. Bedrock was not encountered in BH2 only. BH2 encountered deep sands.
Groundwater	The majority of boreholes were dry on completion of augering. In BH2 and BH8 the groundwater was observed at depths 8.5mBGL and 1.8mBGL respectively on completion of augering. In BH101, BH201, BH202 and BH203 groundwater was encountered at 5.5mBGL, 0.4mBGL, 3.55mBGL and 0.9mBGL respectively on completion of coring. Groundwater monitoring wells were installed at BH2 and BH202 to allow for further groundwater monitoring.

Table 8-1: Summary of Subsurface Conditions

8.3 Field Screening

A summary of the field screening results are presented in the following table:

Table 8-2: Summary of Field Screening					
Aspect	Details				
PID Screening of Soil Samples for VOCs	PID soil sample headspace readings are presented in attached report tables and the COC documents attached in the appendices. The results ranged from 0ppm to 6.2ppm equivalent isobutylene. These results indicate PID detectable VOCs. Samples with elevated PID readings were analysed for TRH and BTEX.				
Bulk Screening for Asbestos	The bulk field screening results are summarised in the attached report tables. The ACM concentration in samples from BH103 exceeded the SAC. All other results were below the SAC.				
Groundwater Depth & Flow	SWLs measured in monitoring wells MW2 and MW202 during sampling were 8.02mBGL and 1.71mBGL respectively. Groundwater RLs calculated on these measurements where RL 51.51m for MW202 and RL 30.62m for MW2.				
Groundwater Field Parameters	 Field measurements recorded during sampling were as follows: pH ranged from 5.11 to 7.36; EC ranged from 452.9μS/cm to 554μS/cm; Eh ranged from -87.4mV to 32.5mV; and DO ranged from 0.4ppm to 10.1ppm. 				
LNAPLs petroleum hydrocarbons	Phase separated product (i.e. LNAPL) were not detected using the interphase probe during groundwater sampling.				

8.4 Soil Laboratory Results

The soil laboratory results were assessed against the SAC presented in Section 7.1. Individual SAC are shown in the report tables attached in the appendices. A summary of the results is presented below:

8.4.1 Human Health and Environmental (Ecological) Assessment

Analyte	N	Max. (mg/kg)	N> Human Health SAC	N> Ecological SAC	Comments
Arsenic	32	34	0	NSL	-
Cadmium	32	0.5	0	NSL	-
Chromium (total)	32	84	0	0	-
Copper	32	80	0	0	-
Lead	32	860	4	0	The lead concentration exceeded the adopted HIL of 300 mg/kg in four fill samples collected from BH2 (0.75- 0.95m), BH103 (1.0-1.2), BH103 (2.0- 2.3m) and BH103 (3.0-3.3).
Mercury	32	2.4	0	NSL	-

Table 8-3: Summary of Soil Laboratory Results – Human Health and Environmental (Ecological)

Analyte	N	Max. (mg/kg)	N> Human Health SAC	N> Ecological SAC	Comments
Nickel	32	27	0	0	-
Zinc	32	440	0	0	-
Total PAHs	29	200	0	NSL	-
Benzo(a)pyrene	29	14	NSL	0	-
Carcinogenic PAHs (as BaP TEQ)	29	20	3	NSL	Concentration of Carcinogenic PAHs exceeded the adopted HIL of 3 mg/kg in three fill samples collected from BH8 (0.6-0.7m), BH103 (0.06-0.2) and BH202 (0.12-0.3m).
Naphthalene	29	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
DDT+DDE+DDD	17	<pql< td=""><td>-</td><td>NSL</td><td>-</td></pql<>	-	NSL	-
DDT	17	<pql< td=""><td>NSL</td><td>-</td><td>-</td></pql<>	NSL	-	-
Aldrin and dieldrin	17	<pql< td=""><td>-</td><td>NSL</td><td>-</td></pql<>	-	NSL	-
Chlordane	17	<pql< td=""><td>-</td><td>NSL</td><td>-</td></pql<>	-	NSL	-
Heptachlor	17	<pql< td=""><td>-</td><td>NSL</td><td>-</td></pql<>	-	NSL	-
PCBs	17	<pql< td=""><td>-</td><td>NSL</td><td>-</td></pql<>	-	NSL	-
TRH F1	29	<pql< td=""><td>-</td><td>-</td><td>-</td></pql<>	-	-	-
TRH F2	29	51	-	-	-
TRH F3	29	660	-	4	TRH F3 concentration exceeded the adopted EIL of 300 mg/kg in three fill sample collected from BH1 (0.05-0.15), BH8 (0.6-0.7), BH103 (0.06-0.2) and BH202 (0.12-0.3).
TRH F4	29	400	-	-	-
Benzene	29	<pql< td=""><td>-</td><td>-</td><td>-</td></pql<>	-	-	-
Toluene	29	<pql< td=""><td>-</td><td>-</td><td>-</td></pql<>	-	-	-
Ethylbenzene	29	<pql< td=""><td>-</td><td>-</td><td>-</td></pql<>	-	-	-
Xylenes	29	<pql< td=""><td>-</td><td>-</td><td>-</td></pql<>	-	-	-
Asbestos (in soil)	15	Detected	3	NA	Chrysotile asbestos was detected in fill samples from BH103. Identified occurrences were of bonded (ACM) and friable (fibrous asbestos/asbestos fines -

Analyte	N	Max. (mg/kg)	N> Human Health SAC	N> Ecological SAC	Comments
					FA/AF) asbestos with concentrations which exceeded the adopted HSLs.
Asbestos in fibre cement	3	Detected	-	NSL	Chrysotile asbestos was detected in three fibre cement fragment (FCF) samples from BH103 which were identified in bulk field samples during screening.

Notes:

N: Total number (primary samples) NSL: No set limit NL: Not limiting

8.4.2 Waste Classification Assessment

The laboratory results were assessed against the criteria presented in Section 7.1.4. The results are presented in the report tables attached in the appendices. A summary of the results is presented in the following table:

Analyte	N	N > CT Criteria	N > SCC Criteria	Comments
Arsenic	32	0	0	-
Cadmium	32	0	0	-
Chromium	32	0	0	-
Copper	32	NSL	NSL	-
Lead	32	11	0	Lead concentrations exceeded the CT1 criterion in the following fill samples: • BH2 (0.1-0.2m); • BH2 (0.75-0.95m); • BH8 (0.0-0.1m); • BH8 (0.6-0.7m); • BH9 (0.0-0.1m); • BH10 (0.0-0.1m); • BH101 (0.05-0.35); • BH103 (0.06-0.2); • BH103 (1.0-1.2); • BH103 (2.0-2.3); and • BH103 (3.0-3.3).
Mercury	32	0	0	-
Nickel	32	0	0	-
Zinc	32	NSL	NSL	-

Table 8-4: Summary of Soil Laboratory Results Compared to CT and SCC Criteria

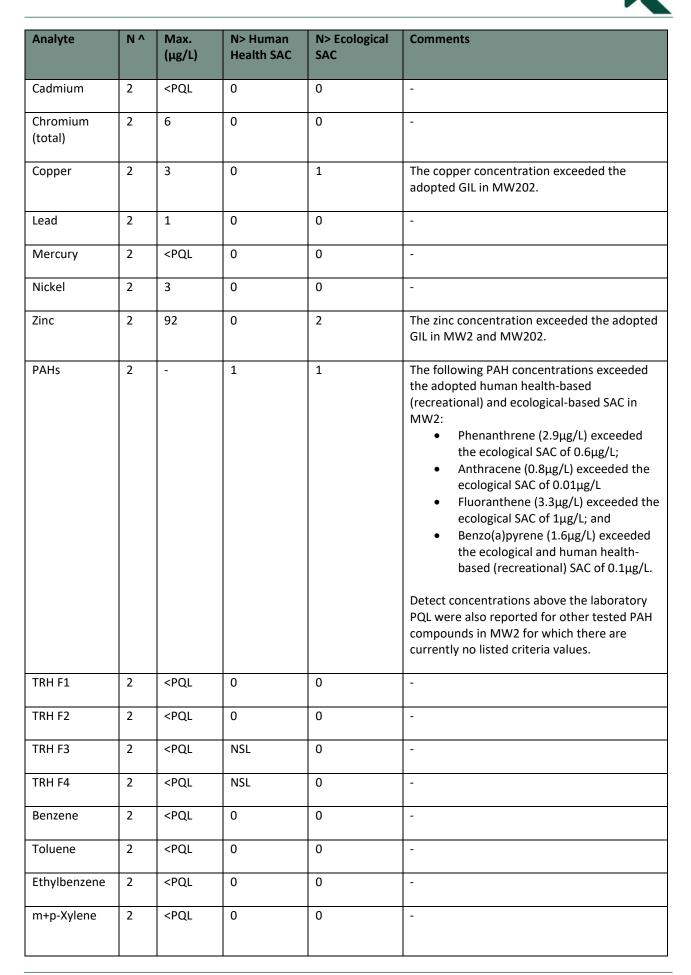
Analuta	N			Comments
Analyte		N > CT Criteria	N > SCC Criteria	Comments
TRH (C6-C9)	29	0	0	-
TRH (C10-C36)	29	0	0	-
BTEX	29	0	0	-
Total PAHs	29	0	0	-
Benzo(a)pyrene	29	4	1	 B(a)P concentration exceeded the CT1 criterion in the following fill samples: BH5 (0.0-0.1m); BH7 (0.0-0.1m); BH8 (0.6-0.7m); and BH202 (0.06-0.2). B(a)P concentration exceeded the SCC1 criterion in the following fill sample: BH103 (0.06-0.2).
OCPs & OPPs	17	0	0	-
PCBs	17	0	0	-
Asbestos	18	-	-	Asbestos was detected in fill samples from BH103.

N: Total number (primary samples)

NSL: No set limit

Table 8-5: Summary of Soil Laboratory Results Compared to TCLP Criteria

Analyte	Ν	N > TCLP Criteria	Comments
Lead	6	0	Six fill samples from BH2, BH8, BH9 and BH10 with lead concentrations above the CT1 criterion were analysed for TCLP lead. All results were below the TCLP1 criterion.
Benzo(a)pyrene	3	0	Three fill samples from BH5, BH7 and BH8 with Benzo(a)pyrene concentrations above the CT1 criterion were analysed for TCLP Benzo(a)pyrene. All results were below the TCLP1 criterion.


N: Total number (primary samples)

8.5 Groundwater Laboratory Results

The soil laboratory results were assessed against the SAC presented in Section 7.2. Individual SAC are shown in the report tables attached in the appendices. A summary of the results is presented below:

Analyte	N ^	Max. (µg/L)	N> Human Health SAC	N> Ecological SAC	Comments
Arsenic	2	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-

Table 8-6: Summary of Groundwater Laboratory Results – Human Health and Environmental (Ecological)

Analyte	N ^	Max. (µg/L)	N> Human Health SAC	N> Ecological SAC	Comments
o-Xylene	2	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Total Xylenes	2	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
рН	2	5.2-6.1	0	0	pH results were outside the EIL and recreational SAC range. Tested pH values by the laboratory were recorded to be 6.10 and 5.2 in samples collected from MW2 and MW202 respectively. This is not considered to be a result of site contamination.
EC	2	NA	NA	NA	The EC ranged from 450µS/cm to 460µS/cm.
VOCs	2	2	0	0	Detect concentration of chloroform was identified in MW202 at 2µg/L. This concentration was below the adopted groundwater SAC. All other VOC concentrations were below the laboratory PQL.

Notes:

^: Primary samples

N: Total number

NSL: No set limit

NL: Not limiting

9 WASTE CLASSIFICATION ASSESSMENT

9.1 Preliminary Classification of Fill

Based on the results of the assessment, and at the time of reporting, the preliminary classification of fill material from majority of tested locations around the site is **General Solid Waste (non-putrescible)**. Though some concentrations of lead and benzo(a)pyrene exceeded the CT1 thresholds, majority of detected concentrations were below the SCC1 threshold. Undertaking TCLP analysis for lead and benzo(a)pyrene on all fill samples which exceeded the CT1 thresholds indicated that the soils generally leached low concentrations of lead, whilst the benzo(a)pyrene was generally immobile. The TCLP results for the analysed samples were below the TCLP1 thresholds for general solid waste.

Fille material samples tested from BH103 identified presence of asbestos and had benzo(a)pyrene concentration detected at 14mg/kg which is above the SCC1 threshold criteria. The preliminary classification of fill material at this location potentially falls within the **Restricted Waste (non-putrescible) containing Special Waste (asbestos)** category. JKE recommend undertaken additional testing to confirm this classification during the next stage or works and during development works.

The classification of the fill soils is preliminary in nature and will require confirmation, including further sampling and analysis, prior to disposal off-site. The anticipated waste quantities should also be confirmed at that time and documented in the report.

Fill should be disposed of to a facility that is licensed by the NSW EPA to receive this waste stream. The facility should be contacted to obtain the required approvals prior to commencement of excavation.

9.2 Preliminary Classification of Natural Soil and Bedrock

Based on the results of the assessment, and at the time of reporting, the natural soils at the site, generally comprising silty sand/clayey sand/gravelly sand are unlikely to meet the definition of VENM for off-site disposal or re-use purposes, and are assigned a preliminary classification of **General Solid Waste (non-putrescible)**. JKE note that low concentrations of PAHs were encountered within the sample of natural soil material collected from BH8 (1.6-1.8m). JKE recommends that additional testing be undertaken of the natural soil to confirm the final classification for off-site disposal.

Based on the results of the assessment, and at the time of reporting, JKE are of the opinion that the natural bedrock at the site is likely to meet the definition of **VENM** for off-site disposal or re-use purposes.

In accordance with Part 1 of the Waste Classification Guidelines, VENM is pre-classified as general solid waste and can also be disposed of accordingly to a facility that is licensed to accept it.

The classification of the natural soils and bedrock are preliminary in nature and will require confirmation following the removal of overlying fill soils, including additional sampling and analysis, prior to disposal offsite. The anticipated waste quantities should also be confirmed at that time and documented in the report.

10 DISCUSSION

10.1 Contamination Sources/AEC and Potential for Site Contamination

Based on the scope of work undertaken for this investigation, JKE identified the following potential contamination sources/AEC:

- Imported fill material (entire site);
- Use of pesticides (entire site); and
- Hazardous building materials.

Considering the above, and based on a qualitative assessment of various lines of evidence as discussed throughout this report, JKE are of the opinion that there is a potential for site contamination. The preliminary soil and groundwater data collected for the investigation is discussed further in the following subsection, as part of the Tier 1 risk assessment.

10.2 Tier 1 Risk Assessment and Review of CSM

For a contaminant to represent a risk to a receptor, the following three conditions must be present:

- 1. Source The presence of a contaminant;
- 2. Pathway A mechanism or action by which a receptor can become exposed to the contaminant; and
- 3. Receptor The human or ecological entity which may be adversely impacted following exposure to contamination.

If one of the above components is missing, the potential for adverse risks is relatively low.

10.2.1 Soil

10.2.1.1 Asbestos

Friable and bonded asbestos was encountered above the human health SAC throughout the fill material in BH103 in the vicinity of the proposed new ELC Building.

Identified asbestos occurrence is considered to be associated with historical demolition of structures or the importation of contaminated fill material from unknown origins. The location of BH103 is within the paved area and considering asbestos was not encountered in any of the other locations on site it is considered that there is not a complete SPR linkage to asbestos in soil in this area which is currently present. On this basis, the potential for airborne asbestos fibres to be generated from wind action and for exposure to airborne asbestos to occur under the current site conditions is relatively low.

Based on the information provided by the client, it is anticipated that excavation for the proposed ELC building will extend down to approximately 2m below the surface. Asbestos was detected throughout the fill profile (i.e. extending down to approximately 6.9mBGL in BH103) which will potentially be disturbed during the course of the proposed development works at this part of the site. Therefore, there is a potential for a complete SPR linkage for asbestos within this area. Considering the sensitivity of the current and proposed land use as a school and that the risks assessed above may change in the context of the proposed development, further investigation of the extent of the identified asbestos risk and mitigation through

remediation will be required. An Asbestos Management Plan (AMP) should be prepared to manage the asbestos risks, or any other residual risks at the site in the interim and during the remediation and construction phase of the site.

10.2.1.2 Heavy metals

Lead was detected at concentrations which exceeded the HIL SAC in fill soil samples collected from BH2 and BH103. Both of these locations are in close proximity to each other and located in the vicinity of the proposed new ELC building (see Figure 3). Detected concentrations were greater than 250% of the SAC and the area of these two locations was considered to be a hotspot which will require further investigation (i.e. delineation) and remediation. The source of the lead is considered to be associated with the fill material, with further testing of underlying natural material confirming lead concentration below the SAC. The fill appears to have been historically imported onto the site.

Based on the information provided by the client, it is anticipated that excavation for the proposed ELC building will extend down to approximately 2m below the surface. Elevated concentrations of lead were detected throughout the fill profile which extended to depths of approximately 4.2-6.9mBGL which will potentially be disturbed during the course of the proposed development works at this part of the site. Therefore, there is a potential for a complete SPR linkage for lead within this area. On this basis, lead is considered to pose a potential human health risk which will require remediation.

JKE note that analysis of groundwater at this location indicate low concentration of dissolved heavy metal lead within the samples tested. In addition, leachability analysis which was undertaken on fill samples from this area for waste classification purposes revealed low concentrations of dissolved lead. Based on this, it was considered unlikely for lead to migrate into the groundwater at this location.

10.2.1.3 PAHs

Carcinogenic PAHs were detected at concentration which exceeded the HIL SAC in fill soil samples collected from BH103 (0.06-0.2), BH8 (0.6-0.7m) and BH202 (0.12-0.3). BH103 in next to the proposed new ELC Building whilst BH8 and BH202 were located within the southern part of the site where new bus/carpark is being proposed (see Figure 3). Detected concentrations in BH103 and BH202 were greater than 250% of the SAC and considered to be hotspots which will require further investigation (i.e. delineation) and remediation. The source of Carcinogenic PAHs is considered to be associated with the fill material, with further testing of underlying natural material confirming concentration of Carcinogenic PAHs below the SAC.

Elevated concentrations of Carcinogenic PAHs were detected at shallow depths which are likely to be disturbed during the course of the proposed development works. Therefore, there is a potential for a complete SPR linkage for Carcinogenic PAHs within these areas. On this basis, Carcinogenic PAHs are considered to pose a potential human health risk which will require remediation.

JKE note that analysis of groundwater at BH202/MW202 indicate absence of dissolved PAHs within the samples tested. In addition, leachability analysis which was undertaken on fill samples from both of these areas for waste classification purposes revealed the PAHs were generally immobile and unlikely to migrate into the groundwater beneath the site.

10.2.1.4 TRHs

The concentration of TRH F3 in BH1 (0.05-0.15m), BH103 (0.06-0.2), BH8 (0.6-0.7m) and BH202 (0.06-0.2) exceeded the EIL SAC. BH1 and BH103 were located within the northern part of the site where new ELC building is being proposed, whilst BH8 and BH202 were located within the southern part of the site where the new two-storey bus/carpark is proposed to be developed (see Figure 3). The source of the TRHs is considered to be associated with the fill material, with further testing of underlying natural material confirming TRH concentrations below the SAC.

The elevated concentrations were detected at shallow depths which are likely to be disturbed during the course of the proposed development works. On this basis, JKE consider that the SPR linkage is complete, and that the TRH F3 within these areas poses a risk to ecological receptors. JKE note that impacts in BH103 (0.06-0.2), BH8 (0.6-0.7m) and BH202 (0.06-0.2) are co-located with a human health risk, as identified in Section 10.2.1.2 and 10.2.1.3 and can be remediation in conjunction with the impacted material.

10.2.2 Groundwater

10.2.2.1 Heavy metals

Zinc concentration in excess of the ecological (GIL marine) SAC was reported in samples from MW2 and MW202. Samples from MW202 also reported copper concentration in excess of the adopted ecological SAC. Zinc and copper in groundwater are considered to be a regional issue which is common in urban environments due to runoff and leaking water infrastructure.

Trace concentrations of copper and zinc were identified in all fill samples analysed as part of this assessment. Most of the identified fill material on site was noted to be well above the observed groundwater table with majority of the site area being unpaved. The potential for copper and zinc to have leached from the fill soil and added to the contaminant load in the groundwater is considered to be moderate to low.

Identified concentration of zinc in groundwater does not pose a risk to the on-site receptors in the context of the proposed development. However, some treatment may be needed for off-site disposal of groundwater to the storm water in the event of dewatering.

10.2.2.2 Hydrocarbons

Most hydrocarbon concentrations (i.e. TRH, BTEX and VOCs) in groundwater were below the SAC with an exception of some of the PAH compounds in MW2 namely: phenanthrene, anthracene, fluoranthene and benzo(a)pyrene which were recorded above the ecological and human health SAC. In addition, trace concentrations of other PAHs were also identified within groundwater samples from MW2.

The source of these PAHs in groundwater could not be confirmed with certainty at this stage. Physio-chemical properties of the identified PAHs, and in particular benzo(a)pyrene, suggest a very low water solubility factor. PAHs and especially benzo(a)pyrene tend to bind to particulate matter rather than leach/dissolve in order to be transported in groundwater. Field observations made during development and sampling of MW2 indicated a very low recharge rate into this well with some sediment loading. We are of the opinion that this

sediment may have caused interference with the PAH analysis. This was further substantiated by the analytical data for the duplicate sample which reported significantly higher concentrations of PAHs as compared to the primary sample.

10.2.3 Acid Sulfate Soils

Based on the information reviewed for this assessment, JKE are of the opinion that there is a relatively low potential for ASS or potential (PASS) to be disturbed during the proposed development works described in Section 1.1 of this report. This conclusion is based on the following:

- The ASS risk map for the area indicates that the site is located within an area of no known occurrence of ASS;
- Further, information reviewed as part of this assessment indicated that the site is located within a Class 5 risk area for ASS. Works in Class 5 areas that could pose an environmental risk in terms of ASS include works within 500m of adjacent Class 1,2,3,4 land which are likely to lower the water table below 1m AHD on the adjacent Class 1,2,3,4 land. This is unlikely to be the case due to site's elevation above the sea level (i.e. 10-60 mAHD) and the anticipated depth of soil disturbance as part of the proposed development works; and
- The boreholes drilled for this assessment encountered residual natural soils and bedrock. Layers of peat or other organic material indicative of PASS were not encountered in the soils.

10.3 Decision Statements

The decision statements are addressed below:

Did the site inspection, or does the historical information identify potential contamination sources/AEC at the site?

The historical information identified potential sources of contamination, being: the historical levelling and filling of the site; potential use of pesticides within the site; and the presence of potentially hazardous building materials within the existing structures and in the ground as a result of weathering and/or previous demolition activities. The site inspection confirmed that site levelling activities had historically taken place, and based on the apparent age of some of the buildings present across the wider site, hazardous building materials may potentially be present on site.

Are any results above the SAC?

Friable and bonded asbestos was encountered above the human health SAC in fill soil samples collected from BH103.

Lead was detected at concentration which exceeded the human health SAC in fill soil sample collected from BH2 and BH103. Carcinogenic PAHs were detected at concentration which also exceeded the human health SAC in fill soil sample collected from BH103, BH8 and BH202.

TRH F3 were detected above the ecological SAC in BH1, BH103, BH8 and BH202.

Zinc and copper were identified above the ecological SAC for groundwater water within MW2 and MW202. A number of PAH compounds namely: phenanthrene, anthracene, fluoranthene and benzo(a)pyrene were also detected above the ecological and human health SAC in MW2.

Do potential risks associated with contamination exist, and if so, what are they?

The presence of friable and bonded asbestos, elevated concentrations of lead and Carcinogenic PAHs in fill pose a potential risk to human health associated with direct contact, ingestion and inhalation exposure pathways.

The presence of TRH F3 at elevated concentrations within northern and southern parts of the site where new ELC building and the new bus/carpark are being proposed (in BH1, BH103, BH8 and BH202) pose a potential risk to ecological receptors.

The elevated metal concentrations within the groundwater are considered a regional issue and are not considered to pose a risk to ecological receptors at the site.

The presence of PAHs in the groundwater in MW2 are anomalous and risks associated with the PAHs identified in groundwater to date are considered to be low. This will necessitate further assessment of groundwater as part of the site validation process.

Based on the weight of evidence collected and evaluated for this assessment, there is considered to be a low potential for ASS (AASS or PASS) to be disturbed during the proposed development described in Section **Error! Reference source not found.** of this report. On this basis, an ASSMP is not considered necessary for the proposed development.

Identified presence of up to 4.2-6.9m deep uncontrolled fill material layer from an unknown source in the vicinity of the proposed new ELC building (i.e. within BH2 and BH103) presents a potential risk from generated hazardous ground gases (HGG) which may potentially migrate into the proposed new building on site.

Is remediation required?

Remediation is required to address the asbestos, Carcinogenic PAHs and lead within the fill soils in relation to human health risk. Remediation is also required to address the TRH F3 impact within fill soils in relation to ecological receptors. JKE note that some impacts are co-located with a potential human health risk posed by Carcinogenic PAHs.

Is the site characterisation sufficient to provide adequate confidence in the above decisions?

Yes. Though the sampling pattern was not probabilistic, the approach provided adequate spatial coverage of the site, and representative samples were analysed based on the results of field screening and observations.

Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?

The site can be made suitable for the proposed development subject to appropriate remediation.

10.4 Data Gaps

An assessment of data gaps is provided in the following table:

Table 10-1: Data Gap Assessment

Data Gap	Assessment
Groundwater flow direction not confirmed / groundwater assessment limited in scope	The existence of only two groundwater monitoring wells in separate parts of the site available for sampling presents limitations and creates data gaps associated with the limited scope of groundwater assessment at this stage. Groundwater flow direction could not be confirmed with great degree of accuracy and sensible assessment of groundwater quality between up-gradient and down-gradient locations at the site is also unable to be properly completed. Actual depth to groundwater table beneath the site was not ascertained in the vicinity of the proposed new ELC building. Groundwater conditions and quality could be further confirmed during the remediation/validation process.
Delineation of identified contamination hotspot.	This data gap relates to the lack of information associated with the lateral extent of the identified Carcinogenic PAHs and lead hotspots of impacted fill material in the vicinity of BH2, BH103 and BH202. In addition, Carcinogen PAHs detected in BH8 have not been adequately delineated. Given the limited scope of anticipated excavations as part of the construction works this data gap can be addressed as part of RAP protocols including during waste classification for off-site disposal of excavated material as part of the development.
Hazardous Ground Gas (HGG) conditions not assessed.	Identified presence of up to 4.2-6.9m deep uncontrolled fill material layer in the vicinity of BH2 and BH103 presents a potential risk associated with generation of HGG. Assessment of HGG conditions at the site was outside the scope of this investigation. An assessment of HGG conditions at the site can be addressed as part of RAP protocols during the data gap investigation.
Characterisation of soils for waste classification purposes	Based on the results of the intrusive investigation, the characteristics of fill and natural soils across the site vary considerably. The waste classifications provided within this report are preliminary in nature due to the limited samples and variation encountered, and will require confirmation prior to off-site disposal of soils and bedrock.

11 CONCLUSIONS AND RECOMMENDATIONS

The assessment included a review of historical information, soil sampling from 16 boreholes and groundwater sampling from two monitoring wells onsite. The site has historically been used as school grounds including onboarding facilities (accommodation) as well as possibly for religious use.

The investigation identified asbestos, lead and Carcinogenic PAHs contamination in soils in northern and southern parts of the site within areas of proposed development works. The source of contamination was identified as the fill material historically imported onto the site. The contaminants requiring remediation include: lead and Carcinogenic PAHs contamination hotspots in the northern part of the site where the new ELC building is proposed and southern part of the site area where the new bus/carpark is proposed, and TRH F3 identified also within northern and southern parts of the site which poses a risk to ecological receptors. Some of the TRH F3 exceedances where co-located with lead and Carcinogenic PAHs requiring remediation due to the potential risk to human health.

Based on the findings of the assessment, JKE are of the opinion that the site can be made suitable for the proposed development described in Section 1.1, subject to the implementation of the following recommendations:

- Prepare a RAP to address the data gaps and contamination issues identified at the site. The RAP will include the requirements for a data gap investigation (DGI) to address the data gaps identified in this assessment and for the preparation of an unexpected find protocol (UFP). Due to the presence of deep filling (approximately 6mBGL) encountered in the north-west section of the site, the DGI should include a screening for hazardous ground gas (HGG) as outlined in the NSW EPA guidelines for HGG; and
- Undertake a validation assessment documenting the remediation works.

At this stage, JKE consider that there is no requirement to notify the NSW EPA under the NSW EPA Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997 (2015)¹⁹, provided the recommendations provided above are implemented.

JKE consider that the report objectives outlined in Section 1.2 have been addressed.

¹⁹ NSW EPA, (2015). *Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997* (referred to as Duty to Report Contamination)

12 LIMITATIONS

The report limitations are outlined below:

- JKE accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKE proposal; and terms of contract between JKE and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- JKE accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKE have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. JKE should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

Important Information About This Report

These notes have been prepared by JKE to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the JKE proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

JKE will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the investigation. If the subject site is sold, ownership of the investigation report should be transferred by JKE to the new site owners who will be informed of the conditions and limitations under which the investigation was undertaken. No person should apply an investigation for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an investigation report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site investigations identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an investigation indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Investigation Limitations

Although information provided by a site investigation can reduce exposure to the risk of the presence of contamination, no environmental site investigation can eliminate the risk. Even a rigorous professional investigation may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

Misinterpretation of Site Investigations by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an investigation report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

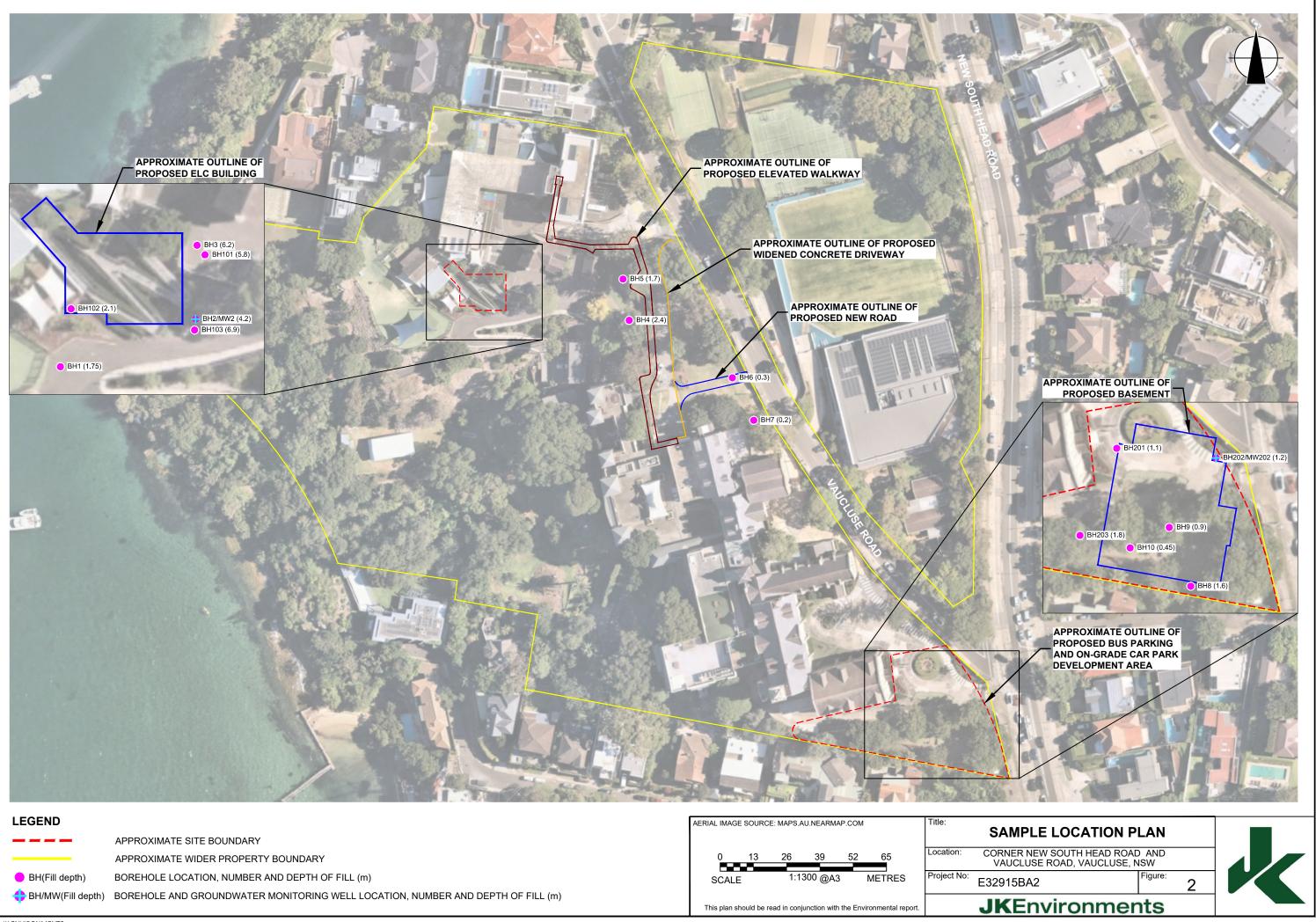
Logs Should not be Separated from the Investigation Report

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the investigation. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the investigation. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

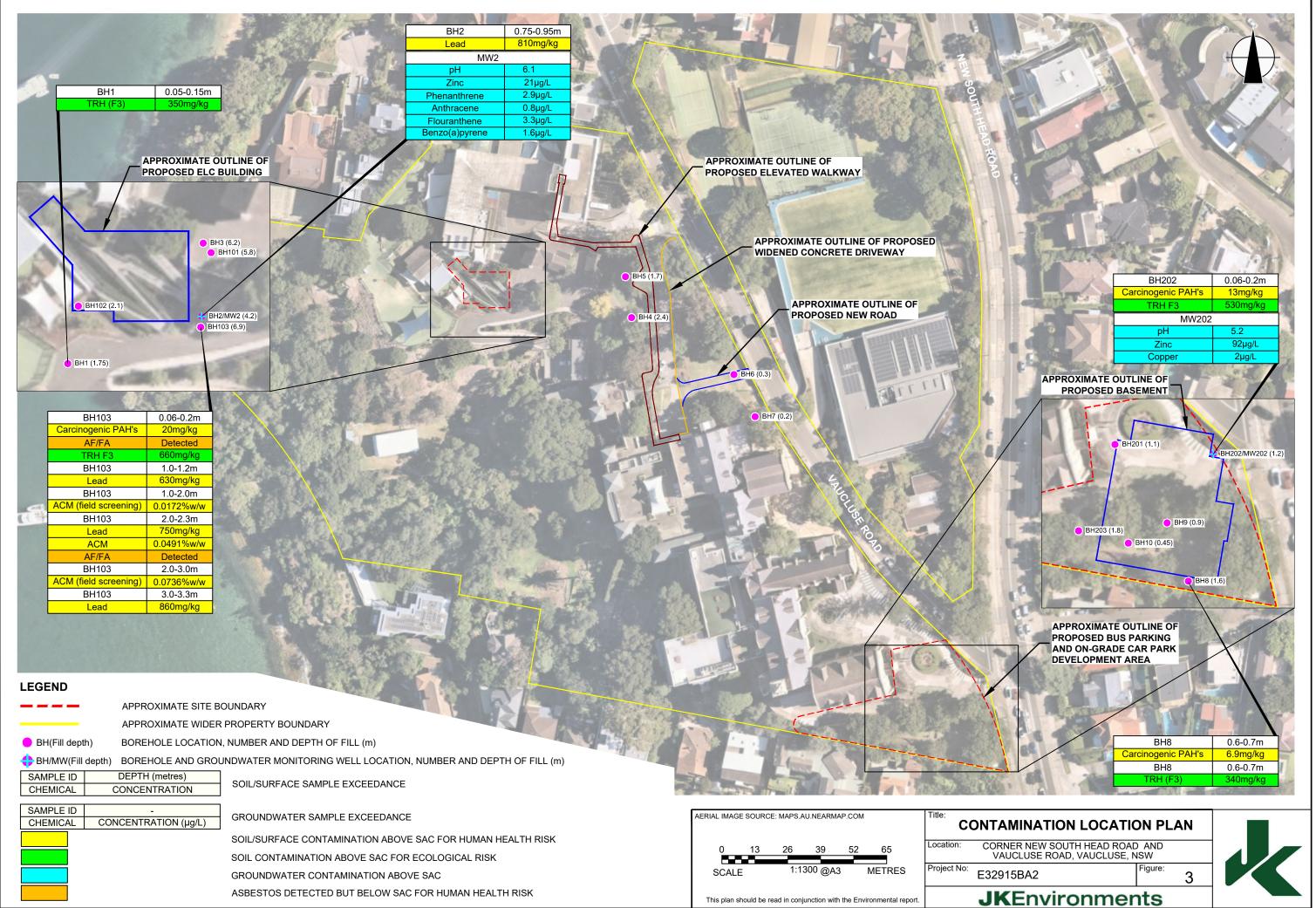
To reduce the likelihood of borehole and test pit log misinterpretation, the complete investigation should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

Read Responsibility Clauses Closely

Because an environmental site investigation is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site investigation, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.



Appendix A: Report Figures

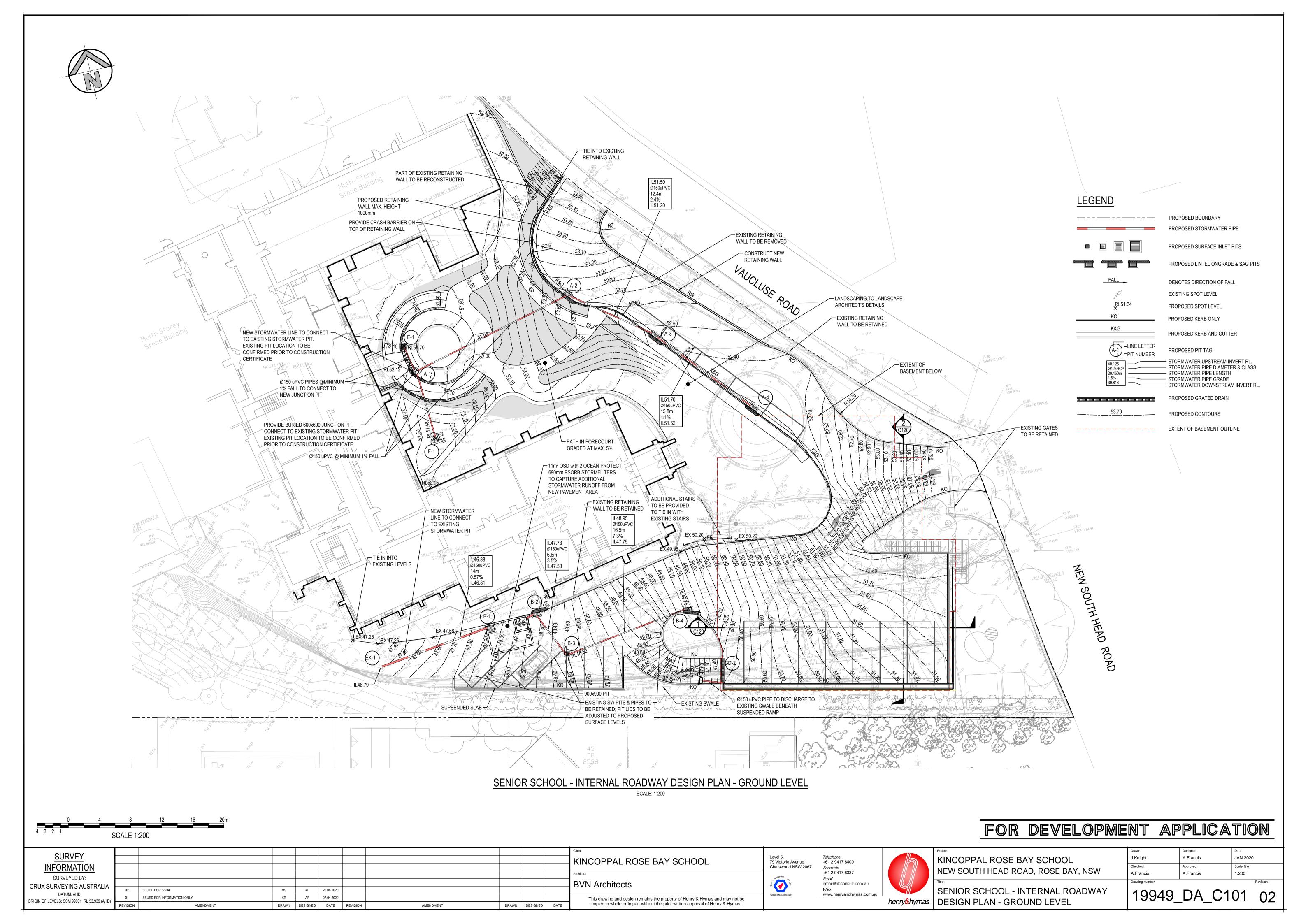


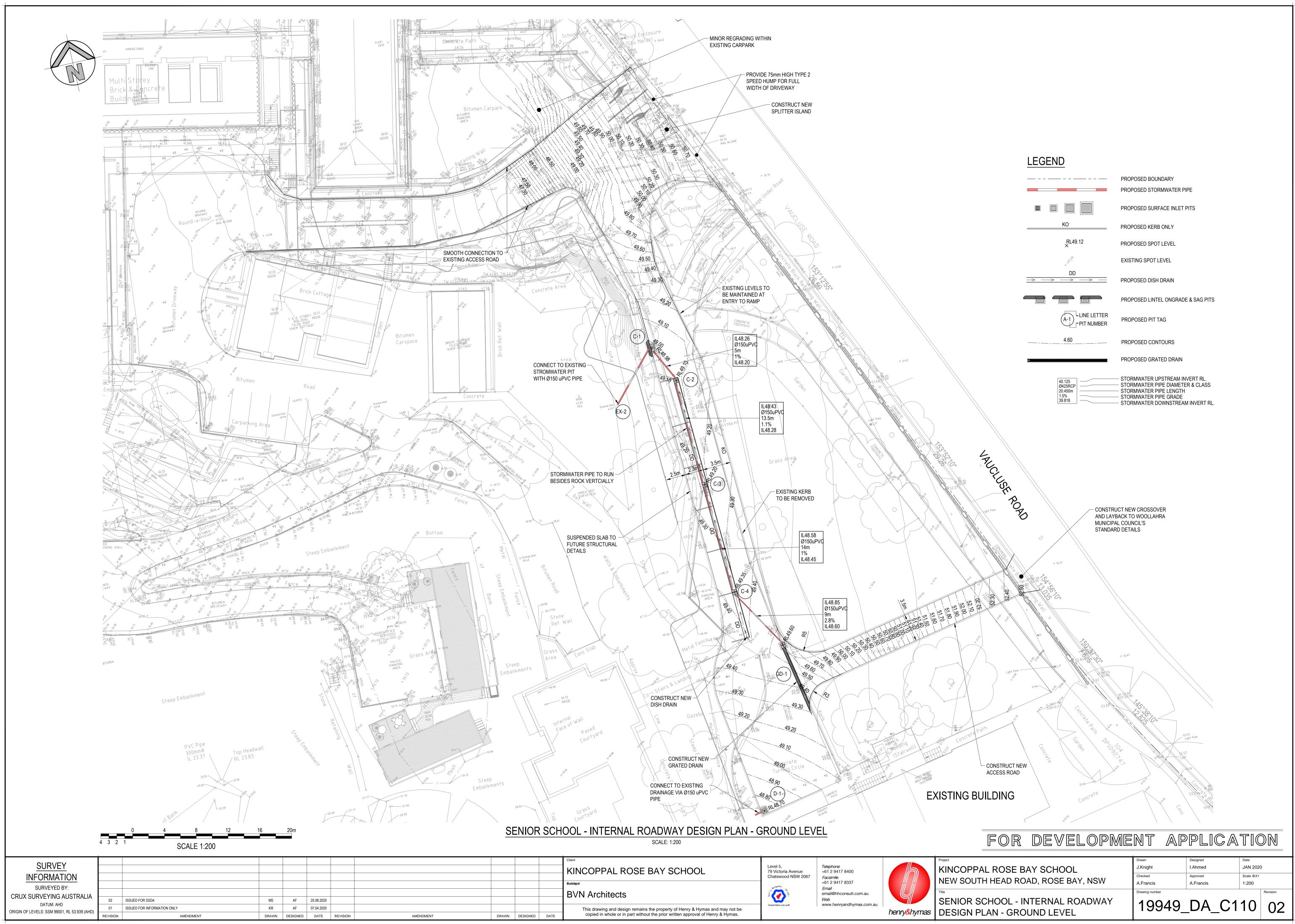
PLOT DATE: 10/05/2021 10:34:35 AM DWG FILE: Z:\5 EIS\5C EIS JOBS\32000'S\E32915BD VAUCLUSE\CAI

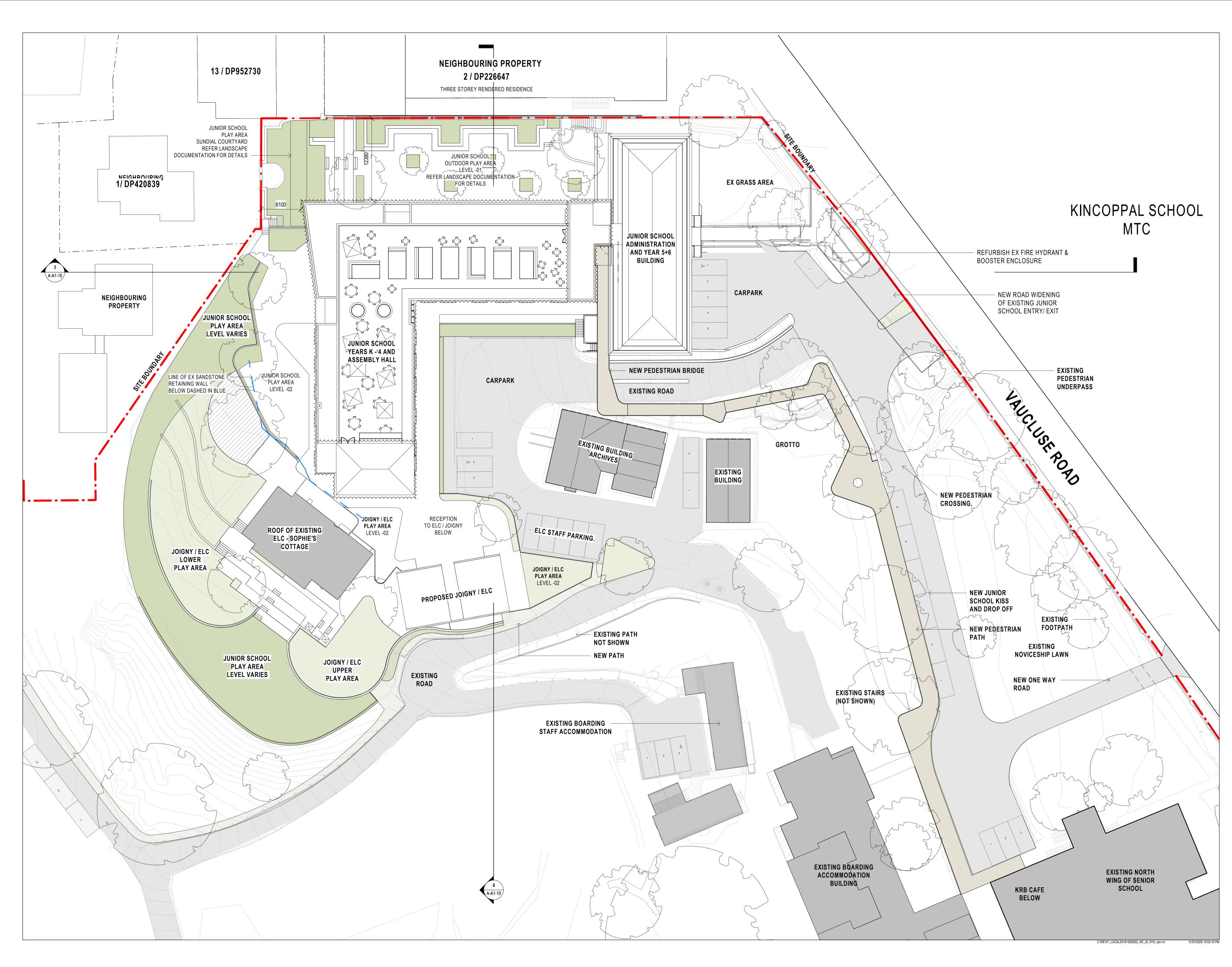
EGEND	AERIAL IMAGE SOURC	E: MAPS.AU.NEARMA	P.COM	l itle:	SA
APPROXIMATE SITE BOUNDARY					JA
APPROXIMATE WIDER PROPERTY BOUNDARY	0 13	26 39	52 65	Location:	CORN VAL
BH(Fill depth) BOREHOLE LOCATION, NUMBER AND DEPTH OF FILL (m)	SCALE	1:1300 @A3	METRES	Project No:	E3291
BH/MW(Fill depth) BOREHOLE AND GROUNDWATER MONITORING WELL LOCATION, NUMBER AND DEPTH OF FILL (m)	This plan should be r	read in conjunction with	the Environmental report.		JK

© JK ENVIRONMENTS

© JK ENVIRONMENTS


Appendix B: Site Information and Site History




Proposed Development Plans

NSW ARCHITECTS REGISTRATION BOARD / NOMINATED ARCHITECTS

6501 ABBIE GALVIN 9356 NINOTSCHKA TITCHKOSKY 7115 JULIAN ASHTON 7053 MATTHEW BLAIR 7151 PHILLIP ROSSINGTON 4937 JAMES GROSE

Telephone +61 2 8297 7200 Facsimile +61 2 8297 7299 www.bvn.com.au

INTELLECTUAL PROPERTY INTELLECTORE TRUE LIKT COPYRIGHT BVN ARCHITECTURE PTY LIMITED. UNLESS OTHERWISE AGREED IN WRITING;ALL RIGHTS TO THIS DOCUMENT ARE SUBJECT TO PAYMENT IN FULL OF ALL BVN CHARGES;THIS DOCUMENT MAY ONLY BE USED FOR THE EXPRESS PURPOSE AND PROJECT FOR WHICH IT HAS BEEN CREATED AND DELIVERED, AS NOTIFIED IN WRITING BY BVN;AND THIS DOCUMENT MAY NOT BE OTHERWISE USED, OR COPIED. ANY UNAUTHORISED USE OF THIS DOCUMENT IS AT THE USER'S SOLE RISK AND WITHOUT LIMITING BVN'S RIGHTS THE USER RELEASES AND INDEMNIFIES BVN FROM AND AGAINST ALL LOSS SO ARISING.

NOTE CONTRACTOR TO CHECK AND VERIFY ALL DIMENSIONS ON SITE PRIOR TO COMMENCEMENT OF WORK OR PREPARATION OF SHOP DRAWINGS. DO NOT SCALE THIS DRAWING

ISSUE	DATE	FC
1	09.12.19	FOR SEM SIGN
2	27.03.20	FOR COORDINA
3	05.06.20	FOR COORDINA
4	17.06.20	FOR COORDINA
5	31.07.20	SSDA SUBMISS

TOWN PLANNER URBIS

TEL 02 8233 9900 CIVIL AND STRUCTURAL ENGINEERS HENRY & HYAMS TEL 02 9417 8400 HERITAGE ARCHITECT DESIGN 5

TEL 02 9319 1855 LANDSCAPE ARCHITECT

CAB CONSULTING TEL 02 9997 1085

PROJECT MANAGER MAHADY MANAGEMENT MOB. 0411 510 073 CLIENT

STATE SIGNIFICANT DEVELOPMENT APPLICATION

PRECINCT A PROJECT

JUNIOR SCHOOL AND ELC CNR NEW SOUTH HEAD ROAD & VAUCLUSE RD, VAUCLUSE NSW 2030

BVN PROJECT NUMBER

1802002 DRAWING KEY

TRUE NORTH		PROJECT NORTH
	\bigcirc	\bigcirc
GRAPHIC SC	ALE	
0	2000	5000
SCALE		

1:250@A1 STATUS

FOR COORDINATION DRAWING

SITE - PROPOSED SITE PLAN

AR-A-A1-00

NSW ARCHITECTS REGISTRATION BOARD / NOMINATED ARCHITECTS

6501 ABBIE GALVIN 9356 NINOTSCHKA TITCHKOSKY 7115 JULAN ASHTON 7053 MATTHEW BLAIR 7151 PHILLIP ROSSINGTON 4937 JAMES GROSE

Telephone +61 2 8297 7200 Facsimile +61 2 8297 7299 www.bvn.com.au

INTELLECTUAL PROPERTY COPYRIGHT BVN ARCHITECTURE PTY LIMITED. UNLESS OTHERWISE AGREED IN WRITING;ALL RIGHTS TO THIS DOCUMENT ARE SUBJECT TO PAYMENT IN FULL OF ALL BVN CHARGES;THIS DOCUMENT MAY ONLY BE USED FOR THE EXPRESS PURPOSE AND PROJECT FOR WHICH IT HAS BEEN CREATED AND DELIVERED, AS NOTIFIED IN WRITING BY BVN;AND THIS DOCUMENT MAY NOT BE OTHERWISE USED, OR COPIED. ANY UNAUTHORISED USE OF THIS DOCUMENT IS AT THE USER'S SOLE RISK AND WITHOUT LIMITING BVN'S RIGHTS THE USER RELEASES AND INDEMNIFIES BVN FROM AND AGAINST ALL LOSS SO ARISING.

NOTE CONTRACTOR TO CHECK AND VERIFY ALL DIMENSIONS ON SITE PRIOR TO COMMENCEMENT OF WORK OR PREPARATION OF SHOP DRAWINGS. DO NOT SCALE THIS DRAWING

ISSUE	DATE	FOR
1	03.09.19	FOR COORDINATION (WIP)
2	09.10.19	FOR INFORMATION
3	09.12.19	FOR SEM SIGN OFF
4	27.03.20	FOR COORDINATION
5	05.06.20	FOR COORDINATION
6	17.06.20	FOR COORDINATION
7	31.07.20	SSDA SUBMISSION

TOWN PLANNER URBIS TEL 02 8233 9900 CIVIL AND STRUCTURAL ENGINEERS HENRY & HYAMS TEL 02 9417 8400 HERITAGE ARCHITECT DESIGN 5 TEL 02 9319 1855 LANDSCAPE ARCHITECT

CAB CONSULTING TEL 02 9997 1085 PROJECT MANAGER MAHADY MANAGEMENT MOB. 0411 510 073 CLIENT

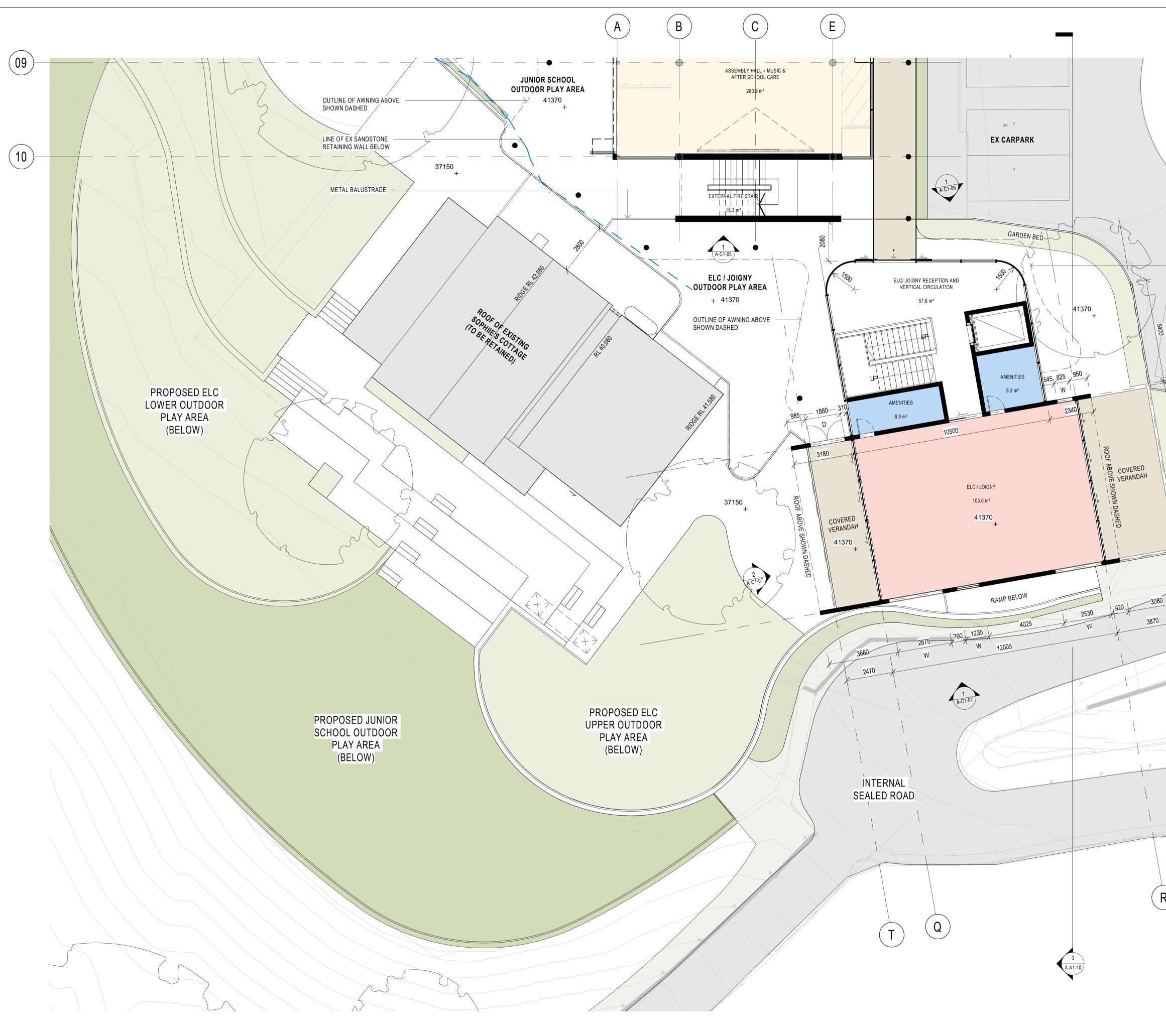
STATE SIGNIFICANT DEVELOPMENT APPLICATION

PRECINCT A

JUNIOR SCHOOL AND ELC CNR NEW SOUTH HEAD ROAD & VAUCLUSE RD, VAUCLUSE NSW 2030

BVN PROJECT NUMBER

1802002 DRAWING KEY


TRUE NORTH		PROJECT NORTH
	\bigcirc	\bigcirc
GRAPHIC SCA	LE	
0	2000	5000
SCALE		

1:100@A1 STATUS

FOR COORDINATION

ELC - PROPOSED GA PLAN -LEVEL -03

AR-A-B1-01

EXISTING BUILDING ARCHIVES
CONCRETE AWNING OVER
ELC STAFF PARKING.
2 A-C1-06
BELC / JOIGNY OUTDOOR PLAY AREA + 41370
23
EXISTING ROAD
*
* * *
S
C:\REVIT_LOCAL2019\1802002_AR_JS_R19_rqin.rvt 31/07/2020 10:40:44 PM

NSW ARCHITECTS REGISTRATION BOARD / NOMINATED ARCHITECTS 6501 ABBIE GALVIN 9356 NINOTSCHKA TITCHKOSKY

6501 ABBIE GALVIN 9356 NINOTSCHKA TITCHKOSKY 7115 JULIAN ASHTON 7053 MATTHEW BLAIR 7151 PHILLIP ROSSINGTON 4937 JAMES GROSE

Telephone +61 2 8297 7200 Facsimile +61 2 8297 7299 www.bvn.com.au

INTELLECTUAL PROPERTY COPYRIGHT BVN ARCHITECTURE PTY LIMITED. UNLESS OTHERWISE AGREED IN WRITING;ALL RIGHTS TO THIS DOCUMENT ARE SUBJECT TO PAYMENT IN FULL OF ALL BVN CHARGES;THIS DOCUMENT MAY ONLY BE USED FOR THE EXPRESS PURPOSE AND PROJECT FOR WHICH IT HAS BEEN CREATED AND DELIVERED, AS NOTIFIED IN WRITING BY BVN;AND THIS DOCUMENT MAY NOT BE OTHERWISE USED, OR COPIED. ANY UNAUTHORISED USE OF THIS DOCUMENT IS AT THE USER'S SOLE RISK AND WITHOUT LIMITING BVN'S RIGHTS THE USER RELEASES AND INDEMNIFIES BVN FROM AND AGAINST ALL LOSS SO ARISING.

NOTE CONTRACTOR TO CHECK AND VERIFY ALL DIMENSIONS ON SITE PRIOR TO COMMENCEMENT OF WORK OR PREPARATION OF SHOP DRAWINGS. DO NOT SCALE THIS DRAWING

ISSUE	DATE	FOR
1	09.10.19	FOR INFORMATION
2	09.12.19	FOR SEM SIGN OFF
3	27.03.20	FOR COORDINATION
4	05.06.20	FOR COORDINATION
5	17.06.20	FOR COORDINATION
6	31.07.20	SSDA SUBMISSION

TOWN PLANNER URBIS TEL 02 8233 9900 CIVIL AND STRUCTURAL ENGINEERS HENRY & HYAMS TEL 02 9417 8400 HERITAGE ARCHITECT DESIGN 5 TEL 02 9319 1855 LANDSCAPE ARCHITECT CAB CONSULTING

TEL 02 9997 1085 PROJECT MANAGER MAHADY MANAGEMENT MOB. 0411 510 073 CLIENT

STATE SIGNIFICANT DEVELOPMENT APPLICATION

PRECINCT A

JUNIOR SCHOOL AND ELC CNR NEW SOUTH HEAD ROAD & VAUCLUSE RD, VAUCLUSE NSW 2030

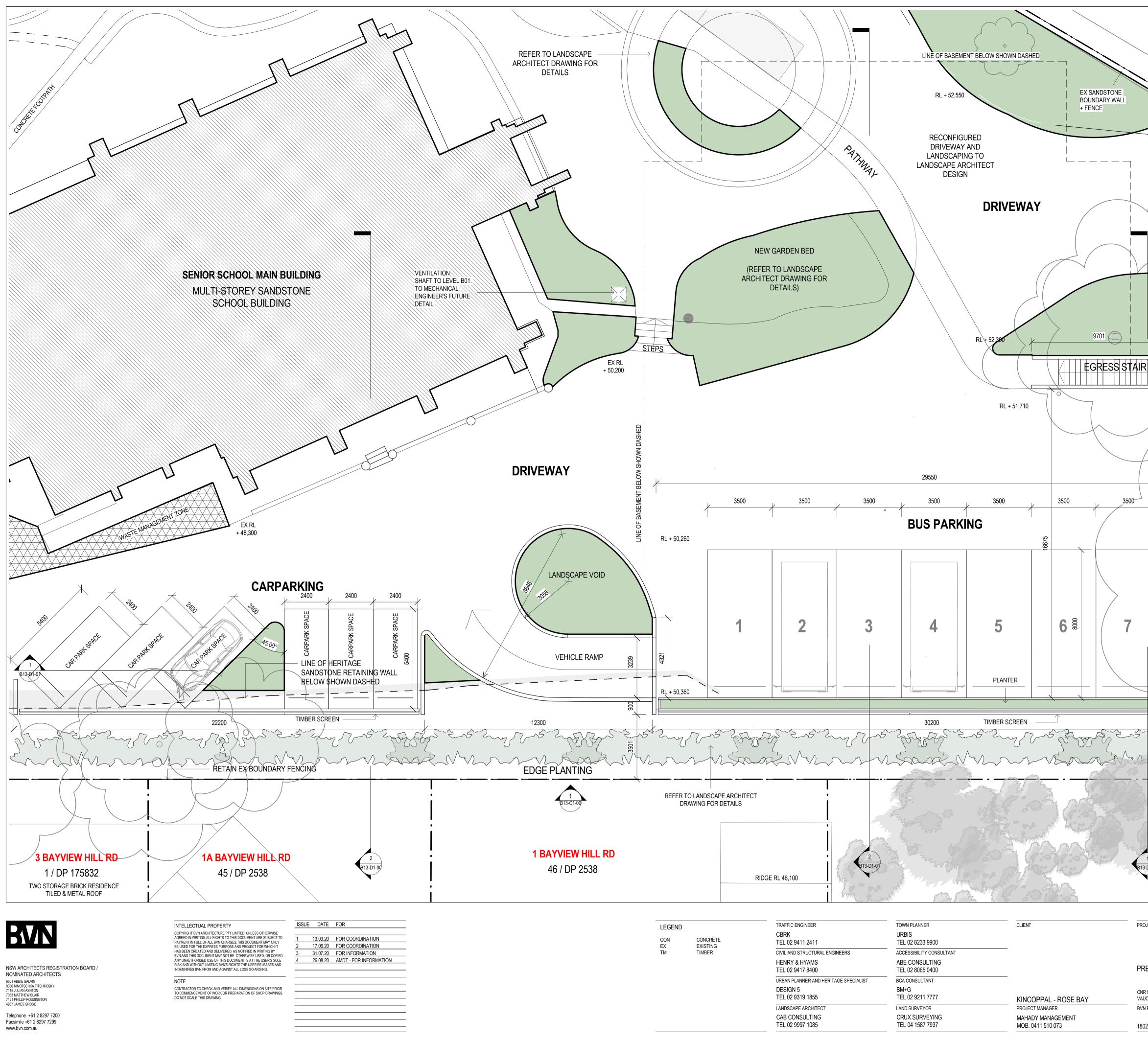
BVN PROJECT NUMBER

1802002 DRAWING KEY

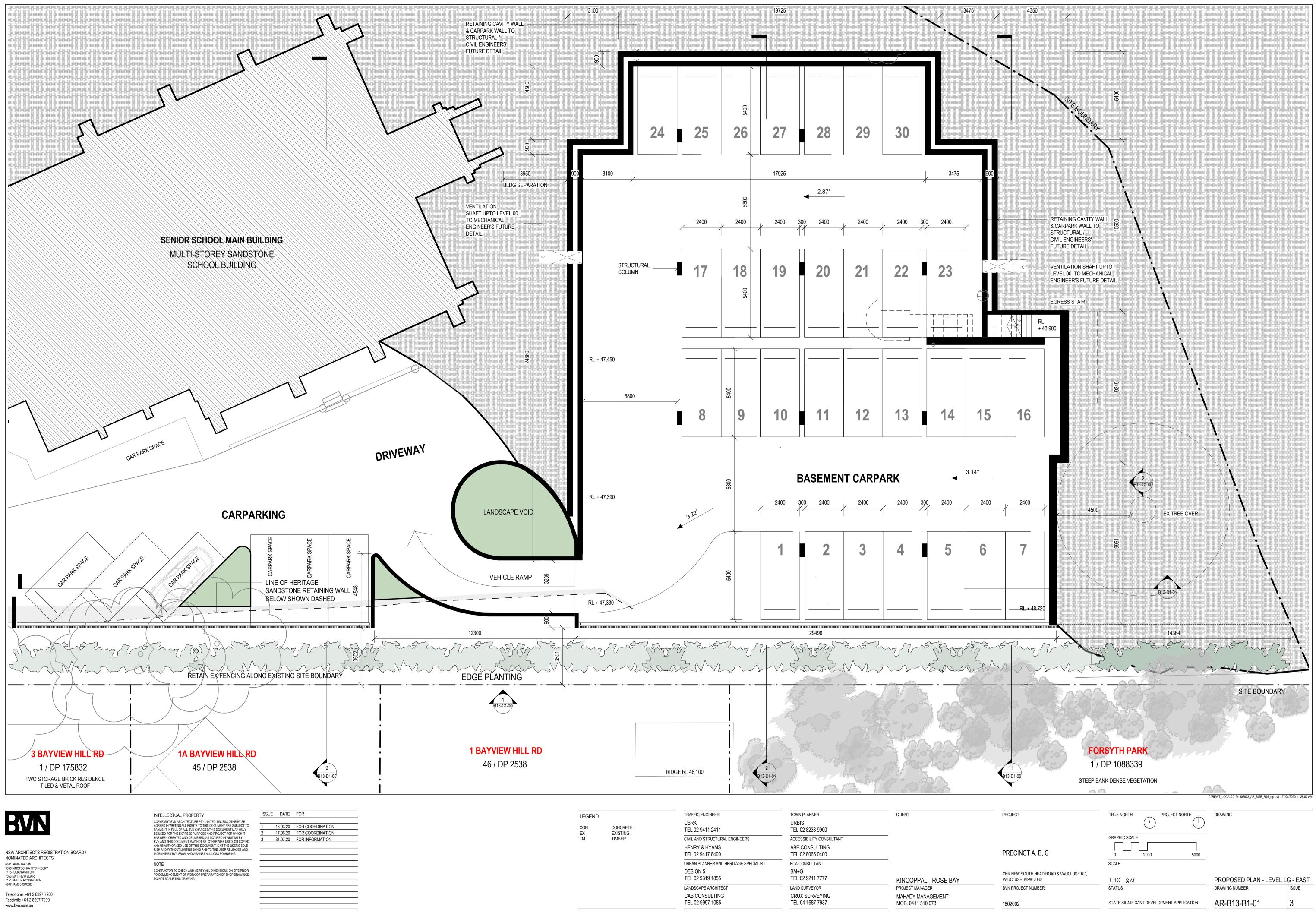
TRUE NORTH PROJECT NORTH

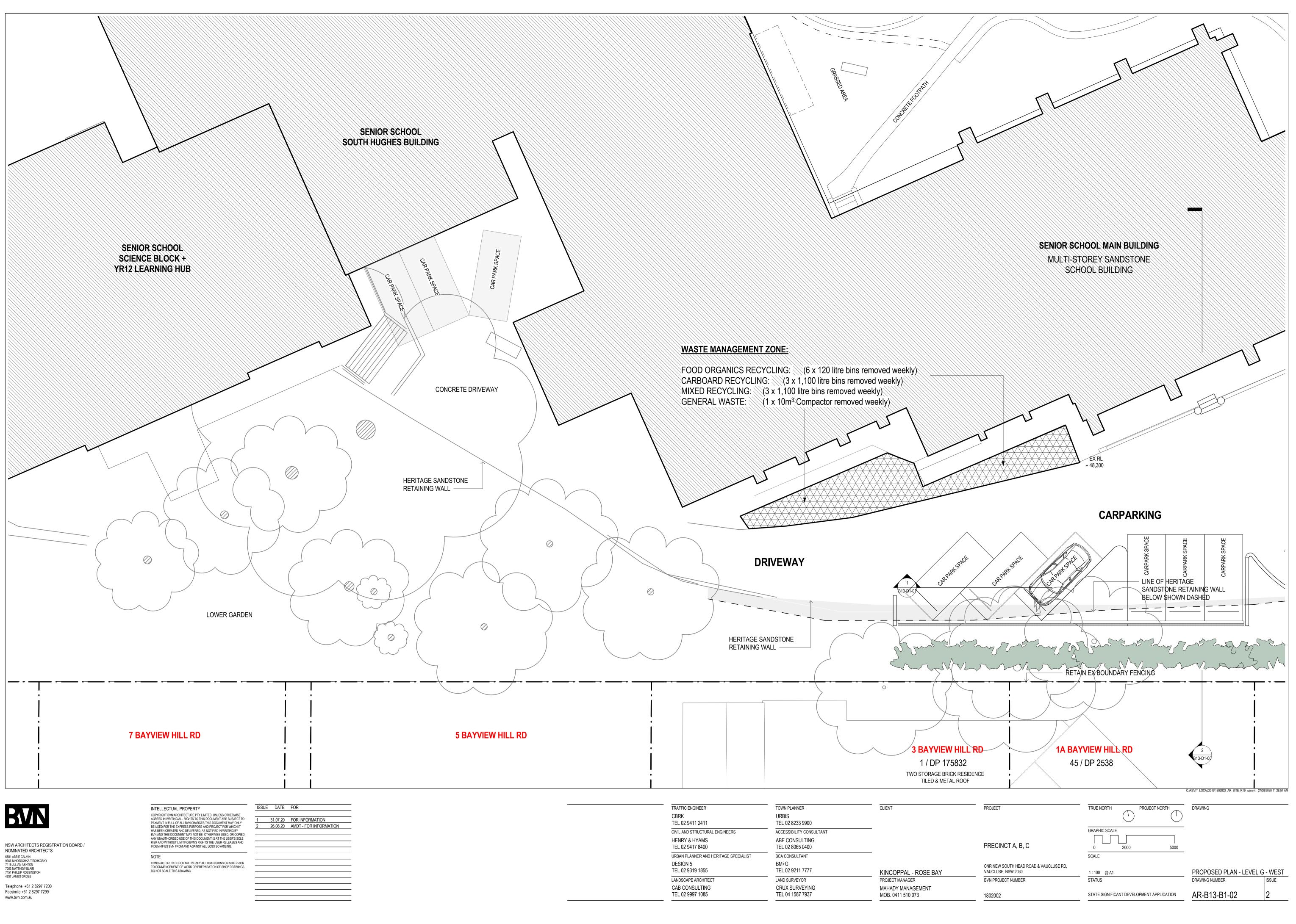
GRAPHIC SCALE

0 2000 5000


SCALE

1:100@A1 STATUS


FOR COORDINATION


ELC - PROPOSED GA PLAN -LEVEL -02

AR-A-B1-02

VAUCLUS	E ROAD	
	ENIOR SCHOOL NTRY GATE -4450 -4450 ENTILATION SHAFT TO EVEL B01. TO MECHANICAL NGINEER'S FUTURE DETAIL	NEW SOUTH HEAD ROAD
2276 RL + 51,650 RL + 51,550	EX SANDSTONE BOUNDARY WALL ULAWN + GARDEN D D D D D D D D D D D D D D D D D D	
FOR 1/C	DRAWING FOR DETAIL 13747 RETAIN EX BOUNDAR SYTH PARK DP 1088339 IK DENSE VEGETATION	A Start
DJECT RECINCT A, B, C	TRUE NORTH PROJECT NORTH	C:\REVIT_LOCAL2019\1802002_AR_SITE_R19_rgin.rvt 27/08/2020 11:27:18 AM
R NEW SOUTH HEAD ROAD & VAUCLUSE RD, JCLUSE, NSW 2030 N PROJECT NUMBER 02002	1 : 100 @ A1 STATUS STATE SIGNIFICANT DEVELOPMENT APPLICATION	PROPOSED PLAN - LEVEL G - EASTDRAWING NUMBERISSUEAR-B13-B1-004

NOMINATED ARCHITECTS

Facsimile +61 2 8297 7299

Lotsearch Environmental Risk and Planning Report

Date: 09 Jan 2020 15:42:51

Reference: LS010577 EP

Address: Corner New South Head Road, Rose Bay, NSW 2030

Disclaimer:

The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

Dataset Listing

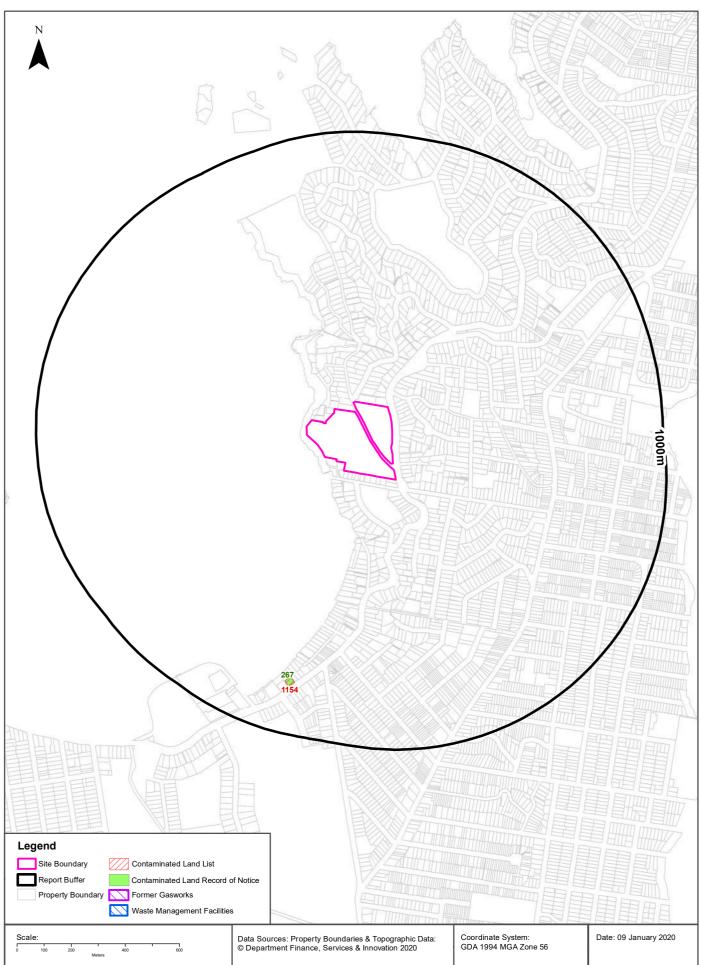
Datasets contained within this report, detailing their source and data currency:

Dataset Name	Custodian	Supply	Currency	Update	Dataset	No.	No.	No.
		Date	Date	Frequency			Features within 100m	Features within Buffer
Cadastre Boundaries	NSW Department of Finance, Services & Innovation	29/10/2019	29/10/2019	Quarterly	-	-	-	-
Topographic Data	ta NSW Department of Finance, Services & Innovation		25/06/2019	As required	-	-	-	-
List of NSW contaminated sites notified to EPA	Environment Protection Authority	18/12/2019	16/12/2019	Monthly	1000	0	0	1
Contaminated Land Records of Notice	Environment Protection Authority	16/12/2019	16/12/2019	Monthly	1000	0	0	1
Former Gasworks	Environment Protection Authority	07/01/2020	11/10/2017	Monthly	1000	0	0	0
National Waste Management Facilities Database	Geoscience Australia	05/11/2019	07/03/2017	Quarterly	1000	0	0	0
EPA PFAS Investigation Program	Environment Protection Authority	07/01/2020	07/01/2020	Monthly	2000	0	0	0
Defence PFAS Investigation & Management Program	Department of Defence	18/12/2019	18/12/2019	Monthly	2000	0	0	0
Airservices Australia National PFAS Management Program	Airservices Australia	18/12/2019	18/12/2019	Monthly	2000	0	0	0
Defence 3 Year Regional Contamination Investigation Program	Department of Defence	18/12/2019	18/12/2019	Monthly	2000	0	0	0
EPA Other Sites with Contamination Issues	Environment Protection Authority	13/12/2018	13/12/2018	Annually	1000	0	0	0
Licensed Activities under the POEO Act 1997	Environment Protection Authority	07/01/2020	07/01/2020	Monthly	1000	0	0	0
Delicensed POEO Activities still regulated by the EPA	Environment Protection Authority	07/01/2020	07/01/2020	Monthly	1000	0	0	0
Former POEO Licensed Activities now revoked or surrendered	Environment Protection Authority	07/01/2020	07/01/2020	Monthly	1000	0	3	3
UPSS Environmentally Sensitive Zones	Environment Protection Authority	14/04/2015	12/01/2010	As required	1000	1	1	1
UBD Business Directories 1950 - 1991 (Premise & Intersection Matches)	Hardie Grant			Not required	100	0	14	14
UBD Business Directories 1950 - 1991 (Road & Area Matches)	Hardie Grant			Not required	100	-	10	10
UBD Business Directory Drycleaners & Motor Garages/Service Stations (Premise & Intersection Matches)	Hardie Grant			Not required	250	0	0	0
UBD Business Directory Drycleaners & Motor Garages/Service Stations (Road & Area Matches)	Hardie Grant			Not required	250	-	1	1
Points of Interest	NSW Department of Finance, Services & Innovation	19/09/2019	19/09/2019	Quarterly	1000	3	6	48
Tanks (Areas)	NSW Department of Finance, Services & Innovation	19/09/2019	19/09/2019	Quarterly	1000	0	0	1
Tanks (Points)	NSW Department of Finance, Services & Innovation	19/09/2019	19/09/2019	Quarterly	1000	0	0	1
Major Easements	NSW Department of Finance, Services & Innovation	19/09/2019	19/09/2019	Quarterly	1000	0	2	10
State Forest	NSW Department of Finance, Services & Innovation	18/01/2018	18/01/2018	As required	1000	0	0	0
NSW National Parks and Wildlife Service Reserves	NSW Office of Environment & Heritage	16/01/2019	14/11/2018	•	1000	1	1	1
Hydrogeology Map of Australia	Commonwealth of Australia (Geoscience Australia)	08/10/2014	17/03/2000	As required	1000	1	1	1
Botany Groundwater Management Zones	NSW Department of Primary Industries	15/03/2018	01/10/2005	•	1000	0	0	0
Groundwater Boreholes	NSW Dept. of Primary Industries - Water NSW; Commonwealth of Australia (Bureau of Meteorology)	24/07/2018	23/07/2018	•	2000	0	0	137
Geological Units 1:100,000	NSW Dept. of Industry, Resources & Energy	20/08/2014		None planned	1000	1	-	7

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features Onsite	No. Features within 100m	No. Features within Buffer
Geological Structures 1:100,000	NSW Dept. of Industry, Resources & Energy	20/08/2014		None planned	1000	1	-	4
Naturally Occurring Asbestos Potential	NSW Dept. of Industry, Resources & Energy	04/12/2015	24/09/2015	Unknown	1000	0	0	0
Atlas of Australian Soils	ABARES	19/05/2017	17/02/2011	As required	1000	1	1	1
Soil Landscapes	NSW Office of Environment & Heritage	12/08/2014		None planned	1000	2	-	8
Environmental Planning Instrument Acid Sulfate Soils	NSW Department of Planning and Environment	06/12/2019	11/10/2019	Weekly	500	1	-	-
Atlas of Australian Acid Sulfate Soils	CSIRO	19/01/2017	21/02/2013	As required	1000	1	2	3
Dryland Salinity - National Assessment	National Land and Water Resources Audit	18/07/2014	12/05/2013	None planned	1000	0	0	0
Dryland Salinity Potential of Western Sydney	NSW Office of Environment & Heritage	12/05/2017	01/01/2002	None planned	1000	-	-	-
Mining Subsidence Districts	NSW Department of Finance, Services & Innovation	19/09/2019	19/09/2019	Quarterly	1000	0	0	0
Environmental Planning Instrument SEPP State Significant Precincts	NSW Department of Planning and Environment	06/12/2019	07/12/2018	Weekly	1000	0	0	0
Environmental Planning Instrument Land Zoning	NSW Department of Planning and Environment	06/12/2019	29/11/2019	Weekly	1000	1	8	50
Commonwealth Heritage List	Australian Government Department of the Environment and Energy - Heritage Branch	16/01/2019	31/07/2018	Unknown	1000	0	0	0
National Heritage List	Australian Government Department of the Environment and Energy - Heritage Branch	16/01/2019	28/09/2018	Unknown	1000	0	0	0
State Heritage Register - Curtilages	NSW Office of Environment & Heritage	08/11/2019	09/11/2018	Quarterly	1000	0	0	5
Environmental Planning Instrument Heritage	NSW Department of Planning and Environment	06/12/2019	29/11/2019	Weekly	1000	1	4	83
Bush Fire Prone Land	NSW Rural Fire Service	28/08/2019	03/06/2019	Quarterly	1000	0	0	0
Native Vegetation of the Sydney Metropolitan Area	NSW Office of Environment & Heritage	01/03/2017	16/12/2016	As required	1000	2	4	8
Ramsar Wetlands of Australia	Commonwealth of Australia Department of the Environment	08/10/2014	24/06/2011	As required	1000	0	0	0
Groundwater Dependent Ecosystems	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000	0	0	2
Inflow Dependent Ecosystems Likelihood	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000	0	0	1
NSW BioNet Species Sightings	NSW Office of Environment & Heritage	09/01/2020	09/01/2020	Weekly	10000	-	-	-

Site Diagram

Corner New South Head Road, Rose Bay, NSW 2030



Contaminated Land & Waste Management Facilities

Corner New South Head Road, Rose Bay, NSW 2030

Contaminated Land & Waste Management Facilities

Corner New South Head Road, Rose Bay, NSW 2030

List of NSW contaminated sites notified to EPA

Records from the NSW EPA Contaminated Land list within the dataset buffer:

Map Id	Site	Address	Suburb	Activity	Management Class	Status	Location Confidence	Dist (m)	Direction
1154	Rose Bay Budget Service station	638 -646 New South Head Road	Rose Bay	Service Station	Contamination currently regulated under CLM Act	Current EPA List	Premise Match	788m	South

The values within the EPA site management class in the table above, are given more detailed explanations in the table below:

EPA site management class	Explanation
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record of Notices.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the Protection of the Environment Operations Act 1997 (POEO Act).
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record of Notices.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.

NSW EPA Contaminated Land List Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Contaminated Land & Waste Management Facilities

Corner New South Head Road, Rose Bay, NSW 2030

Contaminated Land: Records of Notice

Record of Notices within the dataset buffer:

Map Id	Name	Address	Suburb	Notices	Area No	Location Confidence	Distance	Direction
267	Rose Bay Budget Service Station	638-646 New South Head ROAD	Rose Bay	2 current and 7 former	3304	Premise Match	788m	South

Contaminated Land Records of Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority Terms of use and disclaimer for Contaminated Land: Record of Notices, please visit http://www.epa.nsw.gov.au/clm/clmdisclaimer.htm

Former Gasworks

Former Gasworks within the dataset buffer:

Map Id	Location	Council	Further Info	Location Confidence	Distance	Direction
N/A	No records in buffer					

Former Gasworks Data Source: Environment Protection Authority

 $\ensuremath{\mathbb{C}}$ State of New South Wales through the Environment Protection Authority

National Waste Management Site Database

Sites on the National Waste Management Site Database within the dataset buffer:

Site Id	Owner	Name	Address	Suburb	Class	Landfill	Reprocess	Transfer	Comments	Loc Conf	Dist (m)	Direction
	No records in buffer											

Waste Management Facilities Data Source: Geoscience Australia

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

PFAS Investigation Programs

Corner New South Head Road, Rose Bay, NSW 2030

EPA PFAS Investigation Program

Sites that are part of the EPA PFAS investigation program, within the dataset buffer:

ld	Site	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

EPA PFAS Investigation Program: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Defence PFAS Investigation & Management Program

Sites being investigated or managed by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Investigation & Management Program Data Custodian: Department of Defence, Australian Government

Airservices Australia National PFAS Management Program

Sites being investigated or managed by Airservices Australia for PFAS contamination within the dataset buffer:

Map ID	Site Name	Impacts	Loc Conf	Dist	Dir
N/A	No records in buffer				

Airservices Australia National PFAS Management Program Data Custodian: Airservices Australia

Defence Sites

Corner New South Head Road, Rose Bay, NSW 2030

Defence 3 Year Regional Contamination Investigation Program

Sites which have been assessed as part of the Defence 3 Year Regional Contamination Investigation Program within the dataset buffer:

Property ID	Base Name	Address	Known Contamination	Loc Conf	Dist	Dir
N/A	No records in buffer					

Defence 3 Year Regional Contamination Investigation Program, Data Custodian: Department of Defence, Australian Government

EPA Other Sites with Contamination Issues

Corner New South Head Road, Rose Bay, NSW 2030

EPA Other Sites with Contamination Issues

This dataset contains other sites identified on the EPA website as having contamination issues. This dataset currently includes:

- · James Hardie asbestos manufacturing and waste disposal sites
- Radiological investigation sites in Hunter's Hill
- Pasminco Lead Abatement Strategy Area

Sites within the dataset buffer:

Site Id	Site Name	Site Address	Dataset	Comments	Location Confidence	Distance	Direction
N/A	No records in buffer						

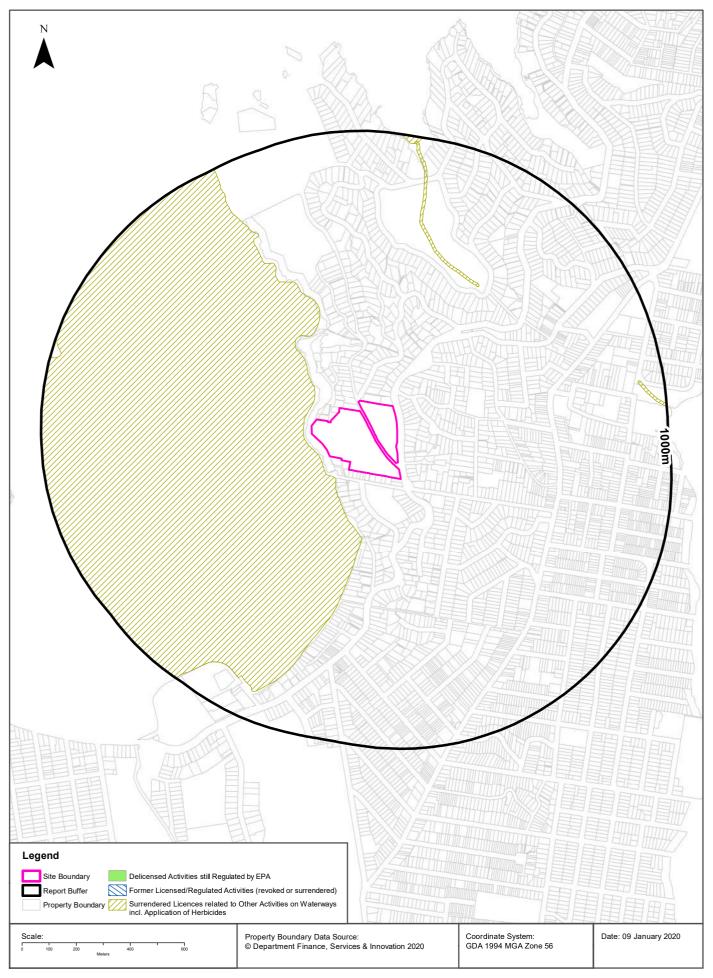
EPA Other Sites with Contamination Issues: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

EPA Activities

Corner New South Head Road, Rose Bay, NSW 2030

Licensed Activities under the POEO Act 1997

Licensed activities under the Protection of the Environment Operations Act 1997, within the dataset buffer:


EPL	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
N/A	No records in buffer							

POEO Licence Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Delicensed & Former Licensed EPA Activities

EPA Activities

Corner New South Head Road, Rose Bay, NSW 2030

Delicensed Activities still regulated by the EPA

Delicensed activities still regulated by the EPA, within the dataset buffer:

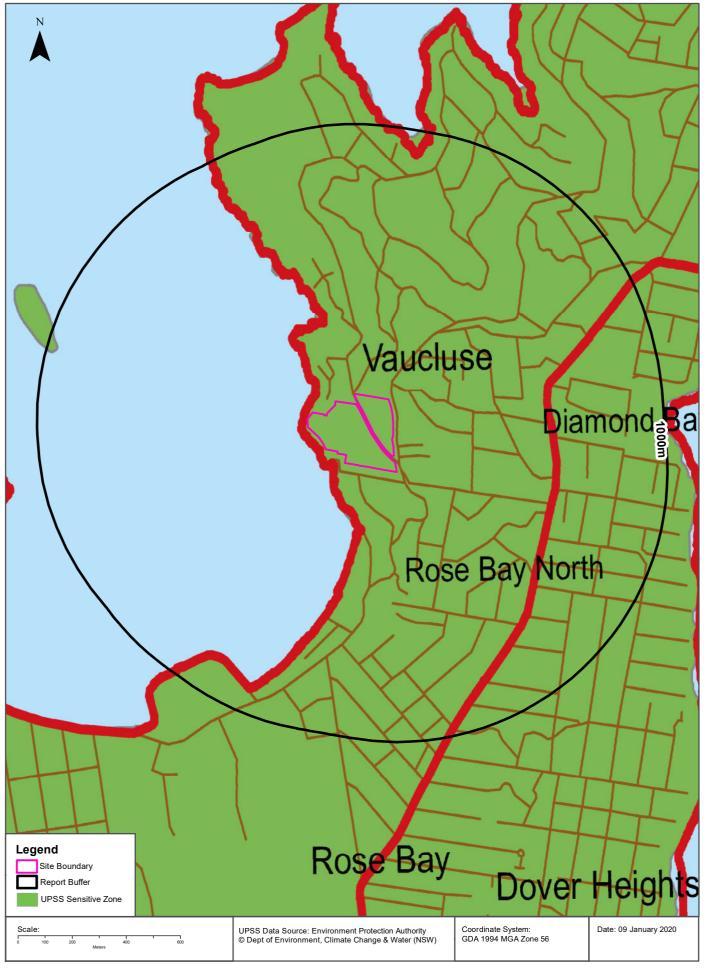
Licence No	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
N/A	No records in buffer							

Delicensed Activities Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

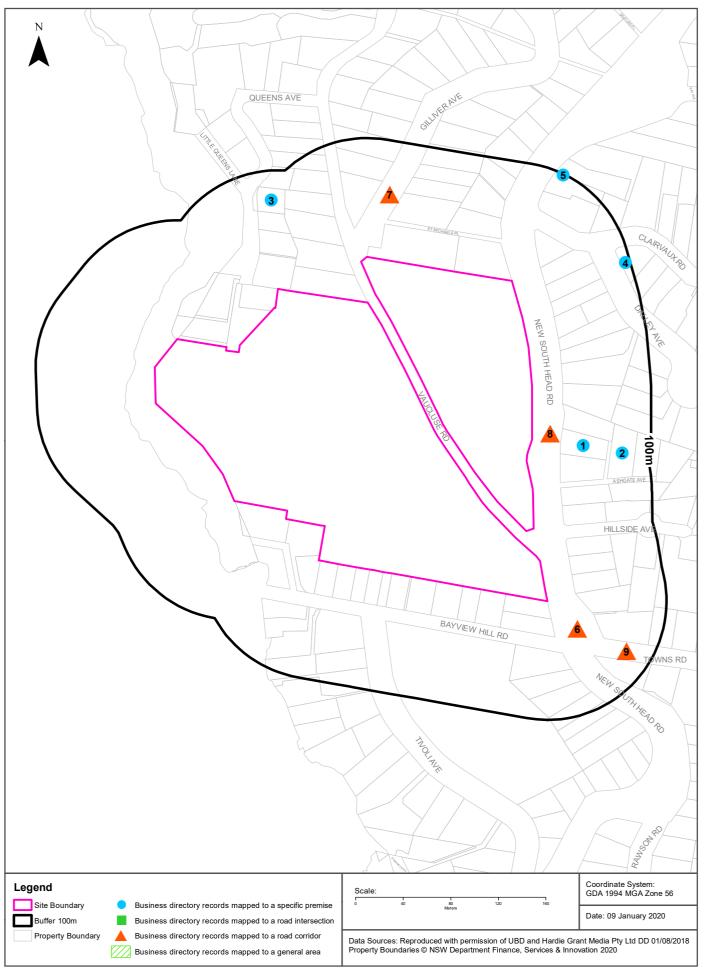
Former Licensed Activities under the POEO Act 1997, now revoked or surrendered

Former Licensed activities under the Protection of the Environment Operations Act 1997, now revoked or surrendered, within the dataset buffer:


Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
4653	LUHRMANN ENVIRONMENT MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW	Surrendered	06/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	28m	-
4838	Robert Orchard	Various Waterways throughout New South Wales - SYDNEY NSW 2000	Surrendered	07/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	28m	-
6630	SYDNEY WEED & PEST MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW - PROSPECT, NSW, 2148	Surrendered	09/11/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	28m	-

Former Licensed Activities Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority


UPSS Sensitive Zones

Historical Business Directories 1950-1991

Historical Business Directories

Corner New South Head Road, Rose Bay, NSW 2030

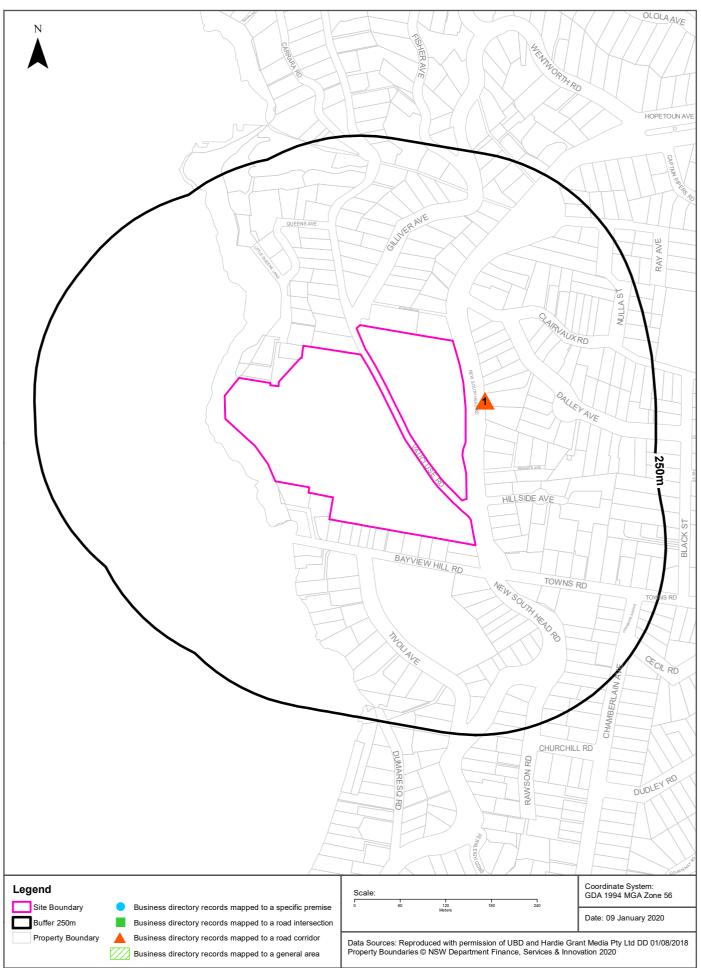
Business Directory Records 1950-1991 Premise or Road Intersection Matches

Universal Business Directory records from years 1991, 1986, 1982, 1978, 1975, 1970, 1965, 1961 & 1950, mapped to a premise or road intersection within the dataset buffer:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
1	ARCHITECTS	Robson, G. K., 15 New South Head Rd., Vaucluse	268479	1961	Premise Match	24m	East
2	FOOD-FROZEN-MFRS. &/OR IMPS. &/OR DISTS.	Deran Foods Pty. Ltd., 3 Ashgate Ave., Vaucluse. 2030	34148	1986	Premise Match	63m	East
	FOOD - FROZEN - MFRS. &/OR IMPS. &/OR DISTS. (F4740)	Deran Foods Pty. Ltd., 3 Ashgate Ave., Vaucluse. 2030.	31853	1982	Premise Match	63m	East
	FOOD-FROZEN-MFRS &/OR IMPS &/OR DISTS.	Deran Foods Pty. Ltd., 3 Ashgate Ave., Vaucluse. 2030	28840	1978	Premise Match	63m	East
	FOOD-FROZEN-MFRS &/OR IMPS &/OR DISTS.	Deran Foods Pty. Ltd., 3 Ashgate Ave., Vaucluse. 2030	33405	1975	Premise Match	63m	East
3	MEDICAL PRACTITIONERS.	Brideman, S., 3 Queens Ave., Vaucluse. 2030	42259	1978	Premise Match	63m	North West
	MEDICAL PRACTITIONERS.	Brideman, S., 3 Queens Ave., Vaucluse. 2030.	49807	1975	Premise Match	63m	North West
	MEDICAL PRACTITIONERS (M216)	Bridgeman, S., 3 Queens Ave., Vaucluse	326292	1970	Premise Match	63m	North West
	Medical Practitioners	Bridgeman, S., 3 Queens Ave., Vaucluse	110890	1965	Premise Match	63m	North West
	MEDICAL PRACTITIONERS	Bridgeman, S., 3 Queens Ave., Vaucluse	334656	1961	Premise Match	63m	North West
4	MEDICAL PRACTITIONERS	Broughton, J. W., 1 Clairvaux Rd., Vaucluse	72523	1950	Premise Match	90m	North East
5	MEDICAL PRACTITIONERS (M216)	Love, C. J., 33 New South Head Rd., Vaucluse	327488	1970	Premise Match	98m	North East
	Medical Practitioners	Love, C. J., 33 New South Head Rd., Vaucluse	111997	1965	Premise Match	98m	North East
	MEDICAL PRACTITIONERS	Love, C. J., 33 & 40 New South Head Rd., Vaucluse	335707	1961	Premise Match	98m	North East

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Business Directory Records 1950-1991 Road or Area Matches


Universal Business Directory records from years 1991, 1986, 1982, 1978, 1975, 1970, 1965, 1961 & 1950, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
6	RESTAURANTS.	Captain Cook Floating Restaurant., New South Head Rd., Rose Bay. 2029	73618	1975	Road Match	0m
	Schools/Colleges - Private/Public	Sacred Heart Convent Schools., New South Head Rd., Rose Bay	142986	1965	Road Match	Om
	BUSINESS AGENTS &/OR BROKERS	Hubert, B. & Co., New South Head Rd., Rose Bay	279551	1961	Road Match	0m
	SCHOOLS/COLLEGES- PRIVATE/PUBLIC	Kambala School for Girls, New South Head Rd., Rose Bay	248312	1961	Road Match	Om
	SCHOOLS/COLLEGES- PRIVATE/PUBLIC	Sacred Heart Convent Schools, New South Head Rd., Rose Bay	248369	1961	Road Match	Om
	MERCANTILE AGENTS	Noblett, G. M., New South Head Rd., Rose Bay	74194	1950	Road Match	0m
7	Schools/Colleges - Private/Public	St. Michael's Preparatory School., Gilliver Ave., Vaucluse	142964	1965	Road Match	0m
	SCHOOLS/COLLEGES- PRIVATE/PUBLIC	St. Michael's Preparatory School, Gilliver Ave., Vaucluse	248441	1961	Road Match	Om
8	MILK BARS & CONFECTIONERS	Ball, C. E., New South Head Rd., Vaucluse	76316	1950	Road Match	0m
9	FRUITERERS & GREENGROCERS	Sanders, A. T., Towns Rd., Vaucluse	51132	1950	Road Match	58m

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Dry Cleaners, Motor Garages & Service Stations

Historical Business Directories

Corner New South Head Road, Rose Bay, NSW 2030

Dry Cleaners, Motor Garages & Service Stations 1948-1993 Premise or Road Intersection Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a premise or road intersection, within the dataset buffer.

Note: The Universal Business Directories were published between 1948 and 1993. Dry Cleaners, Motor Garages & Service Stations have been extracted from all of these directories except the following years 1951, 1955, 1957, 1960, 1963, 1973, 1974, 1977, 1987.

Map I	I Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
	No records in buffer						

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

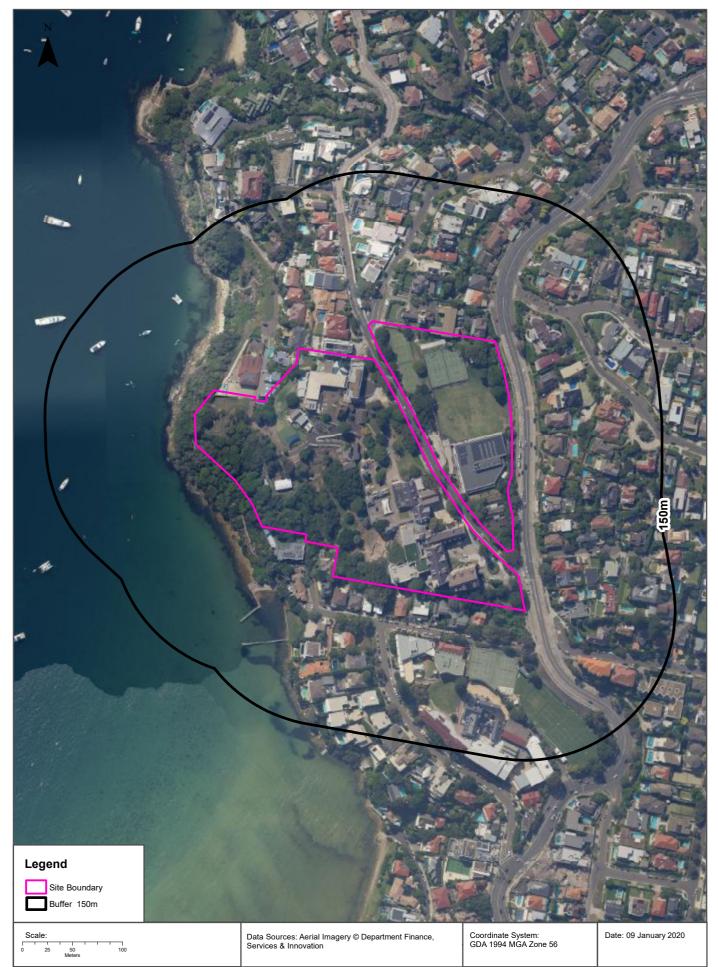
Dry Cleaners, Motor Garages & Service Stations 1948-1993 Road or Area Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published.

Note: The Universal Business Directories were published between 1948 and 1993. Dry Cleaners, Motor Garages & Service Stations have been extracted from all of these directories except the following years 1951, 1955, 1957, 1960, 1963, 1973, 1974, 1977, 1987.

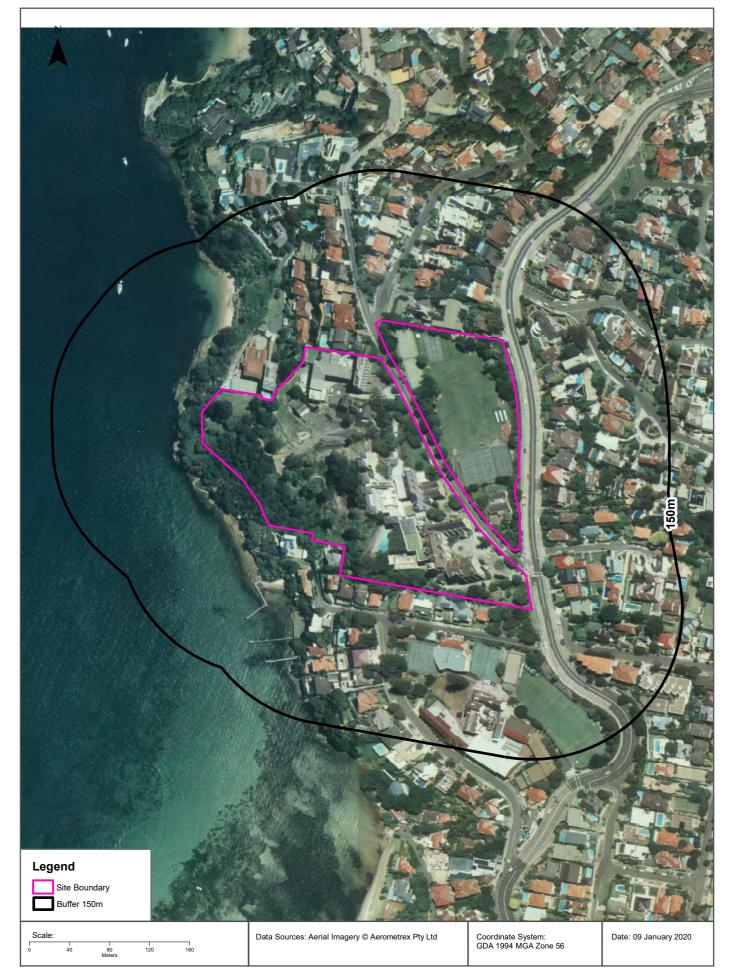
Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Esso Vaucluse Service Station, New South Head Rd., Vaucluse. 2030	65779	1983	Road Match	0m

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

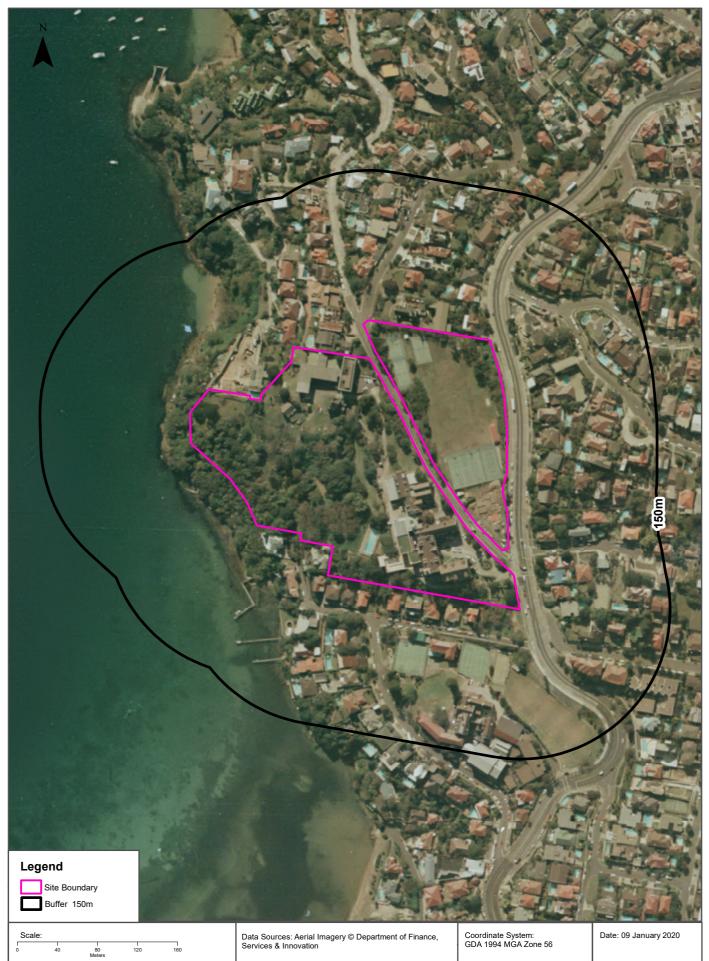

Aerial Imagery 2019 Corner New South Head Road, Rose Bay, NSW 2030

Aerial Imagery 2018 Corner New South Head Road, Rose Bay, NSW 2030

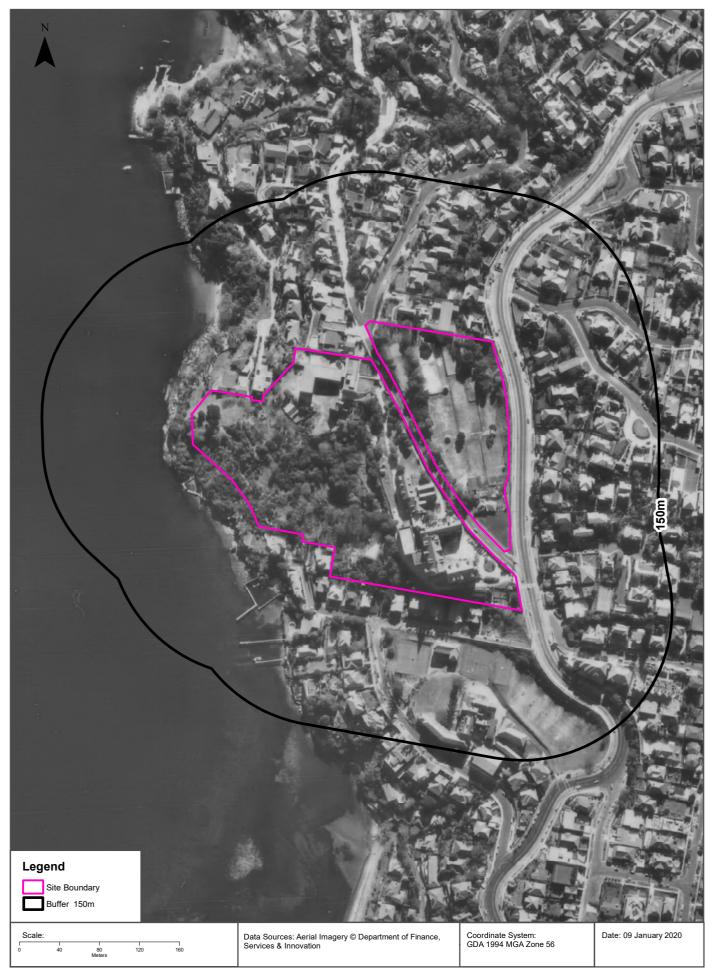
Aerial Imagery 2014 Corner New South Head Road, Rose Bay, NSW 2030

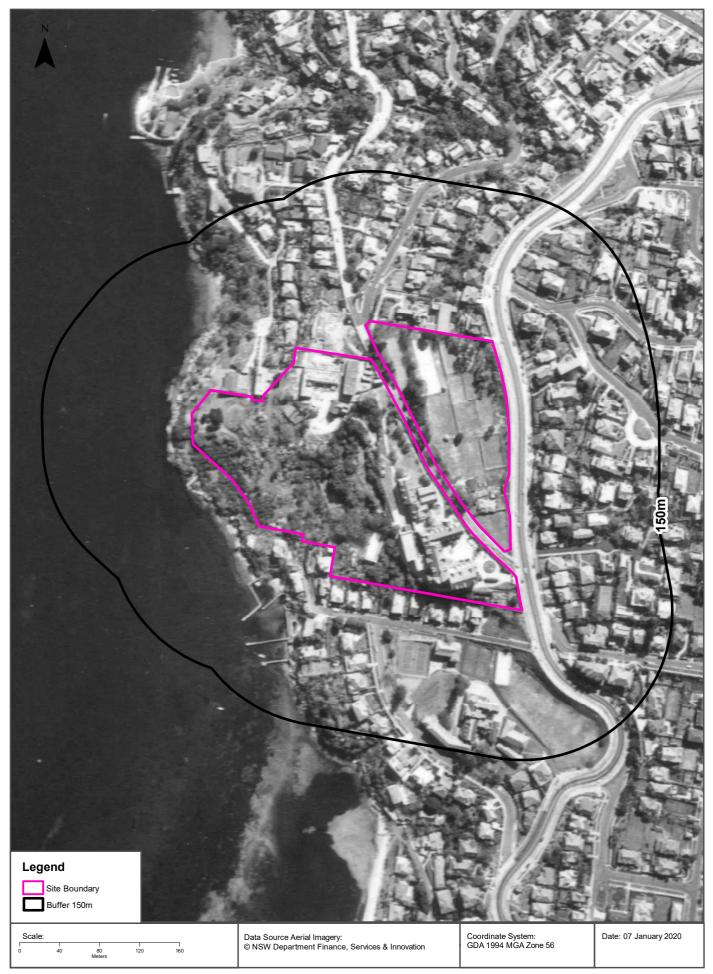


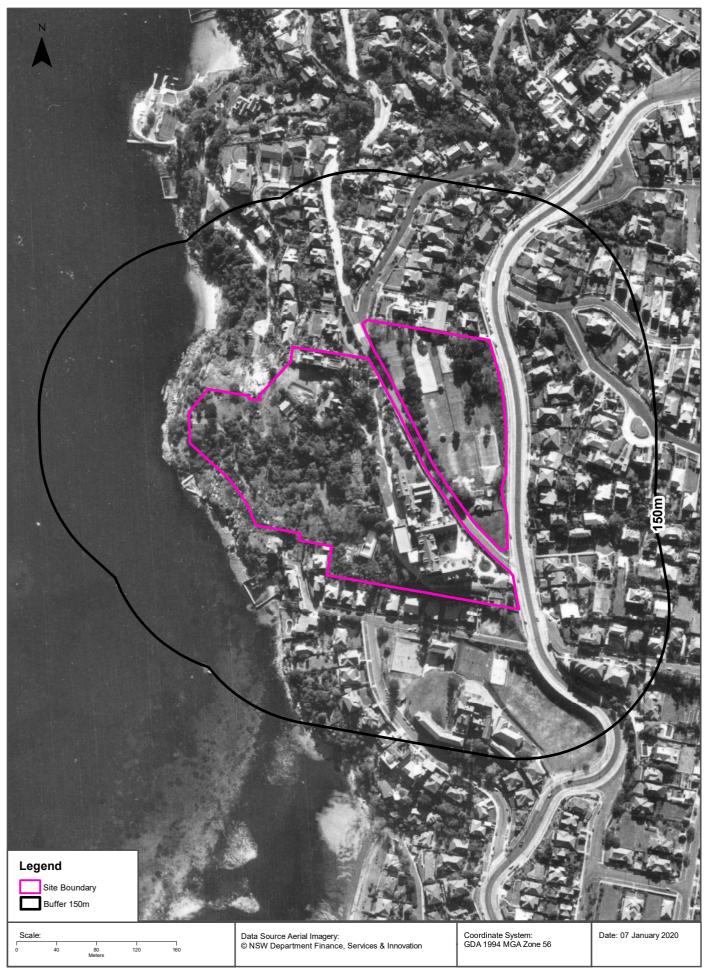
Aerial Imagery 2007 Corner New South Head Road, Rose Bay, NSW 2030

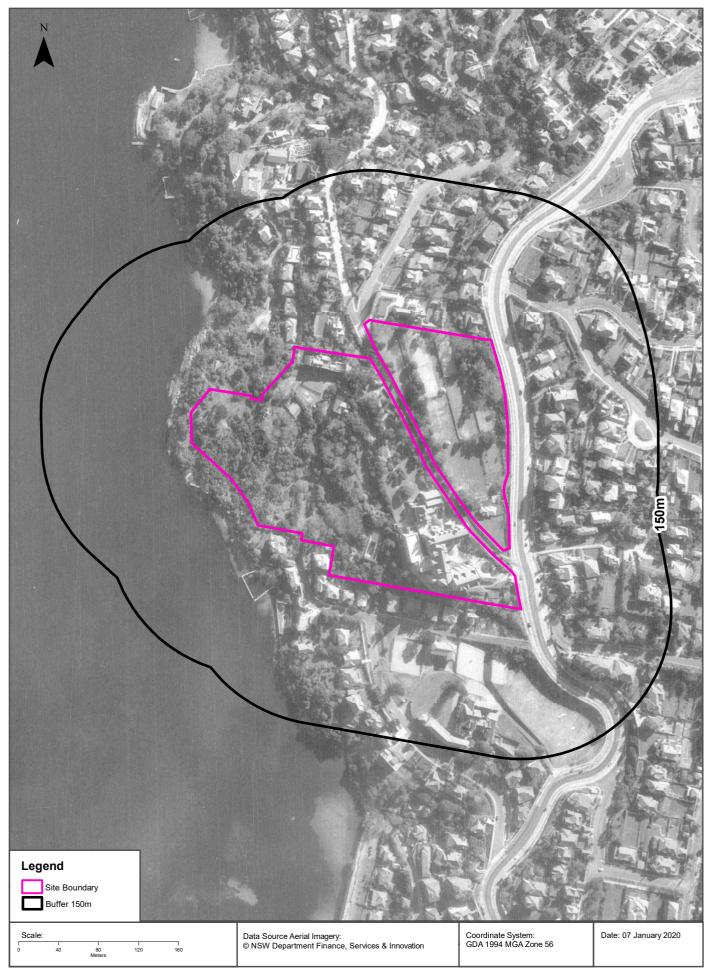


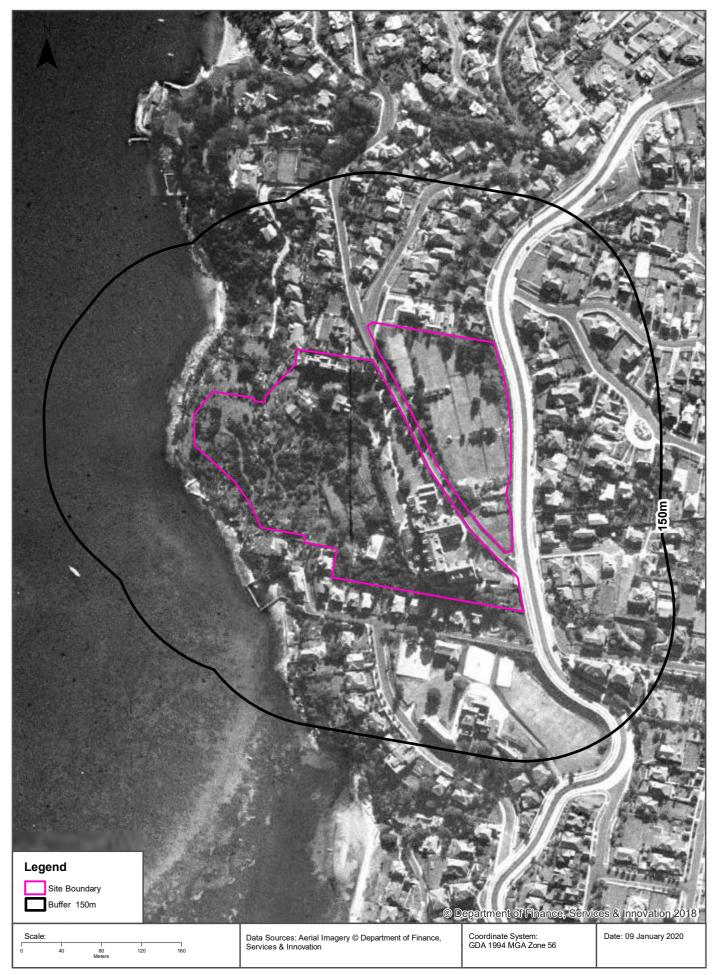
Aerial Imagery 1991 Corner New South Head Road, Rose Bay, NSW 2030

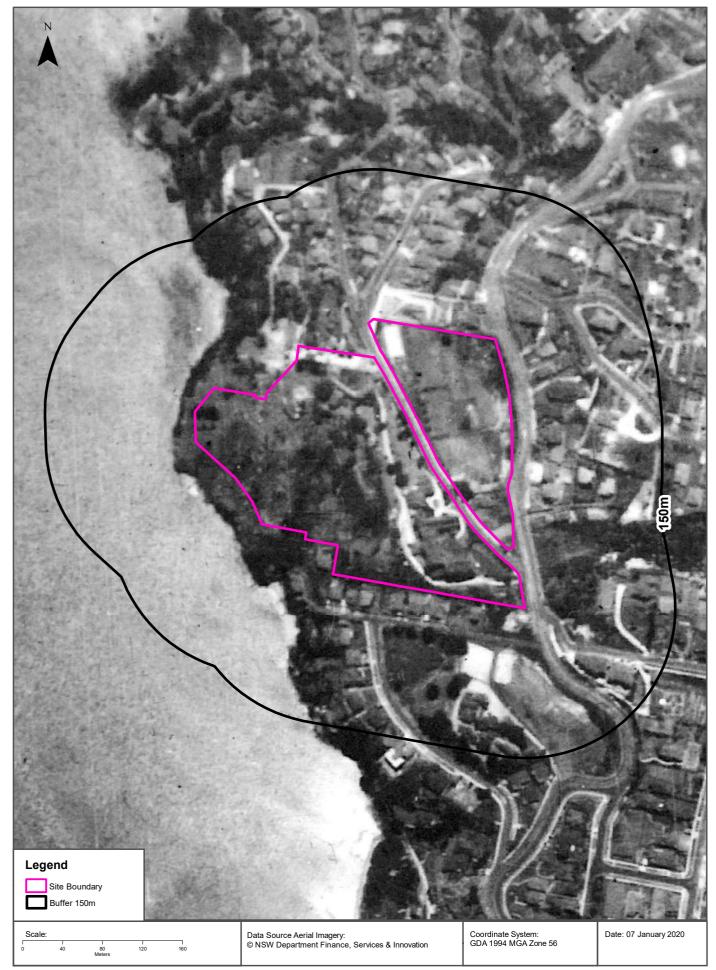




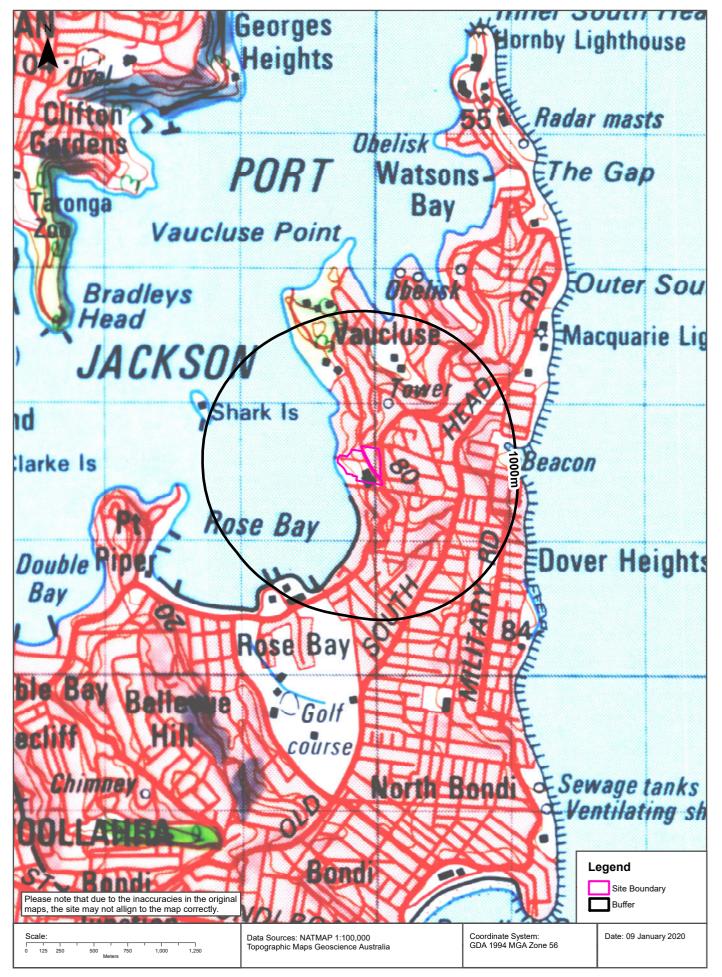


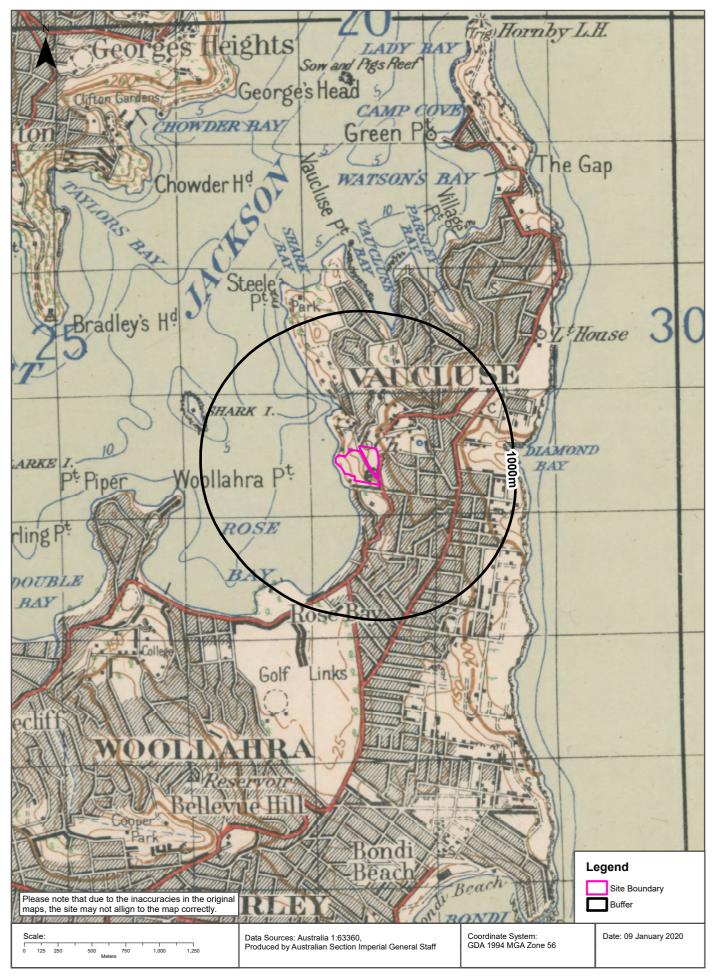


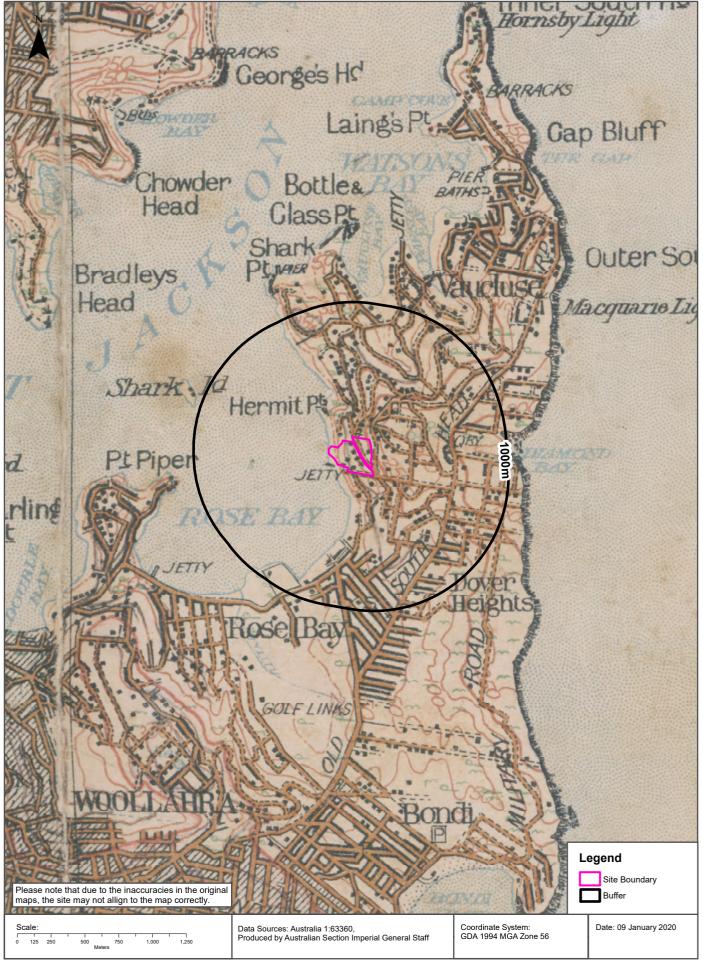


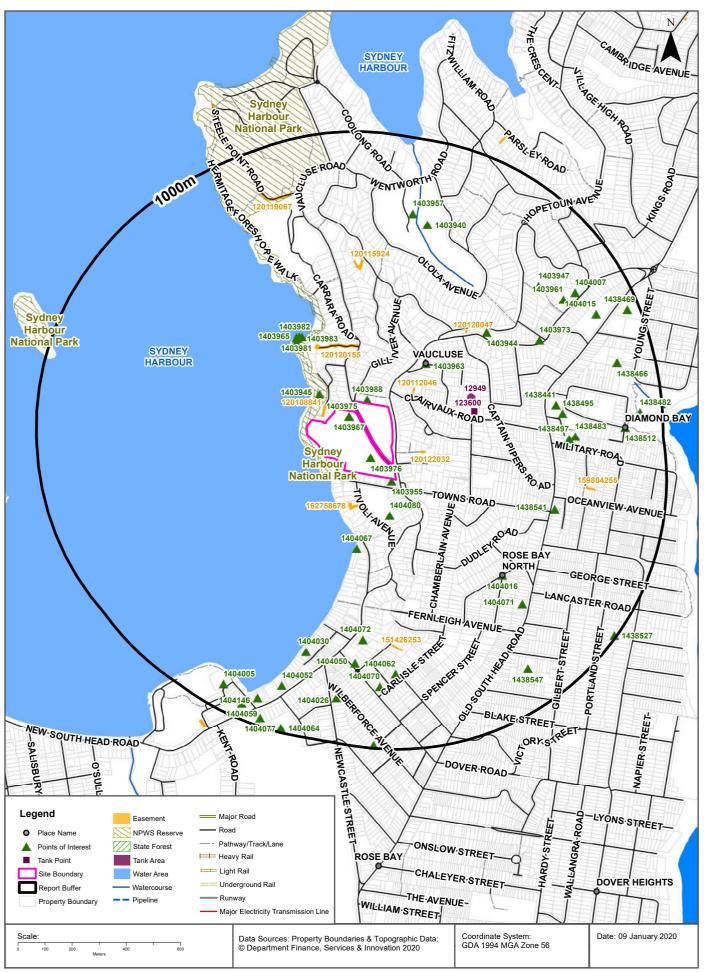





Topographic Map 2015


Historical Map 1975


Historical Map c.1936


Historical Map c.1917

Topographic Features

Topographic Features

Corner New South Head Road, Rose Bay, NSW 2030

Points of Interest

What Points of Interest exist within the dataset buffer?

Map Id	Feature Type	Label	Distance	Direction
1403967	Convent/Monastery	ROSE BAY CONVENT	0m	Onsite
1403975	Primary School	KINCOPPAL ROSE BAY SCHOOL OF THE SACRED HEART	0m	Onsite
1403976	High School	KINCOPPAL ROSE BAY SCHOOL OF THE SACRED HEART	0m	Onsite
1403955	Park	FORSYTH PARK	8m	South East
1403988	Place Of Worship	ST MICHAEL'S ANGLICAN CHURCH	14m	North
1403945	Park	HERMITAGE RESERVE	78m	North West
1404080	Combined Primary-Secondary School	KAMBALA	135m	South East
1403963	Suburb	VAUCLUSE	213m	North East
1404067	Park	DUMARESQ RESERVE	277m	South
1403938	Headland	HERMIT POINT	283m	North West
1403982	Wharf	Wharf	292m	North West
1403965	Slipway	Slipway	295m	North West
1403983	Wharf	Wharf	298m	North West
1403981	Wharf	Wharf	300m	North West
1403944	Lookout	JOHNSTONS LOOKOUT	457m	North East
1404016	Urban Place	ROSE BAY NORTH	529m	South East
1438541	Post Office	ROSE BAY NORTH POST OFFICE	596m	East
1404072	Place Of Worship	ST MARY MAGDALENE	606m	South
1438441	Sports Field	BOWLING GREENS	610m	East
1403973	Post Office	VAUCLUSE POST OFFICE	612m	North East
1438495	Community Facility	DIAMOND BAY BOWLING CLUB	631m	East
1438497	Community Facility	KIMBERLEY RESERVE COMMUNITY HALL	652m	East
1404071	Place Of Worship	SOUTH HEAD SYNAGOGUE	655m	South East
1438483	Park	KIMBERLEY RESERVE	675m	East
1404030	Park	PERCIVAL PARK	687m	South
1403940	Historic Site	VAUCLUSE HOUSE HISTORIC SITE	690m	North
1404050	Post Office	ROSE BAY POST OFFICE	697m	South
1403947	Park	SAMUEL PARK	713m	North East
1403957	Park	VAUCLUSE PARK	721m	North
404062	Primary School	MCAULEY PRIMARY SCHOOL	721m	South
1403961	Sports Field	BOWLING GREENS	760m	North East

Map Id	Feature Type	Label	Distance	Direction
1404070	Place Of Worship	ST ANDREW'S PRESBYTERIAN CHURCH	770m	South
1404007	Community Facility	VAUCLUSE BOWLING CLUB	811m	North East
1404052	Retirement Village	ROSE BAY TOWERS RETIREMENT VILLAGE	830m	South
1404026	Park	PANNERONG RESERVE	835m	South
1404015	Nursing Home	MARK MORAN AT VAUCLUSE	842m	North East
1438547	Retirement Village	PRINCESS GARDENS	853m	South East
1438512	Urban Place	DIAMOND BAY	859m	East
1438466	Community Home	VAUCLUSE NURSING HOME	859m	East
1404146	Park	TINGIRA RESERVE	901m	South
1404005	Community Facility	WOOLLAHRA SAILING CLUB	908m	South West
1438482	Park	DIAMOND BAY RESERVE	916m	East
1404059	Club	ROSE BAY RSL CLUB T/AS CLUB ROSE BAY	941m	South West
1438469	Cemetery	SOUTH HEAD GENERAL CEMETERY	954m	North East
1404077	Sports Court	TENNIS COURTS	968m	South
1404064	Sports Court	TENNIS COURTS	982m	South
1404046	Primary School	ROSE BAY PUBLIC SCHOOL	987m	South
1438527	Park	DUDLEY PAGE RESERVE	991m	South East

Topographic Data Source: © Land and Property Information (2015)

 $Creative \ Commons \ 3.0 \ \textcircled{C} \ Commonwealth \ of \ Australia \ http://creative commons.org/licenses/by/3.0/au/deed.en$

Topographic Features

Corner New South Head Road, Rose Bay, NSW 2030

Tanks (Areas)

What are the Tank Areas located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
12949	Water	Operational	VAUCLUSE RESERVOIR	01/01/2008	289m	East

Tanks (Points)

What are the Tank Points located within the dataset buffer? Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
123600	Water	Operational		02/09/2000	308m	East

Tanks Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Major Easements

What Major Easements exist within the dataset buffer?

Note. Easements provided by LPI are not at the detail of local governments. They are limited to major easements such as Right of Carriageway, Electrical Lines (66kVa etc.), Easement to drain water & Significant subterranean pipelines (gas, water etc.).

Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
120108841	Primary	Undefined		20m	North West
120112046	Primary	Undefined		98m	North East
120122032	Primary	Undefined		104m	East
162758678	Primary	Right of way	variable	114m	South
120120155	Primary	Undefined		201m	North
120120047	Primary	Undefined		399m	North East
120115924	Primary	Undefined		489m	North
151426253	Primary	Right of way	1.83 VARIABLE	613m	South
159804255	Primary	Right of way	3m and Variable	704m	East
120119067	Primary	Undefined		799m	North

Easements Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Topographic Features

Corner New South Head Road, Rose Bay, NSW 2030

State Forest

What State Forest exist within the dataset buffer?

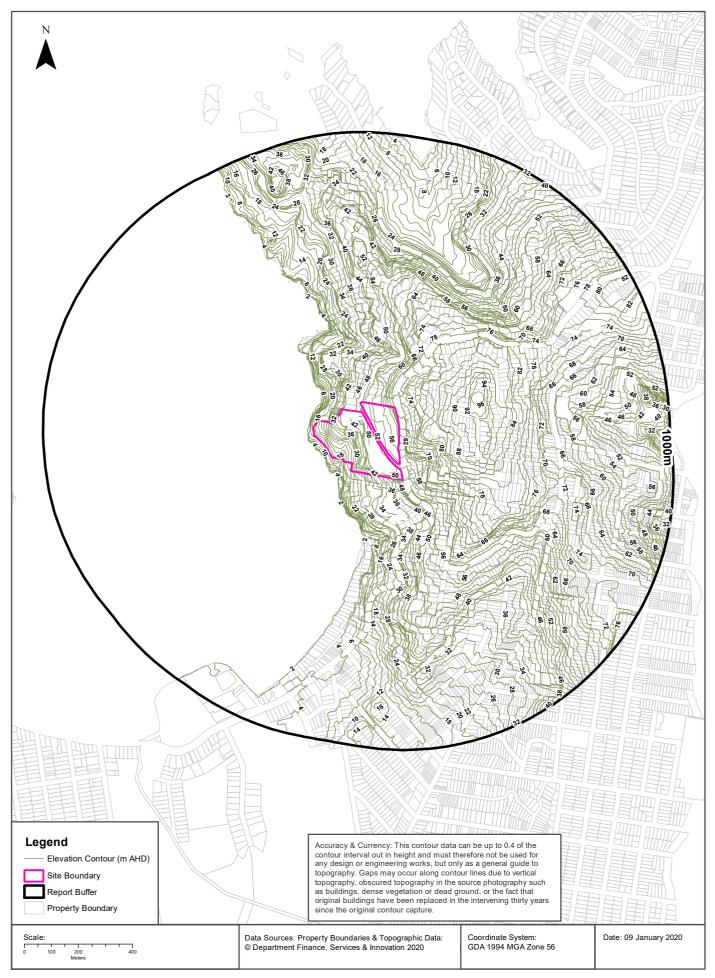
State Forest Number	State Forest Name	Distance	Direction
N/A	No records in buffer		

State Forest Data Source: © NSW Department of Finance, Services & Innovation (2018)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Parks and Wildlife Service Reserves

What NPWS Reserves exist within the dataset buffer?


Reserve Number	Reserve Type	Reserve Name	Gazetted Date	Distance	Direction
N0039	NATIONAL PARK	Sydney Harbour National Park	04/04/1975	0m	Onsite

NPWS Data Source: © NSW Department of Finance, Services & Innovation (2018)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Elevation Contours (m AHD)

Hydrogeology & Groundwater

Corner New South Head Road, Rose Bay, NSW 2030

Hydrogeology

Description of aquifers on-site:

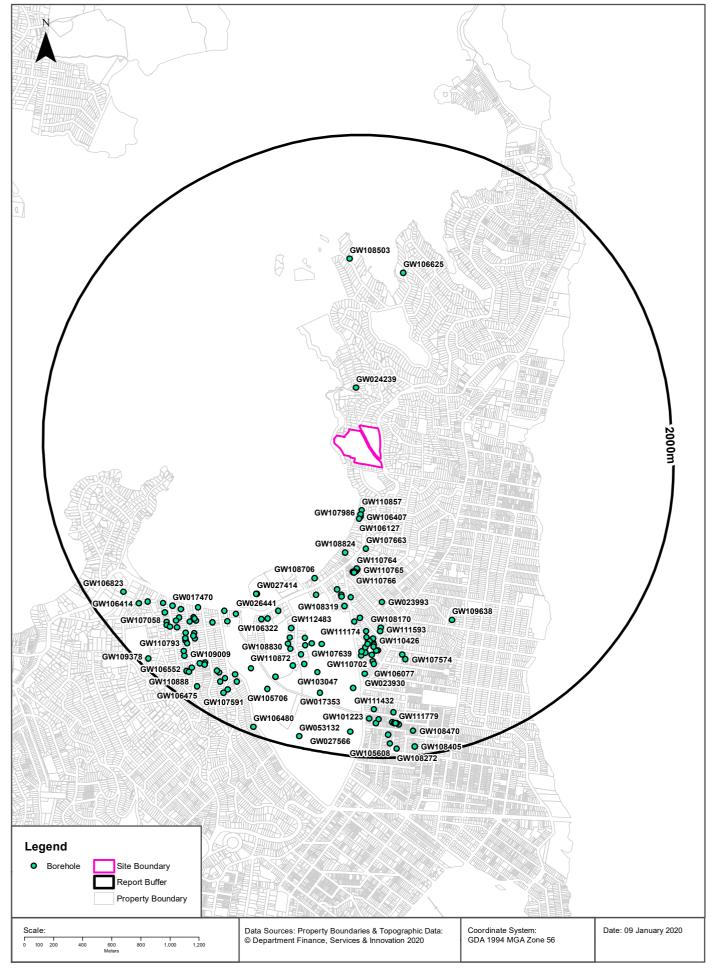
Description
Porous, extensive aquifers of low to moderate productivity
Description of aquifers within the dataset buffer:

Description

Porous, extensive aquifers of low to moderate productivity

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Botany Groundwater Management Zones


Groundwater management zones relating to the Botany Sand Beds aquifer within the dataset buffer:

Management Zone No.	Restriction	Distance	Direction
N/A	No records in buffer		

Botany Groundwater Management Zones Data Source : NSW Department of Primary Industries

Groundwater Boreholes

Hydrogeology & Groundwater

Corner New South Head Road, Rose Bay, NSW 2030

Groundwater Boreholes

Boreholes within the dataset buffer:

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m)		Elev (AHD)	Dist	Dir
GW024 239	10BL018 780, 10WA10 8139	Well	Private	Domestic	General Use			8.50						260m	North
GW110 857	10BL602 606, 10WA10 9260	Spear	Private	Domestic	Domestic		05/05/2009	4.00	4.00	Good	2.00	0.500		316m	South
GW107 986	10BL600 147, 10WA10 9053	Spear	Private	Domestic	Domestic		28/03/2006	3.66	3.66		1.83	1.000		346m	South
GW106 407	10BL163 517, 10WA10 8751	Spear	Private	Domestic	Domestic		20/09/2004	4.00	4.00		2.00	0.500		362m	South
GW106 127	10BL162 226, 10WA10 8585	Spear	Private	Domestic	Domestic		18/03/2004	4.00	4.00		2.00	0.500		375m	South
GW107 663	10BL165 825, 10WA10 9023	Spear	Private	Domestic	Domestic		12/12/2005	11.59	11.59	Good	7.63	1.000		571m	South
GW108 824	10BL165 640, 10WA10 9006	Spear	Private	Domestic	Domestic		27/03/2007	6.10	6.10	Good	2.75	1.000		622m	South
GW110 764	10BL165 807	Well	Private	Monitoring Bore	Monitoring Bore		01/01/2005	6.00			3.00	0.300		718m	South
GW110 765	10BL165 807	Well	Private	Monitoring Bore	Monitoring Bore		01/01/2005	6.00			3.00	0.300		723m	South
GW110 766	10BL165 807	Well	Private	Monitoring Bore	Monitoring Bore		01/01/2005	6.00			3.00	0.300		734m	South
GW110 767	10BL165 807	Well	Private	Monitoring Bore	Monitoring Bore		01/01/2005	6.00			3.00	0.300		741m	South
GW110 770	10BL165 807	Well	Private	Monitoring Bore	Monitoring Bore		01/01/2005	6.00			3.00	0.300		744m	South
GW110 768	10BL165 807	Well	Private	Monitoring Bore	Monitoring Bore		01/01/2005	6.00			3.00	0.300		747m	South
GW110 769	10BL165 807	Well	Private	Monitoring Bore	Monitoring Bore		01/01/2005	6.00			3.00	0.300		749m	South
GW108 706	10BL601 561, 10WA10 7647	Spear	Private	Domestic	Domestic		21/05/2007	4.00	4.00	Good	2.00	0.500		842m	South
GW016 957	10BL007 937, 10WA10 7449	Spear	Private	Domestic	General Use			6.70		Good				882m	South
GW109 090	10BL162 378, 10WA10 7501	Spear	Private	Domestic	Domestic		22/07/2008	6.10		Good	3.05			914m	South
GW109 047	10BL602 233, 10WA10 7666	Spear	Private	Domestic	Domestic		15/07/2008	12.00						919m	South

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m)		Elev (AHD)	Dist	Dir
GW107 451	10BL163 537, 10WA10 7534	Spear	Private	Domestic	Domestic		08/03/2005	6.10	6.10		3.50	1.000		926m	South
GW023 993	10BL017 470, 10WA10 7457	Spear	Private	Domestic	General Use		01/03/1966	6.00	6.10	Good				928m	South
GW101 708	10BL158 911, 10WA10 7487	Bore		Domestic	Irrigation		01/02/1999	6.00	6.00		2.00	0.500		949m	South
GW108 319	10BL165 712, 10WA10 7585	Spear	Private	Domestic	Domestic		25/11/2005	6.00	6.60		4.00	1.000		986m	South
GW107 848	10BL600 009, 10WA10 7597	Spear	Private	Domestic	Domestic		20/03/2006	9.50	9.50					1047m	South
GW107 343	10BL165 357, 10WA10 7576	Spear	Private	Domestic	Domestic		15/08/2005	9.50	9.50					1080m	South
GW106 625	10BL163 747, 10WA10 8781	Spear	Private	Domestic	Domestic		28/10/2004	35.00	35.00	220	8.00	3.000		1085m	North
GW108 170	10BL600 471, 10WA10 7602	Spear	Private	Domestic	Domestic		05/08/2006	10.50	10.50					1104m	South
GW027 414	10BL020 157, 10WA10 7777	Bore	Private	Recreation (groundwater)	Irrigation		01/09/1965	16.30	16.30					1125m	South West
GW026 441	10BL018 724, 10WA10 7775	Bore	Local Govt	Recreation (groundwater)	Irrigation		01/07/1966	8.20	8.20	Potable				1128m	South West
GW111 593	10BL165 350, 10WA10 7575	Bore	Private	Domestic	Domestic		01/01/2006	9.00	9.00		4.00			1130m	South
GW111 174	10BL600 559, 10WA10 7607	Spear	Private	Domestic	Domestic		26/10/2010	12.00	12.00					1133m	South
GW108 503	10BL165 367, 10WA10 8976	Bore	Private	Domestic	Domestic		25/01/2007	60.00	60.00	Good	9.20	2.000		1148m	North
GW108 435	10BL165 449, 10WA10 7577	Spear	Private	Domestic	Domestic		02/09/2005	5.50	5.50		4.00	1.200		1148m	South West
GW109 638	10BL601 890, 10WA10 9212	Spear	Private	Domestic	Domestic		08/10/2008	82.00	82.00	Good	37.4 0	1.000		1156m	South East
GW109 232	10BL601 022, 10WA10 7631	Spear	Private	Domestic	Domestic		19/08/2008	12.00						1176m	South
GW108 471	10BL601 146, 10WA10 7634	Spear	Private	Domestic	Domestic		05/02/2007	12.00	12.00					1181m	South
GW106 073	10BL163 136, 10WA10 7518	Bore	Private	Domestic	Domestic		20/05/2004	9.46	9.46		7.01	1.000		1193m	South
GW107 110	10BL163 079, 10WA10 7517	Spear	Private	Domestic	Domestic		18/05/2004	9.76	9.76	Good	6.71	1.000		1201m	South

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)		Salinity (mg/L)			Elev (AHD)	Dist	Dir
GW110 426	10BL602 999, 10WA10 7694	Spear	Private	Domestic	Domestic		15/04/2009	13.12	13.12	Good	7.15	1.000		1208m	South
GW112 483	10BL603 690, 10WA10 7702	Bore	Private	Domestic	Domestic		01/01/2010	8.00	8.00					1220m	South
GW111 591	10BL163 179, 10WA10 7521	Spear	Private	Domestic	Domestic		31/05/2009	10.06	10.07	good	6.71	1.000		1222m	South
GW107 316	10BL165 293, 10WA10 7572	Spear	Private	Domestic	Domestic		19/08/2005	10.98	10.98			1.000		1222m	South
GW106 322	10BL163 399, 10WA10 7530	Spear	Private	Domestic	Domestic		12/07/2004	6.00	6.00	Good	2.00	0.500		1228m	South West
GW107 196	10BL164 121, 10WA10 7542	Spear	Private	Domestic	Domestic		16/05/2005	9.15	9.75		6.41	1.000		1235m	South
GW110 723	10BL600 711, 10WA10 7612	Spear	Private	Domestic	Domestic		18/02/2007	15.00	14.03		2.00	2.500		1245m	South
GW111 466	10BL604 315	Spear	Private	Domestic	Domestic		01/03/2011	4.00	4.00		2.00	0.500		1252m	South West
GW106 016	10BL162 657, 10WA10 7507	Bore	Private	Domestic	Domestic		01/06/2005	10.00	10.00					1255m	South
GW111 642	10BL600 819, 10WA10 7622	Spear	Private	Domestic	Domestic		16/01/2007	10.00	10.00		10.0 0			1262m	South
GW108 672	10BL601 498, 10WA10 7639	Spear	Private	Domestic	Domestic		29/03/2007	11.00	11.00					1263m	South
GW107 639	10BL164 282, 10BL164 717, 10CA10 7721	Bore		Irrigation, Recreation (groundwater), Test Bore	Irrigation, Recreation (groundwate r)		05/11/2004	23.00	23.00	160	0.90	4.000		1271m	South
GW106 800	10BL163 348, 10WA10 7529	Spear	Private	Domestic	Domestic		13/11/2004	10.00	10.00					1276m	South
GW031 066	10BL022 482, 10WA10 7462	Spear	Private	Domestic	General Use		01/04/1968	13.50	13.60					1281m	South
GW106 003	10BL163 212, 10WA10 7523	Spear	Private	Domestic	Domestic		27/07/2004	10.06	10.07	Good	7.32	1.000		1282m	South
GW107 319	10BL163 321, 10WA10 7526	Spear	Private	Domestic	Domestic		20/07/2005	8.54	8.54		5.49	1.000		1285m	South
GW107 527	10BL165 518, 10WA10 7579	Spear	Private	Domestic	Domestic		17/10/2005	12.81	12.81	Good	8.85	1.000		1294m	South
GW108 917	10BL601 756	Spear	Private	Domestic	Domestic		17/06/2008	8.00						1297m	South
GW107 353	10BL163 329, 10WA10 7527	Spear	Private	Domestic	Domestic		01/09/2005	9.50	9.50					1303m	South

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)		Salinity (mg/L)			Elev (AHD)	Dist	Dir
GW106 660	10BL164 016, 10WA10 7540	Spear	Private	Domestic	Domestic		15/11/2004	9.00	9.00					1304m	South
GW107 529	10BL163 432, 10WA10 8735	Spear	Private	Domestic	Domestic		17/10/2005	5.80	5.80	Good	2.13	1.000		1320m	South West
GW108 830	10BL164 483, 10WA10 7555	Spear	Private	Domestic	Domestic		28/05/2007	7.93	7.93		4.88	1.000		1330m	South
GW107 574	10BL165 734, 10WA10 7587	Spear	Private	Domestic	Domestic		20/10/2005	10.00	10.00					1331m	South
GW110 702	10BL600 712, 10WA10 7613	Spear	Private	Domestic	Domestic		01/05/2007	12.00			12.0 0	0.080		1337m	South
GW107 877	10BL164 828, 10WA10 8934	Spear	Private	Domestic	Domestic		27/04/2005	6.00	6.00		2.00	0.500		1348m	South West
GW106 077	10BL162 185, 10WA10 7496	Spear	Private	Domestic	Domestic		14/06/2004	12.20	12.20	Good	18.2 3	1.000		1354m	South
GW110 872	10BL600 609, 10WA10 7609	Spear	Private	Domestic	Domestic		01/01/2006	8.00			2.00	2.500		1356m	South
GW106 123	10BL162 317, 10WA10 7499	Bore	Private	Domestic	Domestic		20/04/2004	17.00	19.80	329	11.4 0	0.200		1371m	South
GW106 321	10BL163 398, 10WA10 8729	Spear	Private	Domestic	Domestic		01/07/2004	4.00	4.00	Good	2.00	0.500		1396m	South West
GW023 930	10BL017 467, 10WA10 7456	Spear	Private	Domestic	General Use		01/04/1966	7.60	7.60	Good				1428m	South
GW107 453	10BL163 405, 10BL604 134, 10WA10 7707	Spear	Private	Domestic	Domestic		18/10/2010	26.00	26.00	good	8.00	1.000		1428m	South
GW111 112	10BL601 808, 10WA10 9208	Spear	Private	Domestic	Domestic		04/03/2010	7.95	7.95	good	1.22	1.000		1448m	South West
GW110 667	10BL601 301, 10WA10 9171	Spear	Private	Domestic	Domestic		02/10/2004	6.00	6.00	Good	3.00	0.500		1461m	South West
GW105 985	10BL162 684, 10WA10 7509	Spear	Private	Domestic	Domestic		05/03/2004	5.00	5.00					1461m	South
GW103 047	10BL141 619, 10CA10 7721	Excav ation		Irrigation, Recreation (groundwater)	Irrigation, Recreation (groundwate r)									1467m	South
GW107 515	10BL163 901, 10WA10 8802	Spear	Private	Domestic	Domestic		13/10/2005	4.00	4.00	Good	2.00	0.500		1520m	South West
GW106 583	10BL163 902, 10WA10 8803	Spear	Private	Domestic	Domestic		28/09/2004	6.00	6.00		2.00	0.500		1521m	South West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)		Salinity (mg/L)			Elev (AHD)	Dist	Dir
GW106 216	10BL163 652, 10WA10 8768	Spear	Private	Domestic	Domestic		17/08/2004	5.00	5.00			0.500		1527m	South West
GW053 131	10BL117 113, 10BL118 216, 10CA10 7721	Bore	Private	Irrigation, Recreation (groundwater), Test Bore	Irrigation, Recreation (groundwate r)		01/01/1981	18.00	27.50	0-500 ppm				1532m	South
GW106 391	10BL163 751, 10WA10 8783	Bore	Private	Domestic	Domestic		11/09/2004	8.50	8.50		3.00	0.500		1542m	South West
GW107 874	10BL164 580, 10WA10 8903	Spear	Private	Domestic	Domestic		15/01/2006	6.00	6.00					1559m	South West
GW017 470	10BL008 915, 10WA10 8090	Spear	Private	Domestic	General Use			4.50	4.60					1567m	South West
GW108 684	10BL600 839, 10CA10 7741	Bore	Private	Irrigation, Recreation (groundwater)	Recreation (groundwate r)		12/02/1996	20.00	21.00	Good	3.50	8.000		1571m	South
GW108 001	10BL600 034, 10BL600 602, 10CA10 7741	Bore		Irrigation, Recreation (groundwater), Test Bore	Irrigation, Recreation (groundwate r)		01/03/2006	18.70	18.70	210	1.90	6.500		1586m	South West
GW108 008	10BL165 080, 10WA10 8951	Spear	Private	Domestic	Domestic		23/08/2005	7.00	7.00					1590m	South West
GW106 866	10BL164 094, 10WA10 8827	Spear	Private	Domestic	Domestic		28/02/2005	5.18	5.19	Good	2.13	1.000		1599m	South West
GW017 353	10BL008 918	Bore	Private	Not Known	Irrigation		01/04/1959	17.30	17.40	Good				1602m	South
GW111 560	10BL600 768, 10WA10 9116	Spear	Private	Domestic	Domestic		20/01/2007	7.00	7.00					1606m	South West
GW105 645	10BL162 625, 10WA10 8638	Bore		Domestic			22/03/2005							1617m	South West
GW107 180	10BL165 190, 10WA10 8959	Spear	Private	Domestic	Domestic		10/06/2005	8.00	8.00		3.00	0.500		1622m	South West
GW107 860	10BL600 080, 10WA10 9049	Bore		Domestic			19/02/2007							1626m	South West
GW106 116	10BL162 858, 10WA10 8661	Spear	Private	Domestic	Domestic		24/03/2004	4.00	4.00	Good	2.00	0.500		1636m	South West
GW108 960	10BL602 207, 10WA10 9237	Spear	Private	Domestic	Domestic		26/06/2008	5.00						1638m	South West
GW107 063	10BL164 721, 10WA10 8918	Spear	Private	Domestic	Domestic		10/01/2005	7.00	7.00		3.00	0.500		1649m	South West
GW110 796	10BL601 312, 10WA10 9173	Spear	Private	Domestic	Domestic		12/02/2008	6.00	6.00					1666m	South West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)		Salinity (mg/L)	SWL (m)		Elev (AHD)	Dist	Dir
GW111 432	10BL601 954, 10WA10 7659	Spear	Private	Domestic	Domestic		09/04/2011	8.00	8.00					1667m	South
GW105 706	10BL161 707, 10CA10 7741	Bore		Irrigation, Recreation (groundwater)	Irrigation, Recreation (groundwate r)		12/02/1996	20.00	21.00	Good	3.50	8.000		1669m	South
GW111 116	10BL600 175, 10WA10 9055	Bore	Private	Domestic	Domestic		27/04/2006	11.00	11.00		6.50			1673m	South West
GW107 058	10BL164 827, 10WA10 8933	Spear	Private	Domestic	Domestic		25/02/2005	7.00	7.00	385	3.00	1.000		1674m	South West
GW110 793	10BL601 230, 10WA10 9162	Spear	Private	Domestic	Domestic		15/02/2008	6.00	6.00					1676m	South West
GW107 613	10BL164 350, 10WA10 8867	Spear	Private	Domestic	Domestic		10/01/2005	7.00	7.00	387	3.00	0.500		1680m	South West
GW105 955	10BL163 323, 10WA10 8716	Bore		Domestic			23/05/2005							1682m	South West
GW111 564	10BL600 949, 10WA10 9132	Spear	Private	Domestic	Domestic		05/12/2008	5.00	5.00		3.00	0.500		1686m	South West
GW101 057	10BL158 140, 10WA10 7474	Spear	Private	Domestic	Domestic		08/09/1997	6.00	6.00			1.000		1688m	South
GW106 478	10BL164 255, 10WA10 8853	Spear	Private	Domestic	Domestic		26/10/2004	6.00	6.00					1688m	South West
GW111 597	10BL165 353, 10WA10 8973	Spear	Private	Domestic	Domestic		01/01/2005	7.00	7.00		4.50			1710m	South West
GW108 477	10BL601 191, 10WA10 9158	Spear	Private	Domestic	Domestic		07/02/2007	8.00	8.00					1715m	South West
GW113 011	10BL164 383, 10WA10 8875	Spear	Private	Domestic	Domestic		02/07/2007	8.00	8.00					1716m	South West
GW111 312	10BL601 913, 10WA10 9213	Spear	Private	Domestic	Domestic		01/06/2007	8.00	8.00					1719m	South West
GW108 790	10BL601 689, 10WA10 9201	Spear	Private	Domestic	Domestic		12/06/2007	8.00	8.00					1730m	South West
GW101 223	10BL158 319, 10WA10 7475	Bore	Private	Domestic	Domestic		17/12/1997	10.67	10.67	Good	7.62	1.000		1732m	South
GW108 823	10BL165 669, 10WA10 9009	Spear	Private	Domestic	Domestic		17/01/2007	11.50	11.50	Good		1.000		1732m	South West
GW107 586	10BL165 692, 10WA10 7581	Spear	Private	Domestic	Domestic		12/11/2005	7.20	7.20	175	3.70	0.500		1736m	South

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)		Salinity (mg/L)	SWL (m)		Elev (AHD)	Dist	Dir
GW106 414	10BL163 189, 10BL601 496, 10WA10 9188	Bore		Domestic	Domestic		31/08/2005	40.00	40.00	Good	22.0 0	0.150		1738m	South West
GW106 462	10BL162 253, 10WA10 8589	Spear	Private	Domestic	Domestic		12/11/2004	6.00	6.00	Good	4.00	0.500		1741m	South West
GW108 946	10BL601 953, 10WA10 9215	Spear	Private	Domestic	Domestic		19/06/2008	8.00						1742m	South West
GW107 382	10BL164 870, 10WA10 7562	Spear	Private	Domestic	Domestic		09/08/2005	8.54	8.54	Good	4.58	1.000		1756m	South
GW111 310	10BL600 468, 10WA10 7601	Spear	Private	Domestic	Domestic		09/02/2011	8.00	8.00					1761m	South
GW111 274	10BL600 578, 10WA10 7608	Spear	Private	Domestic	Domestic		02/12/2006	6.00	6.00	good	4.00	0.500		1764m	South
GW107 758	10BL165 838, 10WA10 7590	Spear	Private	Domestic	Domestic		09/01/2006	6.00	6.00	Good	4.00	0.500		1764m	South
GW107 017	10BL165 001, 10WA10 7565	Spear	Private	Domestic	Domestic		29/03/2005	6.00	6.00	Good	3.00	0.500		1765m	South
GW109 009	10BL601 783, 10WA10 9207	Spear	Private	Domestic	Domestic		09/07/2008	7.32		Good	4.38	1.000		1765m	South West
GW111 455	10BL601 644, 10WA10 9197	Spear	Private	Domestic	Domestic		09/04/2011	10.00	10.00					1766m	South West
GW106 823	10BL163 514, 10BL163 515, 10WA10 9435	Bore		Recreation (groundwater), Test Bore	Recreation (groundwate r)		07/02/2004	102.50	102.50	181	16.0 0	1.250		1773m	South West
GW111 779	10BL165 894, 10WA10 7593	Spear	Private	Domestic	Domestic		14/12/2005	7.00	7.00	good	5.00	0.500		1775m	South
GW107 671	10BL164 145, 10WA10 8837	Spear	Private	Domestic	Domestic		01/09/2005	9.50	9.50					1790m	South West
GW106 835	10BL164 715, 10WA10 8917	Spear	Private	Domestic	Domestic		18/02/2005	6.00	6.00	Good	3.00	0.500		1798m	South West
GW107 591	10BL165 652, 10WA10 9007	Spear	Private	Domestic	Domestic		01/11/2005	10.00	10.00					1822m	South West
GW108 470	10BL601 122, 10WA10 7632	Spear	Private	Domestic	Domestic		03/02/2007	12.00	12.00					1827m	South
GW110 888	10BL601 618, 10WA10 9194	Spear	Private	Domestic	Domestic		01/01/2007	9.00			2.00	2.500		1833m	South West
GW027 566	10BL105 734, 10CA10 7721	Bore	Private	Irrigation, Recreation (groundwater)	Irrigation		01/07/1965	23.80	25.30	Good				1834m	South

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)			Elev (AHD)	Dist	Dir
GW106 552	10BL163 895, 10WA10 8799	Spear	Private	Domestic	Domestic		22/11/2004	7.50	7.50	Good	6.00	0.500		1837m	South West
GW106 734	10BL164 220, 10WA10 7546	Spear	Private	Domestic	Domestic		23/11/2004	4.00	4.00	Good	2.00	0.500		1840m	South
GW106 475	10BL164 115, 10WA10 8831	Bore	Private	Domestic	Domestic		14/10/2004	20.00	20.00					1882m	South West
GW105 608	10BL162 123, 10WA10 7495	Bore	Private	Domestic	Domestic		15/11/2003	6.00	6.00					1904m	South
GW053 132	10BL117 114, 10BL118 497, 10CA10 7721	Bore	Private	Irrigation, Recreation (groundwater), Test Bore	G/water Xplore		01/01/1981	18.00	25.00	0-500 ppm				1923m	South
GW108 405	10BL600 705, 10WA10 7611	Spear	Private	Domestic	Domestic		28/11/2006	8.00	8.00					1935m	South
GW109 378	10BL165 173, 10BL602 616, 10WA10 9549	Bore	Private	Recreation (groundwater), Test Bore	Recreation (groundwate r)		02/10/2008	150.00	150.00	223	68.0 0	0.300		1940m	South West
GW108 272	10BL600 289, 10WA10 7600	Spear	Private	Domestic	Domestic		08/10/2006	8.00	8.00					1940m	South
GW106 480	10BL164 194, 10WA10 7544	Spear	Private	Stock	Stock		21/10/2004	4.00	4.00		2.00	0.500		1948m	South

Borehole Data Source : NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corporation for all bores prefixed with GW. All other bores © Commonwealth of Australia (Bureau of Meteorology) 2015. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Hydrogeology & Groundwater

Corner New South Head Road, Rose Bay, NSW 2030

Driller's Logs

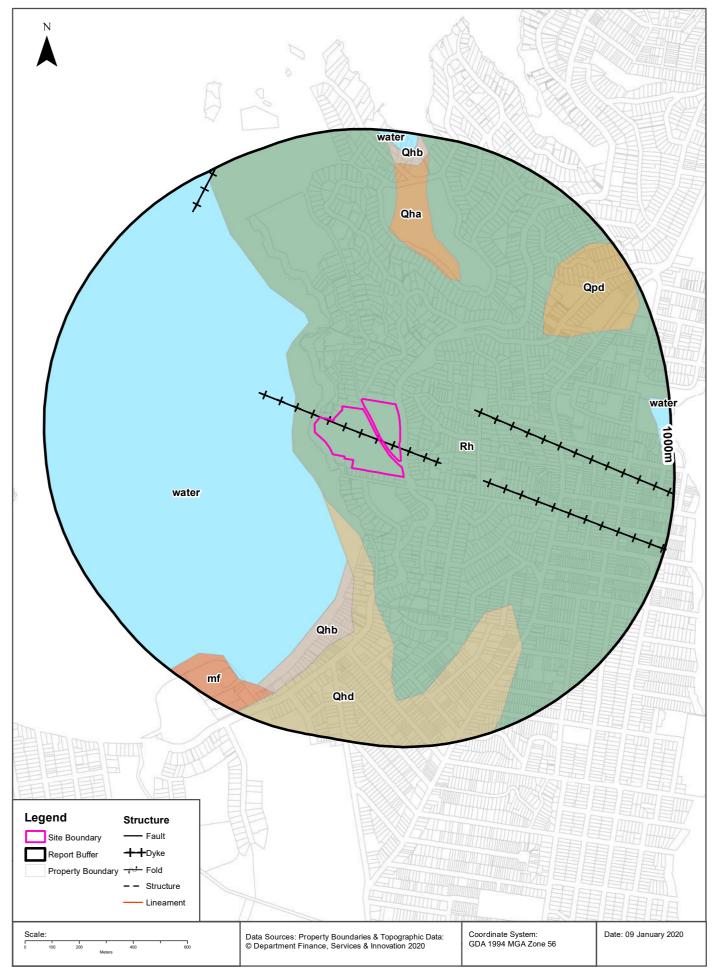
Drill log data relevant to the boreholes within the dataset buffer:

Groundwater No	Drillers Log	Distance	Direction
GW110857	0.00m-0.30m TOPSOIL 0.30m-2.50m SAND BROWN 2.50m-4.00m SAND YELLOW	316m	South
GW107986	0.00m-3.66m sand	346m	South
GW106407	0.00m-0.30m topsoil 0.30m-3.50m sand, yellow 3.50m-4.00m sand, grey	362m	South
GW106127	0.00m-0.40m topsoil 0.40m-3.30m sand, dark brown 3.30m-4.00m sand, grey silty	375m	South
GW107663	0.00m-11.59m Sand, unconsolidated	571m	South
GW108824	0.00m-6.10m sand	622m	South
GW108706	0.00m-0.30m topsoil 0.30m-3.00m sand, yellow 3.00m-4.00m sand, brown	842m	South
GW107451	0.00m-6.10m sand	926m	South
GW023993	0.00m-0.91m Sand Grey 0.91m-1.52m Sand White 1.52m-2.13m Sand Hard Cemented 2.13m-3.65m Sand 3.65m-6.09m Sand Yellow Water Supply	928m	South
GW101708	0.00m-0.50m Topsoil, Fill, Rocks 0.50m-6.00m Light Brown Sand	949m	South
GW108319	0.00m-6.60m sand	986m	South
GW107848	0.00m-9.50m sand	1047m	South
GW107343	0.00m-9.50m sand	1080m	South
GW106625	0.00m-0.30m BLACK CLAY 0.30m-10.00m WEATHERED YELLOW SANDSTONE 10.00m-35.00m YELLOW/WHITE/RED SANDSDTONE	1085m	North
GW108170	0.00m-10.50m sand	1104m	South
GW027414	0.00m-0.30m Made Ground 0.30m-0.60m Sand White Silty 0.60m-1.92m Peat Black Sandy 1.92m-2.68m Sand White 2.68m-6.24m Sand 6.24m-6.40m Clay Grey Sandy 6.40m-14.93m Sand White Water Supply 14.93m-16.30m Sand White Water Supply Clay Bands	1125m	South West
GW026441	0.00m-0.10m Made Ground 0.10m-2.43m Sand Fossils:shell Fragments 2.43m-2.74m Peat 2.74m-3.65m Sand Fossils:shell Fragments 3.65m-4.57m Sand Silt Fossils:shell Fragments Water Supply 4.57m-8.22m Sand Grey Wet Fossils:shell Fragments Water Supply	1128m	South West
GW111174	0.00m-12.00m SAND	1133m	South

Groundwater No	Drillers Log	Distance	Direction
GW108435	0.00m-5.50m Sand, unconsolidated	1148m	South West
GW108503	0.00m-1.00m Soil, black, garden 1.00m-3.00m Sandy Clay, grey 3.00m-31.00m Sandstone, white yellow 31.00m-60.00m Sandstone, white	1148m	North
GW109638	0.00m-1.00m TOPSOIL 1.00m-82.00m WHITE SANDSTONE	1156m	South East
GW108471	0.00m-12.00m sand	1181m	South
GW106073	0.00m-9.46m sand, unconsolidated	1193m	South
GW107110	0.00m-9.76m Sand, unconsolidated	1201m	South
GW110426	0.00m-13.12m UNCONSOLIDATED ALL SANDS	1208m	South
GW107316	0.00m-10.98m Sand, unconsolidated	1222m	South
GW111591	0.00m-10.06m UNCONSOLIDATED ALL SANDS	1222m	South
GW106322	0.00m-0.30m topsoil 0.30m-3.00m sand, yellow 3.00m-6.00m sand, brown silty	1228m	South West
GW107196	0.00m-9.75m sand	1235m	South
GW110723	0.00m-14.03m UNCONSOLIDATE ALL SAND	1245m	South
GW111466	0.00m-0.30m TOPSOIL 0.30m-4.00m SAND WHITE	1252m	South West
GW106016	0.00m-10.00m sand	1255m	South
GW108672	0.00m-11.00m sand	1263m	South
GW107639	0.00m-0.20m TOPSOIL 0.20m-0.40m PEAT LAYER 0.40m-1.20m GREY SAND 1.20m-4.50m WHITE SAND 4.50m-6.20m BROWN SAND 6.20m-8.70m YELLOW SAND 8.70m-13.50m BROWN SILTY SAND 13.50m-17.40m WHITE SAND 17.40m-18.20m BROWN PEAT 18.20m-22.60m BROWN SILTY SAND 22.60m-23.00m GREY SANDSTONE	1271m	South
GW106800	0.00m-10.00m sand	1276m	South
GW031066	0.00m-3.35m Made Ground 3.35m-4.87m Sand Peaty Moist 4.87m-7.46m Sand Peaty Wet 7.46m-10.66m Sand Grey Water Supply 10.66m-12.49m Sand Yellow Water Supply 12.49m-13.56m Sand Grey Clay Seams Water Supply	1281m	South
GW106003	0.00m-10.06m sand, unconsolidated	1282m	South
GW107319	0.00m-8.54m Sand, unconsolidated	1285m	South
GW107527	0.00m-12.81m Sand, unconsolidated	1294m	South
GW107353	0.00m-9.50m SAND	1303m	South
GW106660	0.00m-9.00m sand	1304m	South
GW107529	0.00m-5.79m Sand, unconsolidated	1320m	South West
GW108830	0.00m-7.93m sand	1330m	South
GW107574	0.00m-10.00m sand	1331m	South

Groundwater No	Drillers Log	Distance	Direction
GW107877	0.00m-0.30m topsoil 0.30m-2.40m sand, yellow 2.40m-6.00m sand, brown	1348m	South West
GW106077	0.00m-12.20m sand, uconsolidated	1354m	South
GW106123	0.00m-0.50m fill, concrete 0.50m-17.00m sand 17.00m-19.80m silty sand & small clay bands	1371m	South
GW106321	0.00m-0.30m topsoil 0.30m-2.50m sand, yellow 2.50m-4.00m sand, brown	1396m	South West
GW023930	0.00m-0.60m Stones 0.60m-3.50m Sand Hard Cemented 3.50m-7.62m Sand Yellow Water Supply	1428m	South
GW107453	0.00m-12.20m YELLOW SAND 12.20m-16.30m WHITE SAND 16.30m-18.50m GREY SAND 18.50m-18.70m BLACK PEAT 18.70m-21.30m BROWN SAND 21.30m-21.50m BLACK PEAT 21.50m-26.00m WHITE SAND	1428m	South
GW111112	0.00m-7.95m UNCONSOLIDATED ALL SAND	1448m	South West
GW105985	0.00m-5.00m sand	1461m	South
GW110667	0.00m-0.30m TOPSOIL 0.30m-2.50m SAND YELLOW 2.50m-4.30m SAND BROWN SILTY 4.30m-6.00m SAND GREY	1461m	South West
GW107515	0.00m-0.50m topsoil 0.50m-2.50m sand, yellow 2.50m-4.00m sand, grey	1520m	South West
GW106583	0.00m-0.30m tospoil 0.30m-4.20m sand, brown silty 4.20m-6.00m sand, light brown	1521m	South West
GW106216	0.00m-0.30m topsoil 0.30m-2.20m sand, brown 2.20m-5.00m sand, dark yellow	1527m	South West
GW053131	0.00m-2.43m Sand Peaty Water Supply 2.43m-3.00m Sand Grey Water Supply 3.00m-9.10m Sand Peat Water Supply 9.10m-14.30m Sand Water Supply 14.30m-14.60m Clay Sand Water Supply 14.60m-20.10m Peat Water Supply 20.10m-25.90m Clay Sand 20.10m-25.90m Peat 25.90m-27.50m Sand Claybound	1532m	South
GW106391	0.00m-8.50m sand	1542m	South West
GW107874	0.00m-6.00m sand	1559m	South West
GW017470	0.00m-4.57m Sand	1567m	South West
GW108684	0.00m-0.20m BROWN SANDY TOPSOIL 0.20m-1.10m YELLOW SAND WITH SHELLS 1.10m-3.00m BROWN PEAT 3.00m-5.50m LIGHT BROWN SAND 5.50m-8.50m GREY SILTY SAND 8.50m-10.50m DARK GREY SAND,PEAT 10.50m-11.50m LIGHT BROWN SILTY SAND 11.50m-13.00m WHITE SAND 13.00m-16.00m SILTY YELLOW SAND 16.00m-19.50m WHITE SILTY SAND 19.50m-20.50m WHITE SAND WITH CLAY 20.50m-21.00m WHITE SANDSTONE	1571m	South

Groundwater No	Drillers Log	Distance	Direction
GW108001	0.00m-0.70m BRICKS AND FILL AND SAND 0.70m-0.80m GREY SAND 0.80m-2.90m HEAVY BLACK PEAT 2.90m-10.00m LIGHT GREY SAND 10.00m-12.00m SAND WITH SMALL PEAT BANDS 12.00m-13.50m LIGHT GREY SAND 13.50m-16.00m SAND WITH PEAT BANDS 16.00m-18.70m LIGHT GREY SAND	1586m	South West
GW108008	0.00m-7.00m sand	1590m	South West
GW106866	0.00m-5.18m Sand, unconsolidated	1599m	South West
GW017353	0.00m-0.60m Peat 0.60m-2.43m Sand White 2.43m-6.40m Peat 2.43m-6.40m Sand White 6.40m-7.62m Sand White Water Supply 7.62m-9.14m Sand Water Supply 9.14m-10.97m Peat Sand Water Supply 10.97m-12.49m Sand White Water Supply 12.49m-17.37m Peat Sand Water Supply	1602m	South
GW111560	0.00m-7.00m ALL SAND	1606m	South West
GW107180	0.00m-8.00m sand	1622m	South West
GW106116	0.00m-0.30m topsoil 0.30m-2.50m sand, brown 2.50m-4.00m sand, yellow	1636m	South West
GW110796	0.00m-6.00m ALL SAND	1666m	South West
GW111432	0.00m-8.00m SAND	1667m	South
GW105706	0.00m-0.20m BROWN SANDY TOP SOIL 0.20m-1.10m YELLOW SAND WITH SHELLS 1.10m-3.00m BROWN CLAY 3.00m-5.50m LIGHT BROWN SAND 5.50m-8.50m GREY SILTY SAND 8.50m-10.50m DARK GREY SAND 10.50m-11.50m LIGHT BROWN SILTY SAND 11.50m-13.00m WHITE SAND 13.00m-16.00m SILTY YELLOW SAND 16.00m-19.50m WHITE SILTY SAND 19.50m-20.50m WHITE SAND WITH CLAY 20.50m-21.00m WHITE SANDSTONE	1669m	South
GW111116	0.00m-11.00m CONSOLIDATED SANDS	1673m	South West
GW110793	0.00m-6.00m ALL SAND	1676m	South West
GW107613	0.00m-7.00m sand	1680m	South West
GW101057	0.00m-6.00m UNCONSOLIDATED. ALL SAND	1688m	South
GW106478	0.00m-6.00m sand	1688m	South West
GW111597	0.00m-6.00m SAND GREY,NO ODOUR,CLEAN WATER	1710m	South West
GW108477	0.00m-8.00m Sand	1715m	South West
GW113011	0.00m-8.00m SAND	1716m	South West
GW108790	0.00m-8.00m sand	1730m	South West
GW101223	0.00m-10.67m Unconsolidated - all sand.	1732m	South
GW108823	0.00m-11.50m sand	1732m	South West
GW107586	0.00m-7.20m sand	1736m	South
GW106462	0.00m-0.30m topsoil 0.30m-3.20m sand, yellow 3.20m-4.50m sand, grey 4.50m-6.00m sand, orange	1741m	South West


Groundwater No	Drillers Log	Distance	Direction
GW107382	0.00m-5.54m Sand, unconsolidated	1756m	South
GW111310	0.00m-8.00m SAND	1761m	South
GW107758	0.00m-0.30m topsoil 0.30m-2.50m sand, brown 2.50m-5.00m sand, yellow 5.00m-6.00m sand, grey	1764m	South
GW111274	0.00m-0.30m FILL 0.30m-3.30m SAND YELLOW 3.30m-6.00m SAND BROWN	1764m	South
GW107017	0.00m-0.30m topsoil 0.30m-3.50m sand, brown 3.50m-5.00m sand, silty brown 5.00m-6.00m sand, grey	1765m	South
GW106823	0.00m-16.00m SAND 16.00m-16.20m SANDSTONE SOFT 16.20m-16.50m IRONSTONE SOFT 16.50m-21.00m SANDSTONE/IRONSTONE BANDS 21.00m-21.50m CLAY WHITE 21.50m-25.00m SANDSTONE,IRONSTONE,QUARTZ 25.00m-31.00m SANDSTONE L/BROWN 31.00m-40.00m SANDSTONE L/BROWN 31.00m-40.00m SANDSTONE QUARTZ 40.50m-49.00m SANDSTONE GREY 49.00m-50.00m SANDSTONE GREY 49.00m-50.00m SANDSTONE GREY 50.00m-61.50m SANDSTONE GREY 61.50m-68.50m SANDSTONE GREY 61.50m-68.50m SANDSTONE GREY 61.50m-61.50m SANDSTONE GREY 61.50m-70.00m SILTSTONE 70.00m-70.50m SANDSTONE FRACTURED SOFT 70.00m-71.50m SANDSTONE GREY 71.50m-71.50m SANDSTONE GREY 71.50m-71.50m SANDSTONE GREY 71.50m-71.50m SANDSTONE GREY 72.50m-81.00m SANDSTONE GREY 93.50m-94.00m SANDSTONE GREY 93.50m-94.00m SANDSTONE GREY 94.00m-102.50m SANDSTONE GREY	1773m	South West
GW111779	0.00m-0.30m TOPSOIL 0.30m-5.00m YELLOW SAND 5.00m-7.00m BROWN SAND	1775m	South
GW107671	0.00m-9.50m sand	1790m	South West
GW106835	0.00m-0.30m Topsoil 0.30m-3.20m Sand, light brown 3.20m-4.50m Sand, yellow 4.50m-6.00m Sand, coarse, yellow, with orange silty water	1798m	South West
GW107591	0.00m-10.00m sand	1822m	South West
GW108470	0.00m-12.00m sand	1827m	South
GW027566	0.00m-0.30m Sand Greyish Dry 0.30m-1.82m Sand Dark Brown Moist 1.82m-3.04m Sand Greyish Some Clean Water Supply 3.04m-4.87m Sand Grey Slightly Peaty Water Supply 5.18m-5.79m Sand Grey Peat Bands 5.79m-6.40m Peat 6.40m-10.66m Sand Peaty Water Supply 10.66m-11.27m Sand Peat Bands 11.27m-14.02m Sand Slightly Peaty Water Supply 14.02m-16.76m Sand Peaty Water Supply 14.02m-16.76m Sand Peaty Water Supply 16.76m-17.06m Peat 17.06m-18.89m Sand Peaty Water Supply 18.89m-19.20m Peat 19.20m-19.50m Sand Peaty Water Supply 19.50m-19.81m Peat 19.81m-21.64m Sand Slightly Peaty Water Supply 21.64m-23.62m Sand Very Dirty Peaty Water Supply 23.62m-23.92m Clay Grey 23.92m-24.99m Sand Light Brown Slightly Clayey Quartz Gravel Some Water Supply 24.99m-25.29m Clay Grey	1834m	South
GW106552	0.00m-0.30m topsoil 0.30m-4.30m sand, yellow 4.30m-6.00m sand, brown 6.00m-7.50m sand, yellow silty	1837m	South West

Groundwater No	Drillers Log	Distance	Direction
GW106734	0.00m-0.30m topsoil 0.30m-1.50m sand, brown 1.50m-4.00m sand, whtie	1840m	South
GW106475	0.00m-5.00m sand 5.00m-10.00m clay 10.00m-11.00m sand 11.00m-20.00m clay	1882m	South West
GW105608	0.00m-6.00m sand	1904m	South
GW053132	0.00m-3.00m Peat Sandy 3.00m-6.10m Sand Peat Water Supply 6.10m-9.14m Sand White Water Supply 9.14m-10.60m Sand Peat Water Supply 10.60m-10.97m Peat Water Supply 10.97m-12.20m Sand Water Supply 12.20m-18.30m Sand Peat Water Supply 18.30m-24.40m Peat Sandy Water Supply 24.40m-25.00m Sandstone Water Supply	1923m	South
GW108405	0.00m-8.00m sand	1935m	South
GW108272	0.00m-8.00m sand	1940m	South
GW109378	0.00m-13.00m SANDY CLAY 13.00m-20.00m SANDSTONE WEATHERED 20.00m-21.00m CLAYSTONE 21.00m-44.00m SANDSTONE GREY 44.00m-48.00m SANDSTONE QUARTZ 48.00m-53.00m SANDSTONE CLAY BANDS 53.00m-60.00m SANDSTONE GREY 60.00m-61.00m SANDSTONE GREY 60.00m-71.00m SANDSTONE QUARTZ 66.00m-70.00m SANDSTONE GREY 70.00m-71.50m SHALE 71.50m-79.00m SANDSTONE GREY 79.00m-86.00m SANDSTONE GREY 84.00m-86.00m SANDSTONE GREY 86.00m-86.50m SANDSTONE GREY 94.50m-100.00m SANDSTONE GREY 112.00m-112.00m SANDSTONE GREY 112.00m-119.00m SANDSTONE GREY 112.00m-126.00m SANDSTONE GREY 112.00m-142.00m SANDSTONE GREY 124.00m-142.00m SANDSTONE GREY 142.00m-142.50m SILTSTONE 142.50m-150.00m SANDSTONE GREY	1940m	South West
GW106480	0.00m-0.30m topsoil 0.30m-2.50m sand, yellow 2.50m-4.00m sand, yellow silty	1948m	South

Drill Log Data Source: NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corp Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Geology 1:100,000 Corner New South Head Road, Rose Bay, NSW 2030

Geology

Corner New South Head Road, Rose Bay, NSW 2030

Geological Units

What are the Geological Units onsite?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dataset
Rh	Medium to coarse grained quartz sandstone, very minor shale and laminate lenses				Triassic		Sydney	1:100,000

What are the Geological Units within the dataset buffer?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dataset
mf	Man-made fill. Dredged estuarine sand and mud, demolition rubble, industrial and household waste.				Quaternary		Sydney	1:100,000
Qha	Silty to peaty quartz sand, silt, and clay. Ferruginous and humic cementation in places. Common shell layers				Quaternary		Sydney	1:100,000
Qhb	Coarse quartz sand, verying amounts of shell fragment				Quaternary		Sydney	1:100,000
Qhd	Medium to fine-grained marine sand with podsols				Quaternary		Sydney	1:100,000
Qpd	Medium to fine-grained marine sand with podsols				Quaternary		Sydney	1:100,000
Rh	Medium to coarse grained quartz sandstone, very minor shale and laminate lenses				Triassic		Sydney	1:100,000
water							Sydney	1:100,000

Geological Structures

What are the Geological Structures onsite?

Feature	Name	Description	Map Sheet	Dataset
Dyke			Sydney	1:100,000

What are the Geological Structures within the dataset buffer?

Feature	Name	Description	Map Sheet	Dataset
Dyke			Sydney	1:100,000
Dyke			Sydney	1:100,000
Dyke			Sydney	1:100,000
Dyke			Sydney	1:100,000

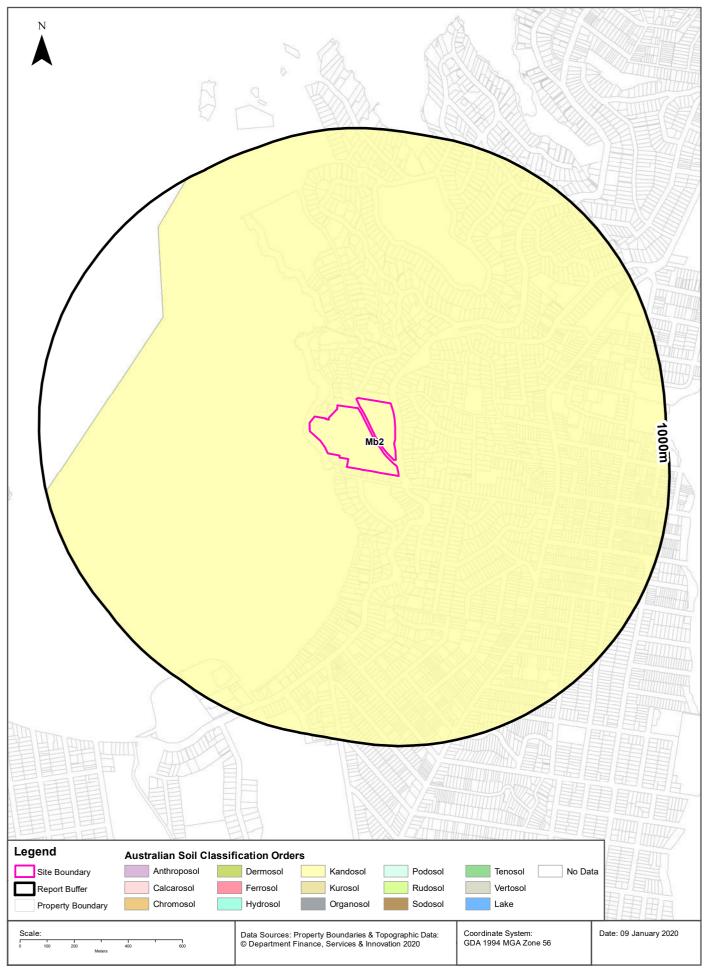
Geological Data Source : NSW Department of Industry, Resources & Energy

© State of New South Wales through the NSW Department of Industry, Resources & Energy

Naturally Occurring Asbestos Potential

Corner New South Head Road, Rose Bay, NSW 2030

Naturally Occurring Asbestos Potential


Naturally Occurring Asbestos Potential within the dataset buffer:

Potential	Sym	Strat Name	Group	Formation	Scale	Min Age	Max Age	Rock Type	Dom Lith	Description	Dist	Dir
No records in buffer												

Mining Subsidence District Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

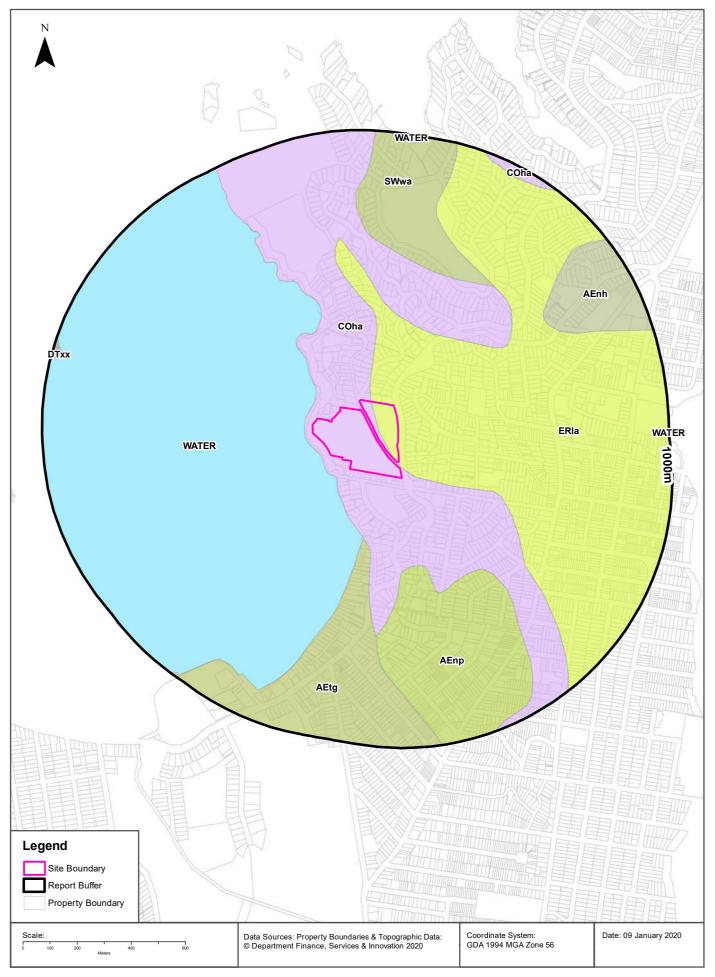
Atlas of Australian Soils

Soils

Corner New South Head Road, Rose Bay, NSW 2030

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:


Map Unit Code	Soil Order	Map Unit Description	Distance
Mb2	Kandosol	Dissected sandstone plateau of moderate to strong relief with sandstone pillars, ledges, and slabs level to undulating ridges, irregularly benched slopes, steep ridges, cliffs, canyons, narrow sandy valleys: chief soils are (i) on areas of gentle to moderate relief, acid yellow leached earths (Gn2.74) and (Gn2.34) and acid leached yellow earths (Gn2.24)-sometimes these soils contain ironstone gravel; and (ii) on, or adjacent to, areas of strong relief, siliceous sands (Uc1.2), leached sands (Uc2.12) and (Uc2.2), and shallow forms of the above (Gn2) soils. Associated are: (i) on flat to gently undulating remnants of the original plateau surface, leached sands (Uc2.3), siliceous sands (Uc1.2), sandy earths (Uc5.22), and (Gn2) soils as for (i) above (these areas are in part comparable with unit Cb29); (ii) on flat ironstone gravelly remnants of the original plateau surface, (Gn2) soils as for unit Mb5(i); (iii) on gently undulating ridges where interbedded shales are exposed, shallow, often stony (Dy3.41), (Dr2.21), and related soils similar to unit Tb35; (iv) narrow valleys of (Uc2.3) soils flanked by moderate slopes of (Dy3.41) soils; (v) escarpments of steep hills with shallow (Dy) and (Dr) soils between sandstone pillars; and (vi) shallow (Um) soils, such as (Um6.21) on steep hills of basic rocks. As mapped, minor areas of units Mg20, Mm1, and Mw8 are included. Data are limited.	0m

Atlas of Australian Soils Data Source: CSIRO

Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Soil Landscapes

Soils

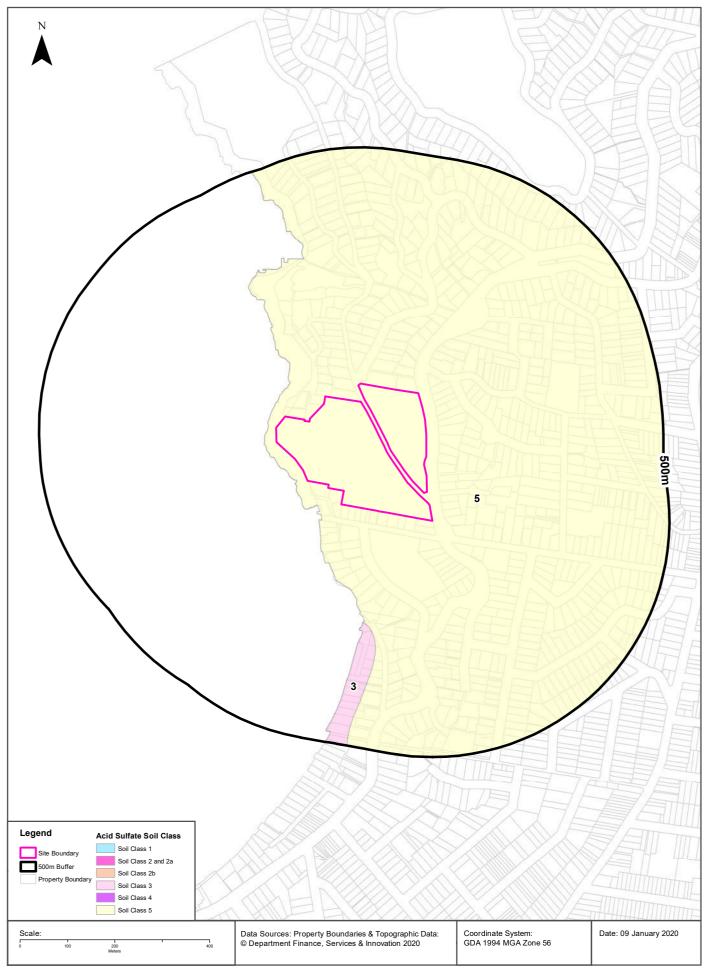
Corner New South Head Road, Rose Bay, NSW 2030

Soil Landscapes

What are the onsite Soil Landscapes?

Soil Code	Name	Group	Process	Map Sheet	Scale
COha	HAWKESBURY		COLLUVIAL	Sydney	1:100,000
ERIa	LAMBERT		EROSIONAL	Sydney	1:100,000

What are the Soil Landscapes within the dataset buffer?


Soil Code	Name	Group	Process	Map Sheet	Scale
AEnh	NORTH HEAD		AEOLIAN	Sydney	1:100,000
AEnp	NEWPORT		AEOLIAN	Sydney	1:100,000
AEtg	TUGGERAH		AEOLIAN	Sydney	1:100,000
COha	HAWKESBURY		COLLUVIAL	Sydney	1:100,000
DTxx	DISTURBED TERRAIN		DISTURBED TERRAIN	Sydney	1:100,000
ERIa	LAMBERT		EROSIONAL	Sydney	1:100,000
SWwa	WARRIEWOOD		SWAMP	Sydney	1:100,000
WATER	WATER		WATER	Sydney	1:100,000

Soils Landscapes Data Source : NSW Office of Environment and Heritage

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Acid Sulfate Soils

Acid Sulfate Soils

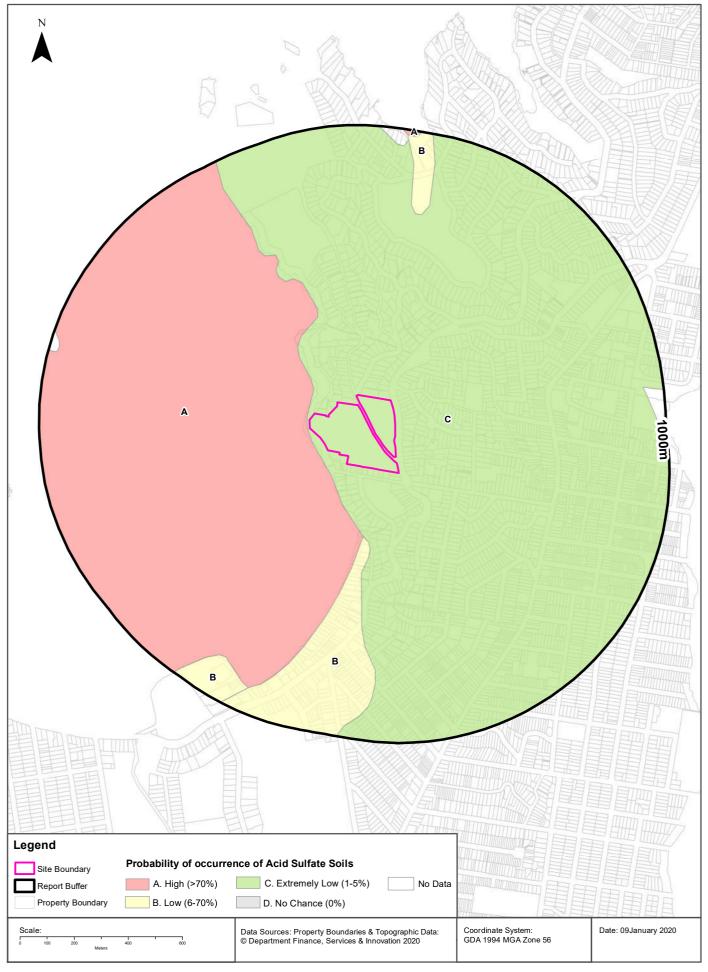
Corner New South Head Road, Rose Bay, NSW 2030

Environmental Planning Instrument - Acid Sulfate Soils

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

Soil Class	Description	EPI Name
5	Works within 500 metres of adjacent Class 1, 2, 3, or 4 land that is below 5 metres AHD and by which the watertable is likely to be lowered below 1 metre AHD on adjacent Class 1, 2, 3 or 4 land, present an environmental risk	Woollahra Local Environmental Plan 2014

If the on-site Soil Class is 5, what other soil classes exist within 500m?


Soil Class	Description	EPI Name	Distance	Direction
3	Works more than 1 metre below natural ground surface present an environmental risk; Works by which the watertable is likely to be lowered more than 1 metre below natural ground surface, present an environmental risk	Woollahra Local Environmental Plan 2014	236m	South

NSW Crown Copyright - Planning and Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Atlas of Australian Acid Sulfate Soils

Acid Sulfate Soils

Corner New South Head Road, Rose Bay, NSW 2030

Atlas of Australian Acid Sulfate Soils

Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

Class	Description	Distance
С	Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas.	0m
A	High Probability of occurrence. >70% chance of occurrence.	9m
В	Low Probability of occurrence. 6-70% chance of occurrence.	254m

Atlas of Australian Acid Sulfate Soils Data Source: CSIRO

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Dryland Salinity

Corner New South Head Road, Rose Bay, NSW 2030

Dryland Salinity - National Assessment

Is there Dryland Salinity - National Assessment data onsite?

No

Is there Dryland Salinity - National Assessment data within the dataset buffer?

No

What Dryland Salinity assessments are given?

Assessment 2000	Assessment 2020	Assessment 2050	Distance	Direction
N/A	N/A	N/A	N/A	N/A

Dryland Salinity Data Source : National Land and Water Resources Audit

The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

Dryland Salinity Potential of Western Sydney

Dryland Salinity Potential of Western Sydney within the dataset buffer?

Feature Id	Classification	Description	Distance	Direction
N/A	Outside Data Coverage			

Dryland Salinity Potential of Western Sydney Data Source : NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining Subsidence Districts

Corner New South Head Road, Rose Bay, NSW 2030

Mining Subsidence Districts

Mining Subsidence Districts within the dataset buffer:

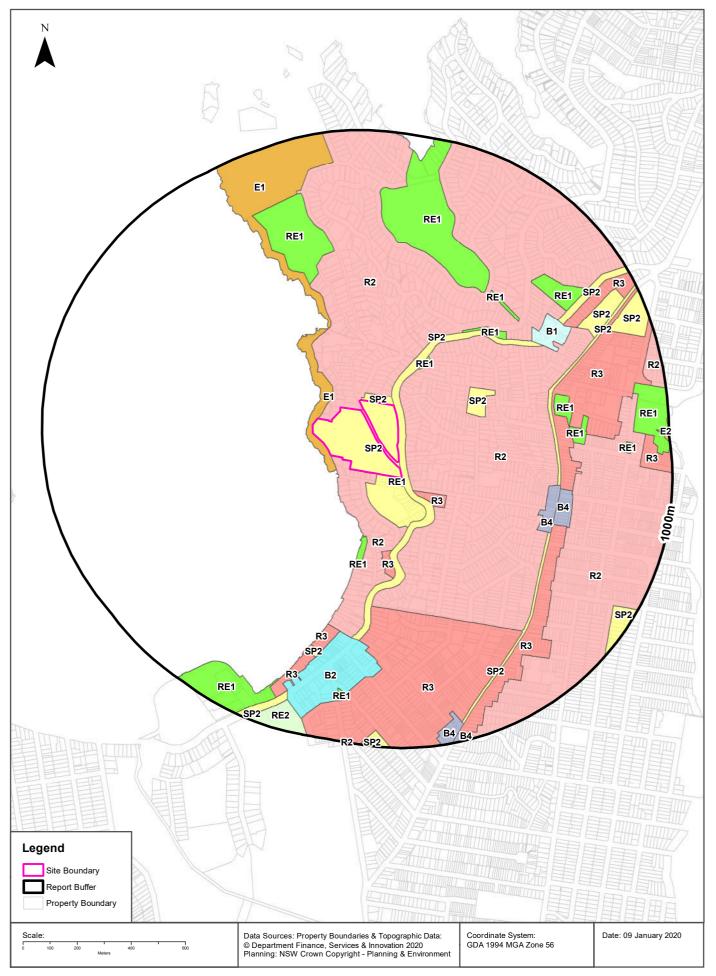
District	Distance	Direction
There are no Mining Subsidence Districts within the report buffer		

Mining Subsidence District Data Source: © Land and Property Information (2016) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

State Environmental Planning Policy

Corner New South Head Road, Rose Bay, NSW 2030

State Significant Precincts


What SEPP State Significant Precincts exist within the dataset buffer?

Map Id	Precinct	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
N/A	No Records in Buffer							

State Environment Planning Policy Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

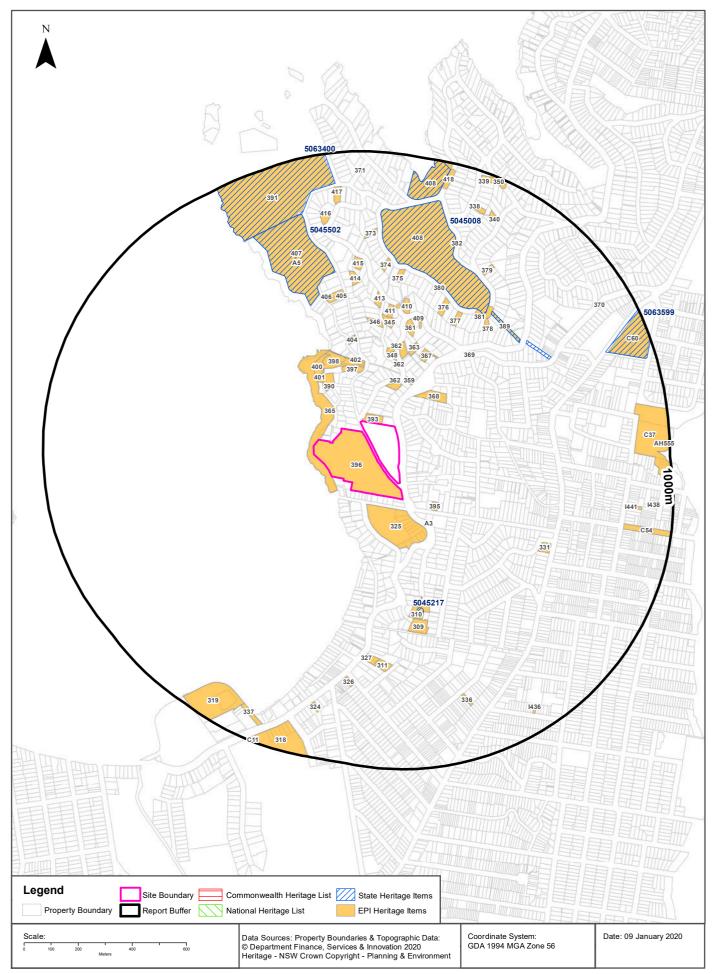
EPI Planning Zones

Environmental Planning Instrument

Corner New South Head Road, Rose Bay, NSW 2030

Land Zoning

What EPI Land Zones exist within the dataset buffer?


Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
SP2	Infrastructure	Educational Establishment	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		0m	Onsite
E1	National Parks and Nature Reserves		Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		0m	North West
R2	Low Density Residential		Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		0m	North East
RE1	Public Recreation		Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		0m	South East
SP2	Infrastructure	Classified Road	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		0m	South East
SP2	Infrastructure	Place of Public Worship	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		0m	North
R2	Low Density Residential		Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		23m	East
R3	Medium Density Residential		Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		60m	South East
RE1	Public Recreation		Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		163m	North East
RE1	Public Recreation		Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		233m	South
SP2	Infrastructure	Water Supply System	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		254m	East
R3	Medium Density Residential		Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		269m	South
E1	National Parks and Nature Reserves		Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		291m	North
RE1	Public Recreation		Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		372m	North East
RE1	Public Recreation		Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		468m	North
R3	Medium Density Residential		Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		486m	South
RE1	Public Recreation		Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		507m	North
B4	Mixed Use		Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		519m	East
RE1	Public Recreation		Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		546m	North East
SP2	Infrastructure	Classified Road	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		555m	North East
B1	Neighbourhood Centre		Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		562m	North East
R3	Medium Density Residential		Waverley Local Environmental Plan 2012	26/10/2012	26/10/2012	20/09/2019		568m	East
SP2	Infrastructure	Classified Road	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		575m	South East
R3	Medium Density Residential		Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	08/06/2018		579m	South
RE1	Public Recreation		Waverley Local Environmental Plan 2012	26/10/2012	26/10/2012	20/09/2019		579m	East
B4	Mixed Use		Waverley Local Environmental Plan 2012	26/10/2012	26/10/2012	20/09/2019		580m	East
R3	Medium Density Residential		Waverley Local Environmental Plan 2012	26/10/2012	26/10/2012	20/09/2019		582m	South East
B2	Local Centre		Woollahra Local Environmental Plan 2014	08/06/2018	08/06/2018	08/06/2018	Amendment No 9	598m	South

y Local nental Plan 2012 y Local nental Plan 2012 ra Local nental Plan 2014 ra Local nental Plan 2014	07/07/2017 26/10/2012 23/01/2015 23/01/2015	23/05/2015	20/09/2019 20/09/2019 08/06/2018	Amendment No 11	627m 629m 668m	South East East
nental Plan 2012 ra Local nental Plan 2014 ra Local nental Plan 2014 ra Local	23/01/2015	23/05/2015				East
nental Plan 2014 ra Local nental Plan 2014 ra Local			08/06/2018		668m	
nental Plan 2014 ra Local	23/01/2015	23/05/2015			000111	South
		20/00/2010	08/06/2018		682m	North East
neniai Fian 2014	23/01/2015	23/05/2015	08/06/2018		692m	North East
ra Local nental Plan 2014	23/01/2015	23/05/2015	08/06/2018		693m	South
ra Local mental Plan 2014	23/01/2015	23/05/2015	08/06/2018		732m	North East
ra Local mental Plan 2014	23/01/2015	23/05/2015	08/06/2018		807m	South
ra Local mental Plan 2014	23/01/2015	23/05/2015	08/06/2018		821m	South West
y Local mental Plan 2012	26/10/2012	26/10/2012	20/09/2019		825m	East
y Local mental Plan 2012	26/10/2012	26/10/2012	20/09/2019		833m	North East
ra Local mental Plan 2014	23/01/2015	23/05/2015	08/06/2018		850m	South West
y Local mental Plan 2012	26/10/2012	26/10/2012	20/09/2019		867m	East
y Local mental Plan 2012	26/10/2012	26/10/2012	20/09/2019		879m	East
ra Local mental Plan 2014	23/01/2015	23/05/2015	08/06/2018		882m	South
ra Local mental Plan 2014	23/01/2015	23/05/2015	08/06/2018		884m	South
y Local mental Plan 2012	26/10/2012	26/10/2012	20/09/2019		912m	South East
y Local mental Plan 2012	26/10/2012	26/10/2012	20/09/2019		923m	East
ra Local mental Plan 2014	23/01/2015	23/05/2015	08/06/2018		938m	South
y Local mental Plan 2012	26/10/2012	26/10/2012	20/09/2019		950m	South East
y Local mental Plan 2012	26/10/2012	26/10/2012	20/09/2019		967m	South
ra Local mental Plan 2014	23/01/2015	23/05/2015	08/06/2018		995m	South
	nental Plan 2014 ra Local nental Plan 2014 ra Local nental Plan 2014 ra Local nental Plan 2014 ra Local nental Plan 2012 y Local nental Plan 2012 y Local nental Plan 2012 y Local nental Plan 2012 ra Local nental Plan 2014 y Local nental Plan 2012 y Local nental Plan 2012 y Local nental Plan 2012 y Local nental Plan 2012 y Local nental Plan 2012	ra Local mental Plan 201423/01/2015ra Local mental Plan 201423/01/2015ra Local mental Plan 201423/01/2015ra Local mental Plan 201423/01/2015ra Local mental Plan 201423/01/2015y Local mental Plan 201226/10/2012ra Local mental Plan 201226/10/2012y Local mental Plan 201226/10/2012ra Local mental Plan 201226/10/2012y Local mental Plan 201423/01/2015y Local mental Plan 201226/10/2012y Local mental Plan 201423/01/2015y Local mental Plan 201423/01/2015y Local mental Plan 201426/10/2012y Local mental Plan 201423/01/2015y Local mental Plan 201423/01/2015y Local mental Plan 201423/01/2015y Local mental Plan 201423/01/2015y Local mental Plan 201426/10/2012y Local mental Plan 201423/01/2015y Local mental Plan 201423/01/2015y Local mental Plan 201423/01/2015y Local mental Plan 201423/01/2015y Local mental Plan 201526/10/2012y Local mental Plan 201423/01/2015y Local mental Plan 201526/10/2012y Local<	ra Local mental Plan 2014 23/01/2015 23/05/2015 ra Local mental Plan 2012 26/10/2012 26/10/2012 y Local mental Plan 2014 23/01/2015 23/05/2015 y Local mental Plan 2014 23/01/2015 23/05/2015 y Local mental Plan 2012 26/10/2012 26/10/2012 y Local mental Plan 2014 26/10/2012 26/10/2012 y Local mental Plan 2014 26/10/2015 23/05/2015 y Local mental Plan 2014 26/10/2012 26/10/2012 y Local mental Plan 2015 <td>ra Local mental Plan 201423/01/201523/05/201508/06/2018ra Local mental Plan 201226/10/201226/10/201220/09/2019y Local mental Plan 201423/01/201523/05/201508/06/2018y Local mental Plan 201426/10/201226/10/201220/09/2019y Local mental Plan 201426/10/201226/10/2012<</td> <td>ra Local mental Plan 2014 23/01/2015 23/05/2015 08/06/2018 ra Local mental Plan 2012 23/01/2015 23/05/2015 08/06/2018 y Local mental Plan 2012 26/10/2012 20/09/2019 20/09/2019 y Local mental Plan 2012 26/10/2012 26/10/2012 20/09/2019 y Local mental Plan 2012 26/10/2012 26/10/2012 20/09/2019 y Local mental Plan 2014 26/10/2012 20/09/2019 20/09/2019 y Local mental Plan 2014 26/10/2012 20/09/2019 20/09/2019 y Local mental Plan 2014 23/01/2015 23/05/2015 08/06/2018 20/09/2019 ra Local mental Plan 2014 26/10/2012 20/09/2019 20/09/2019 20/09/2019 y Local mental Plan 2012 26/10/2012 26/10</td> <td>ra Local mental Plan 2014 23/01/2015 23/05/2015 08/06/2018 692m ra Local mental Plan 2014 23/01/2015 23/05/2015 08/06/2018 693m ra Local mental Plan 2014 23/01/2015 23/05/2015 08/06/2018 693m ra Local mental Plan 2014 23/01/2015 23/05/2015 08/06/2018 607m ra Local mental Plan 2014 23/01/2015 23/05/2015 08/06/2018 607m ra Local mental Plan 2012 23/01/2015 23/05/2015 08/06/2018 621m ra Local mental Plan 2012 26/10/2012 26/10/2012 20/09/2019 625m ra Local mental Plan 2012 26/10/2012 20/09/2019 687m 833m ra Local mental Plan 2012 26/10/2012 20/09/2019 667m 850m ra Local mental Plan 2012 26/10/2012 20/09/2019 67m 87m ra Local mental Plan 2012 26/10/2012 20/09/2019 67m 882m ra Local mental Plan 2014 23/01/2015 23/05/2015 08/06/2018 884m ra Local mental Plan 2012</td>	ra Local mental Plan 201423/01/201523/05/201508/06/2018ra Local mental Plan 201226/10/201226/10/201220/09/2019y Local mental Plan 201423/01/201523/05/201508/06/2018y Local mental Plan 201426/10/201226/10/201220/09/2019y Local mental Plan 201426/10/201226/10/2012<	ra Local mental Plan 2014 23/01/2015 23/05/2015 08/06/2018 ra Local mental Plan 2012 23/01/2015 23/05/2015 08/06/2018 y Local mental Plan 2012 26/10/2012 20/09/2019 20/09/2019 y Local mental Plan 2012 26/10/2012 26/10/2012 20/09/2019 y Local mental Plan 2012 26/10/2012 26/10/2012 20/09/2019 y Local mental Plan 2014 26/10/2012 20/09/2019 20/09/2019 y Local mental Plan 2014 26/10/2012 20/09/2019 20/09/2019 y Local mental Plan 2014 23/01/2015 23/05/2015 08/06/2018 20/09/2019 ra Local mental Plan 2014 26/10/2012 20/09/2019 20/09/2019 20/09/2019 y Local mental Plan 2012 26/10/2012 26/10	ra Local mental Plan 2014 23/01/2015 23/05/2015 08/06/2018 692m ra Local mental Plan 2014 23/01/2015 23/05/2015 08/06/2018 693m ra Local mental Plan 2014 23/01/2015 23/05/2015 08/06/2018 693m ra Local mental Plan 2014 23/01/2015 23/05/2015 08/06/2018 607m ra Local mental Plan 2014 23/01/2015 23/05/2015 08/06/2018 607m ra Local mental Plan 2012 23/01/2015 23/05/2015 08/06/2018 621m ra Local mental Plan 2012 26/10/2012 26/10/2012 20/09/2019 625m ra Local mental Plan 2012 26/10/2012 20/09/2019 687m 833m ra Local mental Plan 2012 26/10/2012 20/09/2019 667m 850m ra Local mental Plan 2012 26/10/2012 20/09/2019 67m 87m ra Local mental Plan 2012 26/10/2012 20/09/2019 67m 882m ra Local mental Plan 2014 23/01/2015 23/05/2015 08/06/2018 884m ra Local mental Plan 2012

Environmental Planning Instrument Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Heritage Items

Heritage

Corner New South Head Road, Rose Bay, NSW 2030

Commonwealth Heritage List

What are the Commonwealth Heritage List Items located within the dataset buffer?

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

National Heritage List

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

State Heritage Register - Curtilages

What are the State Heritage Register Items located within the dataset buffer?

Map Id	Name	Address	LGA	Listing Date	Listing No	Plan No	Distance	Direction
5045217	Site of Ficus superba var. henneana tree	3-4 Fernleigh Gardens Rose Bay	Woollahra	02/04/1999	00578	1580	406m	South
5045502	Strickland House	52 Vaucluse Road Vaucluse	Woollahra	02/04/1999	00722	2487	468m	North
5045008	Vaucluse House	69A Wentworth Road, Vaucluse	Woollahra	02/04/1999	00955	3197	507m	North
5063400	Nielsen Park	Greycliffe Avenue, Vaulcuse	Woollahra	28/08/2017	01988	2955	782m	North
5063599	South Head General Cemetery	793 Old South Head Road, Vaucluse	Waverly	25/08/2017	01991	3052	827m	North East

Heritage Data Source: NSW Crown Copyright - Office of Environment & Heritage Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Environmental Planning Instrument - Heritage

What are the EPI Heritage Items located within the dataset buffer?

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
396	Kincoppal, Roman Catholic Convent of the Sacred Heart and school	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	Om	Onsite
393	St. Michael's Anglican Church - church, interiors, grounds sandstone works, gatepost, arch, obelisk	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	0m	North
365	Hermit Bay slipway and landing	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	0m	North West
325	Kambala School - Tivoli and interoirs, gateposts, gates and flanking walls with railing, Pines	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	40m	South East
395	4 Norfolk Island Pines	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	109m	South East
A3	Emma's Well	ltem - Archaeological	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	118m	South East
368	Werribree - house and interiors, gardens, retaining walls, fences, covered gateways, trees	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	134m	North East
358	Scribbly Gum	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	134m	North
390	House and interiors, front fencing	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	150m	North West
362	Scribbly Gum, Sydney Pink Gum, Swamp Mahogany	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	159m	North
359	House and Interiors	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	168m	North East
397	Former gatehouse to The Hermitage and interiors, front fencing, 3 sandstone gateposts	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	182m	North
401	2 Cook Pines, Norfolk Island Pine	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	185m	North West
398	The Hermitage - house and interiors, grounds, gateposts, gates, fencing, stone works	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	201m	North
399	Norfolk Island Pine, Hoop Pine, Bunya Pine, fencing to Vaucluse Rd	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	209m	North
400	Gardens formerly part of The Hermitage	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	214m	North West
403	Stone and wrought iron fence, formerly part of The Hermitage	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	217m	North
362	Scribbly Gum, Sydney Pink Gum, Swamp Mahogany	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	220m	North

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
402	Watercourse - stormwater drainage comprising channels, bridge and stone walling	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	223m	North
348	Sydney Pink Gum	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	241m	North
360	House and interiors, gardens	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	252m	North
347	Port Jackson Fig	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	262m	North
367	Kainga - house and interiors, excluding the freestanding garage, cabana, pool, spa, gateposts	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	263m	North East
363	House and interiors	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	270m	North East
362	Scribbly Gum, Sydney Pink Gum, Swamp Mahogany	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	284m	North
404	House and interiors	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	288m	North
361	House and interiors	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	338m	North
346	Sydney Pink Gum	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	353m	North
345	House and interiors, stone works, gardens	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	355m	North
310	Fiscus superba, var. henneana (cedar fig)	Item - General	State	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	366m	South
369	Bus Stop shelter, former tram stop	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	373m	North East
409	Eastern Channel Lighthouse - Rear Lead	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	374m	North
411	House and interiors, front fencing	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	397m	North
410	Glasson House - house and interiors	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	422m	North
413	Greenway - all buildings, interiors and works, grounds, grove of Sydney Pink Gums	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	426m	North
377	Sydney Pink Gum, Swamp Mahogany	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	429m	North East
412	Sydney Pink Gum	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	436m	North
309	Fernleigh Castle - main building and interiors	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	443m	South
376	2 Forest Red, Sydney Pink and Scribbly Gum	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	444m	North East
405	Swamp Mahogany	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	456m	North

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
407	Strickland House - Buildings and interiors, wharf, gardens, grounds, former quarry	Item - General	State	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	468m	North
A5	Strickland House - Buildings and interiors, wharf, gardens, grounds, former quarry	ltem - Archaeological	State	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	468m	North
406	Sydney Pink Gums	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	469m	North
378	Sydney Pink Gum	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	483m	North East
414	House and interiors	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	502m	North
408	Vaucluse (Wentworth) Housebuildings and interiors, stables and interiors, outbuildings, gates	Item - General	State	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	507m	North
381	Swamp Mahogany, 2 Sydney Pink Gums	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	511m	North East
375	Sydney Pink Gum	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	530m	North
331	Former Kings Theatre building and interiors	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	532m	South East
380	Forest Red Gum	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	533m	North East
389	Sydney Pink Gum, Swamp Mahogany, Forest Red Mahogany	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	546m	North East
415	House and interiors	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	558m	North
374	Weinreich House - house, including interior, and grounds	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	560m	North
327	Mary Magdalene Catholic Church - church and interiors	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	585m	South
311	House and interiors	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	597m	South
379	2 Sydney Pink Gums	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	649m	North East
373	Scribbly Gum	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	677m	North
326	Rose Bay Hotel and interiors	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	680m	South
382	Scribbly Gum	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	709m	North East
416	Sydney Pink Gum	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	742m	North
336	House, interiors and grounds	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	751m	South East

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
391	Shark Beach promenade and Amenities	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	782m	North
324	Post Office and interiors	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	793m	South
417	Palmeyrie - house and interiors, front gardens and sandstone works	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	809m	North
C54	Oceanview Avenue	Conservation Area - Landscape	Local	Waverley Local Environmental Plan 2012	26/10/2012	26/10/2012	20/09/2019	820m	East
1441	1930's style bungalow	Item - General	Local	Waverley Local Environmental Plan 2012	26/10/2012	26/10/2012	20/09/2019	827m	East
C60	South Head Cemetery	Conservation Area - Landscape	Local	Waverley Local Environmental Plan 2012	26/10/2012	26/10/2012	20/09/2019	833m	North East
408	Vaucluse (Wentworth) Housebuildings and interiors, stables and interiors, outbuildings, gates	Item - General	State	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	843m	North
340	Sydney Pink Gum	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	844m	North East
338	House and interiors	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	852m	North East
319	Site of former Rose Bay Flying Boat Base	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	854m	South West
C37	Coastal Sandstone Escarpment	Conservation Area - Landscape	Local	Waverley Local Environmental Plan 2012	26/10/2012	26/10/2012	20/09/2019	867m	East
370	Bus stop shelter, former tram stop	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	868m	North East
337	5 Norfolk Island Pines	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	882m	South West
318	Royal Sydney Golf Club - Clubhouse and interiors, grove of paperparks along Norwich Road	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	884m	South
1436	Late Victorian style terrace	Item - General	Local	Waverley Local Environmental Plan 2012	26/10/2012	26/10/2012	20/09/2019	898m	South East
418	Swamp Mahogany, 3 Forest Red Gums	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	899m	North
1438	1950's house	Item - General	Local	Waverley Local Environmental Plan 2012	26/10/2012	26/10/2012	20/09/2019	909m	East
371	Bangalay	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	921m	North
339	2 Forest Red Gums	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	964m	North East
350	3 Forest Red Gums	Item - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	966m	North East
C11	Kent Road Heritage Conservation Area	Conservation Area - General	Local	Woollahra Local Environmental Plan 2014	23/01/2015	23/05/2015	06/09/2019	975m	South
AH555	Rock Engraving	Aboriginal Object	Local	Waverley Local Environmental Plan 2012	26/10/2012	26/10/2012	20/09/2019	976m	East

Heritage Data Source: NSW Crown Copyright - Planning & Environment

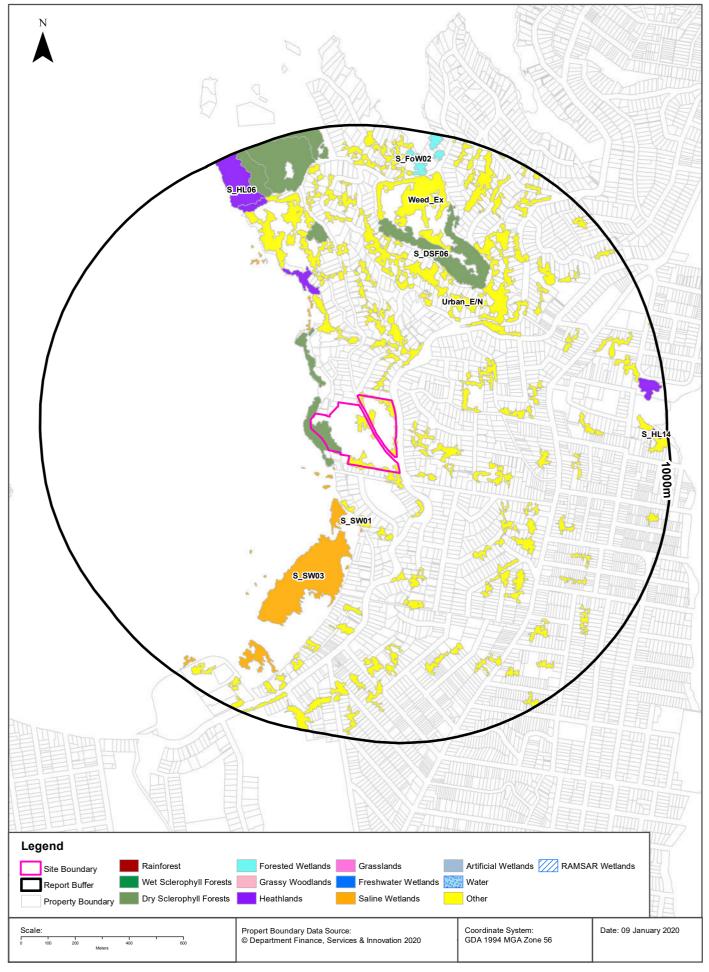
Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Natural Hazards

Corner New South Head Road, Rose Bay, NSW 2030

Bush Fire Prone Land

What are the nearest Bush Fire Prone Land Categories that exist within the dataset buffer?


Bush Fire Prone Land Category	Distance	Direction
No records within buffer		

NSW Bush Fire Prone Land - © NSW Rural Fire Service under Creative Commons 4.0 International Licence

Ecological Constraints - Native Vegetation & RAMSAR Wetlands

Corner New South Head Road, Rose Bay, NSW 2030

Ecological Constraints

Corner New South Head Road, Rose Bay, NSW 2030

Native Vegetation

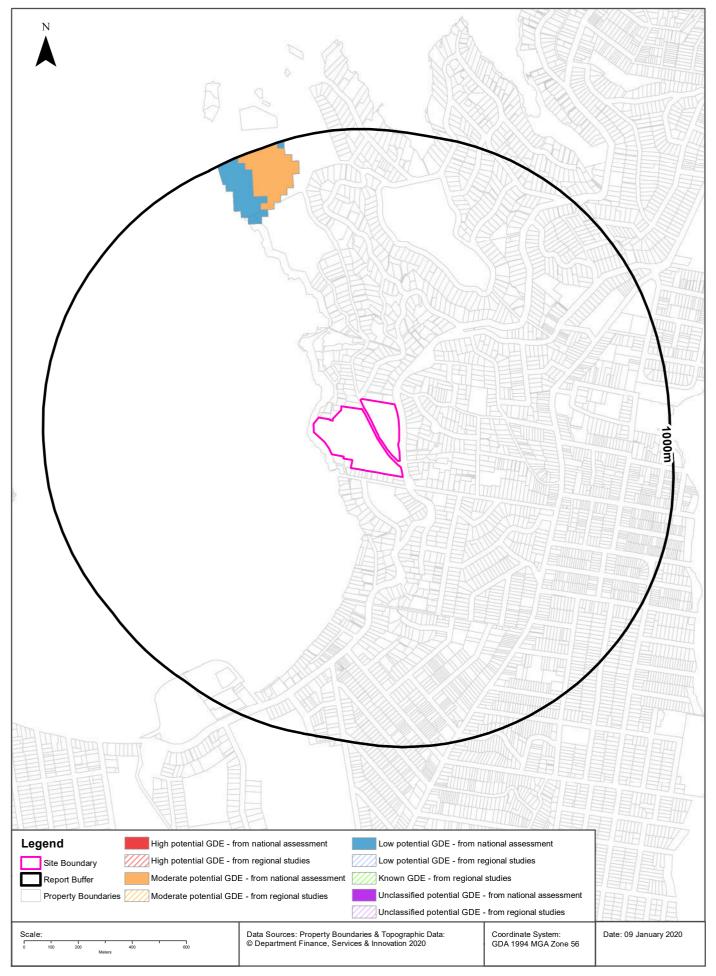
What native vegetation exists within the dataset buffer?

Map ID	Map Unit Name	Threatened Ecological Community NSW	Threatened Ecological Community EPBC Act	Understorey	Disturbance	Disturbance Index	Dominant Species	Dist	Direction
S_DSF06	S_DSF06: Coastal Sandstone Foreshores Forest			17: Pittosporum dominant	13: Weeds	3: High	A.costata/E.botry oides/C.gummifer aB.integrifolia/E.p iperita	0m	Onsite
Urban_E/N	Urban_E/N: Urban Exotic/Native			00: Not assessed	00: Not assessed	0: Not assessed	Urban Exotic/Native	0m	Onsite
S_SW01	S_SW01: Estuarine Mangrove Forest			00: Not assessed	00: Not assessed	0: Not assessed	Mangroves	50m	South West
S_SW03	S_SW03: Seagrass Meadows			00: Not assessed	00: Not assessed	0: Not assessed	Seagrass (DPI)	72m	South West
Weed_Ex	Weed_Ex: Weeds and Exotics			00: Not assessed	00: Not assessed	0: Not assessed	Exotic Species >90%cover	189m	North
S_HL06	S_HL06: Coastal Headland Banksia Heath			17: Pittosporum dominant	13: Weeds	3: High	B.ericifolia/Kunze a spp/A.distyla	398m	North
S_FoW02	S_FoW02: Coastal Flats Swamp Mahogany Forest	Swamp Sclerophyll Forest on Coastal Floodplains		15: Grassy natives and exotics	31: Parkland open understorey	4: Very high	E.robusta	834m	North
S_HL14	S_HL14: Coastal Clifftop Marsh			18: Swampy sedges, shrubs, ferns and herbs	13: Weeds	3: High	Gleichenia spp/S.virginicus/ Acacia spp.	943m	East

Native Vegetation of the Sydney Metropolitan Area : NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ramsar Wetlands

What Ramsar Wetland areas exist within the dataset buffer?


Map Id	Ramsar Name	Wetland Name	Designation Date	Source	Distance	Direction
N/A	No records in buffer					

Ramsar Wetlands Data Source: © Commonwealth of Australia - Department of Environment

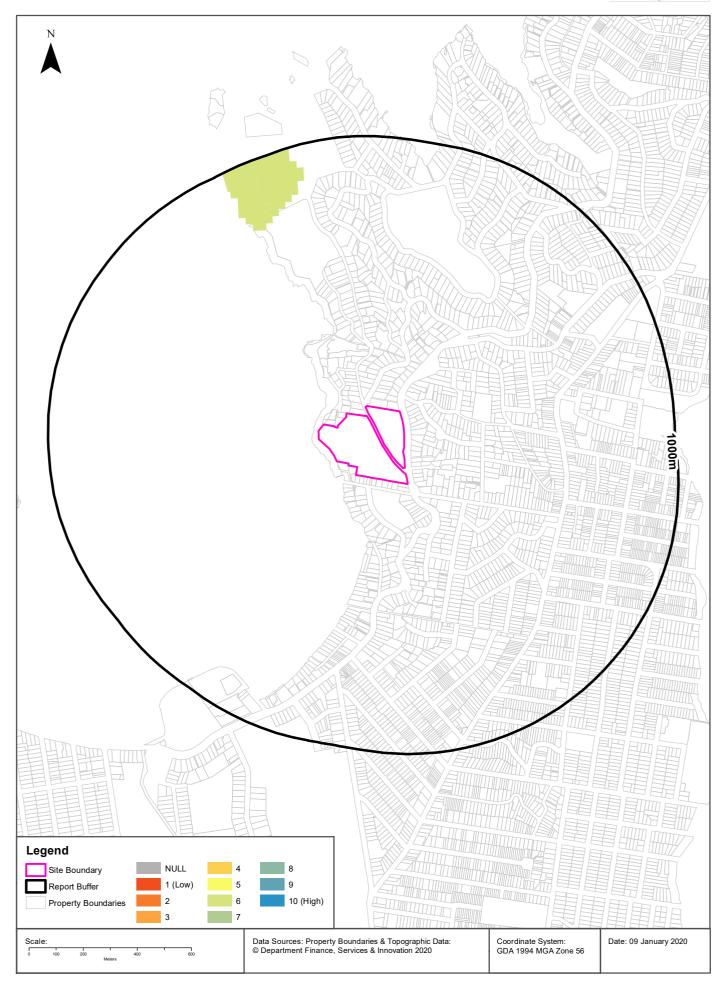
Ecological Constraints - Groundwater Dependent Ecosystems Atlas

Corner New South Head Road, Rose Bay, NSW 2030

Ecological Constraints

Corner New South Head Road, Rose Bay, NSW 2030

Groundwater Dependent Ecosystems Atlas


Туре	GDE Potential	Geomorphology	Ecosystem Type	Aquifer Geology	Distance
Terrestrial	Low potential GDE - from national assessment	Undulating to low hilly country, mainly on shale.	Vegetation	Consolidated sedimentary	739m
Terrestrial	Moderate potential GDE - from national assessment	Undulating to low hilly country, mainly on shale.	Vegetation	Consolidated sedimentary	771m

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology

 $Creative\ Commons\ 3.0\ \ Commonwealth\ of\ Australia\ http://creativecommons.org/licenses/by/3.0/au/deed.en$

Ecological Constraints - Inflow Dependent Ecosystems Likelihood

Corner New South Head Road, Rose Bay, NSW 2030

Ecological Constraints

Corner New South Head Road, Rose Bay, NSW 2030

Inflow Dependent Ecosystems Likelihood

Туре	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance
Terrestrial	6	Undulating to low hilly country, mainly on shale.	Vegetation	Consolidated sedimentary	739m

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints

Corner New South Head Road, Rose Bay, NSW 2030

NSW BioNet Atlas

Species on the NSW BioNet Atlas that have a NSW or federal conservation status, a NSW sensitivity status, or are listed under a migratory species agreement, and are within 10km of the site?

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Amphibia	Litoria aurea	Green and Golden Bell Frog	Endangered	Not Sensitive	Vulnerable	
Animalia	Amphibia	Pseudophryne australis	Red-crowned Toadlet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Actitis hypoleucos	Common Sandpiper	Not Listed	Not Sensitive	Not Listed	Rokamba;camba; Jamba
Animalia	Aves	Anous stolidus	Common Noddy	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Anseranas semipalmata	Magpie Goose	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Anthochaera phrygia	Regent Honeyeater	Critically Endangered	Not Sensitive	Critically Endangered	
Animalia	Aves	Apus pacificus	Fork-tailed Swift	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Ardea ibis	Cattle Egret	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Ardenna carneipes	Flesh-footed Shearwater	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Ardenna grisea	Sooty Shearwater	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Ardenna pacificus	Wedge-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ardenna tenuirostris	Short-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Artamus cyanopterus cyanopterus	Dusky Woodswallow	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Botaurus poiciloptilus	Australasian Bittern	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Burhinus grallarius	Bush Stone- curlew	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Calidris acuminata	Sharp-tailed Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris ferruginea	Curlew Sandpiper	Endangered	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris melanotos	Pectoral Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Callocephalon fimbriatum	Gang-gang Cockatoo	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Calonectris leucomelas	Streaked Shearwater	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calyptorhynchus banksii samueli	Red-tailed Black- Cockatoo (inland subspecies)	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Calyptorhynchus lathami	Glossy Black- Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Charadrius veredus	Oriental Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Daphoenositta chrysoptera	Varied Sittella	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Diomedea exulans	Wandering Albatross	Endangered	Not Sensitive	Endangered	JAMBA
Animalia	Aves	Egretta sacra	Eastern Reef Egret	Not Listed	Not Sensitive	Not Listed	CAMBA

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Epthianura albifrons	White-fronted Chat	Endangered Population, Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Erythrotriorchis radiatus	Red Goshawk	Critically Endangered	Category 2	Vulnerable	
Animalia	Aves	Esacus magnirostris	Beach Stone- curlew	Critically Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Eudyptula minor	Little Penguin	Endangered Population	Not Sensitive	Not Listed	
Animalia	Aves	Falco subniger	Black Falcon	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Fregata ariel	Lesser Frigatebird	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Gallinago hardwickii	Latham's Snipe	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Glossopsitta pusilla	Little Lorikeet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Gygis alba	White Tern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haematopus fuliginosus	Sooty Oystercatcher	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haematopus longirostris	Pied Oystercatcher	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Haliaeetus leucogaster	White-bellied Sea-Eagle	Vulnerable	Not Sensitive	Not Listed	CAMBA
Animalia	Aves	Hieraaetus morphnoides	Little Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hirundapus caudacutus	White-throated Needletail	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Hydroprogne caspia	Caspian Tern	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Ixobrychus flavicollis	Black Bittern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Lathamus discolor	Swift Parrot	Endangered	Category 3	Critically Endangered	
Animalia	Aves	Limosa lapponica	Bar-tailed Godwit	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Lophochroa leadbeateri	Major Mitchell's Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Lophoictinia isura	Square-tailed Kite	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Macronectes giganteus	Southern Giant Petrel	Endangered	Not Sensitive	Endangered	
Animalia	Aves		Northern Giant- Petrel	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Manorina melanotis	Black-eared Miner	Critically Endangered	Not Sensitive	Endangered	
Animalia	Aves	Merops ornatus	Rainbow Bee- eater	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Neophema pulchella	Turquoise Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Neophema splendida	Scarlet-chested Parrot	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ninox connivens	Barking Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox strenua	Powerful Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Numenius madagascariensi s	Eastern Curlew	Not Listed	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Numenius minutus	Little Curlew	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Numenius phaeopus	Whimbrel	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Onychoprion fuscata	Sooty Tern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pandion cristatus	Eastern Osprey	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Petroica boodang	Scarlet Robin	Vulnerable	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Pezoporus wallicus wallicus	Eastern Ground Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Phaethon lepturus	White-tailed Tropicbird	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Phaethon rubricauda	Red-tailed Tropicbird	Vulnerable	Not Sensitive	Not Listed	CAMBA
Animalia	Aves	Phoebetria fusca	Sooty Albatross	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Pluvialis fulva	Pacific Golden Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Pluvialis squatarola	Grey Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Polytelis swainsonii	Superb Parrot	Vulnerable	Category 3	Vulnerable	
Animalia	Aves	Pterodroma leucoptera leucoptera	Gould's Petrel	Vulnerable	Not Sensitive	Endangered	
Animalia	Aves	Pterodroma solandri	Providence Petrel	Vulnerable	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ptilinopus regina	Rose-crowned Fruit-Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ptilinopus superbus	Superb Fruit- Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Puffinus assimilis	Little Shearwater	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Stagonopleura guttata	Diamond Firetail	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Stercorarius longicaudus	Long-tailed Jaeger	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Stercorarius maccormicki	South Polar Skua	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Stercorarius parasiticus	Arctic Jaeger	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Stercorarius pomarinus	Pomarine Jaeger	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Sterna hirundo	Common Tern	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Sternula albifrons	Little Tern	Endangered	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Stictonetta naevosa	Freckled Duck	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Sula dactylatra	Masked Booby	Vulnerable	Not Sensitive	Not Listed	Rokamba;Jamba
Animalia	Aves	Sula sula	Red-footed Booby	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Thalassarche cauta	Shy Albatross	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Thalassarche chrysostoma	Grey-headed Albatross	Not Listed	Not Sensitive	Endangered	
Animalia	Aves	Thalassarche melanophris	Black-browed Albatross	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Thinornis rubricollis	Hooded Plover	Critically Endangered	Not Sensitive	Vulnerable	
Animalia	Aves	Tringa incana	Wandering Tattler	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Tringa nebularia	Common Greenshank	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa stagnatilis	Marsh Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tyto novaehollandiae	Masked Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Tyto tenebricosa	Sooty Owl	Vulnerable	Category 3	Not Listed	
Animalia	Insecta	Petalura gigantea	Giant Dragonfly	Endangered	Not Sensitive	Not Listed	
Animalia	Mammalia	Aepyprymnus rufescens	Rufous Bettong	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Arctocephalus forsteri	New Zealand Fur- seal	Vulnerable	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Mammalia	Arctocephalus pusillus doriferus	Australian Fur- seal	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Cercartetus nanus	Eastern Pygmy- possum	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Chalinolobus dwyeri	Large-eared Pied Bat	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Dasyurus maculatus	Spotted-tailed Quoll	Vulnerable	Not Sensitive	Endangered	
Animalia	Mammalia	Dasyurus viverrinus	Eastern Quoll	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Dugong dugon	Dugong	Endangered	Not Sensitive	Not Listed	
Animalia	Mammalia	Eubalaena australis	Southern Right Whale	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Falsistrellus tasmaniensis	Eastern False Pipistrelle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Isoodon obesulus obesulus	Southern Brown Bandicoot (eastern)	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Macrotis lagotis	Bilby	Presumed Extinct	Not Sensitive	Vulnerable	
Animalia	Mammalia	Megaptera novaeangliae	Humpback Whale	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Micronomus norfolkensis	Eastern Coastal Free-tailed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus australis	Little Bent-winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus orianae oceanensis	Large Bent- winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Myotis macropus	Southern Myotis	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Perameles nasuta	Long-nosed Bandicoot	Endangered Population	Not Sensitive	Not Listed	
Animalia	Mammalia	Petaurus norfolcensis	Squirrel Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Phascolarctos cinereus	Koala	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Pteropus poliocephalus	Grey-headed Flying-fox	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Saccolaimus flaviventris	Yellow-bellied Sheathtail-bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Scoteanax rueppellii	Greater Broad- nosed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Antaresia stimsoni	Stimson's Python	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Aspidites ramsayi	Woma	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Caretta caretta	Loggerhead Turtle	Endangered	Not Sensitive	Endangered	
Animalia	Reptilia	Chelonia mydas	Green Turtle	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Reptilia	Dermochelys coriacea	Leatherback Turtle	Endangered	Not Sensitive	Endangered	
Animalia	Reptilia	Eretmochelys imbricata	Hawksbill Turtle	Not Listed	Not Sensitive	Vulnerable	
Animalia	Reptilia	Tiliqua occipitalis	Western Blue- tongued Lizard	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Varanus rosenbergi	Rosenberg's Goanna	Vulnerable	Not Sensitive	Not Listed	
Fungi	Flora	Hygrocybe collucera		Endangered	Not Sensitive	Not Listed	
Fungi	Flora	Hygrocybe griseoramosa		Endangered	Not Sensitive	Not Listed	
Fungi	Flora	Hygrocybe reesiae		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Acacia bynoeana	Bynoe's Wattle	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Acacia gordonii		Endangered	Not Sensitive	Endangered	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Plantae	Flora	Acacia terminalis subsp. terminalis	Sunshine Wattle	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Allocasuarina portuensis	Nielsen Park She- oak	Endangered	Category 3	Endangered	
Plantae	Flora	Amperea xiphoclada var. pedicellata		Presumed Extinct	Not Sensitive	Extinct	
Plantae	Flora	Asterolasia buxifolia		Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Baeckea kandos		Endangered	Category 3	Endangered	
Plantae	Flora	Caladenia tessellata	Thick Lip Spider Orchid	Endangered	Category 2	Vulnerable	
Plantae	Flora	Callistemon linearifolius	Netted Bottle Brush	Vulnerable	Category 3	Not Listed	
Plantae	Flora	Chamaesyce psammogeton	Sand Spurge	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Dichanthium	Bluegrass	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Diuris arenaria	Sand Doubletail	Endangered	Category 2	Not Listed	
Plantae	Flora	Doryanthes palmeri	Giant Spear Lily	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Epacris purpurascens var. purpurascens		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus camfieldii	Camfield's Stringybark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus fracta	Broken Back Ironbark	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus leucoxylon subsp. pruinosa	Yellow Gum	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus nicholii	Narrow-leaved Black Peppermint	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus pulverulenta	Silver-leafed Gum	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus scoparia	Wallangarra White Gum	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Euphrasia collina subsp. muelleri	Mueller's Eyebright	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Grammitis stenophylla	Narrow-leaf Finger Fern	Endangered	Category 3	Not Listed	
Plantae	Flora	Grevillea caleyi	Caley's Grevillea	Critically Endangered	Category 3	Critically Endangered	
Plantae	Flora	Hibbertia puberula		Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Lasiopetalum joyceae		Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Macadamia integrifolia	Macadamia Nut	Not Listed	Not Sensitive	Vulnerable	
Plantae	Flora	Macadamia tetraphylla	Rough-shelled Bush Nut	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Melaleuca biconvexa	Biconvex Paperbark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Melaleuca deanei	Deane's Paperbark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Microtis angusii	Angus's Onion Orchid	Endangered	Category 2	Endangered	
Plantae	Flora	Persoonia hirsuta	Hairy Geebung	Endangered	Category 3	Endangered	
Plantae	Flora	Persoonia laxa		Presumed Extinct	Not Sensitive	Extinct	
Plantae	Flora	Pimelea curviflora var. curviflora		Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Prasophyllum fuscum	Slaty Leek Orchid	Critically Endangered	Category 2	Vulnerable	
Plantae	Flora	Prostanthera junonis	Somersby Mintbush	Endangered	Not Sensitive	Endangered	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Plantae	Flora	Prostanthera marifolia	Seaforth Mintbush	Critically Endangered	Category 3	Critically Endangered	
Plantae	Flora	Rhodamnia rubescens	Scrub Turpentine	Critically Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Sarcochilus hartmannii	Hartman's Sarcochilus	Vulnerable	Category 2	Vulnerable	
Plantae	Flora	Syzygium paniculatum	Magenta Lilly Pilly	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Tetratheca glandulosa		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Tetratheca juncea	Black-eyed Susan	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Thesium australe	Austral Toadflax	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Triplarina imbricata	Creek Triplarina	Endangered	Not Sensitive	Endangered	

Data does not include NSW category 1 sensitive species.

NSW BioNet: © State of NSW and Office of Environment and Heritage

Location Confidences

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

LC Code	Location Confidence
Premise match	Georeferenced to the site location / premise or part of site
General area or suburb match	Georeferenced with the confidence of the general/approximate area
Road match	Georeferenced to the road or rail
Road intersection	Georeferenced to the road intersection
Feature is a buffered point	Feature is a buffered point
Land adjacent to geocoded site	Land adjacent to Georeferenced Site
Network of features	Georeferenced to a network of features

USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (**Property**) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - (h) the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any

of its Third Party Content Supplier have any liability to it under or in connection with the Report or these Terms;

- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.

Section 10.7 Certificates

PLANNING CERTIFICATE UNDER SECTION 10.7 (2) and (5) ENVIRONMENTAL PLANNING & ASSESSMENT ACT

JK Environments Pty Ltd Attn: Anthony Barkway PO Box 976 North Ryde BC NSW 1670

Certificate number:

Transaction ID:

Certificate fee:

Applicant's reference: E32915BD avb

ABN 32 218 483 245

Redleaf Council Chambers 536 New South Head Road Double Bay NSW 2028

Correspondence to General Manager

PO Box 61 Double Bay NSW 1360 DX 3607 Double Bay records@woollahra.nsw.gov.au

www.woollahra.nsw.gov.au

Telephone: (02) 9391 7000 Facsimile: (02) 9391 7044

DESCRIPTION OF PROPERTY

Certificate issue date: 08/01/2020

25

507352

Address:	2 Vaucluse Road VAUCLUSE NSW 2030
Title:	LOT: 104 PT: PRT DP: 1092747
Parish:	Alexandria
County:	Cumberland

\$133.00 (standard)

This planning certificate should be read in conjunction with the *Woollahra Local Environmental Plan 2014* and/or the *Sydney Regional Environmental Plan (Sydney Harbour Catchment) 2005.* These are available on the NSW legislation website at <u>www.legislation.nsw.gov.au</u>

The land to which this certificate relates, being the lot or one of the lots described in the corresponding application, is shown in the Council's records as being situated at the street address described on page 1 of this certificate.

It is the applicant's responsibility to confirm that the legal description of the lot to which the application relates is accurate and current. Council does not check the accuracy or currency of the information; nor does Council have the copyright to this information.

The legal description of land is obtained from NSW Land and Property Information. Applicants must verify all property and lot information with NSW Land and Property Information. The information contained in this certificate relates only to the lot described on the certificate.

Where the street address comprises more than one lot in one or more deposited plans or strata plans, separate planning certificates can be obtained upon application for the other lots. Those certificates may contain different information than is contained in this certificate.

SECTION 10.7(2) DETAILS

In accordance with section 10.7(2) of the *Environmental Planning and Assessment Act* 1979, at the date of this certificate the following information is provided in respect of the prescribed matters to be included in a planning certificate.

1. NAMES OF RELEVANT ENVIRONMENTAL PLANNING INSTRUMENTS

(a) The following environmental planning instrument applies to the land:

Woollahra Local Environmental Plan 2014 (commenced 23 May 2015)

(b) Zone:

SP2 Infrastructure

(c) Development that may be carried out within the zone without development consent:

Roads

(d) Development that may be carried out within the zone with development consent:

Community facilities; Environmental protection works; Recreation areas; The purpose shown on the Land Zoning Map, including any development that is ordinarily incidental or ancillary to development for that purpose

Also refer to Schedule 1 of the LEP "Additional permitted uses" to see if this schedule applies to your land.

(e) Development that is prohibited within the zone:

Any development not specified in item (c) or (d) above.

(f) Do any development standards apply to the land that set minimum land dimensions for the erection of a dwelling house on the land? If yes, what are the minimum dimensions?

No

(g) Does the land include or comprise 'critical habitat' under the provisions of the local environmental plan applying to the land?

No

(h) Is the land located in a heritage conservation area under the provisions of the local environmental plan applying to the land?

No

(i) Is there an item of environmental heritage situated on the land under the provisions of the local environmental plan applying to the land?

Yes. Refer to Woollahra Local Environmental Plan 2014, Schedule 5 Environmental Heritage and the Heritage Map for more information.

2. NAMES OF RELEVANT EXHIBITED PROPOSED ENVIRONMENTAL PLANNING INSTRUMENTS

The following proposed environmental planning instruments, including a planning proposal for a LEP or a draft environmental planning instrument have been the subject of community consultation or on public exhibition under the *Environmental Planning and Assessment Act 1979* (unless the Director-General has notified Council that the making of the proposed instrument has been deferred indefinitely or has not been approved.)

Properties affected: Rose Bay Uniting Church and Wesley Hall at 518a Old South Head Road, Rose Bay

Details: A planning proposal has been prepared to amend the *Woollahra Local Environmental Plan 2014* to list as a heritage item the *Rose Bay Uniting Church and Wesley Hall Group – church and interiors (including moveable heritage, vestry and 1924 additions)*.

Re-exhibition period: Wednesday 12 June to Friday 12 July 2019.

Properties affected: The Four in Hand Hotel at 105 Sutherland Street, Paddington

Details: A planning proposal has been prepared to amend the *Woollahra Local Environmental Plan 2014* to list as a heritage item *The Four in Hand Hotel* at 105 Sutherland Street, Paddington.

Exhibition period: Wednesday 29 May to Friday 28 June 2019.

3. NAMES OF RELEVANT DEVELOPMENT CONTROL PLANS

The following table contains a list of development control plans that have been prepared by Council under Division 6 of Part 3 of the *Environmental Planning and Assessment Act 1979* (including any made by the Council under section 72 of the Act before repeal of that section). Please check the table to see the relevancy of the plans to the land that is the subject of this certificate.

(a) The following development control plan applies to the land:

Woollahra Development Control Plan 2015 (commenced 23 May 2015)

4. NAMES OF RELEVANT DEVELOPMENT CONTROL PLANS PREPARED BY THE DIRECTOR GENERAL

The following development control plans have been prepared by the Director-General under Division 6 of Part 3 of the *Environmental Planning and Assessment Act 1979* (including any made by the Director-General under section 51A, before the repeal of that section).

Sydney Harbour Foreshores and Waterways Area Development Control Plan 2005

This DCP applies to certain land within the Woollahra Municipality being land within the Foreshores and Waterways area identified on the Sydney Regional Environmental Plan (Sydney Harbour Catchment) Foreshores and Waterways Area Map.

5. NAMES OF RELEVANT STATE ENVIRONMENTAL PLANNING POLICIES

Below is a list of all State environmental planning policies that apply to the Woollahra Municipality.

Depending on circumstances set down in each SEPP, the policy may be specifically applicable to the land that is the subject of this certificate. You are advised to peruse the policy for the necessary details. Refer to NSW Department of Planning and Environment.

- State Environmental Planning Policy No. 1 Development Standards
- State Environmental Planning Policy No. 19 Bushland in Urban Areas
- State Environmental Planning Policy No. 21 Caravan Parks
- State Environmental Planning Policy No. 33 Hazardous and Offensive Development
- State Environmental Planning Policy No. 50 Canal Estate Development
- State Environmental Planning Policy No. 55 Remediation of Land
- State Environmental Planning Policy No. 64 Advertising and Signage
- State Environmental Planning Policy No. 65 Design Quality of Residential Apartment Development
- State Environmental Planning Policy No. 70 Affordable Housing (Revised Schemes)
- State Environmental Planning Policy (Affordable Rental Housing) 2009
- State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004
- State Environmental Planning Policy (Coastal Management) 2018
- State Environmental Planning Policy (Concurrence) 2018
- State Environmental Planning Policy (Educational Establishments and Child Care Facilities) 2017
- State Environmental Planning Policy (Exempt and Complying Development Codes) 2008
- State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004
- State Environmental Planning Policy (Infrastructure) 2007
- State Environmental Planning Policy (Major Development) 2005
- State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007
- State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007
- State Environmental Planning Policy (State and Regional Development) 2011
- State Environmental Planning Policy (Vegetation in Non-Rural Areas) 2017

Deemed SEPPs:

 Sydney Regional Environmental Plan (Sydney Harbour Catchment) 2005
 This REP applies to all land within the Woollahra Municipality except for land at Christison Park, Vaucluse as shown on the Sydney Regional Environmental Plan (Sydney Harbour Catchment) 2005 Sydney Harbour Catchment Map

5.A STATE ENVIRONMENTAL PLANNING POLICY (COASTAL MANAGEMENT) 2018

Is the land subject to the coastal zone under *State Environmental Planning Policy* (Coastal Management) 2018?

Yes

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council and if the information is vital for the proposed end use, then it should be verified by the applicant.

6. NAMES OF PROPOSED STATE ENVIRONMENTAL PLANNING POLICIES

The following proposed State Environmental Planning Policies have been the subject of community consultation or on public exhibition under the *Environmental Planning and Assessment Act 1979* (unless the Director-General has notified Council that the making of the proposed instrument has been deferred indefinitely or has not been approved.)

There are currently no proposed State Environmental Planning Policies applying to the land.

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council and if the information is vital for the proposed end use, then it should be verified by the applicant.

7. COMPLYING DEVELOPMENT

Is the land, land on which complying development may be carried out under the *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008*?

Housing Code

Complying development under the Housing Code may not be carried out on the land because it is land that comprises an item that is listed as a heritage item in Woollahra Local Environmental Plan (LEP) 2014.

Notwithstanding the above, complying development under that Code may be undertaken in either of the following circumstances:

1. If the development has been granted an exemption under section 57 (2) of the Heritage Act 1977, or is subject to an exemption under section 57 (1A) or (3) of that Act.

2. If the complying development is not located on that part of the land described and mapped as an item in Woollahra LEP 2014.

Refer to the State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 for full details.

Rural Housing Code

Rural Housing Code is not applicable to Woollahra Local Government Area.

Low Rise Medium Density Housing Code

Low Rise Medium Density Housing Code is not applicable to Woollahra Local Government Area.

Greenfield Housing Code

Greenfield Housing Code is not applicable to Woollahra Local Government Area.

Inland Code

Inland Code is not applicable to Woollahra Local Government Area.

Housing Alterations Code

Complying development under the Housing Alterations Code may not be carried out on the land because it is land that comprises an item that is listed as a heritage item in Woollahra Local Environmental Plan (LEP) 2014.

Notwithstanding the above, complying development under that Code may be undertaken in either of the following circumstances:

1. If the development has been granted an exemption under section 57 (2) of the Heritage Act 1977, or is subject to an exemption under section 57 (1A) or (3) of that Act.

2. If the complying development is not located on that part of the land described and mapped as an item in Woollahra LEP 2014.

Refer to the State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 for full details.

General Development Code

Complying development under the General Development Code may not be carried out on the land because it is land that comprises an item that is listed as a heritage item in Woollahra Local Environmental Plan (LEP) 2014.

Notwithstanding the above, complying development under that Code may be undertaken in either of the following circumstances:

1. If the development has been granted an exemption under section 57 (2) of the Heritage Act 1977, or is subject to an exemption under section 57 (1A) or (3) of that Act.

2. If the complying development is not located on that part of the land described and mapped as an item in Woollahra LEP 2014.

Refer to the State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 for full details.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code may not be carried out on the land because it is land that comprises an item that is listed as a heritage item in Woollahra Local Environmental Plan (LEP) 2014.

Notwithstanding the above, complying development under that Code may be undertaken in either of the following circumstances:

1. If the development has been granted an exemption under section 57 (2) of the Heritage Act 1977, or is subject to an exemption under section 57 (1A) or (3) of that Act.

2. If the complying development is not located on that part of the land described and mapped as an item in Woollahra LEP 2014.

Refer to the State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 for full details.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may not be carried out on the land because it is land that comprises an item that is listed as a heritage item in Woollahra Local Environmental Plan (LEP) 2014.

Notwithstanding the above, complying development under that Code may be undertaken in either of the following circumstances:

1. If the development has been granted an exemption under section 57 (2) of the Heritage Act 1977, or is subject to an exemption under section 57 (1A) or (3) of that Act.

2. If the complying development is not located on that part of the land described and mapped as an item in Woollahra LEP 2014.

Refer to the State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 for full details.

Container Recycling Facilities Code

Complying development under the Container Recycling Facilities Code may not be carried out on the land because it is land that comprises an item that is listed as a heritage item in Woollahra Local Environmental Plan (LEP) 2014.

Notwithstanding the above, complying development under that Code may be undertaken in either of the following circumstances:

1. If the development has been granted an exemption under section 57 (2) of the Heritage Act 1977, or is subject to an exemption under section 57 (1A) or (3) of that Act.

Subdivisions Code

Complying development under the Subdivisions Code may not be carried out on the land because it is land that comprises an item that is listed as a heritage item in Woollahra Local Environmental Plan (LEP) 2014.

Notwithstanding the above, complying development under that Code may be undertaken in either of the following circumstances:

1. If the development has been granted an exemption under section 57 (2) of the Heritage Act 1977, or is subject to an exemption under section 57 (1A) or (3) of that Act.

2. If the complying development is not located on that part of the land described and mapped as an item in Woollahra LEP 2014.

Refer to the State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 for full details.

Demolition Code

Complying development under the Demolition Code may not be carried out on the land because it is land that comprises an item that is listed as a heritage item in Woollahra Local Environmental Plan (LEP) 2014.

Notwithstanding the above, complying development under that Code may be undertaken in either of the following circumstances:

1. If the development has been granted an exemption under section 57 (2) of the Heritage Act 1977, or is subject to an exemption under section 57 (1A) or (3) of that Act.

2. If the complying development is not located on that part of the land described and mapped as an item in Woollahra LEP 2014.

Refer to the State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 for full details.

Fire Safety Code

Complying development under the Fire Safety Code may not be carried out on the land because it is land that comprises an item that is listed as a heritage item in Woollahra Local Environmental Plan (LEP) 2014.

Notwithstanding the above, complying development under that Code may be undertaken in either of the following circumstances:

1. If the development has been granted an exemption under section 57 (2) of the Heritage Act 1977, or is subject to an exemption under section 57 (1A) or (3) of that Act.

2. If the complying development is not located on that part of the land described and mapped as an item in Woollahra LEP 2014.

Refer to the State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 for full details.

8. ANNUAL CHARGES UNDER LOCAL GOVERNMENT ACT 1993 FOR COASTAL PROTECTION SERVICES THAT RELATE TO EXISTING COASTAL PROTECTION WORKS

Has the owner (or any previous owner) of the land consented in writing to the land being subject to annual charges under section 496B of the *Local Government Act 1993* for coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act)?

No

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council. If the information is vital for the proposed end use, then it should be verified by the applicant.

9. MINE SUBSIDENCE

Is the land proclaimed to be a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961* ?

No

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council and if the information is vital for the proposed end use, then it should be verified by the applicant.

10. ROAD WIDENING OR ROAD REALIGNMENT

Is the land affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993; or
- (b) any environmental planning instrument; or
- (c) any resolution of the Council?

No

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council and if the information is vital for the proposed end use, then it should be verified by the applicant.

11. COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS

Is the land affected by a policy:

(a) adopted by the Council that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulfate soils or any other risk (other than flooding)?

Yes

Woollahra LEP 2014, clause 6.1 (Acid sulfate soils) may require an assessment of acid sulfate soils for certain types of development located on certain land identified on the Acid Sulfate Soils Map of the LEP.

Woollahra DCP 2015 includes a policy on contaminated land which may restrict the development of the land. This policy is implemented when zoning or land use changes are proposed on lands which have previously been used for certain purposes. Applicants must consider Council's DCP as well as State legislation including the State Environmental Planning Policy No. 55 – Remediation of Land.

(b) adopted by any other public authority and notified to the Council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the Council, that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulfate soils or any other risk (other than flooding)?

No

12. FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

(a) Is development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) subject to flood related development controls?

Yes.

Part or all of the subject land may be subject to flood related development controls, applicants are advised to inspect relevant flood reports and consult with Council's Technical Services Department. Further flood investigations may be required to accurately determine the nature of flooding on the site. (b) Is development on the land or part of the land for any other purpose subject to flood related development controls?

Yes.

Part or all of the subject land may be subject to flood related development controls, applicants are advised to inspect relevant flood reports and consult with Council's Technical Services Department. Further flood investigations may be required to accurately determine the nature of flooding on the site.

Note: Words and expressions used in this item have the same meanings as in the instrument set out in the Schedule to the *Standard Instrument (Local Environmental Plans) Order 2006.*

13. LAND RESERVED FOR ACQUISITION

Does an environmental planning instrument or proposed environmental planning instrument applying to the land make provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the *Environmental Planning and Assessment Act 1979* ?

No

14. CONTRIBUTIONS PLAN

The following contributions plan may apply to the land:

- Woollahra Section 94A Development Contributions Plan 2011 (31 August 2011)
- Woollahra Section 94 Contributions Plan (31 March 2003).

15. BIODIVERSITY CERTIFIED LAND

Is the land biodiversity certified land under Part 8 of the Biodiversity Conservation Act 2016?

No

16. BIODIVERSITY STEWARDSHIP SITES

Is the land a biodiversity stewardship site under a biodiversity stewardship agreement under Part 5 of the *Biodiversity Conservation Act 2016*?

No

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council and if the information is vital for the proposed end use, then it should be verified by the applicant.

17. NATIVE VEGETATION CLEARING SET ASIDES

Does the land contain a set aside area under section 60ZC of the Local Land Services Act 2013?

No

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council and if the information is vital for the proposed end use, then it should be verified by the applicant.

18. BUSH FIRE PRONE LAND

Is the land to which this certificate relates bush fire prone land?

No

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council and if the information is vital for the proposed end use, then it should be verified by the applicant.

19. PROPERTY VEGETATION PLANS

Is the land the subject of a property vegetation plan approved under Part 4 of the *Native Vegetation Act 2003* (and that continues in force) ?

No

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council and if the information is vital for the proposed end use, then it should be verified by the applicant.

20. ORDERS UNDER TREES (DISPUTES BETWEEN NEIGHBOURS) ACT 2006

Has an order been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land (but only if Council has been notified of the order).

No

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council and if the information is vital for the proposed end use, then it should be verified by the applicant.

21. DIRECTIONS UNDER PART 3A

Is there a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect?

No

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council and if the information is vital for the proposed end use, then it should be verified by the applicant.

22. SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS

Is there a current site compatibility certificate (seniors housing), of which the Council is aware ?

No

Are there any terms of a kind referred to in clause 18(2) of *State Environmental Planning Policy* (*Housing for Seniors or People with a Disability*) 2004 that have been imposed as a condition of consent to a development application granted after 11 October 2007?

No

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council and if the information is vital for the proposed end use, then it should be verified by the applicant.

23. SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE, SCHOOLS OR TAFE ESTABLISHMENTS

Is there a valid site compatibility certificate (infrastructure) or site compatibility certificate (schools or TAFE establishments), of which the Council is aware ?

No

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council and if the information is vital for the proposed end use, then it should be verified by the applicant.

24. SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE HOUSING

Is there a current site compatibility certificate (affordable rental housing), of which the Council is aware ?

No

Are there any terms of a kind referred to in clause 17(1) or 37(1) of *State Environmental Planning Policy (Affordable Rental Housing) 2009* that have been imposed as a condition of consent to a development application in respect of the land?

No

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council and if the information is vital for the proposed end use, then it should be verified by the applicant.

25. PAPER SUBDIVISION INFORMATION

Is there a development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot?

No

26. SITE VERIFICATION CERTIFICATE

Is there a current site verification certificate of which this council is aware?

No

Note: A site verification certificate sets out the Director-General's opinion as to whether the land concerned is or is not biophysical strategic agricultural land or critical industry cluster land – see Division 3 of Part 4AA of *State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007*

27. MATTERS ARISING UNDER THE CONTAMINATED LAND MANAGEMENT ACT 1997

(a) Is the land (or part of the land) to which this certificate relates significantly contaminated land?

No

(b) Is the land to which this certificate relates subject to a management order?

No

(c) Is the land to which this certificate relates the subject of an approved voluntary management proposal?

No

(d) Is the land to which this certificate relates subject to an ongoing maintenance order?

No

(e) Is the land to which this certificate relates the subject of a site audit statement?

No

Note: These matters are prescribed by section 59 (2) of the *Contaminated Land Management Act 1997* as additional matters to be specified in a planning certificate. Section 53B requires site auditors to furnish local authorities with copies of audit statements relating to site audits for the purposes of statutory requirements.

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council and if the information is vital for the proposed end use, then it should be verified by the applicant.

28. LOOSE-FILL ASBESTOS INSULATION

Does the land include any residential premises (within the meaning of Division 1A of Part 8 of the *Home Building Act 1989*) listed on the register that is required to be maintained under that Division.

No

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council and if the information is vital for the proposed end use, then it should be verified by the applicant.

29. AFFECTED BUILDING NOTICES AND BUILDING PRODUCT RECTIFICATION ORDERS

(a) Is there any affected building notice in force in respect of the land?

No

(b) Is there any building product rectification order in force in respect of the land that has not been fully complied with?

No

(c) Is there any outstanding notice of intention to make a building product rectification order?

No

Note: *affected building notice* has the same meaning as in Part 4 of the *Building Products (Safety) Act 2017. building product rectification* order has the same meaning as in the *Building Products (Safety) Act 2017.*

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council and if the information is vital for the proposed end use, then it should be verified by the applicant.

SECTION 10.7(5) DETAILS

This certificate is directed to the following relevant matters affecting the land.

Note : When information pursuant to section 10.7(5) is requested the Council is under no obligation to furnish any of the information supplied herein pursuant to that section.

Council draws your attention to section 10.7(6), which states that a Council shall not incur any liability in respect of any advice provided in good faith pursuant to sub-section (5). The absence of any reference to any matter affecting the land shall not imply that the land is not affected by any matter not referred to in this planning certificate.

1. OTHER CONTROLS FROM WOOLLAHRA LOCAL ENVIRONMENTAL PLAN 2014

a) What is the maximum size of any lot resulting from a subdivision of land (as shown on the Lot Size Map)? Refer to clause 4.1 Minimum subdvision lot size.

No minimum lot size applies

b) Is the land affected by a foreshore building line (as shown on the Foreshore Building Line Map)? Refer to clause 6.4 Limited development on foreshore areas.

No

2. STATE HERITAGE REGISTER ITEMS

Is the land identified under the provisions of the Heritage Act 1977?

No

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council and if the information is vital for the proposed end use, then it should be verified by the applicant.

3. COMMONWEALTH HERITAGE LIST

Is the land identified as a Commonwealth Heritage Place under the provisions of the *Environment Protection and Biodiversity Conservation Act* 1999?

No

Disclaimer: This statement is based on information supplied by a third party public authority. The accuracy of this information has not been verified by Woollahra Council and if the information is vital for the proposed end use, then it should be verified by the applicant.

4. RESOLUTION OF COUNCIL TO PREPARE A PLANNING PROPOSAL FOR A LOCAL ENVIRONMENTAL PLAN

A list of Council decisions to prepare a planning proposal for a local environmental plan is provided below. These planning proposals have <u>not</u> been exhibited under section 57 of the *Environmental Planning and Assessment Act 1979*.

Property affected: Double Bay Centre **Date of decision:** 20 August 2018 **Relevant terms of the resolution:**

Item No: 9.1 (R1)

A. THAT Council resolve to prepare a planning proposal to amend Woollahra Local Environmental Plan 2014 by introducing new provisions which protect the provision of commercial floor space in the Double Bay Centre.

Property affected: See terms of the resolution **Date of decision:** on 25 March 2019 **Relevant terms of the resolution:**

Item No: 9.1 (R2)

A. THAT Council prepare a planning proposal to amend clause 4.1A of Woollahra LEP 2014 by inserting minimum lot size standards for manor house and multi dwelling housing (terraces).

Property affected: See terms of the resolution Date of decision: 29 April 2019 Relevant terms of the resolution:

Item No: 9.1 (R3)

- A. THAT Council prepare a planning proposal to amend Woollahra Local Environmental Plan 2014 by introducing:
 - 1. A maximum FSR of 0.5:1 for low desnsity residential development in the R2 Low Density Residential and R3 Medium Density Residential zones.
 - 2. A maximum FSR of 0.75:1 for low density residential development in the Wolseley Road, Point Piper, area as shown in *Figure 1* in the report to the Environmental Planning Committee meeting of 4 March 2019.
 - 3. A range of maximum FSRs as set out in the report to the Environmental Planning Committee meeting on 4 March 2019 for low density residential development on small lots in the R2 Low Density Residential Development And R3 Medium Density Residential zones.
 - 4. Specific objectives and other associated amendments to facilitate 1, 2 and 3.
 - 5. The FSRs in A1, 2 and 3 and associated changes referred to in A4 will not apply to the Paddington, Watsons Bay and Woollahra Heritage Conservation Areas.
- G. That noting our concern for development in smaller lots (400sqm or less) that Council seeks advice from the Woollahra Local Planning Panel on the best methods to apply FSR to smaller lots outlined in point A. (3).

Property affected: Sewerage Pumping Station, Percival Park, Rose Bay **Date of decision:** 9 September 2019 **Relevant terms of the resolution:**

Item No: 13.1(R1)

A. THAT a planning proposal be prepared to list the sewerage pumping station (SPS 46) and sandstone gate posts and metal gates in Percival Park at 13 Collins Avenue, Rose Bat as a heritage item in Woollahra Local Environmental Plan 2014.

Property affected: See terms of resolution **Date of decision:** 11 November 2019 **Relevant terms of the resolution:**

Item No: 13.1(R2)

A. THAT a planning proposal to amend the Flood Planning Map of Woollahra Local Environmental Plan 2014 based on the adopted Paddington Floodplain Risk Management Study and Plan 2019.

Property affected: 30 Wyuna Road, Point Piper Date of decision: 11 November 2019 Relevant terms of the resolution:

Item No: 13.3(R3)

A. THAT a planning proposal be prepared to list the property at 30 Wyuna Road, Point Piper as a heritage item in Woollahra Local Environmental Plan 2014.

Property affected: See terms of resolution **Date of decision:** 11 November 2019 **Relevant terms of the resolution:**

Item No: 13.3(R4)

C. THAT a planning proposal be prepared to increase the minimum lost size of attached dual occupancies in the R2 zone to 800m2.

5. COASTAL HAZARDS

An Estuary Planning Levels Report (August 2014) by Cardno is a supporting document to the Woollahra Development Control Plan 2015.

The Estuary Planning Levels Report identifies:

- foreshore properties which may be subject to current coastal inundation risks caused by local wind and wave setup, and/or wave run-up/overtopping; and
- foreshore properties which may be subject to future coastal inundation risks caused by sea level rise.

The report recommends planning controls to minimise the effects of coastal inundation risks. The Report can be inspected at Council or on Council's website.

6. RESOLUTIONS OF COUNCIL RELATING TO HERITAGE LISTINGS OR CONTRIBUTORY ITEMS IN DEVELOPMENT CONTROL PLANS

Properties affected: 8A Cooper Street, Paddington Date of decision: 27 November 2006 Relevant terms of resolution:

E. That pending gazettal of the following properties as local heritage items in Woollahra Local Environmental Plan 1995, further investigation be undertaken to determine if a nomination to the State Heritage Register should be prepared:

Cooper Street	Paddington	8A	House
000000.0000		• • •	

Property affected: 4 Dunara Gardens, Point Piper Date of decision: 18 December 2006 Relevant terms of the resolution:

D. That pending gazettal of the following property as local heritage item in Woollahra Local Environmental Plan 1995, further investigation be undertaken to determine if a nomination to the State Heritage Register should be prepared:

Dunara Gardens Point Piper 4 House

Property affected: Cooper Park in the suburbs of Bellevue Hill and Woollahra **Date of decision:** 27 November 2017 **Relevant terms of the resolution:**

THAT Council requests staff to prepare and submit a report including a heritage assessment and draft heritage inventory sheet for Cooper Park to Urban Planning Committee to facilitate Cooper Park (and its elements) being:

- 1. included in the Woollahra Local Environmental Plan as a heritage item; and
- 2. listed as a heritage item of state significance on the NSW State Heritage Register.

Property affected: See terms of resolution Date of decision: 23 April 2018 Relevant terms of the resolution:

Item No: 11.1

That Council requests staff to prepare and submit a report including a heritage assessment and draft heritage inventory sheet for each of:

1. The Sydney Croquet Club building and green (having its address in Woollahra Park, O'Sullivan Road, Rose Bay); and

2. The Woollahra Golf Club clubhouse and George Grimley Pavilion (having its address in Woollahra Park at 50 O'Sullivan Road, Rose Bay)

to the relevant Council Committee to facilitate the Sydney Croquet Club building and greens and the Woollahra Gold Club clubhouse and George Grimley Pavilion (and their elements) being:

- 1. Included in the Woollahra Local Environmental Plan as a heritage item; and
- 2. Listed as a heritage item of state significance on the NSW State Heritage Register.

Property affected: See terms of resolution Date of decision: 18 June 2018 Relevant terms of the resolution:

Item No: 11.1

THAT Council

- A. Request staff to undertake an assessment of heritage significance for the Rose Bay Scout Hall (former RAAF Officers' Canteen) located in Vickery Avenue, Rose Bay, and report to the Environmental Planning Committee on whether the property has sufficient heritage significance to be listed as:
 - i) a local heritage item in the Woollahra Local Environment Plan 2014 (WLEP), and
 - ii) an item of State Heritage under the Heritage Act 1977.

Property affected: 2A Cooper Street, Double Bay Date of decision: 29 October 2018 Relevant terms of the resolution:

Item No: 9.1 (R1)

D. THAT Council support the nomination to list Gaden House at 2A Cooper Street, Double Bay as a heritage item on the State Heritage Register and submit it to the Office of Environment and Heritage.

Property affected: See terms of resolution Date of decision: 8 April 2019 Relevant terms of the resolution:

Item No: 11.2

THAT Council requests staff to undertake an assessment of heritage significance for the following properties located in Rose Bay, NSW;

- i) St Andrews Scots Presbyterian Church, corner of Dover Rd and Carlisle Street, Rose Bay;
- ii) Old School Hall, Rose Bay Public School, Albermarle Ave, Rose Bay; and
- iii) McAuley Catholic School and outbuildings (formerly Christian Brothers College Rose Bay),

and report to the Environmental Planning Committee on whether these items have sufficient heritage significance to be listed as:

- i) a local heritage item in the Woollahra Local Environmental Plan 2014 (WLEP); and/or
- ii) an item on the State Heritage Register under the Heritage Act 1977.

Property affected: See terms of resolution Date of decision: 8 April 2019 Relevant terms of the resolution:

Item No: 11.3

THAT Council

- B. Requests staff to commission a report to investigate potential heritage significance of places of worship in the Woollahra Local Government area in order to identify items of heritage significance at either a local or State level, with a view to having those identified items listed as;
 - (a) a local heritage item in the Woollahra Local Environmental Plan 2014 (WLEP); and/or
 - (b) an item on the State Heritage Register under the Heritage Act 1977.

Property affected: 3 Trelawney Street, Woollahra Date of decision: 11 November 2019 Relevant terms of the resolution:

Item No: 16.3

THAT Council proceeds urgently to assess Trelawney Court at number 3 Trelawney Street, Woollahra with a view to a local heritage listing.

Property affected: See terms of resolution **Date of decision:** 11 November 2019 **Relevant terms of the resolution:**

Item No: 16.4

- A. Notes the detailed report on Californian Bungalows presented to the Urban Planning Committee on 22 June 2015.
- B. Notes the recommendation to Council on 22 June 2015 to prepare a planning proposal to list 16 Bunyula Road, 6 March Street, 165 O'Sullivan Road, 44 Russell Street, 5A Vivian Street, Bellevue Hill and 10 Parsley Bay, Vaucluse as heritage items in Schedule 5 of the Woollahra LEP 2014.
- C. Requests the Director of Planning to review the above mentioned recommendation and provide an updated recommendation to Council on the merit of heritage listing the properties mentioned above.
- D. Requests staff to prepare a report on arts and crafts buildings, including any examples of outstanding significance recommended for listing in Schedule 5 of the Woollahra LEP.

Property affected: See terms of resolution **Date of decision:** 11 November 2019 **Relevant terms of the resolution:**

Item No: 16.5

THAT Council:

- A. Request staff to report to the Environmental Planning Committee on how the detailed controls for Inter-War residential flat buildings found in B3.8.7 of the Woollahra DCP 2015 can be applied to the Paddington, Woollahra and Watsons Bay Heritage Conservations Areas.
- B. Notes community concern about the recent demolition of interwar residential flat buildings at 12 and 16 William Street, Double Bay, and 75 and 77 O'Sullivan Road, Bellevue Hill, and requests staff to provide commentary on the most effective means of protecting from

demolition interwar buildings located in all zones across the municipality, including if appropriate the invocation of LEP provisions.

7. DRAFT WATSONS BAY FLOOD RISK MANAGEMENT STUDY AND PLAN (MAY 2016)

The Draft Watsons Bay Flood Risk Management Study and Plan (May 2016) has been prepared in accordance with the NSW Floodplain Development Manual. The Draft Plan aims to provide solutions to existing flooding problems and ensure that new development is compatible with the flood hazard and does not create additional flooding problems.

The Woollahra Local Environmental Plan 2014 maps land that is identified as flood planning area, and is therefore subject to the controls in Cl 6.3 flood planning. The Draft Plan includes additional properties in Watsons Bay that are in the flood planning area.

These properties are: 14-16, 18-25 Cliff Street; 1-2, 43 Cove Street; HMAS Watson (Lot 3 DP 605078); 1-2, 6-7, 11-12, 10-24 Marine Parade; 31, 33 Pacific Street; Robertson Park (22 Military Road); 2 Short Street; Sydney Harbour National Park (Lot 1, 2 DP 605078) and 25 Victoria Street.

The Draft Plan includes the following properties that are not identified as flood planning area: **1**, **3**, **5**, **7 Victoria Street and 29 Cliff Street**.

The report can be inspected at Council or on Council's website. For further information contact Council's engineer.

8. PADDINGTON FLOODPLAIN RISK MANAGEMENT STUDY AND PLAN (July 2019)

At the meeting of 9 September 2019, Council adopted the *Paddington Floodplain Risk Management Study and Plan* dated July 2019

The Study and Plan was prepared in accordance with the NSW Floodplain Development Manual. The Study and Plan aims to provide solutions to existing flooding problems and ensure that new development is compatible with flood hazard and does not create additional flooding problems.

The *Woollahra Local Environmental Plan 2014* maps land that is identified as flood planning area, and is therefore subject to the controls in Cl 6.3 flood planning. The Study and Plan includes additional properties in the Paddington area that are in the flood planning area.

The *Woollahra Local Environmental Plan 2014* maps will be updated, based on the information contained in the adopted Study and Plan.

Should the applicant require further information about any other matter please contact Council's Planning and Development Division.

Anne White per: Gary James General Manager

SafeWork NSW Records

Locked Bag 2906, Lisarow NSW 2252 Customer Experience 13 10 50 ABN 81 913 830 179 | www.safework.nsw.gov.au

Our Ref: D20/062350

30 January 2020

Anthony Barkway JK Environments PO Box 976 North Ryde BC NSW 1670

Dear Anthony Barkway

RE SITE: 1A & 2 Vaucluse Road Vaucluse NSW 2030

I refer to your site search request received by SafeWork NSW on 15 January 2020 requesting information on Storage of Hazardous Chemicals for the above site.

A search of the records held by SafeWork NSW has not located any records pertaining to the abovementioned premises.

For further information or if you have any questions, please call us on 13 10 50 or email licensing@safework.nsw.gov.au

Yours sincerely

Customer Service Officer Customer Experience - Operations SafeWork NSW

Appendix C: Laboratory Results Summary Tables

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ABC:	Ambient Background Concentration	PCBs:	Polychlorinated Biphenyls
ACM:	Asbestos Containing Material	PCE:	Perchloroethylene (Tetrachloroethylene or Teterachloroethene)
ADWG:	AustralianDrinking Water Guidelines	рН _{ксL} :	pH of filtered 1:20, 1M KCL extract, shaken overnight
AF:	Asbestos Fines	pH _{ox} :	pH of filtered 1:20 1M KCl after peroxide digestion
ANZG	Australian and New Zealand Guidelines	PQL:	Practical Quantitation Limit
B(a)P:	Benzo(a)pyrene	RS:	Rinsate Sample
CEC:	Cation Exchange Capacity	RSL:	Regional Screening Levels
CRC:	Cooperative Research Centre	RSW:	Restricted Solid Waste
CT:	Contaminant Threshold	SAC:	Site Assessment Criteria
EILs:	Ecological Investigation Levels	SCC:	Specific Contaminant Concentration
ESLs:	Ecological Screening Levels	S _{Cr} :	Chromium reducible sulfur
FA:	Fibrous Asbestos	S _{POS} :	Peroxide oxidisable Sulfur
GIL:	Groundwater Investigation Levels	SSA:	Site Specific Assessment
GSW:	General Solid Waste	SSHSLs	: Site Specific Health Screening Levels
HILs:	Health Investigation Levels	TAA:	Total Actual Acidity in 1M KCL extract titrated to pH6.5
HSLs:	Health Screening Levels	TB:	Trip Blank
HSL-SSA:	Health Screening Level-SiteSpecific Assessment	TCA:	1,1,1 Trichloroethane (methyl chloroform)
kg/L	kilograms per litre	TCE:	Trichloroethylene (Trichloroethene)
NA:	Not Analysed	TCLP:	Toxicity Characteristics Leaching Procedure
NC:	Not Calculated	TPA:	Total Potential Acidity, 1M KCL peroxide digest
NEPM:	National Environmental Protection Measure	TS:	Trip Spike
NHMRC:	National Health and Medical Research Council	TRH:	Total Recoverable Hydrocarbons
NL:	Not Limiting	TSA:	Total Sulfide Acidity (TPA-TAA)
NSL:	No Set Limit	UCL:	Upper Level Confidence Limit on Mean Value
OCP:	Organochlorine Pesticides	USEPA	United States Environmental Protection Agency
OPP:	Organophosphorus Pesticides	VOCC:	Volatile Organic Chlorinated Compounds
PAHs:	Polycyclic Aromatic Hydrocarbons	WHO:	World Health Organisation
%w/w:	weight per weight		-
ppm:	Parts per million		
••	•		

Table Specific Explanations:

HIL Tables:

- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
- Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to B(a)P. It is also referred to as the B(a)P Toxic Equivalence Quotient (TEQ).
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

EIL/ESL Table:

- ABC Values for selected metals have been adopted from the published background concentrations presented in Olszowy et. al., (1995), Trace Element Concentrations in Soils from Rural and Urban New South Wales (the 25th percentile values for old suburbs with high traffic have been quoted).

Waste Classification and TCLP Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).
- The assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion.
- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.

QA/QC Table:

- Field blank, Inter and Intra laboratory duplicate results are reported in mg/kg.
- Trip spike results are reported as percentage recovery.
- Field rinsate results are reported in µg/L.

TABLE S1 SOIL LABORATORY RESULTS COMPARED TO NEPM 2013.

						HEAVY	METALS					PAHs			ORGANOCHL	ORINE PESTIC	IDES (OCPs)			OP PESTICIDES (OPPs)		
All data in mg/kg unle	ess stated otherv	vise	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Total PAHs	Carcinogenic PAHs	HCB	Endosulfan	Methoxychlor	Aldrin & Dieldrin	Chlordane	DDT, DDD & DDE	Heptachlor	Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES
QL - Envirolab Servic	es		4	0.4	1	1	1	0.1	1	1	-	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	100
ite Assessment Criter			100	20	100	6000	300	40	400	7400	300	3	10	270	300	6	50	240	6	160	1	Detected/Not Detect
Sample Reference	Sample Depth	Sample Description																				
3H1	0.05-0.15	F: Gravelly silty sand	<4	<0.4	12	54	17	<0.1	8	39	11	1.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
3H2	0.1-0.2	F: Silty sand	9	<0.4	84	51	250	0.2	15	91	1.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
3H2	0.2-0.5	F: Silty sand	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
3H2	0.75-0.95	F: Silty sand	12	<0.4	9	25	810	2.4	3	330	0.72	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH2	4.8-4.95	Silty sand	<4	<0.4	8	<1	6	<0.1	<1	6	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3H3	0.4-0.5	F: Silty sand	34	<0.4	8	9	69	0.2	5	39	0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3H4 3H4	0-0.1	F: Silty sand F: Silty sand	<4 NA	<0.4	5 NA	10 NA	45 NA	<0.1	1 NA	42 NA	3.9 NA	0.7 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	NA Not Detected
3H4	0.1-0.3	F: Silty sand	<4	<0.4	7	3	16	<0.1	1	13	0.1	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NOT Detected
8H5	0-0.1	F: Silty sand	<4	<0.4	6	14	49	<0.1	2	55	15	1.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
8H5	1.7-1.8	Sanstone	<4	<0.4	17	2	19	<0.1	1	31	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
8H5	0-0.3	F: Silty sand	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
3H6	0-0.1	F: Silty sand	6	<0.4	8	23	81	<0.1	3	61	5.4	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH6 - [LAB_DUP]	0-0.1	F: Silty sand	7	<0.4	12	21	83	0.1	3	59	3.5	0.7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH7	0-0.1	F: Silty sand	6	<0.4	6	20	86	<0.1	3	53	9.6	1.7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH7	0.2-0.3	Silty sand	<4	<0.4	3	6	32	<0.1	<1	15	0.6	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3H8	0-0.1	F: Silty sand	9	0.4	11	36	160	0.1	4	130	1.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
3H8	0.6-0.7	F: Silty sand	6	<0.4	10	80	160	0.1	7	190	40	6.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3H8	1.6-1.8	Clayey Sand	5	<0.4	15	10	29	<0.1	1	20	1.3	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3H9 3H10	0-0.1	F: Silty sand	33 24	0.4	13 9	43 34	190 200	0.1	4	150 160	6.1	0.9 <0.5	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	Not Detected
3H101	0.05-0.35	F: Silty sand F: Silty Sand	17	<0.4	9 10	34 47	110	0.1	27	71	<0.05 1.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA Not Detected
3H101 3H101	0.7-0.9	F: Silty Sand	<4	<0.4	8	5	37	<0.1	1	21	2.4	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3H102	0-0.1	F: Gravelly Sand	<4	<0.4	8	11	23	<0.1	6	29	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
3H102	0.5-0.6	F: Gravel	6	<0.4	10	29	61	<0.1	17	66	1.7	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH103	0.06-0.2	F: Silty Sand	7	<0.4	79	44	150	0.2	18	75	200	20	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Detected
3H103	1.0-1.2	F: Silty Sand	9	<0.4	9	19	630	0.2	3	140	2.1	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3H103	2.0-2.3	F: Silty Sand	7	<0.4	12	16	750	0.1	3	310	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Detected
3H103	3.0-3.3	F: Silty Sand	6	0.5	16	25	860	0.1	4	440	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
3H201	0.1-0.3	F: Silty Sand	8	<0.4	16	9	26	<0.1	2	18	0.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
3H201 - [LAB_DUP]	0.1-0.3	F: Silty Sand	8	<0.4	14	11	23	<0.1	1	13	< 0.05	<0.5	<0.1	<0.1	<0.1 NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
3H201 3H202	1.1-1.3 0.12-0.3	Sandstone F: Silty Sand	<4 4	<0.4	9	<1 17	11 10	<0.1	2	8 11	<0.05 110	<0.5 13	NA <0.1	NA <0.1	<0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA Not Detected
3H202	1.1-1.2	F: Silty Sand	6	<0.4	9	4	20	<0.1	<1	11	1.8	<0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected
3H202 3H203	0.09-0.4	F: Silty Sand	<4	<0.4	23	4 22	18	<0.1	20	44	1.8	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
3H203	0.9-1.0	F: Silty Sandy Clay	14	<0.4	8	26	89	0.1	4	79	1.6	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3H203	1.8-2.0	Sandstone	<4	<0.4	6	9	9	<0.1	1	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DUP2	-	Field Duplicate	6	<0.4	62	51	170	0.1	12	130	0.73	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DUP6	-	Field Duplicate	32	<0.4	10	43	160	0.1	3	140	5.7	0.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DUP1	-	Field Duplicate	13	<0.4	9	28	140	0.2	24	72	1.1	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DUP201	-	Field Duplicate	<4	<0.4	6	9	9	<0.1	1	10	90	11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DUP203	-	Field Duplicate	<4	<0.4	27	17	21	<0.1	19	50	5.2	0.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DUP203 - [LAB_DUP]		Field Duplicate	NA	NA	NA	NA	NA	NA	NA	NA	4.3	0.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3H103-FCF1 3H103-FCF1	1.0-2.0 2.0-3.0	Fibre Cement Material	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Detected
3H103-FCF1 3H103-FCF2-3	2.0-3.0	Fibre Cement Material Fibre Cement Material	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	Detected Detected
Total Number of Sa	malac													17	13	47			4.7			
	mpies		39	39	39	39	39	39	39	39	37	37	17	17	17	17	17	17	17	17	17	17
Maximum Value			34	0.5	84	80	860	2.4	27	440	200	20	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<>	<pql< td=""><td>Detected</td></pql<>	Detected

Preliminary (Stage 1) Site Investigation Corner of New South Head Road and Vaucluse Road, Vaucluse, NSW E329158A

TABLE S2

SOIL LABORATORY RESULTS COMPARED TO HSLs

All data in mg/kg unless stated otherwise

					C ₆ -C ₁₀ (F1)	>C10-C16 (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Field PID Measuremen
QL - Envirolab Services					25	50	0.2	0.5	1	1	1	ppm
EPM 2013 HSL Land Us	e Category				23	50		W/HIGH DENSITY		1		
	Sample		Depth									
Sample Reference	Depth	Sample Description	Category	Soil Category								
BH1	0.05-0.15	F: Gravelly silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0.4
BH2	0.1-0.2	F: Silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0.3
BH2	0.75-0.95	F: Silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0.6
BH2	4.8-4.95	Silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	1.9
BH3	0.4-0.5	F: Silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	1.1
BH4	0-0.1	F: Silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0.5
BH4	0.5-0.6	F: Silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	2.2
BH5	0-0.1	F: Silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	3.4
BH5	1.7-1.8	Sanstone	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	7.7
BH6	0-0.1	F: Silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH6 - [LAB_DUP]	0-0.1	F: Silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH7	0-0.1	F: Silty sand	0m to <1m	Sand	<25	51	<0.2	<0.5	<1	<3	<1	1.1
BH7	0.2-0.3	Silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	6.2
BH8	0-0.1	F: Silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0.9
BH8	0.6-0.7	F: Silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH8	1.6-1.8	Clayey Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH9	0-0.1	F: Silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH10	0-0.1	F: Silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0.1
BH101	0.05-0.35	F: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0.1
BH101	0.7-0.9	F: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0.1
BH102	0-0.1	F: Gravelly Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0.1
BH102	0.5-0.6	F: Gravel	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH103	0.06-0.2	F: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH103	1.0-1.2	F: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH201	0.1-0.3	F: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH201 - [LAB_DUP]	0.1-0.3	F: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	-
BH201	1.1-1.3	Sandstone	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH202	0.12-0.3	F: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH202	1.1-1.2	F: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH203	0.09-0.4	F: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	1
BH203	0.9-1.0	F: Silty Sandy Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
SDUP2	-	Field Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	-
SDUP6	-	Field Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	-
SDUP1	-	Field Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	-
SDUP201	-	Field Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	-
SDUP203	-	Field Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	-
DUP203 - [LAB_DUP]	-	Field Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	-
Total Number of Samp	oles				37	37	37	37	37	37	37	30
Maximum Value					<pql< td=""><td>51</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>7.7</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	51	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>7.7</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>7.7</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>7.7</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>7.7</td></pql<></td></pql<>	<pql< td=""><td>7.7</td></pql<>	7.7

The guideline corresponding to the concentration above the SAC is highlighted in grey in the Site Assessment Criteria Table below

HSL SOIL ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
BH1	0.05-0.15	F: Gravelly silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH2	0.1-0.2	F: Silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH2	0.75-0.95	F: Silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH2	4.8-4.95	Silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH3	0.4-0.5	F: Silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH4	0-0.1	F: Silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH4	0.5-0.6	F: Silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH5	0-0.1	F: Silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH5	1.7-1.8	Sanstone	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH6	0-0.1	F: Silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH6 - [LAB_DUP]	0-0.1	F: Silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH7	0-0.1	F: Silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH7	0.2-0.3	Silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH8	0-0.1	F: Silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH8	0.6-0.7	F: Silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH8	1.6-1.8	Clayey Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH9	0-0.1	F: Silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH10	0-0.1	F: Silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH101	0.05-0.35	F: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH101	0.7-0.9	F: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH102	0-0.1	F: Gravelly Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH102	0.5-0.6	F: Gravel	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH103	0.06-0.2	F: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH103	1.0-1.2	F: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH201	0.1-0.3	F: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH201 - [LAB_DUP]	0.1-0.3	F: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH201	1.1-1.3	Sandstone	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH202	0.12-0.3	F: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH202	1.1-1.2	F: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH203	0.09-0.4	F: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH203	0.9-1.0	F: Silty Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP2	-	Field Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP6	-	Field Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP1	-	Field Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP201	-	Field Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP203	-	Field Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP203 - [LAB_DUP]	-	Field Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3

TABLE S3 SOIL LABORATORY RES

SOIL LABORATORY RESULTS COMPARED TO MANAGEMENT LIMITS All data in mg/kg unless stated otherwise C₆-C₁₀ (F1) plus >C10-C16 (F2) plus >C₁₆-C₃₄ (F3) >C₃₄-C₄₀ (F4) BTEX napthalene PQL - Envirolab Services NEPM 2013 Land Use Category 100 100 50 **RESIDENTIAL, PARKLAND & PUBLIC OPEN SPACE** Sample Reference Sample Depth Soil Texture 0.05-0.15 BH1 Coarse <25 350 360 BH2 0.1-0.2 Coarse <25 <50 190 350 BH2 0.75-0.95 Coarse <25 <50 <100 <100 BH2 4.8-4.95 Coarse <25 <50 <100 <100 Coarse Coarse <25 <25 BH3 0.4-0.5 <50 <100 <100 BH4 0-0.1 <50 <100 <100 0.5-0.6 0-0.1 <100 <100 BH4 Coarse <25 <50 <100 <25 160 <50 BH5 Coarse BH5 1.7-1.8 Coarse <25 <50 <100 <100 0-0.1 <25 <50 <100 <100 BH6 Coarse BH6 - [LAB_DUP] 0-0.1 Coarse <25 <50 100 <100 0-0.1 51 <100 BH7 <25 110 Coarse BH7 0.2-0.3 Coarse <25 <50 <100 <100 <100 0-0.1 <25 <50 <100 BH8 Coarse BH8 0.6-0.7 Coarse <25 <50 340 100 1.6-1.8 0-0.1 0-0.1 <25 <25 <25 BH8 Coarse <50 <100 <100 <50 <50 <50 Coarse Coarse вн9 <100 <100 BH10 <100 <100 0.05-0.35 <25 <25 BH101 Coarse <50 <100 <100 BH101 <50 <100 <100 Coarse BH102 0-0.1 0.5-0.6 Coarse <25 <25 <50 <100 <100 <100 <50 <100 BH102 Coarse BH103 0.06-0.2 Coarse <25 <50 660 350 BH103 1.0-1.2 Coarse <25 <50 <100 <100 0.1-0.3 0.1-0.3 <25 <25 BH201 <50 <100 <100 Coarse BH201 - [LAB_DUP] Coarse <50 <100 <100 BH201 1.1-1.3 Coarse <25 <50 <100 <100 BH202 0.12-0.3 Coarse <25 <50 430 150 BH202 1.1-1.2 Coarse <25 <50 <100 <100 BH203 0.09-0.4 Coarse <25 <50 <100 <100 BH203 0.9-1.0 Coarse <25 <50 <100 <100 SDUP2 SDUP6 Coarse <25 <25 <50 <50 **230** <100 400 <100 Coarse SDUP1 SDUP201 <25 <25 <50 <50 <100 530 <100 160 Coarse Coarse SDUP203 Coarse <25 <50 <100 <100 SDUP203 - [LAB_DUP] <25 <50 <100 <100 Coarse Total Number of Samples 37 37 37 37 Maximum Value <PQI 51 660 400 oncentration above the SAC VALUE oncentration above the PQL Bold

MANAGEMENT LIMIT ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Soil Texture	C ₆ -C ₁₀ (F1) plus	>C10-C16 (F2) plus	>C16-C34 (F3)	>C34-C40 (F4)
Sample Reference	Sample Depth	JOII TEXTUTE	BTEX	napthalene	×C ₁₆ C ₃₄ (13)	×C ₃₄ C ₄₀ (14)
BH1	0.05-0.15	Coarse	700	1000	2500	10000
BH2	0.1-0.2	Coarse	700	1000	2500	10000
BH2	0.75-0.95	Coarse	700	1000	2500	10000
BH2	4.8-4.95	Coarse	700	1000	2500	10000
BH3	0.4-0.5	Coarse	700	1000	2500	10000
BH4	0-0.1	Coarse	700	1000	2500	10000
BH4	0.5-0.6	Coarse	700	1000	2500	10000
BH5	0-0.1	Coarse	700	1000	2500	10000
BH5	1.7-1.8	Coarse	700	1000	2500	10000
BH6	0-0.1	Coarse	700	1000	2500	10000
BH6 - [LAB_DUP]	0-0.1	Coarse	700	1000	2500	10000
BH7	0-0.1	Coarse	700	1000	2500	10000
BH7	0.2-0.3	Coarse	700	1000	2500	10000
BH8	0-0.1	Coarse	700	1000	2500	10000
BH8	0.6-0.7	Coarse	700	1000	2500	10000
BH8	1.6-1.8	Coarse	700	1000	2500	10000
BH9	0-0.1	Coarse	700	1000	2500	10000
BH10	0-0.1	Coarse	700	1000	2500	10000
BH101	0.05-0.35	Coarse	700	1000	2500	10000
BH101	0.7-0.9	Coarse	700	1000	2500	10000
BH102	0-0.1	Coarse	700	1000	2500	10000
BH102	0.5-0.6	Coarse	700	1000	2500	10000
BH103	0.06-0.2	Coarse	700	1000	2500	10000
BH103	1.0-1.2	Coarse	700	1000	2500	10000
BH201	0.1-0.3	Coarse	700	1000	2500	10000
BH201 - [LAB DUP]	0.1-0.3	Coarse	700	1000	2500	10000
BH201	1.1-1.3	Coarse	700	1000	2500	10000
BH202	0.12-0.3	Coarse	700	1000	2500	10000
BH202	1.1-1.2	Coarse	700	1000	2500	10000
BH203	0.09-0.4	Coarse	700	1000	2500	10000
BH203	0.9-1.0	Coarse	700	1000	2500	10000
SDUP2	-	Coarse	700	1000	2500	10000
SDUP6	-	Coarse	700	1000	2500	10000
SDUP1	-	Coarse	700	1000	2500	10000
SDUP201	-	Coarse	700	1000	2500	10000
SDUP203	-	Coarse	700	1000	2500	10000
SDUP203 - [LAB_DUP]	-	Coarse	700	1000	2500	10000

TABLE 54 SOIL LABORATORY RESULTS COMPARED TO DIRECT CONTACT CRITERIA All data in mg/kg unless stated otherwise

Analyte		C ₆ -C ₁₀	>C10-C16	>C ₁₆ -C ₃₄	>C ₃₄ -C ₄₀	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PID
PQL - Envirolab Services		25	50	100	100	0.2	0.5	1	1	1	
CRC 2011 -Direct contact (Criteria	4,400	3,300	4,500	6,300	100	14,000	4,500	12,000	1,400	
Site Use				RESIDE	NTIAL WITH AC	CESSIBLE SOIL-	DIRECT SOIL C	ONTACT			
Sample Reference	Sample Depth										
BH1	0.05-0.15	<25	<50	350	360	<0.2	<0.5	<1	<3	<1	0.4
BH2	0.1-0.2	<25	<50	190	350	<0.2	<0.5	<1	<3	<1	0.3
BH2	0.75-0.95	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0.6
BH2	4.8-4.95	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	1.9
BH3	0.4-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	1.1
BH4	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0.5
BH4	0.5-0.6	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	2.2
BH5	0-0.1	<25	<50	160	<100	<0.2	<0.5	<1	<3	<1	3.4
BH5	1.7-1.8	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	7.7
BH6	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH6 - [LAB_DUP]	0-0.1	<25	<50	100	<100	<0.2	<0.5	<1	<3	<1	0
BH7	0-0.1	<25	51	110	<100	<0.2	<0.5	<1	<3	<1	1.1
BH7	0.2-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	6.2
BH8	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0.9
BH8	0.6-0.7	<25	<50	340	100	<0.2	<0.5	<1	<3	<1	0
BH8	1.6-1.8	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH9	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH10	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0.1
BH101	0.05-0.35	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0.1
BH101	0.7-0.9	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0.1
BH101 BH102	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0.1
BH102	0.5-0.6	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH102 BH103	0.06-0.2	<25	<50	660	350	<0.2	<0.5	<1	<3	<1	0
BH103	1.0-1.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH103	3.0-3.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH201	0.1-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH201 - [LAB DUP]	0.1-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	-
BH201 - [LAB_DOF] BH201	1.1-1.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH201 BH202	0.12-0.3	<25	<50	430	150	<0.2	<0.5	<1	<3	<1	0
BH202 BH202	1.1-1.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
								<1		<1	
BH203	0.09-0.4	<25	<50	<100	<100	<0.2	<0.5		<3		1
BH203	0.9-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
SDUP2	-	<25	<50	230	400	<0.2	<0.5	<1	<3	<1	-
SDUP6	-	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	-
SDUP1	-	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	-
SDUP201	-	<25	<50	530	160	<0.2	<0.5	<1	<3	<1	-
SDUP203	-	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	-
SDUP203 - [LAB_DUP]	-	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	-
otal Number of Samples		37	37	37	37	37	37	37	37	37	30
Vaximum Value		<pql< td=""><td>51</td><td>660</td><td>400</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>7.7</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	51	660	400	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>7.7</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>7.7</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>7.7</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>7.7</td></pql<></td></pql<>	<pql< td=""><td>7.7</td></pql<>	7.7

TABLE S5 ASBESTOS QUANTIFICATION - FIELD OBSERVATIONS AND LABORATORY RESULTS HSL-A: Residential with garden/accessible soils; children's day care centers; preschools; and primary schools

							F	FIELD DATA											LABORATORY DATA						
e Sampled	Sample reference	Sample Depth		Approx. Volume of Soil (L)	Soil Mass (g)	Mass ACM (g)	Mass Asbestos in ACM (g)	[Asbestos from ACM in soil] (%w/w)	Mass ACM <7mm (g)	ACM <7mm	[Asbestos from ACM <7mm in soil] (%w/w)	Mass FA (g)	Mass I	[Asbestos from FA in soil] (%w/w)	Lab Report Number	Sample refeference	Sample Depth	Sample Mass (g)	Asbestos ID in soil (AS4964) >0.1g/kg	Trace Analysis	Total Asbestos Asbestos ID in soil <0.2 (g/kg)	g/kg g/kg (g)	Estimation	ACM >7mm Estimation %(w/w)	FA and Estima n %(w,
SAC			No					0.01			0.001			0.001										0.01	0.00
/01/2020	BH1	0.05-0.15	No	-	9,700	No ACM observed			No ACM <7mm observed			No FA observed			235671	BH1	0.05-0.15	961.42	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1 No visible asbestos det	ected –	-	<0.01	<0.00
/01/2020	BH2	0.2-0.5	No	-	11,400	No ACM observed			No ACM <7mm observed			No FA observed			235671	BH2	0.2-0.5	766.54	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1 No visible asbestos det	ected –	-	<0.01	<0.0
/01/2020	BH4	0.1-0.3	No	-	9,700	No ACM observed			No ACM <7mm observed			No FA observed			235671	BH4	0.1-0.3	988.25	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1 No visible asbestos det	ected –	-	<0.01	<0.0
01/2020	BH5	0-0.3	No	-	7,650	No ACM observed			No ACM <7mm observed			No FA observed			235671	BH5	0-0.3	773.5	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1 No visible asbestos det	ected –	-	<0.01	<0.0
															236009	BH7	0-0.1	15	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected		-	-	-	-
2/2020	BH8	0-0.1	No	-	10,100	No ACM observed			No ACM <7mm observed			No FA observed			236009	BH8	0-0.1	597.78	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1 No visible asbestos det	ected –	-	<0.01	<0.0
02/2020	BH9	0-0.1	No	-	9,200	No ACM observed			No ACM <7mm observed			No FA observed			236009	BH9	0-0.1	631.41	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected: Synthetic mineral fibres detected	No asbestos detected	<0.1 No visible asbestos det	ected –	-	<0.01	<0.0
03/2021	BH101	0.05-1.9	No	-	8,230	No ACM observed			No ACM <7mm observed			No FA observed			264278	BH101	0.05-0.35	984.05	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1 No visible asbestos det	ected –	-	<0.01	<0.0
03/2021	BH102	0-0.8	No	-	8,630	No ACM observed			No ACM <7mm observed			No FA observed			264278	BH102	0-0.1	326.88	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1 No visible asbestos det	ected –	-	<0.01	<0.0
3/2021	BH201	0.1-1.0	No	-	10,500	No ACM observed			No ACM <7mm observed			No FA observed			265221	BH201	0.1-0.3	948.43	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1 No visible asbestos det	ected –	-	<0.01	<0.0
3/2021	BH202	0.12-1.1	No	-	2,600	No ACM observed			No ACM <7mm observed			No FA observed			265221	BH202	0.12-0.3	783.52	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1 No visible asbestos det	ected –	-	<0.01	<0.0
															265221	BH203	0.09-0.4	699.74	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1 No visible asbestos det	ected –	-	<0.01	<0.0
03/2021	BH103	0.06-1.0	No	-	3,600	No ACM observed			No ACM <7mm observed			No FA observed			265348	BH103	0.06-0.2	728.48	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1 Chrysotile	-	0.0012	<0.01	<0.0
03/2021	BH103	1.0-2.0	Yes		5,100	5.8	0.876	0.0172	No ACM <7mm observed			No FA observed							-						-
03/2021	BH103	2.0-3.0	Yes		2,600	12.8	1.914	0.0736	No ACM <7mm observed			No FA observed			265348	BH103	2.0-2.3	678.95	Chrysotile asbestos detected: Organic fibres detected	No asbestos detected	0.4982 Chrysotile	0.3332	0.005	0.0491	<0.0
03/2021	BH103	3.0-4.0	No	-	5,700	No ACM observed			No ACM <7mm observed			No FA observed			265348-A	BH103	3.0-3.3	613.18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1 No visible asbestos det	ected –	-	<0.01	<0.0
03/2021	BH103	4.0-5.0	No	-	5,000	No ACM observed			No ACM <7mm observed			No FA observed							-	-		-	-	-	-
03/2021	BH103	5.0-6.0	No	-	4,800	No ACM observed			No ACM <7mm observed			No FA observed							-	-		-	-	-	-
03/2021	BH103	6.0-6.9	No	-	3,700	No ACM observed			No ACM <7mm observed			No FA observed													
															265348	BH103-FCF1	1.0-2.0	30x20x5mm	ID in material - Chrysotile asbestos detected						
															265348	BH103-FCF1	2.0-3.0	50x20x5mm	ID in material - Chrysotile asbestos detected						
															265348	BH103-FCF2-3	2.0-3.0	25x15x5mm	ID in material - Chrysotile asbestos detected						

Concentration above the SAC **VALUE**

ſ	
I	TABLE S6
I	SOIL LABORATORY RESULTS COMPARED TO NEPM 2013 EILs AND ESLs
l	All data in mg/kg unless stated otherwise

												URBAN RESID	ENTIAL AND PUBL	IC OPEN SPAC	E								
									AGED HEAV	Y METALS-EILs			EIL	s					ESLs				
				рН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
PQL - Envirolab Services				-	1	-	4	1	1	1	1	1	1	0.1	25	50	100	100	0.2	0.5	1	1	0.05
Ambient Background Concentrat	tion (ABC)			-		-	NSL	13	28	163	5	122	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Sample Depth	Sample Description	Soil Texture																				
BH1	0.05-0.15	F: Gravelly silty sand	Coarse	NA	NA	NA	<4	12	54	17	8	39	<1	<0.1	<25	<50	350	360	<0.2	<0.5	<1	<3	0.8
BH2	0.1-0.2	F: Silty sand	Coarse	NA	NA	NA	9	84	51	250	15	91	<1	<0.1	<25	<50	190	350	<0.2	< 0.5	<1	<3	0.2
BH2	0.75-0.95	F: Silty sand	Coarse	10.2	45	9	12	9	25	810	3	330	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.1
BH2	4.8-4.95	Silty sand	Coarse	NA	NA	NA	<4	8	<1	6	<1	6	<1	NA	<25	<50	<100	<100	<0.2	< 0.5	<1	<3	< 0.05
BH3	0.4-0.5	F: Silty sand	Coarse	NA	NA	NA	34	8	9	69	5	39	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH4	0-0.1	F: Silty sand	Coarse	NA	NA	NA	<4	5	10	45	1	42	<1	<0.1	<25	<50	<100	<100	<0.2	< 0.5	<1	<3	0.4
BH4	0.5-0.6	F: Silty sand	Coarse	NA	NA	NA	<4	7	3	16	1	13	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH5	0-0.1	F: Silty sand	Coarse	NA	NA	NA	<4	6	14	49	2	55	<1	<0.1	<25	<50	160	<100	<0.2	<0.5	<1	<3	1.2
BH5	1.7-1.8	Sanstone	Coarse	NA	NA	NA	<4	17	2	19	1	31	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH6	0-0.1	F: Silty sand	Coarse	NA	NA	NA	6	8	23	81	3	61	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.66
BH6 - [LAB_DUP]	0-0.1	F: Silty sand	Coarse	NA	NA	NA	7	12	21	83	3	59	<1	<0.1	<25	<50	100	<100	<0.2	<0.5	<1	<3	0.4
BH7	0-0.1	F: Silty sand	Coarse	NA	NA	NA	6	6	20	86	3	53	<1	<0.1	<25	51	110	<100	<0.2	<0.5	<1	<3	1.2
BH7	0.2-0.3	Silty sand	Coarse	NA	NA	NA	<4	3	6	32	<1	15	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.1
BH8	0-0.1	F: Silty sand	Coarse	NA	NA	NA	9	11	36	160	4	130	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.2
BH8	0.6-0.7	F: Silty sand	Coarse	NA	NA	NA	6	10	80	160	7	190	<1	NA	<25	<50	340	100	<0.2	<0.5	<1	<3	4.7
BH8	1.6-1.8	Clayey Sand	Coarse	NA	NA	NA	5	15	10	29	1	20	<1	NA	<25	<50	<100	<100	<0.2	< 0.5	<1	<3	0.2
BH9	0-0.1	F: Silty sand	Coarse	NA	NA	NA	33	13	43	190	4	150	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.63
BH10	0-0.1	F: Silty sand	Coarse	NA	NA	NA	24	9	34	200	4	160	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH101 BH101	0.05-0.35	F: Silty Sand	Coarse	NA	NA	NA	17	10	47	110 37	27	71	<1 <1	<0.1 NA	<25	<50	<100 <100	<100 <100	<0.2	<0.5	<1	3	0.2
BH101 BH102	0.7-0.9	F: Silty Sand F: Gravelly Sand	Coarse	NA	NA	NA	<4	8	11	23	6	21	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	3	<0.05
BH102 BH102	0.5-0.6	F: Gravely Sand	Coarse Coarse	NA	NA	NA	6	10	29	61	17	66	<1	×0.1 NA	<25	<50	<100	<100	<0.2	<0.5	<1	3	0.05
BH102 BH103	0.06-0.2	F: Silty Sand	Coarse	NA	NA	NA	7	79	44	150	17	75	<1	<0.1	<25	<50	660	350	<0.2	<0.5	<1	3	14
BH103	1.0-1.2	F: Silty Sand	Coarse	NA	NA	NA	9	9	19	630	3	140	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.2
BH103	2.0-2.3	F: Silty Sand	Coarse	10.2	45	9	7	12	16	750	3	310	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH103	3.0-3.3	F: Silty Sand	Coarse	10.2	45	9	6	16	25	860	4	440	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH201	0.1-0.3	F: Silty Sand	Coarse	NA	NA	NA	8	16	9	26	2	18	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.08
BH201 - [LAB DUP]	0.1-0.3	F: Silty Sand	Coarse	NA	NA	NA	8	14	11	23	1	13	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH201	1.1-1.3	Sandstone	Coarse	NA	NA	NA	<4	9	<1	11	2	8	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH202	0.12-0.3	F: Silty Sand	Coarse	NA	NA	NA	4	6	17	10	1	11	<1	<0.1	<25	<50	430	150	<0.2	<0.5	<1	<3	8.8
BH202	1.1-1.2	F: Silty Sand	Coarse	NA	NA	NA	6	9	4	20	<1	14	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.2
BH203	0.09-0.4	F: Silty Sand	Coarse	NA	NA	NA	<4	23	22	18	20	44	<1	< 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.2
BH203	0.9-1.0	F: Silty Sandy Clay	Coarse	NA	NA	NA	14	8	26	89	4	79	<1	NA	<25	<50	<100	<100	<0.2	< 0.5	<1	<3	0.2
BH203	1.8-2.0	Sandstone	Coarse	NA	NA	NA	<4	6	9	9	1	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SDUP2	-	Field Duplicate	Coarse	NA	NA	NA	6	62	51	170	12	130	<1	NA	<25	<50	230	400	<0.2	< 0.5	<1	<3	< 0.05
SDUP6	-	Field Duplicate	Coarse	NA	NA	NA	32	10	43	160	3	140	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.62
SDUP1	-	Field Duplicate	Coarse	NA	NA	NA	13	9	28	140	24	72	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.1
SDUP201	-	Field Duplicate	Coarse	NA	NA	NA	<4	6	9	9	1	10	<1	NA	<25	<50	530	160	<0.2	<0.5	<1	<3	7.1
SDUP203	-	Field Duplicate	Coarse	NA	NA	NA	<4	27	17	21	19	50	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.4
SDUP203 - [LAB_DUP]		Field Duplicate	Coarse	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.34
Total Number of Samples			_	3	3	3	39	39	39	39	39	39	37	17	37	37	37	37	37	37	37	37	37
							1 22	84						÷.,		51	660	400	<pql< td=""><td>5,</td><td>3.</td><td></td><td></td></pql<>	5,	3.		

The guideline corresponding to the elevated value is highlighted in grey in the EIL and ESL Assessment Criteria Table below

									EIL AND ESL AS	SESSMENT CRI	TERIA												
Sample Reference	Sample Depth	Sample Description	Soil Texture	pН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
BH1	0.05-0.15	F: Gravelly silty sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH2	0.1-0.2	F: Silty sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH2	0.75-0.95	F: Silty sand	Coarse	10.2	45	9	100	410	260	1300	560	1400	170		180	120	300	2800	50	85	70	105	20
BH2	4.8-4.95	Silty sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH3	0.4-0.5	F: Silty sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH4	0-0.1	F: Silty sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH4	0.5-0.6	F: Silty sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH5	0-0.1	F: Silty sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH5	1.7-1.8	Sanstone	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH6	0-0.1	F: Silty sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH6 - [LAB_DUP]	0-0.1	F: Silty sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH7	0-0.1	F: Silty sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH7	0.2-0.3	Silty sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH8	0-0.1	F: Silty sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH8	0.6-0.7	F: Silty sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH8	1.6-1.8	Clayey Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH9	0-0.1	F: Silty sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH10	0-0.1	F: Silty sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH101	0.05-0.35	F: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH101	0.7-0.9	F: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH102	0-0.1	F: Gravelly Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH102	0.5-0.6	F: Gravel	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH103	0.06-0.2	F: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH103	1.0-1.2	F: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH103	2.0-2.3	F: Silty Sand	Coarse	10.2	45	9	100	410	260	1300	560	1400				-						-	
BH103	3.0-3.3	F: Silty Sand	Coarse	10.2	45	9	100	410	260	1300	560	1400											
BH201	0.1-0.3	F: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH201 - [LAB DUP]	0.1-0.3	F: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH201	1.1-1.3	Sandstone	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH202	0.12-0.3	F: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH202	1.1-1.2	F: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH203	0.09-0.4	F: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH203	0.9-1.0	F: Silty Sandy Clay	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH203	1.8-2.0	Sandstone	Coarse	NA	NA	NA	100	200	90	1300	35	190				-							
SDUP2	-	Field Duplicate	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
SDUP6	-	Field Duplicate	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
SDUP1	-	Field Duplicate	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
SDUP201	-	Field Duplicate	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
SDUP203	-	Field Duplicate	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
SDUP203 - [LAB_DUP]	-	Field Duplicate	Coarse	NA	NA	NA					-		170		180	120	300	2800	50	85	70	105	20

TABLE S7

SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES

All data in mg/kg unless stated otherwise

						HEAVY	METALS				PA	Hs		OC/OP	PESTICIDES		Total			TRH				BTEX CON	MPOUNDS		
			Arsenic	Cadmium	Chromium	Coppor	beat	Morcupy	Nickol	Zinc	Total	B(a)P	Total	Chloropyrifos	Total Moderately	Total	PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	C15-C28	C ₂₉ -C ₃₆	Total	Benzene	Toluene	Ethyl	Total	ASBESTOS FIBR
			Arsenic	Caulinum	Chronnun	copper	Lead	Mercury	Nickel	Zinc	PAHs		Endosulfans		Harmful	Scheduled						C ₁₀ -C ₃₆			benzene	Xylenes	
QL - Envirolab Services			4	0.4	1	1	1	0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	50	0.2	0.5	1	1	100
ieneral Solid Waste CT1			100	20	100	NSL	100	4	40	NSL	200	0.8	60	4	250	50	50	650		NSL		10,000	10	288	600	1,000	-
eneral Solid Waste SCC1			500	100	1900	NSL	1500	50	1050	NSL	200	10	108	7.5	250	50	50	650		NSL		10,000	18	518	1,080	1,800	-
Restricted Solid Waste CT2			400	80	400	NSL	400	16	160	NSL	800	3.2	240	16	1000	50	50	2600		NSL		40,000	40	1,152	2,400	4,000	-
estricted Solid Waste SCC2			2000	400	7600	NSL	6000	200	4200	NSL	800	23	432	30	1000	50	50	2600		NSL		40,000	72	2,073	4,320	7,200	-
Sample Reference	Sample Depth	Sample Description																									
H1	0.05-0.15	F: Gravelly silty sand	<4	<0.4	12	54	17	<0.1	8	39	11	0.8	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	170	280	450	<0.2	<0.5	<1	<3	Not Detected
H2	0.1-0.2	F: Silty sand	9	<0.4	84	51	250	0.2	15	91	1.2	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	200	200	<0.2	<0.5	<1	<3	NA
3H2 3H2	0.2-0.5	F: Silty sand F: Silty sand	NA 12	NA <0.4	NA 9	NA 25	NA	NA 2.4	NA 3	NA 330	NA 0.72	NA 0.1	NA NA	NA	NA	NA NA	NA NA	NA (25	NA <50	NA <100	NA <100	NA <50	NA <0.2	NA <0.5	NA <1	NA <3	Not Detected NA
3H2	4.8-4.95	Silty sand	12 <4	<0.4	8	<1	810 6	2.4 <0.1	<1	6	<0.05	0.1 <0.05	NA	NA	NA	NA	NA	<25 <25	<50 <50	<100	<100	<50	<0.2	<0.5 <0.5	<1 <1	<3	NA
3H3	0.4-0.5	F: Silty sand	34	<0.4	8	9	69	0.2	5	39	0.5	< 0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
3H4	0-0.1	F: Silty sand	<4	<0.4	5	10	45	<0.1	1	42	3.9	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
3H4	0.1-0.3	F: Silty sand	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
BH4	0.5-0.6	F: Silty sand	<4	<0.4	7	3	16	<0.1	1	13	0.1	< 0.05	NA 10.1	NA 10.1	NA	NA	NA 10.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
3H5 3H5	0-0.1	F: Silty sand Sanstone	<4 <4	<0.4	6 17	14 2	49 19	<0.1	2	55 31	15 <0.05	1.2 <0.05	<0.1	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	NA
3H5	0-0.3	F: Silty sand	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
3H6	0-0.1	F: Silty sand	6	<0.4	8	23	81	<0.1	3	61	5.4	0.66	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH6 - [LAB_DUP]	0-0.1	F: Silty sand	7	<0.4	12	21	83	0.1	3	59	3.5	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
H7	0-0.1	F: Silty sand	6	<0.4	6	20	86	<0.1	3	53	9.6	1.2	<0.1	<0.1	<0.1	<0.1	<0.1	<25	52	<100	<100	52	<0.2	<0.5	<1	<3	NA
H7	0.2-0.3	Silty sand	<4	<0.4	3	6	32	<0.1	<1	15	0.6	0.1	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
H8 H8	0-0.1	F: Silty sand	9	0.4	11 10	36 80	160 160	0.1	4	130 190	1.3 40	0.2 4.7	<0.1	<0.1 NA	<0.1	<0.1 NA	<0.1 NA	<25	<50 <50	<100 190	<100 190	<50 380	<0.2 <0.2	<0.5	<1 <1	<3 <3	Not Detected
H8	0.6-0.7	F: Silty sand Clayey Sand	5	<0.4	10	10	29	0.1 <0.1	1	20	1.3	0.2	NA NA	NA	NA	NA	NA	<25 <25	<50	<100	<100	<50	<0.2	<0.5 <0.5	<1	<3	NA
8H9	0-0.1	F: Silty sand	33	0.4	13	43	190	0.1	4	150	6.1	0.63	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
BH10	0-0.1	F: Silty sand	24	<0.4	9	34	200	0.1	4	160	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
3H101	0.05-0.35	F: Silty Sand	17	<0.4	10	47	110	0.4	27	71	1.2	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
3H101	0.7-0.9	F: Silty Sand	<4	<0.4	8	5	37	<0.1	1	21	2.4	0.2	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
3H102	0-0.1	F: Gravelly Sand	<4	<0.4	8	11	23	<0.1	6	29	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
3H102 3H103	0.5-0.6	F: Gravel F: Silty Sand	6	<0.4	10 79	29 44	61 150	<0.1 0.2	17 18	66 75	1.7 200	0.2	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 450	<100 340	<50 790	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	NA Detected
3H103	1.0-1.2	F: Silty Sand	9	<0.4	9	19	630	0.2	3	140	2.1	0.2	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH103	2.0-2.3	F: Silty Sand	7	<0.4	12	16	750	0.1	3	310	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Detected
3H103	3.0-3.3	F: Silty Sand	6	0.5	16	25	860	0.1	4	440	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
3H201	0.1-0.3	F: Silty Sand	8	<0.4	16	9	26	<0.1	2	18	0.3	0.08	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
3H201 - [LAB_DUP]	0.1-0.3	F: Silty Sand	8	<0.4	14	11	23	<0.1	1	13	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
3H201 3H202	1.1-1.3	Sandstone	<4	<0.4	9	<1	11	<0.1	2	8	< 0.05	< 0.05	NA <0.1	NA <0.1	NA <0.1	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA Not Detected
3H202	0.12-0.3	F: Silty Sand F: Silty Sand	6	<0.4	6	17	10 20	<0.1	1 <1	11 14	110 1.8	8.8 0.2	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	290 <100	230 <100	520 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	Not Detected NA
3H203	0.09-0.4	F: Silty Sand	<4	<0.4	23	22	18	<0.1	20	44	1.5	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
3H203	0.9-1.0	F: Silty Sandy Clay	14	<0.4	8	26	89	0.1	4	79	1.6	0.2	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH203	1.8-2.0	Sandstone	<4	<0.4	6	9	9	<0.1	1	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DUP2	-	Field Duplicate	6	<0.4	62	51	170	0.1	12	130	0.73	< 0.05	NA	NA	NA	NA	NA	<25	<50	<100	220	220	<0.2	<0.5	<1	<3	NA
DUP6	-	Field Duplicate	32	<0.4	10	43	160	0.1	3	140	5.7	0.62	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
DUP1 DUP201	-	Field Duplicate Field Duplicate	13 <4	<0.4	9	28 9	140 9	0.2 <0.1	24 1	72 10	1.1 90	0.1	NA NA	NA	NA	NA NA	NA NA	<25 <25	<50 <50	<100 370	<100 250	<50 620	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	NA
DUP203	-	Field Duplicate	<4	<0.4	27	17	21	<0.1	19	50	5.2	0.4	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
DUP203 - [LAB_DUP]	-	Field Duplicate	NA	NA	NA	NA	NA	NA	NA	NA	4.3	0.34	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
H103-FCF1	1.0-2.0	Fibre Cement Material	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Detected
H103-FCF1	2.0-3.0	Fibre Cement Material	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Detected
H103-FCF2-3	2.0-3.0	Fibre Cement Material	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Detected
Total Number of Samples			39	39	39	39	39	39	39	39	37	37	17	17	17	17	17	37	37	37	37	37	37	37	37	37	17
Maximum Value			34	0.5	84	80	860	2.4	27	440	200	14	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>52</td><td>450</td><td>340</td><td>790</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>52</td><td>450</td><td>340</td><td>790</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>52</td><td>450</td><td>340</td><td>790</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>52</td><td>450</td><td>340</td><td>790</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>52</td><td>450</td><td>340</td><td>790</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>52</td><td>450</td><td>340</td><td>790</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	52	450	340	790	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<>	<pql< td=""><td>Detected</td></pql<>	Detected
oncentration above the CT1				VALUE				Standard de	viation exce	eds data a	ssessment cr	iteria	VALUE														
oncentration above SCC1				VALUE				Standard Ut			ssessment ti		TALUL														
JICCHLIALION ADOVE JCCI				VALUE																							

Preliminary (Stage 1) Site Investigation Corner of New South Head Road and Vaucluse Road, Vaucluse, NSW E32915BA

TABLE S8

SOIL LABORATORY TCLP RESULTS

All data in mg/L unless stated otherwise

			Lead	B(a)P
PQL - Enviro	lab Services		0.03	0.001
TCLP1 - Gen	eral Solid Waste		5	0.04
TCLP2 - Rest	ricted Solid Was	ste	20	0.16
TCLP3 - Haza	rdous Waste		>20	>0.16
Sample Reference	Sample Depth	Sample Description		
BH2	0.1-0.2	F: Silty sand	0.3	NA
BH2	0.75-0.95	F: Silty sand	1.2	NA
BH5	0-0.1	F: Silty sand	NA	<0.001
BH7	0-0.1	F: Silty sand	NA	<0.001
BH8	0-0.1	F: Silty sand	<0.03	NA
BH8	0.6-0.7	F: Silty sand	0.07	<0.001
BH9	0-0.1	F: Silty sand	0.06	NA
BH10	0-0.1	F: Silty sand	0.1	NA
Total Num	ber of samples		6	3
Maximum	Value		1.20	<pql< td=""></pql<>
General Solio Restricted So		_	VALUE	
Hazardous V		_	VALUE	
	on above PQL	_	Bold	

TABLE S9 SOIL QA/	C SUMMA	RY																																																															
			TRH C6 - C10	TRH >C10-C16	TRH >C16-C34	TRH >C34-C40	Benzene	Toluene	m+p-xylene	o-Xylene	Naphthalene	Acenaphthylene	Ace naph-thene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b,j+k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Dibenzo(a,h)anthra-cene	Benzo(g, h, I)perylene	HCB	alpha- BHC	gamma- BHC	Hentachlor	delta- BHC	Aldrin	Heptachlor Epoxide	Gamma- Chlordane	alpha- chlordane	Endosulfan I	DDE	Dieldrin	Endrin		pp- UUU Endoeufen II	Endosuitan II	pp-DDT	Endrin Aldehyde Endoeulfan Suitshata	Endosuiran Suiphate Methowichlor	Metrioxy Gillor Azimehoe-methul (Cuthion)	Azinphos-methyl (Guthion)	Bromopnos-etnyl Chlorovriahos	Ciliorpyriprios	Uniorpyripnos-meinyi Diazinon	Disklanton	Dimethoote	Ethion	Fenitrothion	Malathion	Parathion	Ronnel	Total PCRS	Arsenic	Cadmium	Chromium		Copper	Lead	Mercury	Nickei Zhc
		irolab SYE						0.5 1																																																									
	PQL Envi	irolab VIC	25	5 50	100	100	0.2	0.5 1.	0 2.0	1.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1 (0.1 0	0.1 (0.1 0	.1 0.	1 0.	1 0.	1 0.1	0.1	1 0.1	1 0.1	1 0.:	1 0.:	1 0.1	1 0	.1 0.	.1 0.	.1 0.	0.1 0	0.1 0.	.1 0.	.1 0.	0.1 0.	.1 0.	.1 0	.1 0.	1 0.	1 0.	1 0.	1 0.1	1 0.:	1 0.:	1 0.:	1 0.	1 4.0	0 0.4	4 1.0	.0 1	.0 1	<u>1.0 C</u>	1 1	0 1.0
Intra	BH2	0.1-0.2	<2	25 <50	190	350	<0.2	<0.5 <	1 <2	<1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.2	0.3	<0.1	<0.1	0.2	0.2	<0.1	<0.1 (0.1 <	0.1 <	0.1 <	0.1 <0	0.1 <0	1 <0	1 <0.1	1 <0.	0.1 <0.3	1 <0	1 <0.	1 <0	1 <0.	1 <0	0.1 <0	0.1 <0	0.1 <0	0.1 <	0.1 <0	0.1 <0	0.1 <0	0.1 <0	0.1 <0).1 <	0.1 <0	0.1 <0	0.1 <0	0.1 <0	.1 <0.	1 <0	1 <0	1 <0	.1 <0	1 9) <0.	4 84	4 5	51 7	250 0	0.2	5 91
aboratory	SDUP2	-		25 <50		400	<0.2	<0.5 <	1 <2	<1		<0.1		<0.1		<0.1	0.2	0.2			<0.2		<0.1			NA I	NA N	IA N	A N	A N	A NA	A NA	A NA	A NA	A N/	A N	A NA	A N	IA N	IA N	IA N	NA M	NA N	IA N	IA N	NA N	IA N	IA N	IA N	A N	A N	A N	A NA	A N/	A N/	A NA	A N		5 <0.	.4 62	52 5	51 1	170 (J.1 '	.2 130
luplicate	MEAN		no	ic nc	210	375	nc	nc n	c nc	nc	nc	nc	nc	nc	0.1	nc	0.2	0.25	0.075	0.125	0.15	0.1125	nc	nc 0.	075 r	nc	nc r	nc n	c n	c n	c nc	nc	c nc	: no	c no	c n	c no	c n	ic n	nc n	nc n	nc i	nc n	nc n	ic n	nc n	nc n	nc r	nc n	ic n	c n	c n	c no	: no	: no	c no	c n								3.5 110.5
	RPD %	_	no	ic nc	19%	13%	nc	nc n	c nc	nc	nc	nc	nc	nc	0%	nc	0%	40%	67%	120%	67%	156%	nc	nc 6	7% r	nc	nc r	nc n	c n	c n	c nc	nc	c nc	: no	c no	c n	c no	: n	ic n	nc n	nc n	nc i	nc n	nc n	ic n	nc n	nc n	nc r	nc n	ic n	c n	c n	c no	: no	: no	c no	c n	c 40	<mark>%</mark> nc	c <u>30</u>	<mark>0%</mark> 0	0% 38	8% 6	<mark>7%</mark> 27	.% 35%
ntra	BH9	0-0.1	<2	25 <50) <100	<100	<0.2	<0.5 <	1 <2	<1	<0.1	<0.1	<0.1	<0.1	0.4	<0.1	1	1	0.6	0.7	1	0.63	0.4	0.1 ().4 <	0.1 <	0.1 <	0.1 <0	0.1 <0	.1 <0	.1 <0.3	1 <0.	.1 <0.3	.1 <0.	.1 <0.	.1 <0	.1 <0.	.1 <0	0.1 <0	0.1 <0	0.1 <0	0.1 <	0.1 <0	0.1 <0	0.1 <0	0.1 <0	0.1 <0).1 <	0.1 <0).1 <0).1 <0).1 <0	.1 <0.	.1 <0	.1 <0.	.1 <0.	.1 <0	.1 33	3 0.4	4 13	.3 4	43 19	190 (J.1	4 150
aboratory	SDUP6	-	<2	25 <50	0 <100	<100	<0.2	<0.5 <	1 <2	<1				<0.1		<0.1								0.1 ().4 N	NA I	NA N	IA N	A N	A N	A NA	A NA	A NA	A NA	A NA	A N	A NA	A N	IA N	IA N	IA N	NA M	NA N	IA N	IA N	NA N	IA N	IA N	IA N	A N	A N	A N	A NA	A N/	A N/	A NA	A N						160 0		
duplicate	MEAN RPD %		no	ic nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	0.3	nc		0.95						0.1 0		nc i	nc r	nc n	c n	c n	c nc	nc	c nc	n n	c no	c n	c no	c n	ic n	nc n	nc n	nc i	nc n	nc n	ic n	nc n	nc n	n on	nc n	ic n	c n	c n	c no	c no	n n	c no	c n					43 1			1.5 145 9% 7%
	RPD %	-	ne	ic nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	0/76	nc	2276	1176	0%	0%	0%	276	29%	0%	J76 I	nc	nc r	ic n	c n	c n	c nc	nc	c nc	, no	c no	. 10	c no	. 1	ic n	ic n	ic n	nc i	nc n	ic n		nc n			ic n		c n	c n	c nc	, no	, no	c no	. n	57	% <mark>0/</mark> ;	70 20	5% U	<u>)% 1</u>	/% U	76 Z	70 770
ntra	BH101	0.05-0.				<100								<0.1												0.1 <		0.1 <0				-	-				.1 <0.							0.1 <0			0.1 <0).1 <	0.1 <0).1 <0).1 <0).1 <0	.1 <0.	-					7 <0.			47 1:		0.4 2	
aboratory uplicate	SDUP1 MEAN	-				<100	<0.2	<0.5 <		<1				<0.1										<0.1 <		NA I			A N	A N	A NA	A NA	A NA	A NA	A NA	A N/	A NA	A N	IA N	IA N	IA N			IA N	IA N	NA N	IA N	IA N	IA N	A N	A N	A N	A NA	A N/		A N/							140 0		
uplicate	RPD %		no	ic nc ic nc	nc	nc	nc	nc n	c nc c nc	nc	nc	nc	nc	nc	nc	nc	0.2							nc 0.		nc i	nc r nc r	nc n nc n	c n c n	c n c n	c nc c nc	nc nc	c nc c nc	: no	c no c no		c no	c n c n	ic n ic n	nc n nc n	nc n nc n	nc i nc i	nc n nc n	nc n		nc n nc n	nc n nc n	nc r	nc n nc n	ic n ic n	c n c n	c n c n	c no c no	c no	no no	c no	c n c n								5.5 71.5 2% 1%
ntra	BH202	0.12-0.						<0.5 <		<1				0.1													0.1 <						.1 <0.3										0.1 <0			0.1 <0			0.1 <0 JA N	0.1 <0	0.1 <0	0.1 <0 A N		.1 <0		.1 <0			۱ <0.				10 <		11
aboratory luplicate	SDUP201 MEAN	-		25 <50 ic nc			<0.2	<0.5 <	1 <2 c nc					0.1										0.9 4		nc i	NA N nc r	IA N nc n	A N.	A N.	A NA	NA NA	A NA	A NA	A N/	A N/	A N/	A N.	IA N.	IA N	IA N	NA M	NA N nc n	IA N	IA N	NA N	na na		na n	A N	A N C D	A N	A NA	n N	n n	A NA c no			4 <0.			9 9 13 9			
	RPD %		no	ic nc	21%	6%	nc	nc n	c nc	nc	67%	57%	0%	0%		42%	24%	21%	17%	24%	22%			12% 1		nc	nc r	nc n	c n	c n	c nc	nc	c nc	n	c no	c n	c no	c n	ic n	nc n	nc n	nc i	nc n	nc n	ic n	nc n	nc n	nc r	nc n	ic n	c n	c n	c no	c no	: no	c no	c n								0% 10%
																																																										_							
nter aboratory	BH203 SDUP203					<100		<0.5 <	1 <2 1 <2					<0.1													10.1 <0 NA N																0.1 <0 NA N			0.1 <0 NA N	0.1 <0		0.1 <0 IA N	0.1 <0 Δ N	0.1 <0 A N					A N/									20 44 19 50
luplicate	MEAN			ic nc			nc	nc n	c nc	nc				nc													nc r		c n	c n	c nc	: nc	c nc	: no	c no	c n	c no	: n	ic n	nc n	nc n	nc i	nc n		ic n	nc n	nc n	nc r	nc n	ic n	c n	c n	c no	: no		c no									9.5 47
	RPD %		no	ic nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	133%	156%	91%	108%	67%	67%	111%	67%	<mark>143%</mark>	nc 1	1 <mark>3%</mark> r	nc	nc r	nc n	c n	c n	c nc	nc	c nc	: no	c no	c n	c no	c n	ic n	nc n	nc n	nc i	nc n	nc n	ic n	nc n	nc n	nc r	nc n	ic n	c n	c n	c no	c no	: no	c no	c n	c n	c no	c 16	5% 26	.6% 1'	.5%	nc 5	5% 13%
ield	STB1	_	<2	25 NA	NΔ	NΔ	<0.2	<0.5 <	1 <2	<1	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	ΝΔ					Δ Ν	Δ Ν.		NA NA	A NA	Δ N/	Δ N/	Δ N	Δ N/	Δ N									IA N		IA N	Δ Ν	Δ Ν	Δ Ν	Δ N/	Δ N	4 N/	Δ N/	A N	Δ Ν.	Δ N/	Δ N/		NA N	NA	NA	
Blank	3/02/20					101	10.2	-0.5									101			101																																													
	-																																																																
ield Blank	TB-S1 25/03/21		N/	IA NA	NA NA	NA	<0.2	<0.5 <	1 <2	<1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	NA I	NAN	IA N	A N	A N.	A NA	A NA	A NA	A NA	A NA	A N/	A NA	A N.	IA N	IA N	IA N	NAN	NA N	IA N	IA N	NA N	IA N	IA N	IA N	A N	A N	A N	A NA	A N/	A NA	A NA	A N	A N/	A NA	A NA	IA N	NA N	NA NA	IA N	A NA
Junk	23,03,21																																																														_		
Trip	STS1		-		-	-	103%	102% 10	8% 101	% 113%	6 -	•	-	•	-	-	•	-	-	-	-	-	-	•	-	-	-					-		-	-	-						-						-					-	-	-		-	-		-	-	-	-		
pike	3/02/20	-			-				_	-	-	-	-						-	_		-	-	_	_	-	-	-	_	-	-	_	-	-	_	_	_	_	_	-	-	-	-	_	_	_	_	-	-	_	_	_	-	_	_	_	_	_	_	_	_		—		
Trip	TS-S1		-		-	-	71%	74% 79	9% 779	6 76%	-		-		-		-	-	-		-	-	-		-	-	-							-		-						-											-		-		-	-				-	-	-	
pike	25/03/21																																																														_		
ield	SFR1	ug/I	N		NA	NA	1	<1 <	1 -7	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		, ,			A N	A N	A NA	N/	A NA	A N/	A N/	A NI	A N/	A NI					NA N							Δ Ν	Δ Ν	Λ Ν	A N1/	A N.	A NO	A NA	A N	A N.	A N1/	A NJ		NA N	NA	NA	
insate	3/02/20	μg/L	N/	IA NA	NA NA	NA	<1	<u>_1</u> <	1 <2	<1	INA	NA	NA	INA	NA	NA	NA	NA	NA	NA	NA	NA	NA	n/A		1 H	NA P	NA N	A N		n NA	N/	n NA	- N/	n N/	- N	A NA	- N	IA N	NA N	NA N		NA N	IN N		NA N	NA NA		N N	A N	A N	A N	n NA	- N/	- N/	A N/	- N	n N/	M NA	A NA	IA N	IN N		IM N	A NA
																																																															_		
ield Rinsate	FR-SPT1 25/03/21	μg/L	N/	IA NA	NA	NA	<1	<1 <	1 <2	<1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	NA I	NA N	IA N	A N.	A N.	A NA	A NA	A NA	A NA	A NA	A N	A NA	A N.	IA N	IA N	IA N	NA M	NA N	IA N	IA N	NA N	IA N	IA N	IA N	A N	A N	A N	A NA	A N/	A N/	A NA	A N	A N/	A NA	A NA	IA N	NA N	NA M	JA N	A NA
misate	23/03/21												-																																																				
	Result out	side of QA	/QC accep	ptance crit	teria																																																												

Preliminary (Stage 1) Site Investigation Corner of New South Head Road and Vaucluse Road, Vaucluse, NSW E32915BA

Preliminary (Stage 1) Site Investigation Corner of New South Head Road and Vaucluse Road, Vaucluse, NSW E32915BA

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ADWG:	AustralianDrinking Water Guidelines
ANZG	Australian and New Zealand Guidelines
B(a)P:	Benzo(a)pyrene
CRC:	Cooperative Research Centre
ESLs:	Ecological Screening Levels
GIL:	Groundwater Investigation Levels
HILs:	Health Investigation Levels
HSLs:	Health Screening Levels
HSL-SSA:	Health Screening Level-SiteSpecific Assessment
NA:	Not Analysed
NC:	Not Calculated
NEPM:	National Environmental Protection Measure
NHMRC:	National Health and Medical Research Council
NL:	Not Limiting
NSL:	No Set Limit
OCP:	Organochlorine Pesticides
OPP:	Organophosphorus Pesticides
PAHs:	Polycyclic Aromatic Hydrocarbons
nnm	Parts ner million

ppm: Parts per million PCBs: Polychlorinated Biphenyls

- PCE:Perchloroethylene (Tetrachloroethylene or Tetrachloroethene)PQL:Practical Quantitation Limit
- RS: Rinsate Sample
- **RSL:** Regional Screening Levels
- SAC: Site Assessment Criteria
- **SSA:** Site Specific Assessment
- SSHSLs Site Specific Health Screening Levels
- Trip Blank TB:
- TCA: 1,1,1 Trichloroethane (methyl chloroform)
- **TCE:** Trichloroethylene (Trichloroethene)
- TS: Trip Spike
- TRH:Total Recoverable HydrocarbonsUCL:Upper Level Confidence Limit on Mean Value
- **USEPA** United States Environmental Protection Agency
 - **VOCC:** Volatile Organic Chlorinated Compounds
 - WHO: World Health Organisation

TABLE G1

SUMMARY OF GROUNDWATER LABORATORY RESULTS COMPARED TO ECOLOGICAL GILS SAC All results in μ g/L unless stated otherwise.

	Envirolab	ANZG 2018	MW2	MW2 - [LAB_DUP]	MW202	AMPLES MW202 - [LAB_DUP]	WDUP1	WDUP10
	Services	Marine Waters						
norganic Compounds and Parameters H		7 - 8.5	6.1	NA	5.2	NA	NA	NA
lectrical Conductivity (μS/cm)	1	NSL	450	NA	460	NA	NA	NA
urbidity (NTU)		NSL	NA	NA	NA	NA	NA	NA
letals and Metalloids	1 1		1					
rsenic (As III) admium	1 0.1	2.3 0.7	<1 <0.1	<1 <0.1	<1 <0.1	<1 <0.1	<1 <0.1	<1 <0.1
hromium (SAC for Cr III adopted)	1	27	6	6	<1	<1	6	<1
opper	1	1.3	<1	<1	2	2	1	2
ead	1	4.4	1	1	1	1	1	1
otal Mercury (inorganic)	0.05	0.1	<0.05 3	<0.05 3	<0.05 3	<0.05 3	<0.05	<0.05
ickel inc	1	15	3 19	20	3 91	92	3 21	3 92
Ionocyclic Aromatic Hydrocarbons (BTEX Co	mpounds)							
enzene	1	500	<1	<1	<1	<1	<1	<1
oluene	1	180	<1	<1	<1	<1	<1	<1
thylbenzene n+p-xylene	1 2	5 75	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2
-xylene	1	350	<1	<1	<1	<1	<1	<1
otal xylenes	2	NSL	<2	<2	<2	<2	<2	<2
olatile Organic Compounds (VOCs), including			.10	-10		.10		
ichlorodifluoromethane hloromethane	10 10	NSL NSL	<10 <10	<10 <10	<10 <10	<10 <10	NA	NA
inyl Chloride	10	100	<10	<10	<10	<10	NA	NA
romomethane	10	NSL	<10	<10	<10	<10	NA	NA
hloroethane	10	NSL	<10	<10	<10	<10	NA	NA
richlorofluoromethane	10	NSL	<10	<10	<10	<10	NA	NA
1-Dichloroethene	1	700 NISI	<1	<1	<1	<1	NA	NA
rans-1,2-dichloroethene 1-dichloroethane	1	NSL 250	<1 <1	<1 <1	<1 <1	<1 <1	NA	NA
s-1,2-dichloroethene	1	NSL	<1	<1	<1	<1	NA	NA
romochloromethane	1	NSL	<1	<1	<1	<1	NA	NA
hloroform	1	370	<1	<1	2	2	NA	NA
2-dichloropropane	1	NSL 1000	<1	<1	<1	<1	NA	NA
2-dichloroethane 1,1-trichloroethane	1	1900 270	<1 <1	<1 <1	<1 <1	<1 <1	NA	NA
1-dichloropropene	1	NSL	<1	<1	<1	<1	NA	NA
yclohexane	1	NSL	<1	<1	<1	<1	NA	NA
arbon tetrachloride	1	240	<1	<1	<1	<1	NA	NA
enzene	1	500	<1	<1	<1	<1	NA	NA
ibromomethane 2-dichloropropane	1	NSL 900	<1 <1	<1 <1	<1 <1	<1 <1	NA	NA
richloroethene	1	330	<1	<1	<1	<1	NA	NA
romodichloromethane	1	NSL	<1	<1	<1	<1	NA	NA
ans-1,3-dichloropropene	1	NSL	<1	<1	<1	<1	NA	NA
s-1,3-dichloropropene	1	NSL	<1	<1	<1	<1	NA	NA
1,2-trichloroethane	1	1900	<1	<1	<1	<1	NA	NA
oluene 3-dichloropropane	1	180 1100	<1 <1	<1 <1	<1 <1	<1 <1	NA	NA
ibromochloromethane	1	NSL	<1	<1	<1	<1	NA	NA
2-dibromoethane	1	NSL	<1	<1	<1	<1	NA	NA
etrachloroethene	1	70	<1	<1	<1	<1	NA	NA
1,1,2-tetrachloroethane	1	NSL 55	<1 <1	<1	<1 <1	<1 <1	NA	NA
hlorobenzene :hylbenzene	1	5	<1	<1 <1	<1	<1	NA	NA
romoform	1	NSL	<1	<1	<1	<1	NA	NA
ı+p-xylene	2	75	<2	<2	<2	<2	NA	NA
tyrene	1	NSL	<1	<1	<1	<1	NA	NA
1,2,2-tetrachloroethane	1	400 350	<1 <1	<1 <1	<1 <1	<1 <1	NA	NA
xylene 2,3-trichloropropane	1	NSL	<1	<1	<1	<1	NA	NA
opropylbenzene	1	30	<1	<1	<1	<1	NA	NA
romobenzene	1	NSL	<1	<1	<1	<1	NA	NA
propyl benzene	1	NSL	<1	<1	<1	<1	NA	NA
-chlorotoluene -chlorotoluene	1	NSL	<1 <1	<1 <1	<1 <1	<1 <1	NA	NA
chlorotoluene 3,5-trimethyl benzene	1	NSL	<1 <1	<1 <1	<1 <1	<1 <1	NA	NA
ert-butyl benzene	1	NSL	<1	<1	<1	<1	NA	NA
2,4-trimethyl benzene	1	NSL	<1	<1	<1	<1	NA	NA
3-dichlorobenzene	1	260	<1	<1	<1	<1	NA	NA
ec-butyl benzene 4-dichlorobenzene	1	NSL 60	<1 <1	<1 <1	<1 <1	<1 <1	NA	NA
isopropyl toluene	1	NSL	<1	<1	<1	<1	NA	NA
2-dichlorobenzene	1	160	<1	<1	<1	<1	NA	NA
butyl benzene	1	NSL	<1	<1	<1	<1	NA	NA
2-dibromo-3-chloropropane	1	NSL	<1	<1	<1	<1	NA	NA
2,4-trichlorobenzene exachlorobutadiene	1	20 NSL	<1 <1	<1 <1	<1 <1	<1 <1	NA	NA
2,3-trichlorobenzene	1	3	<1	<1	<1	<1	NA	NA
olycyclic Aromatic Hydrocarbons (PAHs)			1					
aphthalene	0.2	50	<0.2	<0.2	<0.2	NA	<0.2	<0.2
enaphthylene enaphthene	0.1	NSL	<0.1 <0.1	<0.1	<0.1 <0.1	NA	0.3	<0.1 <0.1
uorene	0.1	NSL	<0.1	<0.1	<0.1	NA	0.2	<0.1
enanthrene	0.1	0.6	0.8	0.8	<0.1	NA	2.9	<0.1
nthracene	0.1	0.01	0.2	0.3	<0.1	NA	0.8	<0.1
uoranthene	0.1	1	0.9	0.9	<0.1	NA	3.3	<0.1
rrene	0.1	NSL	0.9	0.9	<0.1	NA	3.4	<0.1
enzo(a)anthracene nrysene	0.1	NSL NSL	0.5	0.5	<0.1 <0.1	NA	1.9 1.6	<0.1 <0.1
enzo(b,j+k)fluoranthene	0.1	NSL	0.5	0.6	<0.1	NA	1.6	<0.1
enzo(a)pyrene	0.1	0.1	0.4	0.5	<0.1	NA	1.6	<0.2
	0.1	NSL	0.2	0.2	<0.1	NA	0.6	<0.1
deno(1,2,3-c,d)pyrene				-0.1	<0.1	NA		<0.1
deno(1,2,3-c,d)pyrene benzo(a,h)anthracene enzo(g,h,i)perylene	0.1	NSL NSL	<0.1 0.2	<0.1 0.2	<0.1	NA	0.2	<0.1

Copyright JK Environments

TABLE G2 SUMMARY OF GROUNDWATER LABORATORY RESULTS COMPARED TO HUMAN CONTACT GILS

	PQL Envirolab Services	Recreational (10 x NHMRC ADWG)	MW2	MW2 - [LAB_DUP]	MW202	SAMPLES MW202 - [LAB_DUP]	WDUP1	WDUP10
norganic Compounds and Parameters	+	· · ·	•	•/-				
H lectrical Conductivity (μS/cm)	1	6.5 - 8.5 NSL	6.1 450	NA NA	5.2 460	NA NA	NA	NA
urbidity (NTU)		NSL	NA	NA	NA	NA	NA	NA
letals and Metalloids	1		r					
rsenic (As III)	1	100	<1	<1	<1	<1	<1	<1
admium hromium (total)	0.1	20 500	<0.1 6	<0.1 6	<0.1 <1	<0.1	<0.1 6	<0.1
opper	1	20000	<1	<1	2	2	1	2
ead	1	100	1	1	1	1	1	1
otal Mercury (inorganic) lickel	0.05	10 200	<0.05 3	<0.05 3	<0.05 3	<0.05 3	<0.05 3	<0.05 3
inc	1	30000	19	20	91	92	21	92
Ionocyclic Aromatic Hydrocarbons (BTEX Comp	ounds)							
enzene	1	10	<1	<1	<1	<1	<1	<1
oluene	1	8000 3000	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
thylbenzene 1+p-xylene	2	NSL	<2	<1 <2	<2	<2	<2	<2
-xylene	1	NSL	<1	<1	<1	<1	<1	<1
otal xylenes	2	6000	<2	<2	<2	<2	<2	<2
olatile Organic Compounds (VOCs), including ch			L					
ichlorodifluoromethane hloromethane	10	NSL	<10 <10	<10 <10	<10 <10	<10 <10	NA	NA
inyl Chloride	10	3	<10	<10	<10	<10	NA	NA
romomethane	10	NSL	<10	<10	<10	<10	NA	NA
hloroethane	10	NSL	<10	<10	<10	<10	NA	NA
richlorofluoromethane	10	NSL	<10	<10	<10	<10	NA	NA
1-Dichloroethene	1	300	<1	<1	<1	<1	NA	NA
rans-1,2-dichloroethene ,1-dichloroethane	1	600 NSL	<1 <1	<1 <1	<1 <1	<1	NA	NA
is-1,2-dichloroethene	1	600	<1	<1	<1	<1	NA	NA
romochloromethane	1	2500	<1	<1	<1	<1	NA	NA
hloroform	1		<1	<1	2	2	NA	NA
,2-dichloropropane	1	NSL	<1	<1	<1	<1	NA	NA
,2-dichloroethane ,1,1-trichloroethane	1	30 NSL	<1 <1	<1 <1	<1 <1	<1 <1	NA	NA
1,1-trichloropropene	1	NSL	<1	<1 <1	<1 <1	<1	NA	NA
yclohexane	1	NSL	<1	<1	<1	<1	NA	NA
arbon tetrachloride	1	30	<1	<1	<1	<1	NA	NA
enzene	1	10	<1	<1	<1	<1	NA	NA
ibromomethane	1	NSL	<1	<1	<1	<1	NA	NA
2-dichloropropane richloroethene	1	NSL	<1 <1	<1 <1	<1 <1	<1 <1	NA	NA
romodichloromethane	1	NSL	<1	<1	<1	<1	NA	NA
ans-1,3-dichloropropene	1	1000	<1	<1	<1	<1	NA	NA
s-1,3-dichloropropene	1	1000	<1	<1	<1	<1	NA	NA
1,2-trichloroethane	1	NSL	<1	<1	<1	<1	NA	NA
oluene	1	8000 NSL	<1 <1	<1 <1	<1 <1	<1 <1	NA	NA
,3-dichloropropane ibromochloromethane	1	NSL	<1	<1	<1	<1	NA	NA
,2-dibromoethane	1	NSL	<1	<1	<1	<1	NA	NA
etrachloroethene	1	500	<1	<1	<1	<1	NA	NA
,1,1,2-tetrachloroethane	1	NSL	<1	<1	<1	<1	NA	NA
hlorobenzene	1	3000	<1	<1	<1	<1	NA	NA
thylbenzene romoform	1	3000 NSL	<1 <1	<1 <1	<1 <1	<1 <1	NA	NA
n+p-xylene	2	NSL	<2	<2	<2	<2	NA	NA
tyrene	1	300	<1	<1	<1	<1	NA	NA
,1,2,2-tetrachloroethane	1	NSL	<1	<1	<1	<1	NA	NA
-xylene	1	NSL	<1	<1	<1	<1	NA	NA
,2,3-trichloropropane opropylbenzene	1	NSL	<1 <1	<1 <1	<1 <1	<1 <1	NA	NA
romobenzene	1	NSL	<1	<1	<1	<1	NA	NA
-propyl benzene	1	NSL	<1	<1	<1	<1	NA	NA
chlorotoluene	1	NSL	<1	<1	<1	<1	NA	NA
-chlorotoluene	1	NSL	<1	<1	<1	<1	NA	NA
,3,5-trimethyl benzene	1	NSL NSI	<1 <1	<1 <1	<1 <1	<1 <1	NA	NA
ert-butyl benzene ,2,4-trimethyl benzene	1	NSL	<1 <1	<1 <1	<1 <1	<1 <1	NA	NA
3-dichlorobenzene	1	200	<1	<1	<1	<1	NA	NA
ec-butyl benzene	1	NSL	<1	<1	<1	<1	NA	NA
4-dichlorobenzene	1	400	<1	<1	<1	<1	NA	NA
-isopropyl toluene	1	NSL 15000	<1	<1	<1	<1	NA	NA
2-dichlorobenzene -butyl benzene	1	15000 NSL	<1 <1	<1 <1	<1 <1	<1 <1	NA	NA
.2-dibromo-3-chloropropane	1	NSL	<1	<1	<1	<1	NA	NA
,2,4-trichlorobenzene	1	300	<1	<1	<1	<1	NA	NA
,2,3-trichlorobenzene	1		<1	<1	<1	<1	NA	NA
lexachlorobutadiene	1	7	<1	<1	<1	<1	NA	NA
olycyclic Aromatic Hydrocarbons (PAHs) aphthalene	0.2	NSL	<0.2	<0.2	<0.2	NA	<0.2	<0.2
cenaphthylene	0.2	NSL	<0.2	<0.2	<0.1	NA	0.3	<0.2
cenaphthene	0.1	NSL	<0.1	<0.1	<0.1	NA	0.2	<0.1
uorene	0.1	NSL	<0.1	<0.1	<0.1	NA	0.3	<0.1
henanthrene	0.1	NSL	0.8	0.8	<0.1	NA	2.9	<0.1
nthracene uoranthene	0.1	NSL	0.2	0.3	<0.1 <0.1	NA	0.8 3.3	<0.1 <0.1
yrene	0.1	NSL	0.9	0.9	<0.1	NA	3.3	<0.1
enzo(a)anthracene	0.1	NSL	0.5	0.5	<0.1	NA	1.9	<0.1
hrysene	0.1	NSL	0.5	0.5	<0.1	NA	1.6	<0.1
enzo(b,j+k)fluoranthene	0.2	NSL	0.6	0.6	<0.2	NA	2	<0.2
enzo(a)pyrene	0.1	0.1	0.4	0.5	<0.1	NA	1.6	<0.1
	0.1	NSL	0.2	0.2 <0.1	<0.1 <0.1	NA	0.6	<0.1 <0.1
deno(1,2,3-c,d)pyrene	0.1	NC	201					
benzo(a,h)anthracene enzo(g,h,i)perylene	0.1	NSL NSL	<0.1 0.2	0.2	<0.1	NA	0.2	<0.1

Copyright JK Environments

GROUNDWATER LABORATORY RESULTS COMPARED TO SITE SPECIFIC HSLs - RISK ASSESSMENT

All results in µg/L unless stated otherwise.
--

TABLE G3

	PQL	NHMRC	WHO 2008	USEPA RSL				SAMPLES		
	Envirolab	ADWG 2011		Tapwater	MW2	MW2 - [LAB_DUP]	MW202	MW202 - [LAB_DUP]	WDUP1	WDUP10
atal Dasanuarahis Undersont (mater)	Services	(v3.5 2018)		2017						
otal Recoverable Hydrocarbons (TRH)	10		15000		(10	-10	-10	-10	-10	-10
₆ -C ₉ Aliphatics (assessed using F1)	10	-	15000	-	<10	<10	<10	<10	<10	<10
C ₉ -C ₁₄ Aliphatics (assessed using F2)	50	-	100	-	<50	<50	<50	NA	<50	<50
Ionocyclic Aromatic Hydrocarbons (BTEX Compounds										
enzene	1	1	-	-	<1	<1	<1	<1	<1	<1
oluene	1	800	-	-	<1	<1	<1	<1	<1	<1
thylbenzene	1	300	-	-	<1	<1	<1	<1	<1	<1
otal xylenes	2	600	-	-	<2	<2	<2	<2	<2	<2
olycyclic Aromatic Hydrocarbons (PAHs)		[
aphthalene	1	-	-	6.1	<1	<1	<1	<1	<1	<1
olatile Organic Compounds (VOCs), including chlorina	ated VOCs									
ichlorodifluoromethane	10	-	-	-	<10	<10	<10	<10	NA	NA
hloromethane	10	-	-	-	<10	<10	<10	<10	NA	NA
inyl Chloride	10	0.3	-	-	<10	<10	<10	<10	NA	NA
romomethane	10	-	-	-	<10	<10	<10	<10	NA	NA
hloroethane	10	-	-	-	<10	<10	<10	<10	NA	NA
richlorofluoromethane	10	-	-	-	<10	<10	<10	<10	NA	NA
1-Dichloroethene	1	30	-	-	<1	<1	<1	<1	NA	NA
rans-1,2-dichloroethene	1	60	-	-	<1	<1	<1	<1	NA	NA
1-dichloroethane	1	-	-	-	<1	<1	<1	<1	NA	NA
is-1,2-dichloroethene	1	60	-	-	<1	<1	<1	<1	NA	NA
romochloromethane	1		-	-	<1	<1	<1	<1	NA	NA
hloroform	1	250	-	-	<1	<1	2	2	NA	NA
,2-dichloropropane	1	-	-	-	<1	<1	<1	<1	NA	NA
,2-dichloroethane	1	3	-	-	<1	<1	<1	<1	NA	NA
1,1-trichloroethane	1	-	-	-	<1	<1	<1	<1	NA	NA
,1-dichloropropene	1	-	-	-	<1	<1	<1	<1	NA	NA
yclohexane	1	-	-	-	<1	<1	<1	<1	NA	NA
arbon tetrachloride	1	3	-	-	<1	<1	<1	<1	NA	NA
enzene	1	1	-	-	<1	<1	<1	<1	NA	NA
ibromomethane	1	-	-	-	<1	<1	<1	<1	NA	NA
2-dichloropropane	1	-	-	-	<1	<1	<1	<1	NA	NA
richloroethene	1	-	-	-	<1	<1	<1	<1	NA	NA
romodichloromethane	1	-	-	-	<1	<1	<1	<1	NA	NA
ans-1,3-dichloropropene	1	100	-	-	<1	<1	<1	<1	NA	NA
s-1,3-dichloropropene	1	100	-	-	<1	<1	<1	<1	NA	NA
1,2-trichloroethane	1	-	-	-	<1	<1	<1	<1	NA	NA
oluene	1	800	-	-	<1	<1	<1	<1	NA	NA
3-dichloropropane	1	-	-	-	<1	<1	<1	<1	NA	NA
ibromochloromethane	1	-	-	-	<1	<1	<1	<1	NA	NA
2-dibromoethane	1	-	-	-	<1	<1	<1	<1	NA	NA
etrachloroethene	1	50	-	-	<1	<1	<1	<1	NA	NA
,1,1,2-tetrachloroethane	1	-	-	-	<1	<1	<1	<1	NA	NA
hlorobenzene	1	300	-	-	<1	<1	<1	<1	NA	NA
thylbenzene	1	300	-	-	<1	<1	<1	<1	NA	NA
romoform	1	-	-	-	<1	<1	<1	<1	NA	NA
n+p-xylene	2	-	-	-	<2	<2	<2	<2	NA	NA
	1	- 30	-	-	<2 <1	<2 <1	<2	<2 <1	NA	NA
tyrene										
1,2,2-tetrachloroethane	1	-	-	-	<1	<1	<1	<1	NA	NA
-xylene	1	-	-	-	<1	<1	<1	<1	NA	NA
,2,3-trichloropropane	1	-	-	-	<1	<1	<1	<1	NA	NA
opropylbenzene	1	-	-	-	<1	<1	<1	<1	NA	NA
romobenzene	1	-	-	-	<1	<1	<1	<1	NA	NA
-propyl benzene	1	-	-	-	<1	<1	<1	<1	NA	NA
-chlorotoluene	1	-	-	-	<1	<1	<1	<1	NA	NA
-chlorotoluene	1	-	-	-	<1	<1	<1	<1	NA	NA
,3,5-trimethyl benzene	1	-	-	-	<1	<1	<1	<1	NA	NA
ert-butyl benzene	1	-	-	-	<1	<1	<1	<1	NA	NA
,2,4-trimethyl benzene	1	-	-	-	<1	<1	<1	<1	NA	NA
3-dichlorobenzene	1	20	-	-	<1	<1	<1	<1	NA	NA
ec-butyl benzene	1	-	-	-	<1	<1	<1	<1	NA	NA
4-dichlorobenzene	1	40	-	-	<1	<1	<1	<1	NA	NA
-isopropyl toluene	1	-	-	-	<1	<1	<1	<1	NA	NA
2-dichlorobenzene	1	1500	-	-	<1	<1	<1	<1	NA	NA
-butyl benzene	1	-	-	-	<1	<1	<1	<1	NA	NA
,2-dibromo-3-chloropropane ,2,4-trichlorobenzene	1	-	-	-	<1	<1	<1	<1	NA	NA
2.4-trichloropenzene	1	30	-	-	<1	<1	<1	<1	NA	NA
	1	1	-	-	<1	<1	<1	<1	NA	NA
2,3-trichlorobenzene exachlorobutadiene	1	7	-	-	<1	<1	<1	<1	NA	NA

Preliminary (Stage 1) Site Investigation Corner of New South Head Road and Vaucluse Road, Vaucluse, NSW

GROUNDWATER QA/QC SUMMARY

>C16-C34

HA⁻

100

100

110

290

200

90%

<100

nc

nc

NA

-

TRH >C10-C16

50

50

<50

nc

nc

<10 <50 <100

<50

nc

nc

-

NA NA

<10 <50

TRH C6 - C10

10

10

<10

nc

nc

<10

nc

nc

-

Result outside of QA/QC acceptance criteria

PQL Envirolab SYD

PQL Envirolab VIC

MW2

WDUP1

MEAN

RPD %

MW202

MEAN

RPD %

TB-W1

TS-W1

1/04/2021

1/04/2021

WDUP100

>C34-C40

RH

100

100

<100

110

80

75%

<100

<100

nc

nc

NA

-

1

1.0

<1

<1

nc

nc

<1

<1

nc

nc

<1

1

1.0

<1

<1

nc

nc

<1

<1

nc

nc

Value

1

1.0

<1

<1

nc

nc

<1

<1

nc

nc

102% 103% 116% 109% 114%

<1 <1 <2 <1

2

2.0

<2

<2

nc

nc

<2

<2

nc

nc

aphthyle

0.1

0.1

<0.1

0.3

0.175

143%

<0.1

<0.1

nc

nc

NA

-

aph-th€

0.1

0.1

< 0.1

0.2

0.125

120%

<0.1

< 0.1

nc

nc

NA

-

ene

0.1

0.1

<0.1

0.3

0.175

143%

<0.1

< 0.1

nc

nc

NA

-

0.1

0.1

0.8

2.9

1.85

114%

<0.1

< 0.1

nc

nc

NA

-

aphthalene

0.2

0.2

<0.2

<0.2

nc

nc

<0.2

<0.2

nc

nc

NA

-

o-Xylene

1

1.0

<1

<1

nc

nc

<1

<1

nc

nc

E32915BA

Intra

Intra

Field

Blank

Trip

Spike

laboratory

duplicate

laboratory

duplicate

TABLE G4

	Benzo(g,h,i)perylene	Arsenic	Cadmium	Chromium VI	Copper	Lead	Mercury	1 Nickel	Zinc 1
	0.1	1	0.1	1	1	1	0.05		
_	0.1	1	0.1	1	1	1	0.05	1	1
	0.2	-1	-0.1	C	-1	1	<0.0F	2	10
	0.2	<1	<0.1	6	<1	1	<0.05	3	19
	0.6	<1	<0.1	6	1	1	<0.05	3	21
	0.4	nc	nc	6	0.75	1	nc	3	20
_	100%	nc	nc	0%	67%	0%	nc	0%	10%
	<0.1	<1	<0.1	<1	2	1	<0.05	3	91
	<0.1	<1	<0.1	<1	2	1	<0.05	3	92
	nc	nc	nc	nc	2	1	nc	3	91.5
	nc	nc	nc	nc	0%	0%	nc	0%	1%
	NA	NA	NA	NA	NA	NA	NA	NA	NA
	-	-	-	-	-	-	-	-	

1,2,3-c,d)pyrene

0.1

0.1

0.2

0.6

0.4

<0.1

< 0.1

nc

nc

NA

-

zo(a)pyrer

0.1

0.1

0.4

1.6

1

<0.1

< 0.1

nc

nc

NA

-

ızo(b,j+k)

0.2

0.2

0.6

2

1.3

<0.2

<0.2

nc

nc

NA

-

zo(a)aı

0.1

0.1

0.5

1.9

1.2

<0.1

< 0.1

nc

nc

NA

-

0.1

0.1

0.5

1.6

1.05

 120%
 114%
 116%
 117%
 105%
 108%
 120%
 100%
 120%

<0.1

< 0.1

nc

nc

NA

-

ene

0.1

0.1

0.9

3.4

2.15

<0.1

< 0.1

nc

nc

NA

-

0.1

0.1

0.9

3.3

2.1

<0.1

<0.1

nc

nc

NA

-

0.1

0.1

0.2

0.8

0.5

<0.1

< 0.1

nc

nc

NA

-

ızo(a,h)anthra

0.1

0.1

<0.1

0.2

0.125

<0.1

< 0.1

nc

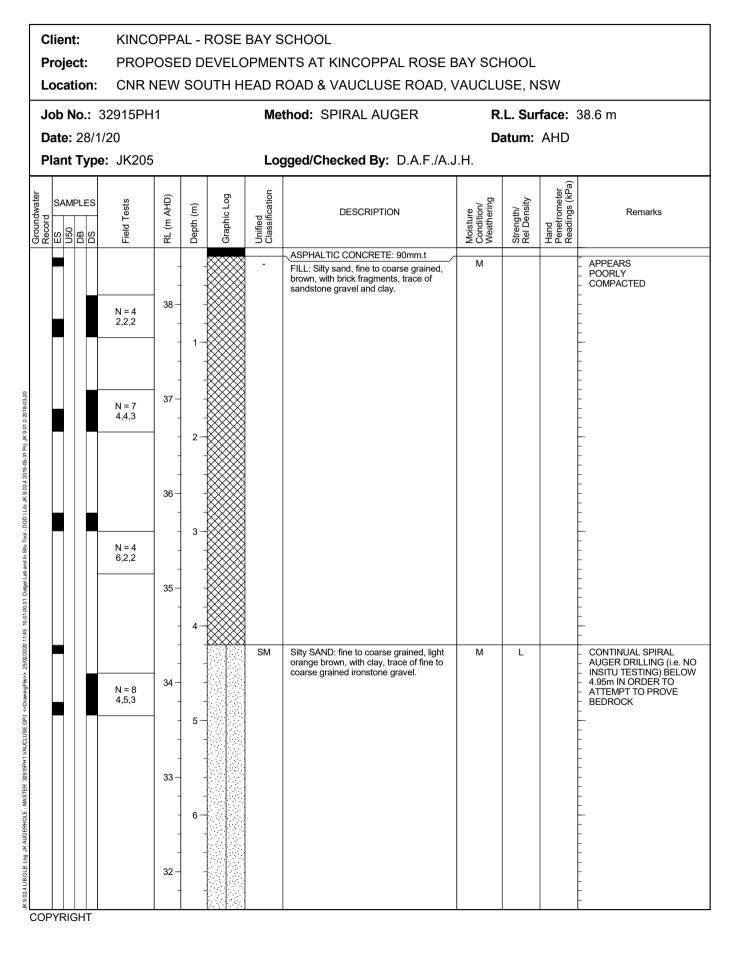
nc

NA

-

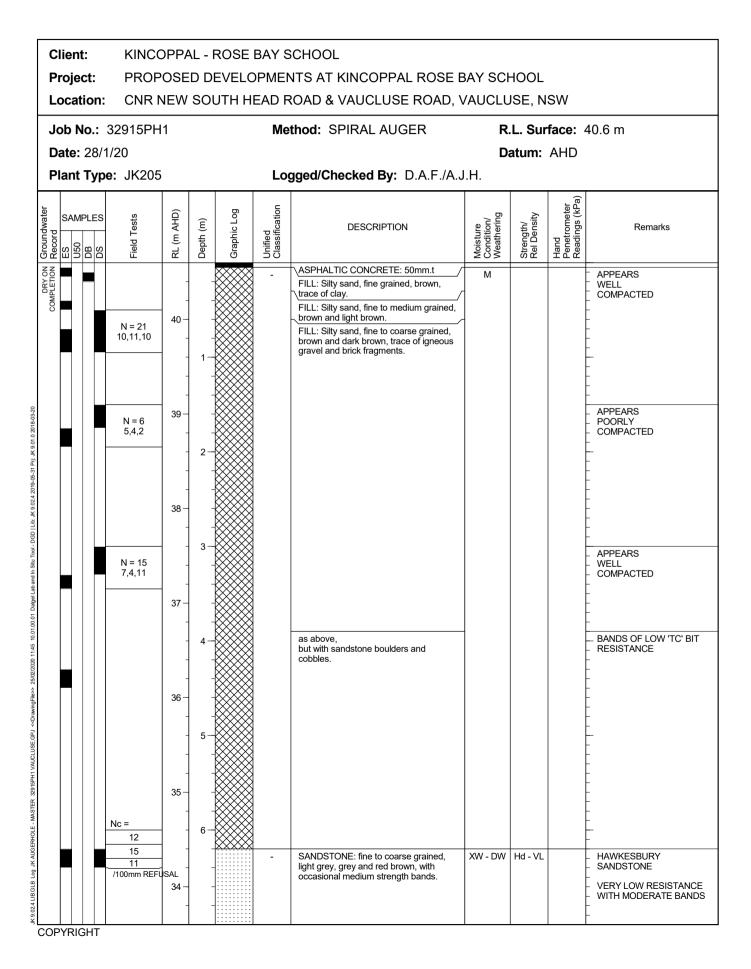
Appendix D: Borehole Logs

Borehole No. 1 1 / 1


PROPOSED ELC BUILDING

F	Pro	nt: ject atio	PROP	OSE	DD	EVELC	PME	SCHOOL NTS AT KINCOPPAL ROSE E ROAD & VAUCLUSE ROAD, N			SW	
			2915PH	1			Me	thod: SPIRAL AUGER			face: (35.1 m
		e: 2 nt T	20 : JK205				Lo	gged/Checked By: D.A.F./A.		atum:	AHD	
			 								a)	
Groundwater	ES ES	MPL DB D20	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION			N = 11 5,6,5	35 - - - - - - - - - - - - - - - - - -	- - - 1-		-	ASPHALTIC CONCRETE: 50mm.t FILL: Gravelly silty sand, fine to coarse grained, light grey, fine to medium grained igneous gravel. FILL: Silty sand, fine to coarse grained, light brown, trace of clay and fine to medium grained sandstone gravel.	M			APPEARS MODERATELY COMPACTED
j; JK 9.01.0 2018-03-20			N > 3 2,3/ 100mm REFUSAL /				-	SANDSTONE: fine to coarse grained, light grey and red brown. END OF BOREHOLE AT 2.00 m	DW	M - H		HAWKESBURY SANDSTONE
	PYE	RIGH		33- - - - - - - - - - - - - - - - - - -								HIGH 'TC' BIT RESISTANCE 'TC' BIT REFUSAL

PROPOSED ELC BUILDING


Borehole No. 2 2 / 2

PROPOSED ELC BUILDING

Client:	KINCOPI	PAL -	ROSE	BAY S	CHOOL				
Project:	PROPOS	SED D	EVELC	PME	NTS AT KINCOPPAL ROSE E	BAY SCH	HOOL		
Location:	CNR NE	N SO	UTH H	EAD F	COAD & VAUCLUSE ROAD, \	AUCLU	ISE, N	SW	
Job No.: 32	2915PH1			Ме	thod: SPIRAL AUGER	R.	L. Sur	face: 🗧	38.6 m
Date: 28/1/2	20						atum:	AHD	
Plant Type:	JK205			Lo	gged/Checked By: D.A.F./A.	J.H.			
Groundwater Record ES U50 DB DB DB	Field Tests RI (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
1d ON 3/220	3	- - - - 8-		SM	Silty SAND: fine to coarse grained, light orange brown, with clay, trace of fine to coarse grained ironstone gravel.	M	L		- - - - - - - - - - - - - - -
	3() 9	$\frac{5}{2}$	SW	Gravelly SAND: fine to coarse grained, light orange brown, fine to coarse grained ironstone gravel, with clay .	w			- - - - - - - -
	24 24 24 24 24 24 24 24				END OF BOREHOLE AT 9.20 m				GROUNDWATER MONITORING WELL INSTALLED TO 9.2m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 3.2m TO 9.2m. CASING 3.2m TO 0.2m. 2mm SAND FILTER PACK 2.8m TO 9.2m. BENTONITE SEAL 2.4m TO 2.8m. BACKFILLED WITH CUTTINGS TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.

Borehole No. 3 1 / 2

1	Client: Project:		SED [EVELC	PMEN	ITS AT KINCOPPAL ROSE E			0.44	
	Location:	2915PH1	wsc	UIHH		COAD & VAUCLUSE ROAD, V				40.6 m
	Date: 28/1				inc			atum:		10.0 m
	Plant Type	: JK205			Log	gged/Checked By: D.A.F./A.	J.H.			
Groundwater	SAMPLES DDB DB DB DB DB DB DB DB DB DB DB DB DB	Field Tests	RL (m AHD) Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
			<u>2</u> - - - - - - - - - - - - -		-	SANDSTONE: fine to coarse grained, light grey and grey, with occasional medium strength iron indurated bands.	ZW - DW	ਲੋਂ 윤 Hd - VL	Pe Re	VERY LOW RESISTANCE WITH MODERATE BANDS
IN 91/24 LIBGLE LOG AK AUGEMULE - MASIEK 229/37411 YAUCLUSE.GFU <quandens: -="" 0="" 02="" 10="" 11="" 11:45="" 13-03="" 1740-10="" 21="" 22="" 229="" 24<="" 29="" 3747="" ak="" augemule="" liqgle="" log="" masiek="" th=""><th></th><th>2</th><th>29 - - 12 - - - - - - - - - - - - - - - - - - -</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></quandens:>		2	29 - - 12 - - - - - - - - - - - - - - - - - - -							
_	PYRIGHT		-	_						-

Р	lient roje ocat	ct:	PROP	POSE	ED DE\	/ELOF	AY SCHOOL PMENTS AT KINCOPPAL ROSE F AD ROAD & VAUCLUSE ROAD, Y			SW	
J	ob N	o. : 3	2915PH	12			Method: SPIRAL AUGER	R	.L. Sur	face:	N/A
D	ate:	28/1/	20					D	atum:	AHD	
Р	lant	Туре	: JK205	5			Logged/Checked By: D.A.F./A.	J.H.			
Groundwater Record	SAMF N20	PLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
Completion Recompletion Recompl			Image: N = 7 3,4,3 N = 2 5,1,1				FILL: Silty sand, fine to coarse grained, brown and light brown, trace of root fibres.	XW - DW			GRASS COVER APPEARS POORLY COMPACTED HAWKESBURY SANDSTONE VERY LOW 'TC' BIT RESISTANCE 'TC' BIT REFUSAL 'TC' BIT REFUSAL
	PYRIC										-

Client: Project: Location:			PROP	KINCOPPAL - ROSE BAY SCHOOL PROPOSED DEVELOPMENTS AT KINCOPPAL ROSE BAY SCHOOL CNR NEW SOUTH HEAD ROAD & VAUCLUSE ROAD, VAUCLUSE, NSW											
J	Job	o No	.: 3	2915PH	2			Method: SPIRAL AUGER	R.L. Surface: N/A						
			8/1/							atum:	AHD				
Plant Type: JK205								Logged/Checked By: D.A.F./A.	Logged/Checked By: D.A.F./A.J.H.						
Groundwater	SAMPLES DB DB DB DB DB DB DB DB DB DB DB DB DB		Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks				
DRY ON COMPLETION			6,	N > 13 13/ 150mm REFUSAL	- - - 1 -			FILL: Silty sand, fine to coarse grained, brown and dark brown, with sandstone cobbles and boulders, trace of root fibres.	M			GRASS COVER APPEARS MODERATELY COMPACTED			
4 2019-05-31 Prj: JK 9.01.0 2018-0					- 2— -		-	SANDSTONE: fine to coarse grained, light brown.	DW	М		- HAWKESBURY - SANDSTONE - MODERATE TO HIGH 'TC' - BIT RESISTANCE			
								END OF BOREHOLE AT 2.50 m				- 'TC' BIT REFUSAL ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '			

	Client: Project: Location:		PROP	KINCOPPAL - ROSE BAY SCHOOL PROPOSED DEVELOPMENTS AT KINCOPPAL ROSE BAY SCHOOL CNR NEW SOUTH HEAD ROAD & VAUCLUSE ROAD, VAUCLUSE, NSW											
						50	UIHH								
	Job No.: 32915PH2								Method: HAND AUGER			R.L. Surface: 51.4 m			
	Date: 3/2/20 Plant Type:								Datum: AHD						
	Pla	int Ty	ype:		1	1	1 1	Lo	Logged/Checked By: D.A.F./A.J.H.						
Groundwater	Record			Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks		
DRY ON				REFER TO DCP TEST RESULTS	-				FILL: Silty sand, fine to coarse grained, dark brown, trace of roots and root	M		-	GRASS COVER		
					51 -			SM	Silty SAND: fine to medium grained,	м	MD		RESIDUAL		
					-	- - - 1-	-		Norange brown, trace of clay. ■ END OF BOREHOLE AT 0.50 m				HAND AUGER REFUSAL ON INFERRED SANDSTONE BEDROCK		
					-								-		
20					50							-	-		
2018-03-2					-								-		
j: JK 9.01.0					-	2-	-						-		
9-06-31 Pr					-								-		
9.02.4 201					49-								-		
					-		-						-		
Tool - DG					-	3-	-						- 		
and In Situ					48-								-		
Jatgel Lab					40 -								-		
01.00.01					-		-						-		
12:04 10.					-	4-							-		
25/02/2020					47								-		
ingFile>>					-		-						-		
J < <draw< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></draw<>					-								-		
CLUSE.GF					-	5-							-		
PH2 VAU					46								-		
IER 32915					-							-	-		
DLE - MAS						6-							-		
AUGERHC					-								-		
3 Log JK.					45 -								-		
K 9.024 LIBGLE LOg JK AUGERHOLE - MASTEK 22919PH2 VAUCLUSE.GP1 <cdtawingfin> 2502202 12.04 10.01.00.01 Dagle Lab and In Skii Tool - DGD Lib. JK 9.024 2019-05-31 PJ; JK 9.01 0.2019-03-20</cdtawingfin>													-		
		RIGH											-		

IK 0 00

С	lien	t:		KINCOPPAL - ROSE BAY SCHOOL											
	roje								NTS AT KINCOPPAL ROSE E						
Lo	oca	tior	ו:	CNR N	IEW	SO	JTH HE	EAD F	ROAD & VAUCLUSE ROAD, \	/AUCLU	ISE, N	SW			
Job No.: 32915PH2								Method: HAND AUGER			R.L. Surface: 51.8 m				
Date: 3/2/20											atum:	AHD			
Plant Type: Logged/Checked By: D.A.F./A.J.H.															
Groundwater Record	NAS NES	IPLE	S	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks		
DRY ON COMPLETION			R	EFER TO CP TEST ESULTS	_	-			FILL: Silty sand, fine to coarse grained, dark brown, trace of roots and root	М	_		-		
				ESULIS				SM	\fibres. \Silty SAND: fine to coarse grained, light [M	D		- RESIDUAL - HAND AUGER REFUSAL		
0					- 51 -	- - 1-			orange brown. END OF BOREHOLE AT 0.40 m				- ONINFERRED - ONINFERRED - SANDSTONE BEDROCK - -		
					- - 50 —	- - - 2							- - - - - - - -		
					- - 49 — -	- - - 3-							- - - - - - - - - - - - - - -		
					- 48	- - 4 -							- - - - - - - -		
					- 47 - -	- 5 -							-		
					- 46 — - -	- - 6 -							- - - - - - - -		
COP			-		- 45 –	-							-		

Client: Project: Location:		PRO	KINCOPPAL - ROSE BAY SCHOOL PROPOSED DEVELOPMENTS AT KINCOPPAL ROSE BAY SCHOOL CNR NEW SOUTH HEAD ROAD & VAUCLUSE ROAD, VAUCLUSE, NSW									
		32915P		1 3001		Method: HAND AUGER ROAD, VAUCEUSE, NSW R.L. Surface: N/A						
	Date: 3/2		115			Method. HAND AUGEN		atum:				
F	Plant Ty	pe:				Logged/Checked By: D.A.F./A.J.H.						
Groundwater	SAMPLE 0900 0900	LUS CON	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks		
		REFER TO DCP TEST RESULTS				FILL: Silty sand, fine to medium grained, brown, trace of roots and root fibres.	М			- GRASS COVER - - APPEARS - MODERATELY - COMPACTED		
			1-			as above, but grey and light brown, trace of fine to medium grained ironstone gravel, concrete fragments and slag.				APPEARS POORLY COMPACTED 		
		_			SC	Clayey SAND: fine to coarse grained, light brown.	W	VL	-	_ RESIDUAL		
	PYRIGH		2- 3- 4- 5- 6-			REFER TO CORED BOREHOLE LOG						

CORED BOREHOLE LOG

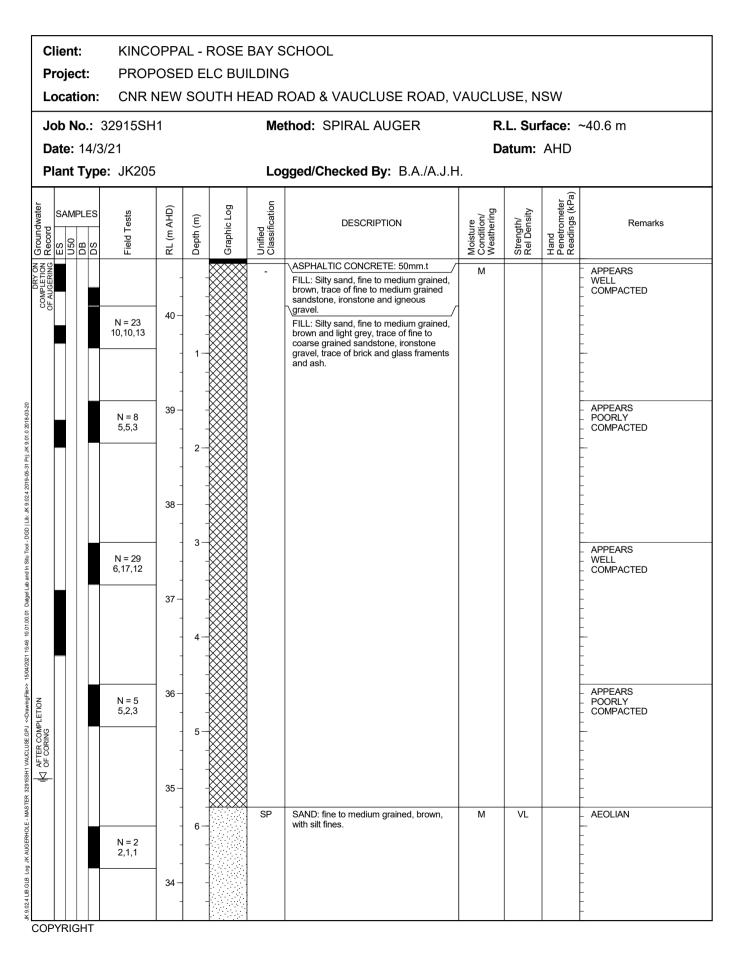
P	-	nt: ect: ation	PF	NCOPPAL - ROSE BAY SCH ROPOSED DEVELOPMENTS IR NEW SOUTH HEAD ROA	AT K						
J	ob	No.:	32915	5PH3 Core S	ize:	TT56				R.L. Surface: N/A	
D	ate	e: 3/2	2/20	Inclina	tion:	VER	TIC	CAL		Datum:	
P	lan	t Ty	pe: ME	ELVELLE Bearing	g: N/.	A				Logged/Checked By: D.A.F./A.J.	H.
				CORE DESCRIPTION				DINT LOAD		DEFECT DETAILS	
Water Loss/Level	Barrel Lift	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength		INDEX I _s (50)	(mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
				START CORING AT 1.80m NO CORE 0.32m							
		2-		NO CORE 0.32m						-	
				SANDSTONE: fine to coarse grained, light grey, orange brown and red brown, bedded at 0-15°.	DW	М		•0.50 •0.50 1 1 1 1 1 1 1 1 1 1 1 1 1		(2.36m) Be, 0°, Fe Sn	Hawkesbury Sandstone
		3-		as above,	FR					-	Haw
		4		but light grey and grey. NO CORE 0.15m SANDSTONE: fine to coarse grained, light grey. with grey laminae, bedded at 0-20°. Description END OF BOREHOLE AT 5.95 m	FR	M		*0.60 0.90 1.0 			Hawkesbury Sandstone
		7		END OF BOREHOLE AT 5.95 m						ONSIDERED TO BE DRILLING AND HANDLING BR	

	Client: Project: Location:						AY SCHOOL MENTS AT KINCOPPAL ROSE E	BAY SCH	HOOL		
		-					AD ROAD & VAUCLUSE ROAD, \			SW	
J	Jo	b No.:	32915PH	13			Method: HAND AUGER	R.	.L. Sur	face:	N/A
		te: 3/2							atum:		
	218 	ant Typ	be:				Logged/Checked By: D.A.F./A.J	I.H.		2	
Groundwater	Kecord		Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
COMPLETION	OF AUGERING		REFER TO DCP TEST RESULTS	-			FILL: Silty sand, fine to coarse grained, brown and dark brown, trace of fine to medium grained sandstone gravel, roots and root fibres. FILL: Silty sand, fine to coarse grained, light grange brown and brown with fine to medium	M			GRASS COVER APPEARS POORLY COMPACTED
K 9.024 LIBGLE Log JK AUGEPHOLE - MASTER 32915PH3 VAUCLUSE.GPJ < <drawngfile>> 25(022020) 1242 10:01:00:01 Dage Lab and In Stu Tool - DGD Lib. JK 9.024 2019-05-31 Prj. JK 9.010 2019-03-20</drawngfile>							range brown and brown, with fine to medium grained sandstone gravel and clay. REFER TO CORED BOREHOLE LOG				
		/RIGHT			-						-

CORED BOREHOLE LOG

		ien			NCOPPAL - ROSE BAY SCH						
		-	ect: tion		IR NEW SOUTH HEAD ROA						
	Jo	bl	No.:	32915	SPH3 Core S	ize: 🗅	ГТ56			R.L. Surface: N/A	
	Da	te	: 3/2	/20	Inclina			TICAL		Datum:	
	Pla	ant	t Typ	De: ME	ELVELLE Bearing	g: N/	A			Logged/Checked By: D.A.F./A.J.	H.
Water	Loss\Level	Barrel Lift	Depth (m)	Graphic Log	CORE DESCRIPTION Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	POINT LOAD STRENGTH INDEX Is(50)	SPACING (mm)	DEFECT DETAILS DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
					START CORING AT 0.90m						
8.01.0 Z010-00-Z0			1		SANDSTONE: fine to coarse grained, red brown and orange brown, bedded at 10-20°.	DW	H			– – – – (1.40m) Be, 10°, Fe Sn –	
arger Lab and in Situ 1 ool - DGD Lib: JK 9.02.4.2019-05-31 Pg: JK 9. 100%	RETURN		2		SANDSTONE: fe to coarse grained, light grey, with occasional grey laminae, bedded at 5-15°.	SW - FR	M	-	660 2900	— (2.42m) Be, 10°, Fe Sn	Hawkesbury Sandstone
awingFille>> 25/02/20/21/2:43 10:01:00:01 1			4		NO CORE 0.13m SANDSTONE: fine to coarse grained, light grey, with occasional grey laminae, bedded at 5-15°.	FR	M	0.80		- 	Hawkesbury Sandstone
			5 		END OF BOREHOLE AT 4.70 m					CONSIDERED TO BE DRILLING AND HANDLING BR	

002-002-00


IK 0 00

Client: Project: Location:	PROPOS	ED DE\	/ELOP	AY SCHOOL MENTS AT KINCOPPAL ROSE E			S/V/	
		v 5001		AD ROAD & VAUCLUSE ROAD, V				
Job No.: 32 Date: 3/2/20				Method: HAND AUGER		L. Sur atum:	face:	N/A
Plant Type:				Logged/Checked By: D.A.F./A.				
Groundwater Record DB DB DB DB DB DB DB DB DB DB C	Field Tests Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
	REFER TO DCP TEST RESULTS			FILL: Silty sand, fine to coarse grained, dark brown, trace of fine to coarse grained sandstone gravel.	М			APPEARS POORLY COMPACTED
	2			END OF BOREHOLE AT 0.45 m				HAND AUGER REFUSAL ON INFERRED SANDSTONE BEDROCK
	4							- - - - - - - - - -
COPYRIGHT	6							

JKGeotechnics

	Clie Proj						ROSE LC BUI		SCHOOL G				
I	_oc	ati	on:	CNR	NEW	SO	UTH H	EAD F	CAD & VAUCLUSE ROAD, \	/AUCLL	ISE, N	SW	
	Job	No	o.: :	32915SF	11			Ме	thod: SPIRAL AUGER	R	L. Sur	face: ~	~40.6 m
			14/3		_						atum:	AHD	
		nt 🗆	Туре	e: JK205	5	[Lo	gged/Checked By: B.A./A.J.H	1. T			
Groundwater	Kecord ES	AMP	DES SI	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
					-	_		SP	SAND: fine to medium grained, brown, with silt fines. (continued)	М	VL		_ AEOLIAN _ _
					33 -			-	Extremely Weathered sandstone: Sandy CLAY, low plasticity, brown, fine to medium grained sand, with silt fines.	xw	(Hd)		- - HAWKESBURY - SANDSTONE - VERY LOW 'TC' BIT - RESISTANCE
					- 32 -	-							
,					-	9-	-		REFER TO CORED BOREHOLE LOG				-
					31 — - -		-						- - - - - -
					30								-
					-	11	-						-
					29-		-					-	- - - -
					-	12							
					28-		-						- - - -
					-	-							-
	PYF				27	-	-						-

JKGeotechnics

CORED BOREHOLE LOG

	Pro	-	nt: ect: tion		PROPO	PPAL - ROSE BAY SCHOOL DSED ELC BUILDING EW SOUTH HEAD ROAD & \	/AUC	LUSI	E	ROA	D,	VAU	CLU	JSE, NSW	
	Jo	bl	No.:	329	915SH1	Core Size:	NML	С					R	.L. Surface: ~40.6 m	
	Da	te	: 14/	3/21	1	Inclination:	VER	TICA	۱L				D	atum: AHD	
	Pla	ant	t Typ	be:	JK205	Bearing: N	/A						L	ogged/Checked By: B.A./A.J.H.	
			_			CORE DESCRIPTION				OINT L				DEFECT DETAILS	
Water	Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components START CORING AT 9.00m	Weathering	Strength		INDE ا _s (50	X)	(mi	m)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
			- - 31- -	10-		SANDSTONE: fine to medium grained, light grey with occassional grey laminae, bedded at 0-10°.	FR	М-Н	_	•0.3	80			 (9.85m) XWS, 0°, 60 mm.t	
%0	RETURN		- - 30 — -			SANDSTONE: medium to coarse grained, light grey, yellow brown and dark brown, with quartz gravel, trace of occassional carbonaceous lenses, bedded at 0-15°.	HW			•0. •1				_ _ _ _ _ _ (10.86m) Be, 10°, P, R, Clay Ct	Hawkesbury Sandstone
			- - 29 — -	11 -				н		 				— (11.16m) Be, 3°, Ir, R, Fe Sn — (11.75m) Be, 2°, Ir, R, Fe Sn — (11.75m) Be, 2°, Ir, R, Fe Sn — (11.78m) Be, 3°, Ir, R, Fe Sn	Hawke
			-	12-		END OF BOREHOLE AT 12.44 m					1.6	6 6 0	99 9 		
			28 –		-	END OF BOREHOLE AT 12.44 III								-	
			-	13-										- - - - -	
			27 -		-									-	
			-	14 -											
			26 — - -	15-											
0			- - 25 –											- - - - -	
			GHT		-									- - - DERED TO BE DRILLING AND HANDLING BR	

COPYRIGHT

RACTURES NOT MARKED ARE CONSIDERED TO BE DRILLING AND HAND

F	lier roje .oca	ect:		PROF	POSE	DE	LC BUI	LDING	CHOOL G COAD & VAUCLUSE ROAD, Y		ISE N	SW	
				915SH			011111		thod: SPIRAL AUGER				~37.0 m
			عدد /3/2		11			we	IIIOU: SPIKAL AUGER		atum:		~37.0 11
				' JK205	5			Loc	gged/Checked By: B.A./A.J.H		aturn.		
									, , , , , , , , , , , , , , , , , , ,			a)	
Groundwater	SAN SAN		S SA	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION					-	-			FILL: Gravelly sand, fine to medium grained, brown, fine to medium grained ironstone, sandstone and igneous gravel.	м			- APPEARS - WELL - COMPACTED - -
				N = 21 9,15,6		- - 1			FILL: Sandstone and ironstone gravel, fine to coarse grained, light grey and orange brown.				- - - -
					-	-							-
				N = 15 7,11,4	35-								-
					-	-		-	SANDSTONE: fine to medium grained, light grey.	DW	M - H		HAWKESBURY SANDSTONE MODERATE TO HIGH 'TC'
					34 –	3-			as above.	_	н	_	- BIT RESISTANCE
					-	-			but yellow brown and orange brown.				-
5					-	-	-		END OF BOREHOLE AT 3.40 m				_ 'TC' BIT REFUSAL
					33-	4	-						- - - - - -
					- 32 -	- - - -	-						
					31	- - - - -	-						
	PYRI	GHT			-	-	-						-

Location: CNR NEW SOUTH HEAD ROAD & VAUCLUSE ROAD, VAUCLUSE, I	1311	
		~38.6 m
Date: 29/3/21 Datum:	AHD	
Plant Type: JK205 Logged/Checked By: B.A./A.J.H.		1
Groundwater Record ES DB Ub50 DB DB RL (m AHD) Rest Clashic Log Clashic Log Clashic Log Moisture Classification Strength/ Strength/	Hand Penetrometer Readings (kPa)	Remarks
N III III IIIIIIIIIIIIIIIIIIIIIIIIIIII		APPEARS POORLY COMPACTED COMPACTED

Client:		KINCC	PPA	\L -	ROSE	BAY S	CHOOL				
Project	:	PROP	OSE	DE	LC BUI	LDING	3				
Locatio	on:	CNR N	IEW	SO	ИТН НІ	EAD F	ROAD & VAUCLUSE ROAD, V	VAUCLU	ISE, N	SW	
Job No	o.: 329	915SH	1			Me	thod: SPIRAL AUGER	R.	L. Sur	face:	~38.6 m
Date: 2									atum:	AHD	
Plant T	ype:	JK205		1	1 1	Lo	gged/Checked By: B.A./A.J.H	ł.			
Groundwater Record U50 DB DB	.ES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
			-	-		SM	Silty SAND: fine to medium grained, dark brown, with clay fines. (continued)	М	(L)		_ AEOLIAN
			- 31 — -			CL	Sandy CLAY: low plasticity, light grey.	w>PL	(St - VSt)		RESIDUAL POSSIBLE WEATHERED DYKE? NOTE: CONTINUOUS SPIRAL AUGER DRILLING (i.e. NO IN-SITU TESTING)
			- 30	 							BELOW 6.95m DEPTH IN ORDER TO PROVE BEDROCK
			- 29 - -								- - - - - - - - - -
			- 28 — -	- - - - -							- - - - - - - -
			-	-	·····	-	INFERRED BEDROCK?	DW	M - H		 MODERATE TO HIGH 'TC' BIT RESISTANCE
,			27 -	-			END OF BOREHOLE AT 11.50 m				- _ 'TC' BIT REFUSAL - -
			-	12							-
			26 -								-
			-	13							-
COPYRIGH			- 25 — -		-						-

	Clie	ent:		KINCO	OPPA	\L -	ROSE	BAY S	CHOOL				
		ject:							RKING STRUCTURE				
_		atio				SO	UTH H		OAD & VAUCLUSE ROAD, \				
				2915SH	3			Me	thod: SPIRAL AUGER			face:	~51.6 m
		e: 2؛ nt דע		21 JK205				Lor	gged/Checked By: B.A./A.J.H		atum:		
-				011200	, 					 		a)	
Groundwater	ES (%)	AMPLE	ES SO	Field Tests	RL (m)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
ON COMPLETION DRY ON	RINE AUGERING					-		-	CONCRETE: 100mm.t FILL: Sand, fine to medium grained, brown, with fine to coarse grained sandstone gravel, trace of silt fines.	M			3 x 7mm DIA. REINFORCEMENT 25, 50 & 80mm TOP COVER APPEARS
ON COMPLE	OF CO			N = 12 6,6,6	-	1-			$_{\rm T}$ SANDSTONE: fine to medium grained, f	DW /	М-Н.		MODERATELY COMPACTED
					- 50 —	- - -	-	/	brown.				SANDSTONE HIGH 'TC' BIT RESISTANCE
					-	2-	-						- - - - -
					49	3-	-						- - - - -
					48-		-						
					47	-	-						
					-	5	-						
					46	6-							- - - - - -
					- 45 -	-	-						

CORED BOREHOLE LOG

P	-	nt: ect: ation		PROPO	PPAL - ROSE BAY SCHOOL DSED CAR / BUS PARKING S EW SOUTH HEAD ROAD & Y					۸D,	VA	.UC	CLU	JSE, NSW	
J	ob	No.:	329	915SH3	Core Size:	NML	С						R	.L. Surface: ~51.6 m	
	ate	: 25/	'3/2 <i>'</i>	1	Inclination:	VER	TICA	L					D	atum:	
P	lan	t Typ	be:	JK205	Bearing: N	/A							L	ogged/Checked By: B.A./A.J.H.	
	Γ				CORE DESCRIPTION									DEFECT DETAILS	
Water Loss/Level	Barrel Lift	RL (m)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength			EX D)		PACI (mm	1)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
					START CORING AT 1.18m				 					-	
		- 50 — - - -	2-		SANDSTONE: fine to medium grained, dark brown, and brown and red brown, bedded at 0-10°.	MW	M - H		•0	1.7 .80 1.4					
2018-00-1 Lil.		49	3-		as above,	SW	-		4 0 •0.5	.90 				(2.68m) Be, 20°, Ir, R, Fe Sn (2.70m) Be, 15°, P, R, Clay Ct (2.85m) Be, 9°, P, R, Clay Ct —(3.13m) Be, 3°, Ir, R, Fe Sn	one
50% 501 1001 001 001 001 000 000 000 000 00		- 48	4 -		but light brown.				•0.					- - - - - - (3.87m) Be, 20°, P, R, Fe Sn 	Hawkesbury Sandstone
		- 47 — - - -	5-		SANDSTONE: fine to medium grained, light grey, with grey laminae, bedded at 0-15°.	FR	-			.90 .80				– – – — (4.71m) Be, 8°, P, R, Clay Ct – – – – –	
		46	6-						•0	70 1				- - - -	
יאיי אייטאין דו איזע דער איייאי אייאין דו אייאין דו אייאין דו אייאין דו אייאין דו אייאין דו אייאין דער אייאין ד		- 45 - - 44	7-		END OF BOREHOLE AT 6.06 m							200		- - - - - - - - - - - - - - - - - -	
		ICHT												DERED TO BE DRILLING AND HANDLING BR	<u> </u>

COPYRIGHT

FRACTURES NOT MARKED ARE CONSIDERED TO BE DRILLING AND HANDLING BREAKS

	Clie Pro Loc	ject		PROP	OSE	DC	AR / B	US PA	CHOOL RKING STRUCTURE ROAD & VAUCLUSE ROAD, V			SW	
				2915SH		30	01111		thod: SPIRAL AUGER				~53.2 m
			25/3/2								atum:		
_			ype:	: JK205)			LO	gged/Checked By: B.A./A.J.H	т.			
Groundwater	Record ES 0	AMPL	ES	Field Tests	RL (m)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON	COMPLETION OF AUGERING			N = 4 3,2,2	53			-	CONCRETE: 120mm.t FILL: Sand, fine to medium grained, brown, with fine to coarse grained sandstone gravel, trace of silt fines.	M			Amm DIA. REINFORCEMENT 65mm TOP COVER APPEARS POORLY COMPACTED
					52-	1-		SM	Silty SAND: fine to medium grained, brown.	М	L		- - AEOLIAN -
7				N = 18 4,11,7	-	2-		SC	Clayey SAND: fine to medium grained, light grey and red brown, trace of ironstone gravel, and silt fines.		MD		_ RESIDUAL - - -
	ON 29/3/27				51								-
					-	-		-	SANDSTONE: fine to medium grained, brown.	DW	M - H		- HAWKESBURY - SANDSTONE
						3	-		REFER TO CORED BOREHOLE LOG				HIGH 'TC' BIT RESISTANCE GROUNDWATER MONITORING WELL INSTALLED TO 9.08m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 3.08m TO 9.08m. CASING 0.1m TO
					- 49 - -	4	-						3.08m. 2mm SAND FILTER PACK 0.5m TO 9.08m. BENTONITE SEAL 0.1m TO 0.5m. BACKFILLED WITH SAND TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.
					48	5	-						
	COPYRIGHT				47		-						- - - - - - -

JKGeotechnics

CORED BOREHOLE LOG

F	-	nt: ect: ation	KINCOPPAL - ROSE BAY SCHOOL PROPOSED CAR / BUS PARKING STRUCTURE CNR NEW SOUTH HEAD ROAD & VAUCLUSE ROAD, VAUCLUSE, NSW							USE, NSW				
J	ob	No.:	329	915SH3	3 Core Size:	NML	c					F	R.L. Surface: ~53.2 m	
	Date: 25/3/21			1	Inclination: VERTICAL							0	Datum:	
F	Plant Type: JK205		JK205	5 Bearing: N/A							L	.ogged/Checked By: B.A./A.J.H.		
					CORE DESCRIPTION				INT LO				DEFECT DETAILS	
Water	Barrel Lift	RL (m)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength				SPACI (mm	ו)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
		-		-	START CORING AT 2.87m								-	
		- 50 - -	3-		SANDSTONE: fine to medium grained, grey, brown and yellow brown, cross bedded at up to 22°.	MW	M - H		•1.5 •1.0 •1.0					
		49 48 	4 -		SANDSTONE: fine to medium grained, light brown and brown, bedded at 0-10°.	SW			•0.80 •1.0 •0.90	 				stone
		47	6-		SANDSTONE: fine to medium grained, light grey and yellow brown, bedded at 0-15°. as above, but light grey and light yellow brown, with occasional carbonaceous lenses.	FR	-		•0.80 •1.0					Hawkesbury Sandstone
-corton and a second		- - 46	7-						•0.70				(6.94m) Be, 15°, P, R, Clay Ct (6.95m) Be, 15°, P, R, Clay Ct (6.96m) Be, 15°, P, R, Clay Ct	
		-	8-	- - -					•0.60				(7.55m) Be, 3°, Ir, R, Clay Ct (7.77m) Be, 15°, P, R, Clay Ct	
		45 - - -	9-						+1.0 +0.90 +1.1	i I			– (8.48m) Be, 2°, P, R, Clay Ct – (8.77m) Be, 4°, P, R, Clay Ct	
		44 -			END OF BOREHOLE AT 9.08 m									
				-		FRACTI	JRES N		 MARKE				- IDERED TO BE DRILLING AND HANDLING BRI	

	Client: KINCOPPAL - ROSE BAY SCHOOL Project: PROPOSED CAR / BUS PARKING STRUCTURE													
	roje .ocat	ct: tion:						RKING STRUCTURE COAD & VAUCLUSE ROAD, \	/AUCLU	ISE, N	SW			
J	ob N	lo.:	32915SH	3			Me	Method: SPIRAL AUGER			R.L. Surface: ~49.4 m			
	Date: 25/3/21									atum:				
P	Plant Type: JK205						Logged/Checked By: B.A./A.J.H.							
Groundwater Record	SAM		Field Tests	RL (m)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks		
			N = 3 3,1,2	- 49 — -			-	CONCRETE: 90mm.t FILL: Gravelly sand, fine to medium grained, brown, fine to coarse grained igneous, ironstone and sandstone gravel.	M			NO OBSERVED REINFORCEMENT APPEARS POORLY COMPACTED		
ON COMPLETION			N > 8 1,1,7/ 100mm REFUSAL	- 48 — -	1			FILL: Silty sand, fine to medium grained, dark brown, trace of fine to coarse grained ironstone and sandstone gravel, trace of plastic and glass fragments, slag and organic matter.						
÷				-	2-		-	Extremely Weathered sandstone: clayey SAND, fine to medium grained, brown and yellow brown, trace of silt.	XW	D		- Hawkesbury - Sandstone -		
				47	-			SANDSTONE: fine to medium grained, light grey and orange brown.	DW	Μ		- MODERATE TO HIGH 'TC' - BIT RESISTANCE 		
				- - 46	3	-		REFER TO CORED BOREHOLE LOG				- 		
				- - 45 —	4	-						-		
				-	5-	-						- - - - - -		
				44	 									
				- 43		-								

CORED BOREHOLE LOG

F		oje	nt: ect: tion		PROP	PPAL - ROSE BAY SCHOOL DSED CAR / BUS PARKING S EW SOUTH HEAD ROAD & V	STRU	STRUCTURE (AUCLUSE ROAD, VAUCLUSE, NSW						
	lok	bl	No.:		915SH3									
	Date: 25/3/21		1	Inclination:	VER	D	atum:							
F	Pla	nt	t Typ	e:	JK205	Bearing: N	/A			L	ogged/Checked By: B.A./A.J.H.			
					_	CORE DESCRIPTION			POINT LOAD		DEFECT DETAILS			
Water	Rarral Lift	Barrel Lift	RL (m)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components		Strength	INDEX I₅(50)	(mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation		
			- 47 — -		- - - - - -	START CORING AT 2.84m					- - - - - - -			
			- - 46 -	3-		SANDSTONE: fine to medium grained, brown and light brown, bedded at 0-5°	HW	M	•0.50 •0.40 1 		- - - - - - -			
20%	RETURN		- - 45 -	4 -	as above, but light grey and light yellow brown. SW		•0.70 •0.60 			Hawkesbury Sandstone				
			- - 44 -	5-			FR	M - H	0.90 ↓	600	_ ⊆ (4.71m) XWS, 0°, 20-30mm.t 	Hav		
			- 43 -	6-	- - - - - - - - - -	END OF BOREHOLE AT 5.91 m								
			- 42 -	7-										
			41 - - - 	0							- - - - - - - - - - - - - - - - - - -			

ENVIRONMENTAL LOGS EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	> 50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)		
Very Soft (VS)	≤25	≤12		
Soft (S)	> 25 and \leq 50	> 12 and \leq 25		
Firm (F)	> 50 and \leq 100	> 25 and \leq 50		
Stiff (St)	$>$ 100 and \leq 200	> 50 and ≤ 100		
Very Stiff (VSt)	$>$ 200 and \leq 400	$>$ 100 and \leq 200		
Hard (Hd)	> 400	> 200		
Friable (Fr)	Strength not attainable – soil crumbles			

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the

structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

• In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'N_c' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

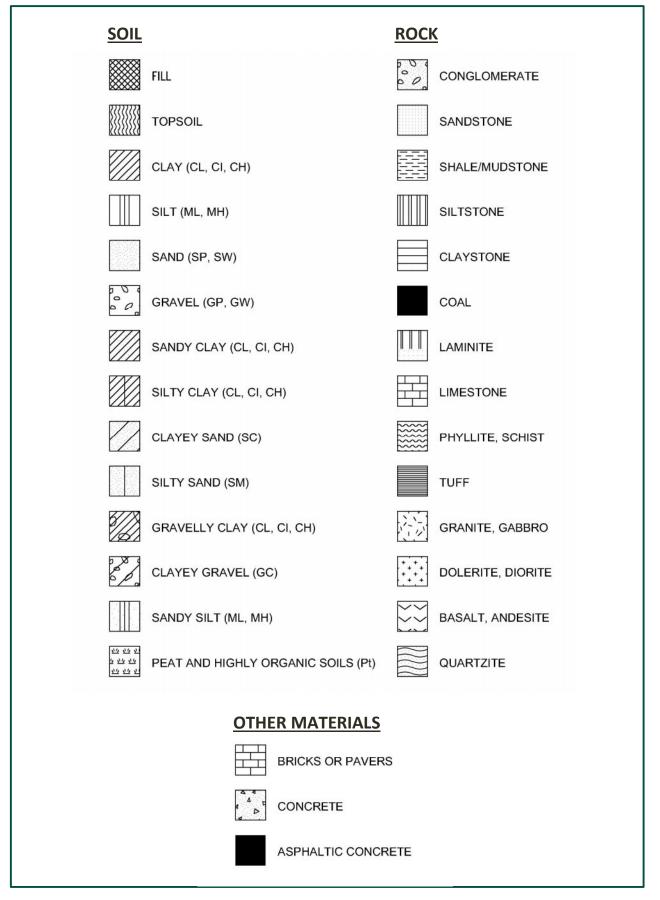
Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.


The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.

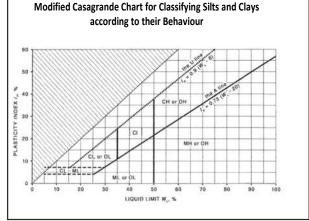
SYMBOL LEGENDS

CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Ma	Major Divisions		Typical Names	Field Classification of Sand and Gravel	Laboratory Classification		
ianis	GRAVEL (more than half	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >4 1 <c<sub>c<3</c<sub>	
oversize fraction is	of coarse fraction is larger than 2.36mm	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above	
		GM	Gravel-silt mixtures and gravel- sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt	
e than 65% of soil exclu greater than 0.075mm)		GC	Gravel-clay mixtures and gravel- sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay	
than 65% sater than	SAND (more than half	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Cu>6 1 <cc<3< td=""></cc<3<>	
ail (mare. gn	of coarse fraction is smaller than	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above	
Coarse grained soil (more than 65% of soil excluding greater than 0.0075mm)	2.36mm)	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty		
Coarse		SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A	

		Group			Laboratory Classification		
Majo	or Divisions	Symbol	Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm
gnbu	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line
inegrained soils (more than 35% of soil excluding oversize fraction is less than 0.075mm)	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line
an 35% ss than		OL	Organic silt	Low to medium	Slow	Low	Below A line
onisle	SILT and CLAY	MH	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line
soils (m te fracti	(high plasticity)	СН	Inorganic clay of high plasticity	High to very high	None	High	Above A line
regrained		ОН	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line
.=	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-

Laboratory Classification Criteria


A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:

$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10}D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES:

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- 2 Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- 4 The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

JKEnvironments

LOG SYMBOLS

Log Column	Symbol	Definition					
Groundwater Record	—	Standing water level. Ti	me delay following compl	etion of drilling/excavation may be shown.			
	— с —	Extent of borehole/test	pit collapse shortly after o	drilling/excavation.			
		Groundwater seepage i	nto borehole or test pit no	oted during drilling or excavation.			
Samples	ES	Sample taken over dept	h indicated, for environm	ental analysis.			
	U50	Undisturbed 50mm diar	neter tube sample taken	over depth indicated.			
	DB		aken over depth indicated				
	DS	-	nple taken over depth ind				
	ASB		lepth indicated, for asbes	-			
	ASS		lepth indicated, for acid s	-			
	SAL	Soil sample taken over o	lepth indicated, for salinit	y analysis.			
	PFAS	Soil sample taken over o	lepth indicated, for analys	sis of Per- and Polyfluoroalkyl Substances.			
Field Tests	N = 17 4, 7, 10		150mm penetration. 'Refu	tween depths indicated by lines. Individual isal' refers to apparent hammer refusal within			
	N _c = 5	Solid Cone Penetration	Test (SCPT) performed b	etween depths indicated by lines. Individual			
	7	figures show blows per :	150mm penetration for 60	0° solid cone driven by SPT hammer. 'R' refers			
	3R	to apparent hammer re	fusal within the correspor	nding 150mm depth increment.			
	VNS = 25	Vano shoar roading in k	Pa of undrained shear stre	anoth			
	PID = 100	-	or reading in ppm (soil sam	-			
	FID = 100						
Moisture Condition	w > PL		ated to be greater than pl				
(Fine Grained Soils)	w≈PL	Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit.					
	w < PL						
	w≈LL w>LL	Moisture content estimated to be near liquid limit. Moisture content estimated to be wet of liquid limit.					
(Coorse Crained Saile)							
(Coarse Grained Soils)	D	 DRY – runs freely through fingers. MOIST – does not run freely but no free water visible on soil surface. 					
	M W	WET – free water visible on soil surface.					
Strongth (Consistoney)							
Strength (Consistency) Cohesive Soils	VS S		fined compressive streng				
	F		fined compressive streng				
	St			th > 50kPa and \leq 100kPa.			
	VSt			th > 100kPa and \leq 200kPa.			
	Hd			th > 200kPa and \leq 400kPa.			
	Fr		fined compressive streng				
	()		gth not attainable, soil cru				
		assessment.	cates estimated consiste	ncy based on tactile examination or other			
Density Index/ Relative Density			Density Index (I _D) Range (%)	SPT 'N' Value Range (Blows/300mm)			
(Cohesionless Soils)	VL	VERY LOOSE	≤15	0-4			
	L	LOOSE	$>$ 15 and \leq 35	4-10			
	MD	MEDIUM DENSE	$>$ 35 and \leq 65	10-30			
	D	DENSE	$>$ 65 and \leq 85	30 – 50			
	VD	VERY DENSE	> 85	> 50			
	()	Bracketed symbol indica	ates estimated density bas	sed on ease of drilling or other assessment.			

Log Column	Symbol	Definition			
Hand Penetrometer Readings	300 250	Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.			
Remarks	'V' bit	Hardened steel '	/' shaped bit.		
	'TC' bit	Twin pronged tu	ngsten carbide bit.		
	T_{60}	Penetration of auger string in mm under static load of rig applied by drill head hy without rotation of augers.			
	Soil Origin	The geological or	igin of the soil can generally be described as:		
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock. 		
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock. 		
		ALLUVIAL	 soil deposited by creeks and rivers. 		
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents. 		
		MARINE	 soil deposited in a marine environment. 		
		AEOLIAN	 soil carried and deposited by wind. 		
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits. 		
		LITTORAL	 beach deposited soil. 		

Classification of Material Weathering

Term		Abbre	viation	Definition		
Residual Soil	RS		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible but the soil has not been significantly transported.			
Extremely Weathered	XW		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.			
Highly Weathered	Distinctly Weathered	HW	DW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.		
Moderately Weathered	(Note 1) derately Weathered			The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.		
Slightly Weathered	S	W	Rock is partially discoloured with staining or bleaching along joints but show little or no change of strength from fresh rock.			
Fresh	Fresh			Rock shows no sign of decomposition of individual minerals or colour changes.		

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: '*Rock strength usually changed by weathering.* The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

				Guide to Strength
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index Is ₍₅₀₎ (MPa)	Field Assessment
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium Strength	М	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High Strength	EH	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

Appendix E: Laboratory Reports & COC Documents

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 235671

Client Details	
Client	Environmental Investigation Services
Attention	A Barkway
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32915BD, Vaucluse
Number of Samples	35 Soil
Date samples received	22/01/2020
Date completed instructions received	22/01/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 07/02/2020

 Date of Issue
 07/02/2020

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Aida Marner Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Josh Williams, Senior Chemist Loren Bardwell, Senior Chemist Lucy Zhu, Asbestos Supervisor Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		235671-1	235671-6	235671-7	235671-15	235671-21
Your Reference	UNITS	BH1	BH2	BH2	BH3	BH4
Depth		0.05-0.15	0.1-0.2	0.75-0.95	0.4-0.5	0-0.1
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020	28/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	01/02/2020	01/02/2020	01/02/2020	01/02/2020	01/02/2020
Date analysed	-	01/02/2020	01/02/2020	01/02/2020	01/02/2020	01/02/2020
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	95	80	91	86	80
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		235671-22	235671-27	235671-30	235671-33	
Your Reference	UNITS	BH4	BH5	BH5	SDUP2	
Depth		0.5-0.6	0-0.1	1.7-1.8	-	
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020	
Type of sample		Soil	Soil	Soil	Soil	
Date extracted	-	01/02/2020	01/02/2020	01/02/2020	01/02/2020	
Date analysed	-	01/02/2020	01/02/2020	01/02/2020	01/02/2020	
TRH C6 - C9	mg/kg	<25	<25	<25	<25	
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	
vTPH C_6 - C_{10} less BTEX (F1)	mg/kg	<25	<25	<25	<25	
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	
Toluene Ethylbenzene			<0.5 <1	<0.5 <1	<0.5 <1	
	mg/kg	<0.5				
Ethylbenzene	mg/kg mg/kg	<0.5 <1	<1	<1	<1	
Ethylbenzene m+p-xylene	mg/kg mg/kg mg/kg	<0.5 <1 <2	<1 <2	<1 <2	<1 <2	
Ethylbenzene m+p-xylene o-Xylene	mg/kg mg/kg mg/kg mg/kg	<0.5 <1 <2 <1	<1 <2 <1	<1 <2 <1	<1 <2 <1	

svTRH (C10-C40) in Soil						
Our Reference		235671-1	235671-6	235671-7	235671-15	235671-21
Your Reference	UNITS	BH1	BH2	BH2	BH3	BH4
Depth		0.05-0.15	0.1-0.2	0.75-0.95	0.4-0.5	0-0.1
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020	28/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	01/02/2020	01/02/2020	01/02/2020	01/02/2020	01/02/2020
Date analysed	-	05/02/2020	05/02/2020	05/02/2020	05/02/2020	05/02/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	170	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	280	200	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	350	190	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	360	350	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	720	540	<50	<50	<50
Surrogate o-Terphenyl	%	113	72	70	66	78

svTRH (C10-C40) in Soil					
Our Reference		235671-22	235671-27	235671-30	235671-33
Your Reference	UNITS	BH4	BH5	BH5	SDUP2
Depth		0.5-0.6	0-0.1	1.7-1.8	-
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	01/02/2020	01/02/2020	01/02/2020	01/02/2020
Date analysed	-	05/02/2020	05/02/2020	05/02/2020	05/02/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	220
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	160	<100	230
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	400
Total +ve TRH (>C10-C40)	mg/kg	<50	160	<50	630
Surrogate o-Terphenyl	%	102	64	85	88

PAHs in Soil						
Our Reference		235671-1	235671-6	235671-7	235671-15	235671-21
Your Reference	UNITS	BH1	BH2	BH2	BH3	BH4
Depth		0.05-0.15	0.1-0.2	0.75-0.95	0.4-0.5	0-0.1
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020	28/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	01/02/2020	01/02/2020	01/02/2020	01/02/2020	01/02/2020
Date analysed	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020	06/02/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	1.7	0.1	<0.1	<0.1	0.2
Anthracene	mg/kg	0.4	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	2.2	0.2	0.2	0.1	0.6
Pyrene	mg/kg	2.3	0.3	0.2	0.2	0.7
Benzo(a)anthracene	mg/kg	0.9	<0.1	0.1	<0.1	0.4
Chrysene	mg/kg	1	<0.1	0.1	0.1	0.4
Benzo(b,j+k)fluoranthene	mg/kg	1	0.2	<0.2	<0.2	0.7
Benzo(a)pyrene	mg/kg	0.80	0.2	0.1	<0.05	0.4
Indeno(1,2,3-c,d)pyrene	mg/kg	0.3	<0.1	<0.1	<0.1	0.2
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.5	0.1	<0.1	<0.1	0.3
Total +ve PAH's	mg/kg	11	1.2	0.72	0.5	3.9
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.0	<0.5	<0.5	<0.5	0.6
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.1	<0.5	<0.5	<0.5	0.6
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.1	<0.5	<0.5	<0.5	0.7
Surrogate p-Terphenyl-d14	%	84	85	83	80	83

PAHs in Soil					
Our Reference		235671-22	235671-27	235671-30	235671-33
Your Reference	UNITS	BH4	BH5	BH5	SDUP2
Depth		0.5-0.6	0-0.1	1.7-1.8	-
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	01/02/2020	01/02/2020	01/02/2020	01/02/2020
Date analysed	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020
Naphthalene	mg/kg	<0.1	0.2	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	0.9	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	2.0	<0.1	0.1
Anthracene	mg/kg	<0.1	0.6	<0.1	<0.1
Fluoranthene	mg/kg	0.1	2.7	<0.1	0.2
Pyrene	mg/kg	<0.1	2.6	<0.1	0.2
Benzo(a)anthracene	mg/kg	<0.1	1.3	<0.1	0.1
Chrysene	mg/kg	<0.1	1.3	<0.1	0.2
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	1.2	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.5	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.6	<0.1	<0.1
Total +ve PAH's	mg/kg	0.1	15	<0.05	0.73
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	1.6	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	1.6	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	1.6	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	81	87	83	76

Organochlorine Pesticides in soil					
Our Reference		235671-1	235671-6	235671-21	235671-27
Your Reference	UNITS	BH1	BH2	BH4	BH5
Depth		0.05-0.15	0.1-0.2	0-0.1	0-0.1
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	01/02/2020	01/02/2020	01/02/2020	01/02/2020
Date analysed	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	122	116	123	119

Organophosphorus Pesticides in Soil					
Our Reference		235671-1	235671-6	235671-21	235671-27
Your Reference	UNITS	BH1	BH2	BH4	BH5
Depth		0.05-0.15	0.1-0.2	0-0.1	0-0.1
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	01/02/2020	01/02/2020	01/02/2020	01/02/2020
Date analysed	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	122	116	123	119

PCBs in Soil					
Our Reference		235671-1	235671-6	235671-21	235671-27
Your Reference	UNITS	BH1	BH2	BH4	BH5
Depth		0.05-0.15	0.1-0.2	0-0.1	0-0.1
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	01/02/2020	01/02/2020	01/02/2020	01/02/2020
Date analysed	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	122	116	123	119

Acid Extractable metals in soil						
Our Reference		235671-1	235671-6	235671-7	235671-15	235671-21
Your Reference	UNITS	BH1	BH2	BH2	BH3	BH4
Depth		0.05-0.15	0.1-0.2	0.75-0.95	0.4-0.5	0-0.1
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020	28/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/02/2020	03/02/2020	03/02/2020	03/02/2020	03/02/2020
Date analysed	-	03/02/2020	03/02/2020	03/02/2020	03/02/2020	03/02/2020
Arsenic	mg/kg	<4	9	12	34	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	12	84	9	8	5
Copper	mg/kg	54	51	25	9	10
Lead	mg/kg	17	250	810	69	45
Mercury	mg/kg	<0.1	0.2	2.4	0.2	<0.1
Nickel	mg/kg	8	15	3	5	1
Zinc	mg/kg	39	91	330	39	42

Acid Extractable metals in soil					
Our Reference		235671-22	235671-27	235671-30	235671-33
Your Reference	UNITS	BH4	BH5	BH5	SDUP2
Depth		0.5-0.6	0-0.1	1.7-1.8	-
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	03/02/2020	03/02/2020	03/02/2020	03/02/2020
Date analysed	-	03/02/2020	03/02/2020	03/02/2020	03/02/2020
Arsenic	mg/kg	<4	<4	<4	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	7	6	17	62
Copper	mg/kg	3	14	2	51
Lead	mg/kg	16	49	19	170
Mercury	mg/kg	<0.1	<0.1	<0.1	0.1
Nickel	mg/kg	1	2	1	12
Zinc	mg/kg	13	55	31	130

Moisture						
Our Reference		235671-1	235671-6	235671-7	235671-15	235671-21
Your Reference	UNITS	BH1	BH2	BH2	BH3	BH4
Depth		0.05-0.15	0.1-0.2	0.75-0.95	0.4-0.5	0-0.1
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020	28/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	01/02/2020	01/02/2020	01/02/2020	01/02/2020	01/02/2020
Date analysed	-	03/02/2020	03/02/2020	03/02/2020	03/02/2020	03/02/2020
Moisture	%	8.1	5.2	8.1	12	5.1
Moisture						
Our Reference		235671-22	235671-27	235671-30	235671-33	
Your Reference	UNITS	BH4	BH5	BH5	SDUP2	
Depth		0.5-0.6	0-0.1	1.7-1.8	-	
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020	
Type of sample		Soil	Soil	Soil	Soil	
Date prepared	-	01/02/2020	01/02/2020	01/02/2020	01/02/2020	
Date analysed	-	03/02/2020	03/02/2020	03/02/2020	03/02/2020	
Moisture	%	4.3	9.3	6.9	4.8	

Asbestos ID - soils NEPM - ASB-001					
Our Reference		235671-5	235671-13	235671-26	235671-31
Your Reference	UNITS	BH1	BH2	BH4	BH5
Depth		0.05-0.15	0.2-0.5	0.1-0.3	0-0.3
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020
Type of sample		Soil	Soil	Soil	Soil
Date analysed	-	05/02/2020	05/02/2020	05/02/2020	05/02/2020
Sample mass tested	g	961.42	766.54	988.25	773.5
Sample Description	-	Brown coarse- grained soil & rocks			
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg			
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	-	-	-
FA and AF Estimation*	g	-	-	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
AT-008	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).

Method ID	Methodology Summary
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.
Org-012/017	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS and/or GC-MS/MS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	BTEXN in Soil			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	[NT]
Date extracted	-			01/02/2020	[NT]		[NT]	[NT]	01/02/2020	
Date analysed	-			01/02/2020	[NT]		[NT]	[NT]	01/02/2020	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	104	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	104	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	102	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	102	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	105	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	105	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	104	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	93	[NT]		[NT]	[NT]	99	

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	[NT]
Date extracted	-			01/02/2020	[NT]		[NT]	[NT]	01/02/2020	
Date analysed	-			05/02/2020	[NT]		[NT]	[NT]	05/02/2020	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	79	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	76	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	123	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	79	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	76	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	123	
Surrogate o-Terphenyl	%		Org-003	100	[NT]		[NT]	[NT]	108	

QUALI		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	[NT]
Date extracted	-			01/02/2020	[NT]		[NT]	[NT]	01/02/2020	
Date analysed	-			06/02/2020	[NT]		[NT]	[NT]	06/02/2020	
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	106	
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	88	
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	110	
Anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	110	
Pyrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	120	
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	100	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	[NT]		[NT]	[NT]	114	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012/017	82	[NT]		[NT]	[NT]	88	

QUALITY CO	Du	plicate	Spike Rec	Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	[NT]
Date extracted	-			01/02/2020	[NT]		[NT]	[NT]	01/02/2020	
Date analysed	-			06/02/2020	[NT]		[NT]	[NT]	06/02/2020	
alpha-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	87	
НСВ	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	92	
gamma-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	79	
delta-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	96	
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	87	
gamma-Chlordane	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	106	
Dieldrin	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	110	
Endrin	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	94	
Endosulfan II	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	102	
Endrin Aldehyde	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	83	
Methoxychlor	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-012/017	123	[NT]		[NT]	[NT]	119	

QUALITY CONTRO	L: Organoph	Pesticides in Soil			Du	Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	[NT]
Date extracted	-			01/02/2020	[NT]		[NT]	[NT]	01/02/2020	
Date analysed	-			06/02/2020	[NT]		[NT]	[NT]	06/02/2020	
Dichlorvos	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	130	
Dimethoate	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	94	
Fenitrothion	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	87	
Malathion	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	91	
Chlorpyriphos	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	98	
Parathion	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	82	
Bromophos-ethyl	mg/kg	0.1	AT-008	<0.1	[NT]		[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	102	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-012/017	123	[NT]		[NT]	[NT]	119	

QUALIT	QUALITY CONTROL: PCBs in Soil								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	[NT]
Date extracted	-			01/02/2020	[NT]		[NT]	[NT]	01/02/2020	
Date analysed	-			06/02/2020	[NT]		[NT]	[NT]	06/02/2020	
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	100	
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-006	123	[NT]		[NT]	[NT]	119	

QUALITY CONT	QUALITY CONTROL: Acid Extractable metals in soil								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	[NT]
Date prepared	-			03/02/2020	[NT]	[NT]		[NT]	03/02/2020	
Date analysed	-			03/02/2020	[NT]	[NT]		[NT]	03/02/2020	
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]		[NT]	106	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]		[NT]	103	
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	107	
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	109	
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	111	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]		[NT]	88	
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	104	
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	113	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	A Barkway

Sample Login Details	
Your reference	E32915BD, Vaucluse
Envirolab Reference	235671
Date Sample Received	22/01/2020
Date Instructions Received	22/01/2020
Date Results Expected to be Reported	07/02/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	35 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	15.0
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	On Hold
BH1-0.05-0.15	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓		
BH1-0.6-0.7									\checkmark
BH1-1.3-1.5									\checkmark
BH1-1.75-1.85									\checkmark
BH1-0.05-0.15								\checkmark	
BH2-0.1-0.2	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓		
BH2-0.75-0.95	✓	\checkmark	\checkmark				✓		
BH2-1.7-1.95									✓
BH2-2.8-3									✓ ✓ ✓
BH2-4.2-4.3									\checkmark
BH2-4.8-4.95									
BH2-8.5-8.7									✓
BH2-0.2-0.5								\checkmark	
BH3-0.05-0.15									✓
BH3-0.4-0.5	✓	✓	✓				✓		
BH3-0.7-0.95									\checkmark
BH3-1.7-1.95									✓
BH3-3.3-3.45									✓ ✓ ✓
BH3-4.3-4.5									\checkmark
BH3-6.2-6.4									✓
BH4-0-0.1	✓	✓	\checkmark	✓	✓	✓	✓		
BH4-0.5-0.6	✓	✓	\checkmark				✓		
BH4-1-1.15									✓
BH4-1.7-1.95									✓
BH4-2.7-2.9									✓
BH4-0.1-0.3								✓	
BH5-0-0.1	✓	✓	✓	✓	✓	✓	✓		
BH5-0.4-0.5									✓
BH5-1-1.1									✓
BH5-1.7-1.8	✓	\checkmark	\checkmark				✓		
BH5-0-0.3								✓	
SDUP1									✓

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	On Hold
SDUP2	\checkmark	\checkmark	\checkmark				✓		
SDUP3									\checkmark
SDUP4									\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

	ROLAB	L. swo	olal. Service 12 Ashley S port NSW 206	St 57											2		1	
Job	No:		02) 9910 620 5 (_										ľ	00	3	0(1		
	D	15	567	- -	29/	1/202								00	IS	SC)	
Date Time	e Rece e Rece	ived:	5:50.		16-2	1/20 } sample	·s .									Ş		
Rece	eive <u>d t</u>	¥٧: ۲																
		Ambient	>	SAM	PLE AN	ND CHAIN OF CUS	то	<u>DY FO</u>	ORM				<u>.</u>					
D: Seci	urity: /r	itact Broke				E32915BD					FROM							
IVIROLAB SE		PIYLID		EIS Job Number:		5231360						_ B k	(Er	wir	or	h	en	ts
		167		Date Resu	lte	STANDARD					REAR (WICKS				0	
(02) 991062 (02) 991062				Required:	11.5						MACQ	UARIE	PARK,	NSW 2	2113			
				Page:		1 of 2		,		I	P: 02-9 Attent		000	F:	02-9	888 50	01	
tention: Aile	en			F 462.	<u> </u>						_		<u>jkenvir</u>			om.au		
cation:	Vauclu	se								Sam			d in Esk guired	y on l	ce			_
ampler:	MMP			<u>, </u>			·				- r				Τ			
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description		Combo 3	Combo 6		Asbestos WA	НОГD						
8.1.20	i	BH1	0.05-0.15	G, A	0.4	F: Gravelly silty sand			x									
8.1.20	2	BH1	0.6-0.7	G, A	0.6	F: Silty sand						х						
8.1.20	2	BH1	1.3-1.5	G, A	1.5	F: Silty sand						х						
	4	BH1	1.75-1.85	G	1.6	Sandstone						х						
8.1.20	E	BH1	0.05-0.15	A		F: Gravelly silty sand				_	'x							
<u>3.1.20</u>	1	BH1	0.1-0.2	G, A	0.3	F: Silty sand			x									
8.1.20	7		0.75-0.95	G, A	0.6	F: Silty sand		x		_								
8.1.20	8	BH2	1.7-1.95	G, A	0.7	F: Silty sand						х						
8.1.20	q	BH2	2.8-3	G, A	0.3	F: Silty sand						х						
8.1.20	10	BH2 BH2	4.2-4.3	G	1.4	Silty sand		[X						
8.1.20	1	BH2 BH2	4.2-4.3	G	1.9	Silty sand						x						
8.1.20	12	BH2	8.5-8.7	G	8.9	Sandstone						х						
8.1.20	13	BH2	0.2-0.5	A	-	F: Silty sand	ľ	[×							
8.1.20	14	ВНЗ	0.05-0.15	G, A	0.6	F: Silty sand	1					x						
28.1.20	17	ВНЗ	0.4-0.5	G, A	1.1	F: Silty sand		x										
28.1.20	15 Ib	внз	0.7-0.95	G, A	0.5	F: Silty sand			·			x						
28.1.20		BH3	1.7-1.95	G, A	0.5	F: Silty sand						x						
28.1.20	18	внз	3.3-3.45	G, A	0.8	F: Silty sand						x						
8.1.20	19	внз	4.3-4.5	G, A	2.2	F: Silty sand						×						
28.1.20	20	BH3	6.2-6.4	G	4.2	Sandstone						×						
28.1.20	21	8H4	0-0.1	G, A	0.5	F: Silty sand			x						_	<u> </u>		
	77	BH4	0.5-0.6	G, A	2.2	F: Silty sand		x										
28.1.20	172	BH4	1-1.15	G, A	0.4	F: Silty sand						x					L	
28.1.20	100 170	BH4	1.7-1.95	G, A	1.6	F: Silty sand						x						
28.1.20	175	BH4 BH4	2.7-2.9	G	2	Sandstone						x						
28.1.20 Remarks (co	mment		limits require		<u> </u>	<u> </u>	G - 2 A - 2	250mg	ontaine Glass Asbe: Bag	Jar	ag	·	<u> </u>					
Relinquishe	d By: Aı	nthony Barky	way	Date: 3	0.01.2020)	Tim				Rece	eived E	By:			Date		
l							1					Λ				13	20/	(

235671

SAMPLE AND CHAIN OF CUSTODY FORM

<u>TO:</u> ENVIROLAB S 12 ASHLEY ST CHATSWOOD	REET			EIS Job Number:		E32915BD	,				FROM	لک ل			iro	nm	ıen	Its
P: (02) 99106 F: (02) 99106				Date Resu Required:		STANDARD					мас	REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001						
Attention: Ail	leen			Page:		2 of 2	× •				Atter	ition:	I		nents.c			_
Location:	Vauclu	se								San	nple Pr	_			n Ice			
Sampler:	ммр		T	r. <u> </u>				. –			т ——	ests R	equire	d				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description			Combo 3	Combo 6		Asbestos WA	ногр					
28.1.20	26	вн4	0.1-0.3	А	-	F: Silty sand						×						
28.1.20	27	вн5	0-0.1	G, A	3.4	F: Silty sand				х		L]
28.1.20	28	BH5	0.4-0.5	G, A	2.8	F: Silty sand							X					
28.1.20	29	BH5	1-1.1	G, A	6.4	F: Silty sand	_						×					
28.1.20	30	BH5	1.7-1.8	G	7.7	Sanstone			×		<u> </u>		 					<u> </u>
28.1.20	31	вн5	0-0.3	G	-	F: Silty sand						×	-					<u> </u>
28.1.20	32	SDUP1		G	-	Soil	 _						×				'	
28.1.20	33	SDUP2	-	G	-	Soil			<u>×</u>								<u> </u>	
28.1.20	34	SDUP3		G		Soil	· ·	ļ	ļ	-			X			 	<u> </u>	<u> </u>
28.1.20	35	SDUP4		G	-	Soil							×	<u> </u>	<u> </u>		<u> </u>	_−
								-						┨—			┣_	
				<u> </u>		ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>		ļ					—	┣──
L								<u> </u>		_								
		· · · · · ·		<u> </u>						-					+			–-
		ļ					<u> </u>	<u> </u>		$\left \right $		+	+					┼
<u> </u>							<u> </u>	<u> </u>	+					_	+		┼──	-
	_	<u> </u>			┨				+	-					+		┝	-
L		ļ								╞						+ -	+	+
				<u> .</u>						+	+							+
				<u> </u>				+		+-	+-	+	+		+		+	+
		<u> </u>				+	+							+		+	┼──	+
			<u> </u>					+	+				+	+			+	+
																+	+	┢
		<u> </u>			-					-		+		+			+	+-
Remarks (co	omment	s/detection l	limits required	_] d):	<u> </u>		G - 2 A - 7	250mg	ontain Glass Asbe Bag	Jar	Bag	_ <u>_</u>	<u> </u>			<u> </u>		
Relinquishe	ed By: A	nthony Barky	way	Date: 30	0.01.202	0	Tim				Rec	eived	BY:			Date 3	" 0/	, }
L												7	/		. –		1	

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 235671-A

Client Details	
Client	Environmental Investigation Services
Attention	A Barkway
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32915BD, Vaucluse
Number of Samples	35 Soil
Date samples received	22/01/2020
Date completed instructions received	12/02/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	19/02/2020	
Date of Issue	19/02/2020	
NATA Accreditation Number 290	1. This document shall not be reproduced except in full.	
Accredited for compliance with I	O/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Diego Bigolin, Team Leader, Inorganics Josh Williams, Senior Chemist Ken Nguyen, Reporting Supervisor Loren Bardwell, Senior Chemist Priya Samarawickrama, Senior Chemist Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		235671-A-11
Your Reference	UNITS	BH2
Depth		4.8-4.95
Date Sampled		28/01/2020
Type of sample		Soil
Date extracted	-	13/02/2020
Date analysed	-	14/02/2020
TRH C6 - C9	mg/kg	<25
TRH C6 - C10	mg/kg	<25
vTPH C_6 - C_{10} less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	98

svTRH (C10-C40) in Soil		
Our Reference		235671-A-11
Your Reference	UNITS	BH2
Depth		4.8-4.95
Date Sampled		28/01/2020
Type of sample		Soil
Date extracted	-	13/02/2020
Date analysed	-	14/02/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C10 -C16	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	101

PAHs in Soil		
Our Reference		235671-A-11
Your Reference	UNITS	BH2
Depth		4.8-4.95
Date Sampled		28/01/2020
Type of sample		Soil
Date extracted	-	13/02/2020
Date analysed	-	14/02/2020
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	87

Acid Extractable metals in soil		
Our Reference		235671-A-11
Your Reference	UNITS	BH2
Depth		4.8-4.95
Date Sampled		28/01/2020
Type of sample		Soil
Date prepared	-	13/02/2020
Date analysed	-	14/02/2020
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	8
Copper	mg/kg	<1
Lead	mg/kg	6
Mercury	mg/kg	<0.1
Nickel	mg/kg	<1
Zinc	mg/kg	6

Moisture		
Our Reference		235671-A-11
Your Reference	UNITS	BH2
Depth		4.8-4.95
Date Sampled		28/01/2020
Type of sample		Soil
Date prepared	-	13/02/2020
Date analysed	-	14/02/2020
Moisture	%	13

Metals in TCLP USEPA1311				
Our Reference		235671-A-6	235671-A-7	235671-A-27
Your Reference	UNITS	BH2	BH2	BH5
Depth		0.1-0.2	0.75-0.95	0-0.1
Date Sampled		28/01/2020	28/01/2020	28/01/2020
Type of sample		Soil	Soil	Soil
Date extracted	-	17/02/2020	17/02/2020	17/02/2020
Date analysed	-	17/02/2020	17/02/2020	17/02/2020
pH of soil for fluid# determ.	pH units	9.5	9.4	9.0
pH of soil TCLP (after HCl)	pH units	2.1	2.6	1.8
Extraction fluid used	-	1	1	1
pH of final Leachate	pH units	5.7	6.0	4.9
Lead in TCLP	mg/L	0.3	1.2	[NA]

PAHs in TCLP (USEPA 1311)		
Our Reference		235671-A-27
Your Reference	UNITS	BH5
Depth		0-0.1
Date Sampled		28/01/2020
Type of sample		Soil
Date extracted	-	14/02/2020
Date analysed	-	17/02/2020
Naphthalene in TCLP	mg/L	<0.001
Acenaphthylene in TCLP	mg/L	<0.001
Acenaphthene in TCLP	mg/L	<0.001
Fluorene in TCLP	mg/L	<0.001
Phenanthrene in TCLP	mg/L	<0.001
Anthracene in TCLP	mg/L	<0.001
Fluoranthene in TCLP	mg/L	<0.001
Pyrene in TCLP	mg/L	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001
Total +ve PAH's	mg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	84

Misc Inorg - Soil		
Our Reference		235671-A-7
Your Reference	UNITS	BH2
Depth		0.75-0.95
Date Sampled		28/01/2020
Type of sample		Soil
Date prepared	-	14/02/2020
Date analysed	-	14/02/2020
pH 1:5 soil:water	pH Units	10.2

Clay 50-120g		
Our Reference		235671-A-7
Your Reference	UNITS	BH2
Depth		0.75-0.95
Date Sampled		28/01/2020
Type of sample		Soil
Date prepared	-	17/02/2020
Date analysed	-	18/02/2020
Clay in soils <2µm	% (w/w)	9

CEC		
Our Reference		235671-A-7
Your Reference	UNITS	BH2
Depth		0.75-0.95
Date Sampled		28/01/2020
Type of sample		Soil
Date prepared	-	17/02/2020
Date analysed	-	18/02/2020
Exchangeable Ca	meq/100g	44
Exchangeable K	meq/100g	0.5
Exchangeable Mg	meq/100g	0.21
Exchangeable Na	meq/100g	<0.1
Cation Exchange Capacity	meq/100g	45

Method ID	Methodology Summary
AS1289.3.6.3	Determination Particle Size Analysis using AS1289.3.6.3 and AS1289.3.6.1 and in house method INORG-107. Clay fraction at <2µm reported.
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004. Please note that the mass used may be scaled down from the default based on sample mass available.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-020	Determination of various metals by ICP-AES.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012/017	Leachates are extracted with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.

Method ID	Methodology Summary
Org-012/017	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)/	BTEXN in Soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			13/02/2020	[NT]		[NT]	[NT]	13/02/2020	
Date analysed	-			14/02/2020	[NT]		[NT]	[NT]	14/02/2020	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	87	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	87	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	89	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	113	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	81	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	76	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	70	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	110	[NT]		[NT]	[NT]	113	

QUALITY CO		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			13/02/2020	[NT]		[NT]	[NT]	13/02/2020	
Date analysed	-			13/02/2020	[NT]		[NT]	[NT]	13/02/2020	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	97	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	110	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	108	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	97	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	110	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	108	
Surrogate o-Terphenyl	%		Org-003	100	[NT]	[NT]	[NT]	[NT]	113	[NT]

QUAL		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			13/02/2020	[NT]		[NT]	[NT]	13/02/2020	
Date analysed	-			14/02/2020	[NT]		[NT]	[NT]	14/02/2020	
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	80	
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	80	
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	86	
Anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	82	
Pyrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	76	
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	78	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	[NT]		[NT]	[NT]	100	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012/017	90	[NT]		[NT]	[NT]	83	

QUALITY CONTROL: Acid Extractable metals in soil						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			13/02/2020	[NT]		[NT]	[NT]	13/02/2020	
Date analysed	-			14/02/2020	[NT]		[NT]	[NT]	14/02/2020	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	101	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	101	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	104	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	101	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	106	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	92	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	100	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	102	

QUALITY CONTROL: Metals in TCLP USEPA1311						Duj	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			17/02/2020	[NT]	[NT]		[NT]	17/02/2020	
Date analysed	-			17/02/2020	[NT]	[NT]		[NT]	17/02/2020	
Lead in TCLP	mg/L	0.03	Metals-020 ICP- AES	<0.03	[NT]	[NT]		[NT]	101	

QUALITY CON	TROL: PAHs	in TCLP	(USEPA 1311)			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			14/02/2020	[NT]		[NT]	[NT]	14/02/2020	
Date analysed	-			17/02/2020	[NT]		[NT]	[NT]	17/02/2020	
Naphthalene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	101	
Acenaphthylene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Acenaphthene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluorene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	93	
Phenanthrene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	92	
Anthracene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluoranthene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	92	
Pyrene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	97	
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Chrysene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	120	
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-012/017	<0.002	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	75	
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012/017	113	[NT]		[NT]	[NT]	82	

QUALITY	CONTROL	Misc Ino	rg - Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			14/02/2020	[NT]		[NT]	[NT]	14/02/2020	
Date analysed	-			14/02/2020	[NT]		[NT]	[NT]	14/02/2020	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	101	[NT]

QU	ALITY CONT	ROL: CE	C			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			17/02/2020	[NT]		[NT]	[NT]	17/02/2020	
Date analysed	-			18/02/2020	[NT]		[NT]	[NT]	18/02/2020	
Exchangeable Ca	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	103	
Exchangeable K	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	110	
Exchangeable Mg	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	103	
Exchangeable Na	meq/100g	0.1	Metals-009	<0.1	[NT]	[NT]	[NT]	[NT]	114	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

pH Samples were out of the recommended holding time for this analysis.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	A Barkway

Sample Login Details	
Your reference	E32915BD, Vaucluse
Envirolab Reference	235671-A
Date Sample Received	22/01/2020
Date Instructions Received	12/02/2020
Date Results Expected to be Reported	19/02/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	35 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	15.0
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Acid Extractable metalsin soil	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Lead in TCLP	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	Misc Inorg - Soil	Clay 50-120g	CEC	On Hold
BH1-0.05-0.15																														\checkmark
BH1-0.6-0.7																														\checkmark
BH1-1.3-1.5																														\checkmark
BH1-1.75-1.85																														\checkmark
BH1-0.05-0.15																														\checkmark
BH2-0.1-0.2					✓	\checkmark	✓	✓	✓																					
BH2-0.75-0.95					✓	✓	✓	✓	✓																		\checkmark	\checkmark	\checkmark	
BH2-1.7-1.95																														\checkmark
BH2-2.8-3																														\checkmark
BH2-4.2-4.3																														\checkmark
BH2-4.8-4.95	✓	\checkmark	\checkmark	\checkmark																										
BH2-8.5-8.7																														\checkmark
BH2-0.2-0.5																														\checkmark
BH3-0.05-0.15																														✓
BH3-0.4-0.5																														✓
BH3-0.7-0.95																														✓
BH3-1.7-1.95																														✓
BH3-3.3-3.45																														✓
BH3-4.3-4.5																														✓
BH3-6.2-6.4																														✓

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Acid Extractable metalsin soil	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Lead in TCLP	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	Misc Inorg - Soil	Clay 50-120g	CEC	On Hold
BH4-0-0.1																														\checkmark
BH4-0.5-0.6																														\checkmark
BH4-1-1.15																														✓
BH4-1.7-1.95																														✓
BH4-2.7-2.9																														✓
BH4-0.1-0.3																														\checkmark
BH5-0-0.1					√	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓	√	✓	✓	✓	✓	✓	✓	✓				
BH5-0.4-0.5																														✓
BH5-1-1.1																														\checkmark
BH5-1.7-1.8																														\checkmark
BH5-0-0.3																														✓
SDUP1																														✓
SDUP2																														✓
SDUP3																														✓
SDUP4																														✓

The '√' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Andrew (Fitzy) Fitzsimons

From: Sent: To: Cc: Subject: Ken Nguyen Wednesday, 12 February 2020 11:12 AM Anthony Barkway Andrew (Fitzy) Fitzsimons RE: JKE - Extra testing request for Registration 235671 E32915BD, Vaucluse

> Ref: 235671-A TAT: Std Due: 19/2/20

Follow Up Flag: Flag Status: Follow up Flagged

Hi Anthony,

No problem, we'll get it logged in.

Kind Regards, Ken

Kind Regards,

Ken Nguyen | Customer Service / Chemist | Envirolab Services Pty Ltd (Monday to Friday 10am to 6pm) Great Science. Great Service. 12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 F 612 9910 6201 E knguyen@envirolab.com.au | W www.envirolab.com.au

New sampling bottle provision now available for PFAS and SVOCs in water samples

<u>Please note that all samples submitted to the Envirolab Group laboratories will be analysed under the</u> Envirolab Group Terms and Conditions. The Terms and Conditions are accessible by clicking this link

From: Anthony Barkway <ABarkway@jkenvironments.com.au>
Sent: Wednesday, 12 February 2020 9:37 AM
To: Ken Nguyen <KNguyen@envirolab.com.au>
Subject: JKE - Extra testing request for Registration 235671 E32915BD, Vaucluse

Hi Ken,

Could I please request extra testing for some of the samples within the above batch as follows:

Sample Number + Depth	Lab Ref:	Tests Required
BH2 0.1-0.2	6	TCLP Lead
BH2 0.75-0.95	7	TCLP Lead, pH+CEC+Clay Content
BH2 4.8-4.95	11	Combo 3
BH5 0.0-0.1	27	TCLP PAHs

Thank you!

Kind Regards

CERTIFICATE OF ANALYSIS 236009

Client Details	
Client	Environmental Investigation Services
Attention	A Barkway
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32915BD, Vaucluse
Number of Samples	16 SOIL, 1 WATER
Date samples received	05/02/2020
Date completed instructions received	05/02/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 12/02/2020

 Date of Issue
 11/02/2020

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Senior Chemist Lucy Zhu, Asbestos Supervisor Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		236009-1	236009-3	236009-4	236009-5	236009-6
Your Reference	UNITS	BH6	BH7	BH7	BH8	BH8
Depth		0-0.1	0-0.1	0.2-0.3	0-0.1	0.6-0.7
Date Sampled		03/02/2020	03/02/2020	03/02/2020	03/02/2020	03/02/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020	06/02/2020
Date analysed	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020	06/02/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	88	84	91	84	90
vTRH(C6-C10)/BTEXN in Soil						
-		236009-7	236009-8	236009-11	236009-14	236009-15
vTRH(C6-C10)/BTEXN in Soil	UNITS					
vTRH(C6-C10)/BTEXN in Soil Our Reference	UNITS	236009-7	236009-8	236009-11	236009-14	236009-15
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	UNITS	236009-7 BH8	236009-8 BH9	236009-11 BH10	236009-14	236009-15
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth	UNITS	236009-7 BH8 1.6-1.8	236009-8 BH9 0-0.1	236009-11 BH10 0-0.1	236009-14 SDUP6 -	236009-15 STB1 -
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled	UNITS	236009-7 BH8 1.6-1.8 03/02/2020	236009-8 BH9 0-0.1 03/02/2020	236009-11 BH10 0-0.1 03/02/2020	236009-14 SDUP6 - 03/02/2020	236009-15 STB1 - 03/02/2020
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	236009-7 BH8 1.6-1.8 03/02/2020 SOIL	236009-8 BH9 0-0.1 03/02/2020 SOIL	236009-11 BH10 0-0.1 03/02/2020 SOIL	236009-14 SDUP6 - 03/02/2020 SOIL	236009-15 STB1 - 03/02/2020 SOIL
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	236009-7 BH8 1.6-1.8 03/02/2020 SOIL 06/02/2020	236009-8 BH9 0-0.1 03/02/2020 SOIL 06/02/2020	236009-11 BH10 0-0.1 03/02/2020 SOIL 06/02/2020	236009-14 SDUP6 - 03/02/2020 SOIL 06/02/2020	236009-15 STB1 - 03/02/2020 SOIL 06/02/2020
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	236009-7 BH8 1.6-1.8 03/02/2020 SOIL 06/02/2020 06/02/2020	236009-8 BH9 0-0.1 03/02/2020 SOIL 06/02/2020 06/02/2020	236009-11 BH10 0-0.1 03/02/2020 SOIL 06/02/2020 06/02/2020	236009-14 SDUP6 - 03/02/2020 SOIL 06/02/2020 06/02/2020	236009-15 STB1 - 03/02/2020 SOIL 06/02/2020 06/02/2020
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	- - mg/kg	236009-7 BH8 1.6-1.8 03/02/2020 SOIL 06/02/2020 06/02/2020 <25	236009-8 BH9 0-0.1 03/02/2020 SOIL 06/02/2020 06/02/2020 <25	236009-11 BH10 0-0.1 03/02/2020 SOIL 06/02/2020 06/02/2020 <25	236009-14 SDUP6 - 03/02/2020 SOIL 06/02/2020 06/02/2020 <25	236009-15 STB1 - 03/02/2020 SOIL 06/02/2020 06/02/2020 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10	- - mg/kg mg/kg	236009-7 BH8 1.6-1.8 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25	236009-8 BH9 0-0.1 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25	236009-11 BH10 0-0.1 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25	236009-14 SDUP6 - 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25	236009-15 STB1 - 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1)	- - mg/kg mg/kg mg/kg	236009-7 BH8 1.6-1.8 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25	236009-8 BH9 0-0.1 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25	236009-11 BH10 0-0.1 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25	236009-14 SDUP6 - 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25	236009-15 STB1 - 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	236009-7 BH8 1.6-1.8 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25 <25 <25 <0.2	236009-8 BH9 0-0.1 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25 <25 <0.2	236009-11 BH10 0-0.1 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25 <25 <25 <0.2	236009-14 SDUP6 - 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25 <25 <0.2	236009-15 STB1 - 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25 <25 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneToluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	236009-7 BH8 1.6-1.8 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25 <25 <0.2 <0.2	236009-8 BH9 0-0.1 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25 <25 <25 <0.2	236009-11 BH10 0-0.1 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25 <25 <0.2 <0.2	236009-14 SDUP6 - 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25 <25 <0.2 <0.2	236009-15 STB1 - 03/02/2020 SOIL 06/02/2020 06/02/2020 (25 <25 <25 <25 <25 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	236009-7 BH8 1.6-1.8 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5	236009-8 BH9 0-0.1 03/02/2020 SOIL 06/02/2020 06/02/2020 25 <25 <25 <25 <25 <0.2 <0.2	236009-11 BH10 0-0.1 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25 <25 <25 <0.2 <0.2	236009-14 SDUP6 - 03/02/2020 SOIL 06/02/2020 06/02/2020 (25 <25 <25 <25 <25 <0.2 <0.2	236009-15 STB1 - 03/02/2020 SOIL 06/02/2020 06/02/2020 25 <25 <25 <25 <25 <0.2 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	236009-7 BH8 1.6-1.8 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	236009-8 BH9 0-0.1 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25 <25 <25 <0.2 <0.5 <1 <1	236009-11 BH10 0-0.1 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25 <25 <25 <0.2 <0.5 <1 <1	236009-14 SDUP6 - 03/02/2020 SOIL 06/02/2020 (06/02/2020 (06/02/2020) (06/02/202) (06/02) (06/02/202) (236009-15 STB1 - 03/02/2020 SOIL 06/02/2020 06/02/2020 (05/02/2020 (05/02/2020) (05/02) (05/02) (05/02) (05/02) (05/02) (05/02) (05/02) (05/02) (05/
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	236009-7 BH8 1.6-1.8 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	236009-8 BH9 0-0.1 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	236009-11 BH10 0-0.1 03/02/2020 SOIL 06/02/2020 06/02/2020 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	236009-14 SDUP6 - 03/02/2020 SOIL 06/02/2020 06/02/2020 (06/02/2020 (06/02/2020 (06/02/2020 (06/02/2020) (06/02/2020 (06/02/2020) (06/02/20) (06/02/20) (06/02/20) (06/02/20) (06/02/20) (06/02/20) (06/02/20) (06/02/20) (06/02/20) (06/02/20) (06/02/20) (06/02/20) (02/02) (06/02/20) (06/02)	236009-15 STB1 - 03/02/2020 SOIL 06/02/2020 06/02/2020 (06/02/202) (06/02) (06/02/202) (06/02/202) (06/02/202) (06

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		236009-16
Your Reference	UNITS	STS1
Depth		-
Date Sampled		03/02/2020
Type of sample		SOIL
Date extracted	-	06/02/2020
Date analysed	-	06/02/2020
Benzene	mg/kg	103%
Toluene	mg/kg	102%
Ethylbenzene	mg/kg	108%
m+p-xylene	mg/kg	101%
o-Xylene	mg/kg	113%
Surrogate aaa-Trifluorotoluene	%	95

svTRH (C10-C40) in Soil						
Our Reference		236009-1	236009-3	236009-4	236009-5	236009-6
Your Reference	UNITS	BH6	BH7	BH7	BH8	BH8
Depth		0-0.1	0-0.1	0.2-0.3	0-0.1	0.6-0.7
Date Sampled		03/02/2020	03/02/2020	03/02/2020	03/02/2020	03/02/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020	06/02/2020
Date analysed	-	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	52	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	190
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	190
TRH >C10 -C16	mg/kg	<50	51	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	51	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	110	<100	<100	340
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	100
Total +ve TRH (>C10-C40)	mg/kg	<50	160	<50	<50	450
Surrogate o-Terphenyl	%	72	81	81	72	87

svTRH (C10-C40) in Soil					
Our Reference		236009-7	236009-8	236009-11	236009-14
Your Reference	UNITS	BH8	BH9	BH10	SDUP6
Depth		1.6-1.8	0-0.1	0-0.1	-
Date Sampled		03/02/2020	03/02/2020	03/02/2020	03/02/2020
Type of sample		SOIL	SOIL	SOIL	SOIL
Date extracted	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020
Date analysed	-	07/02/2020	07/02/2020	07/02/2020	07/02/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50
Surrogate o-Terphenyl	%	70	70	69	72

PAHs in Soil						
Our Reference		236009-1	236009-3	236009-4	236009-5	236009-6
Your Reference	UNITS	BH6	BH7	BH7	BH8	BH8
Depth		0-0.1	0-0.1	0.2-0.3	0-0.1	0.6-0.7
Date Sampled		03/02/2020	03/02/2020	03/02/2020	03/02/2020	03/02/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020	06/02/2020
Date analysed	-	08/02/2020	08/02/2020	08/02/2020	08/02/2020	08/02/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.7
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.2	0.3	<0.1	<0.1	2.0
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Fluoranthene	mg/kg	0.8	1.2	0.1	0.2	5.3
Pyrene	mg/kg	0.9	1.4	0.1	0.2	5.7
Benzo(a)anthracene	mg/kg	0.5	0.9	0.1	0.1	3.8
Chrysene	mg/kg	0.6	1.1	0.1	0.2	4.2
Benzo(b,j+k)fluoranthene	mg/kg	1	2	<0.2	0.3	7.0
Benzo(a)pyrene	mg/kg	0.66	1.2	0.1	0.2	4.7
Indeno(1,2,3-c,d)pyrene	mg/kg	0.3	0.7	<0.1	<0.1	2.4
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.2	<0.1	<0.1	0.8
Benzo(g,h,i)perylene	mg/kg	0.4	0.9	<0.1	0.1	2.9
Total +ve PAH's	mg/kg	5.4	9.6	0.60	1.3	40
Benzo(a)pyrene TEQ calc (zero)	mg/kg	0.9	1.7	<0.5	<0.5	6.9
Benzo(a)pyrene TEQ calc(half)	mg/kg	0.9	1.7	<0.5	<0.5	6.9
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1	1.7	<0.5	<0.5	6.9
Surrogate p-Terphenyl-d14	%	90	94	95	84	91

PAHs in Soil					
Our Reference		236009-7	236009-8	236009-11	236009-14
Your Reference	UNITS	BH8	BH9	BH10	SDUP6
Depth		1.6-1.8	0-0.1	0-0.1	-
Date Sampled		03/02/2020	03/02/2020	03/02/2020	03/02/2020
Type of sample		SOIL	SOIL	SOIL	SOIL
Date extracted	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020
Date analysed	-	08/02/2020	08/02/2020	08/02/2020	08/02/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.4	<0.1	0.2
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	1	<0.1	0.8
Pyrene	mg/kg	0.2	1	<0.1	0.9
Benzo(a)anthracene	mg/kg	0.2	0.6	<0.1	0.6
Chrysene	mg/kg	0.2	0.7	<0.1	0.7
Benzo(b,j+k)fluoranthene	mg/kg	0.3	1	<0.2	1
Benzo(a)pyrene	mg/kg	0.2	0.63	<0.05	0.62
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.4	<0.1	0.3
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.1	<0.1	0.1
Benzo(g,h,i)perylene	mg/kg	0.1	0.4	<0.1	0.4
Total +ve PAH's	mg/kg	1.3	6.1	<0.05	5.7
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	0.9	<0.5	0.9
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	0.9	<0.5	0.9
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	0.9	<0.5	0.9
Surrogate p-Terphenyl-d14	%	97	92	95	96

Organochlorine Pesticides in soil						
Our Reference		236009-1	236009-3	236009-5	236009-8	236009-11
Your Reference	UNITS	BH6	BH7	BH8	BH9	BH10
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		03/02/2020	03/02/2020	03/02/2020	03/02/2020	03/02/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020	06/02/2020
Date analysed	-	08/02/2020	08/02/2020	08/02/2020	08/02/2020	08/02/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	108	110	96	101

Organophosphorus Pesticides in Soil						
Our Reference		236009-1	236009-3	236009-5	236009-8	236009-11
Your Reference	UNITS	BH6	BH7	BH8	BH9	BH10
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		03/02/2020	03/02/2020	03/02/2020	03/02/2020	03/02/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020	06/02/2020
Date analysed	-	08/02/2020	08/02/2020	08/02/2020	08/02/2020	08/02/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	108	110	96	101

PCBs in Soil					_	
Our Reference		236009-1	236009-3	236009-5	236009-8	236009-11
Your Reference	UNITS	BH6	BH7	BH8	BH9	BH10
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		03/02/2020	03/02/2020	03/02/2020	03/02/2020	03/02/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020	06/02/2020
Date analysed	-	08/02/2020	08/02/2020	08/02/2020	08/02/2020	08/02/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	108	110	96	101

Acid Extractable metals in soil						
Our Reference		236009-1	236009-3	236009-4	236009-5	236009-6
Your Reference	UNITS	BH6	BH7	BH7	BH8	BH8
Depth		0-0.1	0-0.1	0.2-0.3	0-0.1	0.6-0.7
Date Sampled		03/02/2020	03/02/2020	03/02/2020	03/02/2020	03/02/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020	06/02/2020
Date analysed	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020	06/02/2020
Arsenic	mg/kg	6	6	<4	9	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	0.4	<0.4
Chromium	mg/kg	8	6	3	11	10
Copper	mg/kg	23	20	6	36	80
Lead	mg/kg	81	86	32	160	160
Mercury	mg/kg	<0.1	<0.1	<0.1	0.1	0.1
Nickel	mg/kg	3	3	<1	4	7
Zinc	mg/kg	61	53	15	130	190

Acid Extractable metals in soil					
Our Reference		236009-7	236009-8	236009-11	236009-14
Your Reference	UNITS	BH8	BH9	BH10	SDUP6
Depth		1.6-1.8	0-0.1	0-0.1	-
Date Sampled		03/02/2020	03/02/2020	03/02/2020	03/02/2020
Type of sample		SOIL	SOIL	SOIL	SOIL
Date prepared	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020
Date analysed	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020
Arsenic	mg/kg	5	33	24	32
Cadmium	mg/kg	<0.4	0.4	<0.4	<0.4
Chromium	mg/kg	15	13	9	10
Copper	mg/kg	10	43	34	43
Lead	mg/kg	29	190	200	160
Mercury	mg/kg	<0.1	0.1	0.1	0.1
Nickel	mg/kg	1	4	4	3
Zinc	mg/kg	20	150	160	140

Moisture						
Our Reference		236009-1	236009-3	236009-4	236009-5	236009-6
Your Reference	UNITS	BH6	BH7	BH7	BH8	BH8
Depth		0-0.1	0-0.1	0.2-0.3	0-0.1	0.6-0.7
Date Sampled		03/02/2020	03/02/2020	03/02/2020	03/02/2020	03/02/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020	06/02/2020
Date analysed	-	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020
Moisture	%	13	11	3.1	8.1	6.9
Moisture						
Our Reference		236009-7	236009-8	236009-11	236009-14	
Your Reference	UNITS	BH8	BH9	BH10	SDUP6	
Depth		1.6-1.8	0-0.1	0-0.1	-	
Date Sampled		03/02/2020	03/02/2020	03/02/2020	03/02/2020	
Type of sample		SOIL	SOIL	SOIL	SOIL	
Date prepared	-	06/02/2020	06/02/2020	06/02/2020	06/02/2020	
Date analysed	-	07/02/2020	07/02/2020	07/02/2020	07/02/2020	
Moisture	%	24	12	10	20	

Asbestos ID - soils		
Our Reference		236009-3
Your Reference	UNITS	BH7
Depth		0-0.1
Date Sampled		03/02/2020
Type of sample		SOIL
Date analysed	-	08/02/2020
Sample mass tested	g	Approx. 15g
Sample Description	-	Brown fine- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected

Asbestos ID - soils NEPM - ASB-001			
Our Reference		236009-5	236009-8
Your Reference	UNITS	BH8	BH9
Depth		0-0.1	0-0.1
Date Sampled		03/02/2020	03/02/2020
Type of sample		SOIL	SOIL
Date analysed	-	10/02/2020	10/02/2020
Sample mass tested	g	597.78	631.41
Sample Description	-	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected Synthetic mineral fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	-
FA and AF Estimation*	g	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001

BTEX in Water		
Our Reference		236009-17
Your Reference	UNITS	SFR1
Depth		-
Date Sampled		03/02/2020
Type of sample		WATER
Date extracted	-	06/02/2020
Date analysed	-	06/02/2020
Benzene	µg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Surrogate Dibromofluoromethane	%	104
Surrogate toluene-d8	%	98
Surrogate 4-BFB	%	107

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
AT-008	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).

Method ID	Methodology Summary
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.
Org-012/017	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS and/or GC-MS/MS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	236009-3		
Date extracted	-			06/02/2020	1	06/02/2020	06/02/2020		06/02/2020	06/02/2020		
Date analysed	-			06/02/2020	1	06/02/2020	06/02/2020		06/02/2020	06/02/2020		
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	83	91		
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	83	91		
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	82	88		
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	79	86		
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	87	95		
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	81	92		
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	78	89		
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]		
Surrogate aaa-Trifluorotoluene	%		Org-016	88	1	88	78	12	89	83		

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	236009-3
Date extracted	-			06/02/2020	1	06/02/2020	06/02/2020		06/02/2020	06/02/2020
Date analysed	-			07/02/2020	1	07/02/2020	07/02/2020		07/02/2020	07/02/2020
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	105	98
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	108	80
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	<100	<100	0	123	#
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	105	98
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	<100	100	0	108	80
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	<100	<100	0	123	#
Surrogate o-Terphenyl	%		Org-003	73	1	72	71	1	83	81

QUALII	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	236009-3
Date extracted	-			06/02/2020	1	06/02/2020	06/02/2020		06/02/2020	06/02/2020
Date analysed	-			08/02/2020	1	08/02/2020	08/02/2020		08/02/2020	08/02/2020
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	86	96
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	84	104
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	1	0.2	0.1	67	92	86
Anthracene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	1	0.8	0.5	46	88	86
Pyrene	mg/kg	0.1	Org-012/017	<0.1	1	0.9	0.6	40	84	81
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	1	0.5	0.3	50	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012/017	<0.1	1	0.6	0.3	67	64	80
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	1	1	0.8	22	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	1	0.66	0.4	49	80	70
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	1	0.3	0.2	40	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	1	0.4	0.3	29	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	94	1	90	84	7	92	89

QUALITY CON	FROL: Organo	chlorine F	Pesticides in soil			Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	236009-3
Date extracted	-			06/02/2020	1	06/02/2020	06/02/2020		06/02/2020	06/02/2020
Date analysed	-			08/02/2020	1	08/02/2020	08/02/2020		08/02/2020	08/02/2020
alpha-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	106	106
НСВ	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	102	106
gamma-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	102	94
delta-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	118	107
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	110	99
gamma-Chlordane	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	110	99
Dieldrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	122	101
Endrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	104	99
Endosulfan II	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	104	88
Endrin Aldehyde	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	100	104
Methoxychlor	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	83	1	96	92	4	82	94

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	236009-3
Date extracted	-			06/02/2020	1	06/02/2020	06/02/2020		06/02/2020	06/02/2020
Date analysed	-			08/02/2020	1	08/02/2020	08/02/2020		08/02/2020	08/02/2020
Dichlorvos	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	110	88
Dimethoate	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	108	98
Fenitrothion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	90	91
Malathion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	97	93
Chlorpyriphos	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	114	96
Parathion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	98	98
Bromophos-ethyl	mg/kg	0.1	AT-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	100	94
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	83	1	96	92	4	82	94

QUALITY CONTROL: PCBs in Soil						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	236009-3
Date extracted	-			06/02/2020	1	06/02/2020	06/02/2020		06/02/2020	06/02/2020
Date analysed	-			08/02/2020	1	08/02/2020	08/02/2020		08/02/2020	08/02/2020
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0		
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0		
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0		
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0		
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0		
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	74	67
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0		
Surrogate TCMX	%		Org-006	83	1	96	92	4	82	94

QUALITY CONTROL: Acid Extractable metals in soil						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	236009-3
Date prepared	-			06/02/2020	1	06/02/2020	06/02/2020		06/02/2020	06/02/2020
Date analysed	-			06/02/2020	1	06/02/2020	06/02/2020		06/02/2020	06/02/2020
Arsenic	mg/kg	4	Metals-020	<4	1	6	7	15	98	100
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	97	92
Chromium	mg/kg	1	Metals-020	<1	1	8	12	40	107	97
Copper	mg/kg	1	Metals-020	<1	1	23	21	9	102	103
Lead	mg/kg	1	Metals-020	<1	1	81	83	2	112	118
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	0.1	0	97	86
Nickel	mg/kg	1	Metals-020	<1	1	3	3	0	97	95
Zinc	mg/kg	1	Metals-020	<1	1	61	59	3	107	92

QUALITY CONTROL: BTEX in Water						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			06/02/2020	[NT]		[NT]	[NT]	06/02/2020	
Date analysed	-			06/02/2020	[NT]		[NT]	[NT]	06/02/2020	
Benzene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	80	
Toluene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	86	
Ethylbenzene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	77	
m+p-xylene	µg/L	2	Org-016	<2	[NT]		[NT]	[NT]	81	
o-xylene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	79	
Surrogate Dibromofluoromethane	%		Org-016	100	[NT]		[NT]	[NT]	97	
Surrogate toluene-d8	%		Org-016	99	[NT]		[NT]	[NT]	101	
Surrogate 4-BFB	%		Org-016	110	[NT]		[NT]	[NT]	100	

Result Definiti	Result Definitions						
NT	Not tested						
NA	Test not required						
INS	Insufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

TRH Soil C10-C40 NEPM - # Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 236009-3 has caused interference.

Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample.

Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004.

Note: Sample 236009-3 was sub-sampled from a bag provided by the client.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	A Barkway

Sample Login Details	
Your reference	E32915BD, Vaucluse
Envirolab Reference	236009
Date Sample Received	05/02/2020
Date Instructions Received	05/02/2020
Date Results Expected to be Reported	12/02/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	16 SOIL, 1 WATER
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12.8
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst								
Phone: 02 9910 6200	Phone: 02 9910 6200								
Fax: 02 9910 6201	Fax: 02 9910 6201								
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au								

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils	Asbestos ID - soils NEPM - ASB- 001	BTEX in Water	On Hold
BH6-0-0.1	✓	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark				
BH6-0.3-0.4											✓
BH7-0-0.1	 ✓ 	\checkmark	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark			
BH7-0.2-0.3	 ✓ 	\checkmark	\checkmark				\checkmark				
BH8-0-0.1	 ✓ 	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark		\checkmark		
BH8-0.6-0.7	\checkmark	\checkmark	\checkmark				\checkmark				
BH8-1.6-1.8	\checkmark	\checkmark	\checkmark				\checkmark				
BH9-0-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
BH9-0.6-0.7											\checkmark
BH9-0.8-0.9											\checkmark
BH10-0-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
BH10-0.3-0.4											\checkmark
SDUP5											\checkmark
SDUP6	\checkmark	\checkmark	\checkmark				\checkmark				
STB1	\checkmark										
STS1	\checkmark										
SFR1										\checkmark	

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

						· ·												
					· ·		•											
				<u>SAMPi</u>	<u>e ani</u>	D CHAIN OF	CUS	бтое	<u> YF</u>	ORN	1							
<u>TO:</u> ENVIROLAB 12 ASHLEY S CHATSWOO	TREET	•	ų	EIS Job Number:		E32915BD]			FROM		KE	- Ènv	virč	onr	ne	nts
P: (02) 9910(F: (02) 9910(5200			Date Res Required		STANDARD]			MAC	0F 11 QUAR -9888	ie par		W 21:		5001	
Attention: A	ileen			Page:		1 of 1]			Atter	-5000 ntion: kaway	<u> </u>	viron				
Location:	Vauch	use	1. <u>1.</u>							San	nple P							
Sampler:	MMP		<u>, , , , , , , , , , , , , , , , , , , </u>	i i î F	<u></u>				<u> </u>	r	т 1	ests R	equir	ed		T	1 -	1 -
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description		Combo 3	Combo 6	Combo 6a	Asbestos WA	НОГР	BTEX					
3.2.20	``	BH6	0-0.1	G, A	0	F: Silty sand			x						<u> </u> .			
3.2.20	2	BH6	0.3-0.4	G, A	0	Silty sand						x	ι.			1		
3.2.20	3	BH7	0-0.1	G, A	1.1	F: Silty sand				x								
3.2.20	4	BH7	0.2-0.3	G, A	6.2	Silty sand	۱ 	x		· .								
3.2.20	2	BH8	0-0.1	G, A	0.9	F: Silty sand			x		x							
3.2.20	6	вня	0.6-0.7	G, A	0	F: Silty sand		x				ļ			<u> </u>			
3.2.20	<u>۲</u>	BH8	1.6-1.8	G	0	Clayey Sand	 	x				<u> </u>						
3.2.20	8	вня	0-0.1	G, A	.0	F: Silty sand			x		X			ļ	ł	-		
3.2.20	٩	вня	0.6-0.7	G, A	0	F: Silty sand		 			L.	×		L.,				
3.2.20	6	вн9	0.8-0.9	G, A	0	F: Silty sand					<u> </u>	x						
3.2.20	6	вн10	0-0.1	G, A	0.1	F: Silty sand			x		ļ ,							
3.2.20		вн10	0.3-0.4	G, A	<u>,</u> o	F: Silty sand						X						
3.2.20		SDUP5	-	G	-	F						×						
3.2.20	14	SDUP6	·	G	-	i i i	<u> </u>	×						<u> </u>				1
3.2.20	15	STB1	-	V	-		-		-	<u> </u>	<u> </u>		x				-	<u> </u>
3.2.20	21	STS1	-	V		F				<u> </u>			x		<u> </u>			-
3.2.20		SFR1	-	V	-	<u> ,</u> .	<u> </u> .						х				-	
ยก ู่ ข้าง		Envirolab	shley St			<u></u>		· · ·			. :				<u> </u>	<u> </u>	<u> </u>	-
(inthe	<u>}</u>	hatswood N Ph: (02) 9	\$W 2067 910 6200	,									- ;		<u> </u>			
<u>Job </u>	<u> 10:</u>	2360	09	<u>.</u>			·	<u> </u>	,					, 			-	
- Date	Receive	2360	2020		<u></u>	i	,	<u> </u>		<u>.</u>							+	
Reco	ived By	TC+				l	-								• 	- <u>-</u> -	+	1
		mbient				1 * 1 *			L							<u> </u>	-	
Secu	ny Unu	cepack ovBroken/N	6no		e	1 1 L	<u> </u>	<u> </u>							, ,	<u> </u>	-	<u> </u>
	ેશ્વર્ષે ક કે પ્	· .	 nits required)				G - 2 A - Zi P - P	ple Cor 50mg (plock / astic B	Glass J Asbes	lar tos Ba					<u> </u>	<u> </u>		
	l By: Ant	thony Barkwa	.	Date: 05.	02.2020	-	Time				Recei	wed B M	191 201 201	rs IN		Date 5	: 52.)	మె
<u>،</u> مر				,							. Ì	À	5	eu	P	-		
·` /	· ,-																•	

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 236009-A

Client Details	
Client	Environmental Investigation Services
Attention	A Barkway
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32915BD, Vaucluse
Number of Samples	16 SOIL, 1 WATER
Date samples received	05/02/2020
Date completed instructions received	12/02/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details							
Date results requested by	19/02/2020						
Date of Issue	19/02/2020						
NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *							

Results Approved By Josh Williams, Senior Chemist Loren Bardwell, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Metals in TCLP USEPA1311						
Our Reference		236009-A-3	236009-A-5	236009-A-6	236009-A-8	236009-A-11
Your Reference	UNITS	BH7	BH8	BH8	BH9	BH10
Depth		0-0.1	0-0.1	0.6-0.7	0-0.1	0-0.1
Date Sampled		03/02/2020	03/02/2020	03/02/2020	03/02/2020	03/02/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	17/02/2020	17/02/2020	17/02/2020	17/02/2020	17/02/2020
Date analysed	-	17/02/2020	17/02/2020	17/02/2020	17/02/2020	17/02/2020
pH of soil for fluid# determ.	pH units	6.6	6.7	6.9	6.6	6.7
pH of soil TCLP (after HCl)	pH units	1.7	1.7	1.7	1.7	1.7
Extraction fluid used	-	1	1	1	1	1
pH of final Leachate	pH units	4.9	4.9	4.9	4.9	4.9
Lead in TCLP	mg/L		<0.03	0.07	0.06	0.1

PAHs in TCLP (USEPA 1311)			
Our Reference		236009-A-3	236009-A-6
Your Reference	UNITS	BH7	BH8
Depth		0-0.1	0.6-0.7
Date Sampled		03/02/2020	03/02/2020
Type of sample		SOIL	SOIL
Date extracted	-	18/02/2020	18/02/2020
Date analysed	-	19/02/2020	19/02/2020
Naphthalene in TCLP	mg/L	<0.001	<0.001
Acenaphthylene in TCLP	mg/L	0.001	<0.001
Acenaphthene in TCLP	mg/L	<0.001	<0.001
Fluorene in TCLP	mg/L	0.001	<0.001
Phenanthrene in TCLP	mg/L	<0.001	<0.001
Anthracene in TCLP	mg/L	<0.001	<0.001
Fluoranthene in TCLP	mg/L	<0.001	<0.001
Pyrene in TCLP	mg/L	<0.001	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001	<0.001
Chrysene in TCLP	mg/L	<0.001	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001	<0.001
Total +ve PAH's	mg/L	0.0021	NIL (+)VE
Surrogate p-Terphenyl-d14	%	132	121

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004. Please note that the mass used may be scaled down from the default based on sample mass available.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Org-012/017	Leachates are extracted with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.

QUALITY CON		Duj	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			17/02/2020	[NT]	[NT]	[NT]	[NT]	17/02/2020	
Date analysed	-			17/02/2020	[NT]	[NT]	[NT]	[NT]	17/02/2020	
Lead in TCLP	mg/L	0.03	Metals-020 ICP- AES	<0.03	[NT]	[NT]	[NT]	[NT]	96	

QUALITY CON	TROL: PAHs	in TCLP	(USEPA 1311)			Du	ıplicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			18/02/2020	[NT]		[NT]	[NT]	18/02/2020	
Date analysed	-			19/02/2020	[NT]		[NT]	[NT]	19/02/2020	
Naphthalene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	84	
Acenaphthylene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Acenaphthene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluorene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	76	
Phenanthrene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	74	
Anthracene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluoranthene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	70	
Pyrene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	76	
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Chrysene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	97	
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-012/017	<0.002	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	94	
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012/017	117	[NT]		[NT]	[NT]	121	

Result Definiti	Result Definitions						
NT	Not tested						
NA	Test not required						
INS	Insufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Contro	Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	A Barkway

Sample Login Details	
Your reference	E32915BD, Vaucluse
Envirolab Reference	236009-A
Date Sample Received	05/02/2020
Date Instructions Received	12/02/2020
Date Results Expected to be Reported	19/02/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	16 SOIL, 1 WATER
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12.8
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst								
Phone: 02 9910 6200	Phone: 02 9910 6200								
Fax: 02 9910 6201	Fax: 02 9910 6201								
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au								

Analysis Underway, details on the following page:

SFR1

Sample ID	Metals in TCLP USEPA1311	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	On Hold
BH6-0-0.1																			✓
BH6-0.3-0.4																			✓
BH7-0-0.1	\checkmark	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
BH7-0.2-0.3																			√
BH8-0-0.1	\checkmark																		
BH8-0.6-0.7	\checkmark	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
BH8-1.6-1.8																			✓
BH9-0-0.1	\checkmark																		
BH9-0.6-0.7																			√
BH9-0.8-0.9																			√
BH10-0-0.1	\checkmark																		
BH10-0.3-0.4																			√
SDUP5																			√
SDUP6																			✓
	-		1	-	1														
STB1																			\checkmark

 \checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Jessica Hie

From: Sent: To: Cc: Subject: Nick Sarlamis Wednesday, 12 February 2020 10:18 AM Anthony Barkway Jessica Hie RE: JKE - Extra testing request for Registration 236009 E32915BD, Vaucluse

Morning Anthony,

We will get that organized.

236009-A Due: 19/2/20 Std TAT

Kind Regards,

Nick Sarlamis | Inorganics Supervisor | Envirolab Services Pty Ltd

Great Science. Great Service. 12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 F 612 9910 6201 E <u>nsarlamis@envirolab.com.au</u> | W <u>www.envirolab.com.au</u>

New sampling bottle provision now available for PFAS and SVOCs in water samples

<u>Please note that all samples submitted to the Envirolab Group laboratories will be analysed under the</u> <u>Envirolab Group Terms and Conditions. The Terms and Conditions are accessible by clicking this link</u>

1

From: Anthony Barkway <ABarkway@jkenvironments.com.au>
Sent: Wednesday, 12 February 2020 10:00 AM
To: Nick Sarlamis <NSarlamis@envirolab.com.au>
Subject: JKE - Extra testing request for Registration 236009 E32915BD, Vaucluse

Hi Nick,

Could I please request extra testing for some of the samples within the above batch as follows:

Sample Number + Depth	Lab Ref:	Tests Required
BH7 0.0-0.1	3	TCLP PAHs
BH8 0.0-0.1	5	TCLP Lead
BH8 0.6-0.7	6	TCLP Lead & TCLP PAHs
BH9 0.0-0.1	8	TCLP Lead
BH10 0.0-0.1	11	TCLP Lead

Thank you!

Kind Regards

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 236004

Client Details	
Client	Environmental Investigation Services
Attention	A Barkway
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32915BD, Vaucluse
Number of Samples	2 Water
Date samples received	05/02/2020
Date completed instructions received	05/02/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	12/02/2020	
Date of Issue	12/02/2020	
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.	
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Senior Chemist Priya Samarawickrama, Senior Chemist Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 236004 Revision No: R00

VOCs in water		
Our Reference		236004-1
Your Reference	UNITS	MW2
Date Sampled		03/02/2020
Type of sample		Water
Date extracted	-	06/02/2020
Date analysed	-	06/02/2020
Dichlorodifluoromethane	µg/L	<10
Chloromethane	µg/L	<10
Vinyl Chloride	µg/L	<10
Bromomethane	µg/L	<10
Chloroethane	µg/L	<10
Trichlorofluoromethane	µg/L	<10
1,1-Dichloroethene	µg/L	<1
Trans-1,2-dichloroethene	μg/L	<1
1,1-dichloroethane	µg/L	<1
Cis-1,2-dichloroethene	µg/L	<1
Bromochloromethane	µg/L	<1
Chloroform	µg/L	<1
2,2-dichloropropane	µg/L	<1
1,2-dichloroethane	µg/L	<1
1,1,1-trichloroethane	µg/L	<1
1,1-dichloropropene	µg/L	<1
Cyclohexane	µg/L	<1
Carbon tetrachloride	µg/L	<1
Benzene	µg/L	<1
Dibromomethane	µg/L	<1
1,2-dichloropropane	µg/L	<1
Trichloroethene	µg/L	<1
Bromodichloromethane	µg/L	<1
trans-1,3-dichloropropene	µg/L	<1
cis-1,3-dichloropropene	µg/L	<1
1,1,2-trichloroethane	µg/L	<1
Toluene	µg/L	<1
1,3-dichloropropane	μg/L	<1
Dibromochloromethane	μg/L	<1
1,2-dibromoethane	μg/L	<1
Tetrachloroethene	µg/L	<1
1,1,1,2-tetrachloroethane	µg/L	<1
Chlorobenzene	µg/L	<1
Ethylbenzene	µg/L	<1

VOCs in water		
Our Reference		236004-1
Your Reference	UNITS	MW2
Date Sampled		03/02/2020
Type of sample		Water
Bromoform	µg/L	<1
m+p-xylene	µg/L	<2
Styrene	µg/L	<1
1,1,2,2-tetrachloroethane	µg/L	<1
o-xylene	µg/L	<1
1,2,3-trichloropropane	µg/L	<1
Isopropylbenzene	µg/L	<1
Bromobenzene	µg/L	<1
n-propyl benzene	µg/L	<1
2-chlorotoluene	µg/L	<1
4-chlorotoluene	µg/L	<1
1,3,5-trimethyl benzene	µg/L	<1
Tert-butyl benzene	µg/L	<1
1,2,4-trimethyl benzene	µg/L	<1
1,3-dichlorobenzene	µg/L	<1
Sec-butyl benzene	µg/L	<1
1,4-dichlorobenzene	µg/L	<1
4-isopropyl toluene	µg/L	<1
1,2-dichlorobenzene	µg/L	<1
n-butyl benzene	µg/L	<1
1,2-dibromo-3-chloropropane	µg/L	<1
1,2,4-trichlorobenzene	µg/L	<1
Hexachlorobutadiene	µg/L	<1
1,2,3-trichlorobenzene	µg/L	<1
Surrogate Dibromofluoromethane	%	106
Surrogate toluene-d8	%	98
Surrogate 4-BFB	%	109

vTRH(C6-C10)/BTEXN in Water			
Our Reference		236004-1	236004-2
Your Reference	UNITS	MW2	WDUP1
Date Sampled		03/02/2020	03/02/2020
Type of sample		Water	Water
Date extracted	-	06/02/2020	06/02/2020
Date analysed	-	06/02/2020	06/02/2020
TRH C ₆ - C ₉	µg/L	<10	<10
TRH C ₆ - C ₁₀	µg/L	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10
Benzene	μg/L	<1	<1
Toluene	μg/L	<1	<1
Ethylbenzene	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
o-xylene	µg/L	<1	<1
Naphthalene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	106	106
Surrogate toluene-d8	%	98	101
Surrogate 4-BFB	%	109	108

svTRH (C10-C40) in Water			
Our Reference		236004-1	236004-2
Your Reference	UNITS	MW2	WDUP1
Date Sampled		03/02/2020	03/02/2020
Type of sample		Water	Water
Date extracted	-	06/02/2020	06/02/2020
Date analysed	-	07/02/2020	07/02/2020
TRH C ₁₀ - C ₁₄	µg/L	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	150
TRH C ₂₉ - C ₃₆	µg/L	<100	190
TRH >C ₁₀ - C ₁₆	µg/L	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	110	290
TRH >C ₃₄ - C ₄₀	µg/L	<100	110
Surrogate o-Terphenyl	%	84	83

PAHs in Water - Low Level			
Our Reference		236004-1	236004-2
Your Reference	UNITS	MW2	WDUP1
Date Sampled		03/02/2020	03/02/2020
Type of sample		Water	Water
Date extracted	-	06/02/2020	06/02/2020
Date analysed	-	06/02/2020	06/02/2020
Naphthalene	µg/L	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	0.3
Acenaphthene	µg/L	<0.1	0.2
Fluorene	µg/L	<0.1	0.3
Phenanthrene	µg/L	0.8	2.9
Anthracene	µg/L	0.2	0.8
Fluoranthene	µg/L	0.9	3.3
Pyrene	µg/L	0.9	3.4
Benzo(a)anthracene	µg/L	0.5	1.9
Chrysene	µg/L	0.5	1.6
Benzo(b,j+k)fluoranthene	µg/L	0.6	2
Benzo(a)pyrene	µg/L	0.4	1.6
Indeno(1,2,3-c,d)pyrene	µg/L	0.2	0.6
Dibenzo(a,h)anthracene	µg/L	<0.1	0.2
Benzo(g,h,i)perylene	µg/L	0.2	0.6
Benzo(a)pyrene TEQ	µg/L	<0.5	2.2
Total +ve PAH's	µg/L	5.0	20
Surrogate p-Terphenyl-d14	%	84	84

HM in water - dissolved			
Our Reference		236004-1	236004-2
Your Reference	UNITS	MW2	WDUP1
Date Sampled		03/02/2020	03/02/2020
Type of sample		Water	Water
Date prepared	-	06/02/2020	06/02/2020
Date analysed	-	06/02/2020	06/02/2020
Arsenic-Dissolved	µg/L	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1
Chromium-Dissolved	µg/L	6	6
Copper-Dissolved	µg/L	<1	1
Lead-Dissolved	µg/L	1	1
Mercury-Dissolved	µg/L	<0.05	<0.05
Nickel-Dissolved	µg/L	3	3
Zinc-Dissolved	µg/L	19	21

Miscellaneous Inorganics		
Our Reference		236004-1
Your Reference	UNITS	MW2
Date Sampled		03/02/2020
Type of sample		Water
Date prepared	-	05/02/2020
Date analysed	-	05/02/2020
рН	pH Units	6.1
Electrical Conductivity	µS/cm	450

Cations in water Dissolved		
Our Reference		236004-1
Your Reference	UNITS	MW2
Date Sampled		03/02/2020
Type of sample		Water
Date digested	-	06/02/2020
Date analysed	-	06/02/2020
Calcium - Dissolved	mg/L	50
Magnesium - Dissolved	mg/L	3.6
Hardness	mgCaCO 3 /L	140

Method ID	_ Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALIT	Y CONTROL	: VOCs ii	n water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			06/02/2020	1	06/02/2020	07/02/2020		06/02/2020	
Date analysed	-			06/02/2020	1	06/02/2020	07/02/2020		06/02/2020	
Dichlorodifluoromethane	µg/L	10	Org-013	<10	1	<10	<10	0	[NT]	
Chloromethane	µg/L	10	Org-013	<10	1	<10	<10	0	[NT]	
Vinyl Chloride	µg/L	10	Org-013	<10	1	<10	<10	0	[NT]	
Bromomethane	µg/L	10	Org-013	<10	1	<10	<10	0	[NT]	
Chloroethane	µg/L	10	Org-013	<10	1	<10	<10	0	[NT]	
Trichlorofluoromethane	µg/L	10	Org-013	<10	1	<10	<10	0	[NT]	
1,1-Dichloroethene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Trans-1,2-dichloroethene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
1,1-dichloroethane	µg/L	1	Org-013	<1	1	<1	<1	0	82	
Cis-1,2-dichloroethene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Bromochloromethane	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Chloroform	µg/L	1	Org-013	<1	1	<1	<1	0	84	
2,2-dichloropropane	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
1,2-dichloroethane	µg/L	1	Org-013	<1	1	<1	<1	0	82	
1,1,1-trichloroethane	µg/L	1	Org-013	<1	1	<1	<1	0	81	
1,1-dichloropropene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Cyclohexane	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Carbon tetrachloride	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Benzene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Dibromomethane	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
1,2-dichloropropane	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Trichloroethene	µg/L	1	Org-013	<1	1	<1	<1	0	86	
Bromodichloromethane	µg/L	1	Org-013	<1	1	<1	<1	0	73	
trans-1,3-dichloropropene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
cis-1,3-dichloropropene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
1,1,2-trichloroethane	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Toluene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
1,3-dichloropropane	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Dibromochloromethane	µg/L	1	Org-013	<1	1	<1	<1	0	71	
1,2-dibromoethane	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Tetrachloroethene	µg/L	1	Org-013	<1	1	<1	<1	0	84	
1,1,1,2-tetrachloroethane	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Chlorobenzene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Ethylbenzene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Bromoform	μg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
m+p-xylene	μg/L	2	Org-013	<2	1	<2	<2	0	[NT]	
Styrene	μg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-013	<1	1	<1	<1	0	[NT]	

QUALITY CONTROL: VOCs in water						Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
o-xylene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
1,2,3-trichloropropane	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
Isopropylbenzene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
Bromobenzene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
n-propyl benzene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
2-chlorotoluene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
4-chlorotoluene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
1,3,5-trimethyl benzene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
Tert-butyl benzene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
1,2,4-trimethyl benzene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
1,3-dichlorobenzene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
Sec-butyl benzene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
1,4-dichlorobenzene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
4-isopropyl toluene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
1,2-dichlorobenzene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
n-butyl benzene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
1,2-dibromo-3-chloropropane	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
1,2,4-trichlorobenzene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
Hexachlorobutadiene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
1,2,3-trichlorobenzene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
Surrogate Dibromofluoromethane	%		Org-013	99	1	106	99	7	97		
Surrogate toluene-d8	%		Org-013	98	1	98	100	2	100		
Surrogate 4-BFB	%		Org-013	105	1	109	105	4	97		

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water					Duplicate					Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]			
Date extracted	-			06/02/2020	1	06/02/2020	07/02/2020		06/02/2020				
Date analysed	-			06/02/2020	1	06/02/2020	07/02/2020		06/02/2020				
TRH C ₆ - C ₉	µg/L	10	Org-016	<10	1	<10	<10	0	82				
TRH C ₆ - C ₁₀	μg/L	10	Org-016	<10	1	<10	<10	0	82				
Benzene	μg/L	1	Org-016	<1	1	<1	<1	0	81				
Toluene	μg/L	1	Org-016	<1	1	<1	<1	0	86				
Ethylbenzene	μg/L	1	Org-016	<1	1	<1	<1	0	78				
m+p-xylene	μg/L	2	Org-016	<2	1	<2	<2	0	82				
o-xylene	μg/L	1	Org-016	<1	1	<1	<1	0	79				
Naphthalene	μg/L	1	Org-013	<1	1	<1	<1	0	[NT]				
Surrogate Dibromofluoromethane	%		Org-016	99	1	106	99	7	97				
Surrogate toluene-d8	%		Org-016	98	1	98	100	2	100				
Surrogate 4-BFB	%		Org-016	105	1	109	105	4	97				

QUALITY CONTROL: svTRH (C10-C40) in Water						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			06/02/2020	1	06/02/2020	06/02/2020		06/02/2020	
Date analysed	-			07/02/2020	1	07/02/2020	07/02/2020		07/02/2020	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-003	<50	1	<50	<50	0	104	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-003	<100	1	<100	<100	0	105	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-003	<100	1	<100	<100	0	114	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-003	<50	1	<50	<50	0	104	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-003	<100	1	110	100	10	105	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-003	<100	1	<100	<100	0	114	
Surrogate o-Terphenyl	%		Org-003	83	1	84	78	7	114	

QUALITY CO	QUALITY CONTROL: PAHs in Water - Low L					Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	236004-2		
Date extracted	-			06/02/2020	1	06/02/2020	06/02/2020		06/02/2020	06/02/2020		
Date analysed	-			06/02/2020	1	06/02/2020	06/02/2020		06/02/2020	06/02/2020		
Naphthalene	µg/L	0.2	Org-012/017	<0.2	1	<0.2	<0.2	0	108	80		
Acenaphthylene	µg/L	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Acenaphthene	µg/L	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Fluorene	µg/L	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	98	72		
Phenanthrene	µg/L	0.1	Org-012/017	<0.1	1	0.8	0.8	0	96	#		
Anthracene	µg/L	0.1	Org-012/017	<0.1	1	0.2	0.3	40	[NT]	[NT]		
Fluoranthene	µg/L	0.1	Org-012/017	<0.1	1	0.9	0.9	0	96	62		
Pyrene	µg/L	0.1	Org-012/017	<0.1	1	0.9	0.9	0	100	64		
Benzo(a)anthracene	µg/L	0.1	Org-012/017	<0.1	1	0.5	0.5	0	[NT]	[NT]		
Chrysene	µg/L	0.1	Org-012/017	<0.1	1	0.5	0.5	0	110	74		
Benzo(b,j+k)fluoranthene	µg/L	0.2	Org-012/017	<0.2	1	0.6	0.6	0	[NT]	[NT]		
Benzo(a)pyrene	µg/L	0.1	Org-012/017	<0.1	1	0.4	0.5	22	78	#		
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-012/017	<0.1	1	0.2	0.2	0	[NT]	[NT]		
Dibenzo(a,h)anthracene	µg/L	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Benzo(g,h,i)perylene	µg/L	0.1	Org-012/017	<0.1	1	0.2	0.2	0	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-012/017	82	1	84	80	5	90	77		

QUALITY CC		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	236004-2
Date prepared	-			06/02/2020	1	06/02/2020	06/02/2020		06/02/2020	06/02/2020
Date analysed	-			06/02/2020	1	06/02/2020	06/02/2020		06/02/2020	06/02/2020
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	94	95
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	103	102
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	6	6	0	101	101
Copper-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	101	98
Lead-Dissolved	µg/L	1	Metals-022	<1	1	1	1	0	105	102
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	100	97
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	3	3	0	99	98
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	19	20	5	99	101

QUALITY COI		Duj	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			05/02/2020	[NT]			[NT]	05/02/2020	
Date analysed	-			05/02/2020	[NT]			[NT]	05/02/2020	
рН	pH Units		Inorg-001	[NT]	[NT]			[NT]	103	
Electrical Conductivity	μS/cm	1	Inorg-002	<1	[NT]	[NT]	[NT]	[NT]	103	[NT]

QUALITY CONTROL: Cations in water Dissolved						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			06/02/2020	[NT]			[NT]	06/02/2020	
Date analysed	-			06/02/2020	[NT]			[NT]	06/02/2020	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]			[NT]	106	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]			[NT]	107	

Result Definiti	Result Definitions						
NT	Not tested						
NA	Test not required						
INS	Insufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Contro	Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

PAHs in Water - Low Level - # Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 236004-2 have caused interference.

pН

Samples were out of the recommended holding time for this analysis.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	A Barkway

Sample Login Details	
Your reference	E32915BD, Vaucluse
Envirolab Reference	236004
Date Sample Received	05/02/2020
Date Instructions Received	05/02/2020
Date Results Expected to be Reported	12/02/2020

Sample Condition	
Samples received in appropriate condition for analysis	Holding time exceedance
No. of Samples Provided	2 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	9.6
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Holding time exceedance - pH

Please contact the laboratory within 24 hours if you wish to cancel the aformentioned testing. Otherwise testing will proceed as per the COC and hence invoice accordingly.

Please direct any queries to:

Aileen Hie	Jacinta Hurst						
Phone: 02 9910 6200	Phone: 02 9910 6200						
Fax: 02 9910 6201	Fax: 02 9910 6201						
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au						

Analysis Underway, details on the following page:

Sample ID	VOCs in water	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water - Low Level	HM in water - dissolved	H	Electrical Conductivity	Cations in water Dissolved
MW2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	√	\checkmark
WDUP1		✓	✓	\checkmark	✓			

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

<u>TO:</u> ENVIROLAB 12 ASHLEY S CHATSWOO P: (02) 9910	TREET ; D NSW 20 6200		EIS Job Number: Date Results		E32915BD STANDARD		[]]]		:	<u>FROI</u> REAF	J R OF 1	15 WI		ŌAÐ		nei	nts
F: (02) 99106 Attention: A	· ·		Required: Page:		MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 1 of 1 Attention:												
Location:	Vauclus	ie					-			ple P	kaway reserv	ed in	Esky o		.com.a	<u>au</u>	
Sampler: Date Sampled	Lab Ref:	Sample Number	Sample Containers	PID	Sample Description		Combo 3L	VOCs	pH / EC	Hardness	ests R	lequir	ed				
3.2.20	1 1	MW2	2x G1, 4xV, 1xH, 1xPVC	1.2	Water		х х	x	-	± x							
3.2.20	2	WDUP1	2x G1, 4xV, 1xH, 1xPVC	·	Water		x	×	X	×							
		, , , , , , , , , , , , , , , , , , ,				2											
,		-	· · · ·		· .												
-			به به به رور - ب			н											
٠ - مربع						,											
· .				4 - 				4				, Env	rolas	Contra			
	+			·						ÎROLI	Вс	atsw Ph:	12 / ood N (02) 9	Shley SW 2 910 6	St 067 200		
	1									o No		360		,			
. 6									Tim Rec	e Re eiveo	ceived	:S	1L3	-2 45	b2	þ	
		. *			· ·				Cod	ling:	ce/lc	back	L	ne			
Remarks (co	mments	detection limits	required).	· · ·		6	ole Cor										
			CC (2000) Detection Li	mits Ple	ase	G1 - V - B	500mL TEX Vi	. Ambe al	er Glas H - Hi	VO3 V			. Amb	er Gla	ss Bot	tle	
Relinquished	i By: Anti	iony Barkway	Date: 05.02.2020	 		Time	<u>HDPE</u>	: riast	<u>ic Boti</u>	Rece	ived B Mec SM	v: E	75 7 7		Date て・つ	: 2-2 2:4	5
											<u>yn</u>	al	2	•		2:4	5

CERTIFICATE OF ANALYSIS 264278

Client Details	
Client	JK Environments
Attention	Anthony Barkway
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32915BA, Vaucluse
Number of Samples	13 SOIL, 1 WATER
Date samples received	15/03/2021
Date completed instructions received	17/03/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 24/03/2021

 Date of Issue
 22/03/2021

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Panika Wongchanda Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Dragana Tomas, Senior Chemist Ken Nguyen, Reporting Supervisor Lucy Zhu, Asbestos Supervisor Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		264278-1	264278-2	264278-6	264278-7	264278-11
Your Reference	UNITS	BH101	BH101	BH102	BH102	SDUP1
Depth		0.05-0.35	0.7-0.9	0-0.1	0.5-0.6	
Date Sampled		14/03/2021	14/03/2021	14/03/2021	14/03/2021	14/03/2021
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	18/03/2021	18/03/2021	18/03/2021	18/03/2021	18/03/2021
Date analysed	-	19/03/2021	19/03/2021	19/03/2021	19/03/2021	19/03/2021
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	101	107	100	103	104

svTRH (C10-C40) in Soil						
Our Reference		264278-1	264278-2	264278-6	264278-7	264278-11
Your Reference	UNITS	BH101	BH101	BH102	BH102	SDUP1
Depth		0.05-0.35	0.7-0.9	0-0.1	0.5-0.6	
Date Sampled		14/03/2021	14/03/2021	14/03/2021	14/03/2021	14/03/2021
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	18/03/2021	18/03/2021	18/03/2021	18/03/2021	18/03/2021
Date analysed	-	20/03/2021	20/03/2021	20/03/2021	20/03/2021	20/03/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	83	84	83	81	87

PAHs in Soil						
Our Reference		264278-1	264278-2	264278-6	264278-7	264278-11
Your Reference	UNITS	BH101	BH101	BH102	BH102	SDUP1
Depth		0.05-0.35	0.7-0.9	0-0.1	0.5-0.6	
Date Sampled		14/03/2021	14/03/2021	14/03/2021	14/03/2021	14/03/2021
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	18/03/2021	18/03/2021	18/03/2021	18/03/2021	18/03/2021
Date analysed	-	19/03/2021	19/03/2021	19/03/2021	19/03/2021	19/03/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.2	<0.1	0.2	<0.1
Anthracene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	0.5	<0.1	0.3	0.2
Pyrene	mg/kg	0.3	0.5	<0.1	0.4	0.2
Benzo(a)anthracene	mg/kg	0.2	0.2	<0.1	0.2	0.1
Chrysene	mg/kg	0.2	0.2	<0.1	0.2	0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	0.3	<0.2	0.2	0.2
Benzo(a)pyrene	mg/kg	0.2	0.2	<0.05	0.2	0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.1	0.1	<0.1	0.1	<0.1
Total +ve PAH's	mg/kg	1.2	2.4	<0.05	1.7	1.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	101	106	101	103	106

Organochlorine Pesticides in soil			
Our Reference		264278-1	264278-6
Your Reference	UNITS	BH101	BH102
Depth		0.05-0.35	0-0.1
Date Sampled		14/03/2021	14/03/2021
Type of sample		SOIL	SOIL
Date extracted	-	18/03/2021	18/03/2021
Date analysed	-	19/03/2021	19/03/2021
alpha-BHC	mg/kg	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	106	105

Organophosphorus Pesticides in Soil			
Our Reference		264278-1	264278-6
Your Reference	UNITS	BH101	BH102
Depth		0.05-0.35	0-0.1
Date Sampled		14/03/2021	14/03/2021
Type of sample		SOIL	SOIL
Date extracted	-	18/03/2021	18/03/2021
Date analysed	-	19/03/2021	19/03/2021
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	106	105

PCBs in Soil			
Our Reference		264278-1	264278-6
Your Reference	UNITS	BH101	BH102
Depth		0.05-0.35	0-0.1
Date Sampled		14/03/2021	14/03/2021
Type of sample		SOIL	SOIL
Date extracted	-	18/03/2021	18/03/2021
Date analysed	-	19/03/2021	19/03/2021
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	106	105

Acid Extractable metals in soil					_	
Our Reference		264278-1	264278-2	264278-6	264278-7	264278-11
Your Reference	UNITS	BH101	BH101	BH102	BH102	SDUP1
Depth		0.05-0.35	0.7-0.9	0-0.1	0.5-0.6	
Date Sampled		14/03/2021	14/03/2021	14/03/2021	14/03/2021	14/03/2021
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	19/03/2021	19/03/2021	19/03/2021	19/03/2021	19/03/2021
Date analysed	-	19/03/2021	19/03/2021	19/03/2021	19/03/2021	19/03/2021
Arsenic	mg/kg	17	<4	<4	6	13
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	10	8	8	10	9
Copper	mg/kg	47	5	11	29	28
Lead	mg/kg	110	37	23	61	140
Mercury	mg/kg	0.4	<0.1	<0.1	<0.1	0.2
Nickel	mg/kg	27	1	6	17	24
Zinc	mg/kg	71	21	29	66	72

Moisture						
Our Reference		264278-1	264278-2	264278-6	264278-7	264278-11
Your Reference	UNITS	BH101	BH101	BH102	BH102	SDUP1
Depth		0.05-0.35	0.7-0.9	0-0.1	0.5-0.6	
Date Sampled		14/03/2021	14/03/2021	14/03/2021	14/03/2021	14/03/2021
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	18/03/2021	18/03/2021	18/03/2021	18/03/2021	18/03/2021
Date analysed	-	19/03/2021	19/03/2021	19/03/2021	19/03/2021	19/03/2021
Moisture	%	8.0	6.2	16	11	5.5

Asbestos ID - soils NEPM - ASB-001			
Our Reference		264278-1	264278-6
Your Reference	UNITS	BH101	BH102
Depth		0.05-0.35	0-0.1
Date Sampled		14/03/2021	14/03/2021
Type of sample		SOIL	SOIL
Date analysed	-	22/03/2021	22/03/2021
Sample mass tested	g	984.05	326.88
Sample Description	-	Brown coarse- grained soil & rocks	Brown fine- grained soil, rocks & debris
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	-
FA and AF Estimation*	g	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.

Method ID	Methodology Summary
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC- MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			18/03/2021	[NT]		[NT]	[NT]	18/03/2021	
Date analysed	-			19/03/2021	[NT]		[NT]	[NT]	19/03/2021	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	103	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	103	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	106	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	107	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	104	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	100	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	108	
naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	105	[NT]		[NT]	[NT]	106	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			18/03/2021	[NT]		[NT]	[NT]	18/03/2021	
Date analysed	-			19/03/2021	[NT]		[NT]	[NT]	19/03/2021	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	111	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	77	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	92	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	111	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	77	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	92	
Surrogate o-Terphenyl	%		Org-020	83	[NT]	[NT]	[NT]	[NT]	100	[NT]

QUALI	TY CONTRC	L: PAHs	in Soil			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]	
Date extracted	-			18/03/2021	[NT]		[NT]	[NT]	18/03/2021		
Date analysed	-			19/03/2021	[NT]		[NT]	[NT]	19/03/2021		
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	97		
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	91		
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	91		
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	95		
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	100		
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	100		
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	108		
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	103		
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-022/025	106	[NT]		[NT]	[NT]	101		

QUALITY COM	NTROL: Organo	chlorine F	Pesticides in soil			Du	Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]		
Date extracted	-			18/03/2021	[NT]		[NT]	[NT]	18/03/2021			
Date analysed	-			19/03/2021	[NT]		[NT]	[NT]	19/03/2021			
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	94			
НСВ	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	89			
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	87			
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	99			
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	97			
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	101			
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	99			
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	91			
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	97			
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	97			
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Surrogate TCMX	%		Org-022/025	113	[NT]		[NT]	[NT]	101			

QUALITY CONTRO	L: Organoph	osphorus	Pesticides in Soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			18/03/2021	[NT]		[NT]	[NT]	18/03/2021	
Date analysed	-			19/03/2021	[NT]		[NT]	[NT]	19/03/2021	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	76	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	93	
Malathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	124	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	99	
Parathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	96	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	109	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	113	[NT]		[NT]	[NT]	101	

QUALIT	Y CONTRO	L: PCBs i		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			18/03/2021	[NT]		[NT]	[NT]	18/03/2021	
Date analysed	-			19/03/2021	[NT]		[NT]	[NT]	19/03/2021	
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	80	
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-021	113	[NT]	[NT]	[NT]	[NT]	101	[NT]

QUALITY CONT	ROL: Acid E	Extractable		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date prepared	-			19/03/2021	[NT]		[NT]	[NT]	19/03/2021	
Date analysed	-			19/03/2021	[NT]		[NT]	[NT]	19/03/2021	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	108	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	107	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	104	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	105	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	102	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	106	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	105	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	106	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Note: All samples analysed as received. However, sample 264278-6 is below the minimum 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Anthony Barkway

Sample Login Details	
Your reference	E32915BA, Vaucluse
Envirolab Reference	264278
Date Sample Received	15/03/2021
Date Instructions Received	17/03/2021
Date Results Expected to be Reported	24/03/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	13 SOIL, 1 WATER
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst									
Phone: 02 9910 6200	Phone: 02 9910 6200									
Fax: 02 9910 6201	Fax: 02 9910 6201									
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au									

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	On Hold
BH101-0.05-0.35	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	
BH101-0.7-0.9	\checkmark	✓	\checkmark				✓		
BH101-1.7-2									✓
BH101-3.5-4.2									✓
BH101-7.7-7.8									\checkmark
BH102-0-0.1	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	
BH102-0.5-0.6	\checkmark	\checkmark	\checkmark				✓		
BH102-1.2-1.4									\checkmark
BH102-2.5-2.7									\checkmark
BH102-3.4-3.6									\checkmark
SDUP1	✓	✓	✓				✓		
SDUP2									\checkmark
TBS1									✓
FR1									\checkmark

The '\s' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Updated COC 264278

.

SAMPLE AND CHAIN OF CUSTODY FOR

				SAIVIPL	E ANL	CHAIN C		1310	וענ	FUN								
<u>TO:</u> ENVIROLAB S 12 ASHLEY S ⁻	REET			JKE Job Number:		E32915BA]							ent	ts		
CHATSWOOD P: (02) 99106 F: (02) 99106	200	2067		Date Res Required		STANDARD			REAR OF 11 MACQUAR				115 WICKS ROAD RIE PARK, NSW 2113					
Attention: Aileen				Page:		1 of 1					Atter	tion:	P		F: 02-98 nthony I ments.co	Barkw	ay	
Location:	Vauch	use								Sar	nple P	reser	ved in	Esky	on Ice			
Sampler:	AVB		· .	· · · · ·							-	Tests	Requi	red				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 2	Combo 3	Combo 6	Combo 6a	8 Metals	PAHs	TRH/BTEX	BTEX	Asbestos WA method	НОГD		
14.3.21	1	BH101	0.05-0.35	G, A	0.1	Fill			x						x			
14.3.21	2	BH101	0.7-0.9	G, A	0.1	Fill		х	<i></i>									
14.3.21	3	BH101	1.7-2	G, A	0	Fill										X		
14.3.21	4	BH101	3.5-4.2	G, A	0	Fill	ŀ .			ĺ	ļ,					X	,	
14.3.21	5	BH101	7.7-7.8	G	0	Natural										х	_	
14.3.21	6	BH102	0-0.1	G, A	0.1	* Fill			x		f		1		X		•	
14.3.21	7	BH102	0.5-0.6	G, A	0	Fill	1	х										
14.3.21	8	BH102	1.2-1.4	G, A	0.1	Fill,	-			_						х		
14.3.21	C1	BH102	2.5-2.7	G, A	0	Fill				<u> </u>						х		
14.3.21	10	BH102	3.4-3.6	G	0	Natural										X '		
14.3.21	11	SDUP1	-	G	-	Soil		x										
14.3.21	12	SDUP2	-	G	-	Soil	1			,						. X		
14.3.21	13	TBS1	_	G	-	Sand										х		
14.3.21	14	FR1	-	ý.		Water				-						х		
1.1.5121			1	<u> </u>			1						-					
							···											
			1	, ,			1											
	-	<u>+</u>		1		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	· · ·						
		1					1											
	<u> </u>						1		<u> </u>									
	<u> </u>		<u> </u>	+ •														
	, ,	ļ		ļ		1											,	
L		<u> </u>	+				-				<u> </u>		-				_ <u>_</u>	'
			· · · · ·		,		+				<u> </u>			<u> </u>	:			
,			<u> </u>	+			+											
Remarks (coi	lnments	l s/detection li	mits required	I):	I <u> </u>	l	G - 29 A - Zi	50mg plock	ntaine Glass . Asbes Bag	Jar	ng	L	<u> </u>	I	I			L
Relinguished	d By: Anthony Barkway Date: 17.03.2021					P - Plastic Bag Time: O9:34				Received By: Date: 17 0.				03				

CERTIFICATE OF ANALYSIS 265221

Client Details	
Client	JK Environments
Attention	Anthony Barkway
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32915BA, Vaucluse
Number of Samples	13 Soil, 1 Water
Date samples received	26/03/2021
Date completed instructions received	26/03/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date results requested by06/04/2021Date of Issue01/04/2021NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Nyovan Moonean Authorised by Asbestos Approved Signatory: Lucy Zhu Results Approved By Dragana Tomas, Senior Chemist Ken Nguyen, Reporting Supervisor Lucy Zhu, Asbestos Supervisor Manju Dewendrage, Chemist Authorised By

Nancy Zhang, Laboratory Manager

Steven Luong, Organics Supervisor

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		265221-1	265221-2	265221-3	265221-4	265221-7
Your Reference	UNITS	BH201	BH201	BH202	BH202	BH203
Depth		0.1-0.3	1.1-1.3	0.12-0.3	1.1-1.2	0.09-0.4
Date Sampled		25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/03/2021	29/03/2021	29/03/2021	29/03/2021	29/03/2021
Date analysed	-	30/03/2021	30/03/2021	30/03/2021	30/03/2021	30/03/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	84	95	92	95	94
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		265221-8	265221-10	265221-12	265221-14	1
		200221-0	200221 10	200221-12	200221-14	
Your Reference	UNITS	BH203	SDUP201	TB-S1	TS-S1	
Your Reference Depth	UNITS					
	UNITS	BH203				
Depth	UNITS	BH203 0.9-1.0	SDUP201 -	TB-S1 -	TS-S1 -	
Depth Date Sampled	UNITS -	BH203 0.9-1.0 25/03/2021	SDUP201 - 25/03/2021	TB-S1 - 25/03/2021	TS-S1 - 25/03/2021	
Depth Date Sampled Type of sample	UNITS - -	BH203 0.9-1.0 25/03/2021 Soil	SDUP201 - 25/03/2021 Soil	TB-S1 - 25/03/2021 Soil	TS-S1 - 25/03/2021 Soil	
Depth Date Sampled Type of sample Date extracted	UNITS - mg/kg	BH203 0.9-1.0 25/03/2021 Soil 29/03/2021	SDUP201 - 25/03/2021 Soil 29/03/2021	TB-S1 - 25/03/2021 Soil 29/03/2021	TS-S1 - 25/03/2021 Soil 29/03/2021	
Depth Date Sampled Type of sample Date extracted Date analysed	-	BH203 0.9-1.0 25/03/2021 Soil 29/03/2021 30/03/2021	SDUP201 - 25/03/2021 Soil 29/03/2021 30/03/2021	TB-S1 - 25/03/2021 Soil 29/03/2021 30/03/2021	TS-S1 - 25/03/2021 Soil 29/03/2021 30/03/2021	
Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉	- - mg/kg	BH203 0.9-1.0 25/03/2021 Soil 29/03/2021 30/03/2021 <25	SDUP201 - 25/03/2021 Soil 29/03/2021 30/03/2021 <25	TB-S1 - 25/03/2021 Soil 29/03/2021 30/03/2021 [NA]	TS-S1 - 25/03/2021 Soil 29/03/2021 30/03/2021 [NA]	
Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	- - mg/kg mg/kg	BH203 0.9-1.0 25/03/2021 Soil 29/03/2021 30/03/2021 <25 <25	SDUP201 - 25/03/2021 Soil 29/03/2021 30/03/2021 <25 <25	TB-S1 - 25/03/2021 Soil 29/03/2021 30/03/2021 [NA] [NA]	TS-S1 - 25/03/2021 Soil 29/03/2021 30/03/2021 [NA]	
Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1)	- - mg/kg mg/kg mg/kg	BH203 0.9-1.0 25/03/2021 Soil 29/03/2021 30/03/2021 <25 <25 <25	SDUP201 - 25/03/2021 Soil 29/03/2021 30/03/2021 <25 <25 <25	TB-S1 - 25/03/2021 Soil 29/03/2021 30/03/2021 [NA] [NA]	TS-S1 - 25/03/2021 Soil 29/03/2021 30/03/2021 [NA] [NA]	
Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	BH203 0.9-1.0 25/03/2021 Soil 29/03/2021 30/03/2021 <25 <25 <25 <25 <0.2	SDUP201 - 25/03/2021 Soil 29/03/2021 30/03/2021 <25 <25 <25 <25 <0.2	TB-S1 - 25/03/2021 Soil 29/03/2021 30/03/2021 [NA] [NA] [NA] (NA] <0.2	TS-S1 - 25/03/2021 Soil 29/03/2021 30/03/2021 [NA] [NA] [NA] 71%	
Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	BH203 0.9-1.0 25/03/2021 Soil 29/03/2021 30/03/2021 <25 <25 <25 <25 <0.2 <0.2	SDUP201 - 25/03/2021 Soil 29/03/2021 30/03/2021 <25 <25 <25 <25 <0.2 <0.2	TB-S1 - 25/03/2021 Soil 29/03/2021 30/03/2021 (NA] (NA] (NA] (NA] <0.2 <0.5	TS-S1 - 25/03/2021 Soil 29/03/2021 30/03/2021 (NA] (NA] (NA] (NA] 71% 74%	
Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH203 0.9-1.0 25/03/2021 Soil 29/03/2021 30/03/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5	SDUP201 - 25/03/2021 Soil 29/03/2021 30/03/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5	TB-S1 - 25/03/2021 Soil 29/03/2021 30/03/2021 (NA] (NA] (NA] (NA] (NA] (NA] (NA] (NA]	TS-S1 - 25/03/2021 Soil 29/03/2021 30/03/2021 (NA] (NA] (NA] (NA] 71% 74% 79%	
Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH203 0.9-1.0 25/03/2021 Soil 29/03/2021 30/03/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	SDUP201 - 25/03/2021 Soil 29/03/2021 30/03/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	TB-S1 - 25/03/2021 Soil 29/03/2021 30/03/2021 (NA] (NA] (NA] (NA] (NA] (NA] (NA] (NA]	TS-S1 - 25/03/2021 Soil 29/03/2021 30/03/2021 (NA] (NA] (NA] (NA] 71% 74% 79%	
Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene o-Xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH203 0.9-1.0 25/03/2021 Soil 29/03/2021 30/03/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	SDUP201 - 25/03/2021 Soil 29/03/2021 30/03/2021 30/03/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1	TB-S1 - 25/03/2021 Soil 29/03/2021 30/03/2021 (NA] (NA] (NA] (NA] (NA] (NA] (NA] (NA]	TS-S1 - 25/03/2021 Soil 29/03/2021 30/03/2021 (NA] (NA] (NA] (NA] (NA] 71% 71% 74% 79% 79% 77%	

svTRH (C10-C40) in Soil						
Our Reference		265221-1	265221-2	265221-3	265221-4	265221-7
Your Reference	UNITS	BH201	BH201	BH202	BH202	BH203
Depth		0.1-0.3	1.1-1.3	0.12-0.3	1.1-1.2	0.09-0.4
Date Sampled		25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/03/2021	29/03/2021	29/03/2021	29/03/2021	29/03/2021
Date analysed	-	30/03/2021	30/03/2021	30/03/2021	30/03/2021	30/03/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	290	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	230	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	430	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	150	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	580	<50	<50
Surrogate o-Terphenyl	%	92	90	115	88	89

svTRH (C10-C40) in Soil			
Our Reference		265221-8	265221-10
Your Reference	UNITS	BH203	SDUP201
Depth		0.9-1.0	-
Date Sampled		25/03/2021	25/03/2021
Type of sample		Soil	Soil
Date extracted	-	29/03/2021	29/03/2021
Date analysed	-	30/03/2021	30/03/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	370
TRH C ₂₉ - C ₃₆	mg/kg	<100	250
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	530
TRH >C ₃₄ -C ₄₀	mg/kg	<100	160
Total +ve TRH (>C10-C40)	mg/kg	<50	690
Surrogate o-Terphenyl	%	94	105

PAHs in Soil					_	
Our Reference		265221-1	265221-2	265221-3	265221-4	265221-7
Your Reference	UNITS	BH201	BH201	BH202	BH202	BH203
Depth		0.1-0.3	1.1-1.3	0.12-0.3	1.1-1.2	0.09-0.4
Date Sampled		25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/03/2021	29/03/2021	29/03/2021	29/03/2021	29/03/2021
Date analysed	-	30/03/2021	30/03/2021	30/03/2021	30/03/2021	30/03/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	0.5	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	7.4	<0.1	0.1
Anthracene	mg/kg	<0.1	<0.1	3.2	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	23	0.3	0.3
Pyrene	mg/kg	0.1	<0.1	21	0.3	0.3
Benzo(a)anthracene	mg/kg	<0.1	<0.1	11	0.2	0.2
Chrysene	mg/kg	<0.1	<0.1	11	0.2	0.2
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	15	0.3	0.2
Benzo(a)pyrene	mg/kg	0.08	<0.05	8.8	0.2	0.2
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	4.0	0.2	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	0.8	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	4.0	0.2	<0.1
Total +ve PAH's	mg/kg	0.3	<0.05	110	1.8	1.5
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	13	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	13	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	13	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	102	100	105	105	103

PAHs in Soil			
Our Reference		265221-8	265221-10
Your Reference	UNITS	BH203	SDUP201
Depth		0.9-1.0	-
Date Sampled		25/03/2021	25/03/2021
Type of sample		Soil	Soil
Date extracted	-	29/03/2021	29/03/2021
Date analysed	-	30/03/2021	30/03/2021
Naphthalene	mg/kg	<0.1	0.1
Acenaphthylene	mg/kg	<0.1	0.9
Acenaphthene	mg/kg	<0.1	0.2
Fluorene	mg/kg	<0.1	0.1
Phenanthrene	mg/kg	<0.1	5.2
Anthracene	mg/kg	<0.1	2.1
Fluoranthene	mg/kg	0.3	18
Pyrene	mg/kg	0.3	17
Benzo(a)anthracene	mg/kg	0.2	9.3
Chrysene	mg/kg	0.2	8.6
Benzo(b,j+k)fluoranthene	mg/kg	0.3	12
Benzo(a)pyrene	mg/kg	0.2	7.1
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	4.5
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.9
Benzo(g,h,i)perylene	mg/kg	0.1	4.5
Total +ve PAH's	mg/kg	1.6	90
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	11
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	11
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	11
Surrogate p-Terphenyl-d14	%	102	103

Organochlorine Pesticides in soil				
Our Reference		265221-1	265221-3	265221-7
Your Reference	UNITS	BH201	BH202	BH203
Depth		0.1-0.3	0.12-0.3	0.09-0.4
Date Sampled		25/03/2021	25/03/2021	25/03/2021
Type of sample		Soil	Soil	Soil
Date extracted	-	29/03/2021	29/03/2021	29/03/2021
Date analysed	-	30/03/2021	30/03/2021	30/03/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	102	107	104

Organophosphorus Pesticides in Soil				
Our Reference		265221-1	265221-3	265221-7
Your Reference	UNITS	BH201	BH202	BH203
Depth		0.1-0.3	0.12-0.3	0.09-0.4
Date Sampled		25/03/2021	25/03/2021	25/03/2021
Type of sample		Soil	Soil	Soil
Date extracted	-	29/03/2021	29/03/2021	29/03/2021
Date analysed	-	30/03/2021	30/03/2021	30/03/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	102	107	104

PCBs in Soil				
Our Reference		265221-1	265221-3	265221-7
Your Reference	UNITS	BH201	BH202	BH203
Depth		0.1-0.3	0.12-0.3	0.09-0.4
Date Sampled		25/03/2021	25/03/2021	25/03/2021
Type of sample		Soil	Soil	Soil
Date extracted	-	29/03/2021	29/03/2021	29/03/2021
Date analysed	-	30/03/2021	30/03/2021	30/03/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	102	107	104

Acid Extractable metals in soil						
Our Reference		265221-1	265221-2	265221-3	265221-4	265221-7
Your Reference	UNITS	BH201	BH201	BH202	BH202	BH203
Depth		0.1-0.3	1.1-1.3	0.12-0.3	1.1-1.2	0.09-0.4
Date Sampled		25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/03/2021	29/03/2021	29/03/2021	29/03/2021	29/03/2021
Date analysed	-	29/03/2021	29/03/2021	29/03/2021	29/03/2021	29/03/2021
Arsenic	mg/kg	8	<4	4	6	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	9	6	9	23
Copper	mg/kg	9	<1	17	4	22
Lead	mg/kg	26	11	10	20	18
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	2	1	<1	20
Zinc	mg/kg	18	8	11	14	44

Acid Extractable metals in soil			
Our Reference		265221-8	265221-10
Your Reference	UNITS	BH203	SDUP201
Depth		0.9-1.0	-
Date Sampled		25/03/2021	25/03/2021
Type of sample		Soil	Soil
Date prepared	-	29/03/2021	29/03/2021
Date analysed	-	29/03/2021	29/03/2021
Arsenic	mg/kg	14	<4
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	8	6
Copper	mg/kg	26	9
Lead	mg/kg	89	9
Mercury	mg/kg	0.1	<0.1
Nickel	mg/kg	4	1
Zinc	mg/kg	79	10

Moisture						
Our Reference		265221-1	265221-2	265221-3	265221-4	265221-7
Your Reference	UNITS	BH201	BH201	BH202	BH202	BH203
Depth		0.1-0.3	1.1-1.3	0.12-0.3	1.1-1.2	0.09-0.4
Date Sampled		25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/03/2021	29/03/2021	29/03/2021	29/03/2021	29/03/2021
Date analysed	-	30/03/2021	30/03/2021	30/03/2021	30/03/2021	30/03/2021
Moisture	%	12	12	12	11	20

Moisture			
Our Reference		265221-8	265221-10
Your Reference	UNITS	BH203	SDUP201
Depth		0.9-1.0	-
Date Sampled		25/03/2021	25/03/2021
Type of sample		Soil	Soil
Date prepared	-	29/03/2021	29/03/2021
Date analysed	-	30/03/2021	30/03/2021
Moisture	%	21	20

Asbestos ID - soils NEPM - ASB-001				
Our Reference		265221-1	265221-3	265221-7
Your Reference	UNITS	BH201	BH202	BH203
Depth		0.1-0.3	0.12-0.3	0.09-0.4
Date Sampled		25/03/2021	25/03/2021	25/03/2021
Type of sample		Soil	Soil	Soil
Date analysed	-	29/03/2021	29/03/2021	29/03/2021
Sample mass tested	g	948.43	783.52	699.74
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	_	_	-
FA and AF Estimation*	g	-	_	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001

BTEX in Water		
Our Reference		265221-13
Your Reference	UNITS	FR-SPT1
Depth		-
Date Sampled		25/03/2021
Type of sample		Water
Date extracted	-	29/03/2021
Date analysed	-	30/03/2021
Benzene	μg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Surrogate Dibromofluoromethane	%	104
Surrogate toluene-d8	%	98
Surrogate 4-BFB	%	86

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.

Method ID	Methodology Summary
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	265221-3	
Date extracted	-			29/03/2021	1	29/03/2021	29/03/2021		29/03/2021	29/03/2021	
Date analysed	-			30/03/2021	1	30/03/2021	30/03/2021		30/03/2021	30/03/2021	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	89	85	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	89	85	
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	108	85	
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	96	88	
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	87	89	
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	78	81	
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	82	84	
naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	92	1	84	79	6	94	105	

QUALITY CO		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	265221-3
Date extracted	-			29/03/2021	1	29/03/2021	29/03/2021		29/03/2021	29/03/2021
Date analysed	-			29/03/2021	1	30/03/2021	30/03/2021		29/03/2021	30/03/2021
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	120	127
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	87	82
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	79	118
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	120	127
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	87	82
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	79	118
Surrogate o-Terphenyl	%		Org-020	99	1	92	90	2	124	115

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	265221-3
Date extracted	-			29/03/2021	1	29/03/2021	29/03/2021		29/03/2021	29/03/2021
Date analysed	-			30/03/2021	1	30/03/2021	30/03/2021		30/03/2021	30/03/2021
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	92
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	116
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	100
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	117	#
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	<0.1	0	104	#
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	<0.1	0	104	#
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	116	#
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	0.08	<0.05	46	100	#
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	112	1	102	102	0	102	106

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	265221-3
Date extracted	-			29/03/2021	1	29/03/2021	29/03/2021		29/03/2021	29/03/2021
Date analysed	-			30/03/2021	1	30/03/2021	30/03/2021		30/03/2021	30/03/2021
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	87	101
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	104	100
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	99
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	105
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	109	110
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	82	80
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	113	113
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	82	96
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	97
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	84
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	113	1	102	104	2	104	103

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	265221-3
Date extracted	-			29/03/2021	1	29/03/2021	29/03/2021		29/03/2021	29/03/2021
Date analysed	-			30/03/2021	1	30/03/2021	30/03/2021		30/03/2021	30/03/2021
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	76
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	102
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	103
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	75	82
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	95
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	104
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	105	#
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	113	1	102	104	2	104	103

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	265221-3
Date extracted	-			29/03/2021	1	29/03/2021	29/03/2021		29/03/2021	29/03/2021
Date analysed	-			30/03/2021	1	30/03/2021	30/03/2021		30/03/2021	30/03/2021
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	100	100
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	113	1	102	104	2	104	103

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	265221-3
Date prepared	-			29/03/2021	1	29/03/2021	29/03/2021		29/03/2021	29/03/2021
Date analysed	-			29/03/2021	1	29/03/2021	29/03/2021		29/03/2021	29/03/2021
Arsenic	mg/kg	4	Metals-020	<4	1	8	8	0	94	93
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	89	84
Chromium	mg/kg	1	Metals-020	<1	1	16	14	13	89	87
Copper	mg/kg	1	Metals-020	<1	1	9	11	20	95	95
Lead	mg/kg	1	Metals-020	<1	1	26	23	12	90	88
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	94	102
Nickel	mg/kg	1	Metals-020	<1	1	2	1	67	90	88
Zinc	mg/kg	1	Metals-020	<1	1	18	13	32	93	88

QUALIT	Y CONTROL	: BTEX ir	n Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			29/03/2021	[NT]		[NT]	[NT]	29/03/2021	
Date analysed	-			30/03/2021	[NT]		[NT]	[NT]	30/03/2021	
Benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	92	
Toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101	
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	[NT]	101	
o-xylene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	104	
Surrogate Dibromofluoromethane	%		Org-023	106	[NT]		[NT]	[NT]	99	
Surrogate toluene-d8	%		Org-023	98	[NT]		[NT]	[NT]	99	
Surrogate 4-BFB	%		Org-023	83	[NT]		[NT]	[NT]	105	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

PAHs in Soil - # Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 265221-3ms have caused interference.

OP's in Soil - # Percent recovery for the matrix spike is not possible to report due to interference from analytes (other than those being tested) in sample 265221-2.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Anthony Barkway

Sample Login Details	
Your reference	E32915BA, Vaucluse
Envirolab Reference	265221
Date Sample Received	26/03/2021
Date Instructions Received	26/03/2021
Date Results Expected to be Reported	06/04/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	13 Soil, 1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	BTEX in Water	On Hold
BH201 0.1-0.3-0.1-0.3	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark		
BH201-1.1-1.3	1	\checkmark	✓				✓			
BH202-0.12-0.3	 ✓ 	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓	\checkmark		
BH202-1.1-1.2	 ✓ 	\checkmark	\checkmark				✓			
BH202-1.2-1.5										\checkmark
BH202-1.5-1.7										\checkmark
BH203-0.09-0.4	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark		
BH203-0.9-1.0	1	\checkmark	\checkmark				✓			
BH203-1.8-2.0										✓
SDUP201	✓	✓	✓				✓			
SDUP202										✓
TB-S1	✓									
FR-SPT1									✓	
TS-S1	1									

The '\s' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

	<u>TO:</u> ENVIROLAB	SERVIC		SCC0231	JKE Job		AND CHAIN OF	CUST	<u>OD'</u>	FOR	<u>M</u>	FRO	M:		—— r				
	12 ASHLEY S CHATSWOO	TREET D NSW		(Number		Е32915ВА	• •					J		Ϊn	/iro	nn	าer	nt:
٩	P: (02) 99106200 F: (02) 99106201				Date Results STANDARD R Required:			MA	JKEnvironments REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113										
	Attention! A	ileen			Page:		1		3			Atte	2-9888 ntion:	• •• •	_ _ An	thony	9888 : Barkv	vav	
	Location:	Vauc	luse		- ·		i				Sam	Abar	kaway eserve	@jken d in Fe	viron	ments.	com.a	u	
-	Sampler:	AM	<u></u>										ests Re						
-	Date Sampled	Lab Ref:	Sample Number	、 Depth (m)	Sample Container	PID	Sample Description	Combo 6	Combo 3	Asbestos (WA 500ml method)	BTEX -	НОГР							
'ə.	25.3.21)	BH201	0.1-0.3	G, A	0	Fill: Silty Sand	x		·x			-+				{		
	25.3.21	2	BH201	1.1-1.3	G	0	Sandstone	+	X								-+		
	25.3.21*	3	BH202	0.12-0.3	G, A	0	Fill: Silty Sand	x		x				-+				+	45
	25.3.21	4	BH202	1.1-1.2	G, A	0	Fill: Silty Sand		х		1	[
	25.3.21	5	BH202	1.2-1.5	G	0,7	Silty Sand					x							<u> </u>
	25.3.21	6	вн202	1.5-1.7	G	0	Sandstone					x		-+				1	
	25.3.21		BH203	0.09-0.4	G, A	1	Fill: Silty Sand	X		х					_		-+	·	
5	25.3.21		ВН203	0.9-1.0	G, A	0 .	Fill: Silty Sandy Clay	<u></u>	х							-+	-+		_
- 1	25.3.21		BH203	1.8-2.0	G		Sandstone					x						{-	
- Г	25.3.21		SDUP201 .				Soil DUP		х								-+-		-
· r	25.3.21		SDUP202			-	Soil DUP					x					-+	 -	
- 1	25.3.21	3	SDU2203	- •			Soil DUP		x	SEND	то v	IC 😚			T				
ſ	25:3.21		<u>TB-S1</u> *		G		Trip Blank Soil				x						-	-†-	
Γ	25.3.21	14.	FR-SPT1		Vx2		Field Rinsate				x								-
f	25.3.21						Trip Spike Soil				x								
F	=		<u>,</u> , , , , , , , , , , , , , , , , , ,					<u>i.</u>				$-\downarrow$							
1			b	+	+						•		$-\downarrow$						
F											-+	-+					· ·		
F	2'		int.		·			-+	-+		_+								
Γ	, 39.	-+							— -			-+							
Γ						+					-+					_+_			
	· •					+	`		-+-			-+-	-+-						
											_ -				+-	-+-			_
Ľ		_		Þ				-+	_ <u> </u>		-+-	+							4
Re	marks (comm	ents/d	etection limit	s required):			s	ample	Conta	iners:									_
 Re	/ linquished By	AM			nte: 26.3.2	<u> </u>	P	- Plast	ck Asl	estos B	ag								
	<u>C</u>	XB	rpres		nte: 20.3.2	1	T	ime:				sceived Sh	By:	1		Dat 2	:e: ४ • <i>०</i> .:	 ہے، د	5
		l										,	~~~			\$			-1
						. •						۔ مربع) Chi	itaw: Piit	 00d I. (22) 5.	بارد بارد	: 	
	·-·· ,					. •	, <i>1</i> 2					·~	26	582	22	1			
						•	. See						eReco e Reco	all and	• - •				
							-					1. 0	oived I	-					

:

R.

ι.

•

7

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 265348

Client Details	
Client	JK Environments
Attention	Anthony Barkway
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32915BA, Vaucluse
Number of Samples	12 Soil, 1 Water, 3 Material
Date samples received	29/03/2021
Date completed instructions received	31/03/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date results requested by

Date of Issue

09/04/2021 08/04/2021

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Ridwan Wijaya, Wonnie Condos Authorised by Asbestos Approved Signatory: Lucy Zhu <u>Results Approved By</u> Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Lucy Zhu, Asbestos Supervisor

Manju Dewendrage, Chemist

Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil			
Our Reference		265348-1	265348-2
Your Reference	UNITS	BH103	BH103
Depth		0.06-0.2	1.0-1.2
Date Sampled		29/03/2021	29/03/2021
Type of sample		Soil	Soil
Date extracted	-	31/03/2021	31/03/2021
Date analysed	-	06/04/2021	06/04/2021
TRH C ₆ - C ₉	mg/kg	<25	<25
TRH C6 - C10	mg/kg	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
naphthalene	mg/kg	<1	<1
Total +ve Xylenes	mg/kg	<3	<3
Surrogate aaa-Trifluorotoluene	%	102	101

svTRH (C10-C40) in Soil			
Our Reference		265348-1	265348-2
Your Reference	UNITS	BH103	BH103
Depth		0.06-0.2	1.0-1.2
Date Sampled		29/03/2021	29/03/2021
Type of sample		Soil	Soil
Date extracted	-	31/03/2021	31/03/2021
Date analysed	-	02/04/2021	02/04/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	450	<100
TRH C ₂₉ - C ₃₆	mg/kg	340	<100
TRH >C10 -C16	mg/kg	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	660	<100
TRH >C ₃₄ -C ₄₀	mg/kg	350	<100
Total +ve TRH (>C10-C40)	mg/kg	1,000	<50
Surrogate o-Terphenyl	%	113	81

PAHs in Soil			
Our Reference		265348-1	265348-2
Your Reference	UNITS	BH103	BH103
Depth		0.06-0.2	1.0-1.2
Date Sampled		29/03/2021	29/03/2021
Type of sample		Soil	Soil
Date extracted	-	31/03/2021	31/03/2021
Date analysed	-	01/04/2021	01/04/2021
Naphthalene	mg/kg	0.9	<0.1
Acenaphthylene	mg/kg	4.7	<0.1
Acenaphthene	mg/kg	0.3	<0.1
Fluorene	mg/kg	2.2	<0.1
Phenanthrene	mg/kg	38	0.2
Anthracene	mg/kg	7.9	<0.1
Fluoranthene	mg/kg	34	0.4
Pyrene	mg/kg	33	0.4
Benzo(a)anthracene	mg/kg	21	0.2
Chrysene	mg/kg	12	0.2
Benzo(b,j+k)fluoranthene	mg/kg	22	0.3
Benzo(a)pyrene	mg/kg	14	0.2
Indeno(1,2,3-c,d)pyrene	mg/kg	5.7	0.1
Dibenzo(a,h)anthracene	mg/kg	1.2	<0.1
Benzo(g,h,i)perylene	mg/kg	7.1	0.1
Total +ve PAH's	mg/kg	200	2.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	20	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	20	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	20	<0.5
Surrogate p-Terphenyl-d14	%	98	109

Organochlorine Pesticides in soil		
Our Reference		265348-1
Your Reference	UNITS	BH103
Depth		0.06-0.2
Date Sampled		29/03/2021
Type of sample		Soil
Date extracted	-	31/03/2021
Date analysed	-	01/04/2021
alpha-BHC	mg/kg	<0.1
НСВ	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	100

Organophosphorus Pesticides in Soil		
Our Reference		265348-1
Your Reference	UNITS	BH103
Depth		0.06-0.2
Date Sampled		29/03/2021
Type of sample		Soil
Date extracted	-	31/03/2021
Date analysed	-	01/04/2021
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Parathion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Ethion	mg/kg	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1
Surrogate TCMX	%	100

PCBs in Soil		
Our Reference		265348-1
Your Reference	UNITS	BH103
Depth		0.06-0.2
Date Sampled		29/03/2021
Type of sample		Soil
Date extracted	-	31/03/2021
Date analysed	-	01/04/2021
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	100

Acid Extractable metals in soil			
Our Reference		265348-1	265348-2
Your Reference	UNITS	BH103	BH103
Depth		0.06-0.2	1.0-1.2
Date Sampled		29/03/2021	29/03/2021
Type of sample		Soil	Soil
Date prepared	-	01/04/2021	01/04/2021
Date analysed	-	01/04/2021	01/04/2021
Arsenic	mg/kg	7	9
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	79	9
Copper	mg/kg	44	19
Lead	mg/kg	150	630
Mercury	mg/kg	0.2	0.2
Nickel	mg/kg	18	3
Zinc	mg/kg	75	140

Moisture			
Our Reference		265348-1	265348-2
Your Reference	UNITS	BH103	BH103
Depth		0.06-0.2	1.0-1.2
Date Sampled		29/03/2021	29/03/2021
Type of sample		Soil	Soil
Date prepared	-	31/03/2021	31/03/2021
Date analysed	-	01/04/2021	01/04/2021
Moisture	%	0.1	4.4

Asbestos ID - soils NEPM - ASB-001			
Our Reference		265348-1	265348-3
Your Reference	UNITS	BH103	BH103
Depth		0.06-0.2	2.0-2.3
Date Sampled		29/03/2021	29/03/2021
Type of sample		Soil	Soil
Date analysed	-	06/04/2021	06/04/2021
Sample mass tested	g	728.48	678.95
Sample Description	-	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	Chrysotile asbestos detected Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	0.4982
Asbestos ID in soil <0.1g/kg*	-	Chrysotile	See Above
ACM >7mm Estimation*	g	-	0.3332
FA and AF Estimation*	g	0.0012	0.0050
ACM >7mm Estimation*	%(w/w)	<0.01	0.0491
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001

Asbestos ID - materials				
Our Reference		265348-14	265348-15	265348-16
Your Reference	UNITS	BH103-FCF1	BH103-FCF1	BH103-FCF2-3
Depth		1.0-2.0	2.0-3.0	2.0-3.0
Date Sampled		29/03/2021	29/03/2021	29/03/2021
Type of sample		Material	Material	Material
Date analysed	-	01/04/2021	01/04/2021	01/04/2021
Mass / Dimension of Sample	-	30x20x5mm	50x20x5mm	25x15x5mm
Sample Description	-	Beige fibre cement material	Beige fibre cement material	Beige fibre cement material
Asbestos ID in materials	-	Chrysotile asbestos detected	Chrysotile asbestos detected	Chrysotile asbestos detected
		Amosite asbestos detected	Amosite asbestos detected	Amosite asbestos detected
			Crocidolite asbestos detected	
Trace Analysis	-	[NT]	[NT]	[NT]

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.

Method ID	Methodology Summary
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	265348-1	
Date extracted	-			31/03/2021	[NT]		[NT]	[NT]	31/03/2021	31/03/2021	
Date analysed	-			06/04/2021	[NT]		[NT]	[NT]	06/04/2021	06/04/2021	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	92	90	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	92	90	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	108	109	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	100	100	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	92	89	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	81	76	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	100	97	
naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	107	[NT]		[NT]	[NT]	105	102	

QUALITY CONTROL: svTRH (C10-C40) in Soil					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	265348-1
Date extracted	-			31/03/2021	[NT]		[NT]	[NT]	31/03/2021	31/03/2021
Date analysed	-			02/04/2021	[NT]		[NT]	[NT]	02/04/2021	02/04/2021
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	120	110
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	99	120
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	92	#
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	120	110
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	99	120
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	92	#
Surrogate o-Terphenyl	%		Org-020	75	[NT]	[NT]	[NT]	[NT]	83	82

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	265348-1
Date extracted	-			31/03/2021	[NT]		[NT]	[NT]	31/03/2021	31/03/2021
Date analysed	-			01/04/2021	[NT]		[NT]	[NT]	01/04/2021	01/04/2021
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88	101
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	92	73
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	105	120
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	117	#
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	102	#
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	107	#
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	106	#
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	92	#
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	108	[NT]		[NT]	[NT]	108	103

QUALITY CON	FROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	265348-1
Date extracted	-			31/03/2021	[NT]		[NT]	[NT]	31/03/2021	31/03/2021
Date analysed	-			01/04/2021	[NT]		[NT]	[NT]	01/04/2021	01/04/2021
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	99	108
НСВ	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	108	128
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	125	127
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	110	115
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	133	135
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	103	116
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	121	#
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	80	#
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	103	#
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	124	133
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	97	[NT]		[NT]	[NT]	108	99

QUALITY CONTRO	L: Organoph	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	265348-1
Date extracted	-			31/03/2021	[NT]		[NT]	[NT]	31/03/2021	31/03/2021
Date analysed	-			01/04/2021	[NT]		[NT]	[NT]	01/04/2021	01/04/2021
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	104	133
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	111	114
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	113	107
Malathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	100	120
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	87	99
Parathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	94	102
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	113	#
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	97	[NT]		[NT]	[NT]	108	99

QUALIT	Y CONTRO	L: PCBs i	in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	265348-1
Date extracted	-			31/03/2021	[NT]		[NT]	[NT]	31/03/2021	31/03/2021
Date analysed	-			01/04/2021	[NT]		[NT]	[NT]	01/04/2021	01/04/2021
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	104	98
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate TCMX	%		Org-021	97	[NT]	[NT]	[NT]	[NT]	108	99

QUALITY CONT	ROL: Acid E	Extractable	e metals in soil			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	265348-1
Date prepared	-			01/04/2021	[NT]	[NT]	[NT]	[NT]	01/04/2021	01/04/2021
Date analysed	-			01/04/2021	[NT]	[NT]	[NT]	[NT]	01/04/2021	01/04/2021
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]	[NT]	[NT]	113	93
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]	[NT]	[NT]	99	74
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	107	#
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	116	120
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	102	94
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]	[NT]	[NT]	114	#
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	107	81
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	102	80

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

TRH Soil C10-C40 NEPM - # Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 265348-1 has caused interference.

8 metals in soil - # Percent recovery is not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

PAH_S:# Percent recovery for the surrogate/matrix spike is not possible to report as the high concentration of analytes in sample/s 265348-1ms have caused interference.

OCP_S_MSMS:# Percent recovery for the surrogate/matrix spike is not possible to report due to interference from analytes (other than those being tested) in sample/s 265348-1ms.

OP_S_MSMS:The PQL has been raised due to interferences from analytes (other than those being tested) in sample/s 265348-1ms.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Factual description of asbestos identified in the soil samples: NEPM Sample 265348-1; 0.0012g of loose Chrysotile asbestos fibres identified in the sample

Sample 265348-3; Chrysotile asbestos identified in 2.2216g of fibre cement material >7mm

Sample 265348-3; Chrysotile asbestos identified in 0.0332g of fibre cement material <7mm

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Anthony Barkway

Sample Login Details	
Your reference	E32915BA, Vaucluse
Envirolab Reference	265348
Date Sample Received	29/03/2021
Date Instructions Received	31/03/2021
Date Results Expected to be Reported	09/04/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	12 Soil, 1 Water, 3 Material
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	9
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	Asbestos ID - materials	On Hold
BH103-0.06-0.2	✓	✓	✓	✓	✓	✓	✓	\checkmark		
BH103-1.0-1.2	✓	✓	✓				✓			
BH103-2.0-2.3								✓		
BH103-3.0-3.3										\checkmark
BH103-4.3-4.6										✓
BH103-5.0-5.3										\checkmark
BH103-6.0-6.3										\checkmark
BH103-6.9-7.1										\checkmark
BH103-7.3-7.5										\checkmark
SDUP204										\checkmark
TB-S2										✓
FR-SPT2										\checkmark
TS-S2										✓
BH103-FCF1-1.0-2.0									✓	
BH103-FCF1-2.0-3.0									✓	
BH103-FCF2-3-2.0-3.0									✓	

The '\screw' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

																:			
																:			
						+2													
												i LD .	d <i>e</i> r	k	A C	DC.	31	1031	2021
<u>ro:</u>				SAI	VIPLE .	AND CHAIN OF C			FORM	<u> </u>	FROM	<u>/:</u>				ب م		2	2021 09:31
ENVIROLAB S		S PTY LTD		JKE Job Number:	:	E32915BA	477.9 1979. 1970. 1970. 1970. 1970. 1970. 1970. 1970.	,					1000	.					
		2067		Det. De.		STANDARD		ĩ			DEAD					inn	nei	nts	
≥: (02) 99106 5: (02) 99106				Date Res Required		SIANDARD		5 3					15 W10 IE PAF			13 :			
Attention: Ái	ileen			Page:		i ng mai na gi na ng mi i na ng mi 11 na ng mai na ng mi ng mi na ng mi ng 12 na ng minang mangang mi ng mi	N La ser N y	7					5000			-9888 Bark			
	<u></u>			-	ч н		ur Sondet	ð			Abarl	kaway	@jker	nviron	ments				
ocation:	Vauch	use ,	میں در محمد میں درور میں چکون کے م	n <u>19.759,1 1997 a.</u>	e de ante santa	N 29 ² er en ne netre netre netre en	e e			Sam	ole Pre		d in E	-	n lçe			÷	
Sampler: Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6	Combo 3	Asbestos (WA 500ml method)	втех	Asbestos (Detection)								
	-	<u> </u>				· · · · · · ·	-		1							:			
9.3.21		BH103	0.06-0.2	G, A G	0	Fill: Silty Sand	×	x	x		-		e e sár				 		
9.3.21	2	BH103	1.0-1.2	G, A	0	Fill: Silty Sand		<u> </u>	x	ľ		ŀ			<u>}</u>	3. 5		<u> </u>	
9.3.21	2 4	BH103	2.0-2.3	G, A	0	Fill: Silty Sand	1	•				x					-		
9.3.21 9.3.21		BH103 BH103	3.0-3.3 4.3-4.6	G	0	Fill: Silty Sand				. 		x			+	<u> </u>	\vdash		
9.3.21	6	BH103 BH103	5.0-5.3	G	0	Fill: Silty Sand	<u> </u> .					x	<u> </u>		a na sea		-	<u> </u>	
9.3.21	7	BH103	6.0-6.3	G, A	0	Fill: Silty Sand						x							
9.3.21	8	BH103	6.9-7.1	G, A	0	Silty Sand	8- A-					x							
9.3.21	9	BH103	7.3-7.5	G	0	Clayey Sand						x							
9.3.21	10	SDUP204		G	-	Soil DUP		:	5	20 AP T 1		х	*						
9.3.21	11	TB-S2	-	G	-	Trip Blank Soil						х			•				
9.3.21	12	FR-SPT2		V x 2	-	Field Rinsate						x							
9.3.21	13	TS-S2		V	-	Trip Spike Soil						x						_	
9.3.21	14	BH103-FCF1	1.0-2.0	A	• • ·	Fragment	1				X	-					1		
9.3.21	15	BH103-FCF1	2.0-3.0	A	-	Fragment					×				-				
9.3.21	16	BH103-FCF2-3	2.0-3.0	A	,	Fragment	ļ				×						,		
						· · · · · · · · · · · · · · · · · · ·										:	-		
																2 in 1			
i	:.																		
	,												<u> </u>			<u>-</u>	1		
			i.	5 x 1		، من		ļ	··		[.e	· .		ð 	a veget			
							Ĺ									-			
						÷ • •		1 1 - N 1	4							e Bager de			
																:			
·		s/detection lin		_			G - 2 A - Zi <u>P - P</u> l	50mg plock astic I	ntainers Glass Ja Asbesto Bag	r						-			
lelinquished	By: A№	/I / Anthony B	arkway	Date: 31.	3.21		Time	:			Recei	ved B	y:			Date	:		
				I			<u> </u>				1								
						,													
																;			

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 265348-A

Client Details	
Client	JK Environments
Attention	Anthony Barkway
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32915BA, Vaucluse
Number of Samples	12 Soil, 1 Water, 3 Material
Date samples received	29/03/2021
Date completed instructions received	26/04/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 29/04/2021

 Date of Issue
 29/04/2021

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Nyovan Moonean Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Giovanni Agosti, Group Technical Manager Lucy Zhu, Asbestos Supervisor Nick Sarlamis, Inorganics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Acid Extractable metals in soil			
Our Reference		265348-A-3	265348-A-4
Your Reference	UNITS	BH103	BH103
Depth		2.0-2.3	3.0-3.3
Date Sampled		29/03/2021	29/03/2021
Type of sample		Soil	Soil
Date prepared	-	28/04/2021	28/04/2021
Date analysed	-	28/04/2021	28/04/2021
Arsenic	mg/kg	7	6
Cadmium	mg/kg	<0.4	0.5
Chromium	mg/kg	12	16
Copper	mg/kg	16	25
Lead	mg/kg	750	860
Mercury	mg/kg	0.1	0.1
Nickel	mg/kg	3	4
Zinc	mg/kg	310	440

Moisture			
Our Reference		265348-A-3	265348-A-4
Your Reference	UNITS	BH103	BH103
Depth		2.0-2.3	3.0-3.3
Date Sampled		29/03/2021	29/03/2021
Type of sample		Soil	Soil
Date prepared	-	26/04/2021	26/04/2021
Date analysed	-	27/04/2021	27/04/2021
Moisture	%	9.5	12

Asbestos ID - soils NEPM - ASB-001		
Our Reference		265348-A-4
Your Reference	UNITS	BH103
Depth		3.0-3.3
Date Sampled		29/03/2021
Type of sample		Soil
Date analysed	-	29/04/2021
Sample mass tested	g	613.18
Sample Description	-	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected
Trace Analysis	-	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected
ACM >7mm Estimation*	g	-
FA and AF Estimation*	g	-
ACM >7mm Estimation*	%(w/w)	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil			Duj	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			28/04/2021	[NT]		[NT]	[NT]	28/04/2021	
Date analysed	-			28/04/2021	[NT]		[NT]	[NT]	28/04/2021	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	100	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	103	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	95	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	97	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	86	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	105	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	102	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions			
Blank	BlankThis is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.			
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.			
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.			
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.			
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.			

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Anthony Barkway

Sample Login Details	
Your reference	E32915BA, Vaucluse
Envirolab Reference	265348-A
Date Sample Received	29/03/2021
Date Instructions Received	26/04/2021
Date Results Expected to be Reported	29/04/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	12 Soil, 1 Water, 3 Material
Turnaround Time Requested	3 days
Temperature on Receipt (°C)	9
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst	
Phone: 02 9910 6200	Phone: 02 9910 6200	
Fax: 02 9910 6201	Fax: 02 9910 6201	
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au	

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB 001	On Hold
BH103-0.06-0.2			✓
BH103-1.0-1.2			\checkmark
BH103-2.0-2.3	✓		
BH103-3.0-3.3	✓	\checkmark	
BH103-4.3-4.6			✓
BH103-5.0-5.3			\checkmark
BH103-6.0-6.3			✓
BH103-6.9-7.1			\checkmark
BH103-7.3-7.5			\checkmark
SDUP204			✓
TB-S2			✓
FR-SPT2			✓
TS-S2			\checkmark
BH103-FCF1-1.0-2.0			\checkmark
BH103-FCF1-2.0-3.0			✓
BH103-FCF2-3-2.0-3.0			\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

1 1 1 1		!		-	
		1			
Ming To		:			
From:		Simon Song			
Sent:		Monday, 26 April 20	021 3:36 PM	- - -	
To:			Cen Nguyen; Ming To		
Cc:	•	Aileen Hie; Custome			
Subject:	•	RE: Results for Regis	stration 265348 E32915BA, Vaucluse		÷
Follow Up Flag	:	Follow up	Ret: 265348 - 7772 3 days. Dre: 29/04/20	A.	•
lag Status:		Flagged	TATIZ 3 days.		:
			Dra 29/04/20	21 117	
la problem		; ¢	love. Die		
No problem		, j			
		•			
		- - - 		•	
(ind Regards,		· •	b		
	Contax Cuata	may Campion Envirolab	Samiana		
simon Song s	senior Custo	mer Service Envirolab	Services	:	
Great Science.	Great Servi	ce.		16 1	
2 Ashley Street Ch 612 9910 6200 SSong@envirolat		067 w.envirolab.com.au_			
		<u>cebook Twitter</u>		1	
Samples will b	analysed r	er our T&C's			
Sent: Monday, 2	26 April 2021	arkway@jkenvironments 3:26 PM envirolab.com.au>	s.com.au>	• • •	
		lab.com.au>; Customer S stration 265348 E32915B	Service <customerservice@envirolab.com.a A, Vaucluse</customerservice@envirolab.com.a 	u>	
			sation. Do not act on instructions, click links or o	pen attachmer	nts
unless you recogr	nise the sende	r and know the content is a	uthentic and safe.	a - t a	
Hi Ken,					
		•		,	
Some additiona	l testing for t	his batch please as follow	vs.		
Sample Numb	or I Donth	Sample Number Lab Re	ef: Tests Required	<u> </u>	
Sample Numb BH103 (2.0-2.3	· ·		8 Heavy Metals		
BH103 (3.0-3.3		(4)	8 Heavy Metals, Asbestos (WA 500ml N	/ethod)	
		esults on Thursday the la		· · ·	
, , ,	,	1			
⁻ hank you!		•		· .	
Regards		• •		* *	
Anthony Barkv	-	i.		-	
Senior Environ				;	
CEnvP (Genera	I Certified E	nvironmental Practitio	ner) NSW Licensed Asbestos Assessor		
		:	1	•	
		· .			

.

.•

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 265688

Client Details	
Client	JK Environments
Attention	Anthony Barkway
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32915BA, Vaucluse
Number of Samples	5 Water
Date samples received	01/04/2021
Date completed instructions received	07/04/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	14/04/2021	
Date of Issue	14/04/2021	
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.	
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By Dragana Tomas, Senior Chemist Loren Bardwell, Senior Chemist Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 265688 Revision No: R00

Page | 1 of 19

VOCs in water		
Our Reference		265688-1
Your Reference	UNITS	MW202
Date Sampled		01/04/2021
Type of sample		Water
Date extracted	-	13/04/2021
Date analysed	-	14/04/2021
Dichlorodifluoromethane	µg/L	<10
Chloromethane	µg/L	<10
Vinyl Chloride	µg/L	<10
Bromomethane	µg/L	<10
Chloroethane	µg/L	<10
Trichlorofluoromethane	µg/L	<10
1,1-Dichloroethene	µg/L	<1
Trans-1,2-dichloroethene	µg/L	<1
1,1-dichloroethane	µg/L	<1
Cis-1,2-dichloroethene	µg/L	<1
Bromochloromethane	µg/L	<1
Chloroform	µg/L	2
2,2-dichloropropane	µg/L	<1
1,2-dichloroethane	µg/L	<1
1,1,1-trichloroethane	µg/L	<1
1,1-dichloropropene	µg/L	<1
Cyclohexane	µg/L	<1
Carbon tetrachloride	µg/L	<1
Benzene	µg/L	<1
Dibromomethane	µg/L	<1
1,2-dichloropropane	µg/L	<1
Trichloroethene	µg/L	<1
Bromodichloromethane	µg/L	<1
trans-1,3-dichloropropene	µg/L	<1
cis-1,3-dichloropropene	µg/L	<1
1,1,2-trichloroethane	µg/L	<1
Toluene	µg/L	<1
1,3-dichloropropane	µg/L	<1
Dibromochloromethane	μg/L	<1
1,2-dibromoethane	μg/L	<1
Tetrachloroethene	µg/L	<1
1,1,1,2-tetrachloroethane	µg/L	<1
Chlorobenzene	µg/L	<1
Ethylbenzene	µg/L	<1

VOCs in water		
Our Reference		265688-1
Your Reference	UNITS	MW202
Date Sampled		01/04/2021
Type of sample		Water
Bromoform	µg/L	<1
m+p-xylene	µg/L	<2
Styrene	µg/L	<1
1,1,2,2-tetrachloroethane	µg/L	<1
o-xylene	µg/L	<1
1,2,3-trichloropropane	µg/L	<1
Isopropylbenzene	µg/L	<1
Bromobenzene	µg/L	<1
n-propyl benzene	µg/L	<1
2-chlorotoluene	µg/L	<1
4-chlorotoluene	µg/L	<1
1,3,5-trimethyl benzene	µg/L	<1
Tert-butyl benzene	µg/L	<1
1,2,4-trimethyl benzene	µg/L	<1
1,3-dichlorobenzene	µg/L	<1
Sec-butyl benzene	μg/L	<1
1,4-dichlorobenzene	µg/L	<1
4-isopropyl toluene	μg/L	<1
1,2-dichlorobenzene	µg/L	<1
n-butyl benzene	μg/L	<1
1,2-dibromo-3-chloropropane	µg/L	<1
1,2,4-trichlorobenzene	µg/L	<1
Hexachlorobutadiene	µg/L	<1
1,2,3-trichlorobenzene	µg/L	<1
Surrogate Dibromofluoromethane	%	91
Surrogate toluene-d8	%	99
Surrogate 4-BFB	%	124

vTRH(C6-C10)/BTEXN in Water					
Our Reference		265688-1	265688-2	265688-4	265688-5
Your Reference	UNITS	MW202	WDUP1	TBW1	TSW1
Date Sampled		01/04/2021	01/04/2021	01/04/2021	01/04/2021
Type of sample		Water	Water	Water	Water
Date extracted	-	13/04/2021	13/04/2021	13/04/2021	13/04/2021
Date analysed	-	14/04/2021	14/04/2021	14/04/2021	14/04/2021
TRH C ₆ - C ₉	µg/L	<10	<10	[NA]	[NA]
TRH C ₆ - C ₁₀	µg/L	<10	<10	[NA]	[NA]
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10	[NA]	[NA]
Benzene	µg/L	<1	<1	<1	102%
Toluene	µg/L	<1	<1	<1	103%
Ethylbenzene	µg/L	<1	<1	<1	116%
m+p-xylene	µg/L	<2	<2	<2	109%
o-xylene	µg/L	<1	<1	<1	114%
Naphthalene	µg/L	<1	<1	<1	[NA]
Surrogate Dibromofluoromethane	%	91	100	102	100
Surrogate toluene-d8	%	99	102	102	100
Surrogate 4-BFB	%	124	126	122	126

svTRH (C10-C40) in Water			
Our Reference		265688-1	265688-2
Your Reference	UNITS	MW202	WDUP1
Date Sampled		01/04/2021	01/04/2021
Type of sample		Water	Water
Date extracted	-	08/04/2021	08/04/2021
Date analysed	-	08/04/2021	08/04/2021
TRH C ₁₀ - C ₁₄	µg/L	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100
Surrogate o-Terphenyl	%	92	87

PAHs in Water - Low Level			
Our Reference		265688-1	265688-2
Your Reference	UNITS	MW202	WDUP1
Date Sampled		01/04/2021	01/04/2021
Type of sample		Water	Water
Date extracted	-	08/04/2021	08/04/2021
Date analysed	-	09/04/2021	09/04/2021
Naphthalene	µg/L	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	121	110

HM in water - dissolved			
Our Reference		265688-1	265688-2
Your Reference	UNITS	MW202	WDUP1
Date Sampled		01/04/2021	01/04/2021
Type of sample		Water	Water
Date prepared	-	08/04/2021	08/04/2021
Date analysed	-	08/04/2021	08/04/2021
Arsenic-Dissolved	µg/L	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1
Copper-Dissolved	µg/L	2	2
Lead-Dissolved	µg/L	1	1
Mercury-Dissolved	µg/L	<0.05	<0.05
Nickel-Dissolved	µg/L	3	3
Zinc-Dissolved	µg/L	91	92

Miscellaneous Inorganics		
Our Reference		265688-1
Your Reference	UNITS	MW202
Date Sampled		01/04/2021
Type of sample		Water
Date prepared	-	12/04/2021
Date analysed	-	12/04/2021
рН	pH Units	5.2
Electrical Conductivity	µS/cm	460

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALIT	Y CONTROL	: VOCs ii	n water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			13/04/2021	1	13/04/2021	13/04/2021		13/04/2021	[NT]
Date analysed	-			14/04/2021	1	14/04/2021	14/04/2021		14/04/2021	[NT]
Dichlorodifluoromethane	µg/L	10	Org-023	<10	1	<10	<10	0		[NT]
Chloromethane	µg/L	10	Org-023	<10	1	<10	<10	0		[NT]
Vinyl Chloride	µg/L	10	Org-023	<10	1	<10	<10	0		[NT]
Bromomethane	µg/L	10	Org-023	<10	1	<10	<10	0		[NT]
Chloroethane	µg/L	10	Org-023	<10	1	<10	<10	0		[NT]
Trichlorofluoromethane	µg/L	10	Org-023	<10	1	<10	<10	0		[NT]
1,1-Dichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
Trans-1,2-dichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
1,1-dichloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	92	[NT]
Cis-1,2-dichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
Bromochloromethane	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
Chloroform	µg/L	1	Org-023	<1	1	2	2	0	97	[NT]
2,2-dichloropropane	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
1,2-dichloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	80	[NT]
1,1,1-trichloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	96	[NT]
1,1-dichloropropene	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
Cyclohexane	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
Carbon tetrachloride	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
Benzene	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
Dibromomethane	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
1,2-dichloropropane	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
Trichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	128	[NT]
Bromodichloromethane	µg/L	1	Org-023	<1	1	<1	<1	0	94	[NT]
trans-1,3-dichloropropene	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
cis-1,3-dichloropropene	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
1,1,2-trichloroethane	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
Toluene	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
1,3-dichloropropane	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
Dibromochloromethane	µg/L	1	Org-023	<1	1	<1	<1	0	105	[NT]
1,2-dibromoethane	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
Tetrachloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	113	[NT]
1,1,1,2-tetrachloroethane	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
Chlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
Ethylbenzene	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
Bromoform	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
m+p-xylene	µg/L	2	Org-023	<2	1	<2	<2	0		[NT]
Styrene	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]
1,1,2,2-tetrachloroethane	µg/L	1	Org-023	<1	1	<1	<1	0		[NT]

QUALIT	Y CONTRO	L: VOCs i	n water			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]	
o-xylene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
1,2,3-trichloropropane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
Isopropylbenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
Bromobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
n-propyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
2-chlorotoluene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
4-chlorotoluene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
1,3,5-trimethyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
Tert-butyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
1,2,4-trimethyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
1,3-dichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
Sec-butyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
1,4-dichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
4-isopropyl toluene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
1,2-dichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
n-butyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
1,2-dibromo-3-chloropropane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
1,2,4-trichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
Hexachlorobutadiene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
1,2,3-trichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	99	1	91	99	8	101		
Surrogate toluene-d8	%		Org-023	101	1	99	103	4	100		
Surrogate 4-BFB	%		Org-023	123	1	124	119	4	121		

QUALITY CONT	ROL: vTRH((C6-C10)/E	3TEXN in Water		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			13/04/2021	1	13/04/2021	13/04/2021		13/04/2021	
Date analysed	-			14/04/2021	1	14/04/2021	14/04/2021		14/04/2021	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	1	<10	<10	0	117	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	1	<10	<10	0	117	
Benzene	µg/L	1	Org-023	<1	1	<1	<1	0	98	
Toluene	µg/L	1	Org-023	<1	1	<1	<1	0	102	
Ethylbenzene	µg/L	1	Org-023	<1	1	<1	<1	0	127	
m+p-xylene	µg/L	2	Org-023	<2	1	<2	<2	0	128	
o-xylene	µg/L	1	Org-023	<1	1	<1	<1	0	129	
Naphthalene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	99	1	91	99	8	101	
Surrogate toluene-d8	%		Org-023	101	1	99	103	4	100	
Surrogate 4-BFB	%		Org-023	123	1	124	119	4	121	

QUALITY CON	QUALITY CONTROL: svTRH (C10-C40) in Water								Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			08/04/2021	[NT]		[NT]	[NT]	08/04/2021	
Date analysed	-			08/04/2021	[NT]		[NT]	[NT]	08/04/2021	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	100	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	92	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	96	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	100	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	92	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	96	
Surrogate o-Terphenyl	%		Org-020	79	[NT]	[NT]	[NT]	[NT]	88	[NT]

QUALITY CO	NTROL: PAH	ls in Wate		Du	plicate	Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			08/04/2021	[NT]		[NT]	[NT]	08/04/2021	
Date analysed	-			09/04/2021	[NT]		[NT]	[NT]	09/04/2021	
Naphthalene	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	94	
Acenaphthylene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	93	
Fluorene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	96	
Phenanthrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	102	
Anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98	
Pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	100	
Benzo(a)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	104	
Benzo(b,j+k)fluoranthene	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	105	
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	118	[NT]		[NT]	[NT]	125	

QUALITY CC	NTROL: HN	1 in water	- dissolved			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	265688-2
Date prepared	-			08/04/2021	1	08/04/2021	08/04/2021		08/04/2021	08/04/2021
Date analysed	-			08/04/2021	1	08/04/2021	08/04/2021		08/04/2021	08/04/2021
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	98	98
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	93	93
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	104	102
Copper-Dissolved	µg/L	1	Metals-022	<1	1	2	2	0	103	100
Lead-Dissolved	µg/L	1	Metals-022	<1	1	1	1	0	99	95
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	96	[NT]
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	3	3	0	102	99
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	91	92	1	100	99

QUALITY COI		Duj	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			12/04/2021	[NT]		[NT]	[NT]	12/04/2021	
Date analysed	-			12/04/2021	[NT]		[NT]	[NT]	12/04/2021	
рН	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	103	
Electrical Conductivity	μS/cm	1	Inorg-002	<1	[NT]	[NT]	[NT]	[NT]	104	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

pH - out of recommended holding time

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

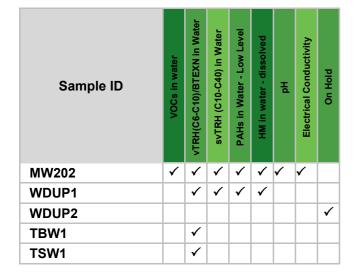
Client Details	
Client	JK Environments
Attention	Anthony Barkway

Sample Login Details	
Your reference	E32915BA, Vaucluse
Envirolab Reference	265688
Date Sample Received	01/04/2021
Date Instructions Received	07/04/2021
Date Results Expected to be Reported	14/04/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	5 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	14
Cooling Method	Ice
Sampling Date Provided	YES

Comments

pH - out of recommended holding time


Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

			SAMPLE	AND	CHAIN OF	ະບາ	то	DY F	ORM	N	di	di	ile.	d-	ĊĐ	c_{-}	π
<u>ro:</u> Envirolab 12 Ashley S Chatswooi	TREET		JKE Job Number:		E32915BA					M Updated-Coc O FROM: 2656FF JKEnvironmen REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001							! nts
P: (02) 99106 F: (02) 99106	5200		Date Results Required:		STANDARD												
Attention: A	ileen		Page:		1.of 1	 ست ،				Atter	ntion:	i @iker					• •
ocation:	Vauclu	se			· · · · · · · · · · · · · · · · · · ·				Sam	ple Pr				n Icé		•	
ampler:	MMP	1		. *	,				·	T 	ests R	equire	ed Internet		r	;	
Date Sampled	Lab Ref:	Sample Number	Sample Containers	PID -	Sample Description	Combo 2	Combo 3L	vocs	pH / EC	8 Metals	PAHs	ткн/втех	втех	Hardness	НОГР		
1.4.21	1	MW202	2xG1, 4xV, 1xH, 1xPVC		Water		x	x	x								
1.4.21	2	WDUP1	2xG1, 4xV, 1xH, 1xPVC	1	Water		x			<u> </u>							
1.4.21	3	WDUP2	2xG1, 4xV, 1xH, 1xPVC		Water										×	 	
1.4.21	4	TBW1	1xV		Water								x				
1.4.21	5	TSW1	1xV		Water								X				
			~ ~ ~ ~														
																-	
					х												
	•				~												
				3 c													
			· · · · · · · · · · · · · · · · · · ·														
	1									·							
		detection limit	s required): CC (2000) Detection L	imits Ple	ase	G1 - A V - B1	Ambe FEX Vi		s Bott H - H	юоз	Nash	PVC			•		<u>.</u>
Relinquished	d By: Ant	hony Barkway	Date: 7.04.2021			PVC - Time		E Plast	<u>ic Bot</u>		ived B	y:			Date	•	

.

12 ASHLEY CHATSWOO P: (02) 9910	DD NSW 2 06200	067	Number: Date Results	·····	ÌI -			JKEnvironmen											
F: (02) 9910 Attention: /			Required: Page:	·····	۲ ۱			MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention:											
Location:	Vauclu			Abarkaway@ikenvironments.com.au Sample Preserved in Esky on Ice															
Sampler:	MMP	<u>.</u>		<u> </u>		-	Tests Required												
]		<u> </u>				r	[<u> </u>			<u> </u>	1 -					
Date Sampled	Lab Ref:	Sample Number	Sample Containers	PID	Sample Description	Combo 2	Combo 3L	VOCs	pH / EC	8 Metals	PAHs	TRH/BTEX	BTEX	Hardness					
1.4.21	1	MW20	2xG1, 4xV, 1xH, 1xPVC	1.S	Water	1.5	\mathbf{x}	x	X			1							
1.4.21	2	WDUP1	2xG1, 4xV, 1xH, 1xPVC	_	Water	l	×	×/	×/	<i>\</i>				2					
1.4.21	3	WDUP2	2xG1, 4xV, 1xH, 1xPVC	-	Water		×	×	× /		/				2				
1.4.21	4	TBW1	1xV		Water	-		\square		, ¢			×						
1.4.21	5	TSW1	1xV		Water														
	6												<u>.</u>						
. <u> </u>		•				-		Sá	red	<u>16</u>	6	40	2	be					
	ENVIR		olab Services 12 Ashley St od NSW 2067						ei I	-04 A S	<u>/e</u>	<u>ک</u>							
,	Job N	· · · · · ·	22.508	8															
	n Time Recei	Received: Received: ved.By:	13.20	>´															
	Cooli	: Cool/Ambient ng: Coel/Cepack nty: Intact/Brok	antiNone	`					_										
	_	×												-					
											_								
A	ll analysis	PQLs to ANZECO	required): C (2000) Detection Lir	mits Pleas	e	Sampl G1 - A V - BT PVC -	mber EX Via	Glass I I I	Bottle H - HN	103 W	ash P	vc							
Relinquished	By:	P	Date:			Time:				Receiv	red-By)	\mathcal{O}		Date:				
			1. marken	Str. Date - Bag				_											

· .

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 25101

Client Details	
Client	JK Environments
Attention	Anthony Barkway
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	<u>E32915BA</u>
Number of Samples	1 Soil
Date samples received	30/03/2021
Date completed instructions received	30/03/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details							
Date results requested by	07/04/2021						
Date of Issue	07/04/2021						
NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *							

<u>Results Approved By</u> Chris De Luca, Operations Manager

Authorised By

Pamela Adams, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		25101-1
Your Reference	UNITS	SDUP203
Date Sampled		25/03/2021
Type of sample		Soil
Date extracted	-	01/04/2021
Date analysed	-	06/04/2021
vTRH C ₆ - C ₉	mg/kg	<25
vTRH C6 - C10	mg/kg	<25
TRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total BTEX	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	89

TRH Soil C10-C40 NEPM		
Our Reference		25101-1
Your Reference	UNITS	SDUP203
Date Sampled		25/03/2021
Type of sample		Soil
Date extracted	-	01/04/2021
Date analysed	-	06/04/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
Total +ve TRH (C10-C36)	mg/kg	<50
TRH >C10 -C16	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	82

PAHs in Soil		
Our Reference		25101-1
Your Reference	UNITS	SDUP203
Date Sampled		25/03/2021
Type of sample		Soil
Date extracted	-	01/04/2021
Date analysed	-	06/04/2021
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	0.5
Anthracene	mg/kg	0.4
Fluoranthene	mg/kg	0.8
Pyrene	mg/kg	1
Benzo(a)anthracene	mg/kg	0.4
Chrysene	mg/kg	0.4
Benzo(b,j&k)fluoranthene	mg/kg	0.7
Benzo(a)pyrene	mg/kg	0.40
Indeno(1,2,3-c,d)pyrene	mg/kg	0.3
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	0.3
Total +ve PAH's	mg/kg	5.2
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	0.5
Benzo(a)pyrene TEQ calc (Half)	mg/kg	0.6
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	0.6
Surrogate p-Terphenyl-d ₁₄	%	116

Acid Extractable metals in soil		
Our Reference		25101-1
Your Reference	UNITS	SDUP203
Date Sampled		25/03/2021
Type of sample		Soil
Date digested	-	06/04/2021
Date analysed	-	06/04/2021
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	27
Copper	mg/kg	17
Lead	mg/kg	21
Mercury	mg/kg	<0.1
Nickel	mg/kg	19
Zinc	mg/kg	50

Moisture		
Our Reference		25101-1
Your Reference	UNITS	SDUP203
Date Sampled		25/03/2021
Type of sample		Soil
Date prepared	-	1/04/2021
Date analysed	-	6/04/2021
Moisture	%	20

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 12 hours.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:-
	 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			01/04/2021	1	01/04/2021	01/04/2021		01/04/2021	
Date analysed	-			06/04/2021	1	06/04/2021	06/04/2021		06/04/2021	
vTRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	81	
vTRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	81	
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	81	
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	85	
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	83	
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	79	
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	80	
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	100	1	89	82	8	92	

QUALITY CONTROL: TRH Soil C10-C40 NEPM							Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			01/04/2021	1	01/04/2021	01/04/2021		01/04/2021		
Date analysed	-			06/04/2021	1	06/04/2021	06/04/2021		06/04/2021		
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	84		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	95		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	80		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	84		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	95		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	80		
Surrogate o-Terphenyl	%		Org-020	91	1	82	80	2	88		

QUALI		Duplicate			Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			01/04/2021	1	01/04/2021	01/04/2021		01/04/2021	
Date analysed	-			06/04/2021	1	06/04/2021	06/04/2021		06/04/2021	
Naphthalene	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	108	
Acenaphthylene	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	104	
Acenaphthene	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	
Fluorene	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	122	
Phenanthrene	mg/kg	0.1	Org-022	<0.1	1	0.5	0.4	22	112	
Anthracene	mg/kg	0.1	Org-022	<0.1	1	0.4	0.4	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-022	<0.1	1	0.8	0.7	13	112	
Pyrene	mg/kg	0.1	Org-022	<0.1	1	1	0.8	22	118	
Benzo(a)anthracene	mg/kg	0.1	Org-022	<0.1	1	0.4	0.4	0	[NT]	
Chrysene	mg/kg	0.1	Org-022	<0.1	1	0.4	0.3	29	110	
Benzo(b,j&k)fluoranthene	mg/kg	0.2	Org-022	<0.2	1	0.7	0.6	15	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022	<0.05	1	0.40	0.34	16	108	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022	<0.1	1	0.3	0.2	40	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022	<0.1	1	0.3	0.2	40	[NT]	
Surrogate p-Terphenyl-d ₁₄	%		Org-022	122	1	116	114	2	118	

QUALITY CONT		Duplicate			Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date digested	-			06/04/2021	[NT]	[NT]		[NT]	06/04/2021	
Date analysed	-			06/04/2021	[NT]	[NT]		[NT]	06/04/2021	
Arsenic	mg/kg	4	Metals-020 ICP- AES	<4	[NT]	[NT]		[NT]	107	
Cadmium	mg/kg	0.4	Metals-020 ICP- AES	<0.4	[NT]	[NT]		[NT]	109	
Chromium	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]		[NT]	107	
Copper	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]		[NT]	111	
Lead	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]		[NT]	106	
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]		[NT]	106	
Nickel	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]		[NT]	107	
Zinc	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]		[NT]	107	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

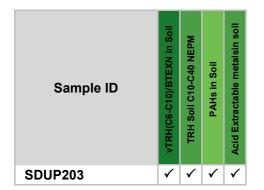
SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Anthony Barkway

Sample Login Details	
Your reference	E32915BA
Envirolab Reference	25101
Date Sample Received	30/03/2021
Date Instructions Received	30/03/2021
Date Results Expected to be Reported	07/04/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	17.4
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil


Please direct any queries to:

Pamela Adams	Chris De Luca
Phone: 03 9763 2500	Phone: 03 9763 2500
Fax: 03 9763 2633	Fax: 03 9763 2633
Email: padams@envirolab.com.au	Email: cdeluca@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

The '\s' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

3-3-4	İ			SCC0231	SA	MPLE	AND CHAIN OF	CUST	יססׂ	Y FOR	м									
	TO: ENVIROLAB SERVICES PTY LTD 12 ASHLEY STREET CHATSWOOD NSW 2067						IKE Job E32915BA				FRO	JKEnvironments								
	P: (02) 99106200 F: (02) 99106201					Date Results STANDARD			MAC				R OF 1	15 W UE P4	ICKS I ARK, N	ROAD ISW 2	113			5
	Attention! Ai	ieen			Page:		1		7			Atte	ntion:	k	Ĭ	htho	ny Bar	8 5001 kway		
	Location:	Vauclu		<u>.</u>	<u>L. 82-</u> 2017 - L.			j.			San	Abar.					ts.com	1.au		4
۰.	Sampler:	AM_		· · · · ·									ests Re	_			_		_	-
3. 	Date Sampled	Lab Ref:	Sample Number	، Depth (m)	Sample Container	PID	Sample Description	Camba 6	Combo 3	Asbestos (WA 500ml method)	BTEX	ПОН								
(*	25.3.21		BH201 ·	0.1-0.3	G, A	0	Fill: Silty Sand	x		' X	1	<u> </u>					+-	-	╀─	-
	25.3.21	<u>ي</u> :	BH201	1.1-1.3	G	0	Sandstone		X				— —		1-	+	-	1	╀	-
	25.3.21	3	BH202	0.12-0.3	G, A	0	Fill: Silty Sand	x		x					<u>†</u>	1-	1-	-	-	4
e .	25.3.21	4	BH202	1,1-1.2	G, A	0	Fill: Silty Sand		x						\square	,		<u> .</u>	-	† ·
.	25.3.21		BH202	<u>1.2</u> -1.5	G	0.,	Silty Sand					x	_		-	•	1-	·		1
ļ	25.3.21	6		<u>1.5-1.7</u>	[*] G	<u>°o</u>	Sandstone		,		1	x			\uparrow	1	1	1	\uparrow	1
	25.3.21		BH203 '	0.09-0.4	G, A	1	Fill: Silty Sand	X		x							1	<u> </u>	1	1
5	25:3.21			0.9-1.0	G, A	0	Fill: Silty Sandy Clay	<u>ل</u> ھ ا	x	: :			_		-	1	†	+	† "	7
	25.3.21		BH203	1.8-2.0	G		Sandstone					х				[-	 	1
· ` *. <u>/</u>	25:3.21	<u>'0</u>	SDUP201		G	-	Soil DUP		х						[-	1-	1-		1
2	25.3.21		SDUP202		G	-	Soil DUP					x			1 -	1	1	<u> </u>		1
. F	25,3.21		SDUR203	<u></u>	G		Soil DUP		X	SEN	D:ŤO V	nc st		_		<u> </u>				1
 	5:3.21		T <u>B-S1</u>		G		Trip Blank Soil		_		x						100			1
2	5.3.21	13	FR-SPT1		Vx2	÷	Field Rinsate				X									1
2	5.3.21	14	rs s <u>1</u>		v	·	Trip Spike Soil			-1	x							-		1
-					<u></u>			2-									-			1
¥		-	<u>-</u>								•			\sum				Servi rch D	ces Ve	1
-	<u>_</u>	، ، ا	<u> </u>		<u> </u>					! 				ン		Oh.	South	VIC 3	136 500	1
í –				<u> </u>					_		_		lob l	<u>\o:</u>	25	٥/				
د ، 		<u>22</u>					·) Jatel I	- 900	ivoda	2	1(3)	2.1		
-	· · ·		• • • • •									7	้เกาย	Rec	aved	23	457	3		
- -		<u>·</u> .	·				×			;					∃v: ∦ ⊎/Art		: 2	(?-4	r
F					-										e					
┣	<u></u>									*				·y.		oroki	en/No	ne		
· · [-	emarks (comm		• •				-	G - 250 A - Zipi	mg G ock A	ainers: lass Jar sbestos	Bag,									
, Re	linquished By	AND .	Anthony Bark	way D	ate: 26.3.	21		<u>P - Plas</u> Time:	tic Ba	<u>g</u>	-	eceive	d By:	_			Datë:			
Ĺ	C		Thues									t-sh	an F	Z	-		28.	درہ . 	È.	
	Pala	۱ : d	1 - 11 - 1-		A . ()	•						- '		L.			•			
	reling		ved 5	y: A. EL	2 J J J J J J	Û						ini		, <u>;</u> .6 :	s S	swoo h: (01 > \	d 124. 8) 644		J	
•	2.			29	13/2	/ (2	$\mathbf{p}_{0} \in \mathbb{F}_{p}$					CAR	re Re	ceiv	ed: 2	10	3.20	72)		
	 ¹		• •	A	, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		_¥ -			•		1107	ie Re Seivei	ceiv d Bv	ed: (: ~ 5 Ambie	3·3∙	0			
•*	<u> </u>			(43	Ĉ		-						.32/		3		•		5

1

ų

ي در م

<u><u></u></u>

• •

¢,

Appendix F: Report Explanatory Notes

QA/QC Definitions

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994)²⁰ methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (1991)²¹. The NEPM (2013) is consistent with these documents.

A. <u>Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)</u>

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection Limit for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations: *"The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" (Keith, 1991).*

B. <u>Precision</u>

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD).

C. <u>Accuracy</u>

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured (i.e. the proximity of an averaged result to the true value, where all random errors have been statistically removed). The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes. Accuracy is typically reported as percent recovery.

D. <u>Representativeness</u>

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

E. <u>Completeness</u>

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;
- All blank data reported;

 ²⁰ US EPA, (1994). SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)
 ²¹ Keith., H, (1991). Environmental Sampling and Analysis, A Practical Guide

- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

F. <u>Comparability</u>

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

G. <u>Blanks</u>

The purpose of laboratory and field blanks is to check for artefacts and interferences that may arise during sampling, transport and analysis.

H. <u>Matrix Spikes</u>

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

I. Surrogate Spikes

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

J. <u>Duplicates</u>

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{\{(D1 + D2)/2\}}$

Appendix G: Data (QA/QC) Evaluation

Data (QA/QC) Evaluation

A. INTRODUCTION

This Data (QA/QC) Evaluation forms part of the validation process for the DQOs documented in Section 6.1 of this report. Checks were made to assess the data in terms of precision, accuracy, representativeness, comparability and completeness. These 'PARCC' parameters are referred to collectively as DQIs and are defined in the Report Explanatory Notes attached in the report appendices.

1. Field and Laboratory Considerations

The quality of the analytical data produced for this project has been considered in relation to the following:

- Sample collection, storage, transport and analysis;
- Laboratory PQLs;
- Field QA/QC results; and
- Laboratory QA/QC results.

2. Field QA/QC Samples and Analysis

A summary of the field QA/QC samples collected and analysed for this investigation is provided in the following table:

Sample Type	Sample Identification	Frequency (of Sample Type)	Analysis Performed
Intra-laboratory duplicate (soil)	SDUP2 (primary sample BH2 0.1-0.2m)	Approximately 16% of primary samples	Heavy metals, TRH/BTEX and PAHs
Intra-laboratory duplicate (soil)	SDUP6 (primary sample BH9 0.0-0.1m)	As above	Heavy metals, TRH/BTEX and PAHs
Intra-laboratory duplicate (soil)	SDUP1 (primary sample BH101 0.05-0.35m)	As above	Heavy metals, TRH/BTEX and PAHs
Intra-laboratory duplicate (soil)	SDUP201 (primary sample BH202 0.12-0.3m)	As above	Heavy metals, TRH/BTEX and PAHs
Inter-laboratory duplicate (soil)	SDUP203 (primary sample BH203 0.09-0.4m)	As above	Heavy metals, TRH/BTEX and PAHs
Intra-laboratory duplicate (groundwater)	WDUP1 (primary sample MW2)	100% of primary samples	Heavy metals, TRH/BTEX and PAHs
Intra-laboratory duplicate (groundwater)	WDUP100 (primary sample MW202)	As above	Heavy metals, TRH/BTEX and PAHs
Trip spike (soil)	STS1 (03.02.2020) TS-S1 (25.03.2021)	One for each part of the assessment to demonstrate adequacy of preservation, storage and transport methods	BTEX

Sample Type	Sample Identification	Frequency (of Sample Type)	Analysis Performed
Trip blank (soil)	STB1 (03.02.2020) TB-S1 (25.03.2021)	One for each part of the assessment to demonstrate adequacy of preservation, storage and transport methods	vTRH C6-C9 and BTEX
Rinsate (soil SPT)	SFR1 (03.02.2020) FR-SPT1 (25.03.2021)	One for each part of the assessment to demonstrate adequacy of preservation, storage and transport methods	BTEX
Trip spike (groundwater)	TS-W1 (25.03.2021)	One for the assessment to demonstrate adequacy of preservation, storage and transport methods	BTEX
Trip blank (groundwater)	TB-W1 (25.03.2020)	One for the assessment to demonstrate adequacy of preservation, storage and transport methods	BTEX

The results for the field QA/QC samples are detailed in the laboratory summary tables (Table S9 and Table G4) attached to the investigation report and are discussed in the subsequent sections of this Data (QA/QC) Evaluation report.

3. Data Assessment Criteria

JKE adopted the following criteria for assessing the field and laboratory QA/QC analytical results:

Field Duplicates

Acceptable targets for precision of field duplicates in this report will be 30% or less, consistent with NEPM (2013). RPD failures will be considered qualitatively on a case-by-case basis taking into account factors such as the concentrations used to calculate the RPD (i.e. RPD exceedance where concentrations are close to the PQL are typically not as significant as those where concentrations are reported at least five or 10 times the PQL), sample type, collection methods and the specific analyte where the RPD exceedance was reported.

Field/Trip Blanks and Rinsates

Acceptable targets for field blank and rinsate samples in this report will be less than the PQL for organic analytes. Metals will be considered on a case-by-case basis with regards to typical background concentrations in soils.

Trip Spikes

Acceptable targets for trip spike samples in this report will be 70% to 130%.

Laboratory QA/QC

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which is outlined in the laboratory reports. These criteria were developed and implemented in accordance with the laboratory's

NATA accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

A summary of the acceptable limits adopted by the primary laboratory (Envirolab) is provided below:

RPDs

- Results that are <5 times the PQL, any RPD is acceptable; and
- Results >5 times the PQL, RPDs between 0-50% are acceptable.

Laboratory Control Samples (LCS) and Matrix Spikes

- 70-130% recovery acceptable for metals and inorganics;
- 60-140% recovery acceptable for organics; and
- 10-140% recovery acceptable for VOCs.

Surrogate Spikes

- 60-140% recovery acceptable for general organics; and
- 10-140% recovery acceptable for VOCs.

Method Blanks

• All results less than PQL.

B. DATA EVALUATION

1. <u>Sample Collection, Storage, Transport and Analysis</u>

Samples were collected by trained field staff in accordance. Field sampling procedures were designed to be consistent with relevant guidelines, including NEPM (2013) and other guidelines made under the CLM Act 1997.

Appropriate sample preservation, handling and storage procedures were adopted. Laboratory analysis was undertaken within specified holding times in accordance with Schedule B(3) of NEPM (2013) and the laboratory NATA accredited methodologies.

JKE note that the temperature on receipt of soil samples was reported to be up to 15.0°C. JKE understand that the temperature is measured at the laboratory using an infrared temperature probe by scanning the outside of the sample container (i.e. one sample jar/container at the time of registering the samples). This procedure is not considered to be robust as there is a potential for the outside of the jar to warm to ambient temperature, or at least to increase from that of the internal contents, relatively quickly. On this basis, JKE are of the opinion that the temperatures reported on the Sample Receipts are unlikely to be reliable or representative of the overall batch. This is further supported by the trip spike recovery results (discussed further below) which reported adequate recovery in the range of 71% to 114%.

Whilst it could be argued that 15% loss of volatiles may have led to these contaminants being under-reported (i.e. the lower end of the trip spike recovery was 71%), it is noted that all BTEX results and volatile TRHs (F1 and F2) were below the PQLs and even a nominal 15% increase of TRH/BTEX concentrations in these samples would not result in exceedance of the SAC.

JKEnvironments

Envirolab noted that the asbestos results were reported to be consistent with the recommendations in NEPM (2013), however this level of reporting is outside the scope of their NATA accreditation. In the absence of other available analytical methods for asbestos, this was found to be acceptable for the purpose of this investigation.

Review of the project data also indicated that:

- COC documentation was adequately maintained;
- Sample receipt advice documentation was provided for all sample batches;
- All analytical results were reported; and
- Consistent units were used to report the analysis results.

2. Laboratory PQLs

Appropriate PQLs were adopted for the analysis and all PQLs were below the SAC. With the exception of the anthracene and vinyl chloride PQLs for groundwater analysis which were 10 and approximately 33 times greater respectively than the adopted ecological SAC. In light of the PAH and VOC concentrations reported for soil and groundwater, JKE are of the opinion that this is not significant, and it does not affect the quality of the dataset as a whole or the outcome of the investigation.

3. Field QA/QC Sample Results

Field Duplicates

The results indicated that field precision was acceptable. RPD non-conformances were reported for some analytes as discussed below:

- Elevated RPDs were reported for several Heavy metal and PAH compounds in soil SDUP2/BH2 (0.1-0.3m), SDUP6/BH9 (0.0-0.1m), SDUP1/BH101 (0.05-0.35m), SDUP201/BH202 (0.12-0.3m), SDUP203/BH203 (0.09-0.4m); and
- Elevated RPDs were also reported for Heavy Metal Copper, several PAH compounds and TRH fractions F3 and F4 in groundwater WDUP1/MW2.

Values outside the acceptable limits for the groundwater QA/QC sample have been attributed to sediment which may have cause interference especially with the PAH analysis and also due to relatively low detectable concentrations close to laboratory PQLs of the analytes for which exceedances in RPD values were observed and which would therefore yield higher RPD values for detected variations.

Values outside the acceptable limits for the soil QA/QC sample have been attributed to the heterogeneous nature of fill material strata from which these samples were collected from and the 'nugget effect' which can mean some spatial variation between locations due to poor distribution of analytes. Sample heterogeneity presents difficulties associated with obtaining homogenous duplicate samples of heterogeneous matrices. In addition, detectable concentrations of these analytes were relatively low and close to the laboratory PQLs which would yield higher RPD values for detected variations. As both the primary and duplicate sample results were less than the SAC, the exceedances are not considered to have had an adverse impact on the data set as a whole.

Field/Trip Blanks

During the investigation, two soil trip blanks and one groundwater trip blank were placed in the esky during sampling and transported back to the laboratory. The results were all less than the PQLs, therefore cross contamination between samples that may have significance for data validity did not occur.

Rinsates

All results were below the PQL. This indicated that cross-contamination artefacts associated with sampling equipment were not present and the potential for cross-contamination to have occurred was low.

Trip Spikes

The results ranged from 71% to 114% and indicated that field preservation methods were appropriate.

4. Laboratory QA/QC

The analytical methods implemented by the laboratory were performed in accordance with their NATA accreditation and were consistent with Schedule B(3) of NEPM (2013). The frequency of data reported for the laboratory QA/QC (i.e. duplicates, spikes, blanks, LCS) was considered to be acceptable for the purpose of this investigation. JKE note that due to the limited number of samples submitted for analysis, duplicates and matrix spikes were not reported. This is not considered to have an impact on the data quality for this investigation.

A review of the laboratory QA/QC data identified the following minor non-conformances:

- Lab Report 235671-A: Samples were out of the recommended holding time for pH analysis;
- Lab Report 236009: (TRH Soil C10-C40 NEPM) percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 236009-3 has caused interference;
- Lab Report 236004: Samples were out of the recommended holding time for pH analysis. (PAHs in Water Low Level) percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 236004-2 have caused interference;
- Lab Report 264278: Sample 264278-6 is below the minimum 500mL sample volume;
- Lab Report 265221: (PAHs in Soil) percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 265221-3ms have caused interference. (OP's in Soil) – percent recovery for the matrix spike is not possible to report due to interference from analytes (other than those being tested) in sample 265221-2;
- Lab Report 265348: (TRH Soil C10-C40 NEPM) percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 265348-1 has caused interference. (8 metals in soil) percent recovery is not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However, an acceptable recovery was obtained for the LCS. (PAH_S) percent recovery for the surrogate/matrix spike is not possible to report as the high concentration of analytes in sample/s 265348-1ms have caused interference. (OCP_S_MSMS) percent recovery for the surrogate/matrix spike is not possible to report due to interference from analytes (other than those being tested) in sample/s 265348-1ms. (OP_S_MSMS) the PQL has been raised due to interferences from analytes (other than those being tested) in sample/s 265348-1ms; and
- Lab Report 265688: Samples were out of the recommended holding time for pH analysis;

C. DATA QUALITY SUMMARY

JKE are of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

A number of results from field duplicates indicated some uncertainty in quantification for heavy metals and PAHs. As this is a preliminary investigation and due to the characteristics of the duplicate samples, the uncertainty is not considered to materially impact the report findings.

Non-conformances were reported for some field QA/QC samples and laboratory QA/QC analysis. These nonconformances were considered to be sporadic and minor, and were not considered to be indicative of systematic sampling or analytical errors. On this basis, these non-conformances are not considered to materially impact the report findings.

There was only one groundwater monitoring event undertaken for the investigation. On this basis there is some uncertainty around the representativeness of the groundwater data, particularly during different climatic conditions and after wet/dry periods. However, given the low contaminant concentrations reported, the site history and the surrounding land uses, this is not considered to alter the conclusions of the investigation.

Appendix H: Field Work Documents

Client:	Kincoppal - Rose Ba	ay School	000000		Kincoppal - Rose Bay School Job							
Project:	Proposed Developm	ents at Kincoppal - R	ents at Kincoppal - Rose Bay School Well						MW2			
Location:		47, Cnr New South H	lead Road	& Vaucluse R	load,	Depth (n):		9.32			
	VAUCLUSE, NSW											
	1	5.7	T				1					
	Gatic C	over 🗹	Standp	ipe 🛄			Other (de	scribe)				
WELL DEV	ELOPMENT DETAIL	-			6			9	(10)			
Date:		Dev. Pu 28.01.2	mp	SWL – Be Time – Be			******		02			
Undertaker	NRV:	MMP	<i></i>	SWL - Af			1000000000000000	13:2				
Total Vol. F		5		Time – Af	***********	•••••		DRY				
PID Readin		5.3		- Al				13:1	40			
Comments	•											
	MENT MEASUREMEN	NTS										
Volu	Ime Removed	Temp (°C)		DO mail)		EC	P	н	Eh (mV)			
	(L)	26.4		mg/L)		6/cm)	7.3		-20.1			
	<u></u>	22.4). <u>\</u> . ()		20	7.0	***********	-21.0			
	3	21.3			5	32	6.		-22.6			
•••••	4	21.0		.8		32	6.5	************	~24.9			
	5	21.7		0.8		54	6,2		-32.0			
	DRY					*	0,4					
		1		N TA BASA AND AND A				********				
*******				•••••	+		·	••••••	******			
					1		1					
		1		••••••	******			•••••				
	*******		-			*******	-	******				
***********			1	******	1		1					
			1	••••••				0.500.000				
		1	1		1		1	*******	***************			
				************	1		1					
							1					
				00000000000000000000000000000000000000					- Part			
							1					
							I					
				*************	1		T					

	~			••••••								
Comments:	Odours (YES / NC)) NAPL/PSH (YES	s / <u>NO</u>), S	heen (YES /	NO), Ste	eady Stat	e Achieved	(YES / A	<u>)</u>			
	C		<u> </u>	heen (YES /	NO), Ste							
	C		<u> </u>	heen (YES /	NO), Ste							
YSI Used: 🖞	5	Rimp	ber	heen (YES /	NO), Ste) charge			
Comments: YSI Used: <u>b</u> Fested By:	C	Rump P Remar	Pry		NO), Ste							
/SI Used:	5 MM	Rump P Remar - Stead	ks: dy state cor	ditions) (ou	Re				
YSI Used: 🖞	5 MM	P Remar - Stead - Differ	ks: dy state cor ence in the	ditions	0.2 units) (ou	Re	charge			

Client:	Kincoppal	- Rose Ba	y School			Job No.:	E329 ⁴	15BD	
Project:	Proposed	Developm	ents at Kincoppal - Rose E	Bay School		Well No.:		12	
Location:	Lot 104 in Road, VA	DP109274 UCLUSE, I	F7, Cnr New South Head F	cluse	Depth (m):		9.32		
WELL FINISH									
K Gatic Cov			Standpipe)			Other (descr	cribe)	
WELL PURGE DETAI	LS:								
Method:			iler		SWL – Bei	fore:	8.02		
)ate:			120		Time – Be	fore:	12:45		
Indertaken By:		Mr	19		Total Vol I	Removed:	5		
Pump Program No:			-		PID (ppm)	£	1.2		
PURGING / SAMPLIN	G MEASUR	EMENTS							
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	(mg/L)	EC (µS/cm)	pН	Eh (mV)	
Pump war		Suppl	y water	20.3	2.2	218	6.91	-26.6	
'bai	ler u	red	0	20.4	1.3	476.2	6.39	-28-2	
			Sampling	Comm	enuc				
		DRY		mpling					
			121	C					
)				
	**********	=			**********	****************	**************	1	
				1					
			*******	1			************		
								+	
			***************************************		******			+	
								+	

*********************			*******				***************		
								.	
								I	
**********************			***************************************	1				1	
		***********	1.11		***********			+	
omments: Odours ()	ES / NO	NAPL/P	SH (YES / NO), Sheen (YE	S / NOL SI	Leady State	Achieved (YES	S / NO)	I	
Sampling Contain		2 x glass a	mber, 4(x BTEX vials, \ x	HNO3 plast	ic, x H2S		unpreserved	plastic	
/SI used: 5	arkinan La	INS T	Remarks:	pung	w	hough I for	cont	opersi	
		CUX	- Steady state condition	s O					
	120		- difference in the pH les		units, diffe	ence in condu	ctivity less th	an 10%	
Checked By:	MO		10% and SWL stable/no				-		
Date:	171317	and the second se							

JKEnvironments

PID FIELD CALIBRATION FORM

Client:									
initeopput nose buy school									
Project:		Kincoppal - Rose Bay School							
Location:	Cnr New South Head Road	& Vaucluse Road, VAUCLUSE	, NSW						
Job Number:	E32915BD								
	P	D							
Make: MultiPue Like	Model: LEL	Unit: PGM6208	Date of last factory calibration: 10/2/2/						
Date of calibration:	24/3/21	Name of Calibrator:	BM						
Calibration gas: Iso-butylen	e	Calibration Gas Concentrati	on: 100.0 ppm						
Measured reading:	102 ppm	Error in measured reading:	± Ŏ ppm						
Measured reading Acceptat	ole (Yes)No):								
	P	ID							
Make: M	Model:	Unit:	Date of last factory calibration:						
Date of calibration:		Name of Calibrator:							
Calibration gas: Iso-butylen	e	Calibration Gas Concentration: 100.0 ppm							
Measured reading:	ppm	Error in measured reading: ± ppm							
Measured reading Acceptab	le (Yes/No):		-						
	Р	ID							
Make:	Model:	Unit:	Date of last factory calibration:						
Date of calibration:		Name of Calibrator:							
Calibration gas: Iso-butylen	9	Calibration Gas Concentration: 100.0 ppm							
Measured reading:	ppm	Error in measured reading: ± ppm							
Measured reading Acceptab	le (Yes/No):								
	PI	D							
			Date of last factory						
	Model:	Unit: calibration:							
Date of calibration:		Name of Calibrator:							
Calibration gas: Iso-butylene	2	Calibration Gas Concentration: 100.0 ppm							
Measured reading:	ppm	Error in measured reading: ± ppm							
Measured reading Acceptabl	e (Yes/No):								
	PI	D							
	Model:		Date of last factory calibration:						
Date of calibration:		Name of Calibrator:							
Calibration gas: Iso-butylene		Calibration Gas Concentratio	n: 100.0 ppm						
Measured reading:		Error in measured reading: ± ppm							
Measured reading Acceptabl	e (Yes/No):	0	- Philip						

JKEnvironments

WATER QUALITY METER CALIBRATION FORM

Client: Kincoppal - Ro	se Bay School			
25 A X VI	elopments at Kincoppal	- Rose Bay School		
Location: Cnr New Sout	h Head Road & Vaucluse	Road, VAUCLUSE, NSW		
Job Number: E32915BD				
	DISSOLVED OXYGEN			
Make:	Model:			
Date of calibration: 25/3/21	Name of Calibrator: /	tui		
Span value: 70% to 130%				
Measured value: 29				
Measured reading Acceptable (Yes/No):				
	рН			
Make:	Model:	14		
Date of calibration: $25/3/_{21}$	Name of Calibrator:	Art		
Buffer 1: Theoretical pH = 7.01± 0.01	Expiry date: 5/22	Lot No: 363536		
Buffer 2: Theoretical pH = 4.01± 0.01	Expiry date: $3/_{22}$	Lot No: 360389		
Measured reading of Buffer 1: 715				
Measured reading of Buffer 2: 4 11				
Slope: Measured reading Acceptable (Yes/No):				
v	EC			
Make:	Model:			
Date: 25/3/21 Name of Calibr		Temperature: 24 °C		
Calibration solution: Conclustivity Suderel	Expiry date: $11/2.0$	Lot No: 354762		
Theoretical conductivity at temperature (see solution	n container): 1440	μS/cm		
Measured conductivity: 1579 μS/cm	Measured reading Acce	ptable (Yes/No):		
	REDOX			
Make:	Model:			
Date of calibration: 15/3/4	Name of Calibrator: PM			
Calibration solution: ORP Test Solution		Lot No: 593		
Theoretical redox value: 240mV				
Measured redox reading: 227 mV	Measured reading Acce	ptable (Yes/No):		

JKEnvironments

WATER QUALITY METER CALIBRATION FORM

Client: Kincoppal - Ro	se Bay School					
roject: Proposed Developments at Kincoppal - Rose Bay School						
Location: Cnr New South	Head Road & Vaucluse Road, VAUCLUSE, NSW					
Job Number: E32915BD						
C	DISSOLVED OXYGEN					
Make:	Model:					
Date of calibration: 1/4/21	Name of Calibrator: MM					
Span value: 70% to 130%						
Measured value: 역 역						
Measured reading Acceptable (Yes/No):						
	рН					
Make: YSIS	Model:					
Date of calibration: 1/4/21	Name of Calibrator: MMP					
Buffer 1: Theoretical pH = 7.01± 0.01	Expiry date: 522 Lot No: 363536					
Buffer 2: Theoretical pH = 4.01±0.01	Expiry date: 222 Lot No: 360389					
Measured reading of Buffer 1: 7-21						
Measured reading of Buffer 2: 416						
Slope:	Measured reading Acceptable (Yes/No):					
	EC					
Make: 🦕 🤸 S	Model:					
Date: ו/ע/ Name of Calibr	ator: M Temperature: 21.6 °C					
Calibration solution: Con Standard	Expiry date: 1121 Lot No: 354762					
Theoretical conductivity at temperature (see solution	n container): 1332 µS/cm					
Measured conductivity: လြယ္လင္လာ µS/cm	Measured reading Acceptable (🐼/No):					
	REDOX					
Make: (S) S	Model:					
Date of calibration: 1/4/21	Name of Calibrator: MM					
Calibration solution: Ledo ~ OLP	Expiry date: 1/2 24 Lot No: 593 (
Theoretical redox value: 240mV						
Measured redox reading: 242 mV	Measured reading Acceptable (Yes/No):					

Client:	Kincoppal - Rose Ba		Job No.:						E32915BD	
Project:	Proposed Developm	nents at Kincoppal -	Rose Bay Sc	hool		Well No.				
Location:			******		*****				202	
			aucluse Road, VAUCLUSE, NSW			Depth (m	Depth (m): 9·0			
WELL FINI	SH DETAILS								64	
	Gatic C	over	Standpi					Г		
WELL DEV	ELOPMENT DETAIL	S	Stanupi				Other (de	scribe)		
Method:		Derelop	ment	SWL - Bef	ore (m):			25	7	
Date:		25/3/20		Time - Bel	**********			************		
Undertaker	By:	Ary	•••••	SWL – After (m):			1:45			
Total Vol. R	emoved:	30	•••••	Time – After:						
PID Readin	g (ppm):	7.0	*********	Time - Alu				2:01		
Comments:		10		1				1		
	IENT MEASUREMEN	ITS					-	_		
Volu	me Removed	Temp (°C)		DO	E	C		pH		
	(L)			ng/L)	(µS	/cm)	p	H	Eh (mV)	
		21.8	5			1.6	6.4	2	28.0	
	10			.3		6.5	6.		26-3	
		27-2				6.7	6.	33	25-2	
	20	223		.8		8.6	6 5	77	174	
	25	22.2	6.		189	8-3	6	41	92	
		225	7.	8	20	09	6.		-110	
	Wel	Pry								

					••••••	*****	*************			

		*******					•••••		*****	

******		*****								
•••••	••••••								••••••	
******	••••••••••••									
••••••										
••••••										
		••••••••••••••••••								
						1				
			1							

omments:C	dours (YES / (NØ)	, NAPL/PSH (YES	5 / NO), She	en (YES / N	O), Stea	dy State /	Achieved ()	ES /NO)	
				C		 				
SI Used: 5	low	silt Gas	1							
sted By:	Bry	Remar	ks:		-	-				
		- Stead	ly state condit							
ate Tested:	25/3	21 - Differ	ence in the pl	less than 0.	2 units, d	lifference	n the condu	ctiveity les	s than 10%	
		and SV	VL stable/not	in drawdown				,	10.10	
necked By:	Aur	- Minim	um 3 monitor	ing well volur	nes purge	ed, unless	well purged	l until it is e	effectively dry	

JKF	- n	<i>i</i> r	onme	h	te				
								×	
Client:		- Rose Ba			Job No.: E32915BA				
Project:	Proposed	Proposed Developments at Kincoppal - Rose Bay School					Well No.: Hus		
Location:	Cnr New S	Cnr New South Head Road & Vaucluse Road, VAUCLUSE, NSW					Depth (m): 9.05		
WELL FINISH						-			
Gatic Co			Standpipe)			Other (descri	ibe)	
WELL PURGE DETA	ILS:	0	0	_	1				
Method:						1.71			
Date:		14/2					10:30		
Undertaken By:	************	MM	ے 		Total Vol Removed:		R		
Pump Program No: PURGING / SAMPLIN				PID (ppm)	:	15			
	1 1		(DO			T	
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	(mg/L)	EC (µS/cm)	рН	Eh (mV)	
	1.99	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		23.0	3.2	471.9	6:45	-78.8	
	2.16	2		22.8	1.8	466-2	587	-83.6	
<u>ری</u>	2.25	3		22.8	1.5	465.1	5.67	-65-1	
13	2.4	4		22.8	1-2	462.0	5-45	-86.8	
18	1.6	S			0.9	459.6	5.27	-89.9	
19	2.78	6		22.8	0.8	455.8	5-18	-91.0	
22	2465	7		22-8	0.7	485-1	5.14	-90.9	
2.6	2.89	\$		23.0	0.5	455.8	5.00	-89.0	
30	294	9		22.4	ou	454.9	8-11	-86-4	
34	30	10		22.4	0-4	452.9	5.11	-87.4	
				**********	**********	****************			
					*********		***************		

							75555555555555555555555555555555555555		
		*********			*******		******		

	1	***************************************				********	***********		

			***************************************		*************				

				*******		****************		·	
					*******		*************		
***************************************							************		
Comments: Odours (YES / NO)	NAPL/PS	SH (YES NO), Sheen (YES	S /(NO), St	eady State	Achieved YES	3)/ NO)		
			nber, C _t x BTEX vials, x I	\cup				plastic	
YSI used:					ى	aupr	war		
Tested By: Matthew P			Remarks:						
Date Tested: 14	121		- Steady state conditions - difference in the pH less than 0.2 units, difference in conductivity less than 10%						
Checked By: AVI	4 101		10% and SWL stable/not in drawdown						
Jaic. 21	4/21		1						

Appendix I: Guidelines and Reference Documents

Acid Sulfate Soils Management Advisory Committee (ASSMAC), (1998). Acid Sulfate Soils Manual

Australian and New Zealand Environment Conservation Council (ANZECC), (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality

Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)

CRC Care, (2011). Technical Report No. 10 – Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

Contaminated Land Management Act 1997 (NSW)

Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map Series

Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land (1998)

National Health and Medical Research Council (NHMRC), (2018). National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011

NSW Department of Environment and Conservation, (2007). Guidelines for the Assessment and Management of Groundwater Contamination

NSW EPA, (1995). Contaminated Sites Sampling Design Guidelines

NSW EPA, (2014). Waste Classification Guidelines - Part 1: Classifying Waste

NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997

NSW EPA, (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition

NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

Olszowy, H., Torr, P., and Imray, P., (1995). Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

Protection of the Environment Operations Act 1997 (NSW)

State Environmental Planning Policy No.55 – Remediation of Land 1998 (NSW)

World Health Organisation (WHO), (2008). Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality

Western Australia Department of Health, (2009). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia

