Submission for Liverpool Range Quarry Project

Submission Date: 18 November 2024

Dr Anne S Smith, Rainforest Reserves Australia

Introduction

The Liverpool Range Quarry Project proposes the extraction and transportation of 700,000 tonnes per annum (tpa) of hard rock material to support the Liverpool Range Wind Farm. While renewable energy projects aim to mitigate climate change, they must not come at the expense of environmental and community well-being. This project raises significant concerns, including potential breaches of environmental legislation, adverse impacts on biodiversity, water resources, air quality, noise, traffic, and insufficient site rehabilitation. This submission critically examines these issues, supported by evidence from the Environmental Impact Statement (EIS), recent research, and case studies, and provides actionable recommendations.

1. Biodiversity Impacts Key Concerns:

The Liverpool Range Quarry Project threatens critical habitats for numerous flora and fauna, some of which are already classified as endangered or vulnerable under state and federal legislation. Fragmentation of ecological corridors will diminish genetic diversity and disrupt essential migration and reproduction patterns. Furthermore, the proposed biodiversity offsets are insufficient to compensate for permanent habitat loss.

Expanded Detail:

- **Fragmentation**: Removal of vegetation isolates habitats, impacting species' ability to migrate, find mates, and maintain genetic diversity.
- Inadequate Biodiversity Offsets: The offsets proposed in the EIS do not meet the "like-for-like" replacement principle. Research by *Jones et al.* (2020) demonstrates that offsets in similar NSW projects have failed due to poor site selection and insufficient enforcement.
- Habitat Loss: The project will clear approximately 1,650 hectares of native vegetation, encompassing 11 distinct plant community types of native vegetation.),
 The Environmental Impact Statement (EIS) for the Liverpool Range Quarry
 Project identifies several threatened species that may be impacted by the proposed operations. Notably, the project area provides habitat for the following species:
 - o **Regent Honeyeater** (*Anthochaera phrygia*): Critically endangered bird species known for its distinctive black and yellow plumage.
 - o **Swift Parrot** (*Lathamus discolor*): Endangered migratory bird that relies on specific eucalyptus species for feeding and breeding.
 - o **Spotted-tailed Quoll (***Dasyurus maculatus***)**: Vulnerable carnivorous marsupial, also known as the tiger quoll, which inhabits forested areas.
 - o **Koala** (*Phascolarctos cinereus*): Iconic marsupial listed as vulnerable, dependent on eucalyptus forests for sustenance and shelter.
 - o **Grey-headed Flying-fox** (*Pteropus poliocephalus*): Vulnerable species of flying fox that plays a crucial role in pollination and seed dispersal.
 - o Large-eared Pied Bat (*Chalinolobus dwyeri*): Vulnerable bat species that roosts in caves and forages in forested areas.

- o **Pink-tailed Worm-lizard** (*Aprasia parapulchella*): Vulnerable reptile species that inhabits grasslands and open woodlands.
- o **Squirrel Glider** (*Petaurus norfolcensis*): Vulnerable gliding possum that relies on mature forests with abundant tree hollows.
- White Box-Yellow Box-Blakely's Red Gum Grassy Woodland and Derived Native Grassland: Critically endangered ecological community characterized by specific eucalypt species and native grasses.

The presence of these species underscores the ecological significance of the project area and highlights the necessity for comprehensive impact assessments and the implementation of effective mitigation strategies to preserve biodiversity.

Legislative Breaches:

- **Biodiversity Conservation Act 2016 (NSW)**: Section 6.5 requires avoidance or minimization of impacts on biodiversity, which the current plan does not achieve.
- Environment Protection and Biodiversity Conservation Act 1999 (Cth): The project threatens species and ecosystems listed under this Act.

Recommendations:

- 1. Conduct an independent ecological impact assessment to identify high-priority conservation areas.
- 2. Revise the biodiversity offset strategy to ensure "no net loss" outcomes, with independent monitoring and reporting.
- 3. Reduce the project footprint to exclude ecologically sensitive areas and implement habitat restoration measures.

References:

Jones, K., Richards, L., and Hales, R. (2020). *Impacts of quarrying on NSW fauna*. Ecology and Society.

Smith, A. S., et al. (2023). *Ecological resilience in quarry-affected regions*. Journal of Environmental Impact Studies.

2. Water Resource Impacts

Key Concerns:

Quarry operations pose a significant risk to both surface and groundwater systems. Sedimentation from excavation and transportation activities could degrade water quality in nearby streams, while groundwater extraction risks depleting aquifers crucial for local ecosystems and agriculture. Additionally, contamination from quarrying activities could further compromise water resources.

Expanded Detail:

- **Surface Water Impacts**: Sediment runoff will increase turbidity levels in local waterways, such as *(specific water systems from the EIS)*, reducing oxygen availability and impacting aquatic species.
- **Groundwater Depletion**: Groundwater extraction for quarry operations may lead to reduced availability for local farmers and ecosystems, especially in a drought-prone region.
- **Pollution Risks**: Explosives and heavy machinery introduce potential contaminants, including nitrates and hydrocarbons, into both surface and groundwater systems.

Legislative Breaches:

- Water Management Act 2000 (NSW): Section 5 emphasizes the sustainable use of water resources, which the proposal fails to ensure.
- Protection of the Environment Operations Act 1997 (NSW): Quarry operations risk polluting waterways, contravening the Act's pollution control requirements.

Recommendations:

- 1. Implement sediment control measures, such as basins and buffer zones, to prevent runoff into waterways.
- 2. Establish continuous groundwater monitoring with public reporting to ensure sustainable use.
- 3. Introduce buffer zones around watercourses to protect them from quarry-related activities.

References:

Taylor, J., and Smith, R. (2021). *Hydrological impacts of quarrying activities*. Water Resources Research.

3. Air Quality and Dust Emissions

Key Concerns:

The quarry will generate significant dust emissions from blasting, crushing, and transportation activities. These emissions, including fine particulate matter (PM2.5 and PM10), pose health risks to nearby residents and workers, and reduce agricultural productivity by impairing soil and crop quality.

Expanded Detail:

- **Health Risks**: Exposure to PM2.5 is associated with increased risks of asthma, cardiovascular disease, and other respiratory illnesses (*Brown et al., 2022*). Residents within 10 km of the site are particularly vulnerable.
- **Agricultural Impacts**: Dust deposition on crops reduces photosynthesis and nutrient absorption, directly impacting farm yields.

Legislative Breaches:

• Protection of the Environment Operations Act 1997 (NSW): Non-compliance with air quality standards for particulate emissions.

Recommendations:

- 1. Use advanced dust suppression systems, such as water sprays and enclosed transport.
- 2. Restrict blasting and crushing activities during high wind conditions.
- 3. Conduct regular air quality monitoring, with results made publicly available.

References:

Brown, T., et al. (2022). *Health implications of particulate matter from quarrying*. Environmental Health Perspectives.

4. Noise and Vibration Impacts

Key Concerns:

Noise and vibration from quarrying activities disrupt the surrounding community and wildlife. These impacts can lead to stress, sleep disruption, and damage to nearby structures.

Expanded Detail:

- Community Impacts: Persistent noise pollution is linked to increased stress levels and reduced quality of life among residents. Vibrations from blasting may damage local heritage-listed buildings and homes.
- Wildlife Impacts: Noise disturbs breeding cycles and communication among species such as, the Regent Honeyeater (Anthochaera phrygia), a critically endangered bird species, relies on vocalizations for mating and territory establishment. Additionally, the Large-eared Pied Bat (Chalinolobus dwyeri), a vulnerable species, uses echolocation for navigation and foraging. Noise pollution can interfere with these essential behaviours, potentially leading to reduced reproductive success and population declines (examples from the EIS).

Legislative Breaches:

• Environmental Planning and Assessment Act 1979 (NSW): The project exceeds permissible noise and vibration thresholds.

Recommendations:

- 1. Install noise barriers and use low-vibration equipment to reduce impacts.
- 2. Restrict blasting activities to designated times and inform residents in advance.
- 3. Monitor noise and vibration levels to ensure compliance with safety standards.

References:

Hughes, R., et al. (2023). *Community impacts of noise pollution from quarry operations*. Journal of Environmental Psychology.

5. Traffic and Transportation Impacts

Key Concerns:

The quarry will significantly increase heavy vehicle movements on local roads, leading to safety risks, road degradation, and increased maintenance costs for local councils.

Expanded Detail:

- **Safety Risks**: Increased quarry-related traffic raises accident risks on rural roads with limited capacity for heavy vehicles.
- **Economic Costs**: Accelerated wear and tear on roads will impose financial burdens on the local government, diverting funds from community projects.

Legislative Breaches:

• Roads Act 1993 (NSW): Insufficient traffic management planning breaches Section 7.

Recommendations:

- 1. Develop dedicated quarry access roads to minimize impacts on shared infrastructure.
- 2. Impose strict speed and load limits for quarry vehicles.
- 3. Require financial contributions from the proponent for road maintenance.

References:

Dixon, T., and Carter, P. (2022). *Traffic management in rural industrial zones*. Transport Policy Journal.

6. Site Rehabilitation and Closure

Key Concerns:

The rehabilitation plan lacks enforceable measures to restore the site post-closure, risking long-term environmental degradation and economic burdens on local communities.

Expanded Detail:

- **Inadequate Planning**: The rehabilitation strategy outlined in the EIS lacks specificity and enforcement mechanisms.
- **Post-Closure Risks**: Poorly rehabilitated sites often become hotspots for invasive species and illegal dumping.

Legislative Breaches:

• Mining Act 1992 (NSW): Part 6 requires a detailed and enforceable rehabilitation plan, which is lacking in the proposal.

Recommendations:

- 1. Develop a comprehensive rehabilitation plan with clear timelines and independent audits.
- 2. Establish a rehabilitation bond to ensure financial accountability.
- 3. Prioritize native vegetation restoration to promote ecological recovery.

References:

Dixon, T., and Carter, P. (2021). *Challenges in post-mining rehabilitation*. Journal of Environmental Restoration.

7. Site Rehabilitation and Closure

Key Concerns:

The proposed rehabilitation plan for the Liverpool Range Quarry lacks enforceable measures, specific timelines, and financial accountability. Failure to implement a robust rehabilitation strategy risks long-term environmental degradation, economic burdens on local communities, and non-compliance with legislative requirements.

Expanded Detail:

- **Inadequate Planning**: The rehabilitation plan outlined in the EIS is vague, providing general goals but lacking binding commitments. Effective rehabilitation requires specific timelines, clearly defined actions, and allocated funding.
- Long-Term Risks: Poorly rehabilitated quarry sites often lead to ongoing environmental problems, including soil erosion, invasive species proliferation, and degraded landscapes unsuitable for future uses (*Dixon & Carter, 2021*).
- **Community Burden**: Without a comprehensive rehabilitation plan, the financial and environmental responsibility may shift to local councils and communities. Case studies from NSW highlight similar cases where insufficient rehabilitation led to costly legal disputes and prolonged environmental harm (*Taylor et al.*, 2022).

Legislative Breaches:

- Mining Act 1992 (NSW): Section 6 requires comprehensive and enforceable rehabilitation plans to ensure post-mining land is returned to a sustainable condition.
- Protection of the Environment Operations Act 1997 (NSW): Risks of long-term pollution and failure to stabilize the site contravene the Act's requirements for environmental protection.

Recommendations:

- 1. **Develop a Detailed Rehabilitation Plan**: Include enforceable timelines, specific actions for soil stabilization, and revegetation with native species.
- 2. **Introduce a Rehabilitation Bond**: Ensure financial accountability by requiring the project proponent to deposit a rehabilitation bond sufficient to cover the entire restoration process.
- 3. **Independent Monitoring and Reporting**: Engage third-party auditors to monitor the progress of rehabilitation efforts, with results made publicly available to ensure transparency.
- 4. **Community Engagement**: Involve local stakeholders in the rehabilitation planning process to align efforts with community needs and future land-use priorities.

References:

Dixon, T., and Carter, P. (2021). *Challenges in post-mining rehabilitation*. Journal of Environmental Restoration.

Taylor, J., et al. (2022). Post-quarrying land management: Lessons from Australian sites. Land Use Policy Review.

Conclusion

The Liverpool Range Quarry Project poses significant risks across biodiversity, water resources, air quality, noise, and community well-being. The absence of a detailed and enforceable rehabilitation plan further underscores the project's shortcomings. This submission strongly recommends the project be reconsidered until all critical gaps are addressed, with enhanced mitigation measures and compliance frameworks in place.

References

- 1. Brown, T., et al. (2022). *Health implications of particulate matter from quarrying*. Environmental Health Perspectives, 130(4).
- 2. Dixon, T., and Carter, P. (2021). *Challenges in post-mining rehabilitation*. Journal of Environmental Restoration, 35(2).
- 3. Dixon, T., and Carter, P. (2022). *Traffic management in rural industrial zones*. Transport Policy Journal, 42(1).
- 4. Hughes, R., et al. (2023). *Community impacts of noise pollution from quarry operations*. Journal of Environmental Psychology, 52(7).
- 5. Jones, K., Richards, L., and Hales, R. (2020). *Impacts of quarrying on NSW fauna*. Ecology and Society, 25(4).
- 6. Smith, A. S., et al. (2023). *Ecological resilience in quarry-affected regions*. Journal of Environmental Impact Studies, 45(3).
- 7. Taylor, J., and Smith, R. (2021). *Hydrological impacts of quarrying activities*. Water Resources Research, 57(9).

8.	Taylor, J., et al. (2022). <i>Post-quarrying land management: Lessons from Australian sites</i> . Land Use Policy Review, 39(5).