

REPORT

AIR QUALITY ASSESSMENT – BELTANA POWER GENERATION PROJECT

Beltana Highwall Mining Pty Limited

Job No: 3839

22 April 2010

PROJECT TITLE:	AIR QUALITY ASSESSMENT – BELTANA POWER GENERATION PROJECT				
JOB NUMBER:	3839				
PREPARED FOR:	Ralph Northey				
	BELTANA HIGHWALL MINING PTY LIMITED				
PREPARED BY:	R. Kellaghan				
QA PROCEDURES CHECKED BY:	Aleks Todoroski				
APPROVED FOR RELEASE BY:	Aleks Todoroski				
DISCLAIMER & COPYRIGHT:	This report is subject to the copyright statement located at <u>www.paeholmes.com</u> © Queensland Environment Pty Ltd trading as PAEHolmes ABN 86 127 101 642				

DOCUMENT CONTRO	L		
VERSION	DATE	PREPARED BY	REVIEWED BY
01	19.03.2010	R. Kellaghan	A. Todoroski
02	31.03.2010	R. Kellaghan	A. Todoroski
FINAL	22.04.2010	P. Henschke	

Queensland Environment Pty Ltd trading as **PAEHolmes** ABN 86 127 101 642

SYDNEY:

Suite 2B, 14 Glen Street Eastwood NSW 2122 Ph: +61 2 9874 8644 Fax: +61 2 9874 8904

BRISBANE:

Level 1, La Melba, 59 Melbourne Street South Brisbane Qld 4101 PO Box 3306 South Brisbane Qld 4101 Ph: +61 7 3004 6400 Fax: +61 7 3844 5858

Email: info@paeholmes.com

Website: www.paeholmes.com

ES1 EXECUTIVE SUMMARY

Overview

Beltana Underground Mine seeks approval to modify its existing consent (DA 376-8-2003) to allow for the capture and use of the coal seam methane through the operation of up to 25 MW of gas fired reciprocating engine power generating units and a pilot ventilation air methane (VAM) abatement system.

This study assesses the potential air quality impacts of the proposed Beltana Power Generation Project in accordance with the Department of Environment, Climate Change and Water's "*Approved Methods for the Modelling and Assessment of Air Pollutants in NSW*".

Dispersion Meteorology

A meteorological station operated by Bulga Coal Mine provides information on prevailing conditions for the area and is used to characterise dispersion for this assessment. On an annual basis, the most common winds are from the east-northeast, west-northwest and south.

Emissions and Dispersion Modelling

Impacts are assessed for all new emissions sources for the proposed Beltana Power Generation Project, including:

- Eight coal seam gas power generation units;
- Pilot VAM abatement unit; and
- Seven flares for excess coal seam methane;

Modelling has been performed using the CALPUFF dispersion model run in screening mode. Of the potential emissions from the project, oxides of nitrogen (NO_x) have the largest emission potential, formed by high temperatures generated during combustion of the coal seam methane for power generation and flaring. Emissions of carbon monoxide (CO) and organic compounds can also be expected from the incomplete combustion of the fuel. Emissions of NO_x from VAM abatement are low, as the oxidation of the methane occurs at temperatures below that required for thermal NO_x generation.

Predicted Impacts

The predicted NO_2 concentrations were well within the impact assessment criteria at all receptor locations, even with the application of conservative modelling assumptions. The potential for cumulative impacts is also expected to be small. Incremental increases in other pollutant concentrations, including CO and VOCs are predicted to be minor.

TABLE OF CONTENTS

1
1
2
3
4
5
5
5
5
5
6
6
7
8
8
8
12
12
12
13
13
14
15
18
19
20
21
A-1

LIST OF TABLES

Table 2.1:	Design Parameters for Power Generation	2
Table 2.2:	System Design Parameters for VAM Abatement	2
Table 3.1:	NSW DECCW Impact Assessment Criteria	5
Table 4.1:	NO_2 concentrations at Singleton and Ravensworth sites ($\mu g/m^3)$	7
Table 5.1:	Temperature, Humidity and Rainfall Data for Jerry's Plains Post Office	8
Table 5.2:	Frequency of occurrence of stability classes (April 2008 to March 2009)	.1
Table 6.1:	Emission and Stack Parameters – Power Generation1	.3
Table 6.2:	Emissions and Stack Parameters - VAM 1	.4
Table 6.3:	Emissions and Stack Parameters - Flares 1	.4
Table 7.1:	Predicted 1-hour NO _x at Receptor Locations1	.6
Table 7.2:	Predicted 1-hour CO at Receptor Locations1	.8

LIST OF FIGURES

Figure 2.1: Local Setting and Site Overview	3
Figure 2.2: Pseudo 3-Dimensional Representation of Regional Topography	4
Figure 5.1: Annual and Seasonal Windroses for Bulga 2009	10
Figure 7.1: Predicted Maximum 1-Hour NO _x Concentration	15
Figure 7.2: Predicted 8-Hour CO Concentration	17

1 INTRODUCTION

Bulga Underground Operations (also known as Beltana Underground Mine (Beltana)) is an underground coal mine located approximately 12 km southwest of Singleton in the Upper Hunter Valley of NSW. Beltana forms part of the Bulga Complex managed by Bulga Coal Management Pty Limited (BCM) on behalf of the Bulga Joint Venture (BJV).

Beltana Underground Mine comprises Beltana No.1 Whybrow Seam Longwall Mine and the Blakefield South – Blakefield Seam Mine. The deeper seam being mined at Beltana contains substantial methane levels and this is currently drained through a combination of pre and post mining gas drainage and then flared or vented to atmosphere.

BCM seeks approval to modify its existing consent (DA 376-8-2003) to allow for the capture and use of the coal seam methane through:

- Installation and operation of up to 25 MW of gas fired reciprocating engine power generating units and associated infrastructure; and
- Construction and operation of a pilot ventilation air methane (VAM) abatement system.

An Environmental Assessment has been submitted as part of a Section 75W Modification Application (DA 376-8-2003 MOD 4) (**Umwelt, 2009**), which has been reviewed for adequacy by the NSW Department of Environment, Climate Change and Water (DECCW). DECCW have requested further assessment to address the potential air quality impacts of the project.

Beltana Highwall Mining P/L has commissioned PAEHolmes to prepare an Air Quality Impact Assessment for the Beltana Coal Mine Power Generation and Ventilation Air Methane Abatement Project.

1.1 Objectives of the Study

The objectives of the study are to address the requirements of the DECCW, as follows:

- To conduct an Air Quality Impact Assessment in accordance with the "Approved Methods for the Modelling and Assessment of Air Pollutants in NSW";
- To quantify emissions to air for all proposed sources, preferably based on manufacturers performance specifications / guarantees;
- To provide a detailed description of the ambient receiving environment, with particular focus on background pollution concentrations, prevailing meteorological conditions and nearby sensitive receptors;
- To provide a cumulative impact assessment based on regulatory dispersion model predictions and representative background pollution concentrations; and
- Where emission controls are assumed as part of the air quality impact assessment, specific details pertaining to those controls should be provided.

2 PROJECT DESCRIPTION

The project involves the capture, treatment and use of methane drained from the underground operations at Beltana. The two key components of the project are:

- Installation and operation of up to 25 MW of gas fired reciprocating engine power generating units and associated infrastructure; and
- Construction and operation of a pilot ventilation air methane (VAM) abatement system.

The power generation component is proposed to be located on a cleared site approximately 150 m south of the No.2 Ventilation Fan site. Up to eight gas fired reciprocating engines, with an output up to 25 MW will be installed in stages as the mine progresses. Electricity produced from the power generation units will be used to power some of Beltana's infrastructure, including ventilation fans, with surplus fed back into the national power grid. A 2.5 km pipeline would be constructed to deliver gas to the power plant from the existing Blakefield South gas drainage infrastructure.

Each power generation unit will have the capacity to utilise approximately 90 L/s of methane per MW of generating capacity. With eight operational units generating 25 MW of power approximately 2250 L/s of gas would be required. Any excess gas would be flared. It is expected that the flares would have an availability of 95% with unavailability due to maintenance etc. Details of equivalent generator units are shown in **Table 2.1**.

Parameter	Value
Unit Model	Energen G3094
Engine	Duetz TCG2032 V16 Engine
Output per unit	3.93 MW
Proposed Installation	Up to 8 Units (staged)
Total Output	Up to 25 MW
Methane Utilisation	90 L/sec per MW of generating capacity
Proposed Project Methane Utilisation (8 Units at 25 MW)	2,250 L/sec
Availability	96 to 98 percent

Table 2.1: Design Parameters for Power Generation

A Ventilation Mine Methane (VAM) abatement system is proposed to be sited adjacent to the Blakefield South Ventillation Fan No. 2 which is currently under construction. The system will utilise reverse flow thermal reactor (RFTR) technology (Vocsidizer, VAMOX, Corky's VAN RAB or similar) to capture and convert the dilute methane concentrations from the mine ventilation shafts to carbon dioxide (CO_2) and water. The pilot VAM abatement system proposed for Beltana will include one RFTR. The operational parameters for an equivalent system are shown in **Table 2.2**.

Table 2.2: System Design Parameters for VAM Abatement

Parameter	Value
Mine Ventilation Air Volume	60,000 Nm ³ /hr
Mine Ventilation Air Temperature	10-40 °C
Typical Ventilation Air Methane Content	0.5% CH ₄ @ 62,500 Nm ³ /hr
Maximum deign VAM concentration	0.8% CH ₄
Methane reduction target	97% average reduction

2.1 Local Setting

Beltana Underground Mine is located in the Upper Hunter Valley of New South Wales. The closest urban centre is Singleton, approximately 12 km to the northeast of the project. There are also a number of villages in the surrounding area which include Broke and Bulga approximately 1.0 km south and 1.5 km west of the lease area.

Land-use in the local area is dominated by coal mining, grazing, viticulture and rural residential holdings. The closest private residences to the proposed power generation project are located approximately 2.5 km to the southwest of the site. The location of the closest private receptors in relation to the power generation project and VAM abatement system are shown in **Figure 2.1**.

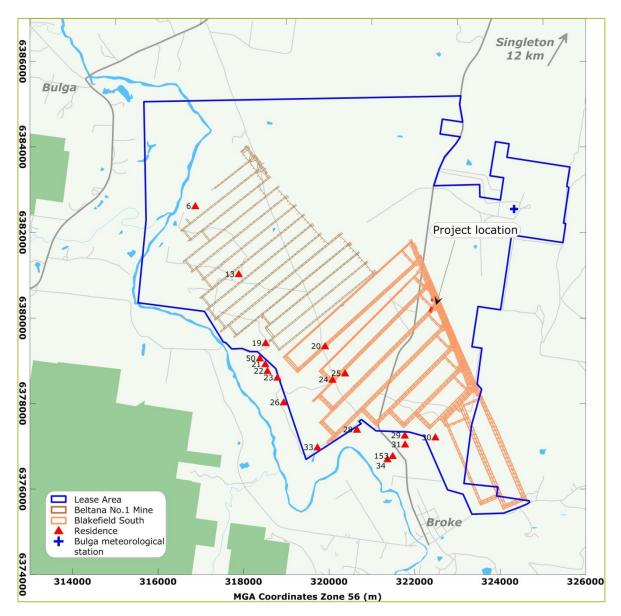


Figure 2.1: Local Setting and Site Overview

2.2 Topography

A three-dimensional representation of the regional topography is shown in **Figure 2.2**, showing the location of the proposed site in relation to the neighbouring receptor locations. Regional topography has a strong influence on prevailing meteorological conditions described in **Section 5**.

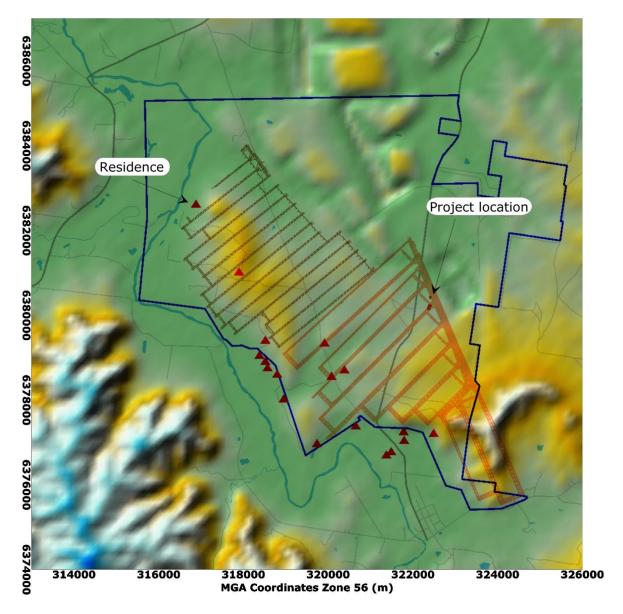


Figure 2.2: Pseudo 3-Dimensional Representation of Regional Topography

3 AIR QUALITY CRITERIA

The combustion and flaring of coal seam methane will result in emissions of Oxides of Nitrogen (NO_x), Carbon Monoxide (CO) and hydrocarbons. In addition, the VAM abatement system is designed to oxidise the methane, resulting in emissions of NO_x and CO.

3.1 Oxides of Nitrogen

The key pollutant released from combustion and flaring of coal seam methane, will be oxides of nitrogen (NO_x). NO_x is comprised of nitric oxide (NO) and nitrogen dioxide (NO_2), however NO is not generally considered harmful to human health and not considered an air pollutant at the concentrations that are typically found in ambient environments. Effects of NO_2 include respiratory infections, asthma and chronic lung disease. The NSW DECCW prescribes ambient impact assessment criteria for NO_2 , as outlined in **Table 3.1**.

3.2 Carbon Monoxide

Emissions of Carbon Monoxide (CO) can be expected from the combustion and flaring of coal seam methane. Carbon monoxide is a colourless, odourless gas, formed from the incomplete or inefficient combustion of fuels containing carbon. Exposure to CO can cause a reduction in the oxygen-carrying capacity of the red blood cells, resulting in decreased oxygen supply to vital organs such as the heart and brain. The NSW DECCW prescribes ambient impact assessment criteria for CO, as outlined in **Table 3.1**.

3.3 Volatile Organic Compounds (VOCs)

Volatile Organic Compounds is a term given to various organic chemical components, several of which are considered air toxics, including formaldehyde which is formed from the combustion of methane. Methane itself is a common VOC but is often distinguished from other VOCs using the term non-methane VOCs or NMVOCs.

Air toxins are present in the air in low concentrations, however characteristics such as toxicity or persistence means they can be hazardous to human, plant or animal life. There is evidence that cancer, birth defects, genetic damage, immuno-deficiency, respiratory and nervous system disorders can be linked to exposure to occupational levels of air toxics.

3.4 Summary of Air Quality Goals

The NSW Department of Environment, Climate Change and Water (DECCW) prescribe ambient impact assessment criteria which are outlined in their "*Approved Methods for Modelling and Assessment of Air Pollutants in NSW*" (**NSW DEC, 2005**). The impact assessment criteria refer to the total pollutant load in the environment and impacts from new sources of these pollutants must be added to existing background levels for compliance assessment. **Table 3.1** summarises the air quality goals that are relevant to this study.

Pollutant	Assessment Criteria	Averaging Period
Nitrogen Dioxide	246 µg/m ³	1-Hour
	62 μg/m ³	Annual
Carbon Monoxide	30 mg/m ³	1-Hour
	10 mg/m ³	8-Hour
Formaldehyde	0.02 mg/m ³	1-Hour

Table 3.1: NSW DECCW Impact Assessment Criteria

4 EXISTING AMBIENT AIR QUALITY

Air quality standards and goals refer to pollutant levels that include the contribution from specific projects and existing sources. To fully assess impacts against all the relevant air quality standards and goals it is necessary to have information on the background concentrations to which the project is likely to contribute.

4.1 Nitrogen Dioxide

As a part of the Macquarie Generation (MacGen) monitoring network, measurements of NO_2 have been conducted since 1984 at six locations in the Hunter Valley (**Katestone, 2009**). The two closest MacGen monitoring stations are Singleton and Ravensworth, approximately 18 km northeast and 28 km north of the proposed site.

Table 4.1 presents the 1-hour maximum and the annual average for each year since monitoring commenced in 1994.

It can be seen at the Singleton monitoring site that, in general, the maximum 1-hour average concentrations constitute less than half of the air quality goal of 246 μ g/m³. The only exception is during 2005 where the concentration exceeds the air quality goal. It should be noted that this monitoring station is close to a major road where vehicular exhaust would have strongly influenced measured concentrations. The annual average NO₂ concentrations are all well below the air quality goal of 62 μ g/m³.

The NO₂ monitoring results for the Ravensworth site are slightly higher than those experienced at the Singleton site. The maximum 1-hour average NO₂ concentration was 154.0 μ g/m³ and the annual average was 21.3 μ g/m³, both below the relevant air quality criterion.

The 95th percentile of the 1-hour average of NO₂ for each year at all monitoring stations are less than 60 μ g/m³ indicating that generally, ambient levels of NO₂ are less than 25% of the DECCW air quality goal (**Katestone, 2009**).

	Sing	leton	Ravensworth			
Year	1-hour average (maximum)	Annual average	1-hour average (maximum)	Annual average		
1994	49.5	9.6	66.6	13.7		
1995	74.4	14.5	154.0	17.9		
1996	83.7	16.2	140.5	26.4		
1997	117.9	22.0	104.3	24.0		
1998	113.9	18.6	93.2	23.1		
1999	65.8	65.8 12.7		19.9		
2000	68.0	13.5	145.9	17.2		
2001	113.0	15.3	96.5	18.9		
2002	109.8	16.0	88.3	18.3		
2003	82.3	16.4	126.3	22.0		
2004	126.5	17.9	60.1	19.1		
2005	339.2ª	18.9	96.5	22.6		
2006	85.5	17.0 93.7		26.7		
2007	80.3	16.0 103.8		21.7		
2008	78.9	18.5	99.7	21.1		
Maximum	339.2	-	154.0	-		
Average	-	16.4	-	21.3		

Table 4.1: NO₂ concentrations at Singleton and Ravensworth sites (µg/m³)

^a High measurements at this site in 2005 have been attributed to the close proximity of the monitoring station to a major road.

4.2 Carbon Monoxide

There is no information available on ambient concentrations of carbon monoxide in the Hunter Valley. However, ambient CO concentrations would be, in general, expected to be very low. Ambient air quality goals for CO are many orders of magnitude greater than NO_2 , suggesting, based on the NO_2 monitoring data, that ambient levels of CO would be significantly less than the air quality goals.

5 PREVAILING METEOROLOGY

5.1 Climate data

The Bureau of meteorology collects climatic information from the monitoring station located at Jerry's Plains Post Office (Station Number 061086), approximately 27 km northwest of the Project. Data collected over a 126 year period is available providing information on the long-term average values of climatic elements such as temperature, humidity, rainfall, etc.

Table 5.1 presents temperature, humidity and rainfall data collected at Jerry's Plains Post Office for 126 years between 1884 and 2009. Temperature and humidity data consist of monthly averages of 9am and 3pm readings. Also presented are monthly averages of maximum and minimum temperatures. Rainfall data consist of mean rainfall and the average number of raindays per month.

On average January is the hottest month with an average maximum temperature of 31.7°C. July is the coldest month, with average minimum temperature of 3.8°C. The annual average maximum and minimum temperatures experienced at Jerry's Plains Post Office are 25.2°C and 10.6°C respectively.

The annual average humidity reading collected at 9am at Jerry's Plains Post Office is 70 percent, and at 3pm the annual average is 47 percent. The month with the highest humidity on average is June with a 9am average of 80 percent, and the lowest are September, October, November and December with 3pm average of 42 percent.

Rainfall data collected at Jerry's Plains Post Office shows that January is the wettest month, with an average rainfall of 77.0 mm. The average annual rainfall is 642.1 mm with an average of 86.8 raindays.

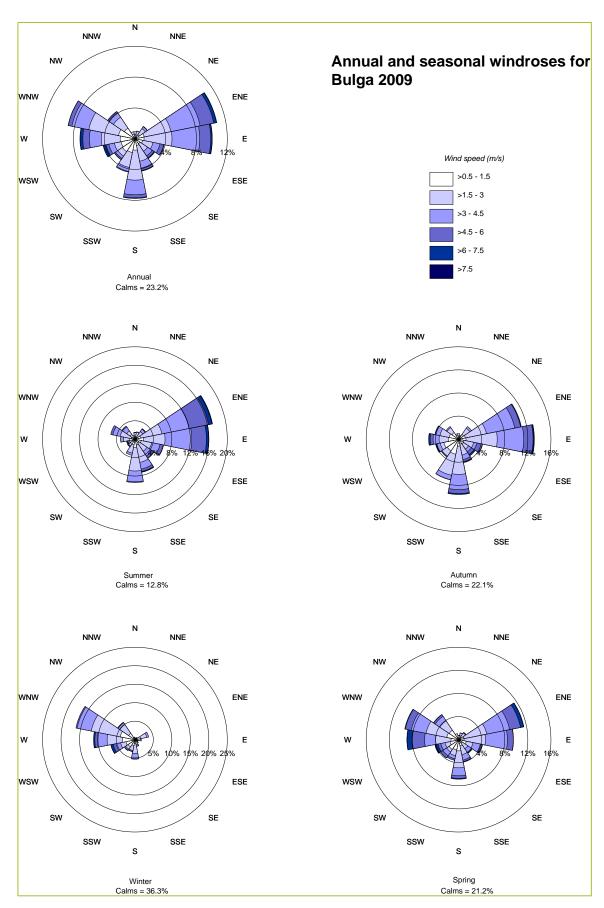
Table 5.1		perata	ic, iiu	marcy	una	lanna	n Duc		city s	, i iaiii	5105		C
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
9 am Meai	9 am Mean Dry-bulb and Wet-bulb Temperatures (°C) and Relative Humidity (%)												
Dry-bulb	23.4	22.7	21.2	18.0	13.6	10.6	9.4	11.4	15.3	19.0	21.1	23.0	17.4
Humidity	67	72	72	72	77	80	78	71	64	59	60	61	70
3 pm Mea	n Dry-b	ulb and	l Wet-b	ulb Ten	nperatu	res (ºC) and R	elative	Humidi	ty (%)			
Dry-bulb	29.8	28.9	27.1	24.1	20.1	17.1	16.4	18.2	21.2	24.2	26.9	29.0	23.6
Humidity	47	50	49	49	52	54	51	45	42	42	42	42	47
Daily Maxi	mum T	empera	iture (°	C)									
Mean	31.7	30.9	28.9	25.3	21.3	18	17.4	19.4	22.9	26.3	29.2	31.3	25.2
Daily Minir	num Te	empera	ture (º0	C)									
Mean	17.1	17.1	15	10.9	7.5	5.3	3.8	4.4	7.0	10.3	13.2	15.7	10.6
Rainfall (m	Rainfall (mm)												
Mean	77.0	72.5	59.1	44.1	40.4	47.6	43.3	36.4	41.7	51.9	59.7	67.9	642.1
Raindays (Raindays (Number)												
Mean	7.9	7.4	7.4	6.4	6.5	7.6	7.1	7	6.6	7.5	7.7	7.7	86.8
						1 001							

Table 5.1: Temperature, Humidity and Rainfall Data for Jerry's Plains Post Office

Station number 061086; Commenced: 1884; Last record: 2010; Latitude (deg S): -32.50; Longitude (deg E): 150.91 (Bureau of Meteorology)

5.2 Dispersion Meteorology

The dispersion model used for this assessment (see **Section 6**) requires information about the dispersion characteristics of the area. In particular, data is required for wind speed, wind direction, atmospheric stability class and mixing height.


DECCW have specified the requirements for meteorological data that are used for air dispersion modelling in their *Approved Methods* (**NSW DEC, 2005**). The requirements are as follows:

- Data must span at least one year;
- Data must be 90% complete; and
- Data must be representative of the area in which emissions are modelled.

Bulga Coal Mine owns and operates an automatic weather station (AWS) 3 km northwest of the project site. Measurements of temperature, wind speed wind direction and solar radiation are collected at 10-minute intervals, retrieving 100 % of data in 2009. Annual and seasonal wind roses prepared from data collected from the Bulga AWS for 2009 are presented in **Figure 5.1**.

On an annual basis, the most common winds are from the east, west and southern quadrants. Very few winds originate from the northern quadrant. Summer and autumn winds are dominated by winds originating from the east, east-northeast and south and winds during winter are predominantly from the west-northwest. The wind pattern in spring is an average of the seasons. The annual average wind speed is 2.15 m/s and the frequency of calms (when winds are <=0.5 m/s) is 23.2 %.

To use the wind data to assess dispersion, it is necessary to also have data on atmospheric stability, which has been determined from sigma theta measurements using the US EPA turbulence based method (**US EPA, 2000**).

The term atmospheric stability refers to the dispersive capacity of the atmosphere. In this study a classification scheme referred to as the Pasquill-Gifford scheme has been used. The Pasquill-Gifford scheme classifies the atmosphere into six (sometimes seven) classes A to F (or G in the extended scheme);

- Class A occurs in the day with light winds and strong solar radiation with strong convection; dispersion is rapid.
- Class D, also known as "neutral conditions" occurs with moderate to strong winds and/or overcast skies; again dispersion is rapid.
- Class F (and G) occurs under light winds with clear skies at night. These conditions are conducive to the formation of ground-based inversions and as such, dispersion is slow.
- Classes B and C are intermediate between A and D, and E is intermediate between D and F.

Table 5.2 shows the frequency of occurrence of the stability categories expected in the area. Overall, stability class D occurs for the greatest proportion of time within the surrounding area, this is characterised by rapid dispersion.

Stability Class	Percentage Frequency (%)
Α	17.2
В	9.2
С	11.9
D	28.9
E	12.3
F	20.6
Total	100

Table 5.2: Frequency of occurrence of stability classes (April 2008 to March 2009)

The term mixing height refers to the height of the turbulent layer of air near the earth's surface into which ground-level emissions will be rapidly mixed. A plume emitted above the mixedlayer will remain isolated from the ground until such time as the mixed-layer reaches the height of the plume. The height of the mixed-layer is controlled mainly by convection (resulting from solar heating of the ground) and by mechanically generated turbulence as the wind blows over the rough ground.

Mixing height was determined using a scheme defined by **Powell** (**1976**) for day-time conditions and an approach described by **Venkatram**, (**1980**) for night-time conditions. These two methods provide a good estimate of mixing height in the absence of upper air data.

6 APPROACH TO ASSESSMENT

6.1 Introduction

The assessment follows a conventional approach commonly used for air quality assessment in Australia and outlined in the NSW DECCW "*Approved Methods for the Modelling and Assessment of Air Pollutants in NSW*".

Dispersion modelling is performed for all new emission sources for the proposed Beltana Power Generation Project. Modelling has been performed using the CALPUFF dispersion model run in screening mode.

The CALMET / CALPUFF modelling system is a multi-layer, multi-species non-steady state puff dispersion model that can simulate the effects of time and space varying meteorological conditions on pollutant transport, transformation and removal (**Scire et al., 2000**). The model contains algorithms for near-source effects such as building downwash, partial plume penetration, sub-grid scale interactions as well as longer-range effects such as pollutant removal, chemical transformation, vertical wind shear and coastal interaction effects. The model employs dispersion equations based on a Gaussian distribution of pollutants across the puff and takes into account the complex arrangement of emissions from point, area, volume and line sources. CALPUFF is endorsed by the US EPA, and has been extensively used in Australia.

CALPUFF screening mode uses a single meteorological input file (similar to models such as AUSPLUME) rather than using the CALMET modelling system to develop a spatially varying and three-dimensional meteorological wind field. CALPUFF run in screening mode is valid when the meteorological conditions can be assumed as spatially uniform over the modelling domain for any given hour.

To assess the potential impact from the proposed Beltana Power Generation Project, the following modelling sources have been considered.

- Eight coal seam gas power generation units;
- Pilot VAM abatement unit; and
- Seven flares for excess coal seam methane.

CALPUFF has been chosen for this assessment due to its ability to effectively model flare emissions. Modelling flare emissions differs from conventional plumes in that the buoyancy flux is affected due to radiative heat lose during plume rise. Flare emissions can be modelled using CALPUFF, replacing Briggs plume rise with numerical plume rise to allow for radiative heat loss, vertical wind shear and ambient temperature stratification, with the "no stack tip downwash" option chosen (**Robe, 2009**).

6.2 Emissions to Air

Of the potential emissions from the project, oxides of nitrogen (NO_x) have the largest emission potential, formed by high temperatures generated during combustion of the coal seam methane. Emissions of carbon monoxide (CO) and organic compounds can also be expected, formed from the incomplete combustion of the fuel. NO_x emissions from the VAM abatement are minimal as the oxidation of the methane occurs at temperatures lower than what is required for thermal NO_x generation.

6.2.1 Power Generation Units

The emission parameters adopted for the assessment, for the eight power generation units, are shown in **Table 6.1**. Emissions concentrations are taken from the manufacturer emission performance guarantees (**Deutz, 2006**), however for NO_x the emissions concentrations are given as < 500 mg/Nm³. The prescribed standards of concentration for stationary reciprocating internal combustion engines under the Clean Air Regulations (**POEO, 2002**) is 450 mg/Nm³ and as such modelling has been performed for emissions at the regulation limit. It is noted that the engines can be tuned to comply with the regulation limit (**Umwelt, 2009**). Exhaust volumetric flow rates (used to establish mass emission rates) have been derived stoichiometrically, based on typical composition of coal seam methane and fuel flow rate.

Table 0.1. Linission and Stack Parameters – Power Generation						
Parameter	Value					
NO _x Emission Concentration	450 mg/Nm ³					
CO Emission Concentration	50 mg/Nm ³					
Formaldehyde Emission Concentration	0.06 mg/Nm ³					
Stack Height	9 m					
Stack Diameter	1 m					
Exit Velocity	20 m/s					
Temperature	476 °C					
Mass Emission Rates						
NO _x Emission Rate	0.96 g/s					
CO Emission Rate	0.64 g/s					
VOC Emission Rate	te 0.13 g/s					

Table 6.1: Emission and Stack Parameters – Power Generation

6.2.2 VAM Abatement Unit

The reverse flow thermal reactor (RFTR) unit consists of a single heat transfer bed filled with ceramic media. The methane laden air is directed through the porous ceramic heat exchange media and as it moves through the inlet side of the bed it gets hot enough to undergo oxidation to water vapour and CO_2 . The thermal energy released by the oxidation is recovered by the ceramic media on the outlet side of the bed. Emissions include carbon monoxide (CO) and oxides of nitrogen (NO_x), however due to low temperature oxidation typical emissions are low.

The emission parameters adopted for the assessment are given in **Table 6.2**. The emission concentrations were those quoted by manufacturers of VAM abatement units (**Umwelt, 2009**). Exit velocity (m/s) and temperature °C are taken from the Air Quality Assessment for a similar VAM abatement facility at West Cliff, NSW (**Holmes Air Sciences, 2002**).

Parameter	Value						
NO _x Emission Concentration	10 mg/Nm ³						
CO Emission Concentration	50 mg/Nm ³						
Stack Height	9 m						
Stack Diameter	1 m						
Exit Velocity	4 m/s						
Temperature	60 °C						
Mass Emission Rates							
NO _x Emission Rate	0.17 g/s						
CO Emission Rate	0.83 g/s						

Table 6.2: Emissions and Stack Parameters - VAM

6.2.3 Emissions from Flaring

The emission parameters adopted for the assessment are given in **Table 6.3**. Emission concentrations for the flares have been taken from the manufacturer specifications for typical emissions from flares. The effective stack height and effective stack diameter have been taken as the actual stack height and diameter. This is due to the fact that the proposed flare is enclosed within a flare stack, and the assumption is made that the flare stack dimensions will reflect, on a reasonable basis, the effective release height and plume diameter. The effective exit velocity is set to 20 m/s and the effective exit temperature is set to 1273 K in accordance with typical approaches for modelling flare emissions. The volume of flue gas formed by each flare has been derived stoichiometrically based on the excess flow of coal seam methane to flares and used to establish the mass emission rates.

Table 0.5: Emissions and Stack Parameters - Flares							
Parameter	Value						
NO _x Emission Concentration	150 mg/Nm ³						
CO Emission Concentration	50 mg/Nm ³						
VOC Emission Concentration	10 mg/m ³						
Stack Height	9 m						
Stack Diameter	1 m						
Exit Velocity	20 m/s						
Temperature	1000 °C						
Mass Emission Rates							
NO _x Emission Rate	0.38 g/s						
CO Emission Rate	0.13 g/s						
VOC Emission Rate	0.03 g/s						

Table 6.3: Emissions and Stack Parameters - Flares

7 MODELLING RESULTS

Emissions of NO_x will consist of both nitric oxide (NO) and nitrogen dioxide (NO₂). NO₂ is the regulated oxide of nitrogen and is assessed for compliance against air quality goals. However, a conservative approach is adopted for this assessment whereby NO₂ is assumed as 100% NO_x. In reality, NO₂ concentrations would be expected to be between 5% and 20% of total NO_x emissions. The modelling results therefore reflect a conservative over prediction of NO₂ concentrations.

A contour plot of the maximum predicted 1-hour NO_x concentration for all sources (8 power generation units, VAM and seven flares) is presented in **Figure 7.1**. The contour plot shows that predicted NO₂ concentrations were within the assessment criteria of 246 μ g/m³ (shown by the red line) at all residences, even applying the conservative assumption that 100% of NO_x emissions comprise NO₂.

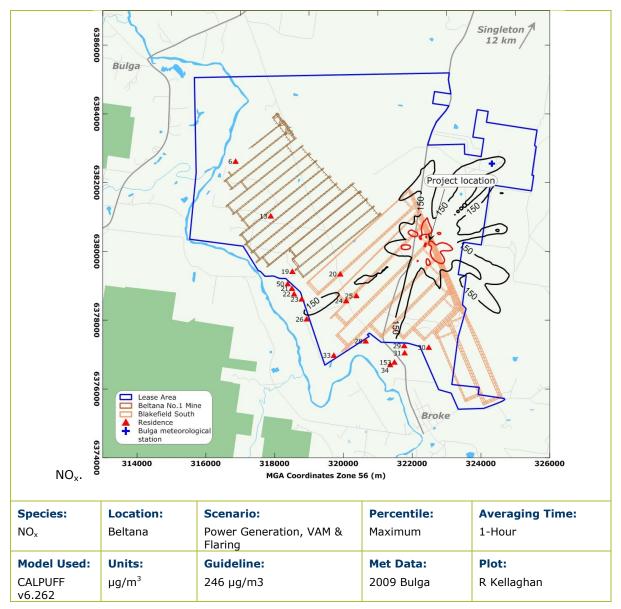


Figure 7.1: Predicted Maximum 1-Hour NO_x Concentration

The maximum 1-hour NO_x predictions at each of the residence locations shown in **Figure 2.1**, are presented in **Table 7.1**. Annual average NO_2 concentrations from the Power Generation Project are predicted to be less than 3% of the goal at all receptor locations.

Resident ID	Maximum Predicted 1-hour NO _x at Rec Maximum Predicted 1-hour NO _x Concentration (ug/m ³)	· ·
6	65.69	246
13	88.54	
19	85.65	
50	76.32	
21	63.95	
22	74.88	
23	83.79	
26	126.59	
20	96.42	
24	100.04	
24	116.02	
33	54.87	
28	72.50	
34	133.30	
153	137.78	
31	93.69	
29	119.05	
30	105.82	

Table 7.1: Predicted 1-hour NO_x at Receptor Locations

A contour plot of the maximum predicted 1-hour CO concentration for all sources (8 power generation units, VAM and seven flares) is presented in **Figure 7.2**. The contour plots show that incremental increases in CO concentrations from the project are minor and well below the impact assessment criteria of 30 mg/m^3 at all locations in the vicinity of the facility.

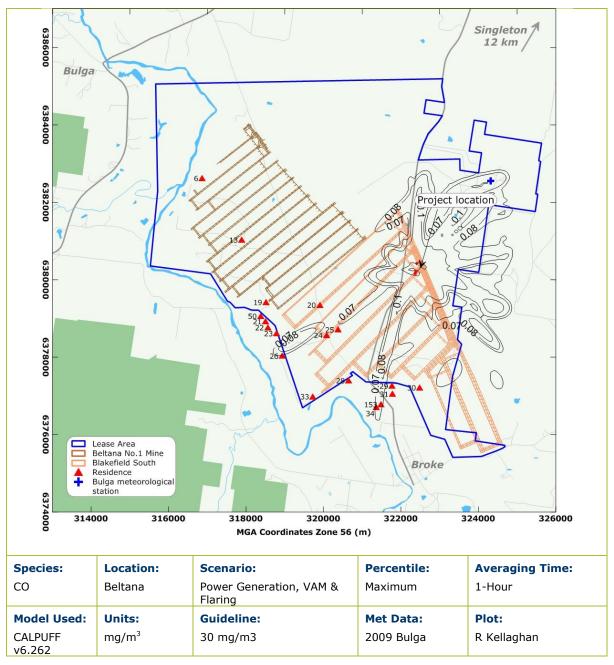


Figure 7.2: Predicted 8-Hour CO Concentration

The maximum 1-hour CO predictions at each of the residence locations shown in **Figure 2.1** are presented in **Table 7.2**.

Resident ID	Maximum Predicted 1-hour CO Concentration (mg/m ³)	1-Hour CO Goal (mg/m³)
6	0.03	30
13	0.04	
19	0.04	
50	0.04	
21	0.03	
22	0.03	
23	0.04	
26	0.07	
20	0.04	
24	0.05	
24	0.06	
33	0.03	
28	0.04	
34	0.07	
153	0.07	
31	0.05	
29	0.06	
30	0.06	

 Table 7.2: Predicted 1-hour CO at Receptor Locations

7.1 Volatile Organic Compounds (VOCs)

Emissions data for individual VOCs were not available, however manufacturer emission guarantees for the gas engine power generation units were provided for formaldehyde. Typical flare emissions for total VOCs were also available. A conservative modelling approach has been to add the total VOC emission from flares to the formaldehyde emissions for the gas engines and compare this to ambient impact assessment criteria for formaldehyde (as a surrogate for all VOCs).

This worst case modelling indicates that the maximum predicted formal dehyde concentration at any receptor location would be less than 0.01 mg/m³ (or 50% of the air quality goal).

8 CUMULATIVE IMPACTS

Existing sources of NO_x in the local or regional airshed include fossil fuel electricity generation (Bayswater and Liddell coal fired power stations), mining sources (mining fleets, explosives) and transport related emissions. Monitoring data collected as part of MacGen's monitoring campaign indicates that 1-hour NO₂ levels are generally less than 25% of the air quality goals (based on the 95th percentiles). The maximum 1-hour NO₂ concentrations are typically less than 50% of the air quality goal.

As indicated in **Table 7.1**, the incremental increase in 1-hour NO_x is less than 50% of the air quality goal for NO₂ at all receptor locations. The actual NO₂ concentrations at these locations are expected to be significantly less than what was modelled, based on the conservative assumption that 100% of NO_x is NO₂. On this basis, the cumulative impact of emissions from this project, combined with existing background levels, would not be expected to approach air quality goals.

The predicted incremental CO concentrations resulting from the project are sufficiently low to not result in any potential cumulative impacts.

9 CONCLUSIONS

An assessment of the potential air quality impacts from the Beltana Power Generation Project has been undertaken.

Dispersion modelling was conducted for key pollutants released from the following sources:

- Eight gas engine power generation units;
- Pilot VAM abatement unit; and
- Seven flares proposed for excess coal seam gas flow.

The modelling indicates that peak ground level NO₂ impacts from the Power Generation Project are well below the impact assessment criteria of 246 μ g/m³ at all private receptor locations in the vicinity of the site. The potential for cumulative impacts is also expected to be small, based on the predicted incremental concentrations being significantly less than 50% of the goal, and background levels shown as being typically 25% of the goal. Annual average NO₂ concentrations from the Power Generation Project are predicted to be negligible (less than 3% of the goal). Incremental increases in other pollutant concentrations, including CO and VOCs are also predicted to be minor.

10 REFERENCES

- Deutz (2006) "Deutz Power Systems TCG2032 Product Information Sheet", Version 11/06. Deutz Power Systems, Germany.
- Holmes Air Sciences (2002) "Air Quality Impact Assessment: West Cliff Waste Methane Utilisation Project", May 2002.
- Katestone Environmental Pty Ltd (2009) "Air Quality Impact Assessment for the Proposed Bayswater B Power Station Project" September 2009.
- NSW DEC (2005) "Approved Methods and Guidance for the Modelling and Assessment of Air Pollutants in NSW", August 2005.
- Powell (1976) "A Formulation of Time-varying Depths of Daytime Mixed Layer and Nighttime Stable Layer for use in Air Pollution Assessment Models", Annual Report for 1976 Part 3, Battelle PNL Atmospheric Sciences, 185-189.
- Robe, F (2009). Flare Modelling CASANZ 2009 Conference Joint Odour and Modelling Workshop – Perth September 6, 2009. TRC Atmospheric Study Group.
- Scire, J.S., D.G. Strimaitis and R.J. Yamartino (2000a). A User's Guide for the CALPUFF Dispersion Model (Version 5), Earth Tech, Inc., Concord, MA
- Venkatram (1980) "Estimating the Monin-Obukhov Length in the Stable Boundary Layer for Dispersion Calculations", Boundary-Layer Meteorology, Volume 19, 481-485.
- Umwelt (2009) "Environmental Assessment Blakefield South Power Generation and Ventillation Air Methane Project" December 2009.
- US EPA (200) "Meteorological Monitoring Guidance for Regulatory Modelling Applications", EPA-454/R-99-005, United States Environmental Protection Agency, Office of Air Quality Planning and Standards.

APPENDIX A

Joint Wind Speed, Wind Direction and Stability Class Frequency Tables for

Bulga AWS 2009

STATISTICS FOR FILE: \\Ronan\jobs\3839 Beltana Power Generation Project\Met\Bulga_2009.aus MONTHS: All HOURS : All OPTION: Frequency

PASQUILL STABILITY CLASS 'A'

Wind Speed Class (m/s)

WIND SECTOR	0.50 TO 1.50	1.50 TO 3.00	3.00 TO 4.50	4.50 TO 6.00	6.00 TO 7.50	7.50 TO 9.00	9.00 TO 10.50	GREATER THAN 10.50	TOTAL
NNE	0.003311	0.003653	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.006963
NE	0.003425	0.004795	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.008219
ENE	0.002740	0.007991	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.010731
Е	0.002740	0.003995	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.006735
ESE	0.001826	0.002055	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.003881
SE	0.001826	0.001941	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.003767
SSE	0.001598	0.001826	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.003425
S	0.002626	0.001826	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.004452
SSW	0.002626	0.001256	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.003881
SW	0.005023	0.000799	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.005822
WSW	0.004338	0.000685	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.005023
W	0.006279	0.003767	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.010046
WNW	0.009589	0.008219	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.017808
NW	0.010274	0.009247	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.019521
NNW	0.004680	0.002055	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.006735
N	0.004224	0.002397	0.000000	0.00000	0.000000	0.000000	0.000000	0.00000	0.006621
CALM									0.047945

MEAN WIND SPEED (m/s) = 1.25NUMBER OF OBSERVATIONS = 1503

PASQUILL STABILITY CLASS 'B'

Wind Speed Class (m/s)

	0.50	1.50	3.00	4.50	6.00	7.50	9.00	GREATER	
WIND	TO	THAN							
SECTOR	1.50	3.00	4.50	6.00	7.50	9.00	10.50	10.50	TOTAL
NNE	0.000228	0.000228	0.000228	0.000000	0.000000	0.000000	0.000000	0.000000	0.000685
NE	0.000228	0.000913	0.001256	0.000000	0.000000	0.000000	0.000000	0.000000	0.002397
ENE	0.000799	0.005594	0.007078	0.000000	0.000000	0.000000	0.000000	0.000000	0.013470
E	0.000000	0.001598	0.004452	0.000000	0.000000	0.000000	0.000000	0.000000	0.006050
ESE	0.000114	0.000571	0.000913	0.000000	0.000000	0.000000	0.000000	0.000000	0.001598
SE	0.000114	0.000913	0.001256	0.000000	0.000000	0.000000	0.000000	0.000000	0.002283
SSE	0.000228	0.000685	0.000799	0.000000	0.000000	0.000000	0.000000	0.000000	0.001712
S	0.000799	0.001941	0.000913	0.000000	0.000000	0.000000	0.000000	0.000000	0.003653
SSW	0.000457	0.001941	0.000571	0.000000	0.000000	0.000000	0.000000	0.000000	0.002968
SW	0.000685	0.000799	0.000228	0.000000	0.000000	0.000000	0.000000	0.000000	0.001712
WSW	0.001027	0.000342	0.000342	0.000000	0.000000	0.000000	0.000000	0.000000	0.001712
W	0.001941	0.004452	0.003196	0.000000	0.000000	0.000000	0.000000	0.000000	0.009589
WNW	0.001484	0.010959	0.013128	0.000000	0.000000	0.000000	0.000000	0.000000	0.025571
NW	0.000571	0.004680	0.003311	0.000000	0.000000	0.000000	0.000000	0.000000	0.008562
NNW	0.000000	0.000457	0.000000	0.000000	0.000000		0.000000	0.000000	0.000457
N	0.000342	0.000114		0.000000			0.000000	0.000000	0.000457
IN	0.000342	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000407

CALM									0.008676
TOTAL	0.009018	0.036187	0.037671	0.000000	0.000000	0.000000	0.000000	0.000000	0.091553
	WIND SPEE OF OBSER	,							
		PASQU	ILL STABI	LITY CLAS:	5 'C'				
		Wi	nd Speed (Class (m/s	5)				
	0.50			4.50			9.00		
WIND SECTOR	TO 1.50	TO 3.00	ТО 4.50		ТО 7.50	ТО 9.00		THAN 10.50	TOTAL
NNE NE		0.000000							
ENE		0.003196							
E		0.002511							
ESE SE		0.000457							
SSE		0.002283							
S		0.005936							
SSW		0.007078							
SW WSW		0.000371							
W		0.002626							
WNW		0.001027							
NW NNW		0.000000							
N		0.000114							
CALM									0.005479
TOTAL	0.008676	0.027740	0.046804	0.030251	0.000000	0.000000	0.000000	0.000000	0.118950
	WIND SPEE								
		PASOU	ILL STABI	LITY CLAS:					
		~		Class (m/s					
	0.50		3.00			7 50	9.00	CDEATED	
WIND	0.50 TO	TO	TO	TO	TO	7.50 TO	TO	THAN	
SECTOR	1.50	3.00	4.50	6.00	7.50	9.00	10.50	10.50	TOTAL
NINIE	0 000114	0.000114	0 000114	0 000000	0 000000	0 000000	0 000000	0 000000	0 000242
NNE NE		0.000114							
ENE		0.011986							
Е	0.001370	0.014041	0.024087	0.008105	0.001712	0.000342	0.000000	0.000000	0.049658
ESE		0.006507							
SE SSE		0.004452 0.009817							
S		0.021461							
SSW		0.004909							
SW		0.002283							
WSW W		0.005023							
WNW		0.002283							
NW		0.001027							
NNW	0.000000	0.000000	0.00000	0.00000	0.00000	0.000000	0.00000	0.00000	0.000000

N	0.000114 0.00011	4 0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000342

CALM 0.018836

TOTAL 0.025457 0.090297 0.097146 0.039269 0.016210 0.001712 0.000000 0.000000 0.288927

MEAN WIND SPEED (m/s) = 3.25 NUMBER OF OBSERVATIONS = 2531

PASQUILL STABILITY CLASS 'E'

Wind	Speed	Class	(m/s)
------	-------	-------	-------

WIND SECTOR	0.50 TO 1.50	1.50 TO 3.00	3.00 TO 4.50	4.50 TO 6.00	6.00 TO 7.50	7.50 TO 9.00	9.00 TO 10.50	GREATER THAN 10.50	TOTAL
NNE NE ENE ESE SSE SSW SSW SSW WSW WNW NWW NWW NWW NWW	$\begin{array}{c} 0.000913\\ 0.003082\\ 0.003311\\ 0.001484\\ 0.001370\\ 0.002397\\ 0.002740\\ 0.004795\\ 0.005479\\ 0.003653\\ 0.003653\\ 0.003653\\ 0.004452\\ 0.001598\\ 0.000228 \end{array}$	0.000228 0.001142 0.005479 0.010046 0.002283 0.001370 0.003311 0.005594 0.003082 0.001598 0.001027 0.006393 0.009361 0.001256 0.000342 0.000228	0.000114 0.000342 0.000000 0.000228 0.000342 0.000114 0.000114 0.000114 0.000114 0.000114 0.000114 0.0000114 0.000010	$\begin{array}{c} 0.000000\\ 0.00000\\ 0.000000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.000\\ 0.0000\\ 0.00$	$\begin{array}{c} 0.000000\\ 0.00000\\ 0.000000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.0000\\ 0.0000\\ 0.0$	$\begin{array}{c} 0.000000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.0000\\ 0.0000\\ 0.000\\$	$\begin{array}{c} 0.000000\\ 0.00000\\ 0.000000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.0000\\ 0.0000\\ 0.0$	$\begin{array}{c} 0.000000\\ 0.00000\\ 0.000000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.0000\\ 0.0000\\ 0.0$	0.002169 0.008904 0.013356 0.002968 0.006050 0.008447 0.007991 0.007306 0.004795 0.010160 0.013813 0.002968 0.000571
CALM									0.029224
TOTAL 0.039498 0.052740 0.001941 0.000000 0.000000 0.000000 0.000000 0.000000									
		VATIONS = PASQUI	1081 Ill stabii						
		VATIONS = PASQUI	1081 ILL STABII nd Speed (7.50 TO 9.00	9.00 TO 10.50	GREATER THAN 10.50	TOTAL

NW NNW N	0.001142	0.000799 0.000571 0.000457	0.000000	0.000000	0.000000	0.000000	0.00000	0.000000	0.001712
CALM									0.121461
TOTAL	0.052740	0.031393	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.205594
		D (m/s) = VATIONS =							
		ALL PASÇ	UILL STAN	BILITY CLA	ASSES				
		Wir	nd Speed (Class (m/s	5)				
WIND SECTOR	0.50 TO 1.50	TO	TO			TO	TO		TOTAL
MEAN	0.006393 0.012100 0.011644 0.009932 0.007648 0.008790 0.014612 0.018037 0.019863 0.018607 0.019292 0.021918 0.016781 0.006050 0.005708	0.005023 0.009589 0.035274 0.036301 0.013699 0.011758 0.020890 0.038927 0.019863 0.007078 0.008790 0.024429 0.039384 0.017009 0.003425 0.003425	0.002968 0.038699 0.035845 0.009247 0.007192 0.009018 0.018950 0.005137 0.003653 0.007306 0.015525 0.022374 0.007078 0.000000 0.000228	0.000342 0.018037 0.014384 0.005023 0.002968 0.003196 0.004110 0.001027 0.001712 0.003653 0.008562 0.004795 0.001712 0.000000 0.000000	0.000114 0.003539 0.001712 0.000571 0.000685 0.000799 0.000000 0.000114 0.003653 0.003425 0.000228 0.000228 0.000228 0.000000	0.00000 0.000457 0.00000 0.00000 0.000114 0.00000 0.000114 0.000342 0.000342 0.000342 0.000342 0.00000 0.000000 0.000000 0.000000			0.019406 0.108105 0.100228 0.038470 0.030708 0.042694 0.077397 0.044064 0.032534 0.042352 0.071575 0.088699 0.042808 0.009475 0.009361 0.231621
FREQUE: A : B : C : D : E : F : STABIL Hour 01 0 02 0 03 0 04 0 04 0 05 0 06 0	NCY OF OC 17.2% 9.2% 11.9% 28.9% 12.3% 20.6% ITY CLASS A B 000 0000 000 00000 000 00000 000 00000000	CURENCE OF	E F 0080 015: 0095 014: 0102 014 0079 016; 0079 016; 0088 014; 0062 013;	L 3 5 3 3					

3839_Beltana_Power_generations_Project_FINAL.docx Air Quality Assessment – Beltana Power Generation Project Beltana Highwall Mining Pty Limited | PAEHolmes Job 3839

08	0133	0062	0113	0047	0003	0007
09	0142	0069	0123	0031	0000	0000
10	0174	0084	0089	0018	0000	0000
11	0184	0083	0076	0022	0000	0000
12	0188	0086	0074	0017	0000	0000
13	0170	0089	0088	0018	0000	0000
14	0154	0088	0106	0017	0000	0000
15	0141	0099	0099	0026	0000	0000
16	0094	0068	0116	0054	0010	0023
17	0036	0037	0079	0116	0041	0056
18	0000	0000	0000	0231	0057	0077
19	0000	0000	0000	0219	0059	0087
20	0000	0000	0000	0220	0057	0088
21	0000	0000	0000	0197	0057	0111
22	0000	0000	0000	0172	0067	0126
23	0000	0000	0000	0141	0093	0131
24	0000	0000	0000	0140	0096	0129

STABILITY CLASS BY MIXING HEIGHT

_

Mixing height	A	В	С	D	Ε	F
<=500 m	0241	0140	0218	0522	1033	1706
<=1000 m	0591	0348	0364	0723	0016	0039
<=1500 m	0671	0314	0460	0995	0032	0056
<=2000 m	0000	0000	0000	0236	0000	0000
<=3000 m	0000	0000	0000	0055	0000	0000
>3000 m	0000	0000	0000	0000	0000	0000

MIXING	HEIGH	т вү н	OUR OF	DAY						
	0000	0100	0200	0400	0800	1600	Greater			
	to	to	to	to	to	to	than			
Hour	0100	0200	0400	0800	1600	3200	3200			
01	0164	0082	0010	0032	0070	0007	0000			
02	0165	0087	0013	0031	0063	0006	0000			
03	0154	0102	0014	0031	0059	0005	0000			
04	0168	0089	0013	0031	0058	0006	0000			
05	0214	0062	0013	0023	0046	0007	0000			
06	0152	0098	0075	0010	0026	0004	0000			
07	0119	0058	0114	0072	0002	0000	0000			
08	0000	0062	0129	0174	0000	0000	0000			
09	0000	0000	0095	0189	0081	0000	0000			
10	0000	0000	0000	0236	0129	0000	0000			
11	0000	0000	0000	0138	0227	0000	0000			
12	0000	0000	0000	0092	0273	0000	0000			
13	0000	0000	0000	0000		0000	0000			
14	0000	0000	0000	0000	0365	0000	0000			
15	0000	0000	0000	0000	0365	0000	0000			
16	0000	0000	0000	0000	0365	0000	0000			
17	0016	0014	0002	0005		0003				
18	0051	0042	0008	0022	0232	0010	0000			
19	0082	0057	0016	0022	0113	0075	0000			
20	0089	0059	0008	0023		0043	0000			
21	0118	0054	0006	0019		0026	0000			
22	0134	0066	0007	0021	0122	0015	0000			
23	0150	0075	0011	0027	0092	0010	0000			
24	0143	0088	0014	0029	0083	0008	0000			