

Quarterly Environment Construction Monitoring Report Q4 – October to December 2021

Pitt Street Integrated Station Development

Project number:	N01070
Document number: TeamBinder:	SMCSWSPS-CPB-STA-EM-REP-000015 SMCSWSPU-CPB-SPS-EM-REP-010253
Revision date:	29/03/2022
Revision:	В

Document approval

Rev.	Date	Prepared by	Reviewed by	Approved by	Remarks	
A	04/02/22	O Cooper	E Eveleigh	K Evans	Initial submission to SM/ER/AA	
В	29/03/2022		E Eveleigh	K Evans	2 nd submission to SM/ER/AA	
Signa	ture		EEvelogh	Do-		

Contents

1.	Intro	oduction	3
	1.1	Project Summary	3
	1.2	Site Activities	4
2.	Rep	orting Requirements	5
	2.1	Inspections	5
	2.2	Water Quality Monitoring	6
	2.3	Noise and Vibration Monitoring	8
Con	clusio	on	24
3.	Арр	endices	25
	A - V	Veather Data	25
	B – I	Photos of Real-Time Equipment	
	C – 2	Attended Monitoring Photos	
	D – 0	Calibration Certificates	
	E – \	Water Management Protocol	
	с I		24

1. Introduction

1.1 **Project Summary**

The Sydney Metro City and Southwest is the second portion of the new standalone rail network known as the Sydney Metro, which is Australia's largest public transport infrastructure project and a priority rail project for the NSW Government. CPB Contractors (CPB) have been contracted by Transport for New South Wales to design and construct the Integrated Station Development (ISD) component of the future Pitt Street Station.

Pitt Street is situated within the Sydney CBD, largely surrounded by high-rise commercial and residential buildings. The Station is a binocular cavern station with north and southbound platform caverns running beneath Pitt and Castlereagh Streets respectively. The Station has two entrance shafts from the surface one at Pitt Street North and Pitt Street South connected to the platform caverns via adit tunnels.

Pitt Street North is located on Park Street between Pitt and Castlereagh Street, with the station entrance facing onto Park Street. The Over Station Development (OSD) surrounds the station entrance and access is provided on Pitt, Park and Castlereagh Streets. Pitt Street South is located on the corner of Pitt and Bathurst Street. It is configured in an 'L' shape which wraps around the Edinburgh Castle Hotel with the station entrance opening onto Bathurst Street. Access to the OSD is provided from Pitt Street.

Figure 1-1 Pitt Street Station location and indicative monitoring layout

1.2 **Site Activities**

The Construction Environment Management Plan (CEMP) and associated sub-plans were approved by the Department of Planning, Industry and Environment (DPIE) on 24 December 2020 and construction works commenced on the project on 6 January 2021. This is the fourth quarterly report and reflects the monitoring that was conducted from October to December 2021. Table 1-1 outlines the site activities that occurred during the reporting period.

Month	Site Activities
October 2021	Pitt Street North - Ongoing formwork to B02 - Ongoing jump form pours - Ongoing site deliveries - Graphics installed - Ongoing column pours - Jump form modification and east core dismantle completed Ongoing Linewide concrete pours Pitt Street South - - Ongoing site deliveries - Ongoing B01 slab pours - Ongoing perimeter wall pours and dismantling of wall climbing systems - Completed hoarding rectification - 50% of jump form scope is complete - Completed Eurotower variation works - Axis Plumbing water treatment system commissioned - Anchor destressing completed - Ongoing bracket and steel installation - Ongoing blockwork work - Ongoing adit formwork and pours
November 2021	Pitt Street North - Ongoing formwork to B01 on the western side - Ongoing jump form pours - Ongoing jump form modification and west core dismantling - Ongoing site deliveries - Capping beam removal commenced - Ongoing column pours - Ongoing column pours - Ongoing Linewide concrete pours Pitt Street South - - Ongoing site deliveries - B01 slab pour completed - B1 and B2 mezzanine commenced - Graphics installation completed - Perimeter wall pours completed - Ongoing jump form pours and dismantling of wall climbing systems Caverns - - Ongoing bracket and steel installation - Trackway portion handed over to Linewide on 24/11/21 - Blockwork work completed - Dragoing bracket and steel installation
December 2021	Pitt Street North - Dismantling of eastern and western jump form - Level 00 constructed and the western side poured - Ongoing site deliveries - Ongoing capping beam removal - Ongoing column pours - Ongoing Linewide concrete pours

Table 1-1 Site Activities

Month	Site Activities					
	- Formwork stripping commenced below B03					
	Pitt Street South					
	 New hoist installed Removal of capping beam commenced Blockwork and fit-out commenced B1 and B2 mezzanine slabs completed Back propping removal from the soffit of B01 to B04 i completed 					
	Caverns					
	 Topping slab of the east cavern and south front of house adit poured Ongoing bracket and steel installation 					

2. Reporting Requirements

A Planning Approval has been obtained to construct Sydney Metro City and Southwest Chatswood to Sydenham, which was identified as Critical State-Significant Infrastructure (CSSI) SSI 15_7400.

Conditions C9 to C16 of the Planning Approval describes monitoring and reporting requirements for the ISD Works.

Monitoring and reporting requirements are detailed in the Construction Environmental Management Plan (approved by NSW DPIE on 24 Dec 2020), and the following associated sub-plans:

- Soil, Water and Groundwater Management Sub-Plan; and
- Noise and Vibration Management Sub-Plan

The following report details environmental monitoring that was undertaken during this reporting period conducted as per the Planning Approval, the approved CEMP and its associated sub-plans.

A copy of the Planning Approval can be found by following the link below to the NSW DPIE website.

https://www.planningportal.nsw.gov.au/major-projects/project/3601

The results of the Construction Monitoring Program are included in this Construction Monitoring Report and will be submitted to the Acoustic Advisor (AA), Sydney Metro and the Environmental Representative (ER) who will endorse the document prior to submission to DPIE and being made publicly available on the project website located at <u>https://pittstreetsydneymetroisd.com.au.</u> CPB will also issue the Construction Monitoring report to Council, NRAR and EPA.

2.1 Inspections

Periodic environmental inspections are undertaken by CPB to verify the adequacy of all environmental mitigation measures. In addition, inspections are conducted before and following significant rainfall events that are predicted to be over 10mm in 24 hours. Weather data for the period is included in **Appendix A**.

The Site Environmental Plans (SEPs) identify the environmental control measures on both PSISD sites. SEPs and environmental controls are monitored through these periodic environmental inspections and are updated as required to reflect the changing nature of the PSISD sites. All records of inspections are documented in the CPB Environmental Inspection Checklist. Pitt Street South and Pitt Street North are inspected independently, and the caverns/ adits are included in those inspections. Internal CPB inspections are conducted by the CPB Environmental and Project Team. ER inspections are attended by Sydney Metro, CPB, the DPIE endorsed Acoustic Advisor (AA) and the ER.

Five ER inspections and thirty internal inspections were completed during the reporting period. ER inspections occurred on a three weekly basis and internal inspections were conducted once per week.

2.2 Water Quality Monitoring

2.2.1 Background

Water quality parameters were determined from the Discharge Impact Assessment (supporting the Construction Environmental Management Plan Rev 0) which was updated in May 2021 to include the TSS/NTU correlation following ER review of the first Construction Monitoring Report (Q1 2021) and clarification of the Discharge Management Protocol.

Water quality parameters for the discharge criteria for the Project are presented in Table 2-1.

Parameter	Unit	Discharge Criteria
рН	рН	6.5 – 8.5
Total Suspended Solids	mg/L	50mg/L (TSS:NTU correlation equivalent of 50NTU)
Oil and Grease	Visual	No visible surface sheen
Copper	mg/L	0.0013mg/L (50 percentile limit) 0.005mg/L (100 percentile limit)
Zinc	mg/L	0.015mg/L (50 percentile limit) 0.043mg/L (100 percentile limit)

Table 2-1 Water Quality Discharge Criteria Parameters

CPB has a temporary stormwater connection for both the North site and South sites approved by the City of Sydney Council (CoSC) since 4 December 2020. During the reporting period the Trident 2 systems have been decommissioned and replaced with water treatment systems supporting the newly constructed stormwater pits for the permanent works. The new Pitt Street South system was commissioned on 11 October 2021 and a reuse system was established at Pitt Street North to recycle 100% water for site activities. The process for the water treatment is detailed in the Water Management Procedure in **Appendix E**. Both Trident systems were decommissioned from 12 October 2021 and removed from site.

Water discharged from the site is predominantly rainwater and construction (potable) water. Negligible groundwater is encountered which is evidenced by the frequency of discharge relating more to rainfall events than construction activities.

2.2.2 Water Quality Monitoring Methodology

Regular field tests are conducted by CPB Environmental Team using the calibrated water quality probe within the stormwater pit to confirm parameters are within the discharge criteria for pH, NTU and no visible oil and grease. If water requires treatment it is treated in the stormwater pit with the appropriate chemicals and retested again until compliant values are obtained. If the parameters are within the field criteria and monthly laboratory samples have been obtained, a permit to dewater will be issued. Additional field tests are undertaken by taking a sample of water from the sample valve located post-treatment to confirm the pH and NTU values and no visible oil and grease during discharge. This process is further detailed in the Water Management Procedure in **Appendix E**.

Table 2-2 outlines the CPB water quality monitoring equipment used during the reporting period.

Table 2-2 Water Quality Monitoring Equipment Details

Monitoring Type	Equipment Details	Serial Number	Calibration Date
Water Quality Multi Parameter Meter	Yeo-Kal 611	426	15/07/2021

Laboratory testing is conducted monthly via grab samples to confirm the criteria in Table 2-1 in accordance with the Discharge Impact Assessment – Discharge Management Protocol.

Laboratory Testing of water quality is undertaken at Eurofins Sydney Laboratory in Lane Cove West, a NATA accredited laboratory. Laboratory results are provided in Appendix F.

2.2.3 Water Quality Monitoring Results

Detailed discharge monitoring results for this reporting period are presented in Table 2-3.

Commissioning samples were taken at Pitt Street South site to validate the discharge criteria as per the Discharge Management Protocol for the new water treatment system. One monthly sampling event on 22 November 2021 exceeded the Stage 2 protocol (exceedance of one parameter), the site supervisor was notified and no further discharge occurred until an investigation into the exceedance was undertaken. Subsequent samples were taken and compliant results were obtained. No monthly samples exceeded the Stage 3 protocol exceedance (2 consecutive exceedances of the same parameter) during the reporting period. All discharges have been compliant with the Discharge Management Protocol. Due to the Christmas shutdown no laboratory samples were taken on the due date of 22/12/2021 due to no further discharges within this reporting period.

No discharges occurred from Pitt Street North during the reporting period, water was reused on-site for construction activities and site amenities through the recycling system. This was set up at the beginning of November 2021.

Parameter, Criteria or Measured Value									
Identifier	Dates Sampled	рН (6.5- 8.5)	Turbidit y (<50NTU)	Copper (0.005mg/L)	Zinc (0.043mg/ L)	Oil & Grease (visible)	Testing Method	Status	
PSS01	11/10/2021	7.7	<5	<0.001	<0.005	Nil	Laboratory	Compliant	5
PSS01	11/10/2021	7.6	<5	<0.001	<0.005	Nil	Laboratory	Compliant	oning
PSS01	11/10/2021	7.5	<5	<0.001	<0.005	Nil	Laboratory	Compliant	PSS nissi ample
PSS01	11/10/2021	7.6	<5	<0.001	<0.005	Nil	Laboratory	Compliant	comr se
PSS01	11/10/2021	7.5	<5	<0.001	<0.005	Nil	Laboratory	Compliant	0
PSS01	27/10/2021	7.6	10.8	*	*	Nil	Field	Compliant	
PSS01	22/11/2021	7.9	8.3	0.003	0.047	Nil	Laboratory	Stage 2 exceedance	
PSS01	22/11/2021	*	*	*	0.036	*	Laboratory	Compliant	
PSS01	26/11/2021	8.3	10.2	*	*	Nil	Field	Compliant	
PSS01	2/12/2021	8.4	20.1	*	*	Nil	Field	Compliant	
PSS01	20/12/2021	8.2	35.5	*	*	Nil	Field	Compliant	

Table 2-3 Discharge Water Monitoring Data

* No testing undertaken as it was not required.

2.2.4 Groundwater Monitoring Results

Water discharged from the site is predominantly rainwater collected and water used for dust suppression which is evident from the relation between rainfall events and the discharge dates. It is therefore determined that less than 7kL/day of groundwater seepage is being captured and discharged.

Monthly settlement monitoring of the buildings adjacent to the PSISD sites has been undertaken to monitor for any settlement due to groundwater seepage. Total Survey Solutions are engaged by CPB to monitor the movement of structures over the entire Pitt Street Metro Project. This includes monitoring of the external buildings adjacent to the North and South sites, walls of the North and South station boxes and through the caverns/ adits between them. The monitoring uses total station instruments to take direct measurements to reference targets on and inside adjacent buildings and walls to calculate any movement measured as an angle of tilt that is recorded live on Geomotion. The angles that trigger concern have been determined by Structural Engineers and alarms have been set to activate text messages if the triggers are reached. During the reporting period, there were no settlement monitoring triggers at Pitt Street North or South site.

2.3 Noise and Vibration Monitoring

2.3.1 Background

The Main Works Construction Noise and Vibration Impact Statement (CNVIS) is regularly reviewed to ensure it captures all works being undertaken prior to works commencing. **Table 2-4** outlines the CNVIS developed during the reporting period. The current CNVIS is provided on the project website at https://pittstreetsydneymetroisd.com.au.

Table 2-4 CNVIS' developed and approved during the reporting period.

CNVIS	Details
CNVIS – Station Box Main Works	29/10/2021 – Revision 12 issued to Sydney Metro and was endorsed by AA on 01/11/2021

Out of Hours works (OOHW) were conducted during the reporting period in accordance with the Sydney Metro Out of Hours Protocol and subsequent approved Out of Hours Works Applications (OOHWA).

2.3.2 Noise and Vibration Criteria

Relevant criteria relating to noise and vibration are outlined in the PSISD Construction Noise and Vibration Management Sub Plan and respective CNVIS. These are outlined in **Table 2-5**.

Table 2-5 Construction noise management levels at receivers^{1, 2}

Receiver	Time of Day ²	EIS Chapter 10	Requirements	CSSI Approval	CSSI Approval Requirements		
туре		ICNG*	Ground Borne Noise	Sleep Disturbance	Construction Traffic	Condition E37 ³	Condition E41 ⁴
Pitt Street Sou	uth						
Residential	Day (Standard – 7am- 6pm)	74dB(A)L _{eq(15min)} 75dB(A)L _{eq(15min)} – Highly Noise Affected Threshold	45dB(A)L _{eq} 1 ₍ ^{5min)} (internal noise level)	N/A	60dB(A)L _{eq(15hr)}	60dB(A)L _{eq(15Min)} (internal noise level) 80dB(A)L _{eq(15Min)} (external noise level)**	N/A
	Day (OOH)	$69dB(A)L_{\text{eq(15min)}}$	45dB(A)L _{eq} ¹ (^{5min)} (internal noise level)	N/A	60dB(A)L _{eq(15hr)}	60dB(A)L _{eq(15Min)} (internal noise level) 80dB(A)L _{eq(15Min)} (external noise level)**	N/A
	Evening (OOH)	$66dB(A)L_{\text{eq(15min)}}$	40dB(A)L _{eq} ¹ (^{5min)} (internal noise level)	N/A	60dB(A)L _{eq(15hr)}	N/A	60dB(A)L _{eq(15Min)} (internal noise level) 80dB(A)L _{eq(15Min)} (external noise level)**
	Night (OOH)	$63dB(A)L_{eq(15min)}$	35dB(A)L _{eq1(} ^{5min)} (internal noise level)	65dB(A)L _{max} (external noise level)	55dB(A)L _{eq(9hr)}	N/A	45dB(A)L _{eq(15Min)} (internal noise level) 65dB(A)L _{eq(15Min)} (external noise level)**
Commercial	When in use	$70dB(A)L_{eq(15min)}$	N/A	N/A	N/A	60dB(A)L _{eq(15Min)} (internal noise level) 80dB(A)L _{eq(15Min)} (external noise level)**	N/A
Pitt Street Nor	th						

Residential	Day (Standard – 7am- 6pm)	73dB(A)L _{eq(15min)} (weekdays) 75dB(A) – Highly Noise Affected Threshold	45dB(A)L _{eq} ¹ (^{5min)} (internal noise level)	N/A	60dB(A)L _{eq(15hr)}	60dB(A)L _{eq(15Min)} (internal noise level) 80dB(A)L _{eq(15Min)} (external noise level)**	N/A
	Day (OOH)***	$68dB(A)L_{eq15min)}$	45dB(A) L _{eq¹(5min)} (internal noise level)	N/A	60dB(A)L _{eq(15hr)}	60dB(A)L _{eq(15Min)} (internal noise level) 80dB(A)L _{eq(15Min)} (external noise level)**	N/A
	Evening	$66dB(A)L_{eq(15min)}$	40dB(A) L _{eq¹(5min)} (internal noise level)	N/A	$60dB(A)L_{\text{eq(15hr)}}$	N/A	60dB(A)L _{eq(15Min)} (internal noise level) 80dB(A)L _{eq(15Min)} (external noise level)**
	Night	$64dB(A)L_{\text{eq(15min)}}$	35dB(A) L _{eq¹(5min)} (internal noise level)	65dB(A)L _{max} (external noise level)	$55dB(A)L_{eq(9hr)}$	N/A	45dB(A)L _{eq(15Min)} (internal noise level) 65dB(A)L _{eq(15Min)} (external noise level)**
Commercial	When in use	70dB(A)L _{eq(15min)}	N/A	N/A	N/A	60dB(A)L _{eq(15Min)} (internal noise level) 80dB(A)L _{eq(15Min)} (external noise level)**	N/A

*ICNG noise management levels for residential receives are based on the background noise levels presented in Section 4 of the CNVIS.

** External noise target determined by assuming a 20dB (A) noise reduction between outside and inside (closed windows).

- 1. Noise levels apply at the property boundary that is most exposed to construction noise, and at a height of 1.5m above ground level unless stated otherwise.
- 2. Noise management levels apply when receiver areas are in use only.
- 3. Exceedance of this level triggers the need for consideration of respite periods as per Conditions of Approval E38.
- 4. Exceedances of this level trigger the need to consider additional mitigation methods as detailed in Sydney Metro City and South West Noise and Vibration Strategy.

As a conservative approach, and in accordance with *British Standard BS* 7385-2, the vibration screening criteria has been applied to buildings at Pitt Street:

• Screening criteria – 2.5 mm/s (Peak Particle Velocity (PPV)

2.3.3 Attended Monitoring Methodology

Attended noise monitoring was undertaken during this reporting period with details provided in Section 2.3.4. Attended monitoring is undertaken when two OOH scenarios occur simultaneously where predicted exceedances are expected to be >20dB above RBL, as well as in response to recommendations by the ER and AA, or if required on receival of a complaint.

All attended short-term noise monitoring was recorded over 15-minute sample intervals at the closest affected sensitive receiver. The recordings were taken from a height of 1.2 m from the ground, at least 1m from the walls or other major reflecting surfaces. The noise monitor was paused when there were high levels of traffic and pedestrian movement.

Table 2-6 CNVIS Requirements

Plan	Requirements
CNVIS r12 - Section 7.2	In the event that use of hydraulic hammers or vibratory rollers is required, vibration monitoring will be conducted at receivers R1 and R3 in addition to those detailed above. Given these buildings are not heritage buildings, this can potentially be done in the event of complaint by occupants or by attended vibration measurement.

011/10 40	Long term vibration monitors will be installed at the heritage buildings sharing a common
CNVIS r12 -	boundary with the site (Receivers C1, C2, C5 and R4). Monitoring to commence 2 days before the
Appendix E	start of detailed excavation.

2.3.4 Attended Monitoring Results

Attended noise monitoring results during the reporting period are provided in Table 2-7 below and photos of monitoring can be seen in Appendix C. No attended vibration monitoring was required during the monitoring period.

Monitoring Location	Date	Time	Nearest Receiver (ref Fig 1-1) /Type	Measured Value L _{ea} (15min)	Adjusted noise level at receiver (dBA)	Predicted Value from CNVIS r12 at Receiver (dBA)	Work Activity	Comments
Pitt Street South – on terrace behind R1, 10m from nearest window and 1m from noise	09/12/21	18:00	Residential Receiver R1	76.7	71	74	Covid shift	ISD compliant ¹
Pitt Street South – central to site and 1m from noise	09/12/21	14:05	Residential Receiver R1	83.6	60	80	Core drilling	ISD compliant ¹
Pitt Street South – central to site and 1m from noise	10/12/21	11:44	Residential Receiver R2b	81.8	62	80	Wire saw	ISD compliant ¹
Pitt Street South – on street outside R2a	15/12/21	9:47	Commercial Receiver R2a	76.6	77	90	Wall saw	ISD compliant

Table 2-7 Attended Noise Monitoring Data

From measured noise values a predicted noise level at the receiver can be calculated and compared with the predicted maximum noise levels at Receivers as stated in the CNVIS. From the values provided in the table above all noise levels were compliant.

2.3.5 Real-Time Monitoring Methodology

Real-time noise monitors have been maintained and monitored by Acoustic Consultants Renzo Tonin since November 2020. The real-time links to the monitoring data have been submitted to Sydney Metro, DPIE and EPA and all records stored. Locations of these monitors are depicted in **Figure 2-1**.

It is noted that the noise monitoring locations are conservative and measure external noise levels and not internal noise levels. The noise and vibration consultant has provided advice to CPB that a 25 dB(A) (for the North) and 20dB(A) (for the South) noise reduction between the external noise level and the internal noise level has been determined following on-site outside/inside noise level measurements. This has been adopted by the project in assessing performance against the CoA E38 as approved in the CNVMP.

Figure 2-1 Pitt Street Station Real-Time Monitor Locations

Condition E28 of the CSSI 15_7400 requires that vibration from construction activities does not exceed the vibration limits set out in the British Standard BS 7385-2:1993 Evaluation and measurement for vibration in buildings: Guide to damage levels from groundborne vibration which was interpreted in the CNVIS to set a limit of 2.5 mm/s peak component particle velocity as a conservative approach for the project. There are no construction activities during the reporting period identified in Table 1-1 that would be expected to generate vibration levels exceeding 2.5m/s. All demolition works for capping beam were completed using concrete saws.

Condition E38 of the CSSI 15_7400 requires that internal noise levels be less than $L_{eq}(15 \text{ minute}) 60 dB(A)$ for at least 6.5 hours between 7am and 8pm (Upper Limit), of which at least 3.25 hours must be below $L_{Aeq}(15 \text{ minute}) 55 dB(A)$ (Lower Limit). Within these hours, works are 'permitted' to generate noise greater than 60dB(A) for up to 6.5 hours (the equivalent of 26x15 minute periods), and 'requires' 3.25 hours of noise generated to be less than 55dB(A) (the equivalent of 13x15 minute periods). A SMS/Email alert system has been set up to notify the project team that CoA E38 limits are approaching. Following receipt of an SMS / Email, site activities are reviewed and works with high noise are ceased. Compliance during the reporting period with this condition are shown below in **Tables 2-10, 2-11 and 2-12.**

The equipment used for noise measurements was an NTi Audio Type XL2 precision sound level analyser which is a class 1 instrument having accuracy suitable for field and laboratory use. The instrument was calibrated prior and subsequent to measurements using a Bruel & Kjaer Type 4231 calibrator. No significant drift in calibration was observed. All instrumentation complies with IEC 61672

(parts 1-3) '*Electroacoustics - Sound Level Meters*' and IEC 60942 '*Electroacoustics - Sound calibrators*' and carries current NATA certification (or if less than 2 years old, manufacturers certification). **Table 2-8** outlines the noise monitoring equipment that has been used during the reporting period.

Photos of the real-time equipment are shown in **Appendix B** and calibration certificates for the equipment in **Table 2-8** can be seen in **Appendix D**.

Monitoring Type / Location	Equipment Details	Serial Number	Last Calibration Date	Off Hire Date
Attended Noise	Rion NL-20	00143337	29/01/2021	N/A
Noise calibrator	Pulsar Model 106	93277	29/01/2021	N/A
Real-Time Noise – N1	NTi Audio Type XL2	RTA07-020	17/01/2020	14/12/2021
Real-Time Noise – N2	NTi Audio Type XL2	RTA07-022	20/12/2019	06/09/2021
Real-Time Noise – N3	NTi Audio Type XL2	ITi Audio Type XL2 RTA07-021 19/12/2019		14/12/2021
Real-Time Noise – N1	ise – NTi Audio Type XL2 RTA07-ATP0 26		26/02/2021	On site
Real-Time Noise – N3	NTi Audio Type XL2	RTA07-004	18/01/2021	On site

Table 2-8 Monitoring Equipment Details

2.3.6 Real-Time Monitoring Results

Real-time noise monitors were operating at Pitt Street North and Pitt Street South during the reporting period. Summarised real-time noise monitoring results outlining compliance with CoA E38 are presented for the North site in **Table 2-9** and for the South site in **Table 2-10**. Noise levels in this reporting period were generally compliant with the predicted noise levels set out in the CNVIS.

The noise monitor at Pitt Street South site was offline during the period 21/12/2021 to 05/01/2022. During this time no construction activities occurred as the site was shut for the Christmas break.

All real-time vibration monitors were removed in Q3 2021, the removal process occurred in consultation with the AA, ER and in accordance with the planning approval and CNVMP.

Monitoring Location (Address)	Monitoring Date	Start Time	End Time	Period below 60 L _{eq(15minute)} dB(A) - (Hours)	Period below 55 Leq(15minute) dB(A) - (Hours)	Min 6.5 hrs below 60dB(A)Leq(15min)	Min 3.25 hrs below 55dB(A)Leq(15min
Pitt Street (North)	6/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	7/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	8/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	9/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	10/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	11/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	12/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	13/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	14/10/2021	7am	8pm	13	12.25	Yes	Yes
Pitt Street (North)	15/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	16/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	17/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	18/10/2021	7am	8pm	13	12.75	Yes	Yes
Pitt Street (North)	19/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	20/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	21/10/2021	7am	8pm	13	13	Yes	Yes

Table 2-9 Condition E38 Compliance North Site (Pitt Street)

Monitoring Location (Address)	Monitoring Date	Start Time	End Time	Period below 60 L _{eq(15minute)} dB(A) - (Hours)	Period below 55 Leg(15minute) dB(A) - (Hours)	Min 6.5 hrs below 60dB(A)Leq(15min)	Min 3.25 hrs below 55dB(A)Leq(15min
Pitt Street (North)	22/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	23/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	24/10/2021	7am	8pm	13	12.75	Yes	Yes
Pitt Street (North)	25/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	26/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	27/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	28/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	29/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	30/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	31/10/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	1/11/2021	7am	8pm	13	12.5	Yes	Yes
Pitt Street (North)	2/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	3/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	4/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	5/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	6/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	7/11/2021	7am	8pm	13	13	Yes	Yes

Monitoring Location (Address)	Monitoring Date	Start Time	End Time	Period below 60 L _{eq(15minute)} dB(A) - (Hours)	Period below 55 L _{eq(15minute)} dB(A) - (Hours)	Min 6.5 hrs below 60dB(A)L _{eq(15min)}	Min 3.25 hrs below 55dB(A)L _{eq(15min}
Pitt Street (North)	8/11/2021	7am	8pm	13	12.5	Yes	Yes
Pitt Street (North)	9/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	10/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	11/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	12/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	13/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	14/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	15/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	16/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	17/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	18/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	19/11/2021	7am	8pm	13	12.75	Yes	Yes
Pitt Street (North)	20/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	21/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	22/11/2021	7am	8pm	13	12.75	Yes	Yes
Pitt Street (North)	23/11/2021	7am	8pm	12.5	10.75	Yes	Yes
Pitt Street (North)	24/11/2021	7am	8pm	13	13	Yes	Yes

Monitoring Location (Address)	Monitoring Date	Start Time	End Time	Period below 60 L _{eq(15minute)} dB(A) - (Hours)	Period below 55 Leg(15minute) dB(A) - (Hours)	Min 6.5 hrs below 60dB(A)Leq(15min)	Min 3.25 hrs below 55dB(A)Leq(15min
Pitt Street (North)	25/11/2021	7am	8pm	13	12.5	Yes	Yes
Pitt Street (North)	26/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	27/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	28/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	29/11/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	30/11/2021	7am	8pm	12.75	11.25	Yes	Yes
Pitt Street (North)	1/12/2021	7am	8pm	13	12.75	Yes	Yes
Pitt Street (North)	2/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	3/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	4/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	5/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	6/12/2021	7am	8pm	13	12.75	Yes	Yes
Pitt Street (North)	7/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	8/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	9/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	10/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	11/12/2021	7am	8pm	13	13	Yes	Yes

Monitoring Location (Address)	Monitoring Date	Start Time	End Time	Period below 60 L _{eq(15minute)} dB(A) - (Hours)	Period below 55 L _{eq(15minute)} dB(A) - (Hours)	Min 6.5 hrs below 60dB(A)L _{eq(15min)}	Min 3.25 hrs below 55dB(A)Leq(15min
Pitt Street (North)	12/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	13/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	14/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	15/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	16/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	17/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	18/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	19/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	20/12/2021	7am	8pm	12.75	11.25	Yes	Yes
Pitt Street (North)	21/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	22/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	23/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	24/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	25/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	26/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	27/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	28/12/2021	7am	8pm	13	13	Yes	Yes

Monitoring Location (Address)	Monitoring Date	Start Time	End Time	Period below 60 L _{eq(15minute)} dB(A) - (Hours)	Period below 55 L _{eq(15minute)} dB(A) - (Hours)	Min 6.5 hrs below 60dB(A)L _{eq(15min)}	Min 3.25 hrs below 55dB(A)L _{eq(15min}
Pitt Street (North)	29/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	30/12/2021	7am	8pm	13	13	Yes	Yes
Pitt Street (North)	31/12/2021	7am	8pm	13	13	Yes	Yes

Table 2-10 Condition E38 Compliance South Site (Pitt Street)

Monitoring Location (Address)	Monitoring Date	Start Time	End Time	Period below 60 L _{eq(15minute)} dB(A) - (Hours)	Period below 55 L _{eq(15minute)} dB(A) - (Hours)	Min 6.5 hrs below 60dB(A)L _{eq(15min)}	Min 3.25 hrs below 55dB(A)L _{eq(15min}
South Site (Pitt Street)	6/10/2021	7am	8pm	13	13	Yes	Yes
South Site (Pitt Street)	7/10/2021	7am	8pm	13	9.5	Yes	Yes
South Site (Pitt Street)	8/10/2021	7am	8pm	13	10.75	Yes	Yes
South Site (Pitt Street)	9/10/2021	7am	8pm	13	11.25	Yes	Yes
South Site (Pitt Street)	10/10/2021	7am	8pm	13	13	Yes	Yes
South Site (Pitt Street)	11/10/2021	7am	8pm	13	11	Yes	Yes
South Site (Pitt Street)	12/10/2021	7am	8pm	11.75	8.75	Yes	Yes
South Site (Pitt Street)	13/10/2021	7am	8pm	12.25	10.75	Yes	Yes
South Site (Pitt Street)	14/10/2021	7am	8pm	12.75	9.25	Yes	Yes
South Site (Pitt Street)	15/10/2021	7am	8pm	12.25	8.75	Yes	Yes
South Site (Pitt Street)	16/10/2021	7am	8pm	13	11.75	Yes	Yes

Monitoring Location (Address)	Monitoring Date	Start Time	End Time	Period below 60 L _{eq(15minute)} dB(A) - (Hours)	Period below 55 L _{eq(15minute)} dB(A) - (Hours)	Min 6.5 hrs below 60dB(A)L _{eq(15min)}	Min 3.25 hrs below 55dB(A)Leq(15min
South Site (Pitt Street)	17/10/2021	7am	8pm	13	13	Yes	Yes
South Site (Pitt Street)	18/10/2021	7am	8pm	11.75	6.75	Yes	Yes
South Site (Pitt Street)	19/10/2021	7am	8pm	12.75	10	Yes	Yes
South Site (Pitt Street)	20/10/2021	7am	8pm	13	10.25	Yes	Yes
South Site (Pitt Street)	21/10/2021	7am	8pm	12.75	7	Yes	Yes
South Site (Pitt Street)	22/10/2021	7am	8pm	12.25	7.5	Yes	Yes
South Site (Pitt Street)	23/10/2021	7am	8pm	13	12.5	Yes	Yes
South Site (Pitt Street)	24/10/2021	7am	8pm	13	13	Yes	Yes
South Site (Pitt Street)	25/10/2021	7am	8pm	13	11.25	Yes	Yes
South Site (Pitt Street)	26/10/2021	7am	8pm	13	10.5	Yes	Yes
South Site (Pitt Street)	27/10/2021	7am	8pm	13	8.75	Yes	Yes
South Site (Pitt Street)	28/10/2021	7am	8pm	12.25	10.5	Yes	Yes
South Site (Pitt Street)	29/10/2021	7am	8pm	12	6.75	Yes	Yes
South Site (Pitt Street)	30/10/2021	7am	8pm	13	12.5	Yes	Yes
South Site (Pitt Street)	31/10/2021	7am	8pm	12.75	12.75	Yes	Yes
South Site (Pitt Street)	28/10/2021	7am	8pm	12.25	10.5	Yes	Yes
South Site (Pitt Street)	29/10/2021	7am	8pm	12	6.75	Yes	Yes

Monitoring Location (Address)	Monitoring Date	Start Time	End Time	Period below 60 L _{eq(15minute)} dB(A) - (Hours)	Period below 55 Leq(15minute) dB(A) - (Hours)	Min 6.5 hrs below 60dB(A)L _{eq(15min)}	Min 3.25 hrs below 55dB(A)Leq(15min
South Site (Pitt Street)	30/10/2021	7am	8pm	13	12.5	Yes	Yes
South Site (Pitt Street)	31/10/2021	7am	8pm	12.75	12.75	Yes	Yes
South Site (Pitt Street)	28/10/2021	7am	8pm	12.25	10.5	Yes	Yes
South Site (Pitt Street)	29/10/2021	7am	8pm	12	6.75	Yes	Yes
South Site (Pitt Street)	30/10/2021	7am	8pm	13	12.5	Yes	Yes
South Site (Pitt Street)	31/10/2021	7am	8pm	12.75	12.75	Yes	Yes
South Site (Pitt Street)	1/11/2021	7am	8pm	12.25	9	Yes	Yes
South Site (Pitt Street)	2/11/2021	7am	8pm	11.5	10	Yes	Yes
South Site (Pitt Street)	3/11/2021	7am	8pm	12.5	4.75	Yes	Yes
South Site (Pitt Street)	4/11/2021	7am	8pm	12.5	9.25	Yes	Yes
South Site (Pitt Street)	5/11/2021	7am	8pm	13	10.75	Yes	Yes
South Site (Pitt Street)	6/11/2021	7am	8pm	13	9.5	Yes	Yes
South Site (Pitt Street)	7/11/2021	7am	8pm	13	13	Yes	Yes
South Site (Pitt Street)	8/11/2021	7am	8pm	12	9.5	Yes	Yes
South Site (Pitt Street)	9/11/2021	7am	8pm	13	6.25	Yes	Yes
South Site (Pitt Street)	10/11/2021	7am	8pm	13	11	Yes	Yes
South Site (Pitt Street)	11/11/2021	7am	8pm	13	10.25	Yes	Yes

Monitoring Location (Address)	Monitoring Date	Start Time	End Time	Period below 60 L _{eq(15minute)} dB(A) - (Hours)	Period below 55 L _{eq(15minute)} dB(A) - (Hours)	Min 6.5 hrs below 60dB(A)L _{eq(15min)}	Min 3.25 hrs below 55dB(A)L _{eq(15min}
South Site (Pitt Street)	12/11/2021	7am	8pm	13	11.25	Yes	Yes
South Site (Pitt Street)	13/11/2021	7am	8pm	13	10.75	Yes	Yes
South Site (Pitt Street)	14/11/2021	7am	8pm	13	13	Yes	Yes
South Site (Pitt Street)	15/11/2021	7am	8pm	12.5	5.25	Yes	Yes
South Site (Pitt Street)	16/11/2021	7am	8pm	13	9.25	Yes	Yes
South Site (Pitt Street)	17/11/2021	7am	8pm	13	11	Yes	Yes
South Site (Pitt Street)	18/11/2021	7am	8pm	13	7.25	Yes	Yes
South Site (Pitt Street)	19/11/2021	7am	8pm	12.5	5.5	Yes	Yes
South Site (Pitt Street)	20/11/2021	7am	8pm	11.5	7.75	Yes	Yes
South Site (Pitt Street)	21/11/2021	7am	8pm	13	13	Yes	Yes
South Site (Pitt Street)	22/11/2021	7am	8pm	12	3.25	Yes	Yes
South Site (Pitt Street)	23/11/2021	7am	8pm	13	9	Yes	Yes
South Site (Pitt Street)	24/11/2021	7am	8pm	12.75	11.5	Yes	Yes
South Site (Pitt Street)	25/11/2021	7am	8pm	13	9.75	Yes	Yes
South Site (Pitt Street)	26/11/2021	7am	8pm	13	13	Yes	Yes
South Site (Pitt Street)	27/11/2021	7am	8pm	13	13	Yes	Yes
South Site (Pitt Street)	28/11/2021	7am	8pm	13	13	Yes	Yes

Monitoring Location (Address)	Monitoring Date	Start Time	End Time	Period below 60 L _{eq(15minute)} dB(A) - (Hours)	Period below 55 L _{eq(15minute)} dB(A) - (Hours)	Min 6.5 hrs below 60dB(A)Leq(15min)	Min 3.25 hrs below 55dB(A)Leq(15min
South Site (Pitt Street)	29/11/2021	7am	8pm	12.75	10	Yes	Yes
South Site (Pitt Street)	30/11/2021	7am	8pm	12.75	10.5	Yes	Yes
South Site (Pitt Street)	1/12/2021	7am	8pm	11	7.5	Yes	Yes
South Site (Pitt Street)	2/12/2021	7am	8pm	13	12.5	Yes	Yes
South Site (Pitt Street)	3/12/2021	7am	8pm	13	10.75	Yes	Yes
South Site (Pitt Street)	4/12/2021	7am	8pm	13	13	Yes	Yes
South Site (Pitt Street)	5/12/2021	7am	8pm	13	13	Yes	Yes
South Site (Pitt Street)	6/12/2021	7am	8pm	13	13	Yes	Yes
South Site (Pitt Street)	7/12/2021	7am	8pm	13	12.75	Yes	Yes
South Site (Pitt Street)	8/12/2021	7am	8pm	13	9.5	Yes	Yes
South Site (Pitt Street)	9/12/2021	7am	8pm	13	13	Yes	Yes
South Site (Pitt Street)	10/12/2021	7am	8pm	13	13	Yes	Yes
South Site (Pitt Street)	11/12/2021	7am	8pm	13	12.5	Yes	Yes
South Site (Pitt Street)	12/12/2021	7am	8pm	13	13	Yes	Yes
South Site (Pitt Street)	13/12/2021	7am	8pm	12.75	11.5	Yes	Yes
South Site (Pitt Street)	14/12/2021	7am	8pm	9.75	7.75	Yes	Yes
South Site (Pitt Street)	15/12/2021	7am	8pm	7.5	7	Yes	Yes

Monitoring Location (Address)	Monitoring Date	Start Time	End Time	Period below 60 L _{eq(15minute)} dB(A) - (Hours)	Period below 55 L _{eq(15minute)} dB(A) - (Hours)	Min 6.5 hrs below 60dB(A)L _{eq(15min)}	Min 3.25 hrs below 55dB(A)L _{eq(15min}
South Site (Pitt Street)	16/12/2021	7am	8pm	12.25	7.25	Yes	Yes
South Site (Pitt Street)	17/12/2021	7am	8pm	12.75	9.5	Yes	Yes
South Site (Pitt Street)	18/12/2021	7am	8pm	10.25	9.75	Yes	Yes
South Site (Pitt Street)	19/12/2021	7am	8pm	12.75	10.25	Yes	Yes
South Site (Pitt Street)	20/12/2021	7am	8pm	10.75	8	Yes	Yes

Conclusion

Based on the monitoring results presented in this report, compliance with the monitoring programs and criteria for Water Quality and Groundwater has been verified.

Observed noise levels do not exceed the forecasted levels presented in the project CNVIS Rev 12. Based on the monitoring results and site investigations, CPB considers that the noise associated with the stated construction works was compliant with the project approvals and requirements during the monitoring period.

3. Appendices

A - Weather Data

Sydney, New South Wales October 2021 Daily Weather Observations

Most observations from Observatory Hill, but some from Fort Denison and Sydney Airport.

Australian Government

Bureau of Meteorology

Daty Min Max Name Dirn Spd Time Temp RH Citid Dirn Spd MSLP C 0' mm mun hour kmh heur % oights kmh heur kmh heur 2 Sa 11.9 24.9 3.2 7.0 7.8 SW 37 0.71 8.19 9.24 4.1 4.1 12.5 1.00 1.0 1 WN 1004.7 24.1 41 5 W 17 1001.2 4 Mo 15.0 26.3 0 4.4 10.9 WNW 51 10.10 1.0 1.5 2.4 99.6 26.5 36 2 WSW 2.999.2 10.6 1.0 1			Ten	nps	Rain	Evan	Sun	Max	k wind g	ust		9am		3pm								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Date	Day	Min	Max	Naili	⊑vap	Sull	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
1 Fr 14.8 24.7 0 5.2 4.6 W 80 17.11 17.11 17.11 18.9 67 1 W 9 1007.8 21.8 66 5 E 24 1002.3 3 Su 12.9 26.0 7.0 4.6 9.1 W 41 12.52 15.0 100 1 WW 11 1004.7 24.1 41 5 W 17 1007.5 4 Mo 15.0 28.3 0 4.4 10.9 WWW 54 19.10 7.3 1 SSE 4.996.6 26.5 36 2 WSW 20 99.2 5 Tu 12.8 24 1 WSW 31 1007.5 21.8 24 1 WSW 31 107.5 5 10 5.0 1.4 WW 43 0.17.0 16.4 89 3 10.0 1.4 10.0 1.5 1.4 1.6 10.1 10.1 1.6 22.8 1.0 1.0 1.0 1.0 1.0			°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
2 Sa 11.9 24.9 3.2 7.0 7.8 SW 37 20:17 18.9 67 1 WW 71 1004.6 19.4 70 77 E 17 1001.2 4 Mo 15.0 28.3 0 4.4 10.9 WWW 54 19:10 19.0 73 1 SSE 4 99.96 26.5 36 22 WSW 20 99.28 21.8 22.4 1 WSW 31 1007.5 7 Th 12.2 24.5 0 5.0 11.4 W 43 08:17 14.7 54 0 W 22 1016.1 22.3 43 0 ENE 20 1012.0 7.6 10.5 11.4 W 43 17.04 16.4 69 3 WNW 6 1019.1 3.4 25.6 0 7.6 4.6 S 65 10.4 9 8 WW 9 1017.3 24.6 55 11.0 14.2 10.1 1012.1 54 1017.1 11.0	1	Fr	14.8	24.7	0	5.2	4.6	W	80	17:11	17.1	81	8	W	9	1007.8	21.8	66	5	E	24	1002.3
3 Su 12.9 26.0 7.0 4.4 10.1 100 1 WNW 11 1004.7 24.1 41 15 W 17 1001.2 4 M0 15.0 28.3 0 44.4 10.9 WNW 54 19:10 100 1 WNW 11 1004.7 24.1 41 15 WWW 30 9982 5 Tu 12.8 22.8 0 9.50 11.4 W 43 08:17 14.7 54 0 W 28 1016.1 22.3 43 0 ENE 20 1017.2 7 Th 12.7 31.0 0.7.6 7.3 SSW 83 16.25 17.6 39 66 NNW 6 1019.0 21.4 54 1 NE 26 1017.2 9 Sa 13.4 22.6 0.7.6 4.6 S 65 14.08 20.9 66 7 Calm 1009.1 18.2 88 8 51 1 1012.5 11.1 </td <td>2</td> <td>Sa</td> <td>11.9</td> <td>24.9</td> <td>3.2</td> <td>7.0</td> <td>7.8</td> <td>SW</td> <td>37</td> <td>20:17</td> <td>18.9</td> <td>67</td> <td>1</td> <td>W</td> <td> 7</td> <td>1004.6</td> <td>19.4</td> <td>70</td> <td>7</td> <td>E</td> <td>17</td> <td>1001.9</td>	2	Sa	11.9	24.9	3.2	7.0	7.8	SW	37	20:17	18.9	67	1	W	7	1004.6	19.4	70	7	E	17	1001.9
4 Mo 15.0 28.3 0 4.4 10.9 WNW 54 19:10 19:00 73 1 SSE 4 999.6 26.5 36 2 WSW 20 999.2 6 We 11.5 24.9 0 50.0 11.4 W 43 08:17 14.7 54 0 W 28 1016.1 22.3 43 0 ENE 20 1012.0 7 Th 12.7 31.0 0 7.6 7.3 SSW 83 16:25 17.6 39 6 NNW 9 1009.4 30.5 21 3 W 22 1005.7 9 58 13.4 25.6 0 7.6 4.6 S 66 14:08 20.9 66 7 Calm 100.90 118.2 86 7 SSW 35 1007.1 111.05 13.0 101.3 101.4 10.3 101.0 14.5 98 8 E24 1018.9 16.7 7 F SE 22 101.0 </td <td>3</td> <td>Su</td> <td>12.9</td> <td>26.0</td> <td>7.0</td> <td>4.6</td> <td>9.1</td> <td>W</td> <td>41</td> <td>12:52</td> <td>15.0</td> <td>100</td> <td>1</td> <td>WNW</td> <td>11</td> <td>1004.7</td> <td>24.1</td> <td>41</td> <td>5</td> <td>W</td> <td>17</td> <td>1001.2</td>	3	Su	12.9	26.0	7.0	4.6	9.1	W	41	12:52	15.0	100	1	WNW	11	1004.7	24.1	41	5	W	17	1001.2
5 Tu 12.8 22.9 0 9.8 11.0 WNW 59 12:10 16.0 49 2 Cam 1008.1 21.8 24 1 WSW 31 1007.5 6 We 11.5 24.9 0 5.0 11.4 W 306.7 14.7 54 0 W 28 1006.1 22.3 43 0 EV 0 102.0 102.0 102.0 102.0 102.0 102.0 101.0 14.4 48 17.04 16.4 69 3 WNW 6 1019.0 21.4 54 1 NE 26 1017.0 10 Su 16.2 25.5 0 7.6 4.6 S 65 14.08 20.9 66 7 Cam 100.9 13.2 89 8 S 17 1016.3 13.2 89 8 S 17 1016.3 13.2 89 8 S 17 1016.3 13.1 10.0 13.2 89 8 S 17 101.1 14.5 </td <td>4</td> <td>Мо</td> <td>15.0</td> <td>28.3</td> <td>0</td> <td>4.4</td> <td>10.9</td> <td>WNW</td> <td>54</td> <td>19:10</td> <td>19.0</td> <td>73</td> <td>1</td> <td>SSE</td> <td>4</td> <td>999.6</td> <td>26.5</td> <td>36</td> <td>2</td> <td>WSW</td> <td>20</td> <td>998.2</td>	4	Мо	15.0	28.3	0	4.4	10.9	WNW	54	19:10	19.0	73	1	SSE	4	999.6	26.5	36	2	WSW	20	998.2
6 We 11.5 24.9 0 50. 11.4 W 43 08:17 14.7 54 0 W 22 1016.1 22.3 43 0 ENC 22.0 1016.1 7 Th 12.7 31.0 0 7.6 7.8 SW 83 16.25 17.6 39 6 NNW 9 1009.4 30.5 21 3 W 22 1006.7 9 Sa 13.4 25.6 0 7.8 NN 31 18:22 16.2 84 7 WNW 9 1017.3 24.6 55 1 ESE 11 101.5 14.4 4.6 0.0 S 54 00:59 11.0 94 8 SW 13 1016.0 13.2 89 8 S 17 1016.3 13 We 13.7 18.4 3.2 3.2 0.0 E 52 11.01 14.5 98 8 E 24 1017.0 17.3 92 8 ENE 321 1016	5	Tu	12.8	22.6	0	9.8	11.0	WNW	59	12:10	16.0	49	2		Calm	1008.1	21.8	24	1	WSW	31	1007.5
7 Th 12.7 31.0 0 7.6 7.3 SSW 83 16.25 17.6 39 6 NNW 9 1009.4 30.5 21 3 W 22 1007.0 8 Fr 15.8 22.8 0 9.4 8.8 ENE 43 17.04 16.4 69 3 WNW 6 1019.0 21.4 54 1 NE 26 1017.0 10 Su 16.2 25.5 0 7.6 4.6 S 65 14.08 20.9 66 7 Caim 1009.1 18.2 86 7 SSW 35 1007.1 1016.3 13.2 89 8 S 17 1016.3 1016.3 13.2 89 8 S 17 1016.3 11.01 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 8.2 7 N 13 1009.6 22.0 77 7 NE 24 1004.1 1013.1 1014.1 1014.1 14.4	6	We	11.5	24.9	0	5.0	11.4	W	43	08:17	14.7	54	0	W	28	1016.1	22.3	43	0	ENE	20	1012.0
8 Fr 15.8 22.8 0 9.4 8.8 ENE 4.3 17.04 16.4 69 3 WNW 6 1010.0 21.4 54 1 NE 26 1017.0 10 Su 16.2 25.5 0 7.6 4.6 S 65 14.08 20.9 66 7 WNW 6 100.11 18.2 86 7 SSW 35 1007.1 11 Mo 10.3 15.5 14.4 4.6 0.0 S 54 00.9 66 7 E 24 1018.9 16.7 7 FESE 22 1016.3 12 Tu 10.9 17.3 2.0 0.1 ESE 43 07.41 15.0 96 8 E 24 1017.0 17.3 92 8 ENE 31 1004.1 13.1 14.3 14.2 14.04 16.4 59 5 NNW 41	7	Th	12.7	31.0	0	7.6	7.3	SSW	83	16:25	17.6	39	6	NNW	9	1009.4	30.5	21	3	W	22	1005.7
9 Sa 13.4 25.6 0 7.8 10.3 NNE 31 18:22 16.2 84 7 WNW 9 1017.3 24.6 55 1 ESE 11 1012.5 10 Su 16.2 25.5 0 7.6 4.6 S 65 14:08 20.9 66 7 Calm 1009.1 18.2 86 7 SW 35 1007.1 12 Tu 10.9 17.3 2.0 2.2 0.1 ESE 43 07.41 15.0 66 7 E 24 1018.9 16.7 57 7 ESE 22 1016.9 14 Th 14.4 24.1 8.6 5 100.4 17.9 82 7 N 13 1003.4 16.4 59 5 WNW 28 996.6 16 Sa 12.6 23.3 0.8 8.0 8.1 W 74 150.2 17.0 51 3 W 20 1014.6 21.9 51 108.2 10.2 </td <td>8</td> <td>Fr</td> <td>15.8</td> <td>22.8</td> <td>0</td> <td>9.4</td> <td>8.8</td> <td>ENE</td> <td>43</td> <td>17:04</td> <td>16.4</td> <td>69</td> <td>3</td> <td>WNW</td> <td>6</td> <td>1019.0</td> <td>21.4</td> <td>54</td> <td>1</td> <td>NE</td> <td>26</td> <td>1017.0</td>	8	Fr	15.8	22.8	0	9.4	8.8	ENE	43	17:04	16.4	69	3	WNW	6	1019.0	21.4	54	1	NE	26	1017.0
10 Su 16.2 25.5 0 7.6 4.6 S 65 14:08 20.9 66 7 Caim 1009.1 18.2 86 7 SSW 35 1007.1 11 Mo 10.3 15.5 14.4 4.6 0.0 S 54 00:59 11.0 94 8 SW 13 1016.0 13.2 89 8 S 17 1016.3 12 Tu 10.9 17.3 2.0 2.2 0.1 ESE 21 101 14.5 96 8 E 24 1017.0 17.3 92 8 ENE 31 1013.1 14 Th 14.4 24.1 82.7 N 13 1009.6 22.0 77 N NE 4999.6 1003.4 16.4 59 WNW 28 1003.4 16.4 59 WNW 28 1003.0 17.3 S1 103 W 20	9	Sa	13.4	25.6	0	7.8	10.3	NNE	31	18:22	16.2	84	7	WNW	9	1017.3	24.6	55	1	ESE	11	1012.5
11 Mo 10.3 15.5 14.4 4.6 0.0 S 54 00:3 11.0 94 8 SW 13 1016.0 13.2 89 8 S 17 1016.3 12 Tu 10.9 17.3 2.0 2.2 0.1 ESE 43 07:41 15.0 66 7 E 24 1018.9 16.7 57 7 ESE 22 1016.9 13 We 13.7 18.4 3.2 0.0 E 52 11:01 14.5 98 8 E 24 1007.4 15.0 17 16.3 67 5 WSW 24 1003.4 16.4 59 5 WSW 28 999.6 16 Sa 12.5 23.1 0 6.0 12.1 W 44 08:26 16.0 52 1 W 20 1014.6 21.9 51 1 E 19 1013.1 18 Mo 12.3 25.1 0 8.0 SSW 65	10	Su	16.2	25.5	0	7.6	4.6	S	65	14:08	20.9	66	7		Calm	1009.1	18.2	86	7	SSW	35	1007.1
12 Tu 10.9 17.3 2.0 2.2 0.1 ESE 43 07.41 15.0 66 7 E 2.4 1018.9 16.7 57 7 ESE 2.2 1016.9 13 We 13.7 18.4 3.2 3.2 0.0 E 52 11:01 14.5 98 8 E 2.4 1017.0 17.3 92 8 ENE 2.4 100.1 14 Th 14.4 24.1 8.2 3.8 5.4 NNE 59 15.44 17.9 82 7 N 13 100.6 2.2.0 97 7 NE 2.4 100.14.1 16.4 59 5 WNW 28 999.6 16 Sa 12.5 23.1 0 6.0 12.1 W 44 08.0 16.5 85 1 W 101.6 23.8 42 1 ENE 22 1012.7 18 Mo 12.3 25.1 0 8.0 11.9 101.5 85 1	11	Мо	10.3	15.5	14.4	4.6	0.0	S	54	00:59	11.0	94	8	SW	13	1016.0	13.2	89	8	S	17	1016.3
13 We 13.7 18.4 3.2 3.2 0.0 E 52 11:01 14.5 98 8 E 24 1017.0 17.3 92 8 ENE 31 1013.1 14 Th 14.4 24.1 8.2 3.8 5.4 NNE 59 15:44 17.9 82 7 N 13 1009.6 22.0 77 7 NE 24 1004.1 15 Fr 13.1 22.1 10.0 7.2 8.3 WNW 74 12:17 16.3 67 5 WSW 24 1002.9 22.2 36 2 WSW 28 999.6 16 Sa 12.6 23.1 0 6.0 12.1 W 44 08:26 16.0 52 1 W 20 1014.6 21.9 51 1 E 19 1013.1 18 Mo 12.3 25.1 0 8.0 8.1 14:05 16.5 85 1 W 19 1016.8 23.0	12	Tu	10.9	17.3	2.0	2.2	0.1	ESE	43	07:41	15.0	66	7	E	24	1018.9	16.7	57	7	ESE	22	1016.9
14 Th 14.4 Th 14.4 24.1 8.2 3.8 5.4 NNE 59 15:44 17.9 82 7 N 13 1009.6 22.0 77 7 NE 24 1004.1 15 Fr 13.1 22.1 10.0 7.2 8.3 WNW 74 15:02 17.0 51 3 W 26 1002.9 22.2 36 2 WSW 28 903.0 17 Su 12.5 23.1 0 6.0 12.1 W 44 08:26 16.0 52 1 W 20 1014.6 21.9 51 1 E 19 1013.1 18 Mo 12.3 25.1 0 8.0 11.9 ENE 30 14:05 16.5 85 1 W 19 1016.8 23.8 42 1 ENE 20 1014.7 20 We 11.9 23.5 0 4.2 10.4 ESE 31 10:40 15.1 75 5	13	We	13.7	18.4	3.2	3.2	0.0	E	52	11:01	14.5	98	8	E	24	1017.0	17.3	92	8	ENE	31	1013.1
15 Fr 13.1 22.1 10.0 7.2 8.3 WNW 74 12:17 16.3 67 5 WSW 24 1003.4 16.4 59 5 WNW 28 999.6 16 Sa 12.6 23.3 0.8 8.0 8.1 W 74 15:02 17.0 51 3 W 26 1002.9 22.2 36 2 WSW 28 1003.4 17 Su 12.5 23.1 0 6.0 12.1 W 44 08:26 16.0 52 1 W 20 1014.6 21.9 51 1 E 19 1013.1 18 Mo 12.3 25.1 0 8.0 11.9 ENE 30 14:05 16.5 85 1 W 19 1016.8 23.8 42 1 ENE 21 104.7 83 42 1015.6 19.7 68 7 S 30 1014.7 20 We 11.9 23.5 5.1 10.4	14	Th	14.4	24.1	8.2	3.8	5.4	NNE	59	15:44	17.9	82	7	N	13	1009.6	22.0	77	7	NE	24	1004.1
16 Sa 12.6 23.3 0.8 8.0 8.1 W 74 15:02 17.0 51 3 W 26 1002.9 22.2 36 2 WSW 28 1003.0 17 Su 12.5 23.1 0 6.0 12.1 W 44 08:26 16.0 52 1 W 20 1014.6 21.9 51 1 E 19 1013.1 18 M0 12.3 25.1 0 8.0 11.9 ENE 30 14:05 16.5 85 1 W 19 1016.8 23.8 42 1 ENE 20 10:4 ESE 31 10:40 15.1 75 5 W 15 1017.8 23.0 49 2 SE 106.7 20 We 11.9 23.5 0 6.4 10.5 E 26 15.31 18.2 87 3 NW 4 1018.0 24.7 56 2 E 17 1016.7 24.5 72 4 </td <td>15</td> <td>Fr</td> <td>13.1</td> <td>22.1</td> <td>10.0</td> <td>7.2</td> <td>8.3</td> <td>WNW</td> <td>74</td> <td>12:17</td> <td>16.3</td> <td>67</td> <td>5</td> <td>WSW</td> <td>24</td> <td>1003.4</td> <td>16.4</td> <td>59</td> <td>5</td> <td>WNW</td> <td>28</td> <td>999.6</td>	15	Fr	13.1	22.1	10.0	7.2	8.3	WNW	74	12:17	16.3	67	5	WSW	24	1003.4	16.4	59	5	WNW	28	999.6
17 Su 12.5 23.1 0 6.0 12.1 W 44 08:26 16.0 52 1 W 20 1014.6 21.9 51 1 E 19 1013.1 18 Mo 12.3 25.1 0 8.0 11.9 ENE 30 14:05 16.5 85 1 W 19 1016.8 23.8 42 1 ENE 22 1012.7 19 Tu 14.3 24.2 0 7.8 8.6 SSW 65 14:42 19.0 65 3 NNE 6 1015.6 19.7 68 7 S 30 1014.7 20 We 11.9 23.5 0 5.6 11.8 E 28 16:36 17.3 89 2 WNW 11 1017.8 23.0 49 2 E 17 1015.7 22 Fr 15.3 25.1 0 6.4 10.5 E 26 15:31 18.2 87 3 NW 4 1018.	16	Sa	12.6	23.3	0.8	8.0	8.1	W	74	15:02	17.0	51	3	W	26	1002.9	22.2	36	2	WSW	28	1003.0
18 Mo 12.3 25.1 0 8.0 11.9 ENE 30 14:05 16.5 85 1 W 19 1016.8 23.8 42 1 ENE 22 1012.7 19 Tu 14.3 24.2 0 7.8 8.6 SSW 65 14:42 19.0 65 3 NNE 6 1015.6 19.7 68 7 S 30 1014.7 20 We 11.9 23.5 0 4.2 10.4 ESE 31 10:40 15.1 75 5 W 15 1017.8 23.0 49 2 SE 15 1016.7 21 Th 13.4 24.8 0 5.6 11.8 E 28 16:36 17.3 89 2 WNW 11 1017.8 24.7 56 2 E 17 1015.7 22 Fr 15.3 25.1 0 6.4 10.5 E 26 15:31 18.2 87 3 NW 10115.5	17	Su	12.5	23.1	0	6.0	12.1	W	44	08:26	16.0	52	1	W	20	1014.6	21.9	51	1	E	19	1013.1
19 Tu 14.3 24.2 0 7.8 8.6 SSW 65 14:42 19.0 65 3 NNE 6 1015.6 19.7 68 7 S 30 1014.7 20 We 11.9 23.5 0 4.2 10.4 ESE 31 10:40 15.1 75 5 W 15 1017.8 23.0 49 2 SE 15 1016.7 21 Th 13.4 24.8 0 5.6 11.8 E 28 16:36 17.3 89 2 WNW 11 1017.8 24.7 56 2 E 17 1015.7 22 Fr 15.3 25.1 0 6.4 10.5 E 26 15:31 18.2 87 3 NW 4 1018.0 24.2 63 2 E 17 1015.4 23 Sa 16.5 22.8 3.6 6.2 11.3 SSW 52 0415 18.7 76 6 S 19 101	18	Mo	12.3	25.1	0	8.0	11.9	ENE	30	14:05	16.5	85	1	W	19	1016.8	23.8	42	1	ENE	22	1012.7
20 We 11.9 23.5 0 4.2 10.4 ESE 31 10:40 15.1 75 5 W 15 1017.8 23.0 49 2 SE 15 1016.7 21 Th 13.4 24.8 0 5.6 11.8 E 28 16.36 17.3 89 2 WNW 11 1017.8 24.7 56 2 E 17 1015.7 22 Fr 15.3 25.1 0 6.4 10.5 E 26 15:31 18.2 87 3 NW 4 1018.0 24.2 63 2 E 17 1015.4 23 Sa 16.1 25.2 0 6.8 11.3 NE 35 17.09 20.0 90 1 NE 15 1013.7 24.5 72 4 E 22 1010.0 24 Su 16.5 22.8 3.6 6.2 11.3 SSW 52 04:15 18.7 76 6 S 19 10	19	Tu	14.3	24.2	0	7.8	8.6	SSW	65	14:42	19.0	65	3	NNE	6	1015.6	19.7	68	7	S	30	1014.7
21 Th 13.4 24.8 0 5.6 11.8 E 28 16:36 17.3 89 2 WNW 11 1017.8 24.7 56 2 E 17 1015.7 22 Fr 15.3 25.1 0 6.4 10.5 E 26 15:31 18.2 87 3 NW 4 1018.0 24.2 63 2 E 17 1015.7 23 Sa 16.1 25.2 0 6.8 11.3 NE 35 17:09 20.0 90 1 NE 15 1013.7 24.5 72 4 E 22 1010.0 24 Su 16.5 22.8 3.6 6.2 11.3 SSW 52 04:15 18.7 76 6 S 19 1015.5 21.8 54 1 ESE 26 1014.2 25 Mo 13.3 23.2 2.2 6.4 11.8 ESE 41 14:55 16.7 78 3 W 17 <td< td=""><td>20</td><td>We</td><td>11.9</td><td>23.5</td><td>0</td><td>4.2</td><td>10.4</td><td>ESE</td><td>31</td><td>10:40</td><td>15.1</td><td>75</td><td>5</td><td>W</td><td>15</td><td>1017.8</td><td>23.0</td><td>49</td><td>2</td><td>SE</td><td>15</td><td>1016.7</td></td<>	20	We	11.9	23.5	0	4.2	10.4	ESE	31	10:40	15.1	75	5	W	15	1017.8	23.0	49	2	SE	15	1016.7
22 Fr 15.3 25.1 0 6.4 10.5 E 26 15.31 18.2 87 3 NW 4 1018.0 24.2 63 2 E 17 1015.4 23 Sa 16.1 25.2 0 6.8 11.3 NE 35 17:09 20.0 90 1 NE 15 1013.7 24.5 72 4 E 22 1010.0 24 Su 16.5 22.8 3.6 6.2 11.3 SSW 52 04:15 18.7 76 6 S 19 1015.5 21.8 54 1 ESE 26 1014.2 25 Mo 13.3 23.2 2.2 6.4 11.8 ESE 41 14:55 16.7 78 3 W 17 1016.5 20.9 52 1 SE 22 1014.7 26 Tu 12.7 23.4 0 10.0 12.0 ESE 31 13:57 17.2 65 2 WNW 9	21	Th	13.4	24.8	0	5.6	11.8	E	28	16:36	17.3	89	2	WNW	11	1017.8	24.7	56	2	E	17	1015.7
23 Sa 16.1 25.2 0 6.8 11.3 NE 35 17:09 20.0 90 1 NE 15 1013.7 24.5 72 4 E 22 1010.0 24 Su 16.5 22.8 3.6 6.2 11.3 SSW 52 04:15 18.7 76 6 S 19 1015.5 21.8 54 1 ESE 26 1014.2 25 Mo 13.3 23.2 2.2 6.4 11.8 ESE 41 14:55 16.7 78 3 W 17 1016.5 20.9 52 1 SE 22 1014.7 26 Tu 12.7 23.4 0 10.0 12.0 ESE 31 13:57 17.2 65 2 WNW 9 1020.5 21.5 51 3 ESE 22 1014.6 27 We 16.0 25.4 0 5.8 11.1 ENE 28 13:46 19.1 76 6 W 15	22	Fr	15.3	25.1	0	6.4	10.5	E	26	15:31	18.2	87	3	NW	4	1018.0	24.2	63	2	E	17	1015.4
24 Su 16.5 22.8 3.6 6.2 11.3 SSW 52 04:15 18.7 76 6 S 19 1015.5 21.8 54 1 ESE 26 1014.2 25 Mo 13.3 23.2 2.2 6.4 11.8 ESE 41 14:55 16.7 78 3 W 17 1016.5 20.9 52 1 SE 22 1014.7 26 Tu 12.7 23.4 0 10.0 12.0 ESE 31 13:57 17.2 65 2 WNW 9 1020.5 21.5 51 3 ESE 22 1017.8 27 We 16.0 25.4 0 5.8 11.1 ENE 28 13:46 19.1 76 6 E 4 1019.2 24.7 63 1 ENE 22 1014.6 28 Th 16.3 30.4 0 5.6 9.4 E 28 12:19 20.1 79 6 W 15	23	Sa	16.1	25.2	0	6.8	11.3	NE	35	17:09	20.0	90	1	NE	15	1013.7	24.5	72	4	E	22	1010.0
25 Mo 13.3 23.2 2.2 6.4 11.8 ESE 41 14:55 16.7 78 3 W 17 1016.5 20.9 52 1 SE 22 1014.7 26 Tu 12.7 23.4 0 10.0 12.0 ESE 31 13:57 17.2 65 2 WNW 9 1020.5 21.5 51 3 ESE 22 1014.7 27 We 16.0 25.4 0 5.8 11.1 ENE 28 13:46 19.1 76 6 E 4 1019.2 24.7 63 1 ENE 22 1014.6 28 Th 16.3 30.4 0 5.6 9.4 E 28 12:19 20.1 79 6 W 15 1012.4 26.8 56 7 E 17 1008.5 29 Fr 20.1 33.0 0 7.2 8.0 W 81 15:26 24.3 42 7 NNW 9	24	Su	16.5	22.8	3.6	6.2	11.3	SSW	52	04:15	18.7	76	6	S	19	1015.5	21.8	54	1	ESE	26	1014.2
26 Tu 12.7 23.4 0 10.0 12.0 ESE 31 13:57 17.2 65 2 WNW 9 1020.5 21.5 51 3 ESE 22 1017.8 27 We 16.0 25.4 0 5.8 11.1 ENE 28 13:46 19.1 76 6 E 4 1019.2 24.7 63 1 ENE 22 1014.6 28 Th 16.3 30.4 0 5.6 9.4 E 28 12:19 20.1 79 6 W 15 1012.4 26.8 56 7 E 17 1008.5 29 Fr 20.1 33.0 0 7.2 8.0 W 81 15:26 24.3 42 7 NNW 9 1002.8 31.6 31 2 W 50 1001.5 30 Sa 16.0 20.9 0 11.4 5.5 SSE 41 14:04 17.2 57 7 SSE 17 1	25	Мо	13.3	23.2	2.2	6.4	11.8	ESE	41	14:55	16.7	78	3	W	17	1016.5	20.9	52	1	SE	22	1014.7
27 We 16.0 25.4 0 5.8 11.1 ENE 28 13:46 19.1 76 6 E 4 1019.2 24.7 63 1 ENE 22 1014.6 28 Th 16.3 30.4 0 5.6 9.4 E 28 12:19 20.1 79 6 W 15 1012.4 26.8 56 7 E 17 1008.5 29 Fr 20.1 33.0 0 7.2 8.0 W 81 15:26 24.3 42 7 NNW 9 1002.8 31.6 31 2 W 50 1001.5 30 Sa 16.0 20.9 0 11.4 5.5 SSE 41 14:04 17.2 57 7 SSE 17 1017.9 19.1 50 7 SE 24 1017.9 31 Su 11.8 23.0 0 8.6 7.9 ENE 31 17:48 16.3 63 3 WNW 13 102	26	Tu	12.7	23.4	0	10.0	12.0	ESE	31	13:57	17.2	65	2	WNW	9	1020.5	21.5	51	3	ESE	22	1017.8
28 Th 16.3 30.4 0 5.6 9.4 E 28 12:19 20.1 79 6 W 15 1012.4 26.8 56 7 E 17 1008.5 29 Fr 20.1 33.0 0 7.2 8.0 W 81 15:26 24.3 42 7 NNW 9 1002.8 31.6 31 2 W 50 1001.5 30 Sa 16.0 20.9 0 11.4 5.5 SSE 41 14:04 17.2 57 7 SSE 17 1017.9 19.1 50 7 SE 24 1017.9 31 Su 11.8 23.0 0 8.6 7.9 ENE 31 16.3 63 3 WNW 13 1025.9 21.6 47 1 E 20 1024.3	27	We	16.0	25.4	0	5.8	11.1	ENE	28	13:46	19.1	76	6	E	4	1019.2	24.7	63	1	ENE	22	1014.6
29 Fr 20.1 33.0 0 7.2 8.0 W 81 15:26 24.3 42 7 NNW 9 1002.8 31.6 31 2 W 50 1001.5 30 Sa 16.0 20.9 0 11.4 5.5 SSE 41 14:04 17.2 57 7 SSE 17 1017.9 19.1 50 7 SE 24 1017.9 31 Su 11.8 23.0 0 8.6 7.9 ENE 31 17:48 16.3 63 3 WNW 13 1025.9 21.6 47 1 E 20 1024.3	28	Th	16.3	30.4	0	5.6	9.4	E	28	12:19	20.1	79	6	W	15	1012.4	26.8	56	7	E	17	1008.5
30 Sa 16.0 20.9 0 11.4 5.5 SSE 41 14:04 17.2 57 7 SSE 17 1017.9 19.1 50 7 SE 24 1017.9 31 Su 11.8 23.0 0 8.6 7.9 ENE 31 17:48 16.3 63 3 WNW 13 1025.9 21.6 47 1 E 20 1024.3	29	Fr	20.1	33.0	0	7.2	8.0	W	81	15:26	24.3	42	7	NNW	9	1002.8	31.6	31	2	W	50	1001.5
31 Su 11.8 23.0 0 8.6 7.9 ENE 31 17:48 16.3 63 3 WNW 13 1025.9 21.6 47 1 E 20 1024.3	30	Sa	16.0	20.9	0	11.4	5.5	SSE	41	14:04	17.2	57	7	SSE	17	1017.9	19.1	50	7	SE	24	1017.9
	31	Su	11.8	23.0	0	8.6	7.9	ENE	31	17:48	16.3	63	3	WNW	13	1025.9	21.6	47	1	E	20	1024.3
Statistics for October 2021	Statisti	cs for O	ctober 2	021													· · ·					
Mean 13.9 24.2 6.6 8.4 17.3 71 4 12 1013.2 22.2 55 3 23 1010.7		Mean	13.9	24.2		6.6	8.4				17.3	71	4		12	1013.2	22.2	55	3		23	1010.7
Lowest 10.3 15.5 2.2 0.0 11.0 39 0 Calm 999.6 13.2 21 0 ESE 11 998.2		Lowest	10.3	15.5		2.2	0.0				11.0	39	0		Calm	999.6	13.2	21	0	ESE	11	998.2
Highest 20.1 33.0 14.4 11.4 12.1 SSW 83 24.3 100 8 W 28 1025.9 31.6 92 8 W 50 1024.3		Highest	20.1	33.0	14.4	11.4	12.1	SSW	83		24.3	100	8	W	28	1025.9	31.6	92	8	W	50	1024.3
Total 54.6 203.4 261.3 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Total			54.6	203.4	261.3															

Temperature, humidity and rainfall observations are from Sydney (Observatory Hill) {station 066214}. Pressure, cloud, evaporation and sunshine observations are from Sydney Airport AMO {station 066037}. Wind observations are from Fort Denison {station 066022}

Sydney Airport is about 10 km to the south of Observatory Hill.

IDCJDW2124.202110 Prepared at 16:00 UTC on 2 Dec 2021 Copyright © 2021 Bureau of Meteorology

Users of this product are deemed to have read the information and accepted the conditions described in the notes at http://www.bom.gov.au/climate/dwo/IDCJDW0000.pdf

Sydney, New South Wales November 2021 Daily Weather Observations

Most observations from Observatory Hill, but some from Fort Denison and Sydney Airport.

Australian Government

Bureau of Meteorology

		Ten	nps	Pain	Evan	Sun	Max	k wind g	ust			9a	am					3p	om		
Date	Day	Min	Max	Rain	Evap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	Мо	12.9	24.6	0	5.2	4.3	ENE	33	12:00	17.8	70	7	W	4	1026.5	21.6	57	7	NE	17	1024.0
2	Tu	16.4	25.9	0	6.6	11.1	ENE	43	16:58	21.0	72	3	E	11	1027.7	25.0	56	5	ENE	30	1026.4
3	We	17.3	25.1	0	7.4	10.9	NE	46	13:40	21.3	60	3	NNE	20	1026.9	24.8	51	7	NE	26	1022.9
4	Th	18.2	20.7	0	10.0	0.0	ENE	22	08:03	20.4	73	8	E	13	1021.5	20.1	86	8	NE	11	1020.6
5	Fr	16.7	25.0	7.6	1.4	1.6	ENE	41	14:21	19.4	90	8	ENE	9	1021.5	23.1	69	7	ENE	24	1018.9
6	Sa	16.2	26.0	0	4.6	11.6	NNE	48	17:52	20.0	78	2	E	13	1015.9	25.2	57	1	NE	22	1010.7
7	Su	17.9	26.1	0.4	7.6	0.5	W	30	07:15	19.6	89	8	W	13	1009.8	19.8	84	8	NNW	7	1006.8
8	Мо	17.8	24.8	9.6	1.0	7.2	ESE	30	12:41	19.6	92	7	E	6	1008.2	23.2	67	6	ESE	19	1007.7
9	Tu	17.1	24.8	1.4	6.8	8.2	ENE	28	17:34	18.9	83	7	SSW	15	1013.0	23.7	68	6	ENE	15	1010.7
10	We	18.8	21.1	0	4.4	0.4				20.9	85	7	NW	9	1009.1	19.5	98	8	ESE	4	1006.9
11	Th	17.5	19.4	17.6	1.2	0.0	SSE	44	22:06	18.4	86	8	SSE	26	1006.5	17.6	83	8	SSE	19	1005.9
12	Fr	13.0	22.4	16.8	5.2	4.0	NW	39	22:35	14.6	99	8	W	20	998.1	20.4	73	6	SSE	17	994.5
13	Sa	14.6	21.4	0.2	4.4	7.5	WNW	69	14:30	17.6	50	3	WNW	33	998.2	20.6	42	7	WNW	37	997.4
14	Su	13.3	23.2	0.4	10.2	10.7	NW	67	16:49	17.4	47	7	WNW	28	1007.7	23.1	32	5	W	35	1003.9
15	Мо	13.0	24.1	0.8	6.4	11.8	WSW	54	17:32	16.8	41	1	W	30	1007.5	21.3	31	3	WNW	31	1007.0
16	Tu	13.7	21.6	0	8.8	13.0	ESE	41	14:16	17.0	41	1	WSW	20	1015.9	20.1	44	1	ESE	26	1017.1
17	We	13.5	22.5	0	8.0	10.1	E	31	15:05	17.2	63	5	SSE	11	1024.6	22.0	55	2	E	19	1022.6
18	Th	14.9	25.3	0	8.0	11.3	NE	44	16:36	19.9	71	3	NNE	19	1021.2	24.5	62	1	NE	26	1015.5
19	Fr	19.0	30.5	1.0	7.6	3.4	SSW	59	17:01	19.1	89	8	ESE	6	1013.4	29.4	45	8	ENE	24	1010.0
20	Sa	17.3	21.0	0.2	4.2	0.2	SSE	37	17:51	19.2	84	8	E	4	1010.7	18.6	81	8	SSE	19	1010.8
21	Su	15.3	19.2	13.0	3.6	0.0	ESE	52	20:27	16.0	97	8	S	17	1016.3	16.0	98	8	SSE	28	1015.8
22	Мо	15.4	22.3	18.4	2.0	4.0	SSE	44	10:37	18.8	74	7	SSE	28	1022.4	21.8	64	5	SSE	24	1021.1
23	Tu	16.3	22.7	2.8	4.8	2.6	ESE	30	12:00	18.8	88	7	ESE	20	1021.2	21.9	78	7	ESE	13	1019.1
24	We	17.8	27.6	0.4	2.2	3.8	NE	48	15:58	21.0	90	8	ESE	7	1017.3	26.3	71	7	ENE	26	1014.0
25	Th	19.8	24.5	6.0	5.0	0.2	NE	31	16:45	21.1	98	8	E	6	1011.7	23.5	90	7	NE	11	1007.2
26	Fr	16.5	18.7	21.4	8.8	0.0	S	63	13:45	17.1	98	8	SSW	26	1009.0	18.3	86	8	S	33	1009.9
27	Sa	15.2	18.7	17.0	2.6	0.7	SSE	59	12:23	15.2	95	8	S	22	1018.1	18.3	68	7	S	33	1018.7
28	Su	15.1	21.2	2.0	4.6	4.1	SSE	46	07:49	17.5	75	5	SSE	28	1022.4	19.7	56	7	S	26	1021.1
29	Мо	14.0	23.3	0	4.0	3.2	ESE	28	11:31	18.6	67	7	S	11	1021.1	20.5	60	6	E	13	1018.5
30	Tu	18.1	23.3	0	5.8	0.0	NE	26	20:17	20.3	80	8	E	6	1018.7	21.8	86	8	ESE	11	1016.5
Statistic	cs for No	ovember	2021	· · · ·																	
	Mean	16.1	23.2		5.4	4.9				18.7	77	6		16	1015.4	21.7	66	6		21	1013.4
[Lowest	12.9	18.7		1.0	0.0				14.6	41	1	#	4	998.1	16.0	31	1	ESE	4	994.5
[Highest	19.8	30.5	21.4	10.2	13.0	WNW	69		21.3	99	8	WNW	33	1027.7	29.4	98	8	WNW	37	1026.4
	Total			137.0	162.4	146.4															

Temperature, humidity and rainfall observations are from Sydney (Observatory Hill) {station 066214}. Pressure, cloud, evaporation and sunshine observations are from Sydney Airport AMO {station 066037}. Wind observations are from Fort Denison {station 066022}

Sydney Airport is about 10 km to the south of Observatory Hill.

IDCJDW2124.202111 Prepared at 13:00 UTC on 2 Dec 2021 Copyright © 2021 Bureau of Meteorology

Users of this product are deemed to have read the information and accepted the conditions described in the notes at http://www.bom.gov.au/climate/dwo/IDCJDW0000.pdf

Sydney, New South Wales December 2021 Daily Weather Observations

Most observations from Observatory Hill, but some from Fort Denison and Sydney Airport.

Australian Government

** Bureau of Meteorology

		Ten	nps	Dain	Evan	Sun	Max	x wind g	ust			9a	am					3	pm		
Date	Day	Min	Max	Rain	Evap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	We	19.3	26.8	1.0	2.0	6.9	E	33	11:49	22.8	80	7	NE	11	1016.3	26.2	61	5	ENE	20	1014.6
2	Th	18.3	27.4	0	6.4	10.9	ENE	37	16:18	22.8	79	3	ESE	6	1017.2	27.1	63	1	E	26	1015.2
3	Fr	18.5	27.3	0.4	8.8	8.0	S	57	12:43	23.3	75	0	E	11	1014.2	22.9	73	8	SSE	31	1015.3
4	Sa	17.9	23.1	0.2	5.6	0.2	SSE	54	14:37	19.5	86	8	S	19	1013.8	22.1	61	7	SSE	31	1013.5
5	Su	16.8	19.7	0.4	8.0	0.0	S	43	01:06	17.3	86	8	SSW	6	1021.7	18.7	62	8	ESE	24	1022.2
6	Мо	16.7	23.3	1.0	5.0	0.0	E	31	01:58	19.7	65	8	E	13	1020.4	20.9	60	8	NE	17	1017.6
7	Tu	17.5	26.9	0	3.0	6.6	NNE	43	15:33	21.4	72	7	W	7	1012.7	26.2	68	3	ENE	20	1008.9
8	We	17.5	20.1	15.4	5.4	0.0	S	56	01:59	17.9	89	8	SSW	22	1014.5	18.7	84	8	S	17	1013.0
9	Th	16.2	24.7	14.2	1.8	8.0	W	39	01:13	19.8	87	6	SSE	13	1010.7	23.6	74	5	SE	20	1007.6
10	Fr	13.9	22.7	18.4	6.4	4.7	WNW	56	10:50	18.2	63	1	WNW	19	1005.7	15.6	94	8	W	24	1006.4
11	Sa	14.1	22.6	10.0	5.2	8.0	S	59	14:08	17.0	68	7	SSW	20	1014.9	21.6	55	3	S	39	1014.8
12	Su	15.1	23.6	0.4	7.4	10.5	SSE	44	12:18	18.4	71	6	SSW	20	1018.5	22.0	58	2	S	28	1016.6
13	Мо	16.2	24.8	0	7.8	11.6	ESE	33	12:06	20.6	57	3	SSW	11	1016.5	23.7	56	1	ESE	19	1014.0
14	Tu	14.9	25.8	0	8.0	11.6	ESE	26	13:04	20.4	72	7	WNW	7	1015.0	25.3	59	7	E	20	1014.6
15	We	16.3	28.0	0	5.0	12.1	SSW	57	19:12	21.4	76	0	WSW	6	1013.7	27.0	51	1	ENE	20	1008.8
16	Th	20.0	25.7	6.2	11.6	6.3	SSE	41	14:14	21.8	82	7	S	17	1013.1	22.7	73	7	SE	20	1013.6
17	Fr	18.4	26.4	0	6.2	6.3	ENE	41	17:39	21.4	79	7	S	4	1018.4	26.0	60	3	E	24	1015.3
18	Sa	19.0	30.9	0	5.2	10.8	SSW	59	22:31	23.9	77	7	E	11	1013.9	29.5	63	5	NE	13	1009.5
19	Su	21.4	34.6	3.4	11.4	4.4	WSW	78	14:24	26.9	69	7	NNE	13	1009.3	33.1	36	7	W	31	1006.0
20	Мо	20.4	29.1	0.2	8.0	10.4	ENE	31	15:39	24.4	76	7	SSE	11	1014.1	28.1	70	1	E	20	1011.2
21	Tu	21.2	31.5	0	7.2	13.4	ESE	28	12:57	26.1	62	1	S	9	1012.5	30.3	42	1	SE	13	1009.9
22	We	21.3	28.5	0	12.2	2.5	S	33	23:41	22.8	78	8	SSW	11	1012.6	28.1	62	7	SE	20	1010.9
23	Th	21.0	27.0	18.0	6.2	1.3	ENE	35	14:45	22.5	95	8	NNE	4	1012.5	26.9	84	7	ENE	20	1010.8
24	Fr	19.8	28.1	10.6	1.6	9.8	SSW	37	02:34	21.6	82	4	S	22	1015.3	27.7	67	1	ESE	17	1013.2
25	Sa	20.7	29.4	0	5.0	10.6	ENE	44	14:53	24.4	80	3	E	6	1014.9	28.9	67	1	NE	28	1012.0
26	Su	20.4	27.3	0	12.8	4.0	SSW	56	16:58	24.8	78	7	SSE	19	1015.0	24.4	75	7	S	20	1013.1
27	Мо	18.4	22.8	5.0	6.4	1.6	S	59	11:37	19.7	79	7	SSW	26	1017.8	21.5	67	7	S	30	1017.3
28	Tu	16.1	22.5	18.0	6.4	3.5	SSE	46	23:22	17.7	83	7	WSW	13	1020.0	20.8	65	7	ENE	17	1019.2
29	We	14.9	23.8	5.4	5.4	7.8	SSW	28	13:15	17.3	89	6	W	19	1019.3	19.6	88	7	N	7	1017.4
30	Th	15.7	27.2	4.6	5.0	12.9	NE	41	16:47	20.7	75	1	WNW	13	1017.7	26.6	59	1	E	24	1015.9
31	Fr	17.6	28.1	0	11.2	12.6	ENE	46	14:54	22.4	73	1	NNE	17	1016.4	27.4	61	1	NE	22	1013.9
Statistic	s for De	cember	2021											,							
	Mean	17.9	26.1		6.7	7.0				21.3	76	5		13	1015.1	24.6	65	4		22	1013.3
	Lowest	13.9	19.7		1.6	0.0				17.0	57	0	#	4	1005.7	15.6	36	1	N	7	1006.0
	Highest	21.4	34.6	18.4	12.8	13.4	WSW	78		26.9	95	8	SSW	26	1021.7	33.1	94	8	S	39	1022.2
	Total			132.8	207.6	217.3															
									-												

Temperature, humidity and rainfall observations are from Sydney (Observatory Hill) {station 066214}. Pressure, cloud, evaporation and sunshine observations are from Sydney Airport AMO {station 066037}. Wind observations are from Fort Denison {station 066022}

Sydney Airport is about 10 km to the south of Observatory Hill.

IDCJDW2124.202112 Prepared at 13:00 UTC on 7 Jan 2022 Copyright © 2022 Bureau of Meteorology

Users of this product are deemed to have read the information and accepted the conditions described in the notes at http://www.bom.gov.au/climate/dwo/IDCJDW0000.pdf

B – Photos of Real-Time Equipment

Figure B-1 N1 Pitt Street North

Figure B-2 N2 Pitt Street South (facing Pitt Bathurst)

Figure B-3 N3 Pitt Street South (facing Pitt Street)

C – Attended Monitoring Photos

Figure C-1 R5 Attended Monitoring 05/11/2021

Figure C-2 R5 Attended Monitoring 10/11/2021

D – Calibration Certificates

NATacoustic

Acoustic Calibration & Testing Laboratory

Level 1, 418A Elizabeth Street., Surry Hills NSW 2010 AUSTRALIA Ph: (02) 8218 0570 email: service@natacoustic.com.au website: www.natacoustic.com.au A division of Renzo Tonin & Associates (NSW) Pty Ltd ABN 29 117 462 861

Certificate of Calibration Sound Level Meter

Calibration Date 17/01/2020 Job No RB762 Client Name RENZO TONIN & ASSOCIATES (NSW) PTY LTD Client Address LEVEL 1 418A ELIZABETH ST SURRY HILLS 2010

Test Item

Operator JA

Instrument Make	NTI	Model	XL2	Serial No	#A2A-13500-E0 #RTA07-020
Microphone Make	NTI	Model	MC230	Serial No	#9533
Preamplifier Make	NTI	Model	MA220	Serial No	#6540
Ext'n Cable Make	NTI	Model	N/A	Serial No	N/A
Accessories	Nil			Firmware	4.2

SLM Type Filters Class

		-				
Environmental	Measured					
Conditions	Start	End				
Air Temp. (°C)	23.2	23.5				
Rel. Humidity (%)	58.9	57.4				
Air Pressure (kPa)	100.6	99.9				

Applicable Standards: Periodic tests were performed in accordance with procedures from IEC 61672-3 :2013 and IEC 61260-3 :2016

Applicable Work Instruction:

RWi-08 SLM & Calibrator Verification

Laboratory Equipment : B&K4226 Multifunction Acoustic Calibrator SN 2288472 Agilent Function Generator Model 33220A SN MY43004013 Agilent Digital Multimeter Model 34401A SN MY41004386

Traceability: Accredited for compliance with ISO/IEC 17025 - Calibration. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full.

Scope: This certificate is issued on the basis that the instrument complies with the manufacturer's specification. See "Sound Level Meter Verification - Summary of Tests" page for an itemised list of results for each test.

Uncertainty: The uncertainty is stated at a confidence level of 95% using a k factor of 2.

Calibration Statement:

The sound level meter submitted for testing has successfully completed the periodic tests of IEC 61672-3:2013 and IEC 61260-3:2016, for the environmental conditions under which the tests were performed. However, no general statement or conclusion can be made about conformance of the sound level meter to the full specifications of IEC 61672-1:2013 and IEC 61260-1:2014 because (a) evidence was not publicly available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-12013 and IEC 61260-12014 or correction data for acoustical test of frequency weighting were not provided in the Instruction Manual and (b) because the periodic tests of IEC 61672-32013 and IEC 61260-32016 cover only a limited subset of the specifications in IEC 61672-12013 and IEC 61260-12014.

Authorized Signatory: NATA NATA Accredited Laboratory Number 14966 WORLD RECOGNISED ACCREDITATION Print Name: Renzo Tonin Date: 22 January 2020

Template Document Name: RQT-05 (rev 65) SLM ISO Verification

NATacoustic Sound Level Meter Verification - Summary of Tests									
Calibration Date 17/01/2020 Job No Client Name RENZO TONIN & ASSOCIATES (NSW) PTY LTD	RB762		Operator	JA					
Client Address LEVEL 1 418A ELIZABETH ST SURRY HILLS 2010									
1. Instrument Information & Reference Conditions									
Instrument Make NTI Model Microphone Make NTI Model	I XL2 I MC230		Serial No Serial No	#A2A-13500-E0 #9533	#RTA07-020				
Preamplifier Make NTI Model	I MA220		Serial No	#6540					
Ext'n Cable Make NTI Model	I N/A		Serial No Firmware	N/A 4 2					
			- Thinware	7.2					
Freq Weightings FLAT No A Yes C Time Weightings Fast Yes Slow Yes Impulse	Yes	Z Yes							
	100								
SLM Type 1 Filter Class 1									
Instruction Manual is Available						Yes			
2. Preliminary Inspection and Power Supply				Lo	gger Inspected	Yes			
				Calibration E	quipment Okay	Yes			
				Power St Power S	upply Ok (Start)	Yes			
3. Environmental Conditions			Environmer	tal Conditions	Meas	ured End			
				Air Temp. (°C)	23.2	23.5			
			Re	el. Humidity (%)	58.9	57.4			
			All	Conforming	Yes	Yes			
					Value /	Uncort			
Test Description	ı				Conforming	(+/-)			
(a) Initial Calibration	1		Calibratio		1000.0	N/A			
		Indicated L	evel Before A	djustment (dB)	113.9	0.11			
		Indicated	Level After A	djustment (dB)	114.0	0.11			
5(a). Self-Generated Noise, Microphone Installed		Stability During	Continuous	Operation (dB)	16.7	0.09			
5(b). Self-Generated Noise, Electrical				A	8.8	0.09			
				z	12.0 18.2	0.09			
6. Acoustical Signal Test				125 Hz	Yes	0.42			
				1 kHz 8 kHz	Yes	0.42			
7. Electrical Frequency Weighting				A	Yes	0.09			
				C 7	Yes	0.09			
8. Frequency & Time Weightings 1kHz		8(a). Frequenc	y Weighting	C	Yes	0.09			
					Yes N/A	0.09			
		8(b). Tim	e Weighting	Slow	Yes	0.09			
9(a) Level Linearity 8kHz (Increasing)				Leq	Yes	0.09			
9(b). Level Linearity 8kHz (Decreasing)				Conforming	Yes	0.13			
10(a). Level Linearity Including the Level Range (Reference Signal)				Conforming	Yes	0.13			
11. Toneburst Response				Fast	Yes	0.13			
				Slow	Yes	0.13			
12. Peak C sound level				8 kHz	Yes	0.09			
12. Overlead indication				500 Hz	Yes	0.09			
				Latches	N/A	N/A			
14. High-level Stability				Conforming	Yes	0.09			
15(a). Octave Band Filter Relative Attenuation (≤2kHz)				Conforming	Yes	0.09			
15(b). Octave Band Filter Relative Attenuation (>2kHz)				Conforming	Yes	0.09			
16. Octave Band Filter Relative Attenuation at Midband Frequency				Conforming	Yes	0.09			
17(a) Optovo Dand Eilfer Lavel Linearity 24 Ella (harras-lave)				24 EU-	Vaa	0.42			
17(a). Octave Band Filter Level Linearity 31.5Hz (Increasing) 17(b). Octave Band Filter Level Linearity 1kHz (Increasing)				1kHz	Yes	0.13			
17(c). Octave Band Filter Level Linearity 16kHz (Increasing)				16kHz	Yes	0.13			
18(a). Octave Band Filter Level Linearity 31.5Hz (Decreasing)				31.5Hz	Yes	0.13			
18(b). Octrave Band Filter Level Linearity 1kHz (Decreasing)				1kHz	Yes	0.13			
Toto, Octave Band Filter Level Linearity 16KHZ (Decreasing)				токни	res	0.13			
19(a). Octave Level Linearity Including the Level range (31.5Hz)				31.5Hz	Yes	0.13			
19(D). Octave Level Linearity Including the Level range (1kHz) 19(c). Octave Level Linearity Including the Level range (16kHz)				1kHz 16kHz	Yes Yes	0.13			
20(a). Octave Band Filter Lower Limit (Reference Range) 20(b). Octave Band Filter Lower Limit (Lowest Range)				Conforming Conforming	Yes Yes	0.09			
21(a). Third Octave Band Filter Relative Attenuation (≤31.5Hz) 21(b). Third Octave Band Filter Relative Attenuation (40Hz-315Hz)				Conforming Conforming	Yes Yes	0.09			
21(c). Third Octave Band Filter Relative Attenuation (400Hz-3.15kHz)				Conforming	Yes	0.09			
21(ɑ). Third Octave Band Filter Relative Attenuation (≥4kHz)				Conforming	Yes	0.09			

22. Third Octave Band Filter Relative Attenuation at Midband Frequency	Conforming	Yes	0.09
23(a). Third Octave Band Filter Level Linearity 31.5Hz (Increasing)	31.5Hz	Yes	0.13
23(b). Third Octave Band Filter Level Linearity 1kHz (Increasing)	1kHz	Yes	0.13
23(c). Third Octave Band Filter Level Linearity 16kHz (Increasing)	16kHz	Yes	0.13
24(a). Third Octave Band Filter Level Linearity 31.5Hz (Decreasing)	31.5Hz	Yes	0.13
24(b). Third Octave Band Filter Level Linearity 1kHz (Decreasing)	1kHz	Yes	0.13
24(c). Third Octave Band Filter Level Linearity 16kHz (Decreasing)	16kHz	Yes	0.13
25(a). Third Octave Level Linearity Including the Level range (31.5Hz)	31.5Hz	Yes	0.13
25(b). Third Octave Level Linearity Including the Level range (1kHz)	1kHz	Yes	0.13
25(c). Third Octave Level Linearity Including the Level range (16kHz)	16kHz	Yes	0.13
26(a). Octave Band Filter Lower Limit (Reference Range)	Conforming	Yes	0.09
26(b). Octave Band Filter Lower Limit (Lowest Range)	Conforming	Yes	0.09
SLM Overall Conforming		Y	es

Accredited for compliance with ISO/IEC 17025 - Calibration. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full. Periodic tests were performed in accordance with procedures from IEC 61672-3 :2013 and IEC 61260-3 :2016.

Checked

Template Document Name: RQT-05 (rev 65) SLM ISO Verification

NATacoustic

Acoustic Calibration & Testing Laboratory

Level 1, 418A Elizabeth Street., Surry Hills NSW 2010 AUSTRALIA Ph: (02) 8218 0570 email: service@natacoustic.com.au website: www.natacoustic.com.au A division of Renzo Tonin & Associates (NSW) Pty Ltd ABN 29 117 462 861

Certificate of Calibration Sound Level Meter

 Calibration Date
 19/12/2019
 Job No
 RB759

 Client Name
 RENZO TONIN & ASSOCIATES (NSW) PTY LTD
 Client Address LEVEL 1 418A ELIZABETH ST SURRY HILLS 2010

Test Item

Instrument Make	NTI	Model	XL2-TA	Serial No	#A2A-13529-E0 #RTA07-021
Microphone Make	NTI	Model	MC230A	Serial No	#A1498
Preamplifier Make	NTI	Model	MA220	Serial No	#7064
Ext'n Cable Make	NTI	Model	N/A	Serial No	N/A
Accessories	Nil			Firmware	42

SLM Type 1 1 Filters Class

		-
Environmental	Meas	sured
Conditions	Start	End
Air Temp. (°C)	23.7	25.1
Rel. Humidity (%)	57.4	55.1
Air Pressure (kPa)	101.0	101.3

Applicable Standards: Periodic tests were performed in accordance with procedures from IEC 61672-3 :2013 and IEC 61260-3 :2016

Applicable Work Instruction:

RWi-08 SLM & Calibrator Verification

Laboratory Equipment : B&K4226 Multifunction Acoustic Calibrator SN 2288472 Agilent Function Generator Model 33220A SN MY43004013 Agilent Digital Multimeter Model 34401A SN MY41004386

Traceability: Accredited for compliance with ISO/IEC 17025 - Calibration. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full.

Scope: This certificate is issued on the basis that the instrument complies with the manufacturer's specification. See "Sound Level Meter Verification - Summary of Tests" page for an itemised list of results for each test.

Uncertainty: The uncertainty is stated at a confidence level of 95% using a k factor of 2.

Calibration Statement:

The sound level meter submitted for testing has successfully completed the periodic tests of IEC 61672-3:2013 and IEC 61260-3:2016. for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2017 and IEC 61260-2:2017, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 and IEC 61260-1:2014, the sound level meter submitted for testing conforms to the class 1 specifications of IEC 61672-1:2013 and IEC 61260-1:2014.

Authorized Signatory:

Operator JA

Print Name: Renzo Tonin Date: 20 December 2019

Template Document Name: RQT-05 (rev 65) SLM ISO Verification

NATacoustic Sound Level Meter Verification - Summary of Tests						
Calibration Date 19/12/2019 Job No Client Name RENZO TONIN & ASSOCIATES (NSW) PTY LTD Client Address LEVEL 1 418A ELIZABETH ST SURRY HILLS 2010	RB759		Operator	JA		
Model XL2-TA Serial No #A2A-13529-E0 # Microphone Make NTI Model MC230A Serial No #A1498 Preamplifier Make NTI Model MA220 Serial No #7064 Ext'n Cable Make NTI Model N/A Serial No N/A Accessories Nii Firmware 4.2 Serial No Firmware 4.2					#RTA07-021	
Freq Weightings FLAT No A Yes C Time Weightings Fast Yes Slow Yes Impulse	Yes Yes	Z Yes]			
SLM Type 1 Filter Class 1						
Instruction Manual is Available						Yes
2. Preliminary Inspection and Power Supply				Lo	gger Inspected	Yes
				Calibration E	quipment Okay	Yes
				Power Su Power S	upply Ok (Start) upply Ok (End)	Yes Yes
3. Environmental Conditions					Meas	ured
			Environme	ntal Conditions	Start	End
			P	Air Temp. (°C)	23.7 57.4	25.1 55.1
			Air	Pressure (kPa)	101.0	101.3
				Conforming	Yes	Yes
Test Description	I				Value / Conforming	Uncert (+/-)
4(a). Initial Calibration			Calibratio	n Frequency Hz	1000 0	N/A
		Indicated L	evel Before A	djustment (dB)	114.2	0.11
		Indicated	Level After A	djustment (dB)	114.0	0.11
		Stability During	Continuous	Operation (dB)	Yes	N/A
5(a). Self-Generated Noise, Microphone Installed				A	16.6	0.09
S(b). Sell-Generaled Noise, Electrical				ĉ	12.7	0.09
				Z	18.8	0.09
6. Acoustical Signal Test				125 Hz	Yes	0.42
				1 kHz	Yes	0.42
7. Electrical Frequency Weighting					Yes	0.09
				С	Yes	0.09
				Z	Yes	0.09
8. Frequency & Time Weightings 1kHz		8(a). Frequenc	y Weighting	C	Yes	0.09
				FLAT	N/A	0.09
		8(b). Tim	e Weighting	Slow	Yes	0.09
0(a) Lovel Linearity 8kHz (Increasing)				Leq	Yes	0.09
9(b). Level Linearity 8kHz (Increasing) 9(b). Level Linearity 8kHz (Decreasing)				Conforming	Yes	0.13
10(a). Level Linearity Including the Level Range (Reference Signal)				Conforming	Yes	0.13
10(b). Level Linearity Including the Level range (5dB Above Under-range)				Conforming	Yes	0.13
11. Loneburst Response				Fast	Yes	0.13
				SEL/Leq	Yes	0.13
12. Peak C sound level				8 kHz	Yes	0.09
42. Overland indication				500 Hz	Yes	0.09
13. Overroad indication				Latches	res N/A	0.09 N/A
14. High-level Stability				Conforming	Yes	0.09
15(a). Octave Band Filter Relative Attenuation (S2kHz)				Conforming	Yes	0.09
16. Octave Band Filter Relative Attenuation at Midband Frequency				Conforming	Yes	0.09
17(a). Octave Band Filter Level Linearity 31.5Hz (Increasing) 31.5Hz				Yes	0.13	
17(c). Octave Band Filter Level Linearity 16kHz (Increasing)				16kHz	Yes	0.13
18(a). Octave Band Filter Level Linearity 31.5Hz (Decreasing)				31.5Hz	Yes	0.13
18(b). Octrave Band Filter Level Linearity 1kHz (Decreasing) 1kHz 18(c). Octave Band Filter Level Linearity 16kHz (Decreasing) 16kHz			Yes Yes	0.13 0.13		
10(a) Optimized and Linearity Including the Level reprint (24 511-)				24 EU-	Vec	0.12
19(a). Octave Level Linearity Including the Level range (31.5Hz) 31. 19(b). Octave Level Linearity Including the Level range (1kHz) 4			31.5Hz 1kHz	res Yes	0.13	
113(p). Octave Level Linearity including the Level range (1KHz) 1kHz 19(c). Octave Level Linearity Including the Level range (16kHz) 16kHz				Yes	0.13	
20(a). Octave Band Filter Lower Limit (Reference Range) 20(b). Octave Band Filter Lower Limit (Lowest Range)				Conforming Conforming	Yes Yes	0.09
				Contra 1	M	0.00
21(a). Inird Octave Band Filter Relative Attenuation (≤31.5Hz) 21(b). Third Octave Band Filter Relative Attenuation (40Hz-315Hz)				Conforming	Yes	0.09
21(c). Third Octave Band Filter Relative Attenuation (400Hz-3.15kHz)				Conforming	Yes	0.09
21(d). Third Octave Band Filter Relative Attenuation (≥4kHz)				Conforming	Yes	0.09

22. Third Octave Band Filter Relative Attenuation at Midband Frequency	Conforming	Yes	0.09	
23(a). Third Octave Band Filter Level Linearity 31.5Hz (Increasing)	31.5Hz	Yes	0.13	
23(b). Third Octave Band Filter Level Linearity 1kHz (Increasing)	1kHz	Yes	0.13	
23(c). Third Octave Band Filter Level Linearity 16kHz (Increasing)	16kHz	Yes	0.13	
24(a). Third Octave Band Filter Level Linearity 31.5Hz (Decreasing)	31.5Hz	Yes	0.13	
24(b). Third Octave Band Filter Level Linearity 1kHz (Decreasing)	1kHz	Yes	0.13	
24(c). Third Octave Band Filter Level Linearity 16kHz (Decreasing)	16kHz	Yes	0.13	
25(a). Third Octave Level Linearity Including the Level range (31.5Hz)	31.5Hz	Yes	0.13	
25(b). Third Octave Level Linearity Including the Level range (1kHz)	1kHz	Yes	0.13	
25(c). Third Octave Level Linearity Including the Level range (16kHz)	16kHz	Yes	0.13	
26(a). Octave Band Filter Lower Limit (Reference Range)	Conforming	Yes	0.09	
26(b). Octave Band Filter Lower Limit (Lowest Range)	Conforming	Yes	0.09	
SLM Overall Conforming			Yes	

Accredited for compliance with ISO/IEC 17025 - Calibration. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full. Periodic tests were performed in accordance with procedures from IEC 61672-3 :2013 and IEC 61260-3 :2016.

Checked

Template Document Name: RQT-05 (rev 65) SLM ISO Verification

NATacoustic

Acoustic Calibration & Testing Laboratory

Level 1, 418A Elizabeth Street., Surry Hills NSW 2010 AUSTRALIA Ph: (02) 8218 0570 email: service@natacoustic.com.au website: www.natacoustic.com.au A division of Renzo Tonin & Associates (NSW) Pty Ltd ABN 29 117 462 861

Certificate of Calibration Sound Level Meter

 Calibration Date
 20/12/2019
 Job No
 RB759

 Client Name
 RENZO TONIN & ASSOCIATES (NSW) PTY LTD
 Client Address LEVEL 1 418A ELIZABETH ST SURRY HILLS 2010

Test Item

Operator AM

Instrument Make	NTI	Model	XL2-TA	Serial No	#A2A-13528-E0 #RTA07-022
Microphone Make	NTI	Model	MC230A	Serial No	#A14673
Preamplifier Make	NTI	Model	MA220	Serial No	#7164
Ext'n Cable Make	NTI	Model	N/A	Serial No	N/A
Accessories	Nil			Firmware	42

SLM Type Filters Class 1 1

Environmental	Meas	sured
Conditions	Start	End
Air Temp. (°C)	25.1	25.4
Rel. Humidity (%)	55.7	55.1
Air Pressure (kPa)	101.4	101.5

Applicable Standards: Periodic tests were performed in accordance with procedures from IEC 61672-3 :2013 and IEC 61260-3 :2016

Applicable Work Instruction:

RWi-08 SLM & Calibrator Verification

Laboratory Equipment : B&K4226 Multifunction Acoustic Calibrator SN 2288472 Agilent Function Generator Model 33220A SN MY43004013 Agilent Digital Multimeter Model 34401A SN MY41004386

Traceability: Accredited for compliance with ISO/IEC 17025 - Calibration. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full.

Scope: This certificate is issued on the basis that the instrument complies with the manufacturer's specification. See "Sound Level Meter Verification - Summary of Tests" page for an itemised list of results for each test.

Uncertainty: The uncertainty is stated at a confidence level of 95% using a k factor of 2.

Calibration Statement:

The sound level meter submitted for testing has successfully completed the periodic tests of IEC 61672-3:2013 and IEC 61260-3:2016. for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2017 and IEC 61260-2:2017, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 and IEC 61260-1:2014, the sound level meter submitted for testing conforms to the class 1 specifications of IEC 61672-1:2013 and IEC 61260-1:2014.

Template Document Name: RQT-05 (rev 65) SLM ISO Verification

NATacoustic Sound Level Meter Verification - Summary of Tests						
Calibration Date 20/12/2019 Job No Client Name RENZO TONIN & ASSOCIATES (NSW) PTY LTD Client Address LEVEL 1 418A ELIZABETH ST SURRY HILLS 2010	RB759		Operator	AM		
Model XL2-TA Serial Model #A2A-13528-E0 # Microphone Make NTI Model MC230A Serial No #A14673 Preamplifier Model Model MA220 Serial No #7164 Ext'n Cable Make NTI Model N/A Serial No N/A Accessories Nii Serial Serial No N/A				#RTA07-022		
Freq Weightings FLAT No A Yes C Time Weightings Fast Yes Slow Yes Impulse	Yes Yes	Z Yes]			
SLM Type 1 Filter Class 1						
Instruction Manual is Available						Yes
2. Preliminary Inspection and Power Supply				Lo	gger Inspected	Yes
				Calibration E	quipment Okay	Yes
				Power Su Power S	upply Ok (Start) upply Ok (End)	Yes Yes
3. Environmental Conditions					Meas	ured
			Environmer	ntal Conditions	Start	End
			P	Air Temp. (°C)	25.1 55.7	25.4
			Air	Pressure (kPa)	101.4	101.5
			7	Conforming	Yes	Yes
Test Description	1				Value / Conforming	Uncert (+/-)
			0	- Francisco - 17	4000.0	× 1/A
4(a). Initial Calibration		Indicated I	Calibration	h Frequency Hz	1000.0	N/A 0.11
		Indicated	Level After A	diustment (dB)	114.2	0.11
		Stability During	Continuous	Operation (dB)	Yes	N/A
5(a). Self-Generated Noise, Microphone Installed				Á	16.5	0.09
5(b). Self-Generated Noise, Electrical				Α	9.1	0.09
				C	12.4	0.09
C. Accuration Simplificat				۲ 125 Hz	18.6	0.09
IV. AUGUSTICAI SIYIIAI 1631				125 HZ 1 kHz	Yes	0.42
				8 kHz	Yes	0.60
7. Electrical Frequency Weighting				A	Yes	0.09
				C	Yes	0.09
O Francisco & Time Weightings (U.)		0(a) Francisco	Wainktinn	2	Yes	0.09
8. Frequency & Time weightings TkHz		o(a). Frequenc	sy weighting	z	Yes	0.09
				FLAT	N/A	0.09
		8(b). Tim	e Weighting	Slow	Yes	0.09
9(a) Level Linearity 8kHz (Increasing)				Leq	Yes	0.09
9(b). Level Linearity 8kHz (Decreasing)				Conforming	Yes	0.13
10(a). Level Linearity Including the Level Range (Reference Signal)				Conforming	Yes	0.13
10(b). Level Linearity Including the Level range (5dB Above Under-range)				Conforming	Yes	0.13
11. Toneburst Response				Fast	Yes	0.13
				Slow SEL/Leg	Yes	0.13
12. Peak C sound level				8 kHz	Yes	0.09
				500 Hz	Yes	0.09
13. Overload indication				Conforming	Yes	0.09
14 High Javal Stability				Latches	N/A	N/A
				contorning	162	0.03
15(a). Octave Band Filter Relative Attenuation (≤2kHz) 15(b). Octave Band Filter Relative Attenuation (>2kHz)				Conforming Conforming	Yes Yes	0.09
16. Octave Band Filter Relative Attenuation at Midband Frequency				Conforming	Yes	0.09
17/a) Octave Band Filter Level Linearity 21 5Hz (Increasing)					Yes	0.13
17(b). Octave Band Filter Level Linearity 1kHz (Increasing) 31.5Hz 17(b). Octave Band Filter Level Linearity 1kHz (Increasing) 1kHz				Yes	0.13	
17(c). Octave Band Filter Level Linearity 16kHz (Increasing)				16kHz	Yes	0.13
18(a). Octave Band Filter Level Linearity 31.5Hz (Decreasing) 31.5Hz				Yes	0.13	
18(b). Octrave Band Filter Level Linearity 1kHz (Decreasing) 1kHz 18(c). Octave Band Filter Level Linearity 16kHz (Decreasing) 16kHz				Yes Yes	0.13 0.13	
19(a) Octave Level Linearity Including the Level range (31 5Hz) 31 5i				31.5Hz	Yes	0,13
19(b). Octave Level Linearity including the Level range (1kHz) 31.5H 19(b). Octave Level Linearity including the Level range (1kHz) 1kH			1kHz	Yes	0.13	
19(c). Octave Level Linearity Including the Level range (16kHz) 16kHz				Yes	0.13	
20(a). Octave Band Filter Lower Limit (Reference Range) 20(b). Octave Band Filter Lower Limit (Lowest Rance)				Conforming Conformina	Yes Yes	0.09
				0000		0.00
21(a). Third Octave Band Filter Relative Attenuation (\$31.5Hz) 21(b). Third Octave Band Filter Relative Attenuation (40Hz-315Hz)				Conforming	res Yes	0.09
21(c). Third Octave Band Filter Relative Attenuation (400Hz-3.15kHz)				Conforming	Yes	0.09
21(d). Third Octave Band Filter Relative Attenuation (≥4kHz)				Conforming	Yes	0.09
1						

22. Third Octave Band Filter Relative Attenuation at Midband Frequency	Conforming	Yes	0.09	
23(a). Third Octave Band Filter Level Linearity 31.5Hz (Increasing)	31.5Hz	Yes	0.13	
23(b). Third Octave Band Filter Level Linearity 1kHz (Increasing)	1kHz	Yes	0.13	
23(c). Third Octave Band Filter Level Linearity 16kHz (Increasing)	16kHz	Yes	0.13	
24(a). Third Octave Band Filter Level Linearity 31.5Hz (Decreasing)	31.5Hz	Yes	0.13	
24(b). Third Octave Band Filter Level Linearity 1kHz (Decreasing)	1kHz	Yes	0.13	
24(c). Third Octave Band Filter Level Linearity 16kHz (Decreasing)	16kHz	Yes	0.13	
25(a). Third Octave Level Linearity Including the Level range (31.5Hz)	31.5Hz	Yes	0.13	
25(b). Third Octave Level Linearity Including the Level range (1kHz)	1kHz	Yes	0.13	
25(c). Third Octave Level Linearity Including the Level range (16kHz)	16kHz	Yes	0.13	
26(a). Octave Band Filter Lower Limit (Reference Range)	Conforming	Yes	0.09	
26(b). Octave Band Filter Lower Limit (Lowest Range)	Conforming	Yes	0.09	
SLM Overall Conforming			Yes	

Accredited for compliance with ISO/IEC 17025 - Calibration. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full. Periodic tests were performed in accordance with procedures from IEC 61672-3 :2013 and IEC 61260-3 :2016.

Checked

Template Document Name: RQT-05 (rev 65) SLM ISO Verification

Acoustic Unit 36/14 Loyalty Rd Research Ph: +61 2 9484 0800 A.B.N. 65 160 399 119 Labs Pty Ltd www.acousticresearch.com.au

Sound Level Meter IEC 61672-3.2013

Calibration Certificate

Calibration Number C21038

	ODD (
Chent Details	CDR (Contractors	
	Level	4, 201 Elizabeth Street	
	Sydne	v NSW 2000	
	e) and	J 113 H 2000	
Equipment Tested/ Model Number :	Rion 1	NL-20	
Instrument Serial Number :	00143	337	
Microphone Serial Number :	94478		
Dra amplifian Social Number -	10004		
r re-ampliner serial Number :	10074		
Pre-Test Atmospheric Conditions		Post-Test Atmospheric Conditi	ions
Ambient Temperature : 23°C		Ambient Temperature :	22.6°C
Relative Humidity • 52.5%		Relative Humidity -	50.2%
Denometrie Brasquire e 100 79LDe		Devemetrie Dreamy	100.77LDa
barometric Pressure: 100.76KPa		barometric r ressure :	100.77KPa
Calibration Technician : Jeff Yu	v.	Secondary Check: Max Moore	
Calibration Date: 29 Jan 2021		Report Issue Date : 29 Jan 2021	
Approved Signatory :	, Mar	Olims .	Ken Williams
Clause and Characteristic Tested R	esult	Clause and Characteristic Tested	Result
12: Acoustical Sig. tests of a frequency weighting	Pass	17: Level linearity incl. the level range con	ntrol Pass
13: Electrical Sig. tests of frequency weightings	Pass	18: Toneburst response	Pass
14: Frequency and time weightings at 1 kHz	Pass	19: C Weighted Peak Sound Level	N/A
15: Long Term Stability	Pass	20: Overload Indication	Pass
16: Level linearity on the reference level range	Pass	21: High Level Stability	Pass

The sound level meter submitted for testing has successfully completed the class 2 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed.

However, no general statement or conclusion can be made about conformance of the sound level meter to the full requirements of IEC 61672-1:2013 because evidence was not publicly available, from an independent testing organisation responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013 and because the periodic tests of IEC 61672-3:2013 cover only a limited subset of the specifications in IEC 61672-1:2013.

Least Uncertainties of Measurement -				
Acoustic Tests Environmental Conditions				
125Hz	$\pm 0.12 dB$	Temperature	± 0.2 °C	
1kH=	$\pm 0.11 dB$	Relative Humidity	$\pm 2.4\%$	
8kH=	±0.13dB	Barometric Pressure	$\pm 0.015 kPa$	
Electrical Tests	$\pm 0.10 dB$			

All uncertainties are derived at the 95% confidence level with a coverage factor of 2.

Acoustic Research Labs Pty Ltd is NATA Accredited Laboratory Number 14172. Accredited for compliance with ISO/IEC 17025 - calibration.

The results of the tests, calibrations and/or measurements included in this document are traceable to SI units.

NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

Acoustic Research Labs Pty Ltd Unit 36/14 Loyalty Rd North Rocks NSW AUSTRALIA 2151 Ph: +61 2 9484 0800 A.B.N. 65 160 399 119 www.acousticresearch.com.au

Sound Calibrator IEC 60942-2017

Calibration Certificate

Calibration Number C21042

	Cli	ient Details	CPB Contra	ictors		
			Level 4, 20	I Elizabeth Street		
			Sydney NS	W 2000		
Equipm	ent Tested/ Mode	l Number :	Pulsar Mod	el 106		
	Instrument Seria	l Number :	93277			
		Å 4 I	ante Can Ital			
	A see to form 4. TTD	Atmosph	ieric Conditi	ons		
	Ambient l'en	iperature :	22.9°C			
	Relative	Humidity :	50.7%			
	Barometric	Pressure :	100.74kPa			
Calibration Techni	cian : Jeff Yu		Sec	ondary Check:	Max Moore	
Calibration	Date: 29 Jan 202	21	Rep	ort Issue Date :	29 Jan 202	1
	2:					
	Approved	Signatory :	18 Alan	ns		Ken Williams
Characteristic Teste	d	Re	sult			
Generated Sound Press	ure Level	Pa	755			
Frequency Generated		Pa	255			
Total Distortion		Pa	755			
	Nominal Level	Nominal 1	Frequency	Measured Le	vel Meas	ured Frequency
	94	10	000	94.01		1000.30
The sound calibrator has b the sound pressure	een shown to conform t level(s) and frequency(o the class 2 req (ies) stated, for t	uirements for pe he environmenta	riodic testing, describe I conditions under wh	ed in Annex B of ich the tests were	EIEC 60942:2017 for e performed.
		Least Uncerta	inties of Measur	ement -		
Specific Tests	0.1.(10)		Environmenta	l Conditions		
Generated SPL	$\pm 0.14dB$		Tempera	ture	±0.2°C	
Frequency	±0.09%		Relative	Humidity	+2.4%	
Distortion	±0.09%		Baromet	ric Pressure	±0.015kPa	

All uncertainties are derived at the 95% confidence level with a coverage factor of 2.

* The tests <1000 kHz are not covered by Acoustic Research Labs Pty Ltd NATA accreditation.

This calibration certificate is to be read in conjunction with the calibration test report.

Acoustic Research Labs Pty Ltd is NATA Accredited Laboratory Number 14172. Accredited for compliance with ISO/IEC 17025 - calibration.

The results of the tests, calibrations and/or measurements included in this document are traceable to SI units.

NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

PAGE 1 OF 1

Yeo-Kal Electronics Pty Ltd 18/26 Wattle Road, Brookvale NSW Australia Telephone +61 2 9939 2616 Fax +61 2 9905 1100

CERTIFICATE OF CALIBRATION

Model: 611

Make: Yeo-Kal Electronics Pty Ltd.

Serial Number 426 Date/s of Calibration 15/07/21

Standards:

Temperature: Mercury in glass thermometer. Certified thermometer R246

Salinity: 35.00ppt seawater standardised with a model 610MK1V Salinometer against IAPSO Standard Seawater P101 K15= 1.00002 (Chlorinity 19.377). The conversion between conductivity and salinity is performed using the Practical Salinity Scale. UNESCO Technical Papers in marine Science 1983.

Conductivity: 1413us/cm. The conversion of low conductivity raw data to conductivity referenced to 25Deg C is performed using constants derived from the HANDBOOK OF CHEMISTRY AND PHYSICS 1963, Chemical Rubber Publishing Company, Page 2691, Conductivity of Standard Solutions using KCL, 0.001M Solution.

Dissolved Oxygen: 100% saturated distilled water. The YK611 measures dissolved oxygen as % saturation and then it automatically converts the reading to milligrams per litre. This conversion is calculated from the dissolved oxygen solubility tables found in International Oceanographic Tables vol.2. National Institute of Oceanography 1972. Zero oxygen achieved by purging probe with nitrogen/ or zero dummy plug.

Turbidity: Formazin 200ntu prepared as per Standard Methods. Ontu prepared using distilled water.

pH: 4 and 10 buffers prepared as per Standard Methods. Ref: Durst, R.A. 1975 Standard Reference Materials: Standardization of pH Measurements NBS Spec Publ.260-53, National Bur. Standards, Washington D.C.

ORP: Buffers 7 and 10 with quinhydrone prepared as per standard methods and American Society for Testing and Materials. The redox potential conforms to International Standard IEC 746-5 "Expressions of Performance of Electrochemical Analyzers, Part 5: Oxidation-Reduction potential". In accordance with this standard, the Redox potential is referred to the standard ("normal") hydrogen electrode (NHE) and is expressed in mV.

Depth: Calibrated using a Druck DPI 610 pressure calibrator / 2.0 meter water column.

Model 611- Serial 426

At the time of calibration the sensors were calibrated to the following accuracy.

Temperature: */. 0.05 ° C Salinity: +/-0.1ppt Conductivity: +/- 5us/cm pH: +/- 0.03 ORP: +/- 3mv Dissolved Oxygen: Normally (*/. 0.5%). Turbidity: +/- 0.3ntu for range of 0-200ntu.

Yeo-Kal Reference: RFS 2714

Calibrated by: G. Yeomans

÷.

SERIAL NUMBER: CAL DATE/TIME	426 SENSOR	OFFSET	SLOPE
15/07/21 08:25 15/07/21 09:05 15/07/21 09:00 15/07/21 09:22 15/07/21 09:14 15/07/21 09:18 15/07/21 09:25	TEMPERATURE SAL/COND MSCM COND USCM DISSOLVED OXYGEN PH ORP TURBIDITY	2412.842 1.000 9.651 -18.000 3998.747 515.000 -280.000	115.513 20665.807 4.826 2.922 -581.728 2.881 3.440

NATacoustic

Acoustic Calibration & Testing Laboratory

Level 1, 418A Elizabeth Street., Surry Hills NSW 2010 AUSTRALIA Ph: (02) 8218 0570 email: service@natacoustic.com.au website: v A division of Renzo Tonin & Associates (NSW) Pty Ltd ABN 29 117 462 861 www.natacoustic.com.au

Certificate of Calibration Sound Level Meter

Calibration Date 18/01/2021 Job N Client Name RENZO TONIN & ASSOCIATES (NSW) PTY LTD Job No RB844 Operator AM Client Address LEVEL 1 418A ELIZABETH ST SURRY HILLS 2010

Test Item

Instrument Make NTI	Model XL2-TA	Serial No #A2A-08038-E0 #RTA07-004
Microphone Make NTI	Model MC230	Serial No #8045
Preamplifier Make NTI	Model MA220	Serial No #3336
Ext'n Cable Make NTI	Model N/A	Serial No N/A
Accessories Nil		Firmware 4.20

SLM Type Filters Class 1

Environmental	Measured		
Conditions	Start	End	
Air Temp. (°C)	23.5	23.5	
Rel. Humidity (%)	56.2	54.9	
Air Pressure (kPa)	100.4	101.3	

Applicable Standards: Periodic tests were performed in accordance with procedures from IEC 61672-3 :2013 and IEC 61260-3 :2016

Applicable Work Instruction:

RWi-08 SLM & Calibrator Verification

Laboratory Equipment : B&K4226 Multifunction Acoustic Calibrator SN 2288472 Agilent Function Generator Model 33220A SN MY43004013 Agilent Digital Multimeter Model 34401A SN MY41004386

Traceability: The results of the tests and measurements included in this document are traceable via the test methods described under each test, and by the use of the above equipment, which has been calibrated by NATA accredited calibration facilities This document shall not be reproduced, except in full.

Scope: This certificate is issued on the basis that the instrument complies with the manufacturer's specification.

See "Sound Level Meter Verification - Summary of Tests" page for an itemised list of results for each test.

14966

Uncertainty: The uncertainty is stated at a confidence level of 95% using a k factor of 2.

Calibration Statement:

The sound level meter submitted for testing has successfully completed the periodic tests of IEC 61672-3:2013 and IEC 61260-3:2016, for the environmental conditions where means administrate the resting the statement or conclusion can be made about conformance of the sound level meter to the full specifications of IEC 61672-1:2013 and IEC 61260-1:2014 because (a) evidence was not publicly available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 and IEC 61260-1:2014 or correction data for acoustical test of frequency weighting were not provided in the Instruction Manual and (b) because the periodic tests of IEC 61672-3:2013 and IEC 61260-3:2016 cover only a limited subset of the specifications in IEC 61672-1:2013 and IEC 61260-1:2014.

Authorized Signatory:

(week

Print Name: Ariel Michael Date: 19/01/2021

Template Document Name: RQT-05 (rev 72) SLM ISO Verification

NA Sound Level Meter Ve	ATaco erifica	ustic tion - Summ	hary of ⁻	Tests							
Calibration Date 18/01/2021 Job No Client Name RENZO TONIN & ASSOCIATES (NSW) PTY LTD	RB844		Operator	AM							
Client Address LEVEL 1 418A ELIZABETH ST SURRY HILLS 2010											
Instrument Make NTI Model Microphone Make NTI Model Preamplifier Make NTI Model Ext'n Cable Make NTI Model Accessories Nii	XL2-TA MC230 MA220 N/A		Serial No Serial No Serial No Serial No Firmware	#A2A-08038-E0 #8045 #3336 N/A 4.20	#RTA07-004						
Freq Weightings FLAT No A Yes C Yes Z Yes Time Weightings Fast Yes Slow Yes Impulse Yes SLM Type 1											
Filter Class 1											
Instruction Manual is Available			1			Yes					
2. Preliminary Inspection and Power Supply				Lo Calibration E	gger Inspected quipment Okay	Yes Yes					
				Power Su Power S	upply Ok (Start) upply Ok (End)	Yes Yes					
3. Environmental Conditions					Meas	ured					
			Environme	Air Temp. (°C)	Start 23.5	End 23.5					
			Re	el. Humidity (%)	56.2	54.9					
			Air	Conforming	100.4 Yes	101.3 Yes					
Test Description	1				Value / Conforming	Uncert (+/-)					
4(a). Initial Calibration			Calibratio	n Frequency Hz	1000.0	N/A					
		Indicated L	evel Before A	Adjustment (dB)	114.1	0.11					
		Stability During	g Continuous	Operation (dB)	Yes	N/A					
5(a). Self-Generated Noise, Microphone Installed				A	17.0	0.09					
				C	14.5	0.09					
6 Accuration Signal Toot				Z	20.2	0.09					
				1 kHz	Yes	0.42					
7 Electrical Fraguency Weighting				8 kHz	Yes	0.60					
7. Electrical Frequency Weighting				C	Yes	0.09					
9. Eroquanov 9. Timo Wajabinga 1kHz		P(a) Fraguan	Woighting	Z	Yes	0.09					
o. Frequency & Time weightings Tknz		o(a). Frequenc	sy weighting	Z	Yes	0.09					
		9(b) Tin	o Woighting	FLAT	N/A	0.09					
		0(D). Th	le weighting	Leq	Yes	0.09					
9(a). Level Linearity 8kHz (Increasing)				Conforming	Yes	0.13					
10(a). Level Linearity Including the Level Range (Reference Signal)				Conforming	Yes	0.13					
10(b). Level Linearity Including the Level range (5dB Above Under-range)				Conforming	Yes	0.13					
				Slow	Yes	0.13					
12. Peak C sound lovel				SEL/Leq	Yes	0.13					
12. Fear & Sound level				500 Hz	Yes	0.09					
13. Overload indication				Conforming	Yes N/A	0.09 N/A					
14. High-level Stability				Conforming	Yes	0.09					
15(a). Octave Band Filter Relative Attenuation (≤2kHz)				Conforming	Yes	0.09					
15(b). Octave Band Filter Relative Attenuation (>2kHz)				Conforming	Yes	0.09					
16. Octave Band Filter Relative Attenuation at Midband Frequency				Conforming	Yes	0.09					
17(a). Octave Band Filter Level Linearity 31.5Hz (Increasing)				31.5Hz	Yes	0.13					
17(b). Octave Band Filter Level Linearity 1kHz (Increasing)				1kHz	Yes	0.13					
17(c). Octave Band Filter Level Linearity 16kHz (Increasing)				16kHz	Yes	0.13					
18(a). Octave Band Filter Level Linearity 31.5Hz (Decreasing)				31.5Hz	Yes	0.13					
18(b). Octave Band Filter Level Linearity 1kHz (Decreasing) 18(c). Octave Band Filter Level Linearity 16kHz (Decreasing)				1kHz 16kHz	Yes Yes	0.13					
				04 511-	Ver	0.42					
Install Second state Second state											
19(c). Octave Level Linearity Including the Level range (16kHz)				16kHz	Yes	0.13					
20(a). Octave Band Filter Lower Limit (Reference Range)				Conforming	Yes	0.09					
20(b). Octave Band Filter Lower Limit (Lowest Range)				Conforming	Yes	0.09					
21(a). Third Octave Band Filter Relative Attenuation (≤31.5Hz)				Conforming	Yes	0.09					
21(b). Third Octave Band Filter Relative Attenuation (40Hz-315Hz) 21(c). Third Octave Band Filter Relative Attenuation (400Hz-3 15kHz)				Conforming	Yes	0.09					
21(d). Third Octave Band Filter Relative Attenuation (≥4kHz)				Conforming	Yes	0.09					
22. Third Octave Band Filter Relative Attenuation at Midhand Frequency				Conforming	Yes	0.09					
				comorning	100	5.00					

23(a). Third Octave Band Filter Level Linearity 31.5Hz (Increasing)	31.5Hz	Yes	0.13
23(b). Third Octave Band Filter Level Linearity 1kHz (Increasing)	1kHz	Yes	0.13
23(c). Third Octave Band Filter Level Linearity 16kHz (Increasing)	16kHz	Yes	0.13
24(a). Third Octave Band Filter Level Linearity 31.5Hz (Decreasing)	31.5Hz	Yes	0.13
24(b). Third Octave Band Filter Level Linearity 1kHz (Decreasing)	1kHz	Yes	0.13
24(c). Third Octave Band Filter Level Linearity 16kHz (Decreasing)	16kHz	Yes	0.13
25(a). Third Octave Level Linearity Including the Level range (31.5Hz)	31.5Hz	Yes	0.13
25(b). Third Octave Level Linearity Including the Level range (1kHz)	1kHz	Yes	0.13
25(c). Third Octave Level Linearity Including the Level range (16kHz)	16kHz	Yes	0.13
26(a). Octave Band Filter Lower Limit (Reference Range)	Conforming	Yes	0.09
26(b). Octave Band Filter Lower Limit (Lowest Range)	Conforming	Yes	0.09
SLM Overall Conforming	Yes		

Accredited for compliance with AS ISO/IEC 17025 - General requirements for the competence of testing and calibration laboratories. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

This document shall not be reproduced, except in full. Periodic tests were performed in accordance with procedures from IEC 61672-3 :2013 and IEC 61260-3 :2016.

Checked

Template Document Name: RQT-05 (rev 72) SLM ISO Verification

1(a). Instrument Information										
Calibration Date 18/01	/2021	1 1	Joh	No	PB8//	Operator	ΔM			
	/2021	1	500		ND044	Operator	Alvi			
Client Name RENZO TON	NIN & ASSO	CIATES (NSW	/) PTY LTD							
Client Address LEVEL 410		IT SI SUKK								
		1. Ins	trument In	formation						
Instrument Make NTI		Model	XL2-TA		Serial	#A2A-08038-E0 #RTA07-004				
Microphone Make NTI		Model	MC230		Serial	#8045 pF	15			
Preampifier Make NTI		Model	MA220		Serial	#3336				
Accessories Nil		WOUEI			Firmware	4.20				
· · · · ·										
	<u>A</u>	Yes								
Freq Weightings	Z	Yes								
	FLAT	No								
	Fast	Yes								
Time Weightings	Slow	Yes								
	Impulse	Yes								
	Lea	Yes								
Functions	SEL	Yes								
	Peak	Yes								
	Pange	Indicato	r Range	Primary	Range					
Instrument Ranges	Name	Low dB	High dB	Low dB	High dB					
1	HIGH	40	140	60	134					
2	MID	20	120	40	120	-				
4	LOW	0	100	20	100	-				
5										
6										
8						-				
9						j				
10 Chock List			01							
CHECK LIST			UK							
Reference Range	MID									
Ref. SPL @ 1kHz	114									
Linearity Limits on Ref range	Low dB	High dB								
1kHz Leq (A weighting)	40.0	120.0				Colour Legend				
4kHz Leq	40.0	120.0				Enter Value Operator Action	110			
	10.0	120.0				Difference	1.0			
Highest Range for 10(b),12,13	MID]				Error/Outside Tolerance	2.0			
SLM Class	1	1				I olerance Select Toggle	+/-1 Val			
Filter Class	1					Informative	110			
Filter Base	2]				Conforming	Yes			
Instruction Manual Tit	le (Clause 3.	1&3.2, IEC 61	672-3:2013)	NTI XI 2 Ope	erating Manua	al				
	(,	Version	2.5						
Publication Date 2/11/2012										
Source of Docume	Int (& Date of	Download If	Applicable)	IN/A						
Confo	orming			Yes]					
Dettern Friedrich T. (5			670 2/2040							
Pattern Evaluation Test F	Reference	se 3.5, IEC 61 Number or Pa								
		Publ								
Source of Docume	nt (& Date of	Download if	Applicable)							
Confo	orming			No	1					
Conic	g				1					

1(b). Acoustic Corrections

	Absolute Corrections and Uncertainties													
Freq	Mic FF to Pressure		Ci	ase	Wind	screen	Otl	ner *	Total					
(Hz)	dB Uncert dB		dB	Uncert dB	dB	Uncert dB	dB	Uncert dB	dB	Uncert dB				
31.5	0.00								0.00	0.41				
63	0.00								0.00	0.41				
125	0.00								0.00	0.41				
250	0.00								0.00	0.41				
500	0.00								0.00	0.41				
1k	0.00								0.00	0.41				
2k	0.30								0.30	0.41				
4k	0.70								0.70	0.41				
8k	2.60								2.60	0.58				
12.5k	6.00								6.00	0.64				
16k	7.30								7.30	0.64				

 Source of Mic FF to Pressure Correction
 Nti Microphone Technical Specification

 Source of Case Correction
 Not Available

 Source of Windscreen Correction
 Not Available

 *Description of Other Correction
 N/A

Descriptions of Tests

1(b). Acoustical signal tests of a frequency weighting (IEC 61672-3)

(Clause 12.2)

Correction data shall account for:

- the equivalent free-field or random-incidence frequency response of the sound level meter if the source of sound or simulated sound is the pressure field in a multi-frequency sound calibrator, in a comparison coupler, or from an electrostatic actuator; and,

- if applicable, the average influence on the frequency response of a typical microphone of a windscreen and any accessories that are part of the configuration of the sound level meter for normal use.

(Clause 12.3)

Correction data shall be obtained from tables in the Instruction Manual for the sound level meter.

(Clause 12.4)

If the necessary correction data are not available from the Instruction Manual, data from the manufacturer of the microphone, multi-frequency sound calibrator, comparison coupler, or electrostatic actuator may then be used. This data shall be publicly available

(Clause 12.5)

The source for the free-field or random-incidence correction data shall be stated in the documentation for the results of the periodic tests. The source for the associated uncertainties of measurement shall be the same as the source for the corresponding correction data. If the uncertainties of the corresponding free-field correction data are not available, the applicable maximum-permitted uncertainties given in IEC 62585 shall be used in the calculation of the laboratory's total uncertainty budget.

NOTE: Where the uncertainties due to the "Mic FF to Pressure", "Case" or "Windscreen" are omitted in the table above, the following statement applies:

No information on the uncertainty of measurement, required by IEC 61672-3:2013, for the correction data given in the Instruction Manual or obtained from the manufacturer or supplier of the sound level meter, or the manufacturer of the microphone, or the manufacturer of the multi-frequency sound calibrator was provided in the Instruction Manual or made available by the manufacturer or supplier of the sound level meter. The uncertainty of measurement of the correction data was therefore assumed to be the maximum-permitted uncertainty given in IEC 62585 for the corresponding free-field correction data and for a coverage probability of 95 %.

1(c). Electrical Corrections

				Absolute	Correction	ns and Unce	rtainties				
Freq	Mic 0 deg FF Resp		Case		Winds	screen	Oth	ner *	Total		
(Hz)	dB Uncert dB		dB	Uncert dB	dB	Uncert dB	dB	Uncert dB	dB	Uncert dB	
31.5			0.00		0.00		0.00		0.00	0.41	
63			0.00		0.00		0.00		0.00	0.41	
125			0.00		0.00		0.00		0.00	0.41	
250			0.00		0.00		0.00		0.00	0.41	
500			0.00		0.00		0.00		0.00	0.41	
1k			0.00		0.00		0.00		0.00	0.41	
2k			0.00		0.00		0.00		0.00	0.41	
4k			0.00		0.00		0.00		0.00	0.41	
8k			0.00		0.00		0.00		0.00	0.58	
12.5k			0.00	0.00			0.00		0.00	0.64	
16k			0.00		0.00		0.00		0.00	0.64	

Source of Mic 0 deg Free-field Response	Not Available
Source of Case Correction	Not Available
Source of Windscreen Correction	Not Available
*Description of Other Correction	N/A

Descriptions of Tests

1(c). Acoustical signal tests of a frequency weighting (IEC 61672-3)

(Clause 13.6)

For each frequency weighting and at each test frequency, corrections shall be applied to the relative frequency weightings determined in 13.5 to account for:

- the deviation of the free-field or random-incidence frequency response of the microphone in the reference direction from a uniform frequency response;

- the average effects of reflections from the case of the sound level meter and of diffraction of sound around the microphone and preamplifier; and,

- if applicable, the average influence on the frequency response of a typical microphone of a windscreen and any accessories that are part of the configuration of the sound level meter for normal use.

(Clause 13.7)

Corrections for the effects of reflections and diffraction and for the influence of the windscreen and windscreen accessories on the free-field or random-incidence frequency response shall be the same as used for the frequency-weighting tests with acoustical signals.

NOTE: Where the uncertainties due to the "Mic FF to Pressure", "Case" or "Windscreen" are omitted in the table above, the following statement applies:

No information on the uncertainty of measurement, required by IEC 61672-3:2013, for the correction data given in the Instruction Manual or obtained from the manufacturer or supplier of the sound level meter, or the manufacturer of the microphone, or the manufacturer of the multi-frequency sound calibrator was provided in the Instruction Manual or made available by the manufacturer or supplier of the sound level meter. The uncertainty of measurement of the correction data was therefore assumed to be the maximum-permitted uncertainty given in IEC 62585 for the corresponding free-field correction data and for a coverage probability of 95 %.

2. Preliminary, 3. Environmental Conditions & 4. Calibration

2. Preliminary Inspection and Power Supply

Instrument Inspected	Yes
Laboratory Calibration Equipment Ok	Yes
Power Supply Ok (Start)	Yes
Power Supply Ok (End)	Yes

	3. Environmental Conditions													
Environmental	Complian	Lin	Limits											
Conditions	Start	End	Start	End	Uncert.	Start	End	Tolerance	Complies	Min	Max			
Air Temp. (°C)	23.5	23.5	0.5	0.5	0.5	1.00	1.00	3	Yes	20	26			
Rel. Humidity (%)	56.2	54.9	8.7	7.4	4.8	13.50	12.20	22.5	Yes	25	70			
Air Pressure (kPa)	100.4	101.3	7.8	8.8	0.63	8.48	9.45	12.5	Yes	80	105			

Yes

4(a). Initial Calibration SLM Settings Time Weighting Fas Frequency Weighting SLM Range 7 MID Microphone / Windshield Correction OFF Polarization Voltage (V Microphone Sensitivity (mV/Pa) 43.6 **B&K 4226 Calibrator Settings** "Sound Field" Pressure "Microphone" N/A Calibration Level (Lin) 114 Calibration Frequency (Hz) 1000 Calibration Indicated Level before adjust. (dB) 114.1 Adjustment required Ye Indicated level after adjust. (dB) 114 4(b). Final Calibration

Conforming

Level at conclusion of testing (dB)	114.0
Difference	0.0
Tolerance	± 0.1
Conforming	Yes

Uncertainty (+/-) dB 0.11

Descriptions of Tests

2. Preliminary Inspection and Power Supply (IEC 61672-3 Clause 5 "Preliminary Inspection" & Clause 6 "Power Supply") Prior to any measurements, the sound level meter and all accessories shall be visually inspected, paying particular attention to damage to, or accumulation of foreign material on, the protection grid or diaphragm of the microphone. All relevant controls shall be operated to

ensure that they are in working order. If the controls, display, and other essential elements are not in proper working order, no periodic tests shall be performed.

For all tests, the sound level meter shall be powered from its preferred supply or a suitable alternative. Before and after conducting the set of tests with acoustical signals and before and after conducting the set of tests with electrical signals, the power supply for the sound level meter shall be checked by the method stated in the Instruction Manual to ensure that it is within the specified operating limits. If the voltage or the equivalent indication of the status of the power supply is not within the operating limits and the reason cannot be attributed to partially discharged batteries or an incorrect selection of the voltage of the public power supply, then no periodic tests shall be performed as a malfunction is indicated.

3. Environmental conditions (IEC 61672-3 Clause 7 "Environmental Conditions") Periodic tests shall be performed within the following ranges of environmental conditions: 80 kPa to 105 kPa for static air pressure, 20 °C to 26 °C for air temperature and 25 % to 70 % for relative humidity. These conditions are recorded at the start and end of the testing

4a. Calibration (IEC 61672-3 Clause 10 "Indication at the calibration check frequency") The sound level meter shall be adjusted, if necessary, to indicate the required sound level for the environmental conditions under which the tests are performed. The indications of the sound level meter before and after adjustment shall be recorded.

4b. Long-term Stability (IEC 61672-3 Clause 15)

The long-term stability of a sound level meter is evaluated from the difference between the A-weighted sound levels indicated in response to steady 1 kHz signals applied at the beginning and end of a period of operation. For each indication, the level of the input signal shall be that which is required to display the reference sound pressure level on the reference level range for the first indication.

The period of continuous operation shall be between 25 min and 35 min during which any convenient set of tests that use electrical input signals are performed.

The measured difference between the initial and final indications of A-weighted sound level shall not exceed the acceptance limits given in IEC 61672-1.

Descriptions of Tests

5(a) Self-Generated Noise, Microphone Installed (IEC 61672-3 Clause 11.1)

Measurements of the level of self-generated noise shall be made in a location that is available to the testing laboratory and where the level of background noise is minimized. Any supplied windscreen and windscreen accessory need not be installed around the microphone for measurement of the level of self-generated noise. The sound level meter shall be in the configuration submitted for periodic testing and with the most-sensitive level range and frequency-weighting A selected.

The indicated level of the A-weighted self-generated noise on the most-sensitive level range shall be recorded and reported. The level of selfgenerated noise is preferably measured as a time-averaged sound level with an averaging time of at least 30 s. Time-averaged sound level may be measured directly or calculated from an indication of sound exposure level and integration time. If time-averaged sound level cannot be determined, the time-weighted sound level from the average of ten observations taken at random over a 60 s interval shall be measured. If the time-weighted sound level is recorded, the S time weighting shall be used if available; otherwise the F time weighting shall be used.

5(b) Self-Generated Noise - Electrical (IEC 61672-3 Clause 11.2)

With the microphone replaced by the electrical input-signal device (or using the specified means of inserting electrical signals), and with the device terminated in the manner specified in the Instruction Manual for measurements of the level of self-generated noise, the indicated level of the time-averaged or time-weighted self-generated noise, measured by the same procedure as with the microphone installed, shall be recorded and reported for all frequency weightings and for the most-sensitive level range.

6. Acoustical Signal Test

Fast
С
MID
OFF
ŝ
Pressure
N/A
114

Fred	OF	beerved Valu	00	Moon Motor	4226	Corrected	Broccure to	Casa Effort	Windscreen	Other Effect	Equivalent	Bosponso ro	С	Deviation	Tolerance		Tolerance				Uncertainty				
Treq	5	userveu valu	163	Reading	calibrator	Mean	Free Field	Correction	Effect	Correction	Equivalent Free Field	1kHz	Weighting	g from	from	Torerain	roicranoc		renerance		Tolerande	Conforming	Total	Lab	Corrections
(Hz)	Set 1	Set 2	Set 3	ricuanig	corrections	Readings	The Thera	Concellon	Correction	Concellon	Thee There	11112	Response	Expected	Type 1	Type 2		(+/-) dB	(+/-) dB	(+/-) dB					
31.5	110.9	110.8	110.8	110.83	0.10	110.93	0.00	0.00	0.00	0.00	110.93	-3.01	-3.00	-0.01	± 1.5	± 3.0	Yes	0.43	0.14	0.41					
63	113.2	113.2	113.2	113.20	0.01	113.21	0.00	0.00	0.00	0.00	113.21	-0.73	-0.80	0.07	± 1.0	± 2.0	Yes	0.42	0.12	0.41					
125	113.9	113.9	114.0	113.93	-0.02	113.91	0.00	0.00	0.00	0.00	113.91	-0.03	-0.20	0.17	± 1.0	± 1.5	Yes	0.42	0.12	0.41					
250	114.1	114.1	114.0	114.07	-0.03	114.04	0.00	0.00	0.00	0.00	114.04	0.10	0.00	0.10	± 1.0	± 1.5	Yes	0.42	0.12	0.41					
500	114.1	114.1	114.1	114.10	-0.03	114.07	0.00	0.00	0.00	0.00	114.07	0.13	0.00	0.13	± 1.0	± 1.5	Yes	0.42	0.12	0.41					
1k	114.0	114.0	114.0	114.00	-0.06	113.94	0.00	0.00	0.00	0.00	113.94	0.00	0.00	0.00	± 0.7	± 1.0	Yes	0.42	0.11	0.41					
2k	113.6	113.5	113.6	113.57	-0.01	113.56	0.30	0.00	0.00	0.00	113.86	-0.08	-0.20	0.12	± 1.0	± 2.0	Yes	0.43	0.13	0.41					
4k	112.4	112.3	112.4	112.37	-0.20	112.17	0.70	0.00	0.00	0.00	112.87	-1.07	-0.80	-0.27	± 1.0	± 3.0	Yes	0.43	0.14	0.41					
8k	108.6	108.4	108.5	108.50	-0.19	108.31	2.60	0.00	0.00	0.00	110.91	-3.03	-3.00	-0.03	+1.5; -2.5	± 5.0	Yes	0.60	0.15	0.58					
12.5k	101.7	102.1	101.7	101.83	-0.10	101.73	6.00	0.00	0.00	0.00	107.73	-6.21	-6.20	-0.01	+2.0; -5.0	+5,-inf	Yes	0.68	0.21	0.64					
16k	97.6	97.6	97.4	97.53	0.05	97.58	7.30	0.00	0.00	0.00	104.88	-9.06	-8.50	-0.56	+2.5; -16.0	+5,-inf	Yes	0.74	0.37	0.64					

Description of Tests

6. Acoustical signal tests of a frequency weighting (IEC 61672-3 Clause 12) The sound level meter shall be set for frequency-weighting C, if available, otherwise for frequencyweighting A. The frequency weighting for tests with acoustical signals shall be determined at 125 Hz, 1 kHz, and 8 kHz. However, for information, this laboratory tests from 31.5Hz to 16kHz.

For frequency-weighting tests using a multi-frequency sound calibrator, the sound pressure level in the coupler of the sound calibrator shall preferably be set to the reference sound pressure level at 1 kHz, but shall be in the range from 70 dB to 125 dB at all frequencies.

At the discretion of the laboratory, the sound level meter shall be set to measure F-timeweighted sound level or S-time-weighted sound level. As a minimum, two repetitions of the coupling and measurements shall be performed to give a total of at least three tests.

The relative frequency weighting, relative to the response at 1 kHz, shall be determined from the average equivalent free-field or random-incidence sound level at a test frequency minus the average equivalent free-field or random-incidence sound level at 1 kHz. (Clause 12.15)

7. Electrical Frequency Weighting

7.	Electric
SLM Settings	
Time Weighting	Fast
Frequency Weighting	Α
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	20
Generator Frequency (Hz)	1k
SPL Reference (dB)	75
Integration Time (s)	N/A
Generator Output (mVrms)	52.00

Freq	Output	Indication	Output	Indication	Output	Indication		
Hz	(mV)	A	(mV)	C	(mV)	Z		
63	1061.70	74.9	57.02	74.9	52.00	74.9		
125	331.90	74.9	53.21	75.0	52.00	75.0		
250	139.96	74.9	52.00	75.0	52.00	75.0		
500	75.16	75.0	52.00	75.0	52.00	75.0		
1K	52.00	75.0	52.00	75.0	52.00	75.0		
2K	45.29	75.0	53.21	75.0	52.00	75.0		
4k	46.35	75.0	57.02	75.0	52.00	75.0		
8K	59.02	75.0	73.45	75.0	52.00	75.0		
TOK	111.17	74.8	138.30	74.8	52.00	75.0		
Je		0.00		0.00		0.00		
od be		0.00		0.00		0.00		
Se Fig		0.00		0.00		0.00		
ee e		0.00		0.00		0.00		
N I Se		0.00		0.00		0.00		
R		0.00		0.00		0.00		
0 Å		0.00		0.00		0.00		
E.		0.00		0.00		0.00		
		0.00		0.00		0.00		
		0.00		0.00		0.00		
정도		0.00		0.00		0.00		
ffe		0.00		0.00		0.00		
Бе		0.00		0.00		0.00		
ase		0.00		0.00		0.00		
00		0.00		0.00		0.00	Toler	ance
		0.00		0.00		0.00	TOIEI	ance
		0.00	-	0.00	-	0.00		
*		0.00		0.00		0.00		
fee		0.00		0.00		0.00		
Шu		0.00		0.00		0.00		
scti		0.00		0.00		0.00		
LT CL		0.00		0.00		0.00		
ပိုင္ရ		0.00		0.00		0.00		
Vin		0.00		0.00		0.00		
>		0.00		0.00		0.00		
		0.00		0.00		0.00		
E		0.00		0.00		0.00		
či.		0.00		0.00		0.00		
ē		0.00		0.00		0.00		
ā		0.00		0.00		0.00		
er(0.00		0.00		0.00		
눈		0.00		0.00		0.00		
Ŭ		0.00		0.00		0.00		
		74.90		74.90		74.90		
ielc		74.90		75.00		75.00		
L C		74.90		75.00		75.00		
ree		75.00		75.00		75.00		
цЪ		75.00		75.00		75.00		
llen		75.00		75.00		75.00		
iva		75.00		75.00		75.00		
nb		75.00		75.00		75.00		
ш		74.80		74.80		75.00	Type 1	Type 2
N		-0.10		-0.10		-0.10	± 1.0	± 2.0
포토		-0.10		0.00		0.00	± 1.0	± 1.5
frc frc		-0.10		0.00		0.00	± 1.0	± 1.5
e r on cte		0.00		0.00		0.00	± 1.0 + 0.7	± 1.5
ns ati		0.00		0.00		0.00	+ 1 0	+20
EX bo		0.00		0.00		0.00	+10	+30
<u>D</u>		0.00		0.00		0.00	+1.5: -2.5	+ 5.0
		-0.20		-0.20		0.00	+2.5; -16.0	+5,-inf
Confo	orming	Yes		Yes		Yes		
Uncertainty	(+/-) dB			0.09				

Description of Tests

7. Electrical signal tests of frequency weightings (IEC 61672-3 Clause 13) Frequency weightings shall be determined using steady sinusoidal electrical input signals for all frequency weightings for which design goals and acceptance limits are specified in IEC 61672-1 and which are provided in the sound level meter. The sound level meter shall be set to display F-time-weighted sound level.

On the reference level range and for each frequency weighting to be tested, the level of a 1 kHz input signal shall be adjusted to yield an indication that is 45 dB less than the upper boundary stated in the Instruction Manual for the linear operating range at 1 kHz on the reference level range.

At test frequencies other than 1 kHz, the level of the input electrical signal shall be determined as the level of the input signal at 1 kHz minus the exact design-goal response, given in IEC 61672-1 for the selected frequency weighting at the test frequency.

		8. F	requenc	y & Tim	e Weigł	ntings 1	kHz
SLM S	Settings						
Ti	me Weighting	Fast					
Frequer	ncy Weighting	Α					
	SLM Range	MID					
Generator & At	tenuator Settin	igs					
Att Constant Fr	enuation (dB)	11					
SPI R	eference (dB)	114.0					
01 21	utput (mVrms)	464.4					
				_			
			8(a).	Frequency	Weightings	1kHz	
Time Wt		Frequency	Weighting		Talaa		
Fast	A	Ċ	Z	N/A	loier	ance	
1kHz	114.0	114.0	114.0		Type 1	Type 2	
Difference		0.0	0.0		± 0.2	± 0.2	
			X				
Conforming		Yes	Yes	N/A			
Uncertainty (+/-) dB	0.09]				
			8(k	o). Time We	ightings 1kl	Ηz	
			,	1	0 0		
Freq Wt		Time W	eighting		Tolor	anoo	
Α	F	S	Leq		TOIER	ance	
1kHz	114.0	114.0	114.0		Type 1	Type 2	
Difference		0.0	0.0		± 0.1	± 0.1	
				I			
Conforming		Yes	Yes				
Uncertainty (+/-) dB	0.09	1				
choor taility (17	,	0.00	I				
				Descriptio	n of Tests		
8. Frequency and time wei For a steady sinusoidal electri frequency weighting A, the ind timeaveraged sound level, as timeweighted sound level, and	ightings at 1 kH ical input signal at dications shall be available. In addi d time-averaged s	Iz (IEC 61672 t 1 kHz on the r recorded for fre tion, the indicat sound level, as a	-3 Clause 14) eference level ra equency weightir tions with frequer available.	nge and with an ngs C and Z, as a ncy weighting A	input signal that available, with the shall be recorded	yields an indic e sound level m d with the soun	ation of the reference sound pressure level with eter set to display F-time-weighted sound level, or d level meter set to display F-time-weighted sound level, S-

The measured deviation of the indication of the sound level frequency weightings and time weightings shall not exceed the acceptance limits given in IEC 61672-1.

9(a). Level Linearity 8kHz (Increasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Α
SLM Range	MID
Generator & Attenuator Settings	
Select dB Over SLM Range	5
Attenuation (dB)	31.0
Generator Frequency (Hz)	8k
SPL Reference Starting Point (dB)	94.0
Output (mVrms)	1878.0
Noise Floor (dB)	-99.0

	ncreasing I	rload	Tolerance				
Atten	Expected	Indicator	Diff	Type 1	Type 2		
26.0	99.0	99.0	0.0	± 0.8	± 1.1		
21.0	104.0	104.0	0.0	± 0.8	± 1.1		
16.0	109.0	109.0	0.0	± 0.8	± 1.1		
11.0	114.0	114.0	0.0	± 0.8	± 1.1		
10.0	115.0	115.0	0.0	± 0.8	± 1.1		
9.0	116.0	116.0	0.0	± 0.8	± 1.1		
8.0	117.0	117.0	0.0	± 0.8	± 1.1		
7.0	118.0	118.0	0.0	± 0.8	± 1.1		
6.0	119.0	119.0	0.0	± 0.8	± 1.1		
5.0	120.0	120.0	0.0	± 0.8	± 1.1		
4.0	121.0	121.0	0.0	± 0.8	± 1.1		
3.0	122.0	122.0	0.0	± 0.8	± 1.1		
2.0	123.0	123.0	0.0	± 0.8	± 1.1		
1.0	124.0	124.0	0.0	± 0.8	± 1.1		
0.0	125.0	125.0	0.0	± 0.8	± 1.1		
				± 0.8	± 1.1		
				± 0.8	± 1.1		
				± 0.8	± 1.1		
				± 0.8	± 1.1		
				± 0.8	± 1.1		
				± 0.8	± 1.1		
				± 0.8	± 1.1		
				± 0.8	± 1.1		
				± 0.8	± 1.1		
				± 0.8	± 1.1		
	Conforming Yes						

Uncertainty (+/-) dB 0.13

Description of Tests

9(a). Level linearity on the reference level range (IEC 61672-3 Clause 16)

Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. (61672-3 Clause 16.1).

Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level from the starting number of an under-range condition.

Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1 from the specified upper boundary of the linear operating range up to, but not including, the first indication of overload and also from the specified lower boundary of the linear operating range down to, but not including, the first indication of an under-range condition.

"Y" means indicator over-range.

9(b). Level Linearity 8kHz (Decreasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Α
SLM Range	MID
Generator & Attenuator Settings	5
Select dB Under SLM Range	0
Attenuation (dB)	0.0
Generator Frequency (Hz)	8k
SPL Reference Starting Point (dB)	94
Output (mVrms)	52.9
Noise Floor (dB)	-99.0

D	ecreasing le	evel to Unde	erange	Tolerance		
Atten	Expected	Indicator	Diff	Type 1	Type 2	
5.0	89.0	89.0	0.0	± 0.8	± 1.1	
10.0	84.0	84.0	0.0	± 0.8	± 1.1	
15.0	79.0	79.0	0.0	± 0.8	± 1.1	
20.0	74.0	74.0	0.0	± 0.8	± 1.1	
25.0	69.0	69.0	0.0	± 0.8	± 1.1	
30.0	64.0	64.0	0.0	± 0.8	± 1.1	
35.0	59.0	59.0	0.0	± 0.8	± 1.1	
40.0	54.0	54.0	0.0	± 0.8	± 1.1	
45.0	49.0	49.0	0.0	± 0.8	± 1.1	
49.0	45.0	45.0	0.0	± 0.8	± 1.1	
50.0	44.0	44.0	0.0	± 0.8	± 1.1	
51.0	43.0	43.0	0.0	± 0.8	± 1.1	
52.0	42.0	42.0	0.0	± 0.8	± 1.1	
53.0	41.0	41.0	0.0	± 0.8	± 1.1	
54.0	40.0	40.0	0.0	± 0.8	± 1.1	
				± 0.8	± 1.1	
				± 0.8	± 1.1	
				± 0.8	± 1.1	
				± 0.8	± 1.1	
				± 0.8	± 1.1	
				± 0.8	± 1.1	
				± 0.8	± 1.1	
				± 0.8	± 1.1	
				± 0.8	± 1.1	
				± 0.8	± 1.1	
	Conformi	ng	Yes			

Uncertainty (+/-) dB 0.13

Description of Tests

9(b). Level linearity on the reference level range (IEC 61672-3 Clause 16)

Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. (61672-3 Clause 16.1).

Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level from the starting number of an under-range condition.

Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1 from the specified upper boundary of the linear operating range up to, but not including, the first indication of overload and also from the specified lower boundary of the linear operating range down to, but not including, the first indication of an under-range condition.

"Y" means indicator under-range. However, if 20dB above noise floor is reached then no results are reported.

10. Level Linearity with Level Ranges 1kHz

10(a). Level Linearity Including the Level Range (Reference Signal)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Α
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	0
Generator Frequency (Hz)	1k
Reference SPL (dB)	114
Output (mVrms)	464.4

Settings	Level (dB)			Toler	ance
Range	Expected	Indicated	Difference	Type 1	Type 2
HIGH	114.0	114.0	0.0	± 0.8	± 1.1
MID	114.0	114.0	0.0	± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1

Conforming	Yes

Uncertainty (+/-) dB 0.13

10(b). Level Linearity Including the Level range (5dB Above Under-range)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Α
SLM Range	HIGH
Generator & Attenuator Settings	
Attenuation (dB)	30
Generator Frequency (Hz)	1k
Reference SPL (dB)	65
Output (mVrms)	51.9

Settings			Level (dB)		Tolerance	
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2
HIGH	30.0	65.0	65.0	0.0	± 0.8	± 1.1
MID	50.0	45.0	44.9	-0.1	± 0.8	± 1.1
LOW	70.0	25.0	25.3	0.3	± 0.8	± 1.1
					± 0.8	± 1.1
					± 0.8	± 1.1
					± 0.8	± 1.1
					± 0.8	± 1.1
					± 0.8	± 1.1
					± 0.8	± 1.1
					± 0.8	± 1.1
					_	
	Confo	orming	Yes			
				=		

Uncertainty (+/-) dB

Description of Tests

0.13

10. Level linearity including the level range control (IEC 61672-3 Clause 17)

For sound level meters that have more than one level range, tests of level linearity errors including errors introduced by the level range control shall be performed with steady sinusoidal electrical input signals at a frequency of 1 kHz and with the sound level meter set for frequency weighting A. For each test, signal levels shall be recorded as indications of F-time-weighted sound level or time-average sound level. (61672-3 Clause 17.1).

With the input signal level kept constant, the indicated signal level shall be recorded for all level ranges where the signal level is displayed. The indicated signal levels and the corresponding anticipated indications of signal levels shall be recorded. (61672-3 Clause 17.3).

For each level range, the level of the input signal shall then be adjusted to yield a signal level that is expected to be 5 dB greater than the signal level that first causes an indication of under-range on a level range. The indicated signal levels and the corresponding anticipated levels shall be recorded. (61672-3 Clause 17.4).

Level linearity deviations shall be calculated as an indicated signal level minus the corresponding anticipated signal level. Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1.

11. Toneburst Response
11(a). Fast ToneBurst
SLM Settings - Fast Time Weighting Fast Frequency Weighting A SLM Range MID Generator & Attenuator Settings Attenuation (dB) Attenuation (dB) 0.0 Generator Frequency (Hz) 4k dB Down from Linearity Limit 3 Reference SPL (dB) 117.0 Output (mVrms) 585.7
Toneburst (ms) # Cycles LAFMax (dB) Tolerance 200 800 116.0 10fference Type 1 Type 2 20 800 116.0 0.0 ± 0.5 ± 1.0 2 8 99.0 99.0 + 1.0; -1.5 + 1.0; -2.5 0.25 1 90.0 89.9 -0.1 + 1.0; -3.0 + 1.5; -5.0
Conforming Yes Uncertainty (+/-) dB 0.09
11(b). Slow ToneBurst
SLM Settings - Slow Time Weighting Slow Frequency Weighting A SLM Range MID Generator & Attenuator Settings Attenuation (dB) Attenuation (dB) 0.0 Generator Frequency (Hz) 4k dB Down from Linearity Limit 3 Reference SPL (dB) 117.0 Output (mVrms) 585.7
Toneburst (ms) # Cycles LASMax (dB) Tolerance 200 800 109.6 Difference Type 1 Type 2 20 80 109.6 0.0 ± 0.5 ± 1.0 2 8 90.0 90 0.0 + 1.0; -3.0 + 1.0; -5.0
Uncertainty (+/-) dB 0.09
11(c). SEL ToneBurst SLM Settings - SEL/Leq Frequency Weighting A SLM Range MID Generator & Attenuation (dB) 0.0 Generator Frequency (Hz) 4k dB Down from Linearity Limit Reference SPL (dB) 117.0 Output (mVrms) 585.7 Integration Time (if SEL not available) (s)
Toneburst (ms) # Cycles SEL Tolerance Indicated Calc'd Expected Difference Type 1 Type 2 20 80 110.0 110.0 10.0 ± 0.0 ± 1.0 2 8 90.0 90.0 90.0 + 1.0; -1.5 + 1.0; -2.5 0.25 1 80.9 81.0 -0.1 + 1.0; -3.0 + 1.5; -5.0
Conforming Yes
Uncertainty (+/-) dB 0.13
Lescription of resis I. Toneburst response (IEC 61672-3 Clause 18) The response of the sound level meter to short-duration signals shall be tested on the reference level range with 4 kHz tonebursts. The sound level meter shall be set to frequency weighting A. 61672-3 Clause 18.1).
ior the toneburst signals, indications of the sound level meter to be recorded are maximum F-time-weighted sound level, maximum S-time-weighted sound level and sound exposure level, as pplicable.
noundary stated in the Instruction Manual for the linear operating range at 4 kHz on the reference level range. (61672-3 Clause 18.4).

Tonebursts are tested at 200ms, 2ms and, 0.25ms durations (the latter for Fast and SEL only) and the LMax or SEL recorded.

Measured deviations of the measured toneburst responses from the corresponding reference toneburst responses given in IEC 61672-1 shall not exceed the applicable

				12	Peak C	sound	level			
	12(a). Peak C 8 KHz									
					12(a). 1 6		2			
	SLM	Settings								
		Tim	e Weighting	Fast						
		Frequenc	y Weighting	C						
6	onerator & A	ttenuator Se	SLM Range	MID						
0		Atter	nuation (dB)	0.0						
	Ge	enerator Fre	quency (Hz)	8k						
		Referen	ce SPL (dB)	112.0						
		Out	out (mVrms)	523.5						
Test Signal		dB LCp	eak Hold		Tole	rance				
8 kHz	Indication	O'Load?	Expected	Difference	Type 1	Type 2				
1 Cycle	115.4	No	115.4	0.0	± 2.0	± 3.0				
	Conformin	a a a a a a a a a a a a a a a a a a a		Voc	1					
	Comornin	ig		165						
U	ncertainty (+	/-) dB		0.09						
					12(b). Pe	ak C 500 H	łz			
					1					
	SLM	Settings	o Woighting	Fact						
		Frequenc	v Weighting	C						
			SLM Range	MID						
G	enerator & A	ttenuator Se	ttings							
		Atter	nuation (dB)	0.0						
		Referen	ce SPL (dB)	112.0						
		Out	out (mVrms)	367.7						
Test Signal	Indication	dB LCp	Exported	Difforence	Type 1	Type 2				
One +ve 1/2 cycle	114.2	No	114.4	-0.2	± 1.0	± 2.0				
One -ve 1/2 cycle	114.2	No	114.4	-0.2	± 1.0	± 2.0				
	Conformin	ig		Yes						
U	ncertainty (+	/-) dB		0.09	l					
					Descript	ion of Test	ts			
12. Peak C sound leve	I (IEC 61672	-3 Clause 19)							
Indications of C-weighter crossings and (b) positiv	d peak sound le e and negative	evel shall be to half cycles of	ested on the le a 500 Hz sinus	ast-sensitive le soid that also s	vel range. The tart and stop a	e test signals co at zero crossing	onsist of (a) a single complete cycle of an 8 kHz sinusoid starting and stopping at zero is.			
The level of the steady s C-weighted, time-averag of steady sound level sha	he level of the steady sinusoidal 8 kHz electrical input signal, from which a single complete cycle is extracted, shall be adjusted to yield an indication of C-weighted, F-timeweighted sound level, or weighted, time-averaged sound level, that is 8 dB less than the upper boundary stated in the Instruction Manual for the peak level range at 8 kHz on the leastsensitive level range. The indication of terady sound level, be recorded									

The indication of C-weighted peak sound level in response to a complete cycle of the 8 kHz signal shall be recorded. Application of the complete-cycle 8 kHz signal shall not cause indication of an overload condition.

The level of the steady sinusoidal 500 Hz electrical input signal, from which positive and negative half cycles are extracted, shall be adjusted to yield an indication of C-weighted, Ftime-weighted sound level, or C-weighted, time-averaged sound level, that is 8 dB less than the upper boundary stated in the Instruction Manual for the peak level range on the least-sensitive level range. The indications of steady sound levels shall be recorded.

The indications of C-weighted peak sound level in response to a single positive halfcycle 500 Hz signal and to a single negative half-cycle 500 Hz signal shall be recorded and reported. Applications of the 500 Hz half-cycle signals shall not cause indications of an overload condition.

			13. Ov	verload indication
SLN	I Settings	E	1	_
	Froquon	Function	Leq	-
	Frequenc	SI M Range	MID	-
Generator &	Attenuator Se	ettings		
	Atte	nuation (dB)	0.0	1
	Generator Fre	equency (Hz)	4k	
	Referei	nce SPL (dB)	119.0	
	Out	put (mVrms)	763.6	
		K 0 1 0		
	Ha	alf-Cycle Sigr	Difference	Ture 1 Ture 2
Level (dB)	125.1	125.1	Difference	
Generator Output (mVrms)	1549.0	1548.0	0.0	±1.0 ±1.0
	10 1010	10 1010		
Conformi	ng		Yes	
Uncertainty (-	+/-) dB		0.09	1
				7
Overload Ind	icated		No	-
Overload indicato	or Latches		N/A	1
Conformi	na		N/A	
Comornia			146	_
			D	Description of Tests
13. Overload Indication (IEC 6167	2-3 Clause 20)		
The test of overload indication shall on	ly be performe	d for sound leve	el meters capab	ble of displaying time-average sound level.
Overload indication shall be tested on t sinusoidal electrical signals at a frequer	the least-sensit ncy of 4 kHz sh	ive level range v all be used.(IEC	with the sound C 61672-3 Claus	I level meter set to display A-weighted, time-average sound level. Positive and negative one-half-cycle use 20.2)
The test shall begin at an indicated tim 4 kHz. The level of the single positive of negative one-half-cycle signal. The level	e-averaged lev one-half-cycle in els of the single	el for the stead nput signal shall e one-half-cycle	y input signal tl l be increased t input signals th	that corresponds to 1 dB less than the upper boundary specified for the linear operating range at to the first indication of overload, to a resolution of 0.1 dB. The process shall be repeated for the single that produced the first indications of overload shall be recorded to a resolution of 0.1 dB.

It shall be verified that the overload indicator latches on as specified in IEC 61672-1 when an overload condition occurs.

14. High-level Stability

SLM Settings	
Time Weighting	F
Frequency Weighting	Α
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	0.0
Generator Frequency (Hz)	1k
Reference SPL (dB)	119.0
Output (mVrms)	826.1
Time Period to Apply Signal (min)	5.0
Record SPL at Conclusion of Time Period (dB)	119.0
Difference	0.0
Tolerance	± 0.1
Conforming	Yes
Uncertainty (+/-) dB	0.09

Description of Tests

14. High-level Stability (IEC 61672-3 Clause 21) The ability of a sound level meter to operate continuously in response to high signal levels without significant change in sensitivity is evaluated from the difference between the Aweighted sound levels indicated in response to a steady 1 kHz electrical signal at the beginning and end of a 5 min period of continuous exposure to the signal.

The level of the steady electrical input signal shall be that which is required to display the sound level that is 1 dB less than the upper boundary of the 1 kHz linear operating range on the least-sensitive level range.

15(a). Octave Band Filter Relative Attenuation (≤2kHz)

SLM, Attenuator & Generator Setting	gs
Time Weighting	Fast
Frequency Weighting	Z
Range	HIGH
Set dB Below Full Scale	-1
Attenuator dB	0.0
Reference SPL 1kHz	133.0
Output mVrms	3827.0
Noise Floor dB	-99.0

Ratio	1	2	3	4	5	6	7	8	9	10		
Freq	4 Hz	8 Hz	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz		
0.06				41.5					48.9			
0.13				50.3					50.3			
0.25				58.7					53.8			
0.50				74.4					70.9			
0.71												
0.77				132.9					133.0			
0.84				132.9					133.0		Tele	
0.92				132.8					133.0		Tolei	ance
1.00				132.9					133.0			
1.09				132.9					133.0			
1.19				132.9					133.0			
1.30				132.9					133.0			
1.41												
2.00				45.8					39.4			
4.00				40.9					31.5			
8.00				23.2					33.4			
16.00				23.6					32.3		Class 1	Class 2
				91.4					84.1		+70/inf	+60/inf
				82.6					82.7		+60/inf	+54/inf
				74.2					79.2		+40.5/inf	+39.5/inf
				58.5					62.1		+16.6/inf	+15.6/inf
											-0.4/+5.3	-0.6/+5.8
~				0.0					0.0		-0.4/+1.4	-0.6/+1.7
Б				0.0					0.0		-0.4/+0.7	-0.6/+0.9
ы				0.1					0.0		-0.4/+0.5	-0.6/+0.7
ati				0.0					0.0		-0.4/+0.4	-0.6/+0.6
nu				0.0					0.0		-0.4/+0.5	-0.6/+0.7
tte				0.0					0.0		-0.4/+0.7	-0.6/+0.9
<				0.0					0.0		-0.4/+1.4	-0.6/+1.7
											-0.4/+5.3	-0.6/+5.8
				87.1					93.6		+16.6/inf	+15.6/inf
				92.0					101.5		+40.5/inf	+39.5/inf
				109.7					99.6		+60/inf	+54/inf
				109.3					100.7		+70/inf	+60/inf
						1				1		
Ins Loss				-0.1					0.0			
											1	

Conforming	N/A	N/A	N/A	Yes	N/A	N/A	N/A	N/A	Yes	N/A

Uncert (+/-) dB ≤80dB 0.09 >80dB 0.46

Description of Test

15(a) Octave Filter (IEC 61260-3 Clause 13)

13 Measurement of relative attenuation

13.1 The relative attenuation on the reference level range shall be tested for the same three filters as selected in Clause 11. 13.2 The measurements of relative attenuation are made as the response to constant amplitude sinusoidal signals at various frequencies. The level of the input signals shall be $(1 \pm 0,1)$ dB below the specified upper boundary of the linear operating range.

13.6 The measured relative attenuation shall not exceed the acceptance limits given in Table 1 for the appropriate class of filter.

Interpretation: The three filters specified in "Clause 11" are 31.5Hz, 1kHz and 16kHz. The limits in "Table 1" are the Tolerance values shown in green above. The yellow cells are the observed values. The "Attenuation dB" cells are the attenuation values of each filter with the filter's centre frequency attenuation assumed to be zero (i.e. the relative attenuation). The "Ins Loss" are the actual values of attenuation at the filter centre frequencies.

15(b). Octave Band Filter Relative Attenuation (>2kHz)

SLM, Attenuator & Generator Setting	gs
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	HIGH
Set dB Below Full Scale	-1.0
Attenuator dB	0.0
Reference SPL 1kHz	133.0
Output mVrms	3827.0
Noise Floor dB	-99.0

Ratio	1	2	3	4	5	6	7	8	9	10		
Freq	4kHz	8kHz	16kHz	32kHz								
0.06			50.7									
0.13			54.5									
0.25			55.4									
0.50			70.7									
0.71												
0.77			133.0									
0.84			133.0								Tolo	ranco
0.92			132.9								TOIE	ance
1.00			133.0									
1.09			133.0									
1.19			133.0									
1.30			133.0									
1.41												
2.00			52.0									
4.00			45.9									
8.00			53.8									
16.00			51.7								Class 1	Class 2
			82.3								+70/inf	+60/inf
			78.5								+60/inf	+54/inf
			77.6								+40.5/inf	+39.5/inf
			62.3								+16.6/inf	+15.6/inf
											-0.4/+5.3	-0.6/+5.8
m			0.0								-0.4/+1.4	-0.6/+1.7
p			0.0								-0.4/+0.7	-0.6/+0.9
lo			0.1								-0.4/+0.5	-0.6/+0.7
lat			0.0								-0.4/+0.4	-0.6/+0.6
an c			0.0								-0.4/+0.5	-0.6/+0.7
\tte			0.0								-0.4/+0.7	-0.6/+0.9
4			0.0								-0.4/+1.4	-0.6/+1.7
											-0.4/+5.3	-0.6/+5.8
			81.0								+16.6/inf	+15.6/inf
			87.1								+40.5/inf	+39.5/inf
			79.2								+60/inf	+54/inf
			81.3								+70/inf	+60/inf
											-	
Ins Loss			0.0									
											-	
Conforming	N/A	N/A	Yes	N/A	N/A	N/A	N/A	N/A	N/A	N/A	I	
Uncert (+	/-) dB	≤80dB	0.09	>80dB	0.46	1						

Description of Test

15(b) Octave Filter (IEC 61260-3 Clause 13)

13 Measurement of relative attenuation

13.1 The relative attenuation on the reference level range shall be tested for the same three filters as selected in Clause 11.

13.2 The measurements of relative attenuation are made as the response to constant amplitude sinusoidal signals at various frequencies. The level of the input signals shall be $(1 \pm 0,1)$ dB below the specified upper boundary of the linear operating range.

13.6 The measured relative attenuation shall not exceed the acceptance limits given in Table 1 for the appropriate class of filter.

Interpretation: The three filters specified in "Clause 11" are 31.5Hz, 1kHz and 16kHz. The limits in "Table 1" are the Tolerance values shown in green above. The yellow cells are the observed values. The "Attenuation dB" cells are the attenuation values of each filter with the filter's centre frequency attenuation assumed to be zero (i.e. the relative attenuation). The "Ins Loss" are the actual values of attenuation at the filter centre frequencies.

16. Octave Band Filter Relative Attenuation at Midband Frequency

SLM, Attenuator & Generator Setting	gs
Time Weighting	Fast
Frequency Weighting	Z
Reference Range	MID
Attenuator dB	0.0
Reference SPL 1kHz	94.0
Output mVrms	42.9

	1	2	3	4	5	6	7	8	9	10	Tole	rance
Freq	4 Hz	8 Hz	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	Class 1	Class 2
Measured			94.4	93.9	94.0	94.1	94.0	94.0	94.0	94.0		
Ins Loss			0.4	-0.1	0.0	0.1	0.0	0.0	0.0	0.0	-0.4/+0.4	-0.6/+0.6
Conforming	N/A	N/A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Freq	4kHz	8kHz	16kHz	32kHz							Class 1	Class 2
Measured	94.0	94.0	94.0									
Ins Loss	0.0	0.0	0.0								-0.4/+0.4	-0.6/+0.6
Conforming	Yes	Yes	Yes	N/A								

Uncert (+/-) dB 0.09

Description of Test

16. Octave Band Filter Relative Attenuation at Midband Frequency (IEC 61260-3 Clause 10.2)

10.2 Tests of relative attenuation at midband frequency 10.2.1 The relative attenuation at the exact midband frequency shall be measured for every filter in a set of filters. The relative attenuation $\Delta A(\Omega)$ at any midband frequency is determined from Formula (8) given in IEC 61260-1:2014. The reference level range shall be selected for the test. The level of the test signal shall be equal to the reference input signal level.

10.2.2 The measured relative attenuation shall not exceed the acceptance limits ± 0,4 dB for Class 1 filters or ± 0,6 dB for class 2 filters as specified in 5.10 in IEC 61260-1:2014.

Interpretation: The yellow cells are the observed values. The "Ins Loss" are the actual values of attenuation at the filter centre frequencies. The "Conforming" cells demonstrate compliance with the Tolerance limits depending upon the Class of filter.

17(a). Octave Band Filter Level Linearity 31.5Hz (Increasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	6
Select dB Over SLM Range	5
Attenuation (dB)	31.0
Generator Frequency (Hz)	31.5
SPL Reference Starting Point (dB)	94.0
Output (mVrms)	1669.0
Noise Floor (dB)	-99.0

	Increasing I	evel to Ove	rload	Toler	ance
Atten	Expected	Indicator	Diff	Type 1	Type 2
26.0	99.0	99.0	0.0	±0.5	±0.6
21.0	104.0	104.0	0.0	±0.5	±0.6
16.0	109.0	109.0	0.0	±0.5	±0.6
11.0	114.0	114.0	0.0	±0.5	±0.6
10.0	115.0	115.0	0.0	±0.5	±0.6
9.0	116.0	116.0	0.0	±0.5	±0.6
8.0	117.0	117.0	0.0	±0.5	±0.6
7.0	118.0	118.0	0.0	±0.5	±0.6
6.0	119.0	119.0	0.0	±0.5	±0.6
5.0	120.0	120.0	0.0	±0.5	±0.6
4.0	121.0	121.0	0.0	±0.5	±0.6
3.0	122.0	122.0	0.0	±0.5	±0.6
2.0	123.0	123.0	0.0	±0.5	±0.6
1.0	124.0	124.0	0.0	±0.5	±0.6
0.0	125.0	125.0	0.0	±0.5	±0.6
	Conformi	ng	Yes		

i-----ī

Description of Tests

17(a). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

0.13

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

Uncertainty (+/-) dB

17(b). Octave Band Filter Level Linearity 1kHz (Increasing)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Z			
SLM Range	MID			
Generator & Attenuator Settings				
Select dB Over SLM Range	5			
Attenuation (dB)	31.0			
Generator Frequency (Hz)	1k			
SPL Reference Starting Point (dB)	94.0			
Output (mVrms)	1644.0			
Noise Floor (dB)	-99.0			

Increasing level to Overload			Tolerance		
Atten	Expected	Indicator	Diff	Type 1	Type 2
26.0	99.0	99.0	0.0	±0.5	±0.6
21.0	104.0	104.0	0.0	±0.5	±0.6
16.0	109.0	109.0	0.0	±0.5	±0.6
11.0	114.0	114.0	0.0	±0.5	±0.6
10.0	115.0	115.0	0.0	±0.5	±0.6
9.0	116.0	116.0	0.0	±0.5	±0.6
8.0	117.0	117.0	0.0	±0.5	±0.6
7.0	118.0	118.0	0.0	±0.5	±0.6
6.0	119.0	119.0	0.0	±0.5	±0.6
5.0	120.0	120.0	0.0	±0.5	±0.6
4.0	121.0	121.0	0.0	±0.5	±0.6
3.0	122.0	122.0	0.0	±0.5	±0.6
2.0	123.0	123.0	0.0	±0.5	±0.6
1.0	124.0	124.0	0.0	±0.5	±0.6
0.0	125.0	125.0	0.0	±0.5	±0.6
				_	

Conforming Yes

Uncertainty (+/-) dB 0.13

Description of Tests

17(b). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

17(c). Octave Band Filter Level Linearity 16kHz (Increasing)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Z			
SLM Range	MID			
Generator & Attenuator Settings				
Select dB Over SLM Range	5			
Attenuation (dB)	31.0			
Generator Frequency (Hz)	16k			
SPL Reference Starting Point (dB)	94.0			
Output (mVrms)	1641.0			
Noise Floor (dB)	-99.0			

Increasing level to Overload			Tolerance		
Atten	Expected	Indicator	Diff	Type 1	Type 2
26.0	99.0	99.0	0.0	±0.5	±0.6
21.0	104.0	104.0	0.0	±0.5	±0.6
16.0	109.0	109.0	0.0	±0.5	±0.6
11.0	114.0	114.0	0.0	±0.5	±0.6
10.0	115.0	115.0	0.0	±0.5	±0.6
9.0	116.0	116.0	0.0	±0.5	±0.6
8.0	117.0	117.0	0.0	±0.5	±0.6
7.0	118.0	118.0	0.0	±0.5	±0.6
6.0	119.0	119.0	0.0	±0.5	±0.6
5.0	120.0	120.0	0.0	±0.5	±0.6
4.0	121.0	121.0	0.0	±0.5	±0.6
3.0	122.0	122.0	0.0	±0.5	±0.6
2.0	123.0	123.0	0.0	±0.5	±0.6
1.0	124.0	124.0	0.0	±0.5	±0.6
0.0	125.0	125.0	0.0	±0.5	±0.6

Conforming Yes

Uncertainty (+/-) dB 0.13

Description of Tests

17(c). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

18(a). Octave Band Filter Level Linearity 31.5Hz (Decreasing)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Z			
SLM Range	MID			
Generator & Attenuator Settings				
Select dB Under SLM Range	0			
Attenuation (dB)	0.0			
Generator Frequency (Hz)	31.5			
SPL Reference Starting Point (dB)	94			
Output (mVrms)	47.1			
Noise Floor (dB)	-99.0			

Decreasing level to Underange			Tolerance		
Atten	Expected	Indicator	Diff	Type 1	Type 2
5.0	89.0	89.0	0.0	±0.5	±0.6
10.0	84.0	84.0	0.0	±0.5	±0.6
15.0	79.0	79.0	0.0	±0.7	±0.9
20.0	74.0	74.0	0.0	±0.7	±0.9
25.0	69.0	69.0	0.0	±0.7	±0.9
30.0	64.0	64.0	0.0	±0.7	±0.9
35.0	59.0	59.0	0.0	±0.7	±0.9
40.0	54.0	54.0	0.0	±0.7	±0.9
45.0	49.0	49.0	0.0	±0.7	±0.9
49.0	45.0	45.1	0.1	±0.7	±0.9
50.0	44.0	44.1	0.1	±0.7	±0.9
51.0	43.0	43.0	0.0	±0.7	±0.9
52.0	42.0	42.0	0.0	±0.7	±0.9
53.0	41.0	40.9	-0.1	±0.7	±0.9
54.0	40.0	39.9	-0.1	±0.7	±0.9
Conforming		Yes			

Conforming Yes

Uncertainty (+/-) dB 0.13

Description of Tests

18(a). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.
18(b). Octave Band Filter Level Linearity 1kHz (Decreasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	5
Select dB Under SLM Range	0
Attenuation (dB)	0.0
Generator Frequency (Hz)	1kHz
SPL Reference Starting Point (dB)	94
Output (mVrms)	46.4
Noise Floor (dB)	-99.0

Decreasing level to Underange				Toler	ance
Atten	Expected	ected Indicator Diff			Type 2
5.0	89.0	89.0	0.0	±0.5	±0.6
10.0	84.0	84.0	0.0	±0.5	±0.6
15.0	79.0	79.0	0.0	±0.7	±0.9
20.0	74.0	74.0	0.0	±0.7	±0.9
25.0	69.0	69.0	0.0	±0.7	±0.9
30.0	64.0	64.0	0.0	±0.7	±0.9
35.0	59.0	59.0	0.0	±0.7	±0.9
40.0	54.0	54.0	0.0	±0.7	±0.9
45.0	49.0	49.0	0.0	±0.7	±0.9
49.0	45.0	45.0	0.0	±0.7	±0.9
50.0	44.0	44.0	0.0	±0.7	±0.9
51.0	43.0	42.9	-0.1	±0.7	±0.9
52.0	42.0	41.9	-0.1	±0.7	±0.9
53.0	41.0	41.0	0.0	±0.7	±0.9
54.0	40.0	39.9	-0.1	±0.7	±0.9
	Conformi	ng	Yes		

Uncertainty (+/-) dB 0.13

Description of Tests

18(b). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

18(c). Octave Band Filter Level Linearity 16kHz (Decreasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	
Select dB Under SLM Range	0
Attenuation (dB)	0.0
Generator Frequency (Hz)	16kHz
SPL Reference Starting Point (dB)	94
Output (mVrms)	46.3
Noise Floor (dB)	-99.0

Decreasing level to Underange				Toler	ance
Atten	Expected	Indicator	Diff	Type 1	Type 2
5.0	89.0	89.0	0.0	±0.5	±0.6
10.0	84.0	84.0	0.0	±0.5	±0.6
15.0	79.0	79.0	0.0	±0.7	±0.9
20.0	74.0	74.0	0.0	±0.7	±0.9
25.0	69.0	69.0	0.0	±0.7	±0.9
30.0	64.0	64.0	0.0	±0.7	±0.9
35.0	59.0	59.0	0.0	±0.7	±0.9
40.0	54.0	54.0	0.0	±0.7	±0.9
45.0	49.0	49.0	0.0	±0.7	±0.9
49.0	45.0	45.0	0.0	±0.7	±0.9
50.0	44.0	44.0	0.0	±0.7	±0.9
51.0	43.0	43.0	0.0	±0.7	±0.9
52.0	42.0	42.0	0.0	±0.7	±0.9
53.0	41.0	41.0	0.0	±0.7	±0.9
54.0	40.0	40.0	0.0	±0.7	±0.9
	Conformi	ng	Yes		

Uncertainty (+/-) dB 0.13

Description of Tests

18(c). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

19. Octave Level Ranges

19(a). Octave Level Linearity Including the Level range (31.5Hz)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	10
Generator Frequency (Hz)	31.5
Reference SPL (dB)	94
Output (mVrms)	148.7

Sett	ings		Level (dB)	Tolerance		
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2
HIGH	0.0	104.0	104.0	0.0	± 0.5	± 0.6
MID	14.0	90.0	90.0	0.0	± 0.5	± 0.6
LOW	34.0	70.0	70.0	0.0	± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6

0.13

Conforming Yes

Uncertainty (+/-) dB

19(b). Octave Level Linearity Including the Level range (1kHz)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	10
Generator Frequency (Hz)	1k
Reference SPL (dB)	94
Output (mVrms)	146.5

Settings			Level (dB)		Tolerance	
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2
HIGH	0.0	104.0	104.0	0.0	± 0.5	± 0.6
MID	14.0	90.0	90.0	0.0	± 0.5	± 0.6
LOW	34.0	70.0	70.0	0.0	± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6

Conforming Yes

Uncertainty (+/-) dB 0.13

19(c). Octave Level Linearity Including the Level range (16kHz)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	10
Generator Frequency (Hz)	16k
Reference SPL (dB)	94
Output (mVrms)	146.0

Sett	ings		Level (dB)		Tolerance	
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2
HIGH	0.0	104.0	103.9	-0.1	± 0.5	± 0.6
MID	14.0	90.0	90.0	0.0	± 0.5	± 0.6
LOW	34.0	70.0	70.0	0.0	± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
Conforming				Yes		

30 of 45

Uncertainty (+/-) dB

Description of Tests

0.13

19. Filter Level linearity including the level range control (IEC 61260-3 Clause 11.9)

11.9 For the same three filters as selected above, test each available level range in the following way: based on the same reference level, adjust the input level to be 30 dB below upper boundary of the linear operating range for each of the selected range settings. The measured level linearity deviation shall not exceed the acceptance limits given in 5.13.3 and 5.13.4 of IEC 61260-1:2014

The three filter frequencies are 31.5Hz, 1kHz and 16kHz.

The level linearity differences are calculated as the indicated signal level minus the corresponding expected signal level.

20. Octave Band Filter Lower Limit

	20(a). Octave Band Filter Lower Limit (Reference Range)										
SI M	Attonuato	r & Gonor	ator Sottin	ae							
3LIVI,	Allenudio	Time	Weighting	ys Fast							
	F	requency	Weighting	Z							
		Referen	nce Range	MID							
	Lower	Limit for t	the Range	40							
	1	2	3	4	5	6	7	8	9	10	
Freq	4 H7	8 Hz	16 Hz	31 5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	
Measured	7112	15.4	12.8	9.3	7.3	6.4	6.2	6.3	7.2	9.0	
Conforming	N/A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Ŭ											
-											
Freq	4kHz	8kHz	16kHz	32kHz							
Measured	11.2	14.0	17.4	NIZA							
Conforming	Yes	Yes	Yes	N/A							
	Confor	nina		Yes	l						
	0011011			100	l						
	Uncert (+	-/-) dB		0.09							
		, ,									
			20(b). (Octave B	and Filte	er Lower	Limit (Lo	owest Ra	inge)		
SLM,	Attenuato	r & Genera	ator Settin	gs							
		Time	Weighting	Fast							
	Fi	requency	Weighting	Z							
		LOW	est Range	LOW							
	Lower	Limit for t	ine Range	20							
	1	2	3	4	5	6	7	8	9	10	
		-									
Freq	4 Hz	8 Hz	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	
Measured		14.4	11.7	8.8	8.5	5.5	4.6	3.8	3.3	2.9	
Conforming	N/A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
E	4111-		40111	00111							
Freq	4KHz	8KHz	16kHz	32kHz							
Conforming	3.1	4.3	6.3	NI/A							
Conforming	res	res	res	N/A							
	Conform	nina		Yes							
					l						
	Uncert (+	-/-) dB		0.09							

20. Octave Band Filter Lower Llmit (IEC 61260-3 Clause 12)

12.2 Short-circuit the input terminal or use similar means to ensure that the level of the input signal is below the lower limit of the specified linear operating range. Record the output level from each filter in the set. The output level shall not exceed the specified lower limit for the appropriate filter and range.

Interpretation: The yellow cells are the observed values. The measured value must not exceed the Lower Limit for the Range.

21(a). Third Octave Band Filter Relative Attenuation (≤31.5Hz)

SLM, Attenuator & Generator Setting	gs
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	HIGH
Set dB Below Full Scale	-1
Attenuator dB	0.0
Reference SPL 1kHz	133.0
Output mVrms	3827.0
Noise Floor dB	-99.0

Freq 4Hz 5Hz 6.3Hz 8Hz 10Hz 12.5Hz 16Hz 20Hz 25Hz 31.5Hz 0.18	nce
0.18 48.7 0.33 48.7 0.33 57.5 0.53 69.6 0.77 69.6 0.89 69.6 0.92 132.4 0.95 132.9 0.97 132.8 1.00 132.9 1.06 132.9	nce
0.33 57.5 0.53 70.3 0.77 69.6 0.89 69.6 0.92 132.4 0.95 132.9 0.97 132.9 132.9 1.00 132.9 132.9 1.06 132.9 132.9	nce
0.53 0 70.3 0.77 0 0 69.6 0.89 0 0 69.6 0.92 0 0 132.4 0.95 0 132.9 132.9 1.00 132.9 132.9 132.9 1.03 0 132.9 132.9	nce
0.77 69.6 0.89 69.6 0.92 132.4 0.95 132.9 0.97 132.9 1.00 132.9 1.03 132.9 1.06 132.9	nce
0.89 Image: Constraint of the second se	nce
0.92 Image: Constraint of the system of the sy	nce
0.95 Image: Sector of the sector	nce
0.97 132.9 1.00 132.8 1.03 132.9 1.06 132.9	nce
1.00 132.8 1.03 132.9 1.06 132.9	
1.03 Image: Constraint of the second se	
1.06 132.9	
1.09 132.2	
1.12	
1.30 66.2	
1,89 20.3	
3.07 18.8	
5.43 20.5 Class 1	Class 2
84.1 +70/inf	+60/inf
75.3 +60/inf	+54/inf
62.5 +40.5/inf +	+39.5/inf
63.2 +16.6/inf +	+15 6/inf
-04/+53 -0	-0.6/+5.8
	-0.6/+1.7
	0.6/+0.9
5	-0.6/+0.7
	0.6/+0.6
	-0.6/+0.7
	0.6/+0.9
	0.6/+1.7
	0.6/+5.8
	+15 6/inf
	+39 5/inf
	+53.5/im
	+04/inf
	100/111
Ins Loss -0.2	
Conforming N/A N/A N/A N/A N/A N/A N/A N/A N/A Yes	
Uncert (+/-) dB <80dB 0.09 >80dB 0.46	

Description of Test

21(a) Octave Filter (IEC 61260-3 Clause 13)

13 Measurement of relative attenuation

13.1 The relative attenuation on the reference level range shall be tested for the same three filters as selected in Clause 11.

13.2 The measurements of relative attenuation are made as the response to constant amplitude sinusoidal signals at various frequencies. The level of the input signals shall be (1 ± 0.1) dB below the specified upper boundary of the linear operating range.

13.6 The measured relative attenuation shall not exceed the acceptance limits given in Table 1 for the appropriate class of filter.

Interpretation: The three filters specified in "Clause 11" are 31.5Hz, 1kHz and 16kHz unless the client expands this range. The limits in "Table 1" are the Tolerance values shown in green above. The yellow cells are the observed values. The "Attenuation dB" cells are the attenuation values of each filter with the filter's centre frequency attenuation assumed to be zero (i.e. the relative attenuation). The "Ins Loss" are the actual values of attenuation at the filter centre frequencies.

21(b). Third Octave Band Filter Relative Attenuation (40Hz-315Hz)

SLM, Attenuator & Generator Setting	gs
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	HIGH
Set dB Below Full Scale	-1.0
Attenuator dB	0.0
Reference SPL 1kHz	133.0
Output mVrms	3827.0
Noise Floor dB	-99.0

Ratio	1	2	3	4	5	6	7	8	9	10		
Freq	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz		
0.18									48.9			
0.33									54.3			
0.53									65.9			
0.77									70.9			
0.89												
0.92									132.7			
0.95									133.1		Tolo	ranaa
0.97									133.0		TOIE	lance
1.00									133.0			
1.03									133.0			
1.06									133.0			
1.09									132.3			
1.12												
1.30									58.1			
1.89									51.6			
3.07									23.2			
5.43									23.2		Class 1	Class 2
									84.1		+70/inf	+60/inf
									78.7		+60/inf	+54/inf
									67.1		+40.5/inf	+39.5/inf
									62.1		+16.6/inf	+15.6/inf
											-0.4/+5.3	-0.6/+5.8
~									0.3		-0.4/+1.4	-0.6/+1.7
뜅									-0.1		-0.4/+0.7	-0.6/+0.9
5									0.0		-0.4/+0.5	-0.6/+0.7
ati									0.0		-0.4/+0.4	-0.6/+0.6
2									0.0		-0.4/+0.5	-0.6/+0.7
tte									0.0		-0.4/+0.7	-0.6/+0.9
<									0.7		-0.4/+1.4	-0.6/+1.7
											-0.4/+5.3	-0.6/+5.8
									74.9		+16.6/inf	+15.6/inf
									81.4		+40.5/inf	+39.5/inf
									109.8		+60/inf	+54/inf
									109.8		+70/inf	+60/inf
Ins Loss									0.0		1	
Conforming	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Yes	N/A		
											•	

Uncert (+/-) dB ≤80dB 0.09 >80dB 0.46

Description of Test

21(b) Octave Filter (IEC 61260-3 Clause 13)

13 Measurement of relative attenuation

13.1 The relative attenuation on the reference level range shall be tested for the same three filters as selected in Clause 11.

13.2 The measurements of relative attenuation are made as the response to constant amplitude sinusoidal signals at various frequencies. The level of the input signals shall be $(1 \pm 0,1)$ dB below the specified upper boundary of the linear operating range.

13.6 The measured relative attenuation shall not exceed the acceptance limits given in Table 1 for the appropriate class of filter.

Interpretation: The three filters specified in "Clause 11" are 31.5Hz, 1kHz and 16kHz unless the client expands this range. The limits in "Table 1" are the Tolerance values shown in green above. The yellow cells are the observed values. The "Attenuation dB" cells are the attenuation values of each filter with the filter's centre frequency attenuation assumed to be zero (i.e. the relative attenuation). The "Ins Loss" are the actual values of attenuation at the filter centre frequencies.

21(c). Third Octave Band Filter Relative Attenuation (400Hz-3.15kHz)

SLM, Attenuator & Generator Setting	gs
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	HIGH
Set dB Below Full Scale	-1.0
Attenuator dB	0.0
Reference SPL 1kHz	133.0
Output mVrms	3827.0
Noise Floor dB	-99.0

Ratio	1	2	3	4	5	6	7	8	9	10		
Freq	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz		
0.18					45.6							
0.33					48.8							
0.53					58.6							
0.77					70.6							
0.89												
0.92					132.7							
0.95					133.0						Tolo	ranco
0.97					133.0						TOIE	ance
1.00					133.0							
1.03					133.0							
1.06					133.0							
1.09					132.2							
1.12												
1.30					58.1							
1.89					51.6							
3.07					26.9							
5.43					27.4						Class 1	Class 2
					87.4						+70/inf	+60/inf
					84.2						+60/inf	+54/inf
					74.4						+40.5/inf	+39.5/inf
					62.4						+16.6/inf	+15.6/inf
											-0.4/+5.3	-0.6/+5.8
m					0.3						-0.4/+1.4	-0.6/+1.7
p					0.0						-0.4/+0.7	-0.6/+0.9
io					0.0						-0.4/+0.5	-0.6/+0.7
rat					0.0						-0.4/+0.4	-0.6/+0.6
ant					0.0						-0.4/+0.5	-0.6/+0.7
Atte					0.0						-0.4/+0.7	-0.6/+0.9
					0.8						-0.4/+1.4	-0.6/+1.7
											-0.4/+5.3	-0.6/+5.8
					74.9						+16.6/inf	+15.6/inf
					81.4						+40.5/inf	+39.5/inf
					106.1						+60/inf	+54/inf
					105.6						+70/inf	+60/inf
											•	
Ins Loss					0.0							
											•	
Conformina	N/A	N/A	N/A	N/A	Yes	N/A	N/A	N/A	N/A	N/A		

Uncert (+/-) dB ≤80dB 0.09 >80dB 0.46

Description of Test

21(c) Octave Filter (IEC 61260-3 Clause 13)

13 Measurement of relative attenuation

13. Measurement of relative attenuation 13.1 The relative attenuation on the reference level range shall be tested for the same three filters as selected in Clause 11. 13.2 The measurements of relative attenuation are made as the response to constant amplitude sinusoidal signals at various frequencies. The level of the input signals shall be $(1 \pm 0,1)$ dB below the specified upper boundary of the linear operating range. 13.6 The measured relative attenuation shall not exceed the acceptance limits given in Table 1 for the appropriate class of filter.

Interpretation: The three filters specified in "Clause 11" are 31.5Hz, 1kHz and 16kHz unless the client expands this range. The limits in "Table 1" are the Tolerance values shown in green above. The yellow cells are the observed values. The "Attenuation dB" cells are the attenuation values of each filter with the filter's centre frequency attenuation assumed to be zero (i.e. the relative attenuation). The "Ins Loss" are the actual values of attenuation at the filter centre frequencies

21(d). Third Octave Band Filter Relative Attenuation (≥4kHz)

SLM, Attenuator & Generator Setting							
Time Weighting							
Frequency Weighting	Z						
SLM Range	HIGH						
Set dB Below Full Scale	-1.0						
Attenuator dB	0.0						
Reference SPL 1kHz	133.0						
Output mVrms	3827.0						
Noise Floor dB	-99.0						

Ratio	1	2	3	4	5	6	- 7	8	9	10		
Freq	4kHz	5kHz	6.3kHz	8kHz	10kHz	12.5kHz	16kHz	20kHz	25kHz	31.5kHz		
0.18							49.7					
0.33							53.9					
0.53							53.3					
0.77							70.5					
0.89												
0.92							132.7					
0.95							133.0				Tala	
0.97							133.0				TOIE	rance
1.00							133.0					
1.03							133.0					
1.06							133.0					
1.09							132.2					
1.12												
1.30							58.3					
1.89							42.4					
3.07							38.1					
5.43							55.1				Class 1	Class 2
							83.3				+70/inf	+60/inf
							79.1				+60/inf	+54/inf
							79.7				+40.5/inf	+39.5/inf
							62.5				+16.6/inf	+15.6/inf
											-0.4/+5.3	-0.6/+5.8
							0.3				-0.4/+1.4	-0.6/+1.7
dB							0.0				-0.4/+0.7	-0.6/+0.9
ы Б							0.0				-0.4/+0.5	-0.6/+0.7
ati							0.0				-0.4/+0.4	-0.6/+0.6
nu							0.0				-0.4/+0.5	-0.6/+0.7
tte							0.0				-0.4/+0.7	-0.6/+0.9
×							0.8				-0.4/+1.4	-0.6/+1.7
											-0.4/+5.3	-0.6/+5.8
							74.7				+16.6/inf	+15.6/inf
							90.6				+40.5/inf	+39.5/inf
							94.9				+60/inf	+54/inf
							77.9				+70/inf	+60/inf
Ins Loss							0.0				1	
											1	
Conforming	N/A	N/A	N/A	N/A	N/A	N/A	Yes	N/A	N/A	N/A		
											1	

Uncert (+/-) dB ≤80dB 0.09 >80dB 0.46

Description of Test

21(d) Octave Filter (IEC 61260-3 Clause 13)

13 Measurement of relative attenuation

13.1 The relative attenuation on the reference level range shall be tested for the same three filters as selected in Clause 11.

13.2 The measurements of relative attenuation are made as the response to constant amplitude sinusoidal signals at various frequencies. The level of the input signals shall be (1 ± 0.1) dB below the specified upper boundary of the linear operating range.

13.6 The measured relative attenuation shall not exceed the acceptance limits given in Table 1 for the appropriate class of filter.

Interpretation: The three filters specified in "Clause 11" are 31.5Hz, 1kHz and 16kHz unless the client expands this range. The limits in "Table 1" are the Tolerance values shown in green above. The yellow cells are the observed values. The "Attenuation dB" cells are the attenuation values of each filter with the filter's centre frequency attenuation assumed to be zero (i.e. the relative attenuation). The "Ins Loss" are the actual values of attenuation at the filter centre frequencies.

22. Third Octave Band Filter Relative Attenuation at Midband Frequency

SLM, Attenuator & Generator Settin	gs
Time Weighting	Fast
Frequency Weighting	Z
Reference Range	MID
Attenuator dB	0.0
Reference SPL 1kHz	94.0
Output mVrms	42.9

	1	2	3	4	5	6	7	8	9	10	Tole	rance
Freq	4Hz	5Hz	6.3Hz	8Hz	10Hz	12.5Hz	16Hz	20Hz	25Hz	31.5Hz	Class 1	Class 2
Measured							94.3	94.1	93.9	93.8		
Ins Loss							0.3	0.1	-0.1	-0.2	-0.4/+0.4	-0.6/+0.6
Conforming	N/A	N/A	N/A	N/A	N/A	N/A	Yes	Yes	Yes	Yes		
Freq	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz	Class 1	Class 2
Measured	93.9	93.9	94.0	94.0	94.0	94.1	94.1	94.0	94.0	94.0		
Ins Loss	-0.1	-0.1	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	-0.4/+0.4	-0.6/+0.6
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Freq	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz	Class 1	Class 2
Measured	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0		
Ins Loss	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.4/+0.4	-0.6/+0.6
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Freq	4kHz	5kHz	6 3kHz	8kHz	10kHz	12.5kHz	16kHz	20kHz	25kHz	31 5kHz	Class 1	Class 2

Yes Uncert (+/-) dB 0.09

94.0

0.0

Description of Test

94.0

0.0

Yes

94.0

0.0

Yes

94.1

0.1

Yes

N/A

N/A

22. Octave Band Filter Relative Attenuation at Midband Frequency (IEC 61260-3 Clause 10.2)

94.0

0.0

Yes

94.0

0.0

Yes

10.2 Tests of relative attenuation at midband frequency

94.0

0.0

Yes

94.0

0.0

Yes

10.2.1 The relative attenuation at the exact midband frequency shall be measured for every filter in a set of filters. The relative attenuation $\Delta A(\Omega)$ at any midband frequency is determined from Formula (8) given in IEC 61260-1:2014. The reference level range shall be selected for the test. The level of the test signal shall be equal to the reference input signal level.

10.2.2 The measured relative attenuation shall not exceed the acceptance limits ± 0,4 dB for Class 1 filters or ± 0,6 dB for class 2 filters as specified in 5.10 in IEC 61260-1:2014.

Interpretation: The yellow cells are the observed values. The "Ins Loss" are the actual values of attenuation at the filter centre frequencies. The "Conforming" cells demonstrate compliance with the Tolerance limits depending upon the Class of filter.

✓ Checked

Measured

Conforming

Ins Loss

-0.4/+0.4 -0.6/+0.6

23(a). Third Octave Band Filter Level Linearity 31.5Hz (Increasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	6
Select dB Over SLM Range	5
Attenuation (dB)	31.0
Generator Frequency (Hz)	31.5
SPL Reference Starting Point (dB)	94.0
Output (mVrms)	1669.0
Noise Floor (dB)	-99.0

	ncreasing I	evel to Ove	rload	Tolerance			
Atten	Expected	Indicator	Diff	Type 1	Type 2		
26.0	99.0	99.0	0.0	±0.5	±0.6		
21.0	104.0	104.0	0.0	±0.5	±0.6		
16.0	109.0	109.0	0.0	±0.5	±0.6		
11.0	114.0	114.0	0.0	±0.5	±0.6		
10.0	115.0	115.0	0.0	±0.5	±0.6		
9.0	116.0	116.0	0.0	±0.5	±0.6		
8.0	117.0	117.0	0.0	±0.5	±0.6		
7.0	118.0	118.0	0.0	±0.5	±0.6		
6.0	119.0	119.0	0.0	±0.5	±0.6		
5.0	120.0	120.0	0.0	±0.5	±0.6		
4.0	121.0	121.0	0.0	±0.5	±0.6		
3.0	122.0	122.0	0.0	±0.5	±0.6		
2.0	123.0	123.0	0.0	±0.5	±0.6		
1.0	124.0	124.0	0.0	±0.5	±0.6		
0.0	125.0	125.0	0.0	±0.5	±0.6		
				_			

Conforming Yes

Uncertainty (+/-) dB 0.13

Description of Tests

23(a). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

23(b). Third Octave Band Filter Level Linearity 1kHz (Increasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	6
Select dB Over SLM Range	5
Attenuation (dB)	31.0
Generator Frequency (Hz)	1k
SPL Reference Starting Point (dB)	94.0
Output (mVrms)	1644.0
Noise Floor (dB)	-99.0

	ncreasing I	evel to Ove	rload	Tolerance	
Atten	Expected	Indicator	Diff	Type 1	Type 2
26.0	99.0	99.0	0.0	±0.5	±0.6
21.0	104.0	104.0	0.0	±0.5	±0.6
16.0	109.0	109.0	0.0	±0.5	±0.6
11.0	114.0	114.0	0.0	±0.5	±0.6
10.0	115.0	115.0	0.0	±0.5	±0.6
9.0	116.0	116.0	0.0	±0.5	±0.6
8.0	117.0	117.0	0.0	±0.5	±0.6
7.0	118.0	118.0	0.0	±0.5	±0.6
6.0	119.0	119.0	0.0	±0.5	±0.6
5.0	120.0	120.0	0.0	±0.5	±0.6
4.0	121.0	121.0	0.0	±0.5	±0.6
3.0	122.0	122.0	0.0	±0.5	±0.6
2.0	123.0	123.0	0.0	±0.5	±0.6
1.0	124.0	124.0	0.0	±0.5	±0.6
0.0	125.0	125.0	0.0	±0.5	±0.6

Conforming Yes

Uncertainty (+/-) dB 0.13

Description of Tests

23(b). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

23(c). Third Octave Band Filter Level Linearity 16kHz (Increasing)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Z			
SLM Range	MID			
Generator & Attenuator Settings	6			
Select dB Over SLM Range	5			
Attenuation (dB)	31.0			
Generator Frequency (Hz)	16k			
SPL Reference Starting Point (dB)	94.0			
Output (mVrms)	1641.0			
Noise Floor (dB)	-99.0			

Increasing level to Overload			rload	Toler	ance
Atten	Expected	Indicator	Diff	Type 1	Type 2
26.0	99.0	99.0	0.0	±0.5	±0.6
21.0	104.0	104.0	0.0	±0.5	±0.6
16.0	109.0	109.0	0.0	±0.5	±0.6
11.0	114.0	114.0	0.0	±0.5	±0.6
10.0	115.0	115.0	0.0	±0.5	±0.6
9.0	116.0	116.0	0.0	±0.5	±0.6
8.0	117.0	117.0	0.0	±0.5	±0.6
7.0	118.0	118.0	0.0	±0.5	±0.6
6.0	119.0	119.0	0.0	±0.5	±0.6
5.0	120.0	120.0	0.0	±0.5	±0.6
4.0	121.0	121.0	0.0	±0.5	±0.6
3.0	122.0	122.0	0.0	±0.5	±0.6
2.0	123.0	123.0	0.0	±0.5	±0.6
1.0	124.0	124.0	0.0	±0.5	±0.6
0.0	125.0	125.0	0.0	±0.5	±0.6
				1	
	Conformi	ng	Yes		

Uncertainty (+/-) dB 0.13

Description of Tests

23(c). Level linearity on the reference level range (IEC 61672-3 Clause 16)

Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. (61672-3 Clause 16.1).

Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level from the starting number of an under-range condition.

Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1 from the specified upper boundary of the linear operating range up to, but not including, the first indication of overload and also from the specified lower boundary of the linear operating range down to, but not including, the first indication of an under-range condition.

"Y" means indicator over-range.

24(a). Third Octave Band Filter Level Linearity 31.5Hz (Decreasing)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Z			
SLM Range	MID			
Generator & Attenuator Settings	6			
Select dB Under SLM Range	0			
Attenuation (dB)	0.0			
Generator Frequency (Hz)	31.5			
SPL Reference Starting Point (dB)	94			
Output (mVrms)	47.1			
Noise Floor (dB)	-99.0			

Decreasing level to Under			erange	Toler	ance	
Atten	Expected	Indicator	Diff	Type 1	Type 2	
5.0	89.0	89.0	0.0	±0.5	±0.6	
10.0	84.0	84.0	0.0	±0.5	±0.6	
15.0	79.0	79.0	0.0	±0.7	±0.9	
20.0	74.0	74.0	0.0	±0.7	±0.9	
25.0	69.0	69.0	0.0	±0.7	±0.9	
30.0	64.0	64.0	0.0	±0.7	±0.9	
35.0	59.0	59.0	0.0	±0.7	±0.9	
40.0	54.0	54.0	0.0	±0.7	±0.9	
45.0	49.0	49.0	0.0	±0.7	±0.9	
49.0	45.0	45.1	0.1	±0.7	±0.9	
50.0	44.0	44.1	0.1	±0.7	±0.9	
51.0	43.0	43.0	0.0	±0.7	±0.9	
52.0	42.0	42.0	0.0	±0.7	±0.9	
53.0	41.0	40.9	-0.1	±0.7	±0.9	
54.0	40.0	39.9	-0.1	±0.7	±0.9	
	Conforming Yes					

Uncertainty (+/-) dB 0.13

Description of Tests

24(a). Level linearity on the reference level range (IEC 61672-3 Clause 16)

Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. (61672-3 Clause 16.1).

Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level from the first indication of an under-range condition.

Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1 from the specified upper boundary of the linear operating range up to, but not including, the first indication of overload and also from the specified lower boundary of the linear operating range down to, but not including, the first indication of an under-range condition.

"Y" means indicator under-range. However, if 20dB above noise floor is reached then no results are reported.

24(b). Third Octave Band Filter Level Linearity 1kHz (Decreasing)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Z			
SLM Range	MID			
Generator & Attenuator Settings				
Select dB Under SLM Range	0			
Attenuation (dB)	0.0			
Generator Frequency (Hz)	1kHz			
SPL Reference Starting Point (dB)	94			
Output (mVrms)	46.4			
Noise Floor (dB)	-99.0			

Decreasing level to Under			erange	Toler	ance
Atten	Expected	Indicator	Diff	Type 1	Type 2
5.0	89.0	89.0	0.0	±0.5	±0.6
10.0	84.0	84.0	0.0	±0.5	±0.6
15.0	79.0	79.0	0.0	±0.7	±0.9
20.0	74.0	74.0	0.0	±0.7	±0.9
25.0	69.0	69.0	0.0	±0.7	±0.9
30.0	64.0	64.0	0.0	±0.7	±0.9
35.0	59.0	59.0	0.0	±0.7	±0.9
40.0	54.0	54.0	0.0	±0.7	±0.9
45.0	49.0	49.0	0.0	±0.7	±0.9
49.0	45.0	45.0	0.0	±0.7	±0.9
50.0	44.0	44.0	0.0	±0.7	±0.9
51.0	43.0	42.9	-0.1	±0.7	±0.9
52.0	42.0	41.9	-0.1	±0.7	±0.9
53.0	41.0	40.9	-0.1	±0.7	±0.9
54.0	40.0	39.9	-0.1	±0.7	±0.9
	Conformi	ng	Yes		

Uncertainty (+/-) dB 0.13

Description of Tests

24(b). Level linearity on the reference level range (IEC 61672-3 Clause 16)

Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. (61672-3 Clause 16.1).

Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level from the first indication of an under-range condition.

Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1 from the specified upper boundary of the linear operating range up to, but not including, the first indication of overload and also from the specified lower boundary of the linear operating range down to, but not including, the first indication of an under-range condition.

"Y" means indicator under-range. However, if 20dB above noise floor is reached then no results are reported.

24(c). Third Octave Band Filter Level Linearity 16kHz (Decreasing)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Z			
SLM Range	MID			
Generator & Attenuator Settings				
Select dB Under SLM Range	0			
Attenuation (dB)	0.0			
Generator Frequency (Hz)	16kHz			
SPL Reference Starting Point (dB)	94			
Output (mVrms)	46.2			
Noise Floor (dB)	-99.0			

Decreasing level to Underange			Toler	ance	
Atten	Expected	Indicator	Diff	Type 1	Type 2
5.0	89.0	89.0	0.0	±0.5	±0.6
10.0	84.0	84.0	0.0	±0.5	±0.6
15.0	79.0	79.0	0.0	±0.7	±0.9
20.0	74.0	74.0	0.0	±0.7	±0.9
25.0	69.0	69.0	0.0	±0.7	±0.9
30.0	64.0	64.0	0.0	±0.7	±0.9
35.0	59.0	59.0	0.0	±0.7	±0.9
40.0	54.0	54.0	0.0	±0.7	±0.9
45.0	49.0	49.0	0.0	±0.7	±0.9
49.0	45.0	45.0	0.0	±0.7	±0.9
50.0	44.0	44.0	0.0	±0.7	±0.9
51.0	43.0	43.0	0.0	±0.7	±0.9
52.0	42.0	42.0	0.0	±0.7	±0.9
53.0	41.0	41.0	0.0	±0.7	±0.9
54.0	40.0	40.0	0.0	±0.7	±0.9
	Conformi	ng	Yes		

Uncertainty (+/-) dB 0.13

Description of Tests

24(c). Level linearity on the reference level range (IEC 61672-3 Clause 16)

Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. (61672-3 Clause 16.1).

Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level from the first indication of an under-range condition.

Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1 from the specified upper boundary of the linear operating range up to, but not including, the first indication of overload and also from the specified lower boundary of the linear operating range down to, but not including, the first indication of an under-range condition.

"Y" means indicator under-range. However, if 20dB above noise floor is reached then no results are reported.

25. Third Octave Level Ranges

25(a). Third Octave Level Linearity Including the Level range (31.5Hz)

SLM Settings					
Time Weighting					
Frequency Weighting	Z				
SLM Range	MID				
Generator & Attenuator Settings					
Attenuation (dB)	10				
Generator Frequency (Hz)	31.5				
Reference SPL (dB)	94				
Output (mVrms)	148.6				

Settings		Level (dB)			Tolerance	
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2
HIGH	0.0	104.0	104.0	0.0	± 0.5	± 0.6
MID	14.0	90.0	90.0	0.0	± 0.5	± 0.6
LOW	34.0	70.0	70.0	0.0	± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6

0.13

Conforming Yes

Uncertainty (+/-) dB

25(b). Third Octave Level Linearity Including the Level range (1kHz)

SLM Settings		
Time Weighting	Fast	
Frequency Weighting	Z	
SLM Range	MID	
Generator & Attenuator Settings		
Attenuation (dB)	10	
Generator Frequency (Hz)	1k	
Reference SPL (dB)	94	
Output (mVrms)	146.4	

Sett	ings		Level (dB)		Tolerance	
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2
HIGH	0.0	104.0	104.0	0.0	± 0.5	± 0.6
MID	14.0	90.0	90.0	0.0	± 0.5	± 0.6
LOW	34.0	70.0	70.0	0.0	± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6

Conforming Yes

Uncertainty (+/-) dB 0.13

25(c). Third Octave Level Linearity Including the Level range (16kHz)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	10
Generator Frequency (Hz)	16k
Reference SPL (dB)	94
Output (mVrms)	145.9

Sett	ings		Level (dB)		Tolerance	
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2
HIGH	0.0	104.0	103.9	-0.1	± 0.5	± 0.6
MID	14.0	90.0	90.0	0.0	± 0.5	± 0.6
LOW	34.0	70.0	70.0	0.0	± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
	Confo	orming	Yes			

Description of Tests

0.13

25. Filter Level linearity including the level range control (IEC 61260-3 Clause 11.9)

11.9 For the same three filters as selected above, test each available level range in the following way: based on the same reference level, adjust the input level to be 30 dB below upper boundary of the linear operating range for each of the selected range settings. The measured level linearity deviation shall not exceed the acceptance limits given in 5.13.3 and 5.13.4 of IEC 61260-1:2014

The three filter frequencies are 31.5Hz, 1kHz and 16kHz.

The level linearity differences are calculated as the indicated signal level minus the corresponding expected signal level.

26. Third Octave Band Filter Lower Limit

SLM, Attenuator & Generator Settings]					
		Time \	Neighting	Fast						
	Fi	requency	Neighting	Z						
	Lowest Range MID									
Lower Limit for the Range 40				40						
	1	2	3	4	5	6	7	8	9	10
Freq	4Hz	5Hz	6.3Hz	8Hz	10Hz	12.5Hz	16Hz	20Hz	25Hz	31.5Hz
Measured			12.0	9.2	8.3	8.7	7.9	8.8	4.7	4.6
Conforming	N/A	N/A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	4011-	5011-	0011-	0011-	40011-	40511-	40011-	00011-	05011-	04511-
Freq	40HZ	50HZ	63HZ	80HZ	100HZ	125HZ	160HZ	200HZ	250HZ	315Hz
vieasured	4.4	5.1	2.8	2.6	2.1	1.2	1.9	1.4	1.3	1.0
Conforming	res	Yes	res	res	res	res	Yes	Yes	res	res
Frog	400Hz	500Hz	630Hz	800H-7	1647	1 25kHz	1.6kHz	2kH7	2.5kHz	3 15kHz
Measured	0.0	1.6	1.2	1.8	2.1	3.0	3.5	<u> </u>	1.8	5.5
Conforming	Ves	Ves	Vos	Ves	Vos	Ves	Ves	Vos	Vos	Ves
comorning	163	163	163	163	163	163	163	163	163	163
Freq	4kHz	5kHz	6.3kHz	8kHz	10kHz	12.5kHz	16kHz	20kHz	25kHz	31.5kHz
Measured	6.3	7.3	8.2	9.0	10.2	11.2	12.5	13.8		
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A
	Conform			Vac	1					
	Contori	ning		res						
	Uncort (4	/-) dB		0.00	1					
	Uncert (+	,-) ub		0.03	J					
			26(b). C	Octave B	and Filte	er Lower	Limit (Lo	owest Ra	ange)	
					-		-			
SLM,	Attenuato	r & Genera	ator Setting	gs	1					
		Time	Neighting	Fast	1					
	Fi	requency	Neighting	Z	4					
		Low	est Range	LOW	-					
	Lower	Limit for t	the Range	20	1					

26(a). Octave Band Filter Lower Limit (Reference Range)

	1	2	3	4	5	6	7	8	9	10
Freq	4Hz	5Hz	6.3Hz	8Hz	10Hz	12.5Hz	16Hz	20Hz	25Hz	31.5Hz
Measured			6.5	8.8	10.1	9.2	8.7	5.6	4.4	4.2
Conforming	N/A	N/A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Freq	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz
Measured	2.7	4.6	1.4	1.7	1.3	0.7	0.1	0.3	0.0	0.0
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Freq	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz
Measured	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Freq	4kHz	5kHz	6.3kHz	8kHz	10kHz	12.5kHz	16kHz	20kHz	25kHz	31.5kHz
Measured	0.0	0.0	0.0	0.0	0.1	0.7	1.5	2.3		
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A

Conforming	Yes
Uncert (+/-) dB	0.09

26. Third Octave Band Filter Lower Llmit (IEC 61260-3 Clause 12)

12.2 Short-circuit the input terminal or use similar means to ensure that the level of the input signal is below the lower limit of the specified linear operating range. Record the output level from each filter in the set. The output level shall not exceed the specified lower limit for the appropriate filter and range.

Interpretation: The yellow cells are the observed values. The measured value must not exceed the Lower Limit for the Range.

NATacoustic

Acoustic Calibration & Testing Laboratory

Level 1, 418A Elizabeth Street., Surry Hills NSW 2010 AUSTRALIA Ph: (02) 8218 0570 email: service@natacoustic.com.au website: v A division of Renzo Tonin & Associates (NSW) Pty Ltd ABN 29 117 462 861 www.natacoustic.com.au

Certificate of Calibration Sound Level Meter

Calibration Date 26/02/2021 Job N Client Name RENZO TONIN & ASSOCIATES (NSW) PTY LTD Job No RB858 Operator AH Client Address LEVEL 1 418A ELIZABETH ST SURRY HILLS 2010

Test Item

Instrument Make NTI	Model XL2-TA	Serial No #A2A-12491-E0 #RTA07-ATP
Microphone Make NTI	Model MC230	Serial No #9681
Preamplifier Make NTI	Model MA220	Serial No #6476
Ext'n Cable Make NTI	Model N/A	Serial No N/A
Accessories Nil		Firmware 4.21

SLM Type Filters Class 1

Environmental	Measured				
Conditions	Start	End			
Air Temp. (°C)	23.5	23.6			
Rel. Humidity (%)	65.0	63.7			
Air Pressure (kPa)	100.5	100.4			

Applicable Standards: Periodic tests were performed in accordance with procedures from IEC 61672-3 :2013 and IEC 61260-3 :2016

Applicable Work Instruction:

RWi-08 SLM & Calibrator Verification

Laboratory Equipment : B&K4226 Multifunction Acoustic Calibrator SN 2288472 Agilent Function Generator Model 33220A SN MY43004013 Agilent Digital Multimeter Model 34401A SN MY41004386

Traceability: The results of the tests and measurements included in this document are traceable via the test methods described under each test, and by the use of the above equipment, which has been calibrated by NATA accredited calibration facilities This document shall not be reproduced, except in full.

Scope: This certificate is issued on the basis that the instrument complies with the manufacturer's specification.

See "Sound Level Meter Verification - Summary of Tests" page for an itemised list of results for each test.

14966

Accredited for compliance with ISO/IEC 17025 - Calibration

Uncertainty: The uncertainty is stated at a confidence level of 95% using a k factor of 2.

Calibration Statement:

The sound level meter submitted for testing has successfully completed the periodic tests of IEC 61672-3:2013 and IEC 61260-3:2016, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2017 and IEC 61260-2:2017, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 and IEC 61260-1:2014, the sound level meter submitted for testing conforms to the class 1 specifications of IEC 61672-1:2013 and IEC 61260-1:2014.

Authorized Signatory:

(uns

Print Name: Ariel Michael Date: 26/02/2021

Template Document Name: RQT-05 (rev 72) SLM ISO Verification

NATacoustic Sound Level Meter Verification - Summary of Tests										
Calibration Date 26/02/2021 Job No Client Name RENZO TONIN & ASSOCIATES (NSW) PTY LTD	RB858		Operator	AH						
Client Address LEVEL 1 418A ELIZABETH ST SURRY HILLS 2010										
1. Instrument Information & Reference Conditions Instrument Make NTI Model XL2-TA Serial No #A2A-12491-E0 #RTA07-ATP03 Microphone Make NTI Model MC230 Serial No #9681 Preamplifier Make NTI Model MA220 Serial No #6476 Ext'n Cable Make NTI Model N/A Serial No #6476										
Freq Weightings FLAT No A Yes C Yes Z Yes Time Weightings Eact Yos Impulso Yos Yes Z Yes										
Time Weightings Fast Yes Slow Yes Impulse Yes SLM Type 1 Filter Class 1										
Instruction Manual is Available						Yes				
2. Preliminary Inspection and Power Supply				Lo	gger Inspected	Yes				
				Calibration E Power Su	quipment Okay pply Ok (Start)	Yes Yes				
				Power S	upply Ok (End)	Yes				
3. Environmental Conditions			Environme	tal Conditions	Meas	ured End				
			Livitorinie	Air Temp. (°C)	23.5	23.6				
			Air	Pressure (kPa)	65.0 100.5	63.7 100.4				
L			l	Conforming	Yes	Yes				
Test Description	·				Value / Conforming	Uncert (+/-)				
4(a). Initial Calibration			Calibratio	n Frequency Hz	1000.0	N/A				
		Indicated L	evel Before A	djustment (dB)	113.9	0.11				
		Stability During	Continuous	Operation (dB)	Yes	N/A				
5(a). Self-Generated Noise, Microphone Installed 5(b). Self-Generated Noise, Electrical				A	16.2 8.5	0.09				
				Ċ	12.9	0.09				
6 Acoustical Signal Tast				2	18.6 Xos	0.09				
				1 kHz	Yes	0.42				
7 Electrical Fraguency Weighting				8 kHz	Yes	0.60				
				C	Yes	0.09				
9. Eroquancy 8 Time Weightings 1kHz		8(a) Fraguenc	w Woighting	Z	Yes	0.09				
o. Frequency & Time weightings Tknz		o(a). Frequenc	y weighting	Z	Yes	0.09				
		9(b) Tim	o Woighting	FLAT	N/A	0.09				
		0(b). Th	e weighting	Leq	Yes	0.09				
9(a). Level Linearity 8kHz (Increasing)		·		Conforming	Yes	0.13				
10(a). Level Linearity Including the Level Range (Reference Signal)				Conforming	Yes	0.13				
10(b). Level Linearity Including the Level range (5dB Above Under-range)				Conforming	Yes	0.13				
				Slow	Yes	0.13				
12 Peak C sound level				SEL/Leq 8 kHz	Yes	0.13				
				500 Hz	Yes	0.09				
13. Overload indication				Conforming Latches	Yes N/A	0.09 N/A				
14. High-level Stability				Conforming	Yes	0.09				
15(a). Octave Band Filter Relative Attenuation (≤2kHz)				Conforming	Yes	0.09				
15(b). Octave Band Filter Relative Attenuation (>2kHz)				Conforming	Yes	0.09				
16. Octave Band Filter Relative Attenuation at Midband Frequency				Conforming	Yes	0.09				
17(a). Octave Band Filter Level Linearity 31.5Hz (Increasing)				31.5Hz	Yes	0.13				
17(c). Octave Band Filter Level Linearity 16kHz (Increasing)				16kHz	Yes	0.13				
18(a). Octave Band Filter Level Linearity 31 5Hz (Decreasing)				31 54-	Yes	0.13				
18(b). Octave Band Filter Level Linearity 1kHz (Decreasing)				1kHz	Yes	0.13				
18(c). Octave Band Filter Level Linearity 16kHz (Decreasing)				16kHz	Yes	0.13				
19(a). Octave Level Linearity Including the Level range (31.5Hz) 19(b). Octave Level Linearity Including the Level range (1kHz) 19(c). Octave Level Linearity Including the Level range (1kHz)				31.5Hz 1kHz	Yes Yes	0.13				
20(a). Octave Level Linearry including the Level range (Tokriz)				Conforming	Yes	0.09				
20(b). Octave Band Filter Lower Limit (Lowest Range)				Conforming	Yes	0.09				
21(a). Third Octave Band Filter Relative Attenuation (≤31.5Hz) 21(b). Third Octave Band Filter Relative Attenuation (40Hz-315Hz)				Conforming Conforming	Yes	0.09				
21(c). Third Octave Band Filter Relative Attenuation (400Hz-3.15kHz)				Conforming	Yes	0.09				
21(d). I hird Octave Band Filter Relative Attenuation (24kHz)				Conforming	Yes	0.09				
22. Third Octave Band Filter Relative Attenuation at Midband Frequency	-			Conforming	Yes	0.09				

23(a). Third Octave Band Filter Level Linearity 31.5Hz (Increasing)	31.5Hz	Yes	0.13
23(b). Third Octave Band Filter Level Linearity 1kHz (Increasing)	1kHz	Yes	0.13
23(c). Third Octave Band Filter Level Linearity 16kHz (Increasing)	16kHz	Yes	0.13
24(a). Third Octave Band Filter Level Linearity 31.5Hz (Decreasing)	31.5Hz	Yes	0.13
24(b). Third Octave Band Filter Level Linearity 1kHz (Decreasing)	1kHz	Yes	0.13
24(c). Third Octave Band Filter Level Linearity 16kHz (Decreasing)	16kHz	Yes	0.13
25(a). Third Octave Level Linearity Including the Level range (31.5Hz)	31.5Hz	Yes	0.13
25(b). Third Octave Level Linearity Including the Level range (1kHz)	1kHz	Yes	0.13
25(c). Third Octave Level Linearity Including the Level range (16kHz)	16kHz	Yes	0.13
26(a). Octave Band Filter Lower Limit (Reference Range)	Conforming	Yes	0.09
26(b). Octave Band Filter Lower Limit (Lowest Range)	Conforming	Yes	0.09
SLM Overall Conforming	Y	es	

Accredited for compliance with AS ISO/IEC 17025 - General requirements for the competence of testing and calibration laboratories. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

This document shall not be reproduced, except in full. Periodic tests were performed in accordance with procedures from IEC 61672-3 :2013 and IEC 61260-3 :2016.

Checked

Template Document Name: RQT-05 (rev 72) SLM ISO Verification

	1(a	a). Instr	ument	Inform	ation		
Calibration Date 26/02	/2021	1	Joh	No	RB 858	Operator	ΔН
	/2021				IND000	operator	
Client Name RENZO TON	NIN & ASSOC	CIATES (NSW	/) PTY LTD				
Client Address LEVEL 1 41		IN ST SURK	FILLS 2010				
		1. Ins	trument In	formation			
Instrument Make NTI		Model	XI 2-TA		Serial	#A2A-12491-E0 #BTA07-ATP03	
Microphone Make NTI		Model	MC230		Serial	#9681 pF	15
Preampifier Make NTI		Model	MA220		Serial	#6476	
Accessories Nil		Model			Firmware	4 21	
					- I IIIIII U III	1.2.1	
	Α	Yes					
Freq Weightings	C 7	Yes					
	FLAT	No					
Time Mich 1 is	Fast	Yes					
Time weightings		Yes					
	impuloc	103	ļ				
	Leq	Yes					
Functions	SEL	Yes					
	reak	162					
Instrument Panges	Range	Indicato	r Range	Primary	/ Range		
	Name	Low dB	High dB	Low dB	High dB		
1	HIGH	40	140	60 40	134		
3	LOW	0	100	20	100		
4]	
5							
6 7							
8							
9							
10 Chock List			OK			-	
CHECK LIST			UK			1	
Reference Range	MID						
Ref. SPL @ 1kHz	114						
Linearity Limits on Ref range	Low dB	Hiah dB	1				
1kHz Leq (A weighting)	35.0	120.0				Colour Legend	
4kHz Leq	35.0	120.0				Enter Value	110
8kHz Leq	35.0	120.0	l			Difference	110
Highest Range for 10(b),12,13	MID					Error/Outside Tolerance	2.0
						Tolerance	+/-1
SLM Class	1					Select Toggle	Val
Filter Base	2					Conforming	Yes
		l					
Instruction Manual Tit	e (Clause 3.	1&3.2, IEC 61	1672-3:2013)	NTI XL2 Ope	rating Manua	al	
		Publ	version lication Date	2.5 2/11/2012			
Source of Docume	nt (& Date of	Download if	Applicable)	N/A			
Confc	orming			Yes			
Pattern Evaluation Test F	Report (Claus	se 3.5, IEC 6'	1672-3:2013)	Type Approv	al Certificate		
	Reference	Number or P	age Number	1.63-409309	6		
0	mt /9 D-t-	Publ	ication Date	3/09/2019			
Source of Docume	in (& Date of	Download I	Аррисаріе)	FIB			
Confo	rming			Yes			

1(b). Acoustic Corrections

	Absolute Corrections and Uncertainties									
Freq	Mic FF to	Pressure	Ci	ase	Windscreen		Other *		Total	
(Hz)	dB	Uncert dB	dB	Uncert dB	dB	Uncert dB	dB	Uncert dB	dB	Uncert dB
31.5	0.00								0.00	0.41
63	0.00								0.00	0.41
125	0.00								0.00	0.41
250	0.00								0.00	0.41
500	0.00								0.00	0.41
1k	0.00								0.00	0.41
2k	0.30								0.30	0.41
4k	0.70								0.70	0.41
8k	2.60								2.60	0.58
12.5k	6.00								6.00	0.64
16k	7.30								7.30	0.64

Source of Mic FF to Pressure Correction Nti Microphone Specifications M2230 Source of Case Correction Not Available Source of Windscreen Correction Not Available *Description of Other Correction N/A

Descriptions of Tests

1(b). Acoustical signal tests of a frequency weighting (IEC 61672-3)

(Clause 12.2)

Correction data shall account for:

- the equivalent free-field or random-incidence frequency response of the sound level meter if the source of sound or simulated sound is the pressure field in a multi-frequency sound calibrator, in a comparison coupler, or from an electrostatic actuator; and,

- if applicable, the average influence on the frequency response of a typical microphone of a windscreen and any accessories that are part of the configuration of the sound level meter for normal use.

(Clause 12.3)

Correction data shall be obtained from tables in the Instruction Manual for the sound level meter.

(Clause 12.4)

If the necessary correction data are not available from the Instruction Manual, data from the manufacturer of the microphone, multi-frequency sound calibrator, comparison coupler, or electrostatic actuator may then be used. This data shall be publicly available

(Clause 12.5)

The source for the free-field or random-incidence correction data shall be stated in the documentation for the results of the periodic tests. The source for the associated uncertainties of measurement shall be the same as the source for the corresponding correction data. If the uncertainties of the corresponding free-field correction data are not available, the applicable maximum-permitted uncertainties given in IEC 62585 shall be used in the calculation of the laboratory's total uncertainty budget.

NOTE: Where the uncertainties due to the "Mic FF to Pressure", "Case" or "Windscreen" are omitted in the table above, the following statement applies:

No information on the uncertainty of measurement, required by IEC 61672-3:2013, for the correction data given in the Instruction Manual or obtained from the manufacturer or supplier of the sound level meter, or the manufacturer of the microphone, or the manufacturer of the multi-frequency sound calibrator was provided in the Instruction Manual or made available by the manufacturer or supplier of the sound level meter. The uncertainty of measurement of the correction data was therefore assumed to be the maximum-permitted uncertainty given in IEC 62585 for the corresponding free-field correction data and for a coverage probability of 95 %.

1(c). Electrical Corrections

	Absolute Corrections and Uncertainties												
Freq	Mic 0 deg	g FF Resp	Case		Winds	screen	Oth	ner *	Total				
(Hz)	dB	Uncert dB	dB	Uncert dB	dB	Uncert dB	dB	Uncert dB	dB	Uncert dB			
31.5			0.00		0.00		0.00		0.00	0.41			
63			0.00		0.00		0.00		0.00	0.41			
125			0.00		0.00		0.00		0.00	0.41			
250			0.00		0.00		0.00		0.00	0.41			
500			0.00		0.00		0.00		0.00	0.41			
1k			0.00		0.00		0.00		0.00	0.41			
2k			0.00		0.00		0.00		0.00	0.41			
4k			0.00		0.00		0.00		0.00	0.41			
8k			0.00		0.00		0.00		0.00	0.58			
12.5k			0.00		0.00		0.00		0.00	0.64			
16k			0.00		0.00		0.00		0.00	0.64			

Source of Mic 0 deg Free-field Response	Not Available
Source of Case Correction	Not Available
Source of Windscreen Correction	Not Available
*Description of Other Correction	N/A

Descriptions of Tests

1(c). Acoustical signal tests of a frequency weighting (IEC 61672-3)

(Clause 13.6)

For each frequency weighting and at each test frequency, corrections shall be applied to the relative frequency weightings determined in 13.5 to account for:

- the deviation of the free-field or random-incidence frequency response of the microphone in the reference direction from a uniform frequency response;

- the average effects of reflections from the case of the sound level meter and of diffraction of sound around the microphone and preamplifier; and,

- if applicable, the average influence on the frequency response of a typical microphone of a windscreen and any accessories that are part of the configuration of the sound level meter for normal use.

(Clause 13.7)

Corrections for the effects of reflections and diffraction and for the influence of the windscreen and windscreen accessories on the free-field or random-incidence frequency response shall be the same as used for the frequency-weighting tests with acoustical signals.

NOTE: Where the uncertainties due to the "Mic FF to Pressure", "Case" or "Windscreen" are omitted in the table above, the following statement applies:

No information on the uncertainty of measurement, required by IEC 61672-3:2013, for the correction data given in the Instruction Manual or obtained from the manufacturer or supplier of the sound level meter, or the manufacturer of the microphone, or the manufacturer of the multi-frequency sound calibrator was provided in the Instruction Manual or made available by the manufacturer or supplier of the sound level meter. The uncertainty of measurement of the correction data was therefore assumed to be the maximum-permitted uncertainty given in IEC 62585 for the corresponding free-field correction data and for a coverage probability of 95 %.

2. Preliminary, 3. Environmental Conditions & 4. Calibration

2. Preliminary Inspection and Power Supply

Instrument Inspected	Yes
Laboratory Calibration Equipment Ok	Yes
Power Supply Ok (Start)	Yes
Power Supply Ok (End)	Yes

	3. Environmental Conditions												
Environmental	Complian	Lin	nits										
Conditions	Start	End	Start	End	Uncert.	Start	End	Tolerance	Complies	Min	Max		
Air Temp. (°C)	23.5	23.6	0.5	0.6	0.5	1.00	1.10	3	Yes	20	26		
Rel. Humidity (%)	65.0	63.7	17.5	16.2	4.8	22.30	21.00	22.5	Yes	25	70		
Air Pressure (kPa)	100.5	100.4	8.0	7.9	0.63	8.63	8.53	12.5	Yes	80	105		

Yes

Conforming

4(a). Initial Calibration SLM Settings Time Weighting Fas Frequency Weighting SLM Range 7 MID Microphone / Windshield Correction OFF Polarization Voltage (V) Microphone Sensitivity (mV/Pa) 45.8

B&K 4226 Calibrator Settings	
"Sound Field"	Pressure
"Microphone"	N/A
Calibration Level (Lin)	114
Calibration Frequency (Hz)	1000

Calibration Indicated Level before adjust. (dB) 113.9 Adjustment required Ye Indicated level after adjust. (dB) 114

Level at conclusion of testing (dB)	114.1
Difference	0.1
Tolerance	± 0.1
Conforming	Yes

Uncertainty (+/-) dB 0.11

Descriptions of Tests

4(b). Final Calibration

2. Preliminary Inspection and Power Supply (IEC 61672-3 Clause 5 "Preliminary Inspection" & Clause 6 "Power Supply") Prior to any measurements, the sound level meter and all accessories shall be visually inspected, paying particular attention to damage to, or accumulation of foreign material on, the protection grid or diaphragm of the microphone. All relevant controls shall be operated to

ensure that they are in working order. If the controls, display, and other essential elements are not in proper working order, no periodic tests shall be performed.

For all tests, the sound level meter shall be powered from its preferred supply or a suitable alternative. Before and after conducting the set of tests with acoustical signals and before and after conducting the set of tests with electrical signals, the power supply for the sound level meter shall be checked by the method stated in the Instruction Manual to ensure that it is within the specified operating limits. If the voltage or the equivalent indication of the status of the power supply is not within the operating limits and the reason cannot be attributed to partially discharged batteries or an incorrect selection of the voltage of the public power supply, then no periodic tests shall be performed as a malfunction is indicated.

3. Environmental conditions (IEC 61672-3 Clause 7 "Environmental Conditions") Periodic tests shall be performed within the following ranges of environmental conditions: 80 kPa to 105 kPa for static air pressure, 20 °C to 26 °C for air temperature and 25 % to 70 % for relative humidity. These conditions are recorded at the start and end of the testing

4a. Calibration (IEC 61672-3 Clause 10 "Indication at the calibration check frequency") The sound level meter shall be adjusted, if necessary, to indicate the required sound level for the environmental conditions under which the tests are performed. The indications of the sound level meter before and after adjustment shall be recorded.

4b. Long-term Stability (IEC 61672-3 Clause 15)

The long-term stability of a sound level meter is evaluated from the difference between the A-weighted sound levels indicated in response to steady 1 kHz signals applied at the beginning and end of a period of operation. For each indication, the level of the input signal shall be that which is required to display the reference sound pressure level on the reference level range for the first indication.

The period of continuous operation shall be between 25 min and 35 min during which any convenient set of tests that use electrical input signals are performed.

The measured difference between the initial and final indications of A-weighted sound level shall not exceed the acceptance limits given in IEC 61672-1.

Checked

Descriptions of Tests

5(a) Self-Generated Noise, Microphone Installed (IEC 61672-3 Clause 11.1)

Measurements of the level of self-generated noise shall be made in a location that is available to the testing laboratory and where the level of background noise is minimized. Any supplied windscreen and windscreen accessory need not be installed around the microphone for measurement of the level of self-generated noise. The sound level meter shall be in the configuration submitted for periodic testing and with the most-sensitive level range and frequency-weighting A selected.

The indicated level of the A-weighted self-generated noise on the most-sensitive level range shall be recorded and reported. The level of selfgenerated noise is preferably measured as a time-averaged sound level with an averaging time of at least 30 s. Time-averaged sound level may be measured directly or calculated from an indication of sound exposure level and integration time. If time-averaged sound level cannot be determined, the time-weighted sound level from the average of ten observations taken at random over a 60 s interval shall be measured. If the time-weighted sound level is recorded, the S time weighting shall be used if available; otherwise the F time weighting shall be used.

5(b) Self-Generated Noise - Electrical (IEC 61672-3 Clause 11.2)

With the microphone replaced by the electrical input-signal device (or using the specified means of inserting electrical signals), and with the device terminated in the manner specified in the Instruction Manual for measurements of the level of self-generated noise, the indicated level of the time-averaged or time-weighted self-generated noise, measured by the same procedure as with the microphone installed, shall be recorded and reported for all frequency weightings and for the most-sensitive level range.

6. Acoustical Signal Test

Fast
С
MID
OFF
ŝ
Pressure
N/A
114

Fred	0	beerved Valu	00	Moon Motor	4226	Corrected	Broccure to	Casa Effort	Windscreen	Othor Effort	Equivalent	Bosponso ro	С	Deviation	Tolo	rance			Uncertainty	
Treq	5	userveu valu	163	Reading	calibrator	Mean	Free Field	Correction	Effect	Correction	Equivalent Free Field	1kHz	Weighting	from	TOIEI	ance	Conforming	Total	Lab	Corrections
(Hz)	Set 1	Set 2	Set 3	ricuanig	corrections	Readings	The Thera	Concellon	Correction	Concelion	Thee Field	11112	Response	Expected	Type 1	Type 2		(+/-) dB	(+/-) dB	(+/-) dB
31.5	110.9	110.9	110.8	110.87	0.10	110.97	0.00	0.00	0.00	0.00	110.97	-3.04	-3.00	-0.04	± 1.5	± 3.0	Yes	0.43	0.14	0.41
63	113.2	113.2	113.2	113.20	0.01	113.21	0.00	0.00	0.00	0.00	113.21	-0.80	-0.80	0.00	± 1.0	± 2.0	Yes	0.42	0.12	0.41
125	114.0	113.9	114.0	113.97	-0.02	113.95	0.00	0.00	0.00	0.00	113.95	-0.06	-0.20	0.14	± 1.0	± 1.5	Yes	0.42	0.12	0.41
250	114.1	114.1	114.1	114.10	-0.03	114.07	0.00	0.00	0.00	0.00	114.07	0.06	0.00	0.06	± 1.0	± 1.5	Yes	0.42	0.12	0.41
500	114.1	114.1	114.1	114.10	-0.03	114.07	0.00	0.00	0.00	0.00	114.07	0.06	0.00	0.06	± 1.0	± 1.5	Yes	0.42	0.12	0.41
1k	114.1	114.1	114.0	114.07	-0.06	114.01	0.00	0.00	0.00	0.00	114.01	0.00	0.00	0.00	± 0.7	± 1.0	Yes	0.42	0.11	0.41
2k	113.7	113.7	113.7	113.70	-0.01	113.69	0.30	0.00	0.00	0.00	113.99	-0.02	-0.20	0.18	± 1.0	± 2.0	Yes	0.43	0.13	0.41
4k	112.7	112.7	112.7	112.70	-0.20	112.50	0.70	0.00	0.00	0.00	113.20	-0.81	-0.80	-0.01	± 1.0	± 3.0	Yes	0.43	0.14	0.41
8k	108.7	108.8	108.8	108.77	-0.19	108.58	2.60	0.00	0.00	0.00	111.18	-2.83	-3.00	0.17	+1.5; -2.5	± 5.0	Yes	0.60	0.15	0.58
12.5k	102.5	102.5	102.6	102.53	-0.10	102.43	6.00	0.00	0.00	0.00	108.43	-5.57	-6.20	0.63	+2.0; -5.0	+5,-inf	Yes	0.68	0.21	0.64
16k	97.1	97.0	97.5	97.20	0.05	97.25	7.30	0.00	0.00	0.00	104.55	-9.46	-8.50	-0.96	+2.5; -16.0	+5,-inf	Yes	0.74	0.37	0.64

Description of Tests

6. Acoustical signal tests of a frequency weighting (IEC 61672-3 Clause 12) The sound level meter shall be set for frequency-weighting C, if available, otherwise for frequencyweighting A. The frequency weighting for tests with acoustical signals shall be determined at 125 Hz, 1 kHz, and 8 kHz. However, for information, this laboratory tests from 31.5Hz to 16kHz.

For frequency-weighting tests using a multi-frequency sound calibrator, the sound pressure level in the coupler of the sound calibrator shall preferably be set to the reference sound pressure level at 1 kHz, but shall be in the range from 70 dB to 125 dB at all frequencies.

At the discretion of the laboratory, the sound level meter shall be set to measure F-timeweighted sound level or S-time-weighted sound level. As a minimum, two repetitions of the coupling and measurements shall be performed to give a total of at least three tests.

The relative frequency weighting, relative to the response at 1 kHz, shall be determined from the average equivalent free-field or random-incidence sound level at a test frequency minus the average equivalent free-field or random-incidence sound level at 1 kHz. (Clause 12.15)

7. Electrical Frequency Weighting

7.	Electric
SLM Settings	
Time Weighting	Fast
Frequency Weighting	Α
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	20
Generator Frequency (Hz)	1k
SPL Reference (dB)	75
Integration Time (s)	N/A
Generator Output (mVrms)	54.60

Freq	Output	Indication	Output	Indication	Output	Indication		
Hz	(mV)	A	(mV)	С	(mV)	Z		
63	1114.79	74.9	59.87	74.9	54.60	74.9		
125	348.49	74.9	55.87	75.0	54.60	75.0		
250	146.96	74.9	54.60	75.0	54.60	75.0		
500	78.92	74.9	54.60	75.0	54.60	75.0		
1k	54.60	75.0	54.60	75.0	54.60	75.0		
2k	47.55	75.0	55.87	75.0	54.60	75.0		
4k	48.66	75.0	59.87	75.0	54.60	75.0		
8k	61.97	75.0	77.12	75.0	54.60	75.0		
16k	116 73	74.8	145 28	74.8	54.60	75.0		
		0.00		0.00	•	0.00		
ue		0.00		0.00		0.00		
eld h		0.00		0.00		0.00		
lse P		0.00		0.00		0.00		
or ee		0.00		0.00		0.00		
N I N		0.00		0.00		0.00		
Reg		0.00		0.00		0.00		
id bo		0.00		0.00		0.00		
Ĥ		0.00		0.00		0.00		
		0.00		0.00		0.00		
		0.00		0.00		0.00		
# -		0.00		0.00		0.00		
fec		0.00		0.00		0.00		
st Ef		0.00		0.00		0.00		
Se		0.00		0.00		0.00		
ပီပိ		0.00		0.00		0.00		
		0.00		0.00		0.00	Toler	rance
		0.00		0.00		0.00		
		0.00		0.00		0.00		
ğ		0.00		0.00		0.00		
e بي ال		0.00		0.00		0.00		
ti E		0.00		0.00		0.00		
eee		0.00		0.00		0.00		
D Lo		0.00		0.00		0.00		
ဗိုပ်		0.00		0.00		0.00		
<u>S</u> ir		0.00		0.00		0.00		
-		0.00		0.00		0.00		
		0.00		0.00		0.00		
5		0.00		0.00		0.00		
Ĕ		0.00		0.00		0.00		
ē		0.00		0.00		0.00		
ā		0.00		0.00		0.00		
er (0.00		0.00		0.00		
듔		0.00		0.00		0.00		
0		0.00		0.00		0.00		
-		0.00		0.00		0.00		
pla		74.90		74.90		74.90		
ιŤ		74.90		75.00		75.00		
ee.		74.90		75.00		75.00		
ŭ.		75.00		75.00		75.00		
ent		75.00		75.00		75.00		
al		75.00		75.00		75.00		
ri,		75.00		75.00		75.00		
E E		74.80		74.80		75.00	Type 1	Type 2
-		-0.10		-0.10		-0.10	± 1.0	± 2.0
Υr		-0.10		0.00		0.00	± 1.0	± 1.5
) on		-0.10		0.00		0.00	± 1.0	± 1.5
n fr ted		-0.10		0.00		0.00	± 1.0	± 1.5
se tiol		0.00		0.00		0.00	± 0.7	± 1.0
/iat xp		0.00		0.00		0.00	± 1.0	± 2.0
е б П		0.00		0.00		0.00	± 1.0	± 3.0
Re (I		0.00		0.00		0.00	+1.5; -2.5	± 5.0
		-0.20		-0.20		0.00	+2.5; -16.0	+5,-inf
Confo	orming	Yes		Yes		Yes	i	
Uncertainty	(+/-) dB			0.09	1			

Description of Tests

7. Electrical signal tests of frequency weightings (IEC 61672-3 Clause 13) Frequency weightings shall be determined using steady sinusoidal electrical input signals for all frequency weightings for which design goals and acceptance limits are specified in IEC 61672-1 and which are provided in the sound level meter. The sound level meter shall be set to display F-time-weighted sound level.

On the reference level range and for each frequency weighting to be tested, the level of a 1 kHz input signal shall be adjusted to yield an indication that is 45 dB less than the upper boundary stated in the Instruction Manual for the linear operating range at 1 kHz on the reference level range.

At test frequencies other than 1 kHz, the level of the input electrical signal shall be determined as the level of the input signal at 1 kHz minus the exact design-goal response, given in IEC 61672-1 for the selected frequency weighting at the test frequency.

		8. F	requenc	y & Tim	e Weigł	ntings 1	kHz
SLM S	Settinas						
Ti	me Weighting	Fast					
Frequer	ncy Weighting	Α					
	SLM Range	MID					
Generator & At	tenuator Settin	igs					
Att Concretor Fr	enuation (dB)	0.0					
Generator Fr	equency (HZ)	114.0					
0121	itput (mVrms)	487.7					
			8(a).	Frequency V	Neightings	1kHz	
Time Wt		Frequency	Weighting		Talaa		
Fast	Α	Ċ	Z	N/A	loier	ance	
1kHz	114.0	114.0	114.0		Type 1	Type 2	
Difference		0.0	0.0		± 0.2	± 0.2	
Conforming		Yes	Yes	N/A			
Uncertainty (+/-) dB	0.09]				
			8(1	b). Time We	ightings 1kł	łz	
Freq Wt		Time W	eighting		Tolor		
Α	F	S	Leq		TOIER	ance	
1kHz	114.0	114.0	114.0		Type 1	Type 2	
Difference		0.0	0.0		± 0.1	± 0.1	
Conforming		Yes	Yes				
Uncertainty (+/-) dB	0.09	1				
	/	0.00	1				
				Descriptio	n of Tests		
8. Frequency and time wei For a steady sinusoidal electri frequency weighting A, the ind timeaveraged sound level, as timeweighted sound level, and	ightings at 1 kH cal input signal at dications shall be available. In addii d time-averaged s	Iz (IEC 61672) 1 kHz on the recorded for free tion, the indicat sound level, as a	-3 Clause 14) eference level ra equency weightir tions with freque available.	nge and with an ngs C and Z, as a ncy weighting A	input signal that vailable, with the shall be recorded	yields an indica sound level m d with the sound	ation of the reference sound pressure level with eter set to display F-time-weighted sound level, or d level meter set to display F-time-weighted sound level, S-

The measured deviation of the indication of the sound level frequency weightings and time weightings shall not exceed the acceptance limits given in IEC 61672-1.

9(a). Level Linearity 8kHz (Increasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Α
SLM Range	MID
Generator & Attenuator Settings	
Select dB Over SLM Range	5
Attenuation (dB)	31.0
Generator Frequency (Hz)	8k
SPL Reference Starting Point (dB)	94.0
Output (mVrms)	1972.0
Noise Floor (dB)	-99.0

	ncreasing I	evel to Ove	rload	Tolerance	
Atten	Expected	Indicator	Diff	Type 1	Type 2
26.0	99.0	99.0	0.0	± 0.8	± 1.1
21.0	104.0	104.0	0.0	± 0.8	± 1.1
16.0	109.0	109.0	0.0	± 0.8	± 1.1
11.0	114.0	114.0	0.0	± 0.8	± 1.1
10.0	115.0	115.0	0.0	± 0.8	± 1.1
9.0	116.0	116.0	0.0	± 0.8	± 1.1
8.0	117.0	117.0	0.0	± 0.8	± 1.1
7.0	118.0	118.0	0.0	± 0.8	± 1.1
6.0	119.0	119.0	0.0	± 0.8	± 1.1
5.0	120.0	120.0	0.0	± 0.8	± 1.1
4.0	121.0	121.0	0.0	± 0.8	± 1.1
3.0	122.0	122.0	0.0	± 0.8	± 1.1
2.0	123.0	123.0	0.0	± 0.8	± 1.1
1.0	124.0	124.0	0.0	± 0.8	± 1.1
0.0	125.0	Y		± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1

Uncertainty (+/-) dB 0.13

Description of Tests

9(a). Level linearity on the reference level range (IEC 61672-3 Clause 16)

Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. (61672-3 Clause 16.1).

Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level from the starting number of an under-range condition.

Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1 from the specified upper boundary of the linear operating range up to, but not including, the first indication of overload and also from the specified lower boundary of the linear operating range down to, but not including, the first indication of an under-range condition.

"Y" means indicator over-range.

9(b). Level Linearity 8kHz (Decreasing)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Α			
SLM Range	MID			
Generator & Attenuator Settings				
Select dB Under SLM Range	0			
Attenuation (dB)	0.0			
Generator Frequency (Hz)	8k			
SPL Reference Starting Point (dB)	94			
Output (mVrms)	55.6			
Noise Floor (dB)	-99.0			

D	ecreasing le	evel to Unde	erange	Tolerance		
Atten	Expected Indicator		Diff	Type 1	Type 2	
5.0	89.0	89.0	0.0	± 0.8	± 1.1	
10.0	84.0	84.0	0.0	± 0.8	± 1.1	
15.0	79.0	79.0	0.0	± 0.8	± 1.1	
20.0	74.0	74.0	0.0	± 0.8	± 1.1	
25.0	69.0	69.0	0.0	± 0.8	± 1.1	
30.0	64.0	64.0	0.0	± 0.8	± 1.1	
35.0	59.0	59.0	0.0	± 0.8	± 1.1	
40.0	54.0	54.0	0.0	± 0.8	± 1.1	
45.0	49.0	49.0	0.0	± 0.8	± 1.1	
50.0	44.0	44.0	0.0	± 0.8	± 1.1	
54.0	40.0	40.0	0.0	± 0.8	± 1.1	
55.0	39.0	39.0	0.0	± 0.8	± 1.1	
56.0	38.0	38.0	0.0	± 0.8	± 1.1	
57.0	37.0	37.0	0.0	± 0.8	± 1.1	
58.0	36.0	36.0	0.0	± 0.8	± 1.1	
59.0	35.0	35.0	0.0	± 0.8	± 1.1	
				± 0.8	± 1.1	
				± 0.8	± 1.1	
				± 0.8	± 1.1	
				± 0.8	± 1.1	
				± 0.8	± 1.1	
				± 0.8	± 1.1	
				± 0.8	± 1.1	
				± 0.8	± 1.1	
				± 0.8	± 1.1	
	Conformi	ng	Yes			

Uncertainty (+/-) dB 0.13

Description of Tests

9(b). Level linearity on the reference level range (IEC 61672-3 Clause 16)

Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. (61672-3 Clause 16.1).

Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level down to, but not including, the first indication of an under-range condition.

Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1 from the specified upper boundary of the linear operating range up to, but not including, the first indication of overload and also from the specified lower boundary of the linear operating range down to, but not including, the first indication of an under-range condition.

"Y" means indicator under-range. However, if 20dB above noise floor is reached then no results are reported.

10. Level Linearity with Level Ranges 1kHz

10(a). Level Linearity Including the Level Range (Reference Signal)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Α			
SLM Range	MID			
Generator & Attenuator Settings				
Attenuation (dB)	0			
Generator Frequency (Hz)	1k			
Reference SPL (dB)	114			
Output (mVrms)	487.6			

Settings		Level (dB)	Toler	ance	
Range	Expected	Indicated	dicated Difference		Type 2
HIGH	114.0	114.0	0.0	± 0.8	± 1.1
MID	114.0	114.0	0.0	± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1

Conforming	Yes

Uncertainty (+/-) dB 0.13

10(b). Level Linearity Including the Level range (5dB Above Under-range)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Α			
SLM Range	HIGH			
Generator & Attenuator Settings				
Attenuation (dB)	30			
Generator Frequency (Hz)	1k			
Reference SPL (dB)	65			
Output (mVrms)	54.7			

Settings		Level (dB)			Tolerance		
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2	
HIGH	30.0	65.0	64.9	-0.1	± 0.8	± 1.1	
MID	50.0	45.0	44.9	-0.1	± 0.8	± 1.1	
LOW	70.0	25.0	25.0	0.0	± 0.8	± 1.1	
					± 0.8	± 1.1	
					± 0.8	± 1.1	
					± 0.8	± 1.1	
					± 0.8	± 1.1	
					± 0.8	± 1.1	
					± 0.8	± 1.1	
					± 0.8	± 1.1	
	Confo	orming		Yes			
				-			

Uncertainty (+/-) dB

Description of Tests

0.13

10. Level linearity including the level range control (IEC 61672-3 Clause 17)

For sound level meters that have more than one level range, tests of level linearity errors including errors introduced by the level range control shall be performed with steady sinusoidal electrical input signals at a frequency of 1 kHz and with the sound level meter set for frequency weighting A. For each test, signal levels shall be recorded as indications of F-time-weighted sound level or time-average sound level. (61672-3 Clause 17.1).

With the input signal level kept constant, the indicated signal level shall be recorded for all level ranges where the signal level is displayed. The indicated signal levels and the corresponding anticipated indications of signal levels shall be recorded. (61672-3 Clause 17.3).

For each level range, the level of the input signal shall then be adjusted to yield a signal level that is expected to be 5 dB greater than the signal level that first causes an indication of under-range on a level range. The indicated signal levels and the corresponding anticipated levels shall be recorded. (61672-3 Clause 17.4).

Level linearity deviations shall be calculated as an indicated signal level minus the corresponding anticipated signal level. Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1.

11. Toneburst Response					
11(a). Fast ToneBurst					
SLM Settings - Fast Time Weighting Fast Frequency Weighting A SLM Range MID Generator & Attenuator Settings Attenuator Settings Attenuator Settings Attenuation (dB) 0.0 Generator Frequency (Hz) 4k dB Down from Linearity Limit 3 Reference SPL (dB) 117.0 Output (mVrms) 615.0	Tolerance				
(ms) # Cycles Expected Indicated Difference 200 800 116.0 116.0 0.0	Type 1 Type 2 ± 0.5 ± 1.0				
2 8 99.0 98.9 -0.1 0.25 1 90.0 89.9 -0.1	+ 1.0; -1.5 + 1.0; -2.5 + 1.0; -3.0 + 1.5; -5.0				
Conforming Yes					
Uncertainty (+/-) dB 0.09					
	11(b). Slow ToneBurst				
SLM Settings - Slow					
Time Weighting Slow Frequency Weighting A SLM Range MID Generator & Attenuator Settings					
Generator Frequency (Hz) 4k					
Reference SPL (dB) 117.0					
	Televene				
image: constraint of the state of	Type 1 Type 2 ± 0.5 ± 1.0 $\pm 1.0; -3.0$ $\pm 1.0; -5.0$				
Conforming Yes Uncertainty (+/-) dB 0.09					
Γ	11(c). SEL ToneBurst				
SLM Settings - SEL/Leq Function SEL Frequency Weighting A SLM Range MID Generator & Attenuator Settings A Attenuation (dB) 0.0 Generator Frequency (Hz) 4k dB Down from Linearity Limit 3 Reference SPL (dB) 117.0 Output (mVrms) 615.0 Integration Time (if SEL not available) (s) 5					
Toneburst # Cycles SEL (ms) # Cycles Indicated Calc'd Expected	Difference Type 1 Type 2				
200 800 109.8 109.8 110.0 2 8 90.0 90.0 90.0 0.00 0.00 0.00 0.00 0.00	$\begin{array}{cccc} -0.2 & \pm 0.5 & \pm 1.0 \\ 0.0 & +1.0; -1.5 & +1.0; -2.5 \\ 0.1 & -1.0; -1.5 & +1.0; -2.5 \\ 0.1 & -1.0; -1.5 & -1.0; -2.5 \\ 0.1 & -1.0; -1.5 & -1.0; -2.5 \\ 0.1 & -1.0; -$				
0.20 1 00.9 80.9 81.0					
Uncertainty (+/-) dB	0.13				
	Description of Tests				
11. Toneburst response (IEC 61672-3 Clause 18) The response of the sound level meter to short-duration signals shall be (61672-3 Clause 18.1).	11. Toneburst response (IEC 61672-3 Clause 18) The response of the sound level meter to short-duration signals shall be tested on the reference level range with 4 kHz tonebursts. The sound level meter shall be set to frequency weighting A. (61672-3 Clause 18.1).				
applicable.					
I ne level or the steady input signal shall be adjusted to display an F-time-weighted, Stime-weighted, or time-averaged sound level, as appropriate, that is 3 dB less than the upper boundary stated in the Instruction Manual for the linear operating range at 4 kHz on the reference level range. (61672-3 Clause 18.4).					

Tonebursts are tested at 200ms, 2ms and, 0.25ms durations (the latter for Fast and SEL only) and the LMax or SEL recorded.

Measured deviations of the measured toneburst responses from the corresponding reference toneburst responses given in IEC 61672-1 shall not exceed the applicable

12 Peak C sound level								
12. Fear & Souliu level								
12(a). Peak C 8 KHz								
	SLM	Settings	e Weighting	Fast				
		Frequenc	v Weighting	C				
			SLM Range	MID				
G	enerator & A	ttenuator Se	ttings					
		Atte	nuation (dB)	0.0				
	Ge	enerator Fre	quency (Hz)	8k				
		Cut	CE SPL (CB)	549.7				
		Out	put (III v III 3)	545.7				
Test Signal		dB LCp	eak Hold		Tole	rance		
8 kHz	Indication	O'Load?	Expected	Difference	Type 1	Type 2		
1 Cycle	115.4	No	115.4	0.0	± 2.0	± 3.0		
	Conformin	ıg		Yes				
U	ncertainty (+	/-) dB		0.09				
					12(b). Pe	ak C 500 F	z	
	SI M	Cottingo			1			
	SLM Settings							
Frequency Weighting C								
			SLM Range	MID				
G	enerator & A	ttenuator Se	ettings					
		Atte	nuation (dB)	0.0				
	G	enerator Fre	quency (Hz)	500				
		Out	out (mVrms)	386.3				
			()					
Test Signal		dB LCp	eak Hold		Tole	ance		
500 Hz	Indication	O'Load?	Expected	Difference	Type 1	Type 2		
One +ve 1/2 cycle	114.2	No	114.4	-0.2	± 1.0	± 2.0		
One -ve 1/2 cycle	114.2	NO	114.4	-0.2	± 1.0	± 2.0		
	Conformin	ıg		Yes				
Description of Tests								
12. Peak C sound level (IEC 61672-3 Clause 19)								
ndications of C-weighted peak sound level shall be tested on the least-sensitive level range. The test signals consist of (a) a single complete cycle of an 8 kHz sinusoid starting and stopping at zero rossings and (b) positive and negative half cycles of a 500 Hz sinusoid that also start and stop at zero crossings.								
The level of the steady s C-weighted, time-averag of steady sound level sh	inusoidal 8 kHz ed sound level, all be recorded.	electrical inpo , that is 8 dB l	ut signal, from ess than the up	which a single pper boundary	complete cycle stated in the I	e is extracted, nstruction Man	shall be adjusted to yield an indication of C-weighted, F-timeweighted sound level, or ual for the peak level range at 8 kHz on the leastsensitive level range. The indication	

The indication of C-weighted peak sound level in response to a complete cycle of the 8 kHz signal shall be recorded. Application of the complete-cycle 8 kHz signal shall not cause indication of an overload condition.

The level of the steady sinusoidal 500 Hz electrical input signal, from which positive and negative half cycles are extracted, shall be adjusted to yield an indication of C-weighted, Ftime-weighted sound level, or C-weighted, time-averaged sound level, that is 8 dB less than the upper boundary stated in the Instruction Manual for the peak level range on the least-sensitive level range. The indications of steady sound levels shall be recorded.

The indications of C-weighted peak sound level in response to a single positive halfcycle 500 Hz signal and to a single negative half-cycle 500 Hz signal shall be recorded and reported. Applications of the 500 Hz half-cycle signals shall not cause indications of an overload condition.
13. Overload indication									
SLN	/ Settings		4						
	Function	n Leq							
	Frequency weighting		-						
Generator &	Attenuator Settings		-						
	Attenuation (dB) 0.0	-						
	Generator Frequency (Hz) 4k							
	Reference SPL (dB) 119.0							
	Output (mVrms) 774.6							
	Half-Cycle Sig	Inal	Tolerance						
Lovel (dR)	Positive Negative	Difference							
Generator Output (mVrms)	1531.0 1530.0	0.0	±1.5 ±1.5						
Cenerator Output (Invinis)	1001.0								
Conformi	na	Yes	1						
	- J		-						
Uncertainty (-	+/-) dB	0.09							
			-						
Overload Ind	icated	No							
Overload Indicato	or Latches	N/A							
Conformi		NI/A	7						
Conform	ng	N/A	1						
		D	Description of Tests						
13. Overload Indication (IEC 6167	2-3 Clause 20)								
The test of overload indication shall on	ly be performed for sound le	vel meters capab	ble of displaying time-average sound level.						
Overload indication shall be tested on the least-sensitive level range with the sound level meter set to display A-weighted, time-average sound level. Positive and negative one-half-cycle sinusoidal electrical signals at a frequency of 4 kHz shall be used. (IEC 61672-3 Clause 20.2)									
The test shall begin at an indicated tim 4 kHz. The level of the single positive of negative one-half-cycle signal. The level	The test shall begin at an indicated time-averaged level for the steady input signal that corresponds to 1 dB less than the upper boundary specified for the linear operating range at kHz. The level of the single positive one-half-cycle input signal shall be increased to the first indication of overload, to a resolution of 0.1 dB. The process shall be repeated for the single egative one-half-cycle signal. The levels of the single one-half-cycle input signals that produced the first indications of overload shall be recorded to a resolution of 0.1 dB.								

It shall be verified that the overload indicator latches on as specified in IEC 61672-1 when an overload condition occurs.

14. High-level Stability

SLM Settings	
Time Weighting	F
Frequency Weighting	Α
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	0.0
Generator Frequency (Hz)	1k
Reference SPL (dB)	119.0
Output (mVrms)	846.8
Time Period to Apply Signal (min)	5.0
Record SPL at Conclusion of Time Period (dB)	119.0
Difference	0.0
Tolerance	± 0.1
Conforming	Yes
Uncertainty (+/-) dB	0.09

Description of Tests

14. High-level Stability (IEC 61672-3 Clause 21) The ability of a sound level meter to operate continuously in response to high signal levels without significant change in sensitivity is evaluated from the difference between the Aweighted sound levels indicated in response to a steady 1 kHz electrical signal at the beginning and end of a 5 min period of continuous exposure to the signal.

The level of the steady electrical input signal shall be that which is required to display the sound level that is 1 dB less than the upper boundary of the 1 kHz linear operating range on the least-sensitive level range.

15(a). Octave Band Filter Relative Attenuation (≤2kHz)

SLM, Attenuator & Generator Settings						
Time Weighting	Fast					
Frequency Weighting	Z					
Range	HIGH					
Set dB Below Full Scale	-1					
Attenuator dB	0.0					
Reference SPL 1kHz	133.0					
Output mVrms	4028.0					
Noise Floor dB	-99.0					

Ratio	1	2	3	4	5	6	7	8	9	10		
Freq	4 Hz	8 Hz	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz		
0.06				61.5					49.3			
0.13				69.3					50.4			
0.25				67.0					54.2			
0.50				82.1					71.1			
0.71												
0.77				132.8					133.0			
0.84				133.0					133.0		Tolo	ranaa
0.92				132.8					133.0		TOIEI	ance
1.00				132.9					133.0			
1.09				132.9					133.0			
1.19				132.9					133.0			
1.30				132.9					133.0			
1.41												
2.00				72.5					40.3			
4.00				68.3					36.1			
8.00				64.9					37.5			
16.00				61.6					36.7		Class 1	Class 2
				71.4					83.7		+70/inf	+60/inf
				63.6					82.6		+60/inf	+54/inf
				65.9					78.8		+40.5/inf	+39.5/inf
				50.8					61.9		+16.6/inf	+15.6/inf
											-0.4/+5.3	-0.6/+5.8
m				0.1					0.0		-0.4/+1.4	-0.6/+1.7
p				-0.1					0.0		-0.4/+0.7	-0.6/+0.9
io				0.1					0.0		-0.4/+0.5	-0.6/+0.7
rat				0.0					0.0		-0.4/+0.4	-0.6/+0.6
ant				0.0					0.0		-0.4/+0.5	-0.6/+0.7
Atte				0.0					0.0		-0.4/+0.7	-0.6/+0.9
				0.0					0.0		-0.4/+1.4	-0.6/+1.7
											-0.4/+5.3	-0.6/+5.8
				60.4					92.7		+16.6/inf	+15.6/inf
				64.6					96.9		+40.5/inf	+39.5/inf
				68.0					95.5		+60/inf	+54/inf
				71.3					96.3		+70/inf	+60/inf
											•	
Ins Loss				-0.1					0.0			
											1	
Conforming	N/A	N/A	N/A	Yes	N/A	N/A	N/A	N/A	Yes	N/A		

≤80dB 0.09 >80dB 0.46 Uncert (+/-) dB

Description of Test

15(a) Octave Filter (IEC 61260-3 Clause 13)

13 Measurement of relative attenuation

13.1 The relative attenuation on the reference level range shall be tested for the same three filters as selected in Clause 11. 13.2 The measurements of relative attenuation are made as the response to constant amplitude sinusoidal signals at various frequencies. The level of the input signals shall be $(1 \pm 0,1)$ dB below the specified upper boundary of the linear operating range.

13.6 The measured relative attenuation shall not exceed the acceptance limits given in Table 1 for the appropriate class of filter.

Interpretation: The three filters specified in "Clause 11" are 31.5Hz, 1kHz and 16kHz. The limits in "Table 1" are the Tolerance values shown in green above. The yellow cells are the observed values. The "Attenuation dB" cells are the attenuation values of each filter with the filter's centre frequency attenuation assumed to be zero (i.e. the relative attenuation). The "Ins Loss" are the actual values of attenuation at the filter centre frequencies.

15(b). Octave Band Filter Relative Attenuation (>2kHz)

SLM, Attenuator & Generator Settings						
Time Weighting	Fast					
Frequency Weighting	Z					
SLM Range	HIGH					
Set dB Below Full Scale	-1.0					
Attenuator dB	0.0					
Reference SPL 1kHz	133.0					
Output mVrms	4028.0					
Noise Floor dB	-99.0					

Ratio	1	2	3	4	5	6	7	8	9	10		
Freq	4kHz	8kHz	16kHz	32kHz								
0.06			50.4									
0.13			54.3									
0.25			55.3									
0.50			70.7									
0.71												
0.77			133.0									
0.84			133.0								Tolo	ranaa
0.92			133.0								TOIE	ance
1.00			133.0									
1.09			133.0									
1.19			133.0									
1.30			133.0									
1.41												
2.00			51.8									
4.00			44.8									
8.00			43.7									
16.00			58.5								Class 1	Class 2
			82.6								+70/inf	+60/inf
			78.7								+60/inf	+54/inf
			77.7								+40.5/inf	+39.5/inf
			62.3								+16.6/inf	+15.6/inf
											-0.4/+5.3	-0.6/+5.8
m			0.0								-0.4/+1.4	-0.6/+1.7
lb			0.0								-0.4/+0.7	-0.6/+0.9
io			0.0								-0.4/+0.5	-0.6/+0.7
lat			0.0								-0.4/+0.4	-0.6/+0.6
an c			0.0								-0.4/+0.5	-0.6/+0.7
\tte			0.0								-0.4/+0.7	-0.6/+0.9
1			0.0								-0.4/+1.4	-0.6/+1.7
											-0.4/+5.3	-0.6/+5.8
			81.2								+16.6/inf	+15.6/inf
			88.2								+40.5/inf	+39.5/inf
			89.3								+60/inf	+54/inf
			74.5								+70/inf	+60/inf
											_	
Ins Loss			0.0									
											•	
Conforming	N/A	N/A	Yes	N/A	N/A	N/A	N/A	N/A	N/A	N/A	J	
Uncert (+	/-) dB	≤80dB	0.09	>80dB	0.46	1						

Description of Test

15(b) Octave Filter (IEC 61260-3 Clause 13)

13 Measurement of relative attenuation

13.1 The relative attenuation on the reference level range shall be tested for the same three filters as selected in Clause 11.

13.2 The measurements of relative attenuation are made as the response to constant amplitude sinusoidal signals at various frequencies. The level of the input signals shall be $(1 \pm 0,1)$ dB below the specified upper boundary of the linear operating range.

13.6 The measured relative attenuation shall not exceed the acceptance limits given in Table 1 for the appropriate class of filter.

Interpretation: The three filters specified in "Clause 11" are 31.5Hz, 1kHz and 16kHz. The limits in "Table 1" are the Tolerance values shown in green above. The yellow cells are the observed values. The "Attenuation dB" cells are the attenuation values of each filter with the filter's centre frequency attenuation assumed to be zero (i.e. the relative attenuation). The "Ins Loss" are the actual values of attenuation at the filter centre frequencies.

16. Octave Band Filter Relative Attenuation at Midband Frequency

SLM, Attenuator & Generator Settings					
Time Weighting	Fast				
Frequency Weighting	Z				
Reference Range	MID				
Attenuator dB	0.0				
Reference SPL 1kHz	94.0				
Output mVrms	45.0				

	1	2	3	4	5	6	7	8	9	10	Tole	rance
Freq	4 Hz	8 Hz	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	Class 1	Class 2
Measured			94.3	93.8	93.9	94.0	94.0	94.0	94.0	94.0		
Ins Loss			0.3	-0.2	-0.1	0.0	0.0	0.0	0.0	0.0	-0.4/+0.4	-0.6/+0.6
Conforming	N/A	N/A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Freq	4kHz	8kHz	16kHz	32kHz							Class 1	Class 2
Measured	94.0	94.0	94.0									
Ins Loss	0.0	0.0	0.0								-0.4/+0.4	-0.6/+0.6
Conforming	Yes	Yes	Yes	N/A								

Uncert (+/-) dB 0.09

Description of Test

16. Octave Band Filter Relative Attenuation at Midband Frequency (IEC 61260-3 Clause 10.2)

10.2 Tests of relative attenuation at midband frequency 10.2.1 The relative attenuation at the exact midband frequency shall be measured for every filter in a set of filters. The relative attenuation $\Delta A(\Omega)$ at any midband frequency is determined from Formula (8) given in IEC 61260-1:2014. The reference level range shall be selected for the test. The level of the test signal shall be equal to the reference input signal level.

10.2.2 The measured relative attenuation shall not exceed the acceptance limits ± 0,4 dB for Class 1 filters or ± 0,6 dB for class 2 filters as specified in 5.10 in IEC 61260-1:2014.

Interpretation: The yellow cells are the observed values. The "Ins Loss" are the actual values of attenuation at the filter centre frequencies. The "Conforming" cells demonstrate compliance with the Tolerance limits depending upon the Class of filter.

17(a). Octave Band Filter Level Linearity 31.5Hz (Increasing)

SLM Settings						
Time Weighting	Fast					
Frequency Weighting	Z					
SLM Range	MID					
Generator & Attenuator Settings	6					
Select dB Over SLM Range	5					
Attenuation (dB)	31.0					
Generator Frequency (Hz)	31.5					
SPL Reference Starting Point (dB)	94.0					
Output (mVrms)	1753.0					
Noise Floor (dB)	-99.0					

	Increasing I	evel to Ove	rload	Tolerance			
Atten	Expected	Indicator	Diff	Type 1	Type 2		
26.0	99.0	99.0	0.0	±0.5	±0.6		
21.0	104.0	104.0	0.0	±0.5	±0.6		
16.0	109.0	109.0	0.0	±0.5	±0.6		
11.0	114.0	114.0	0.0	±0.5	±0.6		
10.0	115.0	115.0	0.0	±0.5	±0.6		
9.0	116.0	116.0	0.0	±0.5	±0.6		
8.0	117.0	117.0	0.0	±0.5	±0.6		
7.0	118.0	118.0	0.0	±0.5	±0.6		
6.0	119.0	119.0	0.0	±0.5	±0.6		
5.0	120.0	120.0	0.0	±0.5	±0.6		
4.0	121.0	121.0	0.0	±0.5	±0.6		
3.0	122.0	122.0	0.0	±0.5	±0.6		
2.0	123.0	123.0	0.0	±0.5	±0.6		
1.0	124.0	124.0	0.0	±0.5	±0.6		
0.0	125.0	125.0	0.0	±0.5	±0.6		
	Conformi	ng	Yes				

i-----ī

Description of Tests

17(a). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

0.13

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

Uncertainty (+/-) dB

17(b). Octave Band Filter Level Linearity 1kHz (Increasing)

SLM Settings						
Time Weighting	Fast					
Frequency Weighting	Z					
SLM Range	MID					
Generator & Attenuator Settings						
Select dB Over SLM Range	5					
Attenuation (dB)	31.0					
Generator Frequency (Hz)	1k					
SPL Reference Starting Point (dB)	94.0					
Output (mVrms)	1727.0					
Noise Floor (dB)	-99.0					

	ncreasing I	evel to Ove	rload	Tolerance		
Atten	Expected	Indicator	Diff	Type 1	Type 2	
26.0	99.0	99.0	0.0	±0.5	±0.6	
21.0	104.0	104.0	0.0	±0.5	±0.6	
16.0	109.0	109.0	0.0	±0.5	±0.6	
11.0	114.0	114.0	0.0	±0.5	±0.6	
10.0	115.0	115.0	0.0	±0.5	±0.6	
9.0	116.0	116.0	0.0	±0.5	±0.6	
8.0	117.0	117.0	0.0	±0.5	±0.6	
7.0	118.0	118.0	0.0	±0.5	±0.6	
6.0	119.0	119.0	0.0	±0.5	±0.6	
5.0	120.0	120.0	0.0	±0.5	±0.6	
4.0	121.0	121.0	0.0	±0.5	±0.6	
3.0	122.0	122.0	0.0	±0.5	±0.6	
2.0	123.0	123.0	0.0	±0.5	±0.6	
1.0	124.0	124.0	0.0	±0.5	±0.6	
0.0	125.0	125.0	0.0	±0.5	±0.6	
				_		

Conforming Yes

Uncertainty (+/-) dB 0.13

Description of Tests

17(b). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

17(c). Octave Band Filter Level Linearity 16kHz (Increasing)

SLM Settings			
Time Weighting	Fast		
Frequency Weighting	Z		
SLM Range	MID		
Generator & Attenuator Settings	5		
Select dB Over SLM Range	5		
Attenuation (dB)	31.0		
Generator Frequency (Hz)	16k		
SPL Reference Starting Point (dB)	94.0		
Output (mVrms)	1722.0		
Noise Floor (dB)	-99.0		

Increasing level to Over		rload	Toler	ance	
Atten	Expected	Indicator	Diff	Type 1	Type 2
26.0	99.0	99.0	0.0	±0.5	±0.6
21.0	104.0	104.0	0.0	±0.5	±0.6
16.0	109.0	109.0	0.0	±0.5	±0.6
11.0	114.0	114.0	0.0	±0.5	±0.6
10.0	115.0	115.0	0.0	±0.5	±0.6
9.0	116.0	116.0	0.0	±0.5	±0.6
8.0	117.0	117.0	0.0	±0.5	±0.6
7.0	118.0	118.0	0.0	±0.5	±0.6
6.0	119.0	119.0	0.0	±0.5	±0.6
5.0	120.0	120.0	0.0	±0.5	±0.6
4.0	121.0	121.0	0.0	±0.5	±0.6
3.0	122.0	122.0	0.0	±0.5	±0.6
2.0	123.0	123.0	0.0	±0.5	±0.6
1.0	124.0	124.0	0.0	±0.5	±0.6
0.0	125.0	125.0	0.0	±0.5	±0.6
				_	

Conforming Yes

Uncertainty (+/-) dB 0.13

Description of Tests

17(c). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

18(a). Octave Band Filter Level Linearity 31.5Hz (Decreasing)

SLM Settings			
Time Weighting	Fast		
Frequency Weighting	Z		
SLM Range	MID		
Generator & Attenuator Settings	5		
Select dB Under SLM Range	0		
Attenuation (dB)	0.0		
Generator Frequency (Hz)	31.5		
SPL Reference Starting Point (dB)	94		
Output (mVrms)	46.3		
Noise Floor (dB)	-99.0		

Decreasing le		evel to Unde	erange	Tolerance	
Atten	Expected	Indicator	Diff	Type 1	Type 2
5.0	89.0	89.0	0.0	±0.5	±0.6
10.0	84.0	84.0	0.0	±0.5	±0.6
15.0	79.0	79.0	0.0	±0.7	±0.9
20.0	74.0	74.0	0.0	±0.7	±0.9
25.0	69.0	69.0	0.0	±0.7	±0.9
30.0	64.0	64.0	0.0	±0.7	±0.9
35.0	59.0	59.0	0.0	±0.7	±0.9
40.0	54.0	54.0	0.0	±0.7	±0.9
45.0	49.0	49.0	0.0	±0.7	±0.9
50.0	44.0	44.0	0.0	±0.7	±0.9
54.0	40.0	40.0	0.0	±0.7	±0.9
55.0	39.0	39.2	0.2	±0.7	±0.9
56.0	38.0	38.3	0.3	±0.7	±0.9
57.0	37.0	37.3	0.3	±0.7	±0.9
58.0	36.0	36.4	0.4	±0.7	±0.9
59.0	35.0	35.4	0.4	±0.7	±0.9
				1	
	Conformi	ng	Yes		

Uncertainty (+/-) dB 0.13

Description of Tests

18(a). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

18(b). Octave Band Filter Level Linearity 1kHz (Decreasing)

SLM Settings			
Time Weighting	Fast		
Frequency Weighting	Z		
SLM Range	MID		
Generator & Attenuator Settings			
Select dB Under SLM Range	0		
Attenuation (dB)	0.0		
Generator Frequency (Hz)	1kHz		
SPL Reference Starting Point (dB)	94		
Output (mVrms)	48.9		
Noise Floor (dB)	-99.0		

Decreasing level to Unde		erange	Toler	ance	
Atten	Expected	Indicator	Diff	Type 1	Type 2
5.0	89.0	89.0	0.0	±0.5	±0.6
10.0	84.0	84.0	0.0	±0.5	±0.6
15.0	79.0	79.0	0.0	±0.7	±0.9
20.0	74.0	74.0	0.0	±0.7	±0.9
25.0	69.0	69.0	0.0	±0.7	±0.9
30.0	64.0	64.0	0.0	±0.7	±0.9
35.0	59.0	59.0	0.0	±0.7	±0.9
40.0	54.0	54.0	0.0	±0.7	±0.9
45.0	49.0	49.0	0.0	±0.7	±0.9
50.0	44.0	44.0	0.0	±0.7	±0.9
54.0	40.0	40.0	0.0	±0.7	±0.9
55.0	39.0	39.2	0.2	±0.7	±0.9
56.0	38.0	38.2	0.2	±0.7	±0.9
57.0	37.0	37.3	0.3	±0.7	±0.9
58.0	36.0	36.4	0.4	±0.7	±0.9
59.0	35.0	35.4	0.4	±0.7	±0.9
				1	
	Conformi	ng	Yes		

Uncertainty (+/-) dB 0.13

Description of Tests

18(b). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

18(c). Octave Band Filter Level Linearity 16kHz (Decreasing)

SLM Settings			
Time Weighting	Fast		
Frequency Weighting	Z		
SLM Range	MID		
Generator & Attenuator Settings			
Select dB Under SLM Range	0		
Attenuation (dB)	0.0		
Generator Frequency (Hz)	16kHz		
SPL Reference Starting Point (dB)	94		
Output (mVrms)	48.6		
Noise Floor (dB)	-99.0		

Decreasing level to Undera		erange	Tolera	ance	
Atten	Expected	Indicator	Diff	Type 1	Type 2
5.0	89.0	89.0	0.0	±0.5	±0.6
10.0	84.0	84.0	0.0	±0.5	±0.6
15.0	79.0	79.0	0.0	±0.7	±0.9
20.0	74.0	74.0	0.0	±0.7	±0.9
25.0	69.0	69.0	0.0	±0.7	±0.9
30.0	64.0	64.0	0.0	±0.7	±0.9
35.0	59.0	59.0	0.0	±0.7	±0.9
40.0	54.0	54.0	0.0	±0.7	±0.9
45.0	49.0	49.0	0.0	±0.7	±0.9
50.0	44.0	44.0	0.0	±0.7	±0.9
54.0	40.0	40.0	0.0	±0.7	±0.9
55.0	39.0	39.0	0.0	±0.7	±0.9
56.0	38.0	38.1	0.1	±0.7	±0.9
57.0	37.0	37.1	0.1	±0.7	±0.9
58.0	36.0	36.2	0.2	±0.7	±0.9
59.0	35.0	35.2	0.2	±0.7	±0.9

Conforming Yes

Uncertainty (+/-) dB 0.13

Description of Tests

18(c). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

19. Octave Level Ranges

19(a). Octave Level Linearity Including the Level range (31.5Hz)

SLM Settings			
Time Weighting	Fast		
Frequency Weighting	Z		
SLM Range	MID		
Generator & Attenuator Settings			
Attenuation (dB)	10		
Generator Frequency (Hz)	31.5		
Reference SPL (dB)	94		
Output (mVrms)	156.8		

Bongo Atton Exposted Indicated Difference Type 1	
Range Atten Expected Indicated Difference Type I	Type 2
HIGH 0.0 104.0 104.0 0.0 ±0.5	± 0.6
MID 14.0 90.0 90.0 0.0 ±0.5	± 0.6
LOW 34.0 70.0 70.0 0.0 ±0.5	± 0.6
± 0.5	± 0.6
± 0.5	± 0.6
± 0.5	± 0.6
± 0.5	± 0.6
± 0.5	± 0.6
± 0.5	± 0.6
± 0.5	± 0.6

0.13

Conforming Yes

Uncertainty (+/-) dB

19(b). Octave Level Linearity Including the Level range (1kHz)

CI M Cattin na	
SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	10
Generator Frequency (Hz)	1k
Reference SPL (dB)	94
Output (mVrms)	154.0

Sett	Settings Level (dB)			Tolerance		
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2
HIGH	0.0	104.0	104.0	0.0	± 0.5	± 0.6
MID	14.0	90.0	90.0	0.0	± 0.5	± 0.6
LOW	34.0	70.0	70.0	0.0	± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6

Conforming Yes

Uncertainty (+/-) dB 0.13

19(c). Octave Level Linearity Including the Level range (16kHz)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	10
Generator Frequency (Hz)	16k
Reference SPL (dB)	94
Output (mVrms)	153.4

Sett	ings		Level (dB)	Tolerance		
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2
HIGH	0.0	104.0	104.0	0.0	± 0.5	± 0.6
MID	14.0	90.0	90.0	0.0	± 0.5	± 0.6
LOW	34.0	70.0	70.0	0.0	± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
_						

Conforming Yes

Uncertainty (+/-) dB

Description of Tests

19. Filter Level linearity including the level range control (IEC 61260-3 Clause 11.9)

11.9 For the same three filters as selected above, test each available level range in the following way: based on the same reference level, adjust the input level to be 30 dB below upper boundary of the linear operating range for each of the selected range settings. The measured level linearity deviation shall not exceed the acceptance limits given in 5.13.3 and 5.13.4 of IEC 61260-1:2014

The three filter frequencies are 31.5Hz, 1kHz and 16kHz.

The level linearity differences are calculated as the indicated signal level minus the corresponding expected signal level.

0.13

20. Octave Band Filter Lower Limit

			20(a). Oo	ctave Ba	nd Filter	Lower L	imit (Re	ference F	Range)	
SLM	Attenuato	r & Gener:	ator Settin	ns						
Time Weighting Fast										
Frequency Weighting Z										
	Lower	Limit for t	the Range	40						
	1	2	3	4	5	6	7	8	9	10
Freq	4 H7	8 H7	16 Hz	31 5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz
Measured		14.5	11.6	8.7	7.6	6.1	5.0	4.8	6.6	8.1
Conforming	N/A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Freq	4kHz	8kHz	16kHz	32kHz						
Measured	10.5	13.5	17.0							
Conforming	Yes	Yes	Yes	N/A						
	Conform	ning		Yes						
	Uncert (+	-/-) dB		0.09						
		.,								
			20(b). (Octave B	and Filte	er Lower	Limit (L	owest Ra	inge)	
SLM	Attenuato	r & Genera	20(b). (Octave B	and Filte	er Lower	Limit (L	owest Ra	inge)	
SLM,	Attenuato	r & Genera Time	20(b). (ator Setting Weighting	Dctave B gs Fast	and Filto	er Lower	Limit (L	owest Ra	inge)	
SLM,	Attenuato Fi	r & Genera Time V	20(b). (ator Settin Weighting Weighting	Dctave B gs Fast Z	and Filte	er Lower	Limit (L	owest Ra	inge)	
SLM,	Attenuato Fi	r & Genera Time V requency Low	20(b). (ator Setting Weighting Weighting est Range	Dctave B gs Fast Z LOW	and Filte	er Lower	Limit (L	owest Ra	inge)	
SLM,	Attenuato Fi Lower	r & Genera Time \ requency \ Low Limit for t	20(b). (ator Setting Weighting Weighting est Range the Range	Dctave B gs Fast Z LOW 20	and Filte	er Lower	Limit (L	owest Ra	inge)	
SLM,	Attenuato Fi Lower	r & Genera Time V requency V Low Limit for f	20(b). (ator Setting Weighting Weighting est Range the Range	Dctave B gs Fast Z LOW 20 4	and Filte	er Lower	Limit (Lo	owest Ra	inge)	10
SLM,	Attenuato Fi Lower 1 4 Hz	r & Genera Time \ requency \ Low Limit for t 2 8 Hz	20(b). (ator Setting Weighting est Range the Range 3	Dctave B gs Fast Z LOW 20 4	and Filte	er Lower	Limit (Lu 7	owest Ra	nge) 9	10
SLM,	Attenuato Fi Lower 1 4 Hz	r & Genera Time V requency V Low Limit for t 2 8 Hz 12.5	20(b). (ator Setting Weighting est Range the Range 3 16 Hz 13.3	Dctave B gs Fast Z LOW 20 4 31.5 Hz 5.2	and Filte	er Lower 6 125 Hz 4.7	Limit (Lu 7 250 Hz 2.9	owest Ra 8 500 Hz	9 1 kHz 0.3	10 2 kHz 0.2
SLM, SLM Freq Measured Conforming	Attenuato Fi Lower 1 4 Hz N/A	r & Genera Time V requency V Low Limit for f 2 8 Hz 12.5 Yes	20(b). (ator Setting Weighting weighting est Range the Range 3 16 Hz 13.3 Yes	Dctave B gs Fast LOW 20 4 31.5 Hz 5.2 Yes	and Filte	er Lower 6 125 Hz 4.7 Yes	Limit (Lu 7 250 Hz 2.9 Yes	8 500 Hz 1.7 Yes	9 9 1 kHz 0.3 Yes	10 2 kHz 0.2 Yes
SLM, SLM, Freq Measured Conforming	Attenuato Fr Lower 1 4 Hz N/A	r & Genera Time V requency V Lowit for t 2 8 Hz 12.5 Yes	20(b). (ator Setting Weighting est Range the Range 3 16 Hz 13.3 Yes	Contave B gs Fast Z LOW 20 4 31.5 Hz 5.2 Yes	5 63 Hz 7.0 Yes	er Lower 6 125 Hz 4.7 Yes	Timit (Lu 7 250 Hz 2.9 Yes	8 500 Hz 1.7 Yes	9 1 kHz 0.3 Yes	10 2 kHz 0.2 Yes
SLM, SLM, Freq Measured Conforming	Attenuato Fi Lower 1 4 Hz N/A 4kHz	r & Genera Time V requency V Limit for t 2 8 Hz 12.5 Yes 8kHz	20(b). (ator Setting Weighting est Range the Range 3 16 Hz 13.3 Yes 16kHz	Dctave B gs Fast Z LOW 20 4 31.5 Hz 5.2 Yes 32kHz	and Filte 5 63 Hz 7.0 Yes	er Lower 6 125 Hz 4.7 Yes	Limit (Lu 7 250 Hz 2.9 Yes	owest Ra 8 500 Hz 1.7 Yes	9 1 kHz 0.3 Yes	10 2 kHz 0.2 Yes
SLM, SLM, Freq Measured Conforming Freq Measured	Attenuato Fi Lower 1 4 Hz N/A 4kHz 1.2	r & Genera Time V requency V Low Limit for t 2 8 Hz 12.5 Yes 8kHz 2.7	20(b). (ator Setting Weighting est Range the Range 3 16 Hz 13.3 Yes 16kHz 5.1	Ctave B gs Fast Z LOW 20 4 31.5 Hz 5.2 Yes 32kHz	and Filte 5 63 Hz 7.0 Yes	er Lower 6 125 Hz 4.7 Yes	Timit (Lu 7 250 Hz 2.9 Yes	8 500 Hz 1.7 Yes	9 1 kHz 0.3 Yes	10 2 kHz 0.2 Yes
SLM, SLM, Freq Measured Conforming Freq Measured Conforming	Attenuato Fi Lower 1 4 Hz N/A 4kHz 1.2 Yes	r & Genera Time V requency V Low Limit for f 2 8 Hz 12.5 Yes 8kHz 2.7 Yes	20(b). (ator Setting Weighting est Range the Range 3 16 Hz 13.3 Yes 16kHz 5.1 Yes	Ctave B gs Fast Z LOW 20 4 31.5 Hz 5.2 Yes 32kHz N/A	and Filte 5 63 Hz 7.0 Yes	er Lower 6 125 Hz 4.7 Yes	Timit (Luit) 7 250 Hz 2.9 Yes	8 500 Hz 1.7 Yes	9 1 kHz 0.3 Yes	10 2 kHz 0.2 Yes
SLM, SLM, Freq Measured Conforming Freq Measured Conforming	Attenuato Fi Lower 1 4 Hz N/A 4kHz 1.2 Yes	r & Genera Time V requency V Low Limit for 1 2 8 Hz 12.5 Yes 8kHz 2.7 Yes	20(b). (ator Setting Weighting weighting est Range the Range 3 16 Hz 13.3 Yes 16kHz 5.1 Yes	Dctave B gs Fast Z LOW 20 4 31.5 Hz 5.2 Yes 32kHz N/A	5 63 Hz 7.0 Yes	er Lower 6 125 Hz 4.7 Yes	Limit (Lu 7 250 Hz 2.9 Yes	8 500 Hz 1.7 Yes	9 1 kHz 0.3 Yes	10 2 kHz 0.2 Yes
SLM, SLM, Freq Measured Conforming Freq Measured Conforming	Attenuato Fi Lower 1 4 Hz N/A 4 Hz 1.2 Yes Conform	r & Genera Time V requency V Lowit for t 2 8 Hz 12.5 Yes 8kHz 2.7 Yes	20(b). (ator Setting Weighting est Range the Range 3 16 Hz 13.3 Yes 16kHz 5.1 Yes	Ctave B gs Fast Z LOW 20 4 31.5 Hz 5.2 Yes 32kHz N/A Yes	5 63 Hz 7.0 Yes	er Lower 6 125 Hz 4.7 Yes	7 250 Hz 2.9 Yes	8 500 Hz 1.7 Yes	9 1 kHz 0.3 Yes	10 2 kHz 0.2 Yes
SLM, SLM, Freq Measured Conforming Freq Measured Conforming	Attenuato Fi Lower 1 4 Hz N/A 4 Hz 1.2 Yes Conforr	r & Genera Time V requency V Low Limit for t 2 8 Hz 12.5 Yes 8kHz 2.7 Yes 9kHz 2.7 Yes	20(b). (ator Setting Weighting est Range the Range 3 16 Hz 13.3 Yes 16kHz 5.1 Yes	Ctave B gs Fast Z LOW 20 4 31.5 Hz 5.2 Yes 32kHz N/A Yes 0.09	5 63 Hz 7.0 Yes	er Lower 6 125 Hz 4.7 Yes	7 250 Hz 2.9 Yes	8 500 Hz 1.7 Yes	9 1 kHz 0.3 Yes	10 2 kHz 0.2 Yes

20. Octave Band Filter Lower Llmit (IEC 61260-3 Clause 12)

12.2 Short-circuit the input terminal or use similar means to ensure that the level of the input signal is below the lower limit of the specified linear operating range. Record the output level from each filter in the set. The output level shall not exceed the specified lower limit for the appropriate filter and range.

Interpretation: The yellow cells are the observed values. The measured value must not exceed the Lower Limit for the Range.

21(a). Third Octave Band Filter Relative Attenuation (≤31.5Hz)

SLM, Attenuator & Generator Settings							
Time Weighting	Fast						
Frequency Weighting	Z						
SLM Range	HIGH						
Set dB Below Full Scale	-1						
Attenuator dB	0.0						
Reference SPL 1kHz	133.0						
Output mVrms	4028.0						
Noise Floor dB	-99.0						

Ratio	1	2	3	4	5	6	7	8	9	10		
Freq	4Hz	5Hz	6.3Hz	8Hz	10Hz	12.5Hz	16Hz	20Hz	25Hz	31.5Hz		
0.18										56.8		
0.33										58.1		
0.53										73.1		
0.77										70.6		
0.89												
0.92										132.4		
0.95										132.9	T . I .	
0.97										132.9	Tole	rance
1.00										132.9		
1.03										132.9		
1.06										132.9		
1.09										132.2		
1.12												
1.30										66.7		
1.89										54.9		
3.07			-							60.7		
5.43										59.5	Class 1	Class 2
										76.1	+70/inf	+60/inf
										74.8	+60/inf	+54/inf
			-							59.8	+40.5/inf	+39.5/inf
										62.3	+16.6/inf	+15.6/inf
											-0.4/+5.3	-0.6/+5.8
										0.5	-0.4/+1.4	-0.6/+1.7
명										0.0	-0 4/+0 7	-0.6/+0.9
5										0.0	-0 4/+0 5	-0.6/+0.7
atic										0.0	-0.4/+0.4	-0.6/+0.6
in										0.0	-0.4/+0.5	-0.6/+0.7
ttei										0.0	-0.4/+0.7	-0.6/+0.9
Ā										0.7	-0 4/+1 4	-0.6/+1.7
										0.1	-0.4/+5.3	-0.6/+5.8
										66.2	+16 6/inf	+15 6/inf
										78.0	+40.5/inf	+39.5/inf
										72.2	+60/inf	+54/inf
										73.4	+00/inf	+04/inf
										73.4	+10/111	+00/111
Ins Loss										-0.1	1	
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					-	
Conforming	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Yes		
		<00.1P	0.00		0.40							
Uncert (+	/-) aB	280aB	0.09	>80aB	0.46							

Description of Test

21(a) Octave Filter (IEC 61260-3 Clause 13)

13 Measurement of relative attenuation

13.1 The relative attenuation on the reference level range shall be tested for the same three filters as selected in Clause 11.

13.2 The measurements of relative attenuation are made as the response to constant amplitude sinusoidal signals at various frequencies. The level of the input signals shall be (1 ± 0.1) dB below the specified upper boundary of the linear operating range.

13.6 The measured relative attenuation shall not exceed the acceptance limits given in Table 1 for the appropriate class of filter.

Interpretation: The three filters specified in "Clause 11" are 31.5Hz, 1kHz and 16kHz unless the client expands this range. The limits in "Table 1" are the Tolerance values shown in green above. The yellow cells are the observed values. The "Attenuation dB" cells are the attenuation values of each filter with the filter's centre frequency attenuation assumed to be zero (i.e. the relative attenuation). The "Ins Loss" are the actual values of attenuation at the filter centre frequencies.

21(b). Third Octave Band Filter Relative Attenuation (40Hz-315Hz)

SLM, Attenuator & Generator Settings							
Time Weighting	Fast						
Frequency Weighting	Z						
SLM Range	HIGH						
Set dB Below Full Scale	-1.0						
Attenuator dB	0.0						
Reference SPL 1kHz	133.0						
Output mVrms	4028.0						
Noise Floor dB	-99.0						

Ratio	1	2	3	4	5	6	7	8	9	10		
Freq	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz		
0.18									50.1			
0.33									55.8			
0.53									66.9			
0.77									70.8			
0.89												
0.92									132.7			
0.95									133.1		Tala	
0.97									133.0		Tole	ance
1.00									133.0			
1.03									133.0			
1.06									133.0			
1.09									132.3			
1.12												
1.30									58.1			
1.89									52.4			
3.07									42.4			
5.43									39.3		Class 1	Class 2
									82.9		+70/inf	+60/inf
									77.2		+60/inf	+54/inf
									66.1		+40.5/inf	+39.5/inf
									62.2		+16.6/inf	+15.6/inf
											-0.4/+5.3	-0.6/+5.8
~									0.3		-0.4/+1.4	-0.6/+1.7
dE									-0.1		-0.4/+0.7	-0.6/+0.9
u									0.0		-0.4/+0.5	-0.6/+0.7
ati									0.0		-0.4/+0.4	-0.6/+0.6
nu									0.0		-0.4/+0.5	-0.6/+0.7
tte									0.0		-0.4/+0.7	-0.6/+0.9
<									0.7		-0.4/+1.4	-0.6/+1.7
											-0.4/+5.3	-0.6/+5.8
									74.9		+16.6/inf	+15.6/inf
									80.6		+40.5/inf	+39.5/inf
									90.6		+60/inf	+54/inf
									93.7		+70/inf	+60/inf
Ins Loss									0.0			
Conforming	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Yes	N/A		

Uncert (+/-) dB ≤80dB 0.09 >80dB 0.46

Description of Test

21(b) Octave Filter (IEC 61260-3 Clause 13)

13 Measurement of relative attenuation

13.1 The relative attenuation on the reference level range shall be tested for the same three filters as selected in Clause 11.

13.2 The measurements of relative attenuation are made as the response to constant amplitude sinusoidal signals at various frequencies. The level of the input signals shall be $(1 \pm 0,1)$ dB below the specified upper boundary of the linear operating range.

13.6 The measured relative attenuation shall not exceed the acceptance limits given in Table 1 for the appropriate class of filter.

Interpretation: The three filters specified in "Clause 11" are 31.5Hz, 1kHz and 16kHz unless the client expands this range. The limits in "Table 1" are the Tolerance values shown in green above. The yellow cells are the observed values. The "Attenuation dB" cells are the attenuation values of each filter with the filter's centre frequency attenuation assumed to be zero (i.e. the relative attenuation). The "Ins Loss" are the actual values of attenuation at the filter centre frequencies.

21(c). Third Octave Band Filter Relative Attenuation (400Hz-3.15kHz)

SLM, Attenuator & Generator Settings							
Time Weighting	Fast						
Frequency Weighting	Z						
SLM Range	HIGH						
Set dB Below Full Scale	-1.0						
Attenuator dB	0.0						
Reference SPL 1kHz	133.0						
Output mVrms	4028.0						
Noise Floor dB	-99.0						

Ratio	1	2	3	4	5	6	7	8	9	10		
Freq	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz		
0.18					45.8							
0.33					48.1							
0.53					59.2							
0.77					70.6							
0.89												
0.92					132.7							
0.95					133.0						Tala	
0.97					133.0						Tole	rance
1.00					133.0							
1.03					133.0							
1.06					133.0							
1.09					132.2							
1.12												
1.30					58.0							
1.89					51.6							
3.07					32.3							
5.43					31.4						Class 1	Class 2
					87.2						+70/inf	+60/inf
					84.9						+60/inf	+54/inf
					73.8						+40.5/inf	+39.5/inf
					62.4						+16.6/inf	+15.6/inf
											-0.4/+5.3	-0.6/+5.8
m					0.3						-0.4/+1.4	-0.6/+1.7
P					0.0						-0.4/+0.7	-0.6/+0.9
lo					0.0						-0.4/+0.5	-0.6/+0.7
lat					0.0						-0.4/+0.4	-0.6/+0.6
, ju					0.0						-0.4/+0.5	-0.6/+0.7
tte					0.0						-0.4/+0.7	-0.6/+0.9
1					0.8						-0.4/+1.4	-0.6/+1.7
											-0.4/+5.3	-0.6/+5.8
					75.0						+16.6/inf	+15.6/inf
					81.4						+40.5/inf	+39.5/inf
					100.7						+60/inf	+54/inf
					101.6						+70/inf	+60/inf
											-	
Ins Loss					0.0							
						_		_			•	
Conforming	N/A	N/A	N/A	N/A	Yes	N/A	N/A	N/A	N/A	N/A		

Uncert (+/-) dB ≤80dB 0.09 >80dB 0.46

Description of Test

21(c) Octave Filter (IEC 61260-3 Clause 13)

13 Measurement of relative attenuation

13.1 The relative attenuation
13.1 The relative attenuation on the reference level range shall be tested for the same three filters as selected in Clause 11.
13.2 The measurements of relative attenuation are made as the response to constant amplitude sinusoidal signals at various frequencies. The level of the input signals shall be (1 ± 0,1) dB below the specified upper boundary of the linear operating range.
13.6 The measured relative attenuation shall not exceed the acceptance limits given in Table 1 for the appropriate class of filter.

Interpretation: The three filters specified in "Clause 11" are 31.5Hz, 1kHz and 16kHz unless the client expands this range. The limits in "Table 1" are the Tolerance values shown in green above. The yellow cells are the observed values. The "Attenuation dB" cells are the attenuation values of each filter with the filter's centre frequency attenuation assumed to be zero (i.e. the relative attenuation). The "Ins Loss" are the actual values of attenuation at the filter centre frequencies

21(d). Third Octave Band Filter Relative Attenuation (≥4kHz)

SLM, Attenuator & Generator Setting	gs					
Time Weighting						
Frequency Weighting	Z					
SLM Range	HIGH					
Set dB Below Full Scale	-1.0					
Attenuator dB	0.0					
Reference SPL 1kHz	133.0					
Output mVrms	4028.0					
Noise Floor dB	-99.0					

Ratio	1	2	3	4	5	6	7	8	9	10		
Freq	4kHz	5kHz	6.3kHz	8kHz	10kHz	12.5kHz	16kHz	20kHz	25kHz	31.5kHz		
0.18							49.5					
0.33							53.3					
0.53							52.8					
0.77							70.5					
0.89												
0.92							132.7					
0.95							133.0				Tolo	ranco
0.97							133.0				TOIE	ance
1.00							133.0					
1.03							133.0					
1.06							133.0					
1.09							132.2					
1.12												
1.30							58.2					
1.89							42.7					
3.07							38.2					
5.43							36.5				Class 1	Class 2
							83.5				+70/inf	+60/inf
							79.7				+60/inf	+54/inf
							80.2				+40.5/inf	+39.5/inf
							62.5				+16.6/inf	+15.6/inf
											-0.4/+5.3	-0.6/+5.8
m							0.3				-0.4/+1.4	-0.6/+1.7
dE							0.0				-0.4/+0.7	-0.6/+0.9
uo							0.0				-0.4/+0.5	-0.6/+0.7
ati							0.0				-0.4/+0.4	-0.6/+0.6
nu							0.0				-0.4/+0.5	-0.6/+0.7
vtte							0.0				-0.4/+0.7	-0.6/+0.9
٩							0.8				-0.4/+1.4	-0.6/+1.7
											-0.4/+5.3	-0.6/+5.8
							74.8				+16.6/inf	+15.6/inf
							90.3				+40.5/inf	+39.5/inf
							94.8				+60/inf	+54/inf
							96.5				+70/inf	+60/inf
Ins Loss							0.0					
Conforming	N/A	N/A	N/A	N/A	N/A	N/A	Yes	N/A	N/A	N/A		
						-						

Uncert (+/-) dB ≤80dB 0.09 >80dB 0.46

Description of Test

21(d) Octave Filter (IEC 61260-3 Clause 13)

13 Measurement of relative attenuation

13.1 The relative attenuation on the reference level range shall be tested for the same three filters as selected in Clause 11.

13.2 The measurements of relative attenuation are made as the response to constant amplitude sinusoidal signals at various frequencies. The level of the input signals shall be (1 ± 0.1) dB below the specified upper boundary of the linear operating range.

13.6 The measured relative attenuation shall not exceed the acceptance limits given in Table 1 for the appropriate class of filter.

Interpretation: The three filters specified in "Clause 11" are 31.5Hz, 1kHz and 16kHz unless the client expands this range. The limits in "Table 1" are the Tolerance values shown in green above. The yellow cells are the observed values. The "Attenuation dB" cells are the attenuation values of each filter with the filter's centre frequency attenuation assumed to be zero (i.e. the relative attenuation). The "Ins Loss" are the actual values of attenuation at the filter centre frequencies.

22. Third Octave Band Filter Relative Attenuation at Midband Frequency

SLM, Attenuator & Generator Settin	gs
Time Weighting	Fast
Frequency Weighting	Z
Reference Range	MID
Attenuator dB	0.0
Reference SPL 1kHz	94.0
Output mVrms	45.0

	1	2	3	4	5	6	7	8	9	10	Tole	rance
Freq	4Hz	5Hz	6.3Hz	8Hz	10Hz	12.5Hz	16Hz	20Hz	25Hz	31.5Hz	Class 1	Class 2
Measured			93.7	94.0	94.1	93.9	94.0	94.0	94.0	94.0		
Ins Loss			-0.3	0.0	0.1	-0.1	0.0	0.0	0.0	0.0	-0.4/+0.4	-0.6/+0.6
Conforming	N/A	N/A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Freq	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz	Class 1	Class 2
Measured	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0		
Ins Loss	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.4/+0.4	-0.6/+0.6
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Freq	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz	Class 1	Class 2
Measured	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0		
Ins Loss	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.4/+0.4	-0.6/+0.6
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
From	464-	ELU-	6 21/11-	아니ㅋ			1664	201/11-	2564		Close 1	Class 2

Measured	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0				
Ins Loss	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			-0.4/+0.4	-0.6/+0.6
Conforming	Yes	N/A	N/A									

Uncert (+/-) dB 0.09

Description of Test

22. Octave Band Filter Relative Attenuation at Midband Frequency (IEC 61260-3 Clause 10.2)

10.2 Tests of relative attenuation at midband frequency

10.2.1 The relative attenuation at the exact midband frequency shall be measured for every filter in a set of filters. The relative attenuation $\Delta A(\Omega)$ at any midband frequency is determined from Formula (8) given in IEC 61260-1:2014. The reference level range shall be selected for the test. The level of the test signal shall be equal to the reference input signal level.

10.2.2 The measured relative attenuation shall not exceed the acceptance limits \pm 0,4 dB for Class 1 filters or \pm 0,6 dB for class 2 filters as specified in 5.10 in IEC 61260-1:2014.

Interpretation: The yellow cells are the observed values. The "Ins Loss" are the actual values of attenuation at the filter centre frequencies. The "Conforming" cells demonstrate compliance with the Tolerance limits depending upon the Class of filter.

23(a). Third Octave Band Filter Level Linearity 31.5Hz (Increasing)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Z			
SLM Range	MID			
Generator & Attenuator Settings	6			
Select dB Over SLM Range	5			
Attenuation (dB)	31.0			
Generator Frequency (Hz)	31.5			
SPL Reference Starting Point (dB)	94.0			
Output (mVrms)	1753.0			
Noise Floor (dB)	-99.0			

Increasing level to Over			rload	Tolerance		
Atten	Expected	Indicator	Diff	Type 1	Type 2	
26.0	99.0	99.0	0.0	±0.5	±0.6	
21.0	104.0	104.0	0.0	±0.5	±0.6	
16.0	109.0	109.0	0.0	±0.5	±0.6	
11.0	114.0	114.0	0.0	±0.5	±0.6	
10.0	115.0	115.0	0.0	±0.5	±0.6	
9.0	116.0	116.0	0.0	±0.5	±0.6	
8.0	117.0	117.0	0.0	±0.5	±0.6	
7.0	118.0	118.0	0.0	±0.5	±0.6	
6.0	119.0	119.0	0.0	±0.5	±0.6	
5.0	120.0	120.0	0.0	±0.5	±0.6	
4.0	121.0	121.0	0.0	±0.5	±0.6	
3.0	122.0	122.0	0.0	±0.5	±0.6	
2.0	123.0	123.0	0.0	±0.5	±0.6	
1.0	124.0	124.0	0.0	±0.5	±0.6	
0.0	125.0	125.0	0.0	±0.5	±0.6	

Conforming Yes

Uncertainty (+/-) dB 0.13

Description of Tests

23(a). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

23(b). Third Octave Band Filter Level Linearity 1kHz (Increasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	
Select dB Over SLM Range	5
Attenuation (dB)	31.0
Generator Frequency (Hz)	1k
SPL Reference Starting Point (dB)	94.0
Output (mVrms)	1727.0
Noise Floor (dB)	-99.0

Increasing level to Over			rload	Tolerance		
Atten	Expected	Indicator	Diff	Type 1	Type 2	
26.0	99.0	99.0	0.0	±0.5	±0.6	
21.0	104.0	104.0	0.0	±0.5	±0.6	
16.0	109.0	109.0	0.0	±0.5	±0.6	
11.0	114.0	114.0	0.0	±0.5	±0.6	
10.0	115.0	115.0	0.0	±0.5	±0.6	
9.0	116.0	116.0	0.0	±0.5	±0.6	
8.0	117.0	117.0	0.0	±0.5	±0.6	
7.0	118.0	118.0	0.0	±0.5	±0.6	
6.0	119.0	119.0	0.0	±0.5	±0.6	
5.0	120.0	120.0	0.0	±0.5	±0.6	
4.0	121.0	121.0	0.0	±0.5	±0.6	
3.0	122.0	122.0	0.0	±0.5	±0.6	
2.0	123.0	123.0	0.0	±0.5	±0.6	
1.0	124.0	124.0	0.0	±0.5	±0.6	
0.0	125.0	125.0	0.0	±0.5	±0.6	

Conforming Yes

Uncertainty (+/-) dB 0.13

Description of Tests

23(b). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

23(c). Third Octave Band Filter Level Linearity 16kHz (Increasing)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Z			
SLM Range	MID			
Generator & Attenuator Settings	6			
Select dB Over SLM Range	5			
Attenuation (dB)	31.0			
Generator Frequency (Hz)	16k			
SPL Reference Starting Point (dB)	94.0			
Output (mVrms)	1722.0			
Noise Floor (dB)	-99.0			

Increasing level to Over			rload	Tolerance		
Atten	Expected	Indicator	Diff	Type 1	Type 2	
26.0	99.0	99.0	0.0	±0.5	±0.6	
21.0	104.0	104.0	0.0	±0.5	±0.6	
16.0	109.0	109.0	0.0	±0.5	±0.6	
11.0	114.0	114.0	0.0	±0.5	±0.6	
10.0	115.0	115.0	0.0	±0.5	±0.6	
9.0	116.0	116.0	0.0	±0.5	±0.6	
8.0	117.0	117.0	0.0	±0.5	±0.6	
7.0	118.0	118.0	0.0	±0.5	±0.6	
6.0	119.0	119.0	0.0	±0.5	±0.6	
5.0	120.0	120.0	0.0	±0.5	±0.6	
4.0	121.0	121.0	0.0	±0.5	±0.6	
3.0	122.0	122.0	0.0	±0.5	±0.6	
2.0	123.0	123.0	0.0	±0.5	±0.6	
1.0	124.0	124.0	0.0	±0.5	±0.6	
0.0	125.0	125.0	0.0	±0.5	±0.6	
				1		
	Conformi	ng	Yes			

Uncertainty (+/-) dB 0.13

Description of Tests

23(c). Level linearity on the reference level range (IEC 61672-3 Clause 16)

Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. (61672-3 Clause 16.1).

Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level from the starting not down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level down to, but not including, the first indication of an under-range condition.

Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1 from the specified upper boundary of the linear operating range up to, but not including, the first indication of overload and also from the specified lower boundary of the linear operating range down to, but not including, the first indication of an under-range condition.

"Y" means indicator over-range.

24(a). Third Octave Band Filter Level Linearity 31.5Hz (Decreasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	5
Select dB Under SLM Range	0
Attenuation (dB)	0.0
Generator Frequency (Hz)	31.5
SPL Reference Starting Point (dB)	94
Output (mVrms)	46.3
Noise Floor (dB)	-99.0

Decreasing level to Underange			erange	Tolerance		
Atten	Expected	Indicator	Diff	Type 1	Type 2	
5.0	89.0	89.0	0.0	±0.5	±0.6	
10.0	84.0	84.0	0.0	±0.5	±0.6	
15.0	79.0	79.0	0.0	±0.7	±0.9	
20.0	74.0	74.0	0.0	±0.7	±0.9	
25.0	69.0	69.0	0.0	±0.7	±0.9	
30.0	64.0	64.0	0.0	±0.7	±0.9	
35.0	59.0	59.0	0.0	±0.7	±0.9	
40.0	54.0	54.0	0.0	±0.7	±0.9	
45.0	49.0	49.0	0.0	±0.7	±0.9	
50.0	44.0	44.0	0.0	±0.7	±0.9	
54.0	40.0	40.0	0.0	±0.7	±0.9	
55.0	39.0	39.0	0.0	±0.7	±0.9	
56.0	38.0	38.0	0.0	±0.7	±0.9	
57.0	37.0	37.0	0.0	±0.7	±0.9	
58.0	36.0	36.0	0.0	±0.7	±0.9	
59.0	35.0	35.0	0.0	±0.7	±0.9	
				1		
	Conformi	ng	Yes			

Uncertainty (+/-) dB 0.13

Description of Tests

24(a). Level linearity on the reference level range (IEC 61672-3 Clause 16)

Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. (61672-3 Clause 16.1).

Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level from the first indication of an under-range condition.

Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1 from the specified upper boundary of the linear operating range up to, but not including, the first indication of overload and also from the specified lower boundary of the linear operating range down to, but not including, the first indication of an under-range condition.

"Y" means indicator under-range. However, if 20dB above noise floor is reached then no results are reported.

24(b). Third Octave Band Filter Level Linearity 1kHz (Decreasing)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Z			
SLM Range	MID			
Generator & Attenuator Settings	5			
Select dB Under SLM Range	0			
Attenuation (dB)	0.0			
Generator Frequency (Hz)	1kHz			
SPL Reference Starting Point (dB)	94			
Output (mVrms)	48.9			
Noise Floor (dB)	-99.0			

Decreasing level to Unde			erange	Tolerance		
Atten	Expected	Indicator	Diff	Type 1	Type 2	
5.0	89.0	89.0	0.0	±0.5	±0.6	
10.0	84.0	84.0	0.0	±0.5	±0.6	
15.0	79.0	79.0	0.0	±0.7	±0.9	
20.0	74.0	74.0	0.0	±0.7	±0.9	
25.0	69.0	69.0	0.0	±0.7	±0.9	
30.0	64.0	64.0	0.0	±0.7	±0.9	
35.0	59.0	59.0	0.0	±0.7	±0.9	
40.0	54.0	54.0	0.0	±0.7	±0.9	
45.0	49.0	49.0	0.0	±0.7	±0.9	
50.0	44.0	44.0	0.0	±0.7	±0.9	
54.0	40.0	40.0	0.0	±0.7	±0.9	
55.0	39.0	39.0	0.0	±0.7	±0.9	
56.0	38.0	38.0	0.0	±0.7	±0.9	
57.0	37.0	37.0	0.0	±0.7	±0.9	
58.0	36.0	36.0	0.0	±0.7	±0.9	
59.0	35.0	35.0	0.0	±0.7	±0.9	
	Conformi	ng	Yes			

Uncertainty (+/-) dB 0.13

Description of Tests

24(b). Level linearity on the reference level range (IEC 61672-3 Clause 16)

Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. (61672-3 Clause 16.1).

Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level from the first indication of an under-range condition.

Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1 from the specified upper boundary of the linear operating range up to, but not including, the first indication of overload and also from the specified lower boundary of the linear operating range down to, but not including, the first indication of an under-range condition.

"Y" means indicator under-range. However, if 20dB above noise floor is reached then no results are reported.

24(c). Third Octave Band Filter Level Linearity 16kHz (Decreasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	
Select dB Under SLM Range	0
Attenuation (dB)	0.0
Generator Frequency (Hz)	16kHz
SPL Reference Starting Point (dB)	94
Output (mVrms)	48.6
Noise Floor (dB)	-99.0

D	ecreasing le	evel to Unde	erange	Toler	ance
Atten	Expected	Indicator	Diff	Type 1	Type 2
5.0	89.0	89.0	0.0	±0.5	±0.6
10.0	84.0	84.0	0.0	±0.5	±0.6
15.0	79.0	79.0	0.0	±0.7	±0.9
20.0	74.0	74.0	0.0	±0.7	±0.9
25.0	69.0	69.0	0.0	±0.7	±0.9
30.0	64.0	64.0	0.0	±0.7	±0.9
35.0	59.0	59.0	0.0	±0.7	±0.9
40.0	54.0	54.0	0.0	±0.7	±0.9
45.0	49.0	49.0	0.0	±0.7	±0.9
50.0	44.0	44.0	0.0	±0.7	±0.9
54.0	40.0	40.0	0.0	±0.7	±0.9
55.0	39.0	39.0	0.0	±0.7	±0.9
56.0	38.0	38.0	0.0	±0.7	±0.9
57.0	37.0	37.0	0.0	±0.7	±0.9
58.0	36.0	36.0	0.0	±0.7	±0.9
59.0	35.0	35.0	0.0	±0.7	±0.9
	Conformi	ng	Yes		

Uncertainty (+/-) dB 0.13

Description of Tests

24(c). Level linearity on the reference level range (IEC 61672-3 Clause 16)

Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. (61672-3 Clause 16.1).

Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level from the first indication of an under-range condition.

Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1 from the specified upper boundary of the linear operating range up to, but not including, the first indication of overload and also from the specified lower boundary of the linear operating range down to, but not including, the first indication of an under-range condition.

"Y" means indicator under-range. However, if 20dB above noise floor is reached then no results are reported.

25. Third Octave Level Ranges

25(a). Third Octave Level Linearity Including the Level range (31.5Hz)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	10
Generator Frequency (Hz)	31.5
Reference SPL (dB)	94
Output (mVrms)	156.8

Sett	ings		Level (dB)		Tolerance	
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2
HIGH	0.0	104.0	103.9	-0.1	± 0.5	± 0.6
MID	14.0	90.0	89.9	-0.1	± 0.5	± 0.6
LOW	34.0	70.0	70.0	0.0	± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6

Conforming Yes

Uncertainty (+/-) dB

25(b). Third Octave Level Linearity Including the Level range (1kHz)

0.13

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	10
Generator Frequency (Hz)	1k
Reference SPL (dB)	94
Output (mVrms)	154.0

Sett	ings		Level (dB)		Tolerance	
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2
HIGH	0.0	104.0	104.0	0.0	± 0.5	± 0.6
MID	14.0	90.0	89.9	-0.1	± 0.5	± 0.6
LOW	34.0	70.0	69.8	-0.2	± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6

Conforming Yes

Uncertainty (+/-) dB 0.13

25(c). Third Octave Level Linearity Including the Level range (16kHz)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Z			
SLM Range	MID			
Generator & Attenuator Settings				
Attenuation (dB)	10			
Generator Frequency (Hz)	16k			
Reference SPL (dB)	94			
Output (mVrms)	153.4			

Sett	ings		Level (dB)		Tolerance	
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2
HIGH	0.0	104.0	104.0	0.0	± 0.5	± 0.6
MID	14.0	90.0	90.0	0.0	± 0.5	± 0.6
LOW	34.0	70.0	69.9	-0.1	± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
					± 0.5	± 0.6
_						
	Confo	orming		Yes		

Uncertainty (+/-) dB

Description of Tests

25. Filter Level linearity including the level range control (IEC 61260-3 Clause 11.9)

11.9 For the same three filters as selected above, test each available level range in the following way: based on the same reference level, adjust the input level to be 30 dB below upper boundary of the linear operating range for each of the selected range settings. The measured level linearity deviation shall not exceed the acceptance limits given in 5.13.3 and 5.13.4 of IEC 61260-1:2014

The three filter frequencies are 31.5Hz, 1kHz and 16kHz.

The level linearity differences are calculated as the indicated signal level minus the corresponding expected signal level.

0.13

26. Third Octave Band Filter Lower Limit

26(a). Octave Band Filter Lower Limit (Reference Range)

SLM,	SLM, Attenuator & Generator Settings									
		Time \	Weighting	Fast						
	F	requency	Weighting	Z						
		Low	est Range	MID						
	Lower	Limit for t	the Range	40						
	1	2	3	4	5	6	7	8	Q	10
	•	-	v		, v	v	•	Ŭ	,	10
Freq	4Hz	5Hz	6.3Hz	8Hz	10Hz	12.5Hz	16Hz	20Hz	25Hz	31.5Hz
Measured			7.1	10.9	4.7	6.4	12.7	6.1	5.6	5.3
Conforming	N/A	N/A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Freq	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz
Measured	0.1	6.4	0.0	1.2	1.9	1.8	0.0	0.2	0.5	0.0
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Freq	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz
Measured	0.8	0.6	0.7	1.4	2.6	1.6	2.6	3.5	4.4	4.5
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Frog	4647	5647	6.21/11-	8kH-	10647	12 5647	16647	201/11-7	25647	21 5647
Freq Measured	4kHz	5kHz	6.3kHz	8kHz	10kHz	12.5kHz	16kHz	20kHz	25kHz	31.5kHz
Freq Measured Conforming	4kHz 6.1 Yes	5kHz 6.5	6.3kHz 8.0 Yes	8kHz 8.8 Yes	10kHz 9.8 Yes	12.5kHz 10.8	16kHz 12.1 Yes	20kHz 13.3 Yes	25kHz N/A	31.5kHz
Freq Measured Conforming	4kHz 6.1 Yes	5kHz 6.5 Yes	6.3kHz 8.0 Yes	8kHz 8.8 Yes	10kHz 9.8 Yes	12.5kHz 10.8 Yes	16kHz 12.1 Yes	20kHz 13.3 Yes	25kHz N/A	31.5kHz N/A
Freq Measured Conforming	4kHz 6.1 Yes	5kHz 6.5 Yes	6.3kHz 8.0 Yes	8kHz 8.8 Yes	10kHz 9.8 Yes	12.5kHz 10.8 Yes	16kHz 12.1 Yes	20kHz 13.3 Yes	25kHz N/A	31.5kHz N/A
Freq Measured Conforming	4kHz 6.1 Yes Conform	5kHz 6.5 Yes ming	6.3kHz 8.0 Yes	8kHz 8.8 Yes Yes	10kHz 9.8 Yes	12.5kHz 10.8 Yes	16kHz 12.1 Yes	20kHz 13.3 Yes	25kHz N/A	31.5kHz N/A
Freq Measured Conforming	4kHz 6.1 Yes Conform	5kHz 6.5 Yes ming	6.3kHz 8.0 Yes	8kHz 8.8 Yes Yes	10kHz 9.8 Yes	12.5kHz 10.8 Yes	16kHz 12.1 Yes	20kHz 13.3 Yes	25kHz N/A	31.5kHz N/A
Freq Measured Conforming	4kHz 6.1 Yes Conforr	5kHz 6.5 Yes ming	6.3kHz 8.0 Yes	8kHz 8.8 Yes Yes 0.09	10kHz 9.8 Yes	12.5kHz 10.8 Yes	16kHz 12.1 Yes	20kHz 13.3 Yes	25kHz N/A	31.5kHz N/A
Freq Measured Conforming	4kHz 6.1 Yes Conform Uncert (+	5kHz 6.5 Yes ming	6.3kHz 8.0 Yes	8kHz 8.8 Yes Yes 0.09	10kHz 9.8 Yes	12.5kHz 10.8 Yes	16kHz 12.1 Yes	20kHz 13.3 Yes	25kHz N/A	31.5kHz N/A
Freq Measured Conforming	4kHz 6.1 Yes Conforr Uncert (4	5kHz 6.5 Yes ming +/-) dB	6.3kHz 8.0 Yes 26(b). C	8kHz 8.8 Yes Yes 0.09 Octave B	10kHz 9.8 Yes and Filte	12.5kHz 10.8 Yes	16kHz 12.1 Yes	20kHz 13.3 Yes	25kHz N/A	31.5kHz N/A
Freq Measured Conforming	4kHz 6.1 Yes Conforn Uncert (4	5kHz 6.5 Yes 9.0 ming 9.0	6.3kHz 8.0 Yes 26(b). C	8kHz 8.8 Yes Ves 0.09 Dctave B	10kHz 9.8 Yes and Filte	12.5kHz 10.8 Yes	16kHz 12.1 Yes	20kHz 13.3 Yes	25kHz N/A	31.5kHz N/A
Freq Measured Conforming SLM,	4kHz 6.1 Yes Conforr Uncert (4 Attenuato	5kHz 6.5 Yes ming -/-) dB	6.3kHz 8.0 Yes 26(b). C	8kHz 8.8 Yes 0.09 Octave B	10kHz 9.8 Yes and Filte	12.5kHz 10.8 Yes	16kHz 12.1 Yes	20kHz 13.3 Yes	25kHz N/A	31.5kHz
Freq Measured Conforming SLM,	4kHz 6.1 Yes Conforr Uncert (4 Attenuato	5kHz 6.5 Yes ming -/-) dB -/-) dB	6.3kHz 8.0 Yes 26(b). C ator Setting Weighting	8kHz 8.8 Yes 0.09 Octave B	10kHz 9.8 Yes and Filte	12.5kHz 10.8 Yes	16kHz 12.1 Yes	20kHz 13.3 Yes	25kHz N/A	31.5kHz N/A
Freq Measured Conforming SLM,	4kHz 6.1 Yes Conforn Uncert (4 Attenuato	5kHz 6.5 Yes ming h/-) dB r & Genera Time V requency V	6.3kHz 8.0 Yes 26(b). C ator Setting Weighting Weighting	8kHz 8.8 Yes 0.09 Octave B gs Fast Z	10kHz 9.8 Yes and Filte	12.5kHz 10.8 Yes	16kHz 12.1 Yes	20kHz 13.3 Yes	25kHz N/A	31.5kHz N/A
Freq Measured Conforming SLM,	4kHz 6.1 Yes Conforn Uncert (4 Attenuato	5kHz 6.5 Yes ming h/-) dB requency V Low Low	6.3kHz 8.0 Yes 26(b). C ator Setting Weighting Weighting est Range	8kHz 8.8 Yes 0.09 Octave B gs Fast Z LOW 20	10kHz 9.8 Yes and Filte	12.5kHz 10.8 Yes	16kHz 12.1 Yes	20kHz 13.3 Yes	25kHz N/A	31.5kHz N/A
Freq Measured Conforming SLM,	4kHz 6.1 Yes Conforn Uncert (4 Attenuato	5kHz 6.5 Yes ming h/-) dB requency to Low Limit for t	6.3kHz 8.0 Yes 26(b). C ator Setting Weighting Weighting est Range the Range	8kHz 8.8 Yes 0.09 Octave B gs Fast Z LOW 20	10kHz 9.8 Yes and Filte	12.5kHz 10.8 Yes	16kHz 12.1 Yes	20kHz 13.3 Yes	25kHz N/A	31.5kHz N/A

						-				
Freq	4Hz	5Hz	6.3Hz	8Hz	10Hz	12.5Hz	16Hz	20Hz	25Hz	31.5Hz
Measured			6.2	7.4	5.8	6.7	5.8	4.3	5.4	5.1
Conforming	N/A	N/A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
		•								•
Freq	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz
Measured	2.0	4.7	0.0	2.7	0.0	0.1	0.0	0.0	0.0	0.0
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
		•								•
Freq	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz
Measured	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
		•								•
Freq	4kHz	5kHz	6.3kHz	8kHz	10kHz	12.5kHz	16kHz	20kHz	25kHz	31.5kHz
Measured	0.0	0.0	0.0	0.0	0.0	0.0	0.1	1.1		
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A

Conforming	Yes
Uncert (+/-) dB	0.09

26. Third Octave Band Filter Lower Llmit (IEC 61260-3 Clause 12)

12.2 Short-circuit the input terminal or use similar means to ensure that the level of the input signal is below the lower limit of the specified linear operating range. Record the output level from each filter in the set. The output level shall not exceed the specified lower limit for the appropriate filter and range.

Interpretation: The yellow cells are the observed values. The measured value must not exceed the Lower Limit for the Range.

E – Water Management Protocol

WATER MANAGEMENT PROCEDURE

RESPONSIBILITY

WATER REUSE AND DISCHARGE MANAGEMENT

NOTES

Safety Requirements

- Always wear appropriate PPE (refer to Work Pack and SWMS)
- Avoid eye and skin contact with material sampled, flocculants, or products used to adjust pH. The first aid shed contains eye wash equipment if it is required.
- DO NOT breathe gases or aerosols formed from sampled material or associated preservatives in sample bottles.
- Maintain high standards of personal hygiene when sampling, DO NOT eat or smoke when sampling and ALWAYS wash hands ٠ following sampling.

Training

All personnel must receive site inductions and on-going Toolbox Talks which will include requirements of Water Management on site.

Only authorised persons to issue the permit to dewater and undertake site testing/sampling.

Monitoring

- Undertake water quality monitoring and visual inspection as per this procedures discharge requirements.
- Regular inspection of controls and discharge points are required prior to and during discharge.
- Where observations or conditions change, stop the discharge and contact Environment Team immediately.

Recording

- Records of water quality analysis on permits.
- Records of water reuse.
- Records of inspections including site inspections, on going monitoring of discharge and site diaries. •
- Records of toolbox talks.

Document Number: SMCSWSPS-CPB-ALL-EM-PRO-000007	Approved by: Emma Eveleigh	Sydney Metro City & Southwest – Pitt St ISD	PAGE
Revision: 1	Date: 02/09/2021	Printed copies are uncontrolled	1 OF 2

If there is capacity in the 5000L reuse tank (specified in the diagram on page 2), water must be pumped into the reuse tank before discharged to stormwater.

Water from the 5000L reuse tank can be reused for dust suppression, site amenities or other purposes.

DISCHARGE MANAGEMENT PROTOCOL

	Management Workflow	Analytes & Period	Operation & Trigger Guidelines	Management Actions				
Stage 0 - Verification	WTP operation and batching No Sample batched water Is sample within criteria? Yes	1. Real Time (daily): i. Turbidity ii. pH iii.Oil & Grease 2. Per Batch i. Full Suite at NATA accredited lab	 Normal operation of water treatment plant (WTP) in the commissioning phase with batching of waste water 	 Standard WTP operation Water treatment using a batching process without discharge Continuous sampling of discharge After five (5) consecutive sampling events without an exceedance of the target criteria adopt Stage 1 Protocols 				
Stage 1 - Standard Operations	Continuous WTP Operation and Discharge Adopt Stage 1 Management Protocols Yes	1. Real Time (daily): i. Turbidity ii. pH iii. Oil & Grease 2. Per Month ¹ i. Full Suite at NATA accredited lab	 Normal operation of WTP with continuous discharge of treated water 	 Standard WTP operation 				
Stage 2 · Exceedance	No exceedance occurred? Adopt Stage 2 Management Protocols	As per Stage 1	 50th percentile discharge limit exceeded across three (3) consecutive sampling events 100th percentile discharge limit exceeded across one (1) sampling event 	 Notify WTP operator of trigger Investigate the cause of the exceedance and examine the WTP processes immediately Implement new controls to address any issues identified Undertake sample of the exceeded parameter at the next available discharge 				
Stage 3 - Stop Work	Yes Has Stage 3 been exceeded? No Continue with appropriate degree of treatment		 50th percentile discharge limit exceeded across five (5) consecutive sampling events 100th percentile discharge limit exceeded across two (2) consecutive sampling events 	 Implement Stage 1 & 2 management protocols Inform Client and Environmental Representative Implement batch verification with 2x samples of the exceeded parameter to meet the criteria prior to discharge 				
Note: 1.	Water samples will be collected monthly, where treated water is available. In the event RESPONSIBILITY	that insufficient treated water is availabl	le for collection, a water sample is to be collected upon co	mmencement of the next available discharge event.				
Environmental Coordinator/ authorised delegate Monthly (or on the available discharge) sampling must be undertaken in accordance with the Discharge Management Protocol.								
	Water samples to be taken by environmental team or authorised delegate and sent to a NATA accredited laboratory for testing. The sample is to be taken at the point of the sample valve.							
		Management actions de	etermined by the Discharge Manager	ment				
	Protocol Stages depending on the water results							

WATER QUALITY CRITERIA FOR DISCHARGE AND LABORATORY SAMPING

Parameter	Percentile Concentration Limit	Sample Method & Frequency	Units	Discharge Criteria	
рН	100	Probe/ grab sample Prior to discharge	рН	6.5-8.5	
Total Suspended Solids (TSS)*	100	Probe/ grab sample Prior to discharge	mg/L	<50	
Oil and Grease	100	Visual Prior to discharge	None visual	None visual	
Copper	50	Grab Sample Monthly	mg/L	0.0013	
Copper	100	Grab Sample Monthly	mg/L	0.0048	
Zinc	50	Grab Sample Monthly	mg/L	0.015	
Zinc	100	Grab Sample Monthly	mg/L	0.043	

Note: an equivalent NTU value of 50 will be used instead of TSS for site testing as per correlation.

Revision: 1 Date: 02/09/2021 2 OF 2	Ocument Number: SMCSWSPS-CPB-ALL-EM-PRO-000007 Revision: 1	Approved by: Emma Eveleigh Date: 02/09/2021	Sydney Metro City & Southwest – Pitt St ISD Printed copies are uncontrolled	PAGE 2 OF 2
-------------------------------------	---	--	--	-------------

F – Laboratory Results

CPB Contractors Pty Ltd Level 4, 177 Pacific Highway North Sydney NSW 2060

Attention:

Olivia Cooper

Report	8311
Project name	PITT
Project ID	N010
Received Date	Oct 1

831188-W-V2 PITT ST ISD N01070 Oct 11, 2021

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Client Sample ID Sample Matrix Eurofins Sample No.			S01 Water S21-Oc21066	S02 Water S21-Oc21067	S03 Water S21-Oc21068	S04 Water S21-Oc21069
Date Sampled			Oct 11, 2021	Oct 11, 2021	Oct 11, 2021	Oct 11, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005

Client Sample ID Sample Matrix			S05 Water	S01 Water	S02 Water	S03 Water
Eurofins Sample No.			S21-Oc21070	S21-Oc21071	S21-Oc21072	S21-Oc21073
Date Sampled			Oct 11, 2021	Oct 11, 2021	Oct 11, 2021	Oct 11, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Copper (filtered)	0.001	mg/L	< 0.001	-	-	-
Zinc (filtered)	0.005	mg/L	< 0.005	-	-	-
Oil & Grease (HEM)	10	mg/L	-	< 10	< 10	< 10
pH (at 25 °C)	0.1	pH Units	-	7.7	7.6	7.5
Total Suspended Solids Dried at 103–105°C	5	mg/L	-	< 5	< 5	< 5
Turbidity	1	NTU	-	2.2	2.4	2.3

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			S04 Water S21-Oc21074 Oct 11, 2021	S05 Water S21-Oc21075 Oct 11, 2021
Test/Reference	LOR	Unit		
Oil & Grease (HEM)	10	mg/L	< 10	< 10
pH (at 25 °C)	0.1	pH Units	7.6	7.5
Total Suspended Solids Dried at 103–105°C	5	mg/L	< 5	< 5
Turbidity	1	NTU	2.3	2.3

CPB Contractors Pty Ltd Level 4, 177 Pacific Highway North Sydney NSW 2060

Attention:

Olivia Cooper

Report Project name Project ID Received Date

842993-W PITT ST ISD N01070 Nov 22, 2021

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			S01 Water S21-No50469 Nov 22, 2021
Test/Reference	LOR	Unit	
Heavy Metals			
Copper (filtered)	0.001	mg/L	0.003
Zinc (filtered)	0.005	mg/L	0.047

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

CPB Contractors Pty Ltd Level 4, 177 Pacific Highway North Sydney NSW 2060

Action Ac

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:

CC invoices; Emma Eveleigh

Report Project name Project ID Received Date 842996-W PITT ST ISD N01070 Nov 22, 2021

Client Sample ID Sample Matrix Eurofins Sample No.			S01 Water S21-No50470
Date Sampled			Nov 22, 2021
Test/Reference	LOR	Unit	
Oil & Grease (HEM)	10	mg/L	< 10
pH (at 25 °C)	0.1	pH Units	7.9
Total Suspended Solids Dried at 103–105°C	5	mg/L	10
Turbidity	1	NTU	8.3

CPB Contractors Pty Ltd Level 4, 177 Pacific Highway North Sydney NSW 2060

NATA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:

CC invoices; Emma Eveleigh

Report Project name Project ID Received Date 844348-W PITT ST ISD N01070 Nov 25, 2021

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	S4 Water S21-No61175 Nov 25, 2021
Heavy Metals		r.	
Zinc (filtered)	0.005	mg/L	0.036