Electrolysis & Stray Traction Current Report # RESIDENTIAL TOWER DEVELOPMENT 90 to 102 REGENT STREET REDFERN # Cathodic Protection Services P O Box 118 CONCORD NSW 2137 Phone: 02-97452785 Email: cathodic@pnc.com.au bill@cathodic.com.au Report No: A715-448-294 October 21st. 2020 Prepared by W McCaffrey # ** TABLE OF CONTENTS ** | 1. | INTRODUCTION | 3 | |----|---------------------------------------------------------------------------|----| | 2. | CONCLUSIONS | 4 | | 3. | CODES AND STANDARDS | 4 | | 4. | 90 TO 102 REGENT STREET REDFERN | 5 | | | 4.1 ONGROUND SLAB | 6 | | | 4.2 PILES | | | | 4.3 FOOTING | | | | 4.4 SHOTCRETE WALLS | | | | 4.5 RETAINING WALLS | 7 | | | 4. 6 INCOMING SERVICES | 7 | | 5. | THE PROBLEM OF STRAY TRACTION CURRENT | 8 | | | 5.1 BACKGROUND | 8 | | | 5.2 CORROSION HAZARD FROM STRAY TRACTION CURRENT | | | 6. | DETECTION OF STRAY TRACTION CURRENT | 10 | | 7. | MITIGATION OF STRAY CURRENT | 11 | | | 7.1. ELIMINATE OF REDUCE EXPOSURE TO STRAY TRACTION CURRENT | 11 | | | 7.1.1. Reduce Length of Structure in Alignment with Traction Current Path | 11 | | | 7.1.2. Isolate the Structure from Stray Traction Current | | | | 7.1.3. Use of High Strength Concrete | | | | 7.2 STRAY TRACTION CURRENT MITIGATION | | # Appendix: - A: Corrosion by Stray Traction Current - B. Insulating Flange Kits - C NSW Government, Transport for NSW: T HR EL 12002 GU Guide, "Electrolysis form Stray DC Current", Version 1.0, dated 1 May 2014 # 1. INTRODUCTION Construction of an eighteen level tower residential development is proposed for 90 to 102 Regent Street, Redfern. The site is directly above the underground Sydney Metro City and South West Tunnel. The elimination of corrosion hazards from stray traction current involves increasing the resistance of the conductive path for stray current which may otherwise be conducted into the underground sections of the structure. If stray current is conducted into the structure, severe corrosion of the concrete reinforcement can result, ultimately resulting in structural failures. It is a requirement of Sydney Metro that for all Developments in the vicinity of electrified tracks a report is developed identifying what measures should be taken to ensure stray traction current does not present a corrosion hazard to the proposed development. Cathodic Protection Services were commissioned to; - a. Review the development plans and possible exposure to stray traction current and prepare a report to satisfy Condition C25 of the Development Consent. - Provide an opinion on whether stray traction current presents a corrosion hazard to the proposed development, and what, if any, remedial or mitigation actions are necessary to comply with Condition C25. # 2. CONCLUSIONS The conclusions of this investigation are; - 2.1 It is unlikely that any stray traction current can be expected to be present on the site of the Development from the Metro operations. The construction method of the tunnels is such that little if any stray traction current escapes from the tunnels. - 2.2 The proposed method of construction, as outlined in Clause 4 of this report will essentially prevent the entry of any stray traction current into the structure. - 2.3 Corrosion of the water service or the electrical earth can be caused by stray traction current. Installation of an insulating fitting in the water service, or the use of a non metallic water meter, or PVC pipe eliminates this hazard. # 3. CODES AND STANDARDS This report has been developed taking into account of the following; T HR EL 12002 GU- "Electrolysis from Stray DC Current" Version 1.0 dated 1 May 2014 See attachment, Appendix C ii "Guide for Measurement of Interference Caused by Cathodic Protection and Railway Drainage Systems" Office of Energy, 1998. # 4. 90 TO 102 REGENT STREET REDFERN Construction of a commercial, residential, communal living and retail facility is proposed for construction at 90 to 102 Regent Street, Redfern. There will be one underground level and eighteen above ground levels. The site is western side of Regent Street and the electrified rail corroder, north of Margaret St and south of Marian Street. Details of the construction of the development were provided in the below WEBBER DESIGN Drawings Also provided are comments on the implications to the foundations of the structure as a consequence of stray traction current. | DRAWING NO | REVISION | TITLE | |------------|----------|-------------------------------------------| | BB4001 | 1 | SYDNEY METRO ASSESSMENT PLAN-OVERLAY | | B 5001 | 1 | SYDNEY METRO ASSESSMENT PLAN-OVERLAY | | BB008 | 1 | FOUNDATION PLAN [INDICATIVE ONLY] GENERAL | | | | ARRANGEMENT | | BB0090 | 4 | BASEMENT 0 - GENERAL ARRANGEMENT | Details of the construction are outlined below; # 4.1 ONGROUND SLAB The onground basement slab will be cast on a moisture barrier. The moisture barrier acts as an electrical insulator to the conduction of stray traction current. # 4.2 PILES The structure will be supported on 750 diameter reinforced concrete piles, specified to be 50 MPa concrete and 60 mm clear concrete cover. Concrete with a nominated strength of 32 MPa or greater, combined with a minimum cover of 50 mm is considered to have sufficiently high electrical resistance to prevent the conduction of stray traction current. The concrete for the piles comfortably exceed these values. # 4.3 FOOTING There are no pad or strip footings. # 4.4 SHOTCRETE WALLS There will not be any requirement for underground shotcrete walls. # 4.5 RETAINING WALLS There will not be any requirement for any underground retaining walls. # 4. 6 INCOMING SERVICES Stray traction current can affect metallic water, fire and gas services. Should stray traction current be picked up by the services, this can result in a corrosion problem on; a. The services. b. The Development's electrical earth system. This is because the earth and the water service have a direct interconnection via the MEN system. Current picked up by the water and/or fire services can discharge back to the earth via the earth system resulting in corrosion of the earth grid or stake. The above corrosion hazard to water and fire services can be eliminated by installation of an insulating fitting, or non-metallic sections in the water and fire services at or close to the boundary of the property as detailed in the Transport for NSW document T HR EL 12002 GU "Electrolysis from Stray DC Current", Clause 5.3. "Water and gas pipes servicing buildings on the Railway Corridor and near 1500 V track to have an isolating joint installed at the boundary." Suitable insulating fittings are available from Corrosion Control Engineering, telephone 9763 5611. Gas services do not require any insulation. If the service is metallic construction, this will be fitted with a cathodic protection system incorporating an insulating joint at the meter. If the service is low pressure, this will be run in non metallic pipe. # **PLEASE NOTE:** The following sections are provided for information only and do not necessarily apply to this project. # 5. THE PROBLEM OF STRAY TRACTION CURRENT # 5.1 BACKGROUND Sydney Trains and Sydney Metro use 1500 volt direct current to operate the traction system. The current is delivered by the overhead catenary cables and the return path to the sub station is via the track. The track has low resistance earth, principally because of the difficultly of achieving insulation Whilst the steel track is large in cross section, some of the current can leak from the tracks and finds alternate paths back to the sub station. Considerable current can be involved. As an indication, a Tangara train requires about 4000 amps to start from rest. All current obeys Ohms Law and if a low resistance metallic structure exists in the path of the "stray" current this can pick up the stray current which then flows along the structure to a point close to the sub station, where it leaves the metallic structure and enters the earth. Where the "foreign" structure picks up the stray current a small measure of corrosion control or "cathodic protection" is achieved. However, where the current discharges from the foreign structure back to the soil, corrosion of the foreign structure occurs as shown on Sketch CP34. The problem of stray current corrosion was first identified in the 1930's. For stray current to be a serious problem the foreign structure has to be electrically continuous. At that time the only organisation which had electrically continuous structures were the PMG (now Telstra) with their lead sheathed cables. They suffered corrosion failures and for many years considered this to be a necessary evil. However an enterprising Engineer decided to plot failures on a map and found they were predominantly grouped round rail lines or tram lines. Further investigation showed that they were also grouped around the sub stations associated with the tracks. He eventually identified the corrosion problem. Page 9 Cathodic Protection Services The PMG (now Telstra) sought compensation from the Railways for the corrosion damage caused by the stray traction current. The Railways did not receive this approach well and it did appear that the Federal Government would be suing the State Government. Whilst this was occurring the Engineering staff developed a solution to the problem. This was to connect the foreign structure to the tracks via a simple control system. This provided a low resistance path for the stray current to return to the tracks thus eliminating the corrosion problem. The control bond could be engineered such that a degree of additional corrosion protection could be provided to the foreign structure. The above led to the formation of the Electrolysis Committee which has representatives of the owners of all underground services, and Sydney Trains. Cathodic Protection Services represents the interests of the Oil and Chemical Industry on the Committee. Apart from the War Years the committee has met at about monthly intervals since the 1930's to discuss stray current problems and its mitigation with the Railways. ## 5.2 CORROSION HAZARD FROM STRAY TRACTION CURRENT Direct current as used by the traction system can cause serious corrosion to underground metallic services and the steel reinforcement of concrete. Stray traction current flowing in the ground can be picked up by the steel reinforcement one side of the development, flow along the steelwork and discharge back to the soil on the opposite side of the building. At the discharge point of the current, corrosion of the reinforcement will occur. For a building, the most common means of eliminating the corrosion hazard from stray traction current is to increase the electrical resistivity of the concrete to the ground. This reduces the flow of stray traction current through the reinforcement. Increasing the electrical resistance of the structure to ground for an onground slab is automatically achieved by the moisture barriers installed to prevent water entry into the structure. The moisture barrier is an electrically insulating membrane. Where the structure is supported on pad and/or piered footings, increasing the resistance of the structure to ground can be achieved by either; - a. Applying moisture barrier to the excavation into which the pad footings or piers are poured. - b. The electrical resistance of concrete increases as the strength of the concrete increases. Concrete with minimum strength off 32 MPa and 50 mm of clear concrete cover is considered to have adequate electrical resistance to resist conduction of stray traction current. # 6. DETECTION OF STRAY TRACTION CURRENT Stray traction current can be identified by either; - Measurement of the potential of a metallic structure [such as a water service] to a reference electrode over a 24 hour period. - Measurement of the potential gradient across the development to earth stakes over 24 hours. Fluctuations in the potential values indicate the presence of stray traction current. Sydney Trains requirement does not include identification of the presence of stray traction current. If the Development is on a corridor reserved for a future rail system, an electrolysis report is still required. The purpose of the Electrolysis Report is to ensure the design of the Developments foundations are such that the foundations are protected from corrosion hazards from stray traction current. # 7. MITIGATION OF STRAY CURRENT There are a number of options to deal with the potential corrosion problems which can result from stray traction current. These include, - a. Prevent or reduce exposure of the structure to stray traction current. - b. Install a mitigation system to offset the problem. In the case of the latter this is an expensive approach as it requires the establishment of infrastructure necessary for the mitigation of the problem. # 7.1. ELIMINATE OF REDUCE EXPOSURE TO STRAY TRACTION CURRENT The simplest approach is to avoid exposure of the structure to stray traction current. Two approaches, which can be adopted, are; # 7.1.1. Reduce Length of Structure in Alignment with Traction Current Path. As noted in Section 6, the hazard from stray traction current is due to the current flowing onto and then off the metallic structure. Corrosion occurs at the point of discharge of the current back to the soil. The hazard from the stray traction current increases as the length of the conducting service increases. Stray traction corrosion is a problem because the metallic service presents a lower electrical resistance path to current flow than the alternative path through the earth. For current to flow onto and discharge from an underground structure, electrochemical reactions need to occur to generate or absorb electrons. Both these reactions require energy, which results in a resistance existing between the structure and the earth. If the structure is short in length, the combined resistance of the pick up and discharge reactions is sufficient to reduce the traction current flowing onto the structure. Additional to the above, the passage of the stray traction current causes development of potential gradient in the earth. For a short metallic conductor, the potential gradient to which it is exposed to too small to allow the pick up of the current. Accordingly the shorter the length of the metallic structure the less likely it is to be affected by stray traction current. # 7.1.2. Isolate the Structure from Stray Traction Current. The effects of stray traction current can be avoided by increasing the resistance of the structure to the soils in which stray traction current is flowing. This can be achieved by use of moisture barriers such as FORTICON which provides an electrically insulating membrane which prevents entry of stray traction current. Even if the membrane is damaged, it will still provide sufficient resistance to prevent entry of stray traction current. # 7.1.3. Use of High Strength Concrete. Increasing the strength of the concrete increases the electrical resistance of the concrete. Thus if concrete of 32 mpa is used for the underground components, this has a high resistance, due partly to the reduced water content, and acts as an electrical insulator to the entry of stray traction current. # 7.2 STRAY TRACTION CURRENT MITIGATION Stray traction current mitigation is achieved by providing an intentional low resistance path from the structure to allow flow of any stray traction current directly back to the rail. Provision of a mitigation system involves the following; - a.. Testing has to be undertaken to provide evidence to the Railways that a stray traction current corrosion hazard exists. - b. If the testing identifies a corrosion hazard to the steel reinforcement does exist, installation of a "railway drainage bond" can proceed. It is appreciated that installation of a mitigation system is a particularly expensive option. The only building projects on which Cathodic Protection Services have recommended a stray traction mitigation system are; - ❖ The Sydney Harbour Tunnel. This structure is 3200m in length and testing indicated the existence of a stray traction current hazard. - Chatswood Connection project. This development by Girvan was over one km in length and provision for a stray traction current mitigation system was designed into the proposed project. Unfortunately, Girvan went into receivership in the early stages of the project. # **APPENDIX A** # **APPENDIX B** Type"E"gaskets perfectly center on precisely located bolt holes. Since their outside diameters are the same, foreign material is prevented from "shorting" the flange insulation Type "F" gaskets are made without bolt holes, to fit tightly inside the overall bolt hole circle of the flange faces. The outside diameter of the gasket fits tightly in place assuring a well centered position. # CATE FLANGE INSULATION KIT INSULATING SLEEVES • POLYETHYLENE • MYLAR? • PHENOLIC • EPOXY GLASS • OTHERS INSULATING WASHERS • PHENOLIC • EPOXY GLASS • OTHERS INSULATING GASKETS • TYPE L-FULL FACE • TYPE FRING • TYPE D-RTJ, BX • Jeck-O-RING NEOPRENE FACED PHENOLIC PHENOLIC J.M. 71° ASBESTOS EPOXY GLASS OTHERS MOLDED ONE-PIECE SLEEVE & WASHER • MINLON® (Standard Gasket Width-1/8") BEFORE: The flange face contacts the crown of the elastomer seal ring. As the bolts are tightened the flange face deforms the seal crown into the molded voids AFTER: The flange faces are in complete contact with the seal retainer, thus encapsulating the seal elements in conjunction with the retainer grooves. The elastomer, because of it's resiliency and pressure from the line fluid, attempts to return to it's original shape and effects a positive o-ring type seal. # PROBLEMS SOLVED - Fewer Service Calls due to leaking and "shorting" flanges. - Positive Sealing through a wide range of fluctuating temperatures. - Maintenance Versatility and Positive Sealing in difficult situations. (see examples) - Longest Fire Life of any insulating gasket. - Positive Seals and Zero Environmental Leakage. TO ORDER FLANGE INSULATION KIT PLEASE INDICATE THE FOLLOWING: - Quantity - Pipe Size [Nominal] - Pressure Rating (ANSI,DIN,API) - Gasket Type - Retainer Material - Sealing Element - Single or Double Washer Sets ISW or DWI - Sleeve Material Distributed by SAVCOR ART Pty Ltd Lvl 13/132 Arthur St. Nth Sydney NSW 2060 Phone 02 9025 2000 MISMATCHED FLANGES T HR EL 12002 GU Guide # **Electrolysis from Stray DC Current** Version 1.0 Issued Date: 01 May 2014 Effective Date: 01 May 2014 ### Important Warning This document is one of a set of standards developed solely and specifically for use on the rail network owned or managed by the NSW Government and its agencies. It is not suitable for any other purpose. You must not use or adapt it or rely upon it in any way unless you are authorised in writing to do so by a relevant NSW Government agency. If this document forms part of a contract with, or is a condition of approval by, a NSW Government agency, use of the document is subject to the terms of the contract or approval. This document may not be current. Current standards are available for download from the Asset Standards Authority website at www.asa.transport.nsw.gov.au. © State of NSW through Transport for NSW Standard Approval Owner: N. Hook, Lead Electrical Engineer Authorised by: D. Spiteri, Chief Engineer Rail Approved by: G. Bradshaw, Principal Manager Network Standards and Services on behalf of the Asset Standards Authority Configuration Control Board **Document Control** Version Summary of Change 1.0 First issue For queries regarding this document standards@asa.transport.nsw.gov.au www.asa.transport.nsw.gov.au # **Preface** The Asset Standards Authority (ASA) develops, controls, maintains and publishes standards and documentation for transport assets for New South Wales, using expertise from the engineering functions of the ASA and industry. ASA publications comprise of network and asset standards for NSW Rail Assets and include RailCorp engineering standards that were previously managed by RailCorp until July 2013. This document supersedes RailCorp standard EP 12 30 00 01 SP *Electrolysis from Stray DC Current*, Version 3.0. The changes to previous content include: - · updates to reflect organisational changes and resulting changes in responsibilities - minor amendments and clarification to content - conversion of the standard to ASA numbering, format and style # Table of contents | 1. | Purpose | 5 | |-----|----------------------------|----| | | | | | 2. | Electrolysis | 5 | | | | _ | | 2.1 | Description | 5 | | 2.2 | Legislative requirements | 5 | | 3. | Stray dc current | e | | ٥. | otray ao oarrent | | | 4. | Effects and hazards | 7 | | 4.1 | Cantinuaria atrusturas | | | | Continuous structures | | | 4.2 | Overhead wiring structures | 8 | | 4.3 | MEN systems | 8 | | 4.4 | Concrete bridges | 9 | | 4.5 | Earthed rail locations | g | | 5. | Minimisation techniques | 10 | | 5.1 | High resistance to earth | 10 | | 5.2 | Voltage drop minimisation | | | 5.3 | Isolation | | | 5.4 | Breaking continuity | 12 | | 5.5 | Use of protection systems | | | | | | # Purpose This document provides general information on electrolysis caused by stray dc currents. It explains where stray dc currents are originated from and discusses their potential effects. This document also offers techniques to minimise stray dc currents to mitigate possible electrolysis. This guide is prepared for and applicable to NSW 1500 V dc electrified railway network. # Electrolysis # 2.1 Description Electrolysis is an electro-chemical reaction involving an electrolyte and metals which are carrying a dc current. It results in the corrosion of the metal which is carrying the current at the point where the current leaves the metal and enters the electrolyte. In the case of stray dc traction currents, the electrolyte is the moist earth while the metals are the rails and buried metallic services such as pipes and the sheathing on power and communication cables. The buried services in the context of electrolysis are usually referred to as 'structures' but should not be confused with overhead wiring structures. The buried 'structure' does not necessarily have to be underground - it just has to connect to earth at two points. However, note that electrolysis only occurs in the ground. Whether or not a buried structure is likely to be damaged by stray dc currents is determined by the correlation of the structure to rail and the structure-to-earth potentials. If the potential of structure-to-earth is positive, corrosion is likely; if it is negative, the structure receives protection from corrosion because of the stray dc currents. As an example, the corrosion rate of steel is 9 kilogram per ampere year. # 2.2 Legislative requirements The NSW Department of Trade and Investment, Regional Infrastructure and Services (NSW Trade & Investment) is responsible for administering the *Electricity Supply (Corrosion Protection) Regulation 2008*, made under the *NSW Electricity Supply Act 1995*. This regulation requires the approval and registration of all cathodic protection systems (CPS) including both sacrificial (above 150 mA output) and impressed CPS, drainage bonds (DBs) and transformer assisted drainage bonds (TRADs). The administration is done in conjunction with the NSW Electrolysis Technical Committee (NSWETC). © State of NSW through Transport for NSW Page 5 of 13 The NSWETC meets monthly to program testing of both new and existing cathodic protection systems and to recommend approval of CPS. The NSWETC consists of representatives of NSW utilities and includes electricity, gas, water, telecommunications, pipeline, light and heavy rail and other allied/interested parties. Since its inception in 1932, the NSWETC has developed and refined specialised equipment and technical procedures for both CPS testing and investigating problems on members' assets arising from the operation of CPS and stray traction current. It should be noted that the NSWETC is not a legal entity and does not have a registered office. # Stray dc current The 1500 V dc electrified traction system consists of an overhead wiring system supplied by traction substations spaced every 5 km to 15 km along the tracks. The current required to operate the train traction motors is received by the train pantograph from the contact wire, and then it returns to the traction substations via the wheels of the train and the unearthed track system. The overhead wiring is positive with respect to the rails. Ideally, all current should return through the rails, but since the rails are in close contact with the ground through the sleepers and ballast, some current will leak from the rails and return to the substation through the ground. This leaked current is called 'stray current' or 'leakage current'. Stray dc currents leave the rails far from the substation where there is a relatively low resistance to earth. The currents then use the path of lowest resistance to return to the substation. This usually involves entering a buried structure and then passing from that structure to the ground at some point closer to the substation. It then passes back to the rails at another point of relatively low resistance to earth and completes the circuit to the substation negative. The return traction current flowing in the rails causes a longitudinal voltage drop along the length of the rails. Although the rails are nominally isolated from earth, there is inevitably a distributed leakage resistance causing a varying potential difference with respect to earth. This potential difference is negative near the traction substations and positive between substations. The resulting potential difference is generally 10 V to 70 V, which is not dangerous. Regenerative braking fitted to newer trains causes the trains to act as mobile substations causing the rail potentials to be more variable than the simple case described above. In the simple model illustrated in Figure 1, substation earth is always positive to rail; but this is no longer always true. It is neither practical nor desirable to completely insulate the rails from earth. Some amount of leakage current is acceptable to ensure that the voltage between rail and earth does not become dangerous. Another limiting factor in the rail to earth resistance is the signalling system which requires the rail to earth leakage resistance to be a minimum value of 2 Ω rail-to-rail per kilometre of rail. Thus the minimum allowable value is 1 Ω rail-to-earth per kilometre of rail. A typical track would usually have a value of approximately 8 Ω to earth for one kilometre of rail and a very well ballasted track would have a resistance of over 50 Ω to earth for one kilometre of rail. Figure 1: DC traction currents distribution and rail-to-earth voltage under uniform conditions # 4. Effects and hazards The most common stray dc currents paths in railway environment and the potential hazards and effects are discussed in this section. ### 4.1 Continuous structures Continuous structures such as metallic fences and troughs provide conductive paths for stray dc currents because they are close to the tracks for long distances and are connected to earth at many points through which they may pick up and drop off stray dc currents. Overhead earth wires erected for long distances over high voltage transmission lines to protect them against lightning are earthed at each pole and also connected to the substation earth mat, i.e. a very good connection to earth. These wires may also pick up and drop off stray dc currents along their route. In addition to transfer of hazard (i.e. dc voltage), the buried parts of these structures are prone to corrosion at the drop off points – fence bases, toughing support columns and earth electrodes at the bottom of poles. For further information refer to EP 12 10 00 21 SP Low Voltage Installations Earthing. # 4.2 Overhead wiring structures The OHW structure footing has a resistance to earth. A survey of structures has shown that these values of resistance to earth vary from 1.5 Ohms to 280 Ohms. Where an OHW structure is spark-gapped to rail and the spark gap operates (becomes short-circuited) a conductive path for stray dc currents is created. If the spark gap is not replaced in a timely manner, the OHW structure base will corrode compromising its structural strength. For further information refer to EP 12 20 00 01 SP Bonding of Overhead Wiring Structures to Rail. # 4.3 MEN systems The local distribution network service provider's (DNSP) low voltage supplies commonly use a multiple earthed neutral (MEN) system for earthing purposes. The neutral conductor – which is connected to earth at multiple points – is reticulated throughout the areas through which the RailCorp network operates. It provides a pick-up and drop-off facility for stray DC currents resulting in corrosion of the earth electrodes at the drop-off points. A power supply with MEN system is only permissible if the installation and its earthing electrodes are at a reasonable distance from the electrified rail or any metallic element which may be connected to rail. This provision is also to ensure the safety of the consumers connected to the low voltage network by minimising the possibility of stray DC current flowing into the low voltage network. For further information refer to EP 12 10 00 21 SP Low Voltage Installations Earthing. # 4.4 Concrete bridges The use of reinforced or pre-stressed concrete bridges raises special concerns when used for dc electrified railway networks. If the reinforcing bars or stressing wires are not insulated from rails then these will carry traction current. Even if they are insulated, concrete is not a good insulator and there could be some stray current in the bars/wires. The length of the concrete bridge structures increases the possibility to be affected by stray dc currents. Since the steelwork is necessary for the strength of concrete bridges, it is vital that corrosion does not occur. Over the years, numerous methods have been tried to minimise the corrosion of bridge steelwork. A few are listed below: - insulating membranes have been installed in the concrete between the rails and the reinforcement. But this type of installation is prone to damage during construction and cannot be repaired after the bridge is built - all steelwork have been bonded together and the current flow has been monitored to ensure there is minimal leakage. If leakage is found to be excessive, then drainage bonds can be installed - some major pre-stressed concrete bridges such as the ones at Rushcutters Bay and Woolloomooloo viaducts have been successfully insulated by an insulating layer of epoxy grout between the roadbed concrete and the structural concrete # 4.5 Earthed rail locations The RailCorp network traction system is not deliberately connected to earth, although earthing on only one side is allowed; one side only to avoid creation of a complete electric circuit. When the voltage between rail and earth becomes large, rails are automatically connected to earth via rail-earth contactors (REC) to mitigate the hazard. The connection has to be removed after safe voltage levels have been reinstated. Earthed rails, obviously, provide direct path for rail currents to enter earth – this is no longer stray dc current but the actual traction return current – and have to be avoided unless necessary. However, some situations require that the rails be earthed for safety reasons. Examples are in coal and wheat loaders, where sparks caused by a voltage between rails and earth can be catastrophic. For further information refer to EP 12 10 00 13 SP 1500 V Traction System Earthing. # 5. Minimisation techniques The problem of minimising electrolysis is closely related to the problem of earthing and/or bonding of metallic structures to prevent electric shock to people. The solutions to both problems have to be a compromise since the 'best' solution for one situation results in major problems for the other one. The techniques discussed in this section are as follows: - · maintaining high resistance between rails (and negative connections) and earth - minimising voltage drop between traction substations - isolation of services, installations and structures from dc electrified system - · breaking continuity in continuous structures The above minimisation techniques are recommended for any work within the railway corridor and near 1500 V dc track. All associated mandatory requirements are covered in relevant documents. # 5.1 High resistance to earth Ensure the rails and associated negative connections have relatively high resistance to earth. To achieve a high resistance to earth, ensure that: - the rails are clear of dirt and mud, particularly in sidings, yards, level crossings and through stations - steel sleepers are not used in the electrified area unless the line is track circuited because track circuiting detects low resistances to earth - non-electrified lines and sidings are separated from electrified lines by insulated rail joints and that these joints are installed such that stabled trains do not short them out - spark gaps have not operated and the insulation of bonding cables is not damaged - in tunnels, on bridges and under air-space developments, there is no contact between rails and steel reinforcement or any other steelwork - at substations and sectioning huts, negative connections are insulated from earth and trackside negative rail busbars are not covered in mud or ballast. Also, that rail-earth contactors are not left closed for longer than necessary times - in car sheds, traction return rails are not connected to building framework and are well insulated from earth by the use of insulating pads under the rails or epoxy coating of the rails - overhead wiring structures bonded to rail via spark gaps do not contact earthed services such as station awnings, fences, water pipes, etc. © State of NSW through Transport for NSW Page 10 of 13 # 5.2 Voltage drop minimisation Ensure the voltage drop along the rails is minimised; in other words, the electrical resistance of the traction return circuit is minimised. To minimise the voltage drop: - use as many running rails as possible for traction return - install tie-in bonds to share the current between tracks - · ensure all rail bonds and impedance bonds are correctly installed - minimise substation spacing - ensure substation voltages are equalised Adjacent substations should have balanced output voltages. Equal voltages will keep the traction return current to a minimum resulting in lower voltage drop along the rails. Accordingly the voltage available to drive a stray dc current from the rail to structures and thence to the substation will be minimised. # 5.3 Isolation The following isolation methods can be utilised to mitigate or minimise the effect of electrolysis: - keep metallic services away from the tracks so that there is a lesser possibility of picking up appreciable dc leakage currents. Select routes away from the route of the dc electrified lines - use isolating transformers for all low voltage power supplies from the local DNSP, ensuring that no neutral and earthing conductor of that network enters railway corridor - provide isolating joints, installed at the boundary of rail corridor, for all metallic water and gas pipes servicing buildings in the railway corridor and near 1500 V dc track - ensure that metallic water and gas pipes crossing or laid along the railway corridor and near 1500 V dc track are insulated from earth. This principle applies also to other services such as power and communication cables with metallic sheaths - ensure that fences at stations and electrical substations are not connected to metallic fences along the tracks - ensure all metallic structures such as footbridges and bus shelters are isolated at the boundary of railway corridor. This can be achieved by allowing gaps, minimum 2 m apart, at both ends of the steelwork - · use insulating coating for underground structures - when lighting is installed, ensure that the local DNSP's earth is not connected to the steelwork of any overhead wiring structure, station or bridge © State of NSW through Transport for NSW Page 11 of 13 # 5.4 Breaking continuity For continuous structures as described in section 4.1, it is recommended to: - install insulating panels every 500 m of metallic fences along the tracks - install insulating sections every 500 m of metallic troughs along the tracks. Care must be taken to ensure that metallic lids of the troughs do not bridge the insulated sections - ensure that there are no long lengths of metallic water/gas/air pipes within the railway corridor, in particular in car sheds - ensure that RailCorp network high voltage cable screens are not continuous between substations - divide underground metallic structures into short lengths using insulating joints - do not use concrete poles in the railway corridor and near 1500 V dc lines. All local DNSPs have been advised not to use concrete poles near 1500 V dc tracks, especially if overhead earth wire or neutral wire is fitted # 5.5 Use of protection systems Corrosion protection systems methods that can be used to minimise the effect of electrolysis are: - cathodic protection (CP) systems - drainage bonds In CP systems the metal that is to be preserved is made negative to earth and thus avoiding corrosion. However, with relatively large voltages caused by stray currents, CP is not entirely effective and hence railway drainage bonds may be useful. A drainage bond relies on a deliberate metallic connection of the structure to rails in order that the stray currents return to the rail without entering the earth. See Figure 2 for a typical drainage bond arrangement. The drained structure – the structure to be protected – becomes negative to earth and therefore attracts current from adjacent structures. Excessive drainage from one structure may cause hazard to other structures in vicinity of the protected structure, particularly when crossing each other. Thus, drainage bonds are fitted with resistance to limit the current returning to rails from the protected underground structure to avoid excessive drainage. For example, in the case of steel structures, it is preferable to keep the voltage to earth between $-2000\,\text{mV}$ and $-850\,\text{mV}$. At more negative voltages, damages such as hydrogen embrittlement or disbonding of insulation may take place. The common method used to determine the voltage affecting the structure is by using Cu/CuSO₄ half-cell making repeatable contact with earth. © State of NSW through Transport for NSW Page 12 of 13 The corrosion effect on the underground structures very largely depends whether the structures are bare or insulated/coated. Although insulation of metallic structures, if perfectly applied and maintained, can provide complete protection against galvanic corrosion, defects in insulation are unavoidable. The consequence of a defective insulation is that stray dc currents may be concentrated in a small defected area and accelerate the rate of corrosion at that point. Hence, insulation of metallic structures from their environment is usually supplemented with the CP systems. However, full protection against stray dc currents cannot be obtained because CP system voltages are generally lower than the traction voltages involved. For more information refer to: - AS 2832 Cathodic protection of metals - guide for measurement of interference caused by cathodic protection and railway drainage systems prepared by the NSWETC Figure 2: Typical electrolysis drainage bond panel Below are some typical values for various components forming a drainage bond: Table 1 - Typical values for components of drainage bonds | Component | Value | |------------------|-----------------------------------------------------------------------------------------| | Fuse | 25 A | | Lamps | 32 V, 250 W | | Resistor | 0.30 Ω , taps at 0.22, 0.26, 0.30 Ω
Usually connected at 0.26 Ω | | Diode | 40HFR120
(Supplied by RS Components) | | Conductance Bond | 1.5 S, 4 V (I = 6 A) | © State of NSW through Transport for NSW