## Small Modular Reactors (SMRs), Solar and Wind Which technology has more clear advantages (shown in green)?

| Parameter                              | SMR         | Utility Scale Solar                | Onshore Wind |
|----------------------------------------|-------------|------------------------------------|--------------|
| Reliability of generation              | reliable    | variable                           | variable     |
| Independent of the weather             | independent | dependent                          | dependent    |
| Capacity factor                        | 95%         | 22% - 32%                          | 35% - 44%    |
| Load following capability              | yes         | no                                 | no           |
| Provides frequency control             | yes         | no                                 | no           |
| Provides system inertia                | yes         | no                                 | no           |
| Black start capability                 | yes         | no                                 | no           |
| Direct process heat for industry       | yes         | no                                 | no           |
| Plant Design/Economic life years       | 60          | 25                                 | 20 - 25      |
| Plant Technical/Operational life years | >60         | 30                                 | 20 - 30      |
| Land area required hectares/TWh        | 2.4         | 1,295                              | 7,203        |
| Visual impact                          | low         | medium                             | high         |
| Noise impact                           | low         | low                                | high         |
| Wildlife impact                        | low         | medium                             | high         |
| Major material required t/TWh          | 1,190       | 2,516                              | 5,976        |
| Critical minerals required t/TWh       | 12          | 124                                | 130          |
| Materials – concrete t/TWh             | 1,058       | 1,216                              | 4,466        |
| Materials – steel t/TWh                | 134         | 938                                | 1,447        |
| Lifecycle emissions g/kWh              | 12          | 48                                 | 11           |
| Storage required                       | None        | Typical Battery 4 hrs/ PHES 12 hrs |              |
| Cost of storage \$/kW                  | \$0         | \$1,629 battery/kW \$2,711/kW PHES |              |
| Additional transmission                | none        | >\$12.7 billion                    |              |
| Life waste included in cost            | yes         | no                                 | no           |
| O&M cost \$/MWh                        | 11          | 9.7                                | 8.2          |
| Fuel cost \$/GJ                        | 0.5         | Free                               | Free         |
| Construction time years                | 3           | 0.5                                | 1.0          |

Copyright © SMR Nuclear Technology Pty Ltd 2022

SMR parameters: NuScale (USA) 12 module 924 MW plant estimate for Australia Wind and solar: CSIRO GenCost 2021-22 Final report July 2022, transmission AEMO 2022 ISP

Pumped Hydro Energy Storage (PHES) and battery costs – CSIRO GenCost 2021-22 Table B.7

Material requirements: Bright New World (BNW) and IEA "The Role of Critical Materials in Clean Energy Transitions"

Land use: NEI April 2022

Lifecycle emissions: WNA and IPCC O&M = Operations & Maintenance