To whom it may concern:

I am writing to formally object to the proposed upgrade of the high tension power lines in the Hunter Valley.

Executive Summary

This submission objects to the proposed Hunter Valley high tension power line upgrade on the grounds that in its current proposed form it is outdated, unsafe, and unnecessary.

The project's business case has been overtaken by the success of domestic battery subsidies, which have reduced peak demand and strengthened local energy resilience. Continuing with centralised transmission expansion, risks locking in redundant, high-cost transmission infrastructure.

The proposal also poses unacceptable aviation safety risks to glider operations at Walkworth Airfield. A preliminary risk assessment shows that while the likelihood of a wire strike may be low, the consequences are severe, yielding an unacceptable risk profile to pilots operating from the airfield.

Synopsis:

Safer and more resilient alternatives exist, including upgrading existing assets and investing further in distributed energy and storage systems. These options deliver greater reliability without imposing the environmental, social, and aviation risks associated with new high-voltage transmission corridors.

The EIS and AIA has clearly been undertaken as a desk top study and written as a foregone conclusion to yield a predetermined outcome with minimal meaningful consultation and very little understanding of glider operational requirements. My objection is based on three fundamental engineering project management gate review techniques.

- 1 Costs benefit analysis review.
- 2 Detailed risk assessment for the impact on flight operations at Walkworth.
- Risk exposure, is there a better alternative available.

The supporting arguments for this objection based on the points above are detailed in the following paragraphs:

1 Cost Benefit Review:

The justification for this costly and environmentally disruptive project has changed significantly since its proposal in 2022. In light of the Federal Government's recently

introduced subsidy program for domestic battery systems. An initiative has been met with strong public support, providing households with the ability to store and use their own renewable energy effectively on site, without the need for inefficient large scale transmission infrastructure.

The widespread adoption of domestic batteries has reduced peak demand on the central grid, increasing localised energy resilience and decreasing the need for large-scale transmission infrastructure expansion. It is not clear or evident from the report that the original business case for a project of this scale remains commercially sound or warranted.

To continue with this proposed upgrade risks locking in costly redundant infrastructure. This will be at great expense to taxpayers and electricity consumers. Instead of funneling billions of dollars into outdated centralised solutions, investment could be redirected towards supporting further distributed energy resources, such as rooftop solar, community-scale batteries, and demand management systems, which align with current energy trends and policy goals.

As seen in recent times in Victoria and Broken Hill, centralized power distribution networks are an outdated high risk strategy. Transmission asset are vulnerable to single point failure, exposing whole communities downstream to power outages that can be the result of extreme climatic weather events, failures due to aging assets and poor maintenance or however unlikely acts of terrorism or war.

We can have a better more resilient grid system through the intelligent deployment of public capital. The current business case favors and supports the AGL and ORIGIN business models centered on their large scale centralized storage infrastructure investments.

2 Preliminary Risk Assessment for the Flight Operations at Walkworth:

There is a clear lack of understanding of the flight operations from Walkworth. This is a "gliding airfield" and as such the splay angles for these types of operations are very different to that of a general aviation (GA) airfield. If consultation had of been conducted in an open honest and fair style then this would have been apparent in the AIA report. Airports such as Walkworth, Lake Keepit, and Gulgong are considered by CASA and the aviation community as special cases and the aircraft flown from these sites have particular operational requirement. That is why it is specifically noted in aviation documentation. CASA and GFA have mandated "minimum" requirements for these operations. However that does not make it safe, it just indicates that the risk under normal circumstances is manageable.

It should be noted that the AIA's executive summary concludes that the proposed transmission line and towers "are not expected to present an unusual or unacceptable risk to agricultural spraying". It states that standard aviation risk management practices undertaken by pilots and landowners will remain essential for ensuring safety. Yet in a recent report from the ATSB it is noted that 63% of pilots that struck power lines were aware of their presents. Clearly the outcomes and value judgments presented in the AIA are not properly supported by the current data or their conclusion.

If we consider the risk imposed by this project, under the current proposal, using a standard industry 5x5 risk matrix it yields the following outcome:

Basic Risk Assessment:

A basic risk assessment is the ranking comparison of the likelihood of an incident occurring against the consequences of that incident. The Likelihood value is multiplied by the Consequence value to produce the risk score. Once the risk ranking has been determined control measures can be implemented to manage the risk to within an acceptable range. Typically the value should be less than 4 for the project to proceed.

Risk management is implementing by executing the following strategies which are listed in order of preference.

The hierarchy of control measures are:

- Elimination.
- Substitution.
- Engineering controls.
- Administrative controls.
- Personal protective equipment (PPE)

D Xir		CONSEQUENCE How severe could the outcomes be if the risk event occurred				
LIKELIHOO What is the		1 Insignificant	2 Minor	3 Significant	4 Major	5 Severe
	5 Almost Certain	5 Medium	10 High	15 Very High	20 Extreme	25 Extreme
	4 Likely	4 Medium	8 Medium	12 High	16 Very High	20 Ext eme
	3 Moderate	3 Low	6 Medium	9 Medium	12 High	15 Very High
	2 Unlikely	2-Very-Low	4-Low —	C Medium	3 Medium	10 High
	1 Rare	1VeryLow — —	2-Very-Low-	3 Tom —	4 Medium	5 Medium

Figure 1: Basic Operational 5 x 5 Risk Matrix

Looking at the recent risk profile for this industry, there have been 307 between 2012 and 2022. Much of this has occurred during aerial work with 63% of the pilots being aware of the hazard and flying aircraft equipped to deal with wire strikes.

Taking recent Australian statistics, and based on recent historical data from around the globe and the height and proximity of the proposed power lines from the airfield the selection of a Likelihood score between Rare (1) and Unlikely (2) is not unreasonable and can be considered as both conservative and realistic in this case.

However the consequences should the event occur and based on the type of aircraft being operated and the height of the impact to the ground, it cannot be considered as anything less than Severe (5). This yields a Risk Ranking of 5 – 10 which is greater than 4 and as such the project should not proceed without further control measures being considered.

Based on the hierarchy of controls Elimination and Substation are the only acceptable options for this type of project.

Elimination is easily achieved by doing nothing in the first place. Whilst substitution is readily available in the form of distributed renewable energy sources of solar and localized battery storage.

The management of risk in an aviation environment is about managing options. The proximity and obstruction imposed by these power lines significantly reduces the options available to a pilot and in some cases it may be lethal. Clearly this project in its current form poses an unacceptable risk to flight operations from Walkworth airfield and needs to be reconsidered.

3 Risk exposure, is there a better alternative available:

Base on the information presented under the previous two topics the alternatives that were originally dismissed in the transmission proposal should be revisited as the demand side requirement has been significantly reduced. Making the upgrade and long overdue maintenance of the existing power lines possibly a more appealing option.

Clearly this project has introduced a lethal risk component to operations from the Hunter Valley Gliding site that should not be ignored. Now that this risk has been highlighted and is on record there must be appropriate clear and transparent consultation to deliver an acceptable less lethal outcome to HVGC.

Additionally, the Hunter Valley community has raised valid concerns regarding the visual impact, land use disruption, and ecological consequences of high voltage

transmission projects. These concerns should not be dismissed, particularly when viable, cost-effective, and less invasive alternatives are now available.

It is not evident from the report that this proposal does not impose any adverse restrictions on the future development of the hunter valley lake proposal. Or whether the proposed location of the transmission lines is a supportive enabler of Hunter Valley pumped hydro projects.

Conclusion

The proposed Hunter Valley transmission line upgrade is outdated, unsafe, and unnecessary. The project fails under three key review criteria: cost–benefit analysis, risk assessment, and risk exposure evaluation.

In light of:

- 1 The demonstrable success of domestic battery uptake,
- 2 The unacceptable risks to glider flight operations at Walkworth, and
- The availability of safer, more resilient alternatives,

This project should not proceed in its current form.

Energy planning must remain flexible, evidence-based, and aligned with the rapid shift toward decentralised renewable energy systems.

Thank you for considering my objection. I look forward to your response and to seeing an energy strategy that reflects the current realities of our energy transition.

Yours sincerely, [Your Name]