

Redfern Station Upgrade – New Southern Concourse

Appendix G - Geotechnical and Contamination Investigation Reports

Aurecon Australasia Pty Ltd ABN 54 005 139 873 Level 5, 116 Military Road Neutral Bay NSW 2089 PO Box 538 Neutral Bay NSW 2089 Australia T +61 2 9465 5599 F +61 2 9465 5598 E sydney@aurecongroup.com W aurecongroup.com

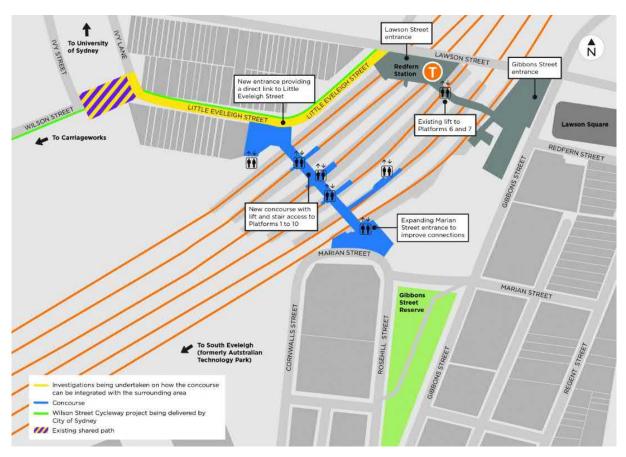
Memorandum

То	Marijan Harris	From	David Zhang			
Сору	Brian Killeen	Reference	39525-TAP04			
Date	2020-01-08	Pages (including this page)	15 +Appendices			
Subject	Redfern Station Upgrade Geotechnical Investigation Report					

1 Introduction

1.1 Project Background

Redfern Station is located approximately 1.3 km south of Central Station. The station has 12 platforms, two of which are underground (Platform 11 and 12). Redfern Station is served by a single concourse connecting all 12 platforms with frontage onto Lawson Street overbridge at the northern end of the station. There are three entrances to the Station; Lawson Street, Gibbons Street and an entrance at the southern end of Platform 10 which connects to a walkway to the Australian Technology Park (ATP).


Novo Rail is currently delivering the New Intercity Fleet (NIF) Project at Redfern Station. As part of this project, a pedestrian bridge is proposed to link from Platform 10 to Platform 1, which provides easy access for commuters between platforms. Figure 1 presents the indicative location of the proposed pedestrian bridge across Platform 1 - 10.

Novo Rail has engaged Aurecon to undertake intrusive investigation at Platform 10 and Platform 1. The purpose of the investigation is to understand the ground conditions to inform the pedestrian bridge foundation design and associated station upgrade works. This report presents the geotechnical investigation results, including results of fieldwork and laboratory testing, together with geotechnical comments and recommendations for pedestrian bridge design and associated works.

1.2 Objective of Investigation

The objective of this investigation is to provide the following information:

- Inferred subsurface conditions and ground model, including likely depth of soil and rock (and characteristics).
- Summary of geotechnical test results.
- Recommendations on foundation types and preliminary design parameters for pedestrian bridge.
- Discussion on station upgrade excavation conditions including preliminary recommendations parameters for support design.
- Preliminary comments on geotechnical issues and risks.

Figure 1: Proposed pedestrian bridge alignment at Redfern Station

2 Reference Documents

The following project documents have been referred to:

- Redfern Station Investigation Works, Geotechnical Investigation Report by Jacobs (5 February 2018) (Document No. IA157700-RP-GI-0023 I 02)
- Redfern Station Investigation Works, Contamination Investigation Report by Jacobs (5 February 2018) (Document No. IA157700-RP-GI-0025 I 02).

3 Scope of Work

The scope of work undertaken for this project included:

- Review of relevant Novo Rail safety procedures working within the Eveleigh Precinct
- Review of DBYD documents
- Clearance of test locations by a registered underground services locator
- Preparation of Occupational Health and Safety Plan
- Carry out intrusive geotechnical investigations
- Reinstatement of drilled holes with spoil and/or sand, and general clean up
- Logging of soils encountered in general accordance with AS1726-2017

- Collection, handling and transportation of representative material samples for laboratory testing
- Preparation of a geotechnical investigation report.

4 Site Settings

The following information documents were reviewed:

- Sydney 1: 100 000 Soil Landscape Series Sheet 9130
- Sydney 1: 100 0000 Geological Series 9130
- 1: 25 000 Acid Sulphate Soils (ASS) Risk Map Sheet 91 30S3.

4.1 Site Description

Platforms 1 through 10 are each provided with a single set of stairs and are connected by the northern concourse. Platforms 11 and 12 are located underground and are accessed via stairs and escalators from the Gibbons Street entrance at the south eastern end of the concourse. There is an entrance at the southern end of Platform 10 which connects with a walkway to the Australian Technology Park (ATP). There is also an entrance at southern end of Platforms 1 which connects with a walkway to Little Eveleigh Street.

4.2 Soil Landscapes

Reference to Sydney 1: 100, 000 Soil Landscape Series (Sheet 9130) indicates that soil along the project site is categorised as 'disturbed terrain'; which suggests that the area has been modified for development. The landscape is characterised by gentle undulating rises (slopes <5%) on Wianamatta Group Shale and Hawkesbury Sandstone with local reliefs of up to 30 m. This area is further denoted as "developed terrain".

The expected residual soils are either:

- Red and brown residual podzolic soils, shallow to moderately deep (up to 100 cm) located on crests, upper slopes and well drained area; or
- Yellow podzolic soils and soloths, deep (between 150 and 300 cm) located on lower slopes and in areas of poor drainage.

An extract from the soil landscape map is attached in Figure A4 of Appendix A of this report.

4.3 Site Geology

According to the available 1: 100 000 geological map (Sheet No. 9130), the expected geological units at the site are summarised below.

Unit	Description
(Rwa) Ashfield Shale	The site is expected to be underlain by Ashfield Shale unit which is a sequence of the Wianamatta Group.
	The Ashfield Shale sequence in the area typically comprises interbedded black to dark grey shales, laminates and fine to medium grained sandstones. These materials typically weather to form a residual profile of 1 to 3 metre of medium to high plasticity clays.

Table 1 Geology units

4.4 Acid Sulphate Soils

NSW Office of Environment and Heritage Acid Sulphate Soil mapping of the area suggests that no known occurrence of Acid Sulphate Soils has been identified within the Redfern area.

An extract from the acid sulphate soil map is given in Appendix A – Figure A5 of this report.

4.5 Existing Utilities

Review of DBYD (Dial before You Dig) have been carried out for the site area to obtain information on the services and utilities (under and above the ground) within the site area for the investigation fieldwork purposes. In addition, a site walkover and services search by a licenced Service Locator was undertaken within the investigation locations to assess and clear locations for intrusive investigations and to verify service locations identified during review of DBYD plans.

5 Method of Investigation

5.1 Borehole Investigation

The geotechnical investigation works were conducted on 14 March 2019, 4-5 April 2019,20 July 2019 and 7-8 December 2019 for BH02, BH03, BH04 and BH05 respectively. A summary of borehole information is provided in Table 2. The test location plan is shown on the site layout plan in Figure A2 of Appendix A.

Hole ID	Termination	Termination Depth	Coordinate ²		Surface Level	
		(m bgl) ¹	Northing (m)	Easting (m)	(m AHD) ³	
BH02	Target Depth	13.61	6248278	333393	29.4	
BH03	Target Depth	16.25	6248326	333329	26.4	
BH04	Target Depth	18.00	6248296	333386	26.4	
BH05	Target Depth	18.72	6248333	333359	25.2	

Table 2 Summary of exploratory borehole locations

Notes: 1. m bgl = metres below ground level, 2. coordinate system MGA94 Zone 56, 3. m AHD = metres above Australian height datum

Drilling of BH02 and BH03 was completed using a multi-purpose CE 180 rig supplied and operated by BG Drilling Pty Ltd. BH04 and BH05 were completed using a XC Drill supplied and operated by Terratest Pty. Ltd. These small rigs were selected for their ability to access spatially constrained work spaces such as the BH02 location.

The holes were advanced with by solid auger drilling with a V-bit for drilling through soil. Standard penetration tests (to AS 1289.6.3.1) were performed at target depths as drilling progressed in soils for strength assessment and for obtaining samples for logging purposes. The disturbed soil samples collected from the Standard Penetration Testing (SPT) split spoon sampler were stored in labelled, sealed bags for laboratory testing purposes.

The holes were advanced with a NMLC core drilling techniques in rock strength materials. Rock core recovered from the drilling was packed in core trays, then logged and photographed.

Soil sampling was carried out at test locations, and subsequently delivered to a NATA accredited laboratory for testing.

Upon completion of the investigation at test locations, the holes were backfilled/reinstated with cement stabilised sand.

All site work was undertaken in accordance with the Safe Work Method Statement (SWMS) prepared by Aurecon. The fieldwork was supervised full time by an Aurecon Geotechnical Engineer in accordance with AS 1726 - 2017.

Test locations were captured on site using a hand-held GPS. The RLs indicated on logs have been estimated from the contour plan generated following detailed surface survey. The surface elevations are expected to be accurate to approximately ± 0.5 m.

Fieldwork photos are provided in Appendix B.

A copy of borehole logs and explanatory notes are included in Appendix C.

5.2 Laboratory Testing

Selected soil/rock samples taken from the intrusive investigation were sent to a NATA accredited laboratory for testing. The samples include disturbed, SPT and rock core samples. A summary of the laboratory testing schedule is provided in Table 4.

The laboratory testing certificates are presented in Appendix C.

Testing Method	Method	Quantity					
		BH02	BH03	BH04	BH05	Total	
Particle Size Distribution (PSD)	AS1289.3.6.1	4	1	2	-	7	
Atterberg Limits	AS1289.3.1.2, AS 1289.3.3.1, AS 1289.3.2.1, AS1289.2.1.1	3	4	2	2	11	
Moisture Content (MC)	AS1289.2.1.1	3	2	2	4	11	
Durability Suites (pH, chloride, sulphates & resistivity)	АРНА	1	-	-	2	3	
Point Load Test	AS4133.4.1	14	32	51	11	108	
Uniaxial Compressive Strength (UCS) Test	AS4133.4.2.2	1	7	1 (note 1)	2	11	

Table 3 Summary of laboratory testing

Note: 1. Twelve samples from BH03 were scheduled for UCS testing, however, upon receiving the results, only one test specimen was within the standard length to diameter ratio range of 2.5-3, potentially due to handling breaks during transportation.

6 Laboratory Testing Results

Laboratory testing was conducted on samples obtained from boreholes. Samples were sent to a NATA accredited laboratory to confirm visual descriptions and materials classifications adopted by Aurecon's geotechnical engineer during site investigation work and derive engineering properties of each material unit based on standard test methods and published correlations to assist with the parameters development.

6.1 Soil Mechanical Testing

Small bulk disturbed samples were collected during the borehole investigation and were tested in the laboratory for the measurement of field moist content (FMC), Atterberg Limits, and Particle Size Distribution (PSD). The test results are summarised in Table 5. The laboratory test certificates are attached in Appendix C of this report.

Borehole	Sample	Description	FMC	LL	PL	PI	LS	Grading		
Number	Depth (m)	(Classification)	(%)					Clay/Silt (%)	Sand (%)	Gravel (%)
BH02	4.5	Silty CLAY	16.7	-	-	-	-	-	-	-
BH02	7	Silty CLAY	12.0	-	-	-	-	85	15	0
BH02	8-8.2	Silty CLAY (CH)	16.2	50	20	30	15.0	83	16	1
BH02	4.5	Silty CLAY	-	-	-	-	-	68	32	0
BH02	5	Silty CLAY (CI)	-	36	13	23	-	54	45	1
BH02	7	Silty CLAY (CH)	-	58	19	39	19.5	-	-	-
BH03	3	Silty CLAY (CH)	18.2	60	22	38	-	-	-	-
BH03	6	Silty CLAY (CI)	12.9	39	19	20	-	87	11	2
BH03	1.5	Silty CLAY(CH)	-	64	25	39	-	-	-	-
BH03	4.5	Silty CLAY (CH)	-	65	24	41	-	-	-	-
BH04	1.5	Silty CLAY (CI)	16.8	-	-	-	-	77	11	12
BH04	3	Silty CLAY (CH)	-	63	23	40	-	74	11	14
BH04	4.5	Silty CLAY (CH)	15.5	57	21	36	9.0	-	-	-
BH05	1.5- 1.95	Sandy silty CLAY(CH)	-	54	22	32	-	-	-	-
BH05	3.0- 3.45	Silty CLAY(CH)	-	59	20	39	-	-	-	-

Table 4 Summary of soil index test result

Notes: FMC = Field Moisture Content, LL = Liquid Limit, PL = Plastic Limit, PI = Plastic Index, LS = Linear Shrinkage, Grading: Clay/Silt <0.075 mm, Sand 0.075 – 2.36 mm, Gravel > 2.36 mm.

6.2 Chemical Testing

Selected soil samples collected during the geotechnical intrusive investigation were tested in the laboratory for the measurement of pH, chlorides, sulphate, and resistivity to assess aggressivity for pile foundation design. The results are presented in Table 6.

Borehole Number	Sample Depth (m)	Soil Conditions	рН	Chloride (mg/kg)	Sulphate (mg/kg)	Resistivity (ohm m)	Conductivity (μS/cm)
BH02	7	Clay (B)	5.0	68	83	560	90
BH05	1.5-1.95	Clay (B)	7.5	44.8	5.4	-	-
BH05	4.5-4.95	Clay (B)	6.3	11.9	7.8	-	-

Table 5 Summary of soil chemical test results

The soils can be considered as 'non-aggressive' classification for steel and 'mild' for concrete piles buried below ground according to Table 6.5.2 and Table 6.4.2 of AS2159 – 2009.

The designer should review the results and make due allowance in their design for corrosion based on the recommended allowance set out in AS2159 or from local experiences. No sampling or testing for durability has been undertaken for groundwater as groundwater was not encountered during the investigation.

6.3 Rock Testing

Selected representative rock core recovered from boreholes were tested to determine Point Load Strength index (Is_{50}). The test results are summarised in Table 7. The laboratory test certificates are attached in Appendix D.

Borehole Number	Depth Range (m)	Corrected Point Is ₅₀	Load Strength,
		Diametral (MPa)	Axial (MPa)
BH02	8.99-9.06	-	0.084
BH02	10.32-10.60	-	0.037
BH02	11.51-11.61	-	0.14
BH02	11.81-11.86	0.029	-
BH02	12.0-12.07	0.012	-
BH02	13.27-13.32	0.11	-
BH02	13.50-13.61	0.15	-
BH02	8.0	-	0.6
BH02	9.26	0.23	-
BH02	9.9	0.46	-
BH02	11.48	0.22	-
BH02	11.9	-	0.92
BH02	12.6	-	0.44
BH02	13.0	-	0.26
BH03	6.77-6.85	0.08	0.21
BH03	7.39-7.46	0.06	0.06
BH03	7.53-7.61	0.10	0.09
BH03	7.67-7.75	0.06	0.06
BH03	8.25-8.31	0.07	0.05
BH03	9-9.1	0.05	0.05
BH03	9.74-9.82	0.02	0.01
BH03	10.25-10.31	0.03	0.16
BH03	10.79-10.88	0.03	0.10
BH03	11.38-11.43	0.05	0.07
BH03	12.44-12.53	0.07	0.09
BH03	13.11-13.15	0.07	0.27
BH03	13.8-13.86	0.24	0.82
BH03	14.55-14.64	0.08	0.96
BH03	15.91-15.97	0.20	0.48

 Table 6
 Summary of rock test results

Borehole Number	Depth Range (m)	Corrected Point Is ₅₀	Load Strength,
		Diametral (MPa)	Axial (MPa)
BH03	16.11-16.24	0.06	0.41
BH04	5.17-5.24	0.09	0.1
BH04	5.93-6	0.06	0.06
BH04	6.35-6.4	0.17	0.18
BH04	6.55-6.63	0.05	0.16
BH04	7.38-7.42	0.14	0.22
BH04	7.82-7.89	0.15	0.22
BH04	8.43-8.48	0.03	0.14
BH04	8.69-8.74	0.04	0.24
BH04	9.31-9.35	0.02	0.25
BH04	9.83-9.88	0.02	0.24
BH04	10.39-10.42	-	0.26
BH04	10.67-10.71	0.02	0.42
BH04	11.44-11.5	0.10	0.10
BH04	12.71-12.77	0.05	0.29
BH04	13.16-13.2	0.03	0.20
BH04	13.7-13.8	0.18	0.35
BH04	14.21-14.27	0.72	0.57
BH04	14.88-14.93	0.18	0.17
BH04	15.1-15.14	0.23	0.28
BH04	15.76-15.85	0.41	0.54
BH04	16.06-16.12	0.32	0.56
BH04	16.17-16.22	0.14	0.58
BH04	16.75-16.79	0.20	0.07
BH04	17.23-17.3	0.46	0.65
BH04	17.45-17.53	0.78	0.59
BH04	17.92-17.96	0.41	0.70
BH05	7.15-7.24	0.02	0.04
BH05	8.53-8.62	0.01	0.06
BH05	9.43-9.51	0.02	0.05
BH05	10.00-10.12	0.09	0.36
BH05	11.17-11.23	0.01	0.10
BH05	12.19-12.32	0.20	0.26
BH05	14.22-14.30	0.47	0.34
BH05	15.90-16.00	0.30	0.57
BH05	16.56-16.60	0.34	0.43
BH05	17.22-17.50	0.91	1.16
BH05	18.11-18.33	0.33	0.47

Borehole Number	Depth range (m)	Uniaxial Compressive Strength (MPa)
BH02	N/A	1.60
BH03	7.26-7.37	0.99
BH03	8.35-8.45	0.99
BH03	9.96-10.11	2.6
BH03	11.29-11.38	1.3
BH03	14.00-14.14	19
BH03	16.11-16.24	23
BH04	17.60-17.77	12
BH05	17.22-17.50	10
BH05	18.11-18.33	7.8

The results from point load tests and UCS tests were used to calibrate the field assessment of recovered rock core and generally confirmed the field assessment. This information has been used to inform the rock mass characterisation.

7 Geotechnical Design Profile

7.1 Subsurface Profile

Based on the geotechnical investigation results, a geotechnical model has been developed for the site to assess the foundation conditions and excavation conditions. A summary of descriptions of each geotechnical unit is presented in Table 8. The soil types and strength have been inferred based on SPT testing and field assessment for the soil units. The rock units are derived from point load / uniaxial compressive strength (UCS) test results and field assessment. The characterisation of geotechnical units has also been undertaken in accordance with AS2159 and relevant local experiences and references (Pells et al, 2019).

Unit	Origin	Material Description
1	Fill	Variable, gravelly/silty clay and gravelly sand, sub angular to angular, clay is medium to high plasticity
2	Residual Soils	Silty Clay, very stiff to hard, dry to moist, pale grey and red brown
3A	Shale (Class V)	Shale, interlaminated siltstone and sandstone, very low strength,
3B	Shale (Class IV)	Interlaminated siltstone and sandstone, low strength, moderately weathered, moderately fractured, grey and dark grey
3C	Shale (Class III)	Interlaminated siltstone and sandstone, medium to high strength, moderately to slightly weathered, dark grey and pale grey

Table 7 Subsurface Profile

7.2 Groundwater

No groundwater was observed during the investigation. It is noted that the boreholes were backfilled immediately following drilling and sampling, and no piezometer was installed for future groundwater monitoring. Introduction of water during core drilling may have obscured any observations.

8 Geotechnical Recommendations

8.1 Site preparation

The existing fill that covers investigation locations is variable in its condition and appears to be uncontrolled. So unless levelling works are required and this material removed, it is recommended that the fill be replaced with well compacted engineered fill. The existing fill is likely to present trafficability issues when wet.

Vegetated areas should be cleared and grubbed.

8.2 Earthworks

The existing site levels are expected to be largely retained except for minor levelling, resurfacing and regrading. No major bulk excavation is expected.

Groundwater was not encountered in both exploratory holes. However, if groundwater is encountered, adequate drainage measures (i.e. dewatering via pumping) must be provided to prevent ingress of water destabilising open excavations.

Excavation work should be conducted in accordance with Work Cover NSW Code of Practice for Excavation. Excavation depths greater than 1.5 m are considered 'high-risk' (this is particularly true given the variable filling and weak residual soils propensity to collapse) and will require safe work method statements and construction planning. Excavations should be stepped or battered at a safe angle or appropriately shored.

For temporary shoring design purposes, typical geotechnical parameters are provided in Table 9.

Material	Consistency/Strength	Unit Weight γ (kN/m³)	Frictional Angle, φ΄ (°)	Poisson's ratio, ν	Coefficient of active earth pressure, K _a	Coefficient of passive earth pressure, K _p
Fill	Moderately to well compacted	17	26	0.3	0.4	2.6
Residual (Cohesionless)	Very loose to loose	16	26	0.3	0.4	2.6
Residual (Cohesive)	Soft to firm	16	22	0.3	0.45	2.2

Table 8 Recommended lateral earth pressure coefficients for temporary shoring design

Field personnel can use the guidelines in Table 10 to plan safe temporary cut batter slopes during excavation in dry conditions for slopes up to 3 m high. The cut material is not to be stockpiled any closer than 2 m from the crest of slopes. The recommendations are provided as a guide only and final adopted safe temporary batter angle will need to be assessed on site by a suitably qualified geotechnical engineer based on site conditions.

Table 9 Recommended temporary batter slopes

Material	Maximum Temporary batter slope (dry)
Soft soils	NA – shoring measures in place
Fill (moderately to well compacted) and very loose to loose soils	1V: 2H

Material	Maximum Temporary batter slope (dry)
Medium dense residual soil	1V: 2H
Stiff to very stiff residual soils	1V: 1.5H
Extremely to highly weathered Shale (Class V)	1V: 1.5H
Moderately to slightly weathered Sandstone/Shale (Class IV or better)	Vertical

8.3 Foundation Recommendation

Foundation conditions on site are variable. Shallow to moderately deep fill profiles are expected.

For the associated station enabling works, either shallow pad footings or piles may be adopted. The selection of the preferred foundation type is dependent on the lateral and vertical loads applied to the ground, the ground conditions present on site and the potential for clashes with existing infrastructure due to the foundation footprint.

There is no information available on foundation loads and foundation layouts at the time of preparing this report. However, it is anticipated that the following foundation systems may be feasible for canopy, OHWS or walkway type structures etc.

It is recommended that pile foundation design to follow AS2159 and AS5100.3 and relevant standards and using the geotechnical design parameters provided in Table 11. Note that the foundations capacity estimates are for ultimate values in accordance with AS2159-2009.

Unit	Description	γ (kN/m³)	c′ (kPa)	φ΄ (°)	s _u (kPa)	υ	E ['] (MPa)	Во	e Pile	Shallow Footing
								F _s (kPa)	F₀ (kPa)	q _u (kPa)
Unit 1	Fill	17	2	26	-	0.3	20	-	-	-
Unit 2	Residual Soils	16	5	26	100	0.3	32	60	900	500
Unit 3A	Shale- Class V	22	30	28	300	0.3	50-400	50- 100	3,000	700
Unit 3B	Shale- Class IV	23	50	30	-	0.3	100- 500	150	3,000	-
Unit 3C	Shale- Class III	24	100	30	-	0.3	300- 1,000	350	6,000	-

Table 10 Recommended geotechnical design parameters

Note: γ : bulk unit weight; c': drained cohesion; ϕ : drained friction angle; S_u: undrained shear strength; E': soil/rock mass deformation modulus; υ : Poisson's ratio; F_s: ultimate shaft adhesion (smooth walls); F_b: ultimate end bearing capacity; q_u: ultimate bearing capacity of slab footing at min 0.5 m depth.

The above design parameters are subject to the assumptions outlined in Pells. et al. (2019): horizontal ground, no eccentric loading or horiziontal loading, etc.

8.3.1 Shallow Foundation

Where a shallow foundation is adopted as the preferred foundation it must be of regular shape and be of uniform thickness. A locally thickened slab may be suitable for some of the early enabling works.

An ultimate bearing capacity (q_u) should be used for design.

A geotechnical strength reduction factor (ϕ_g) of 0.4 may be adopted for shallow foundations in accordance to Table 5.3.3.3 (A) of AS5100.3: 2017.

It is recommended that pad, strip or raft foundations are not to be founded at shallow depth in any existing uncontrolled fill and very loose to loose and soft to firm residual soil, without ground improvement. If shallow foundations are considered, it is recommended that all poorly compacted, uncontrolled fill and/or weak residual soil are to be excavated and replaced with suitable engineered fill materials compacted to 98% MMDD to underside of the footing level.

8.3.2 Pile Foundation

Should a shallow foundation system not meet the required performance criteria for the proposed station upgrade structures, a piled foundation system will be required.

It is recommended that the pile foundation be designed in accordance with the requirements set out in AS2159, AS5100.3 and relevant Standards.

A geotechnical strength reduction factor (ϕ_g) of 0.4 may be adopted for piles designed in accordance with AS2159, assuming no pile load testing will be undertaken. We recommend that pile integrity testing is undertaken on each pile installed.

Lateral restraint from the soils in the top 0.5 m should be ignored in design due to the possible future excavation or disturbance.

For uplift calculation, it is conventional that a higher reduction factor is adopted. Although it is not specified in AS2159-2009, a reduction factor of ϕ_g =0.35 is recommended for uplift failure. In addition, with relation to uplift, the case of cone failure with an angle of 60° should be considered in calculation of uplift resistance in cohesionless materials. For piles socketed into rock, the total uplift capacity should also consider an upper bound to uplift capacity based on a pull-out cone with an apex angle of 60°.

The boring of each pile should be inspected by a geotechnical engineer to confirm the final pile length and to ensure that the base of excavation is clear of loose materials prior to concreting the shaft. If pile capacities rely on shaft adhesion, higher values of shaft friction may be achieved by roughening the side walls. Shaft adhesion in the fill and overburden soils should be ignored for design of rock end bearing and socketed piles.

8.3.3 Durability for Structures (Soil)

The soil testing results indicate a 'mild' classification for concrete and 'non-aggressive' classification for steel structures buried below ground in soil. The designers shall review the results and make allowance in the design for corrosion to meet the durability design requirements as set out in Section 6 of AS2159.

Groundwater was not encountered in the investigation works. However, if groundwater is encountered during the construction phase, it is recommended that groundwater testing should be undertaken for further durability assessment.

8.4 Subgrade Preparation

If exposed, it is recommended that existing fill and residual subgrade be moisture conditioned, compacted with at least eight passes of a 12-tonne minimum deadweight roller to achieve 98% SMDD and proof rolled. Any soft or heaving areas identified during proof-rolling should be excavated and

replaced with a clean, well-graded material (preferably crushed or ripped sandstone) compacted to 98% SMDD and to within +/-2% OMC.

8.5 Construction Issues and Consideration

The construction of foundations in the soils at the site will require care to ensure that the exposed soils do not become disturbed by the construction activities or softened during construction. The contractor shall employ all labour supervision and plant necessary to ensure that the exposed soils are protected.

Care should be taken when base cleaning bored piles to remove all soft or loose materials. Where high groundwater level, soft or cohesionless soils are present, the use of drilling fluids and/or casing is recommended to maintain stability of the pile excavation.

Trenches or pits excavated to a minimum 2.0 m depth below existing ground surface are unlikely to encounter groundwater, although there is the potential for perched water tables to exist between the fill and cohesive residual soil interface after period of rainfall. Adequate drainage measures must be provided to prevent ingress of surface water runoff to open excavation trenches.

All excavation work must be undertaken in accordance with the Work Cover Excavation Code of Practice 2015 to ensure trench stability.

The potential impact of excavation work adjacent to existing underground services and structures must be assessed and approved by experienced geotechnical engineers and authorised engineers, respectively.

All backfill materials and compaction must be carried out in accordance with TfNSW TN 033: 2016 and ASA Standard T HR CI 12110 ST Earthworks and Formation 2015.

The ground stratification and materials encountered during installation of the foundation should be inspected and approved by an experienced geotechnical engineer to confirm the design assumptions and provided design parameters.

It is recommended that all factual geotechnical information be provided to the potential contractors to assist them in choosing the appropriate drill rig for the project.

8.6 Asset Management

As per specification T HR CI 12190 ST a stability risk assessment was undertaken for all existing structures within 6 m of the excavation relating to the proposed station development works. Based on site inspections and other observation, the proposed pile location showed no impact to neighbouring structures.

In saying so however, excavations greater than 1.5 m depth shall be supported by shoring mechanisms to provide safe access and provide added stability. These systems shall be of the type that can actively prop against the exposes soil and not rely on ground movements to engage the shoring system.

It is recommended that an experienced geotechnical engineer to be present during the excavation to assess the ground conditions encountered and assess stability of the excavation sides and base. If there is any risk of instability during the digging/drilling operation, the geotechnical engineer must direct the appropriate control measures such as immediate stop of works, backfill, and/or implementation of propping.

8.7 Earthquake Considerations

Structural design for earthquake loads should be carried out in accordance with the relevant codes as detailed in AS 1170.4 "Structural Design Actions Part 4: Earthquake Actions in Australia" or other specified Standards. The following lists the site sub-soil class and hazard factors based on AS 1170.4

- Based on soil conditions (up to 6.5 m soil over bedrock) the sub-soil class is assessed as "Ce shallow Soil Site".
- Based on location Hazard Factor (Z) of 0.08.

9 Limitations

Aurecon Australasia Pty Ltd has prepared this report for the use of our Client, Novorail. This report has not been prepared for use by parties other than the Client, and the Client's respective consulting advisors.

The borehole logs represent subsurface conditions at the specific test locations only. Any interpretation undertaken must be based on experience and understanding of the geotechnical processes relevant to the site, bearing in mind the necessary limitations in frequency of drilling, testing and sampling due to cost and time constraints. Should conditions exposed at the site during construction vary significantly from those provided in this report based on the project specific factors cited in the introductory scope of the report, we request that Aurecon Australasia Pty Ltd be informed and have the opportunity to review any of the findings of this report.

This report has been written with the express intent of providing sufficient information for station upgrade design and operational methodology processes. Subsurface conditions relevant to the construction works should be assessed by contractors who can make their own interpretation of the factual data provide in the borehole logs and perform any additional tests as necessary for their own purposes.

The assessment and recommendations have been made to assist designers in developing concepts with regards to foundations conditions and general excavation support design. Once concepts have been confirmed, additional geotechnical advice will be required to confirm design assumptions made. This includes any recommendations on any testing that may be warranted to address potential geotechnical risks listed above and/or identify additional geotechnical risks for the project.

It is strongly recommended that any plans and specifications prepared by others and relating to the content of this report or amendments to the original plans and specifications be reviewed by Aurecon Australasia Pty Ltd to verify that the intent of our data is properly reflected in the design.

There are always some variations in subsurface conditions across a site that cannot be defined even by exhaustive investigation. Hence, it is unlikely that the measurements and values obtained from sampling and testing during the investigation will represent the extremes of conditions which exist within the site.

Further, subsurface conditions, including groundwater levels can change over time. This should be borne in mind, particularly if the report is used after a protracted delay or a period of protracted climatic conditions.

This report shall be updated when more investigation data is available during the project development.

10 References

Standard Australia (2017), Australian Standard AS1726-2017 Geotechnical Site Investigation.

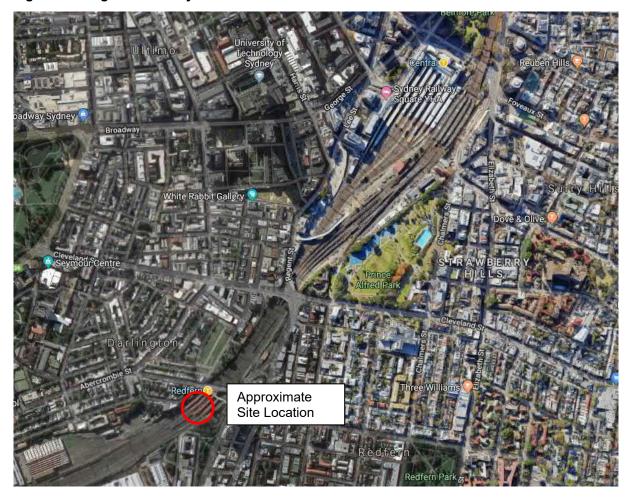
- Standard Australia (2002), Australian Standard AS4678-2002 Earth Retaining Structures.
- Standard Australia (2009), Australian Standard AS2159-2009 Pile Design and Installation.
- Standard Australia (2017), Australian Standard AS5100.3-2017 Bridge Design, Part 3: Foundation and Soil-Supporting Structures.
- Standard Australia (2007), Australian Standard AS1170.4-2007 Structural Design Actions, Part 4: Earthquake Actions in Australia.
- Pells, P.J.N., Douglas, D.J., Rodway, B., Thorne, C. & MaMahon, B, K. (1978), Design Loading for Foundations on Shale and Sandstone in Sydney Region, Australian Geomechanics Journal, Pages 31- 39.
- Pells, P.J.N., Mostyn, G., & Walker, B.F. (1998), Foundations on Sandstone and Shale in the Sydney Region, Australia Geomechanics Journal, Pages 17-29.
- Pells, P.J.N., Mostyn, G, Bertuzzi, R. & Wong, P.K. (2019), Classification of sandstones and shales in the Sydney region: A forty year review, Australian Geomechanics Journal, Pages 29 – 55.

11 Appendices

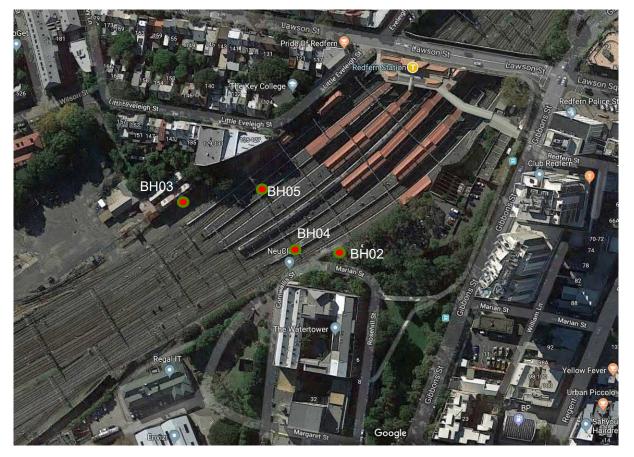
- Appendix A: Site Plan, Geology, Soil Landscapes and Acid Sulphate Soils Maps
- Appendix B: Site Photos
- Appendix C: Borehole Logs
- Appendix D: Laboratory Testing Certificates

 Aurecon Australasia Pty Ltd
 T
 +61 2 9465 5599

 ABN 54 005 139 873
 F
 +61 2 9465 5598


 Level 5, 116 Military Road
 E
 sydney@aurecongroup.com

 Neutral Bay NSW 2089
 W
 aurecongroup.com
 Neutral Bay NSW 2089 PO Box 538 Neutral Bay NSW 2089 Australia



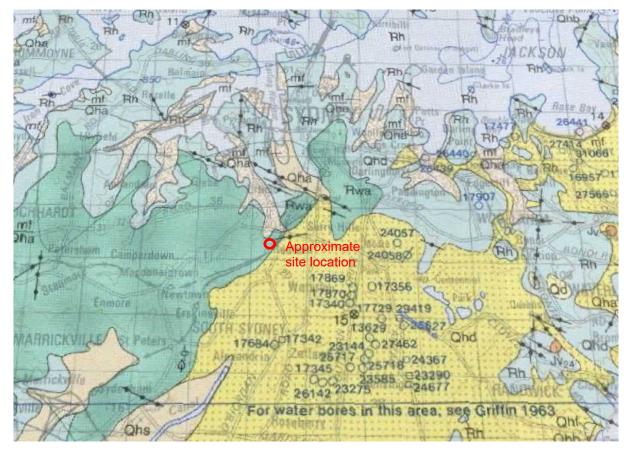

Appendix A - Site Plan, Geology, Soil Landscapes, Acid Sulphate Soils Maps

Figure A1: Regional Locality View

Figure A2: Site Location

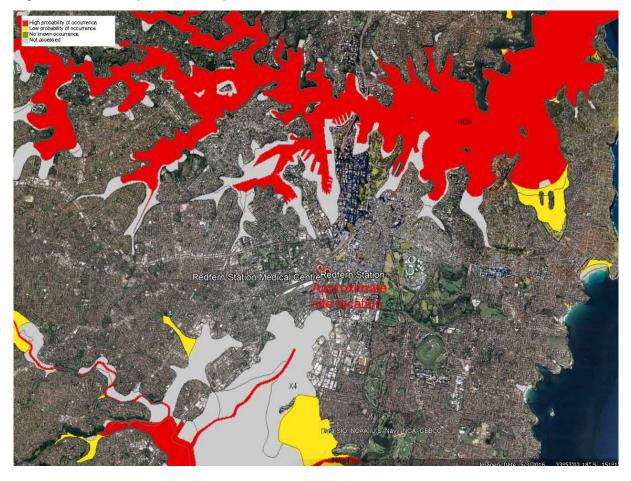


Figure A3: Geological Sheet Map Extract

(2) Tix 04 The por PORT ha 0 and tġ 5 Approximate site location. uckler 81 Shark Point ten Wedding Ca Island Matral Poin la

Figure A4: Soil Landscapes Map Extract

Figure A5: Acid Sulphate Soil Map Extract

Appendix B – Site Photos

Figure B1: Top of retaining wall above Platform 10 – BH02 location

Figure B2: Entrance to Little Eveleigh Street: BH03 location

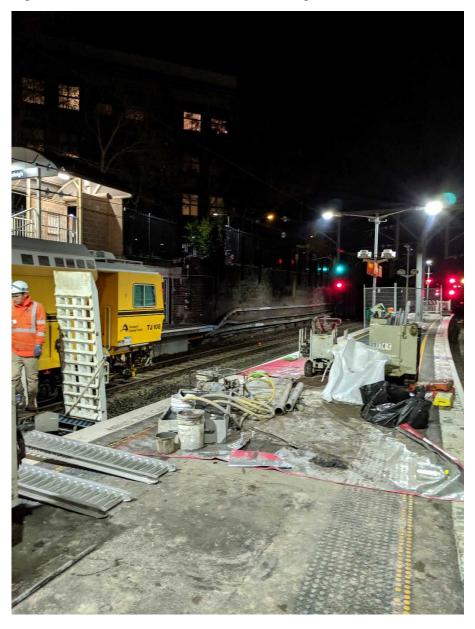
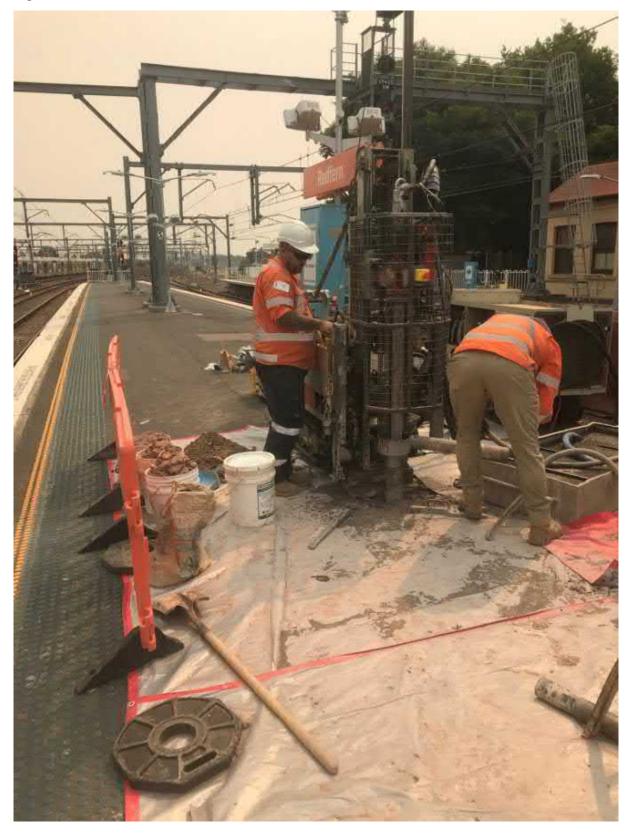



Figure B3: Site location of BH04, after finishing

Figure B4: Site location of BH05

Appendix C – Borehole Logs

Engineering Log - Borehole

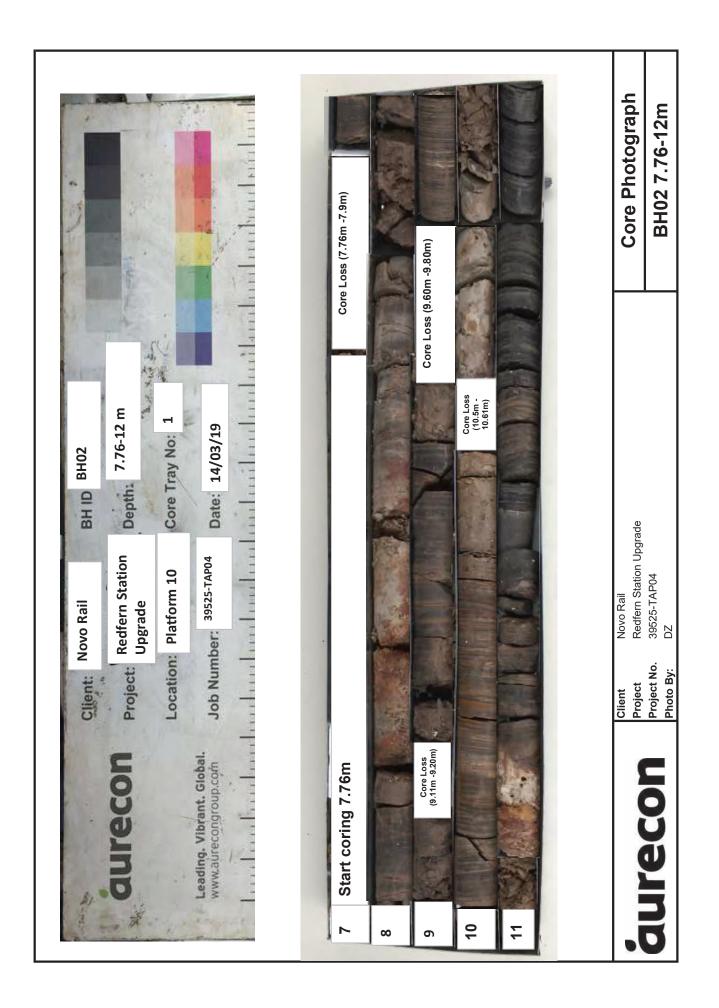
SHEET 1 OF 3

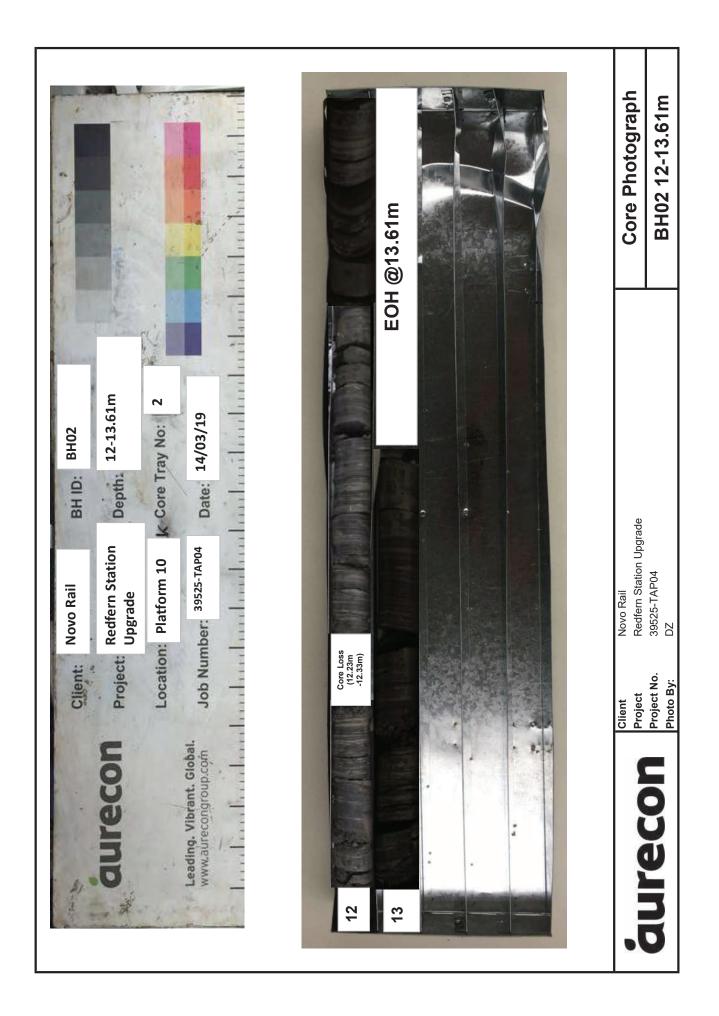
Client Project Location	Redf	o Rail fern Station Upg fern Station - pl		nd retaining wall			Lo	roject No. ogged By hecked By	39525 DZ HS	
Started Dril Completed	-	3.14.19 3.14.19	Northing Easting	6248278.00 333393.00	Slope Bearing	9 	0° -	Equipme Ground		Track 29.4 AHD
DRILLING			MATERIAL	DESCRIPTION				TESTING, S	SAMPLIN	G & OTHER INFORMATION
Method Water RL (m) Depth (m)	Graphic Log	Classification	(soil type: pla	otion of Soil asticity/grainsize, her components)		Moisture Condition	Consistency	Tests	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations
		FILL: SAND: fi	ne to medium graine	d, orange						FILL Fill appears poorly compacted
L/QP				d, orange, trace broken gla	ass	Μ				Platform Level Fill appears moderately compacte
									В	
		FILL: Sandy C	LAY: high plasticity,	brown, fine grained sand					В	Fill appears well compacted
	C	CH Silty CLAY: hig	jh plasticity, grey mo	ttled red		<pl< td=""><td>F - St</td><td></td><td>В</td><td>RESIDUAL SOIL</td></pl<>	F - St		В	RESIDUAL SOIL
-			ottled orange, mediu	, very low strength, recove m plasticity	ered as Silty			SPT 23, 10, 0 N=10/10mm R		EXTREMELY WEATHERED ROCK

aurecon

Engineering Log - Cored Borehole

SHEET 2 OF 3


	000	tion			Ifern Station Upgrade Ifern Station - platform 10	all			Project No. 39525 Logged By DZ Checked By HS					
		ed [plete			3.14.19 Northin g 3.14.19 Easting		Slo Bea				quipment round Le			ack 9.4 AHD
					-	ROCK MASS CHA			-					DISCONTINUITIES
-	Water	RL (m)		Graphic Log	Descriptior (rock type: colo structure, minor	n of Rock our, grain size,	Weathering	>	Strength IS ₅₀ • Diametral D-Lump	IS ₅₀ (MPa) D L A	Defect Spacing (mm)	ore Re	RQD (%)	Description of Defect (defect type, inclinatio roughness, thickness infilling)
					START CORING AT 7.76m CORE LOSS 0.14m (7.76-7.90)							76	0	
	0.7-	arks	8	\square	UURE LUSS U. 14111 (1.10-1.90)				<u> </u>			76	0	


Engineering Log - Cored Borehole

SHEET 3 OF 3

3.00 E SS CHARACTERIS re, ts) thinly laminated inly laminated, iron	Neathering	ing S Stre	50 50 50 50 50 50 50 50 50 50	P IS (M (M) 	G S ₅₀ Pa) 0.084		ect cing n)	/el (%)	0 (%) 000 (%) 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P.4 AHD DISCONTINUITIES Description of Defect (defect type, inclination roughness, thickness infilling) 8.02: Be, 5°, p, r, vn 8.04: Be, 5°, p, r, vn 8.04: Be, 5°, p, r, vn 8.12: Be, 5°, p, r, vn 10.07: Jo, 30°, p, r, sn 10.07: Jo, 30°, p, r, sn
re, ts) thinly laminated	MA Meathering		50 50 50 50 50 50 50 50 50 50	(M	Pa)	Spac (mr	cing m)	Core Rec'y	0 C0 (%)	Description of Defect (defect type, inclinatio roughness, thickness infilling) 8.02: Be, 5°, p, r, vn 8.04: Be, 5°, p, r, vn 8.12: Be, 5°, p, r, vn 9.40: Jo, 20°, p, r, vn 9.50: Jo, 30°, p, r, sn
thinly laminated	DW DW XW DW DW		50 50 50 50 50 50 50 50 50 50	(M	Pa)	Spac (mr	cing m)	Core Rec'y	0 50	(defect type, inclinatio roughness, thickness infilling) 8.02: Be, 5°, p, r, vn 8.04: Be, 5°, p, r, vn 8.12: Be, 5°, p, r, vn 9.40: Jo, 20°, p, r, cg 9.50: Jo, 30°, p, r, sn
inly laminated, iron	DW XW DW DW XW		Image: 1 Image: 1	0.23 0.46	0.6			83	50	— 9.40: Jo, 20°, p, r, cg — 9.50: Jo, 30°, p, r, sn — 10.07: Jo, 30°, p, r, vn
inly laminated, iron	DW			 0.46	i			-		— 9.50: Jo, 30°, p, r, sn — 10.07: Jo, 30°, p, r, vn
	xw		> 					-		
								100	0	-
ated, some iron	DW					. 193	1.1			
		• • • • • • • •		0.22 0.029 0.012	0.14 9 0.92			92	0	
n staining along	SW				0.44 0.26					
		0		<u> </u>				100	23	— 13.15-13.25: Cz, 0°, u, r, vn
	staining along		SW	sw	SW	SW I I I 0.26 I O I I 0.11 I O I I 0.15	SW I X I 0.26 I I Q I 0.11 I I Q I 0.15 I I I I 0.15 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <t< td=""><td>SW X</td><td>SW I I I 0.26 I I I I I I 0.11 I</td><td>SW I X I 0.26 I I I 1 0.26 I I I 1 100 23 I I I 0.11 I I I 1 100 23 I I I 0.15 I I I I I 100 23 I <t< td=""></t<></td></t<>	SW X	SW I I I 0.26 I I I I I I 0.11 I	SW I X I 0.26 I I I 1 0.26 I I I 1 100 23 I I I 0.11 I I I 1 100 23 I I I 0.15 I I I I I 100 23 I <t< td=""></t<>

Engineering Log - Borehole

SHEET 1 OF 4

F	Clier Proje Loca			Re		Rail n Station Up n Station - pl					Lo	roject No. ogged By hecked By	39525 DZ HS	
0	Com	ed plete	ed I	-	ng	4.4.19 4.5.19	Northing Easting	6248326.00 333329.00	Slope Bearing	9(Equipm Ground	Level	Track 26.4 AHD
Method	Water	LIN (m)	Depth (m)	Graphic Log	Classification		Descrip (soil type: pla	DESCRIPTION ation of Soil asticity/grainsize, her components)		Moisture Condition	Consistency	TESTING, Tests	Samplin bles Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations
	Not Encountered	 26 25	- - - - - - - - - - - - - - - - - - -			FILL: Silty CLA roots	λΥ: medium plasticity	, Brown mottled grey, with s	and, trace	<pl< td=""><td></td><td></td><td></td><td>FILL poorly compacted</td></pl<>				FILL poorly compacted
		- - - - - - 24 _ - - - - - - - - - - - - - - - - - - -	2	××	CH	Silty CLAY: hiç grained subar	gh plasticity, red brow igular gravel	<i>i</i> n and pale grey, with fine to	coarse		VSt	SPT 3, 4, 16 N=20	D	RESIDUAL SOIL
AD/T		 	3		СН	Silty CLAY: hig	gh plasticity, red brow	<i>i</i> n, trace fine to coarse grain	ed sand	>PL	St	SPT 6, 8, 6 N=14	D	
			5		СН	Silty CLAY: hig	gh plasticity, grey mo	ttled red brown			Н	SPT 2, 12, 24 N=36	D	
		 	- - - - - - - - - - - - - - - - - - -			Continued as (Cored Drill Hole					SPT 8, 35 N>35	D	
F	Rem	larks	<u>8</u>	<u> </u>	<u>I</u>	1					<u> </u>	<u> </u>	I	

Engineering Log - Cored Borehole

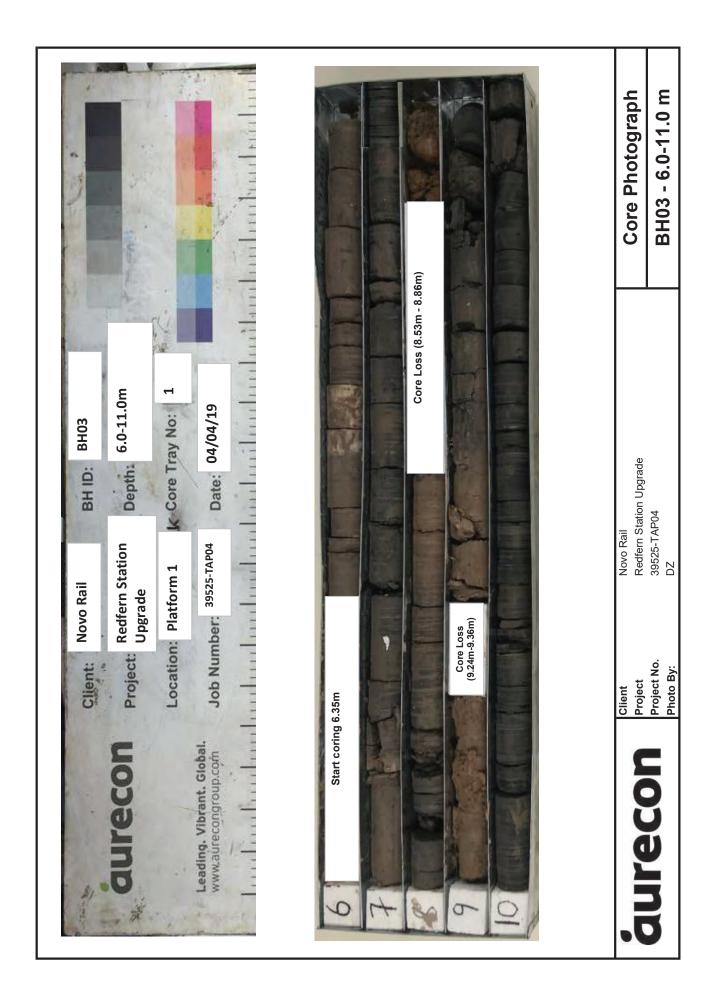
SHEET 2 OF 4

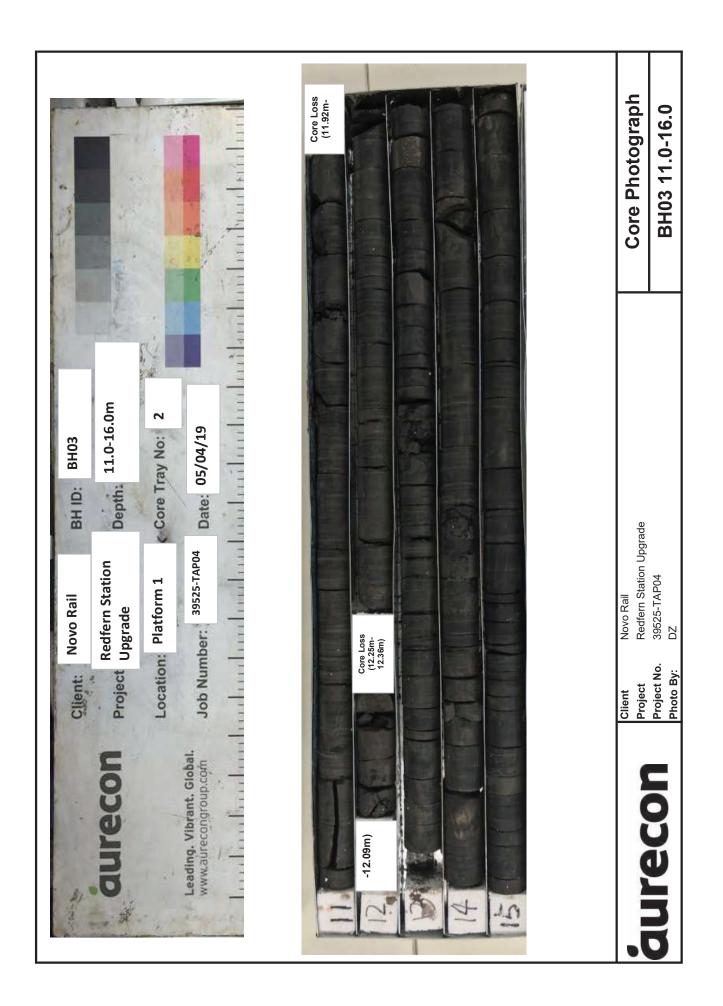
	ect		Rec							By D		5	
				4.4.19 Northing	6248326.00			90°					rack 5.4 AHD
	-						-					20	DISCONTINUITIES
Water			Graphic Log	Description of F (rock type: colour, g	Rock rain size,	athering	Str I	S ₅₀ - Axial Diametral - Lump	IS ₅₀ (MPa)	Spacing (mm)	ore Rec'y	RQD (%)	Description of Defects (defect type, inclination roughness, thickness, infilling)
		1 2 3 4 4 5 5 6		START CORING AT 6.35m									
	19	7		SHALE: pale grey, thinly laminated, hig Becoming dark grey	hly fractured	DW	0) 1 1	0.08 0.21 0.06 0.1 0.09 0.09		100	20	 6.41-6.90: Be, 0-5°, p, s, vn, average spacing 60mm 7.13: Cs, Silty Clay, 10 mm 7.15: Jo, 75°, u, l, cg 7.35: Be, 0°, p, r, vn 7.45: Cs, Silty Clay, 7 mm
	Water Mater	Image: Second constraints Image: Second constraints RILLING (m) (m) (m) 26	Agree tarted Drillin completed D RILLING (m) (m) (m) (m) (m) 26	Action Red tarted Drilling completed Drilling RILLING (m) (m) (m) <	Decision Redfern Station - platform 1 tarted Drilling 4.4.19 Northing ompleted Drilling 4.5.19 Easting RILLING RO Image: Construction of Figure Colour, g Construction of Figure Colour, g Image: Construction of Figure Colour, g Structure, minor constructure, minor c	Redefer: Station - platform 1 tarted Drilling onpleted Drilling 4.4.19 4.5.19 Northing Easting 333329.00 RILLING ROCK MASS CHARACTE visit (u) train t	Decision Referen Station - platform 1 tarted Drilling ompleted Drilling 4.4.19 4.5.19 Northing Easting 6248326.00 333329.00 Slop Bea RILLING ROCK MASS CHARACTERISTIC (u) 1100 ROCK MASS CHARACTERISTIC (rock type: colour, grain size, structure, minor components) 0 1 0 0 Constructure, minor components) 0 20	Decation Redferm Station - platform 1 tarted Drilling 4.4.19 Northing 6248326.00 Slope RILLING ROCK MASS CHARACTERISTICS u 000	Decation Redferm Station - platform 1 tarted Drilling 4.4.19 Northing 6248326.00 Slope 90° RILLING ROCK MASS CHARACTERISTICS ROCK MASS CHARACTERISTICS Image: structure, minor components) pg Strength Image: structure, minor components) gg Completed Drilling Strength gg Strength Image: structure, minor components) gg Strength gg Strength gg Strength Image: structure, minor components) gg gg <td>Ocation Redfern Station - platform 1 Checker tarted Drilling 4.4.19 Northing 8248326.00 Stope 90° E G RILLING ROCK MASS CHARACTERISTICS ROCK MASS CHARACTERISTICS Image: structure, minor components Image: structure, minor c</td> <td>Ocation Reddem Station - platform 1 Checked By H tarted Drilling 4.4.19 Northing 6248326.00 Slope 9.0° Equipment mpleted Drilling 4.5.19 ROCK MASS CHARACTERISTIC Equipment ILLING ROCK ROCK MASS CHARACTERISTIC Image: strategraphic strateg</td> <td>Decation Redferm Station - platform 1 Checked By HS tarted Drilling 4.4.19 Northing 6248326.00 Slope 00 Equipment Ground Level RULING ROCK MASS CHARACTERISTICS Image: structure, minor components) <</td> <td>Ocation Redfern Station - platform 1 Checked By HS Latted Drilling 4.4.19 Northing 6243326.00 Bearing Equipment Tr ompleted Drilling 4.4.19 ROCK MASS CHARACTERISTICS Equipment Tr Image: Strangth (MPa) Ground Leave Drilling Checked By HS Equipment Tr Image: Strangth (Group Check Spre: colour, grain size, structure, minor components) Image: Strangth (MPa) Image: Strangt (MPa) Image: Strangth (MPa)</td>	Ocation Redfern Station - platform 1 Checker tarted Drilling 4.4.19 Northing 8248326.00 Stope 90° E G RILLING ROCK MASS CHARACTERISTICS ROCK MASS CHARACTERISTICS Image: structure, minor components Image: structure, minor c	Ocation Reddem Station - platform 1 Checked By H tarted Drilling 4.4.19 Northing 6248326.00 Slope 9.0° Equipment mpleted Drilling 4.5.19 ROCK MASS CHARACTERISTIC Equipment ILLING ROCK ROCK MASS CHARACTERISTIC Image: strategraphic strateg	Decation Redferm Station - platform 1 Checked By HS tarted Drilling 4.4.19 Northing 6248326.00 Slope 00 Equipment Ground Level RULING ROCK MASS CHARACTERISTICS Image: structure, minor components) <	Ocation Redfern Station - platform 1 Checked By HS Latted Drilling 4.4.19 Northing 6243326.00 Bearing Equipment Tr ompleted Drilling 4.4.19 ROCK MASS CHARACTERISTICS Equipment Tr Image: Strangth (MPa) Ground Leave Drilling Checked By HS Equipment Tr Image: Strangth (Group Check Spre: colour, grain size, structure, minor components) Image: Strangth (MPa) Image: Strangt (MPa) Image: Strangth (MPa)

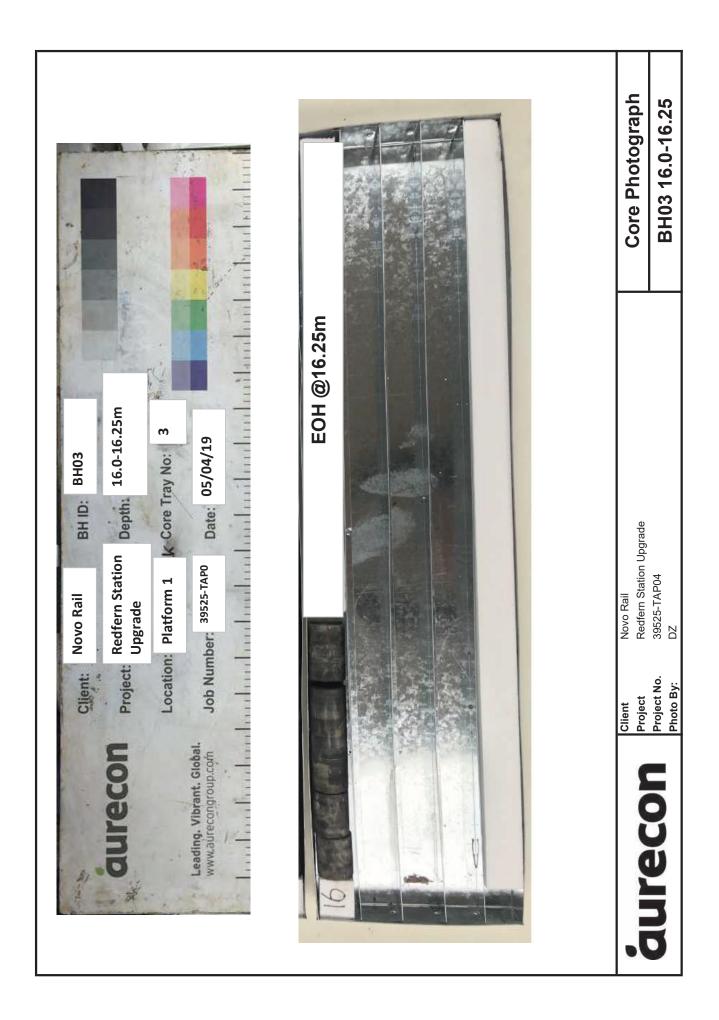
Engineering Log - Cored Borehole

SHEET 3 OF 4

F	Clier Proje Loca			Re	vo Rail dfern Station Upgrade dfern Station - platform 1			Project Logged Checke	By D		5	
		ed plete		ng Drillir	0	Slop Bea			quipment iround Lev	el		rack 5.4 AHD
D	RIL	LIN	G		ROCK MASS CHARACTERI	STI	CS					DISCONTINUITIES
Method	Water	RL (m)	Depth (m)	Graphic Log	Description of Rock (rock type: colour, grain size, structure, minor components)	Weathering	Strength Is ₅₀ X-Axial O-Diametral O-Limmp	IS ₅₀ (MPa)	Defect Spacing (mm)	Core Rec'y (%)	RQD (%)	Description of Defects (defect type, inclination, roughness, thickness, infilling)
		- - 18	-		SHALE: dark grey, thinly laminated (continued)	DW		0.07 0.05				7.52-8.53: Be, 0-5°, p, r, vn, average spacing 60mm 8.08: Jo, 20°, p, r, vn 8.12-8.16: Cz, 0°, 40 mm 8.26: Jo, 40°, p, r, vn
		-	-	\mathbf{X}	CORE LOSS 0.33m (8.53-8.86)					72	0	
			9 9		SHALE: pale brown, fragmented, infilled with clay	xw		0.05				
		17 - - -	-		CORE LOSS 0.12m (9.24-9.36) SHALE: pale brown to dark grey, thinly laminated, fragmented	xw		0.02		100	0	
			10 10 		SHALE: dark grey, thinly laminated		o X	0.01 0.03 0.16		100	0	10.10: Be, 0°, p, r, cn 10.14: Be, 0°, p, r, cn 10.20: Cs, 0°, Silty Clay, 4 mm
		16 - - -	-				o ×	0.10				 └── 10.27: Jo, 60°, u, r, cn 10.32-10.80: Be, 0°, p, r, cn, average spacing 60mm 10.90: Jo, 50°, p, r, cn
		- - - 15	11 - - -			DW	0 0	0.05		92	28	— 11.10: Jo, 70-85°, u, s, cn
NMLC		-	 12		CORE LOSS 0.17m (11.92-12.09)			0.07				— 11.60: Jo, 20°, p, s, cn — 11.73-11.76: Cz, u, 30 mm
Z		_ _ 14	-		SHALE: dark grey, thinly laminated, fragmented CORE LOSS 0.11m (12.25-12.36)	xw		0.07				— 12.20: Jo, 60°, p, s, cn
			 13 		SHALE: dark grey, distinctly laminated, fractured			0.07 0.09 0.07				
			-					0.27		96	20	
		 	14 			sw		0.82				 13.07-14.60: Be, 0-5°, p, s, cn, average spacing 40mm 14.22: Jo, 25°, p, s, cn
			 15		SHALE: dark grey, distinctly laminated, fractured		0 X 	0.08 0.96				— 14.85: Jo, 30°, p, s, cn
		- - 11 - - -								100	10	
F	Rem	arks	16 ::					0.2				




Engineering Log - Cored Borehole


SHEET 4 OF 4

Client Project Location	Novo Rail Redfern Station Upgrade Redfern Station - platform 1		Project No. 39 Logged By D2 Checked By HS	
Started Drilli Completed [Slope 90° Bearing	Equipment Ground Lev	Track el 26.4 AHD
DRILLING	ROCK MASS CHARA	CTERISTICS		DISCONTINUITIES
Method Water RL (m) Depth (m)		Strength Is ₅₀ Chametral Discontention Strength Strength Is ₅₀ Chametral Strength Is ₅₀ Chametral Strength Is ₅₀ Chametral Strength Is ₅₀ Chametral Strength Is Strength	IS ₅₀ (MPa) DLA	(%) Description of Defects (defect type, inclination roughness, thickness, infilling)
	SHALE: dark grey, distinctly laminated, fractured (continued)	SW O	0.48	100 10

aurecon

Engineering Log - Borehole

SHEET 1 OF 6

F	Clien Proje Loca			Re		ail h Station Upgra h Station Platfo					L	roject No. ogged By hecked By	39525 DZ/DR HS	
		ed [plete			g	20.7.19 20.7.19	Northing Easting	6248296.00 333386.00	Slope Bearing	9) 		Equipme Ground L		KC Drill 26.4 AHD
D	RIL	LING	3				MATERIAL	DESCRIPTION				TESTING,	SAMPLIN	G & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		Descrip (soil type: pla colour and ot	otion of Soil asticity/grainsize, her components)		Moisture Condition	Consistency	Tests	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations
HA	Not Encountered	- - - - - - - - - - - -	- - - - - - - - 1			ASPHALT FILL: Silty CLAY	: medium plasticity	r, red yellow brown		<pl< td=""><td></td><td></td><td></td><td>ROAD SURFACE FILL</td></pl<>				ROAD SURFACE FILL
		_ 25 - - - - - - -	- - - - - - 2		СН	Silty CLAY: high grained gravel, tr	plasticity, grey mo ace fine to coarse	ttled brown, trace fine to r grained sand	nedium			SPT 5, 8, 9 N=17	В	RESIDUAL SOIL
AD/V		 24 	- - - - - - 3							~PL	Н			
		- - 23 - - - -										SPT 5, 11, 17 N=28	В	pp= 430 kPa
F	Rem	arks	4											

Engineering Log - Borehole

SHEET 2 OF 6

ient oject cation	:t		Re		ail n Station Upgra n Station Platfor					L	roject No. ogged By hecked By	39525 DZ/DR HS		
arted omplet				g	20.7.19 20.7.19	Northing Easting	6248296.00 333386.00	Slope Bearing	9(Equipme Ground		XC Drill 26.4 AHD	
RILLIN	ING					MATERIAL	DESCRIPTION				TESTING,	SAMPLI	NG & OTH	ER INFORMATIO
Water RL (m)	RL (m)	Ueptn (m)	Graphic Log	P Classification	City OI AV/ bigh	(soil type: pla colour and ot	otion of Soil asticity/grainsize, her components) ttled brown, trace angula		Moisture Condition	Consistency	Tests	Samples	(mat	itional Comments erial origin, pockel etrometer values, gation observation
22 _	+ + 2_			GIT	gravel	plasticity, grey mo	ueu biown, uace angula	n o subangulai	~PL	Н				
	+	· 1			Continued as Cor	red Drill Hole					SPT 8/10mm HB N=Refusal	В		510 kPa
21_ - 20_ - 19_ -		.5												
- marks	rks:	8												

aurecon

Engineering Log - Cored Borehole

SHEET 3 OF 6

L		tion)rilli-	Rec	ffern Station Upgrades ffern Station Platform 8/9 20.7.19 Northing 6248296.00	Slop		90°	Logged Checked	By H	Z/DF S		C Drill
		ed [plete		ng Prilling	-	Bea		90 		quipment iround Lev	el		5.4 AHD
D	RIL	LINC	3		ROCK MASS CHARACTER	ISTIC	S						DISCONTINUITIES
IMERIDO	Water	RL (m)	Depth (m)	Graphic Log	Description of Rock (rock type: colour, grain size, structure, minor components)	Weathering	sا ×- -Di -Di	ength 5 ₅₀ Axial ametral Lump ⊊ म 5 ⊞	IS ₅₀ (MPa) DLA	Defect Spacing (mm)	Core Rec'y (%)	RQD (%)	Description of Defect (defect type, inclinatio roughness, thickness infilling)
		_ _ 22	-		START CORING AT 4.51m INTERBEDDED SILTSTONE AND SANDSTONE: grey and pale grey,								
		-	-	 ::::	indistinct to distinct laminations at 0-10°, Heavily Iron stained, Sandstone is fine grained.	HW							
	100% Water RETURN		- 5		GRAVELLY CLAY: medium to high plasticity, grey mottled orange red, gravel is angular, fine to coarse grained, trace of angular cobbles. Hard, ~PL. (Extremely Weathered Interbedded Siltstone and Sandstone).	EW					100	38	— 4.75-5.10: Ds
	100%	- 21	-		INTERBEDDED SILTSTONE AND SANDSTONE: grey and pale grey, indistinct wavy lenticular laminations at 0°, Iron staining at defects. Sandstone is fine grained.	-			0.09 0.1				— 5.15: Be, 0°, p, r, cg — 5.40: Be, 0°, p, s, cn
-			6		LAMINITE: dark grey and grey, distinct lenticular laminations at 0°	HW			0.06				5.52-5.57: Jo, 45°, p, s, vn 5.70: Jo, 5°, p, s, vn 5.76: Be, 0°, p, r, cn 5.80-5.90: Is, 80°, u, r, ironstor 3 mm 5.90: Be, 0-5°, u, r, sn 5.93: Db 6.00: Hb 6.00: Hb 6.09: Jo, 0-5°, p, s, sn 6.13: Be, 0°, p, s, sn
	100% Water RETURN	- 20 - -	-				0		0.17 0.18 0.05 0.16		100	58	6.25: Hb 6.26: Hb 6.28: Hb — 6.52: Db — 6.60: Jo, 5°, p, s, vn
		- -	- - 7		LAMINITE: dark grey and grey to orange, distinct laminations at 0°, Sandstone is iron stained.								6.71: Cs, 0°, Silty Clay, 5 mm 6.79: Jo, 5°, p, r, vn 6.87: Be, 0°, p, r, vn 6.95: Cs, gravelly clay, 3 mm 7.00: Hb 7.12: Hb 7.12: Hb
-	100% Water RETURN		-		LAMINITE: dark grey and grey, distinct lenticular laminations at 0°	MW			0.14 0.22		100	50	 √.7.41: Be, 0-5°, p, s, sn √.7.61: Be, 0-5°, p, s, sn √.7.27: Db √.7.31: Cs, Silty Clay, 2 mm √.7.35: Db 7.49: Db 7.59: Db
	100% Wê		8						0.15 0.22				7.71: Db 7.77: Db 7.80: Db 7.81: Db 7.89: Db 7.95: Hb

Engineering Log - Cored Borehole

SHEET 4 OF 6

Ρ	lien roje oca			Red	o Rail fern Station Upg fern Station Platf						Project Logged Checke	By I	39525 DZ/DF HS		
		ed [ng)rilling	20.7.19 20.7.19	Northing Easting	6248296.00 333386.00		Slope Bear			quipment Ground Le			C Drill 6.4 AHD
					20.7.19		DCK MASS CHAR			0				20	DISCONTINUITIES
Ivietnoa	Water	RL (m)	Depth (m)	Graphic Log	(rock	Description of type: colour, ture, minor col	grain size,		Weathering	Strengtl Is ₅₀ •-Damatral -Lump	(MPa)	Defect Spacing (mm)	ore Re	RQD (%)	Description of Defects (defect type, inclination roughness, thickness, infilling)
	100% Water RETURN	- - 18	-		LAMINITE: dark grey (continued)	/ and grey, distinc	t lenticular laminations		EW HW	• • • • • • • • • • • • • • • • • • •	0.03		100	50	 — 8.00-8.43: Fragmented Zone — 8.43: Be, 0°, p, s, cn — 8.51: Db ~ 8.53: Cs, 0°, High Plasticity
	100% Water RETURN		- - - - - - - - - - - - - - - 10							$\mathbf{O} \otimes [1]$	0.04 0.24 0.24 0.24 0.24 0.25 0.02 0.25 0.24 0.24		100	80	 CLAY, 10 mm 8.57: Db 8.68: Hb 8.81: Be, 0°, p, s, cn 8.93: Hb 9.00: Hb 9.14: Be, 0°, p, s, cn 9.19: Db 9.27: Db 9.53: Be, 0°, p, High Plasticity CLAY cg 9.61: Be, 0°, p, gravelly clay cg 9.61: Be, 0°, p, r, cn 9.98: Hb 10.00: Hb 10.03: Hb 10.05: Hb 10.05: Hb
_			- - - - - - -		Laminations dipping	at 30°, fault zone					0.26		100		 10.10: Hb 10.12: Hb 10.19: Be, 0°, p, High Plasticity CLAY eg 10.30: Cs, 0°, p, s, cn 10.30: Cs, 0°, p, High Plasticity CLAY, 6 mm 10.36: Be, 0°, p, r, cn 10.47: Be, 0°, p, r, cn 10.47: Be, 0°, p, r, cn 10.47: Be, 0°, p, r, cn 10.74: Db 11.00: Hb 11.00: Hb 11.8: Be, 0°, p, r, cn 11.20: Be, 0°, p, r, cn 11.60: Be, 20°, p, s, vn 11.75: Db 11.82: Be, 45°, u, r
		-	12	<u> </u>					EW						
R	em	arks	DC		are typically Bed nit is Ashfield Sh		0-5°, planar smoo	oth/rough,	clea	n @ 20-2	00mm spa	cings (at	amina	ation	s).

Client Novo Rail Project No. 39525 Redfern Station Upgrades Logged By DZ/DR Project Redfern Station Platform 8/9 Checked By HS I ocation Started Drilling 20.7.19 Northing 6248296.00 Slope 90 XC Drill Equipment Completed Drilling 20719 Easting Ground Level 26.4 AHD 333386.00 Bearing ---DRILLING ROCK MASS CHARACTERISTICS DISCONTINUITIES (%) Defect Description of Defects Log Description of Rock Strength IS_{50} Rec'y Weathering Spacing (defect type, inclination, (rock type: colour, grain size, Depth (m) (MPa) Graphic L Is₅₀ (%) (mm) roughness, thickness, Method structure, minor components) X - Axial O - Diametral E Water infilling) RQD (Core I -0.03 -0.1 -0.3 -0.3 -1 Ч 20 100 300 1000 DLA '₹'⊞ ⋝ • LAMINITE: dark grey and grey, distinct lenticular laminations at 0° EW 10 (continued) 11.83-12.37: Jo, 85-90°, p, s, cn 11.85-12.38: Fragmented Zone • ----+ 12.38: Be, 0°, p, s, vn • • RETURN — 12.46: Cs, 0°, p, Low Plasticity CLAY, 10 mm └ 12.49: Be, 0°, p, s, vn + • • 100 40 Water • b 1 | | 0.05 100% . 0.29 НW 12.77-12.84: Jo, 60°, p, s, cn • – 12.88: Jo, 35°, p, s, cn G•--- 12.95: Jo, 35°, p, s, High Plasticity CLAY cg - 13.00: Hb . SHALE: dark grey to black, indistinct laminations at 0° 13.09-13.14: Fragmented Zone 8 φ 0.03 — 13.20: Db 13.23: Db 13.25: Db 13.27: Db 13.37: Cs, 20°, p, gravelly clay, 5 mm 0.2 13 5 mm 13.37-13.42: Jo, 45°, p, s 13.45-13.75: Fragmented Zone EW **o**k 0.18 0.35 Developed by Datge Water RETURN – 13.86: Be, 0-5°, p, s, cn NMLC 100 45 – 14.00: Db - 14.06: Db \ %00I ¢ 0.72 1 0.57 T 12 1 14.46: Cs, 0°, gravelly clay, 5 - 14.53: Cs, 0°, High Plasticity CLAY, 3 mm - 14.55: Db - 14.57: Cs, 0°, High Plasticity CLAY, 10 mm - 14.63: Cs, 0°, Low Plasticity CLAY, 3 mm - 14.63: Cs, 0°, Low Plasticity CLAY, 3 mm - 14.76-14.86: Db, due to over-coring 1 <<DrawingFile>> MW Ø 0.18 0.17 SW over-coring 14.93: Be, 0°, p, s, cn 15.00: Db 15.10: Be, 0°, p, s, cn Ø 0.23 0.28 - 15.22: Cs, gravelly clay, 4 mm - 15.26: Jo, 30°, p, s, cn Water RETURN 15.33: Be, 0°, p, s, cn 15.34: Jo, 30°, p, s, cn 100 65 − 15.43: Be, 0°, p, s, cn − 15.47: Cs, 0°, gravelly clay, 6 mm − 15.51: Db − 15.53: Cs, 0°, 7 mm 100% I 15.65-15.76: Fragmented Zone 0 T Log 0.41 0.54 L └─ 15.86: Db └─ 15.83-15.90: Jo, 55°, p, s, cn ── 15.95: Db Remarks: Defects are typically Bedding partings, 0-5°, planar smooth/rough, clean @ 20-200mm spacings (at laminations). Rock Unit is Ashfield Shale.

Engineering Log - Cored Borehole

10.00.01.07

14/08/2019 10:27

CW CORED BOREHOLE LOG RSU.GPJ

: 05.GLB

AURECON SYD LIB

SHEET 5 OF 6

Engineering Log - Cored Borehole

SHEET 6 OF 6

Starte			Rec	Ifern Station Platform 8/9			Logged Checked	•	Z/DF S	x	
Comp	ed [plete		-	20.7.19 Northing 6248296.00 g 20.7.19 Easting 333386.00	Slop Bear			quipment Fround Leve	el		C Drill 6.4 AHD
DRILI	LING	G		ROCK MASS CHARACTE	RISTIC	S					DISCONTINUITIES
Water	RL (m)	Depth (m)	Graphic Log	Description of Rock (rock type: colour, grain size, structure, minor components)	Weathering	Strength Is ₅₀ X-Axial O-Diametral D-Limp	IS ₅₀ (MPa)	Defect Spacing (mm)	Core Rec'y (%)	RQD (%)	Description of Defects (defect type, inclinatior roughness, thickness infilling)
RETURN	_	-		SHALE: dark grey to black, indistinct laminations at 0° (continued)	MW		0.32 0.56 0.14				— 16.00: Hb — 16.12-16.16: Jo, 45°, p, s, cn
100% Water RETURN	-	-			sw		0.58		100	65	
100	10	_	\mathbf{X}	CORE LOSS 0.16m (16.40-16.56)							over-coring
	-	-		As above Laminations at 30°, fault zone			0.2				— 16.56-16.87: Fragmented Zone
100% Water RETURN	-	- 17 -		Laminations at 0°	MW - SW				90	35	— 16.95-17.21: Fragmented Zone
0% Water	-	_		Laminations at 20°			0.46 0.65		30	55	— 17.24: Jo, 30°, p, s, cn — 17.36: Jo, 30°, p, s, cn
10	9	-					0.78 0.59				— 17.47: Be, 0-5°, p, s, cn
	-	-			sw						— 17.60: Db
		- 18					0.41 0.7				— 17.79: Be, 20°, p, r, cn — 17.85-17.90: Jo, 45°, p, s, cn — 17.94: Be, 20°, p, s, cn
	8 8 - - - - 7 7 - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		Borehole BH04 Terminated at 18.00 m Target depth							

Engineering Log - Borehole

I	Clier Proje _oca			Re	ovo F edfer edfer	ail n Station Upgrad n Station Platforr	les m 2/3				L	roject No. ogged By hecked By	39525 DZ/JP RS	
		ed l		ng Drillir	ıg	12.7.19 12.7.19	Northing Easting	6248333.00 333359.00	Slope Bearing	9) 		Equipmo Ground		XC Drill 26.4 AHD
0	DRIL	LIN	G				MATERIAL	DESCRIPTION				TESTING,	SAMPLIN	NG & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: pla colour and ot	ation of Soil asticity/grainsize, her components)		Moisture Condition	Consistency	Tests	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations
	Not Encountered	- 26 - - - - - - - - - - - - - - - - - -	+ + + + + + + + + + + + + + 1 + + + 1 +			FILL: Sandy CLAY trace medium to c	: low to medium oarse gravel	plasticity, brown, fine to coars	se sand,					FILL: Poorly Compacted
		-	2			FILL: Silty CLAY: h	nigh plasticity, bro d	own, trace fine to coarse grave	el, trace			SPT 2, 2, 3 N=5	D	_
AST		24	3			Silty CLAY: high pl	lasticity, red-brow	'n		<pl< td=""><td>VSt</td><td>SPT 4, 9, 8 N=17 5, 10, 8 N=18</td><td>D</td><td>RESIDUAL SOIL</td></pl<>	VSt	SPT 4, 9, 8 N=17 5, 10, 8 N=18	D	RESIDUAL SOIL
		21	5			Continued as Core	ad Drill Hote					SPT 10, 9/90mm N>9	D	
	Rem	arks												

BW/>mW/>NV/8BH05

infiœinF(

Engineering Log - Cored Borehole Cė⊳ny V° 515 **NW7WRaie** GrW⊉jyNWø GrW2≥jy R>pf>rn SyayiWi UvFrap>u LWFF>p Bb Dq@IG R>pf>rn SyayiWt GeayfWt3 16/ RS LVj/ayiWi Cm>j)>p Bb Syary>p DriœinF 210 Q° NW/yminF 91h/ WV000 Sè⁄V> ° 0k z C Driæ E, xiv3 >ny CW3 ve>y⊳p DrieenF $210 \, c^{\circ}$ EauyinF VVV/5° 000 19oh AHD B>arinF g rWxnp L>7>e . . . DRILLINg ROCK MASS CHARACTERISTICS DISCONTINUITIES \$\$ \$Q(D>f>j y Svaj inF D>uj rivyi₩i ₩D>f>j yu D>uj rivyi₩n ₩7 RVj/) srVj/) ybv>8j ₩4%krcFrain ui'>c IS₅₀ sMGa(L P >aymrinF Syr>nFym sp>f>jyybv>cinjeinayiWhc 2 lu_{50} ğ D>vyms3 g ravmj s3³ (rWxFmn>uucymij)n>uuc M>ymy6 uyrxj yxr>c3 inW j V8 vWi>nyu(X. A-iae O. Dia3 >yae D. Lx3 v P aγ⊳r RXD S CW> | Ч 10 200 2000 2000 DLA H 1 ||19. 11 2 11 L 15 111 ||1 1 I 1 1 1 1h 1 ٧ I. - 1 ||1 1V 11 11 11 1 1 | | 1 . 5 1 1 1 1 12 T 11 9 START CORINg AT 90103 LAMINITE8Dar) Fr>b uigu/Wi> anp vaœ Fr>bcfin> Frain>p uanpu/Wi>c piu/inj yb @3 inay>p ay0.5 p>Fr>>u • 10 ||||||• -9o5V8B>c0kcvcrcjF -9o5/8B>c0kcvcrcjF 1111 . | | | |200 25 - 9a / 8B>c0kcvcrcj F - 9a V8B>c0kcvcrcj F + | | | |-DP | | | |• • jW EP |||||0001 d298B>c0kcvcrcj F |||||000h . d/h8B>c0kcvcrcj F dh18B>c0kcvcrcj F db18B>c0kcvcrcj F db08Cuc5kc20 3 3 db5.: dbh8Duc0kc/ 5 3 3 dv8B>c0kcvcrcj F • |||||-200 V0 | | | | | |.

EΡ

SHEET 1 OI h

200000200: D>7>eW>p db DayF>e <<DrawinFl ie>44 0/ 60261010 2982: RSU₀ G CP CORED BOREHOLE LOg BACKUGOG LB LVF COGY . 05. AURECON SYD LIB

NMLC

R>3 ar) u8

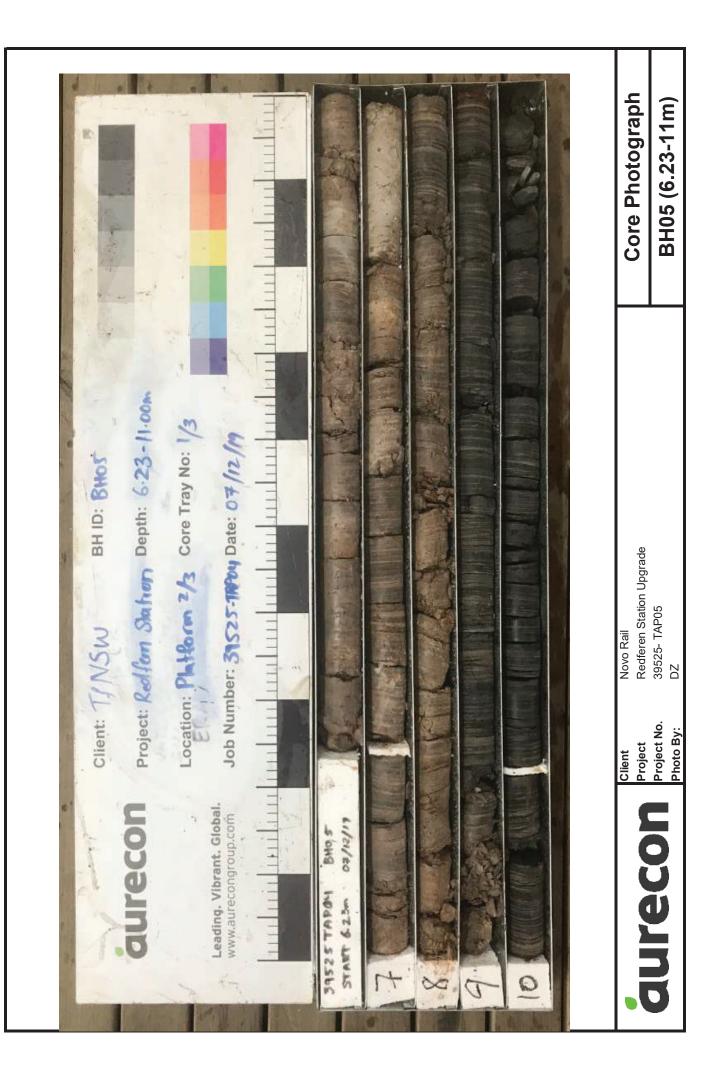
-...

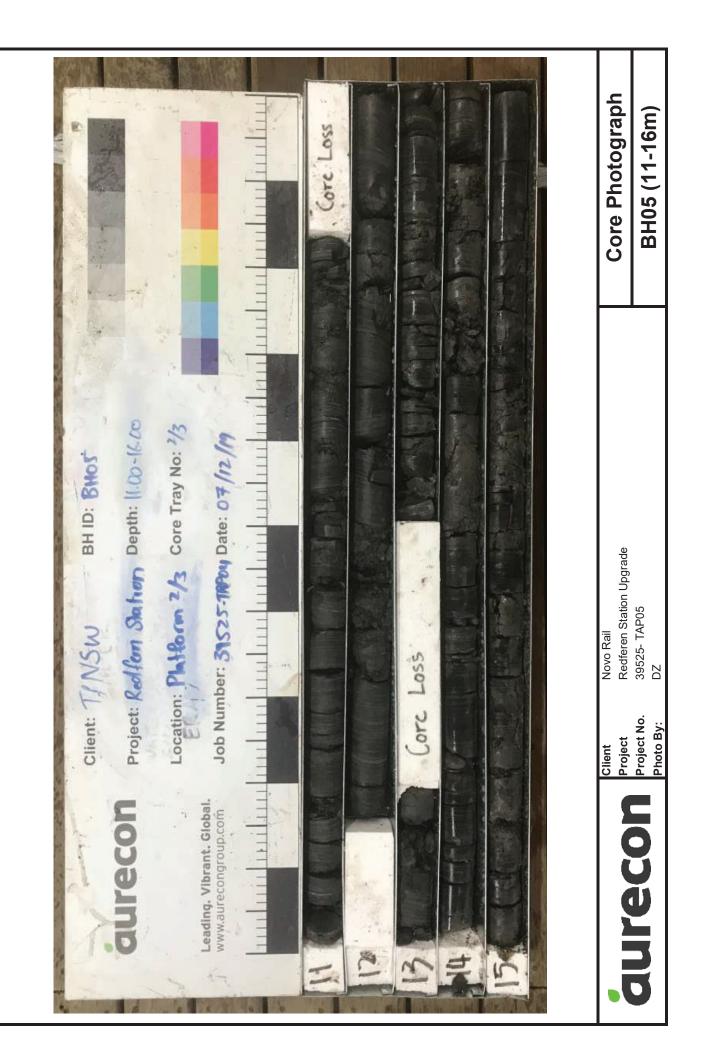
B₩>m₩ NV8BH05

Engineering Log - (Cored Borehole
---------------------	----------------

SHEET V OI h

(Cei>r GrW2≊ _Wj/a	∮jy		R>p	WRaie f>rn SyayiWi U∨Fi f>rn SyayiWi Gæyf	•				GrW2≊j LWFF> Cm>j)	Bb [/° 515 Dq@0 RS		
		⊳p [væv⊳		ıF riezinF	21o &° 21o &°	NWyminF EauyinF	91h/ ₩₩00 ₩₩√5° 000	S è ⁄V B>ar			E, xiv3 >ny g rWxnp L>			C Driœ 9dn AHD
		LINg			210 02		DCK MASS CHARACT							DISCONTINUITIES
M>ymy6	P ayər	RL S3 (D>vyms3 (gravmj LVF	srVj/)	D>ujrivyiWni Wn ybv>8jWaMytc yxr>c3inWrjW	Frain ui' >c	P >ayn≯rinF	Syr>nFyn Iu ₅₀ C.Dia3 >yae L.L3 v	sMĞa		M> R>j %	RXD sQ(D>ujrivyìWn/W/D>f>jy. sp>f>jyybv>cinjeinayìW rWkFmn>uucymj)n>uuo infieeinF(
		2/			LAMINITE8Dar) Fr>l piuyinjyob oa3 inay>p	b uigµ}M> anp va ay0.5 p>Fr>>u <i>(cc</i>	e Fr>bcfin> Frain>p uanpuyM Intinued)	DP (W EP		 		200	VO	/ d0// d98C* c0.5kc90 3 3 / d2// d58C* c0.5kc97 3 3 / d188>c0kcvcrcj F / d188>c0kcvcrcj F / d/188>c0kcvcrcj F / d/188>c0kcvcrcj F / d/188>c0kcvcrcj F / d/1/ d988>c0kcvcrcj F / d/1/ d988>c0kcvcrcj F / d/1/ d988>c0kcvcrcj F / d/1/ d58C* c0.5kc50 3 3 / d0/ d58C* c0.5kc50 3 3 / d0/ d58D* c0kcvC 3 3 ° d/188>c0kcvcrcj n ° d088>c0kcvcrcj n
INIVILO		29 25 21 21 21 21 21 	22		CORE LOSS 0o/23 LAMINITE8Dar) Fr> piuyinj yeb ea3 inay≻p :	buieyuyWnl> anp va	a ∙ Fr>bcfin> Frain>p uanpuψ	VI>C SP WW DP		 		/0	VO	20d10.20d 58B>c0.5kcvcrc7nc s003 3 a7>raF> uvaj inF(20d 5.20d V8C' c0kc/0 3 3 20d 5.22d008C' c0kcV0 3 3 22d01.22d088C' c0kcV0 3 3 22d01.22d088>c0.5kcvcrc7in 22d188>c0.5kcvcrc7in 22d1082>c0.5kcvcrc7in 22d1082>c0.5kcvcrc7in 22d0182 21d/188 20k02 20k02 21d/288 21d0288 21d0288 21d088 21d088 21d088 21d088 21d082 21d088 21d18 <b< td=""></b<>
		2V 2V 21 21 22 22 	- 25		CORE LOSS 04/03 SILTSTONE8Dar) F fin> Frain>p uanpuy/	r>bcpiuyinjyebea3i	nay≫p ay0 yW5 p>Fr>>ucwiy 0Q(n SP WW DP EP SP W DP		 	h	/0	5	2Vd50.2Vd558C' c0.15kcxcrcj F 50 3 3 2Vd55.2hd108B>c0.5kcvcrcj Fc sh03 3 a7>raF> uvaj inF(2hd10.2hd158Dd 2hd18B>c0kcvcrcj F 2hd08Cuc0kc5 3 3 2hd28B>c0kcvcrcj F 2hd08Cuc0kc7ci F 2hd08Cuc0kc7ci F 2hd08Cuc0kc7ci F 2hd08Luc0kc10 3 3 2hd1.2hd18B>c0kcvcrcj F 2hd08Luc0kc20 3 3 25d018B>c0kcvcrcj F 25d08.2vd58Cuc0kc20 3 3 25d08.2vd518B>c0kcvcrcj F 25d08.2vd518B>c0kcvcrcj F 25d08.2vd18B>c0kcvcrcj F 2008.2vd18


B₩>m₩ NV8BH05


Engineering	Log -	Cored	Borehole
-------------	-------	-------	----------


SHEET h OI h

DrieinF 21o d2° NWyminF 91h/WWd00 p DrieinF 21o d2° EauyinF WW5° d00 I ROCK MASS CHARACTEF U D>uj rivyWi W/ RVy) SrVy) ybv>8j WMxrcFrain ui'>c U SVY) ybv>8j WMxrcFrain ui'>c uyrxj ykr>c3 inW j V8 vWh>nyu(I SILTSTONE8Dar) Fr>bcpiuyinj yb @3 inay>p ay0 yW5 p>Fr>>ucwiym In> Frain>p uanpuyWi> @3 inayWiu s10Q((continued) I SILTSTONE8Dar) Fr>bcpiuyinj yb @3 inayP ay0 yW5 p>Fr>>ucwiym In> Frain>p uanpuyWi> @3 inayWiu s10Q((continued) In> Frain>p uanpuyWi> @3 inayWiu s10Q((continued) In> Frain>p uanpuyWi> @3 inayP ay2/ o 1 3 In> Z In> BWPnWeb BH05 T>r3 inay>p ay2/ o 1 3 TarF>yp>vym	o >ayn⊅rinF	inF	g r IS₅₀ sMGa(xiv3 >ny (Wtnp L>7: D>f>j y Svaj inF s3 3 (sQ(19 5 5	C Driee 9dh AHD DISCONTINUITIES D>uj rivyiWi Wf D>f>j yu sp>f>j yybv>cinj einayiWh rWkFrm>uucynij)n>uuc infieinF(= 25dh: 25d;580k:00ke20:33 = 25d;25d;83We* 0keverej Fc / 0.33 = 25d;25d;83We* 0keverej Fc - 29d;28B>c0keverej F = 29dy: 29d;58B>c0. 10keverer; Fc - 29d;28B>c0keverej F = 29dy: 29d;58B>c0k:0keverej Fc = 29dy: 29d;58B>c0keverej F = 29dy: 29d;58B>c0keverej F = 29dy: 29d;58B>c0keverej F = 29dy: 29d;58B>c0keverej F = 29dy: 29d;58B>c0keverej r = 29dy: 29d;58B>c0keverej n = 29d; 29d;58B>c0keverej n = 29d; 29d;58B>c0keverej n = 29d; 29d;58B>c0keverej n = 29d;58B>c0keverej n = 29d;58B>c0keverej n = 29d;58B>c0keverej n = 24d;58B>c0keverej n =
ROCK MASS CHARACTEF D>uj rivýWi W/ RVJ) SUJ Image: Supervision of the state of t	SLSIN B >aymerinF	S Syr>nFym IU50 C Dial System C	IS ₅₀ sMGa(5 D L A 0db 0ddv 0ddv 0ddv 2229 0ddv	D>f>j y Svaj inF S3 3 (○ CW> R>j 16 sQ(5	DISCONTINUITIES D>uj rivyiWi Wi D>f>j yu sp>f>j yybv>cinj einayiWin rWkFrm>uucynij)n>uuc infieinF(2565.256h8JW° 0kcvcrcj Fc / 0 33 2565.256h8JW° 0kcvcrcj Fc / 0 33 256 288-c0kcvcrcj F 2901.296488-c0kcvcrcj F 2903.294688-c0.10kcvcrcj rc 9033 a7raf> uvaj inF(2904.294688-c0.10kcvcrcj rc 9033 a7raf> uvaj inF(2904.294688-c0.10kcvcrcj rc 50 33 2960.29418JWV0kcvcrcj rc 10 33 2960.29418JWV0kcvcrcj rc 10 33 2960.29418JWV0kcvcrcj rc 10 33 2960.29418JWV0kcvcrcj rc 10 33 2960.29418JWV0kcvcrcj rc 10 33 2960.29418JWV0kcvcrcj rc 10 33 2960.29408JWV05kcvcrcj rc 10 33 296588-c0kcvcrcj n 290 33 2968B-c0kcvcrcj n 290 33 29688-c0kcvcrcj n 200 33 2968B-c0kcvcrcj n 200 33 2968B-c0kcvcrcj n 200 33 2968B-c0kcvcrcj n 200 33 2968B-c0kcvcrcj n 200 33 2968B-c0kcvcrcj n 2968B-c0kcvcrcj n 2968B-c0kcvcrcj n 2068B-c0kcvcrcj n 2068B-c0k
SILTSTONE8Dar) Fr>bcpiuyinj yb @3 inay>p ay0 yW5 p>Fr>>ucwiym fin> Frain>p uanpuyWi> @3 inayWiu s10Q((continued)	SP W	Iu ₅₀ × A-ise 0 <	SMGa(D L A 0db: 0dh 0dhV 0df 2 2d29 0dVV	Svaj inF s3 3 (0 CW5 R>j 16	5 S	sp>f>j y)bv>cinj einajiWhu rWkFm>∪ucynij)n>uuc infieinF(25dbh.25db58Cuc0kc20.3.3 25dbf.25dbf8Cuc0kc20.3.3 25dbf.25dh8Uke*0kcvcrcj Fc 70.3.3 25dbf.25d 18Uke*0kcvcrcj Fc 29d9.28db>c0kcvcrcj F 29d9.28db>c0kcvcrcj F 29d9.28db>c0kcvcrcj F 29d9.29dh.29dh8UkeV0kcvcrcj nc 10.3.3 29dbf.29dh8UkeV0kcvcrcj nc 10.3.3 29dbf.29dh8UkeV0kcvcrcj nc 10.3.3 29dbf.29dh8UkeV0kcvcrcj nc 29d98B>c0kcvcrcj nc 29d98B>c0kcvcrcj nc 29d9.29dh8UkeV5kcvcrcj nc 10.3.3 29dbf.29db8UkeV5kcvcrcj nc 29d9.29d08UkeV5kcvcrcj nc 29d9.29d08UkeV5kcvcrcj nc 29d9.29d08UkeV5kcvcrcj nc 29d9.29d08UkeV5kcvcrcj nc 29d9.3 29d5.28b>c0kcvcrcj n 2:df8B>c0kcvcrcj n
fin> Frain>p uanpuyWi> æ3 inayWiu s10Q((continued)	yW/		0ð/h 0drV 0d ² 2d29 0d/V				L 25d5.25dh8JW ⁶ 0kcvcrcj Fc /0 33 25d9.85UK ⁶ 0kcvcrcj Fc /0 33 25d9.85UK ⁶ 0kcvcrcj Fc /0 33 25d 288>c0kcvcrcj F 29d9.29d588>c0.10kcvcrc7nc s003 3 a7>ra7> uvaj inF(29d988>c0kcvcrcj F 29d988>c0kcvcrcj F 29d988>c0kcvcrcj F 29d988>c0kcvcrcj r 29d9882W6V8cvcrcj n 29d90.29d981W6V0kcvcrcj n 10 33 29d91.29d588>c0kcvcrcj n 29d94.29d98JW6V5kcvcrcj n 29d94.29d98JW6V5kcvcrcj n 29d94.29d98JW6V5kcvcrcj n 29d94.29d98JW60./ 0kcxcrcj n 29d94.29d98JW60./ 0kcxcrcj n 29d93 29d 08JW60./ 0kcxcrcj n 29d93 29d 29d93 29d 29d94 29d988-c0kcvcrcj n 29d94 29d988-c0kcvcrcj n 29d93 29d 29d93 20d88-c0kcvcrcj n 20d84-c0kcvcrcj n 20d84-c0kcvcrcj n 20d88
							-2/2088-20.5kxxcrcj n -2/2088-25kxvcrcj n -2/2/40/8Dd -2/40/8Dd -2/40/8Dd
12							

Appendix D – Laboratory Testing Certificates

Address:

 Laboratory
 Glendenning Laboratory

 Phone:
 02 4577 3555

 Fax:
 02 4577 9055

 Email:
 Sydney@constructionsciences.net

Unit 2/4 Kellogg Road, Glendenning NSW 2761

MOISTURE CONTENT REPORT

Client:	Novo rail	Report Number:	12385/R/154832-3	
Client Address:	136 Railway Parade, Everleigh,	Project Number:	12385/P/1203	
Project:	Redfern Station Upgrade	Lot Number:		
Location:	Sydney	Internal Test Request:	12385/T/74655	
Supplied To:	n/a	Client Reference/s:	39525-06037	
Area Description:		Report Date / Page:	24/05/2019	Page 1 of 1
Test Procedures:	AS1289.2.1.1			

Test Flocedules.	A31209.2.1.1		
Sample Number	12385/S/606186	12385/S/606188	12385/S/606189
ID / Client ID		-	-
Lot Number	-	-	-
Date / Time Sampled	15/03/2019	15/03/2019	15/03/2019
Sampling Method	Tested As Received	Tested As Received	Tested As Received
Date Tested	21/03/2019	21/03/2019	21/03/2019
Material Source	Unknown	Unknown	Unknown
Material Type		-	-
Borehole	BH02	BH02	BH02
Depth	4.5m	7m	8-8.2m
Moisture Content (%)	16.7	12.0	16.2

Sample Number			
ID / Client ID			
Lot Number			
Date / Time Sampled			
Sampling Method			
Date Tested			
Material Source			
Material Type			
Borehole			
Depth	(m)		
Moisture Content (%)			

Remarks

Re-Issued Report Replaces Report No 12385/R/154832-2 (reason: in-correct borehole number supplied.).

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: Corporate Site Number: 1986 12385

Pal Dear

Address: Unit 2/4 Kellogg Road,

Glendenning NSW 2761

 Laboratory
 Glendenning Laboratory

 Phone:
 02 4577 3555

 Fax:
 02 4577 9055

 Email:
 Sydney@constructionsciences.net

PARTICLE SIZE DISTRIBUTION REPORT

Client:	Novo rail		Report Number:	12385/R/154838-2		
Client Address:	136 Railway Parade, Everleigh,		Project Number:	12385/P/1203		
Project:	Redfern Station Upgrade		Lot Number:			
Location:	Sydney		Internal Test Request:	12385/T/74655		
Supplied To:	n/a		Client Reference/s:	39525-06037		
Area Description:			Report Date / Page:	24/05/2019	Page 1 of 4	
Test Procedures:	AS1289.3.6.1					
Sample Number	12385/S/606186	Sample Location				

Sample Number	12385/S/606186	Sample Location				
Sampling Method	Tested As Received	Borehole BH02				
Date Sampled	15/03/2019	Depth (m) 4.5m				
Sampled By	Client Sampled					
Date Tested	21/03/2019					
Material Source	Unknown	Material Type -				

AS Sieve (mm)	Specification Minimum	Percent Passing (%)	Specification Maximum				PART	ICLE	SIZE	E DIS	STRIB	UTION	GRAPH		
6.7		100		đ	100 -								-	-	-
4.75		100								1	-	2,-			
2.36		100		1	90 -				1						
1.18		97			80 -				/						
0.600		95		1	00 -			/							
0.425		94		-	70 -		-	/							
0.300		86				-									
0.150		70		(%)	60 -										
0.075		68		bui	in second										
				ass	50 -										
				T											
				Percent Passing (%)	40 -	-									
				P											
				1	30 -										
				8	20 -										
					10 -										
				i.	10										
					0 -	<u> </u>		1000							
					25.00	-0.0	0		0	0.	0.0	E	- 2.36	- 4.75	6.7
						0.075	0.150		0.300	0.425	0.600	1.18	36	15	~
										AS S	ieve Siz	ze (mm)			

Remarks

Re-Issued Report Replaces Report No 12385/R/154838-1 (reason: In-correct borehole number supplied.).

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing correditation Number: 1986

Accreditation Number: Corporate Site Number:

1986
12385

Pal Dear

Address: Unit 2/4 Kellogg Road,

Glendenning NSW 2761

 Laboratory
 Glendenning Laboratory

 Phone:
 02 4577 3555

 Fax:
 02 4577 9055

 Email:
 Sydney@constructionsciences.net

PARTICLE SIZE DISTRIBUTION REPORT

Client:	Novo rail	Report Number:	12385/R/154838-2	
Client Address:	136 Railway Parade, Everleigh,	Project Number:	12385/P/1203	
Project:	Redfern Station Upgrade	Lot Number:		
Location:	Sydney	Internal Test Request:	12385/T/74655	
Supplied To:	n/a	Client Reference/s:	39525-06037	
Area Description:		Report Date / Page:	24/05/2019	Page 2 of 4
Test Procedures:	AS1289.3.6.1			
Sample Number	12385/S/606187	Sampl	e Location	

Teet Teeedaree						
Sample Number	12385/S/606187	Sample Location				
Sampling Method	Tested As Received	Borehole		BH02		
Date Sampled	15/03/2019	Depth	(m)	5m		
Sampled By	Client Sampled					
Date Tested	21/03/2019					
Material Source	Unknown	Material Type -				

AS Sieve (mm) Specification Minimum	Percent Passing (%)	Specification Maximum	PARTICLE SIZE DISTRIBUTION GRAPH
9.5 6.7 4.75 2.36 1.18 0.600 0.425 0.300 0.150 0.075	100 100 99 99 96 94 92 78 56 54		100 90 90 90 90 90 90 90 90 90 90 90 90 9

Remarks

Re-Issued Report Replaces Report No 12385/R/154838-1 (reason: In-correct borehole number supplied.).

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing correditation Number: 1986

Accreditation Number: Corporate Site Number:

1986
12385

Pal Dear

Address: Unit 2/4 Kellogg Road,

Glendenning NSW 2761

 Laboratory
 Glendenning Laboratory

 Phone:
 02 4577 3555

 Fax:
 02 4577 9055

 Email:
 Sydney@constructionsciences.net

PARTICLE SIZE DISTRIBUTION REPORT

Client:	Novo rail	Report Number:	12385/R/154838-2	
Client Address:	136 Railway Parade, Everleigh,	Project Number:	12385/P/1203	
Project:	Redfern Station Upgrade	Lot Number:		
Location:	Sydney	Internal Test Request:	12385/T/74655	
Supplied To:	n/a	Client Reference/s:	39525-06037	
Area Description:		Report Date / Page:	24/05/2019	Page 3 of 4
Test Procedures:	AS1289.3.6.1			
O a manufa . Niumala a m	40005/0/000400	0	- 1 +	

Test Tibledules.	A01209.0.0.1						
Sample Number	12385/S/606188	Sample Location					
Sampling Method	Tested As Received	Borehole BH02					
Date Sampled	15/03/2019	Depth (m) 7m					
Sampled By	Client Sampled						
Date Tested	21/03/2019						
Material Source	Unknown	Material Type -					

AS Sieve (mm)	Specification Minimum	Percent Passing (%)	Specification Maximum				PAR	TICL	E SI	ZE I	DIST	RIBU	TION	GRAP	н			
9.5		100		1	100 -	1					-	-	+		-	*		-
6.7		100							~	~	-							
4.75		100			90 -		5	/										
2.36		100			80 -	1												
1.18		99			00 -													
0.600		97			70 -													
0.425		95		-														
0.300		93		%)	60 -	1												_
0.150		87		gui														
0.075		85		ass	50 -	-												_
				Percent Passing (%)														
				erce	40 -													_
				d.	1942 (* 1]												
					30 -													
					-20													
					20 -	-												
					10 -													
					10	-												
					0 -	1 ₁₇		- 		·····								
					8876) 	- 0.075	0.150	2	0.300	0.425	0.600		- 1.18	2.36		4.75	- 6.7	95
											S Sie	ve Siz	e (mm)					

Remarks

Re-Issued Report Replaces Report No 12385/R/154838-1 (reason: In-correct borehole number supplied.).

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing correditation Number: 1986

Accreditation Number: Corporate Site Number:

1986
12385

Pal Dear

Address: Unit 2/4 Kellogg Road,

Glendenning NSW 2761

 Laboratory
 Glendenning Laboratory

 Phone:
 02 4577 3555

 Fax:
 02 4577 9055

 Email:
 Sydney@constructionsciences.net

PARTICLE SIZE DISTRIBUTION REPORT

Client:	Novo rail		Report Number:	12385/R/154838-2	
Client Address:	136 Railway Parade, Everleigh,		Project Number:	12385/P/1203	
Project:	Redfern Station Upgrade		Lot Number:		
Location:	Sydney		Internal Test Request:	12385/T/74655	
Supplied To:	n/a		Client Reference/s:	39525-06037	
Area Description:			Report Date / Page:	24/05/2019	Page 4 of 4
Test Procedures:	AS1289.3.6.1				
Sample Number	12385/S/606189 Sample Location				

Sample Number	12385/S/606189	Sample Location				
Sampling Method	Tested As Received	Borehole		BH02		
Date Sampled	15/03/2019	Depth	(m)	8-8.2m		
Sampled By	Client Sampled					
Date Tested	21/03/2019					
Material Source	Unknown	Material Type -				

AS Sieve (mm)	Specification Minimum	Percent Passing (%)	Specification Maximum				PA	RTICL	E SI	ZE D	DIST	RIBU	TION	GRAF	۳H		
4.75		100			100 -	1									-	-	-
2.36		99				-							-	-			
1.18		94			90 -	-			_	-	~	-					
0.600		90			80 -	-	_										
0.425		89			00 -	-											
0.300		87			70 -	1											
0.150		85		-													
0.075		83		(%) Đư	60 -	-											
				Passir	50 -												
				Percent Passing (%)	40 -												
				d.	30 -												
					20 -												
					10 -	-											
					0 -	1		<u></u> .				<u>.</u>		<u>.</u>			
						0.075		0.150		0.300	0.425	0.600		1.18	2.36		4.75
										AS	S Siev	re Size	: (mm)				

Remarks

Re-Issued Report Replaces Report No 12385/R/154838-1 (reason: In-correct borehole number supplied.).

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing correditation Number: 1986

Accreditation Number: Corporate Site Number:

1986
12385

Pal Dear

Address:

Unit 2/4 Kellogg Road, Glendenning NSW 2761
 Laboratory
 Glendenning Laboratory

 Phone:
 02 4577 3555

 Fax:
 02 4577 9055

 Email:
 Sydney@constructionsciences.net

ATTERBERG LIMITS REPORT

Client:	Novo rail			Report Number:	12385/R/154840-2	2			
Client Address:	136 Railway Parade	, Everleigh,		Project Number:	12385/P/1203				
Project:	Redfern Station Upg	rade		Lot Number:					
Location:	Sydney			Internal Test Request:	12385/T/74655				
Supplied To:	n/a			Client Reference/s:	39525-06037				
Area Description:				Report Date / Page:	24/05/2019	Page 1 of 3			
Test Procedures:	AS1289.3.1.2, AS 12	289.3.3.1, AS1289.3.2.1, AS1	289.2.1.1						
Sample Number	12385/S/606187			Sampl	le Location				
Sampling Method	Tested As Received		Borehole		BH02				
Date Sampled	15/03/2019		Depth	(m)	5m				
Sampled By	Client Sampled								
Date Tested	26/03/2019								
Att. Drying Method	Oven Dried		Material Source Unknown						
Atterberg Preparation	Dry Sieved		Material Ty	Material Type -					
Material Description	Silty Sandy CLAY								
		Atterberg L	imits Result	S					
Atterberg Limit		Specification Minimum		Test Result	Specificat	ion Maximum			
Liquid Limit (%)				36					
Plastic Limit (%)				13					
Plasticity Index (%)				23					
Linear Shrinkage (%)									
Linear Shrinkage Defe									

Remarks

Re-Issued Report Replaces Report No 12385/R/154840-1 (reason: In-correct borehole number supplied.).

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing ccreditation Number: 1986

12385

Accreditation Number: Corporate Site Number:

Pal Dear

Approved Signatory: Patrick Deasy

Form ID: W11bRep Rev 1

Address:

Unit 2/4 Kellogg Road, Glendenning NSW 2761
 Laboratory
 Glendenning Laboratory

 Phone:
 02 4577 3555

 Fax:
 02 4577 9055

 Email:
 Sydney@constructionsciences.net

ATTERBERG LIMITS REPORT

Test Procedures: AS1289.3.1.2, AS 1289.3.3.1, AS1289.3.2.1, AS1289.3.4.1, AS1289.2.1.1 Sample Number 12385/S/606188 Sample Location Sampling Method Tested As Received Borehole BH02 Date Sampled 15/03/2019 Depth (m) 7m Sampled By Client Sampled 26/03/2019 Material Source Unknown Atterberg Preparation Dry Sieved Material Type - Material Description Sility CLAY Specification Minimum Test Result Specification Maximur Liquid Limit (%) Ipastic Limit (%) 19 19 19 19.5 Plasticity Index (%) 19.5 19.5 19.5									
Project: Redfern Station Upgrade Lot Number: Location: Sydney Internal Test Request: 12385/T/74655 Supplied To: n/a Client Reference/s: 39525-06037 Area Description: Report Date / Page: 24/05/2019 Page Test Procedures: AS1289.3.1.2, AS 1289.3.3.1, AS1289.3.2.1, AS1289.3.4.1, AS1289.2.1.1 Sample Number 12385/S/606188 Sample Number 12385/S/606188 Sample Location Borehole BH02 Date Sampled 15/03/2019 Depth (m) 7m Sampled By Client Sampled Depth (m) 7m Sampled By Client Sampled Material Source Unknown Atterberg Preparation Dry Sieved Material Source Unknown Atterberg Limit Specification Minimum Test Result Specification Maximur Liquid Limit (%) 19 19 Plasticity Index (%) 19.5 19.5	Client:	Novo rail			Report Number:	12385/R/154840-2			
Location: Sydney Internal Test Request: 12385/T/74655 Supplied To: n/a Client Reference/s: 39525-06037 Area Description: Report Date / Page: 24/05/2019 Page Test Procedures: AS1289.3.1.2, AS 1289.3.3.1, AS1289.3.2.1, AS1289.3.4.1, AS1289.2.1.1 Sample Number 12385/S/606188 Sample Number 12385/S/606188 Sample Location Sampled Mothod Tested As Received Borehole BH02 Date Sampled 15/03/2019 Depth (m) 7m Sampled By Client Sampled Date Sampled Material Source Unknown Atterberg Preparation Dry Sieved Material Type - Material Description Sility CLAY Specification Minimum Test Result Atterberg Limit Specification Minimum Test Result Specification Maximur Liquid Limit (%) 19 19 19.5 Plasticity Index (%) 19.5 19.5 19.5	Client Address:	136 Railway Parade	, Everleigh,		Project Number:	12385/P/1203			
Supplied To: n/a Client Reference/s: 39525-06037 Area Description: Report Date / Page: 24/05/2019 Page Test Procedures: A\$1289.3.1.2, A\$ 1289.3.3.1, A\$1289.3.2.1, A\$1289.3.4.1, A\$1289.2.1.1 Sample Number 12385/S/606188 Sample Number 12385/S/606188 Sample Location Borehole BH02 Date Sampled 15/03/2019 Depth (m) 7m Sampled By Client Sampled Date Sampled Depth (m) 7m Material Date Tested 26/03/2019 Material Source Unknown Material Type - Material Type - Material Description Sility CLAY Material Type - - - - Material Description Sility CLAY Specification Minimum Test Result Specification Maximur Liquid Limit (%) 19 19 - - - - - Plastic Limit (%) 19.5 19.5 - - - - -	Project:	Redfern Station Upç	jrade		Lot Number:				
Area Description: Report Date / Page: 24/05/2019 Page Test Procedures: AS1289.3.1.2, AS 1289.3.3.1, AS1289.3.2.1, AS1289.3.4.1, AS1289.2.1.1 Sample Number 12385/S/606188 Sample Location Sample Number 12385/S/606188 Sample Location Borehole BH02 Date Sampled 15/03/2019 Depth (m) 7m Sampled By Client Sampled Depth (m) 7m Sampled Date Tested 26/03/2019 Material Source Unknown Atterberg Preparation Dry Sieved Material Type - Material Description Sility CLAY Specification Minimum Test Result Atterberg Limit Specification Minimum Test Result Specification Maximur Liquid Limit (%) 19 19 19.5 Plasticity Index (%) 19.5 19.5 19.5	Location:	Sydney			Internal Test Request:	12385/T/74655			
Test Procedures: AS1289.3.1.2, AS 1289.3.3.1, AS1289.3.2.1, AS1289.3.4.1, AS1289.2.1.1 Sample Number 12385/S/606188 Sampling Method Tested As Received Date Sampled 15/03/2019 Date Sampled By Client Sampled Date Tested 26/03/2019 Att. Drying Method Oven Dried Atterberg Preparation Dry Sieved Material Description Sility CLAY Atterberg Limits Results Atterberg Limit Specification Minimum Liquid Limit (%) 19 Plasticity Index (%) 19.5	Supplied To:	n/a			39525-06037				
Sample Number 12385/S/606188 Sample Location Sampling Method Tested As Received Borehole BH02 Date Sampled 15/03/2019 Depth (m) 7m Sampled By Client Sampled Depth (m) 7m Sampled By Client Sampled Depth (m) 7m Sampled By Client Sampled Material Source Unknown Att. Drying Method Oven Dried Material Source Unknown Atterberg Preparation Dry Sieved Material Type - Material Description Sility CLAY Specification Minimum Test Result Atterberg Limit Specification Minimum Test Result Specification Maximur Liquid Limit (%) 19 19 Plastic Limit (%) 39 19.5	Area Description:				Report Date / Page:	24/05/2019	Page 2 of 3		
Sampling Method Tested As Received Borehole BH02 Date Sampled 15/03/2019 Depth (m) 7m Sampled By Client Sampled Depth (m) 7m Date Tested 26/03/2019 Material Source Unknown Att. Drying Method Oven Dried Material Source Unknown Atterberg Preparation Dry Sieved Material Type - Material Description Sility CLAY Specification Minimum Test Result Sampled Limit (%) 19 19 19.5 Plasticity Index (%) 19.5 19.5 19.5	Test Procedures:	AS1289.3.1.2, AS 1	289.3.3.1, AS1289.3.2.1, AS1	289.3.4.1, A	S1289.2.1.1				
Date Sampled 15/03/2019 Date Sampled By Client Sampled Date Tested 26/03/2019 Att. Drying Method Oven Dried Material Source Unknown Atterberg Preparation Dry Sieved Material Description Sility CLAY Atterberg Limit Specification Minimum Test Results Atterberg Limit (%) Plastic Limit (%) 19 Plastic Limit (%) 19.5	Sample Number	12385/S/606188			Sampl	e Location			
Sampled By Client Sampled Date Tested 26/03/2019 Att. Drying Method Oven Dried Atterberg Preparation Dry Sieved Material Description Sility CLAY Atterberg Limit Specification Minimum Image: Client Sampled Specification Minimum Atterberg Limit Specification Minimum Image: Client Sampled 19 Plasticity Index (%) 19.5	Sampling Method	Tested As Received		Borehole		BH02			
Date Tested 26/03/2019 Att. Drying Method Oven Dried Atterberg Preparation Dry Sieved Material Description Sility CLAY Atterberg Limit Results Atterberg Limit Specification Minimum Liquid Limit (%) 19 Plasticity Index (%) 19.5	Date Sampled	15/03/2019		Depth	(m)	7m			
Att. Drying Method Oven Dried Material Source Unknown Atterberg Preparation Dry Sieved Material Type Material Description Sility CLAY Atterberg Limit Specification Minimum Test Result Specification Maximur Liquid Limit (%) 19 Plasticity Index (%) 39 Linear Shrinkage (%) 19.5	Sampled By	Client Sampled							
Atterberg Preparation Dry Sieved Material Type - Material Description Sility CLAY - Atterberg Limit Atterberg Limits Results Atterberg Limit Specification Minimum Liquid Limit (%) 58 Plastic Limit (%) 19 Plasticity Index (%) 39 Linear Shrinkage (%) 19.5	Date Tested	26/03/2019							
Material Description Sility CLAY Atterberg Limits Results Atterberg Limit Specification Minimum Test Result Specification Maximur Liquid Limit (%) 58 19 19 Plastic Limit (%) 39 39 19.5	Att. Drying Method	Oven Dried		Material Source Unknown					
Atterberg Limits Results Atterberg Limit Specification Minimum Test Result Specification Maximur Liquid Limit (%) 58 19 19 Plastic Limit (%) 39 39 19.5	Atterberg Preparation	Dry Sieved		Material Type -					
Atterberg Limit Specification Minimum Test Result Specification Maximum Liquid Limit (%) 58 Plastic Limit (%) 19 Plasticity Index (%) 39 Linear Shrinkage (%) 19.5	Material Description	Sility CLAY							
Liquid Limit (%) 58 Plastic Limit (%) 19 Plasticity Index (%) 39 Linear Shrinkage (%) 19.5			Atterberg L	imits Result	S				
Plastic Limit (%)19Plasticity Index (%)39Linear Shrinkage (%)19.5	Atterberg Limit		Specification Minimum		Test Result	Specification	Maximum		
Plasticity Index (%) 39 Linear Shrinkage (%) 19.5	Liquid Limit (%)				58				
Linear Shrinkage (%) 19.5	Plastic Limit (%)				19				
	Plasticity Index (%)				39				
Linear Shrinkage Mould Length / Defects: Mould Length: 250.3mm / N/A	Linear Shrinkage (%)				19.5				
	Linear Shrinkage Mou	Id Length / Defects:	Mould Length: 250.3mm / N/	A					

Remarks

Re-Issued Report Replaces Report No 12385/R/154840-1 (reason: In-correct borehole number supplied.).

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: Corporate Site Number: 1986 12385

Pal Dear

Address:

Unit 2/4 Kellogg Road, Glendenning NSW 2761
 Laboratory
 Glendenning Laboratory

 Phone:
 02 4577 3555

 Fax:
 02 4577 9055

 Email:
 Sydney@constructionsciences.net

ATTERBERG LIMITS REPORT

Client:	Novo rail			Report Number:	12385/R/154840-2			
Client Address:	136 Railway Parade	, Everleigh,		Project Number:	12385/P/1203			
Project:	Redfern Station Upg	rade		Lot Number:				
Location:	Sydney			Internal Test Request:				
Supplied To:	n/a			Client Reference/s:	39525-06037			
Area Description:				Report Date / Page:	24/05/2019	Page 3 of 3		
Test Procedures:	AS1289.3.1.2, AS 12	289.3.3.1, AS1289.3.2.1, AS12	289.3.4.1, A	S1289.2.1.1				
Sample Number	12385/S/606189			Sampl	e Location			
Sampling Method	Tested As Received		Borehole		BH02			
Date Sampled	15/03/2019		Depth	(m)	8-8.2m			
Sampled By	Client Sampled							
Date Tested	26/03/2019							
Att. Drying Method	Oven Dried		Material Source Unknown					
Atterberg Preparation	Dry Sieved		Material Type -					
Material Description	Silty CLAY							
		Atterberg L	imits Result	S				
Atterberg Limit		Specification Minimum		Test Result	Specificatio	n Maximum		
Liquid Limit (%)				50				
Plastic Limit (%)				20				
Plasticity Index (%)				30				
Linear Shrinkage (%)				15.0				
Linear Shrinkage Mou	ld Length / Defects:	Mould Length: 125.4mm / N/	Ą					

Remarks

Re-Issued Report Replaces Report No 12385/R/154840-1 (reason: In-correct borehole number supplied.).

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: Corporate Site Number:

1986 12385

Pal Dear

Construction Sciences Pty Ltd ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road,

Glendenning NSW 2761

Laboratory: Glendenning Laboratory Phone: 02 4577 3555 Fax: 02 4577 9055 Email: Sydney@constructionsciences.net

POINT LOAD STRENGTH INDEX REPORT

Client:	Novo rail			Report Number:	12385/R/163272-2	
Client Address:	136 Railwa	136 Railway Parade, Everleigh,		Project Number:	12385/P/1203	
Project:	Redfern Station Upgrade			Lot Number:		
Location:	Sydney	Sydney		Internal Test Request:	12385/T/78773	
Supplied To:	n/a			Client Reference/s:	39525-06037	
Area Description:				Report Date / Page:	24/05/2019	Page 1 of 2
Test Procedures:		AS4133.4.1				

Test Flocedules.	A34133.4.1			
Sample Number	12385/S/640802	12385/S/640803	12385/S/640804	12385/S/640805
ID / Client ID	-	-	-	
Lot Number	-	-	-	-
Date / Time Tested	15/03/2019	15/03/2019	15/03/2019	15/03/2019
Material Source	Not Supplied	Not Supplied	Not Supplied	Not Supplied
Material Type	-	-	-	-
Sampling Method				
Borehole Number	BH01	BH01	BH01	BH01
Section Tested (m)	8.0	9.26	9.9	11.48
Borehole	BH02	BH02	BH02	BH02
Depth (m)	8.0	9.26	9.9	11.48
Manner of Testing	Axial	Diametral	Diametral	Diametral
Failure Mode	Single Shear	Single Shear	Single Shear	Single Shear
Storage History	n/a	n/a	n/a	n/a
Moisture Condition	Dry/Moist	Dry/Moist	Dry/Moist	Dry/Moist
Lithology	n/a	n/a	n/a	n/a
Weakness Plane (Orientation)	n/a	n/a	n/a	n/a
Weakness Plane (Nature)	n/a	n/a	n/a	n/a
Uncorrected Point Load Strength (MPa) - Is	0.61	0.24	0.47	0.22
Point Load Strength Index (MPa) - Is(50)	0.6	0.23	0.46	0.22
Specimen Remarks	n/a	n/a	n/a	n/a

Remarks

Re-Issued Report Replaces Report No 12385/R/163272-1 (reason: Borehole number added).

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: Corporate Site Number: 1986 12385

Pal Dear

Construction Sciences Pty Ltd ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road,

Glendenning NSW 2761

Laboratory: Glendenning Laboratory Phone: 02 4577 3555 Fax: 02 4577 9055 Email: Sydney@constructionsciences.net

POINT LOAD STRENGTH INDEX REPORT

Client:	Novo rail			Report Number:	12385/R/163272-2	
Client Address:	136 Railwa	ay Parade, Everleigh,		Project Number:	12385/P/1203	
Project:	Redfern S	tation Upgrade		Lot Number:		
Location:	Sydney			Internal Test Request:	12385/T/78773	
Supplied To:	n/a	n/a		Client Reference/s:	39525-06037	
Area Description:				Report Date / Page:	24/05/2019	Page 2 of 2
Test Procedures:		AS4133.4.1				

	A54133.4.1			
Sample Number	12385/S/640806	12385/S/640807	12385/S/640808	
ID / Client ID	-	-	-	
Lot Number	-	-	-	
Date / Time Tested	15/03/2019	15/03/2019	15/03/2019	
Material Source	Not Supplied	Not Supplied	Not Supplied	
Material Type	-	-	-	
Sampling Method				
Borehole Number	BH01	BH01	BH01	
Section Tested (m)	11.9	12.6	13.0	
Borehole	BH02	BH02	BH02	
Depth (m)	11.9	12.6	13.0	
Manner of Testing	Axial	Axial	Axial	
Failure Mode	Single Shear	Axial Splitting	Single Shear	
Storage History	n/a	n/a	n/a	
Moisture Condition	Dry/Moist	Dry	Dry/Moist	
Lithology	n/a	n/a	n/a	
Weakness Plane (Orientation)	n/a	n/a	n/a	
Weakness Plane (Nature)	n/a	n/a	n/a	
Uncorrected Point Load Strength (MPa) - Is	0.98	0.44	0.26	
Point Load Strength Index (MPa) - Is(50)	0.92	0.44	0.26	
Specimen Remarks	n/a	n/a	n/a	

Remarks

Re-Issued Report Replaces Report No 12385/R/163272-1 (reason: Borehole number added).

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: Corporate Site Number: 1986 12385

Pal Dear

Address: Unit 2/4 Kellogg Road,

Glendenning NSW 2761

 Laboratory
 Glendenning Laboratory

 Phone:
 02 4577 3555

 Fax:
 02 4577 9055

 Email:
 Sydney@constructionsciences.net

POINT LOAD STRENGTH INDEX REPORT

Client:	Novo rail	Report Number: 12385/R/154820-2
Client Address:	136 Railway Parade, Everleigh,	Project Number: 12385/P/1203
Project:	Redfern Station Upgrade	Lot Number:
Location:	Sydney	Internal Test Request: 12385/T/74655
Supplied To:	n/a	Client Reference/s: 39525-06037
Area Description:		Report Date / Page: 24/05/2019 Page 1 of 2
Test Procedures:	AS4133.4.1	

Test Procedures:	AS4133.4.1			
Sample Number	12385/S/606190	12385/S/606192	12385/S/606193	12385/S/606194
ID / Client ID	-	-	-	-
Lot Number	-	-	-	-
Date / Time Tested	15/03/2019	15/03/2019	15/03/2019	15/03/2019
Material Source	Unknown	Unknown	Unknown	Unknown
Material Type	-	-	-	-
Sampling Method	Tested As Received	Tested As Received	Tested As Received	Tested As Received
Borehole Number	BH01	BH01	BH01	BH01
Section Tested (m)	8.99-9.06	10.32-10.60	11.57-11.61	11.81-11.86
Borehole	BH02	BH02	BH02	BH02
Depth (m)	8.99-9.06m	9.65-9.72m	11.57-11.61m	11.81-11.86m
Manner of Testing	Axial	Axial	Axial	Diametral
Failure Mode	Single Shear	Single Shear	Single Shear	Single Shear
Storage History	n/a	n/a	n/a	n/a
Moisture Condition	Dry/Moist	Dry/Moist	Dry/Moist	Dry/Moist
Lithology	n/a	n/a	n/a	n/a
Weakness Plane (Orientation)	n/a	n/a	n/a	n/a
Weakness Plane (Nature)	n/a	n/a	n/a	n/a
Uncorrected Point Load Strength (MPa) - Is	0.082	0.035	0.15	0.029
Point Load Strength Index (MPa) - Is(50)	0.084	0.037	0.14	0.029
Specimen Remarks	n/a	n/a	n/a	n/a

Remarks

Re-Issued Report Replaces Report No 12385/R/154820-1 (reason: In-correct borehole nuber supplied.).

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: Corporate Site Number: 1986 12385

Pal Dear

Address: Unit 2/4 Kellogg Road,

Glendenning NSW 2761

 Laboratory
 Glendenning Laboratory

 Phone:
 02 4577 3555

 Fax:
 02 4577 9055

 Email:
 Sydney@constructionsciences.net

POINT LOAD STRENGTH INDEX REPORT

Client:	Novo rail	Report Number:	12385/R/154820-2	
Client Address:	136 Railway Parade, Everleigh,	Project Number:	12385/P/1203	
Project:	Redfern Station Upgrade	Lot Number:		
Location:	Sydney	Internal Test Request:	12385/T/74655	
Supplied To:	n/a	Client Reference/s:	39525-06037	
Area Description:		Report Date / Page:	24/05/2019	Page 2 of 2
Test Procedures:	AS4133.4.1			

Test Procedures:	AS4133.4.1			
Sample Number	12385/S/606195	12385/S/606197	12385/S/606198	
ID / Client ID	-	-	-	
Lot Number	-	-	-	
Date / Time Tested	15/03/2019	15/03/2019	15/03/2019	
Material Source	Unknown	Unknown	Unknown	
Material Type	-	-	-	
Sampling Method	Tested As Received	Tested As Received	Tested As Received	
Borehole Number	BH01	BH01	BH01	
Section Tested (m)	12.0-12.07	13.27-13.32	13.50-13.61	
Borehole	BH02	BH02	BH02	
Depth (m)	12-12.07m	13.27-13.32m	13.5-16.61	
Manner of Testing	Diametral	Diametral	Diametral	
Failure Mode	Single Shear	Single Shear	Single Shear	
Storage History	n/a	n/a	n/a	
Moisture Condition	Dry/Moist	Dry/Moist	Dry/Moist	
Lithology	n/a	n/a	n/a	
Weakness Plane (Orientation)	n/a	n/a	n/a	
Weakness Plane (Nature)	n/a	n/a	n/a	
Uncorrected Point Load Strength (MPa) - Is	0.012	0.12	0.15	
Point Load Strength Index (MPa) - Is(50)	0.012	0.11	0.15	
Specimen Remarks	n/a	n/a	n/a	

Remarks

Re-Issued Report Replaces Report No 12385/R/154820-1 (reason: In-correct borehole nuber supplied.).

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: Corporate Site Number: 1986 12385

Pal Dear

Brisbane 346A Bilsen Road, Geebung QLD 4034 Ph: +61 7 3265 5656

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

			IPRESSIVE S Test Method: AS 4133.4			
Client	Construction Science		1 651 WEUTOU: AS 4133.4	.2.2 a að 413	Report No.	19040435-UCS
					This replaces	previous report dated 16/4/19
Address	Unit 2/4 Kellogg Road	d Glendenni	ing NSW 2761		Test Date	15/04/2019
					Report Date	24/05/2019
Project		3 - Redfern Station Upgrade		1		
Client ID	12385/S/616273 - BH	12			Depth (m)	Not Supplied
Description						
Sample Type	e Single Indivi	dual Rock Co	ore Specimen			
			TEST DE	TAILS		
Average San	nple Diameter (mm)		51.5	Moistur	e Content (%)	7.2
Sample Heig	ht (mm)		140.9	Wet De	nsity (t/m³)	2.23
Duration of T	「est (min)		18:57	Dry Der	nsity (t/m³)	2.08
Rate of Displ	lacement (mm/min)		0.10	Bedding	g (°)	15
Mode of Failu	ure	Shear	and Defect	TestAr		50 kN Load Cell in Compressi
Rupture Angl	le (°)		80	Test Ap	paratus	Machine
<u> </u>			UCS (MPa)	1.60		
			Before and Af			
			Belore and Al		5	
	CLIF	NIT.	Construction Scien	none Pty I tr		
	CLIE	IECT:	12385/P/1203 - Red		BEFORE TEST	-
		ANDLE No.	Station Upgrade		DATE: 15/04/19	
		SAMPLE No. EHOLE:	19040435 12385/S/616273 - S	Sampled:	DEPTH: Not Suppl	ied
			15/03/2019			
			and the			
				6 m		
			Constantian Sala	The second secon		
	CLIE PRO		Construction Scier 12385/P/1203 - Re			
	PRO.	JECT:	12385/P/1203 - Re Station Upgrade		AFTER TEST	
	PRO- LAB		12385/P/1203 - Re	dfern		
	PRO- LAB	JECT: SAMPLE No.	12385/P/1203 - Re Station Upgrade 19040435	dfern	AFTER TEST DATE: /5/04/19	
	PRO- LAB	JECT: SAMPLE No.	12385/P/1203 - Re Station Upgrade 19040435 12385/S/616273 - S	dfern	AFTER TEST DATE: /5/04/19	
	PRO- LAB	JECT: SAMPLE No.	12385/P/1203 - Re Station Upgrade 19040435 12385/S/616273 - S	dfern	AFTER TEST DATE: /5/04/19	
	PRO- LAB	JECT: SAMPLE No.	12385/P/1203 - Re Station Upgrade 19040435 12385/S/616273 - S	dfern	AFTER TEST DATE: /5/04/19	
	PRO- LAB	JECT: SAMPLE No.	12385/P/1203 - Re Station Upgrade 19040435 12385/S/616273 - S	dfern	AFTER TEST DATE: /5/04/19	
	PRO- LAB	JECT: SAMPLE No.	12385/P/1203 - Re Station Upgrade 19040435 12385/S/616273 - S	dfern	AFTER TEST DATE: /5/04/19	
	PRO- LAB	JECT: SAMPLE No.	12385/P/1203 - Re Station Upgrade 19040435 12385/S/616273 - S	dfern	AFTER TEST DATE: /5/04/19	
	PRO- LAB	JECT: SAMPLE No.	12385/P/1203 - Re Station Upgrade 19040435 12385/S/616273 - S	dfern	AFTER TEST DATE: /5/04/19	
	PRO. LAB BOR	JECT: SAMPLE No.	12385/P/1203 - Re Station Upgrade 19040435 12385/S/616273 - S	dfern	AFTER TEST DATE: /5/04/19	
ored and tested	S: as received	JECT: SAMPLE No.	12385/P/1203 - Re Station Upgrade 19040435 12385/S/616273 - S	dfern	AFTER TEST DATE: /5/04/19	ied Photo's not to scale
ored and tested mple/s supplied A	S: as received d by the client Accredited for compliance with ISO/I	JECT: SAMPLE No. EHOLE: EC 17025 - Testin	12385/P/1203 - Re Station Upgrade 19040435 12385/S/616273 - S 15/03/2019	edfern Sampled:	AFTER TEST DATE: /5/04/19	ied Photo's not to scale
ored and tested mple/s supplied A	S: as received d by the client	JECT: SAMPLE No. EHOLE: EC 17025 - Testin ments included in t	12385/P/1203 - Re Station Upgrade 19040435 12385/S/616273 - S 15/03/2019	edfern Sampled:	AFTER TEST DATE: 15/04/19 DEPTH: Not Suppl	ied Photo's not to scale
	S: as received d by the client Accredited for compliance with ISO/I e tests, calibrations, and/or measure	JECT: SAMPLE No. EHOLE: EC 17025 - Testin ments included in t	12385/P/1203 - Re Station Upgrade 19040435 12385/S/616273 - S 15/03/2019	edfern Sampled:	AFTER TEST DATE: 15/04/19 DEPTH: Not Suppl	ied Photo's not to scale

Construction Sciences Pty Ltd 2/4 Kellogg Rd Glendenning NSW 2761

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Patrick Deasy

Report Project name Project ID Received Date 646854-S REDFERN STATION UPGRADE 12385/P/1203 Mar 22, 2019

mgt

Client Sample ID			12385/S/60618 8
Sample Matrix			Soil
Eurofins mgt Sample No.			S19-Ma30996
Date Sampled			Mar 15, 2019
Test/Reference	LOR	Unit	
Chloride	10	mg/kg	68
Conductivity (1:5 aqueous extract at 25°C as rec.)	5	uS/cm	90
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.0
Resistivity*	0.5	ohm.m	560
Sulphate (as SO4)	10	mg/kg	83
% Moisture	1	%	11

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

mgt

Description	Testing Site	Extracted	Holding Time
Chloride	Sydney	Mar 25, 2019	28 Day
- Method: E045 /E047 Chloride			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	Mar 25, 2019	7 Day
- Method: LTM-INO-4030 Conductivity			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Mar 25, 2019	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Sulphate (as SO4)	Sydney	Mar 25, 2019	28 Day
- Method: E045 Anions by Ion Chromatography			
% Moisture	Sydney	Mar 22, 2019	14 Day
- Method: LTM-GEN-7080 Moisture			

	mgt
NS	
rofi	
eu	

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Construction Sciences Pty Ltd

Company Name: Address:

2/4 Kellogg Rd Glendenning NSW 2761

Melbourne 6 Monterey Road Dandenengs South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

 Sydney
 Brisbane

 Unit F3. Building F
 1/21 Smallwood Place

 Unit F3. Road
 Muratire QLD 4172

 Lane Cove West NSW 2066
 Phone : +617 3902 4600

 Phone : -61 2 9900 8400
 NATA # 1261 Site # 12074

Perth 291 Leach Highway Kewdale WA 6105 Phone : +618 9251 9600 NATA # 1261 Site # 22736
 Order No.:
 Received:
 Mar 22, 2019 12:40 PM

 Report #:
 646854
 Due:
 Mar 29, 2019

 Report #:
 02 9854 1700
 Due:
 Figurity:
 5 Day

 Fax:
 Contact Name:
 Patrick Deasy

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Prc Prc	Project Name: Project ID:	REDFERN ST 12385/P/1203	REDFERN STATION UPGRADE 12385/P/1203	iRADE				
		Sa	Sample Detail			Aggressivity Soil Set	Moisture Set	
Melb	Melbourne Laboratory - NATA Site # 1254 & 14271	ry - NATA Site	# 1254 & 142	71				
Sydn	Sydney Laboratory - NATA Site # 18217	NATA Site # 1	8217			×	×	
Brist	Brisbane Laboratory - NATA Site # 20794	/ - NATA Site #	20794					
Perth	Perth Laboratory - NATA Site # 23736	ATA Site # 237	36					
Extel	External Laboratory							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	12385/S/6061 88	Mar 15, 2019		Soil	S19-Ma30996	×	×	
Test	Test Counts					-	-	

mgt

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre
ppm: Parts per million	ppb: Parts per billion
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units

ug/L: micrograms per litre %: Percentage MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.2 2018
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

mgt

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Chloride			mg/kg	< 10			10	Pass	
Sulphate (as SO4)			mg/kg	< 10			10	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Chloride	S19-Ma30996	CP	%	110			70-130	Pass	
Sulphate (as SO4)	S19-Ma30996	CP	%	108			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chloride	S19-Ma30996	CP	mg/kg	68	68	<1	30%	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	S19-Ma30996	СР	uS/cm	90	94	5.0	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S19-Ma30996	СР	pH Units	5.0	5.0	pass	30%	Pass	
Resistivity*	S19-Ma30996	CP	ohm.m	560	530	5.0	30%	Pass	
Sulphate (as SO4)	S19-Ma30996	CP	mg/kg	83	88	6.0	30%	Pass	
% Moisture	N19-Ma26340	NCP	%	7.4	7.8	5.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	No
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

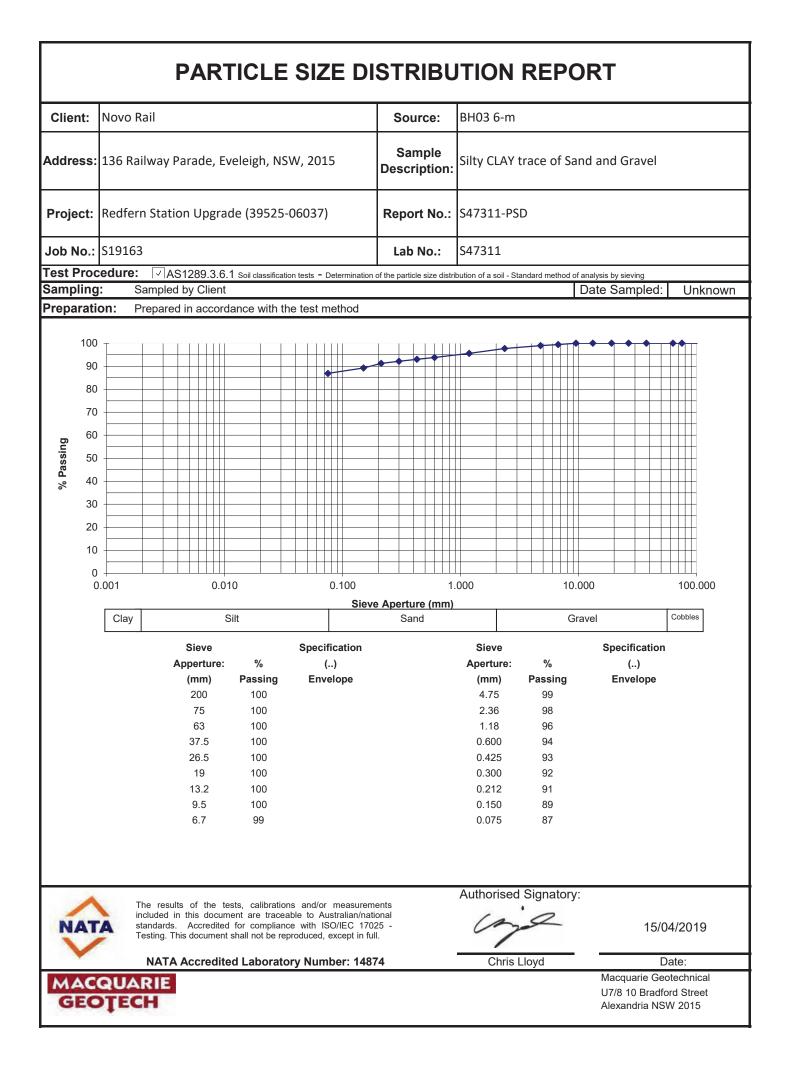
Nibha Vaidya Gabriele Cordero Analytical Services Manager Senior Analyst-Inorganic (NSW)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.


	MOIST		ENT TE	ST REPORT	
Client:	Novo Rail		Job No:	S19163	
Address:	136 Railway Parade, Eveleigh, NS	SW, 2015	Report No:	S47309-MC	
Project:	Redfern Station Upgrade (39525-(06037)			
Test Proce	AS4133 1.1.1		ation of the moisture cor rials (Standard method)	tent of a soil - Oven drying method (Standard method). Itent of rock - Oven drying method (standard method)	
Sampling:	Sampled by Client			Date Sampled:	Unknown
Preparatio Sample No.	n: Prepared in accordance Source	with the test method	Sample De	scription	Moisture Content %
S47309	BH03 3-m		Sample De Silty C		18.2
S47311	BH03 6-m	Silt	y CLAY trace of	12.9	
Notes:	The results of the tests, calibrations a in this document are traceable to Accredited for compliance with ISC document shall not be reproduced, exc	Australian/national standards. D/IEC 17025 - Testing. This		Authorised Signatory:	15/04/2019
MAC	NATA Accredited Laborator	y Number: 14874		Chris Lloyd	Date: Macquarie Geotechnical U7/8 10 Bradford Street Alexandria NSW 2015

	SOIL CLASSIF	ICATION	REPORT					
Client	Novo Rail	Source	BH03 1.5-m					
Address	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description	Silty CLAY					
Project	Redfern Station Upgrade (39525-06037)	Report No	S47308-PI					
Job No	S19163	Lab No	S47308					
Test Proce Sam Prepar	AS1289 3.1.1 Soil classification tests - Determination of AS1289 3.1.2 Soil classification tests - Determination of AS1289 3.2.1 Soil classification tests - Determination of AS1289 3.3.1 Soil classification tests - Calculation of the AS1289 3.4.1 Soil classification tests - Determination of Sampled by Client	the liquid limit of a soil - Four p the liquid limit if a soil - One po the plastic limit of a soil - Stand : plasticity Index of a soil	int Casagrande method (subsidiary method) lard method	led: Unknown				
	Liquid Limit (%) 64 Linear Shrinkage (%) - Plastic Limit (%) 25 Plasticity Index 39							
	Plasticity Chart for Classification	40 50 Liquid Limit % E: Dry Sieved C: Oven Dried	Soils	80				
NATA	tes The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards Accredited for compliance with ISO/IEC 17025 -Testing. This document shall not be reproduced, except in full.	3.	Authorised Signatory:	15/04/2019				
GEOTE	NATA Accredited Laboratory Number: 14874		Chris Lloyd	Date: Macquarie Geotechnical U7/8 10 Bradford Street Alexandria NSW 2015				

	SOIL CLASSIF	ICATION	REPORT	
Client	Novo Rail	Source	BH03 3-m	
Address	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description	Silty CLAY	
Project	Redfern Station Upgrade (39525-06037)	Report No	S47309-PI	
Job No	S19163	Lab No	S47309	
	AS1289 3.1.1 Soit classification tests - Determination of AS1289 3.1.2 Soit classification tests - Determination of AS1289 3.1.2 Soit classification tests - Determination of AS1289 3.3.1 Soit classification tests - Calculation of the AS1289 3.4.1 Soit classification tests - Determination of AS1289 3.4.1 Soit classification tests - Determination of Sampled by Client	the liquid limit of a soil - Four p the liquid limit if a soil - One po the plastic limit of a soil - Stand plasticity Index of a soil	int Casagrande method (subsidiary method) lard method	led: Unknown
Prepar	ation: Prepared in accordance with the test method			
	Liquid Limit (%) 60 Plastic Limit (%) 22	Linear Shri Plast	inkage (%) icity Index 38	
	Plasticity Chart for Classification	40 50 Liquid Limit % E: Dry Sieved r: Air Dried	Soils	80
NATA	The results of the tests, calibrations and/or measurements included i this document are traceable to Australian/national standards Accredited for compliance with ISO/IEC 17025 -Testing. Thi document shall not be reproduced, except in full.	5.	Authorised Signatory:	15/04/2019
GEOTE	NATA Accredited Laboratory Number: 14874		Chris Lloyd	Date: Macquarie Geotechnical U7/8 10 Bradford Street Alexandria NSW 2015

	SOIL CLASSIF	ICATION	REPORT	
Client	Novo Rail	Source	BH03 4.5-m	
Address	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description	Silty CLAY	
Project	Redfern Station Upgrade (39525-06037)	Report No	S47310-PI	
Job No	S19163	Lab No	S47310	
Test Proce Sam Prepar	AS1289 3.1.1 Soil classification tests - Determination o AS1289 3.1.2 Soil classification tests - Determination o AS1289 3.2.1 Soil classification tests - Determination o AS1289 3.3.1 Soil classification tests - Calculation of th AS1289 3.4.1 Soil classification tests - Determination o Sampled by Client	f the liquid limit of a soil - Four p f the liquid limit if a soil - One poi f the plastic limit of a soil - Stand e plasticity Index of a soil	nt Casagrande method (subsidiary method) ard method	bled: Unknown
	Liquid Limit (%) 65 Plastic Limit (%) 24	Linear Shri Plast	nkage (%) icity Index 41	
	Plasticity Chart for Classification	40 50 Liquid Limit %	Soils	80
N	Soil Histor Soil Condition	n: N/A	Authorised Signatory:	
NATA	Accredited for compliance with ISO/IEC 17025 -Testing. Th document shall not be reproduced, except in full.	15	Christland	15/04/2019
GEOTE	ARIE		Chris Lloyd	Date: Macquarie Geotechnical U7/8 10 Bradford Street Alexandria NSW 2015

	SOIL CLASSIF	ICATION	REPORT	
Client	Novo Rail	Source	BH03 6-m	
Address	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description	Silty CLAY trace of Sand and G	ravel
Project	Redfern Station Upgrade (39525-06037)	Report No	S47311-PI	
Job No	S19163	Lab No	S47311	
	AS1289 3.1.1 Soit classification tests - Determination of AS1289 3.1.2 Soit classification tests - Determination of AS1289 3.2.1 Soit classification tests - Determination of AS1289 3.3.1 Soit classification tests - Calculation of the AS1289 3.4.1 Soit classification tests - Determination of Sampled by Client	the liquid limit of a soil - Four p the liquid limit if a soil - One po the plastic limit of a soil - Stand : plasticity Index of a soil	int Casagrande method (subsidiary method) lard method	led: Unknown
Prepar	Ation: Prepared in accordance with the test method Liquid Limit (%) 39 Plastic Limit (%)	Linear Shri Plast	inkage (%) -	
	Plasticity Chart for Classification	40 50 Liquid Limit %	Soils	80
No	Soil Condition		Authorised Signatory:	
NATA	The results of the tests, calibrations and/or measurements included i this document are traceable to Australian/national standards Accredited for compliance with ISO/IEC 17025 -Testing. Thi document shall not be reproduced, except in full.	3.	minored digitatory.	15/04/2019
MACQU. GEOTE	NATA Accredited Laboratory Number: 14874		Chris Lloyd	Date: Macquarie Geotechnical U7/8 10 Bradford Street Alexandria NSW 2015

	F	POINT LC	AD STRE	INGTH	INDE	K RI	EPOR	Т	
Client:	Novo Rail			Moisture Content Condition:	As receive	d			
Address:	136 Railway Parade, E	veleigh, NSW, 201	5	Storage History:	Core boxes	6			
Project:	Redfern Station Upgra	de (39525-06037)		Report No:	S47312-PL				
Job No:	S19163			Date Tested:	15/04/2019)			
Test Proce	edure: 🗸	AS4133 4.1	Rock strength tests - Determina	tion of point load strength	index				
Sampling:						Date	Sampled:		Unknown
Preparatio	Prepared in	accordance with the t	est method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Failure Mode
647212		Chala	Diametral	-	47.0	0.18	0.08	0.08	1
S47312	BH03 6.77-6.85m	Shale	Axial	51.2	13.0	0.23	0.27	0.21	1
647040			Diametral	-	45.0	0.13	0.06	0.06	1
S47313	BH03 7.39-7.46m	Shale	Axial	49.9	32.0	0.12	0.06	0.06	1
			Diametral	-	46.0	0.09	0.04	0.04	2
S47314	BH03 7.53-7.61m	Shale	Axial	50.3	29.0	0.18	0.10	0.09	1
S47315		Chala	Diametral	-	47.0	0.13	0.06	0.06	1
547315	BH03 7.67-7.75m	Shale	Axial	50.9	35.0	0.15	0.06	0.06	1
S47316		Shala	Diametral	-	47.0	0.17	0.07	0.07	1
547510	BH03 8.25-8.31m	Shale	Axial	51.1	27.0	0.10	0.06	0.05	1
S47317	BH03 9-9.1m	Shale	Diametral	-	40.0	0.09	0.06	0.05	1
347317	BH05 9-9.111	Shale	Axial	43.6	28.0	0.08	0.05	0.05	1
S47318	BH03 9.74-9.82m	Shale	Diametral	-	47.0	0.04	0.02	0.02	1
547510	Britts 3.74-3.82m	Shale	Axial	53.3	36.0	0.03	0.01	0.01	1
S47319	BH03 10.25-10.31m	Shale	Diametral	-	48.0	0.06	0.03	0.03	1
			Axial	51.5	22.0	0.26	0.18	0.16	1
S47320	BH03 10.79-10.88m	Shale	Diametral	-	48.0	0.08	0.03	0.03	1
			Axial	50.6	27.0	0.20	0.11	0.10	1
S47321	BH03 11.38-11.43m	Shale	Diametral	-	44.0	0.10	0.05	0.05	1
			Axial	47.9	22.0	0.11	0.08	0.07	1
 Failure Modes 1 - Fracture through fabric of specimen oblique to bedding, not influenced by weak planes. 2 - Fracture along bedding. 3 - Fracture influenced by pre-existing plane, microfracture, vein or chemical alteration. 4 - Chip or partial fracture. 									
			asurements included in this		Authorise	d Signa	tory:		
NAT	document are tracea	ble to Australian/national	standards. Accredited for t shall not be reproduced	-	4	200	2		15/04/2019
	NATA Accredite	d Laboratory Numb	er: 14874		Chri	s Lloyd			Date
GEO					_		_	_	Macquarie Geotechr U7/8 10 Bradford Street Alexandria NSW

	F	POINT LC	AD STRE	NGTH	INDE	X RI	EPOR	Т	
Client:	Novo Rail			Moisture Content Condition:	As receive	d			
Address:	136 Railway Parade, E	veleigh, NSW, 201	5	Storage History:	Core boxes	6			
Project:	Redfern Station Upgra	de (39525-06037)		Report No:	S47322-PL	-			
Job No:	S19163			Date Tested:	15/04/2019)			
Test Proce	edure:	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index				
Sampling:		Client				Date	Sampled:		Unknown
Preparatio	Prepared in	accordance with the	test method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Failure Mode
647222		Chala	Diametral	-	45.0	0.15	0.07	0.07	1
S47323	BH03 12.44-12.53m	Shale	Axial	49.4	25.0	0.17	0.10	0.09	1
S47324	DU02 12 11 12 15m	Shala	Diametral	-	48.0	0.17	0.07	0.07	1
347324	BH03 13.11-13.15m	Shale	Axial	51.2	28.0	0.53	0.29	0.27	1
S47325	BH03 13.8-13.86m	Shale	Diametral	-	48.0	0.56	0.24	0.24	1
347323	6105 15.8-15.8011	Shale	Axial	51.4	31.0	1.75	0.86	0.82	1
S47326	PH02 14 EE 14 64m	3 14.55-14.64m Shale	Diametral	-	48.0	0.19	0.08	0.08	2
347320	БПОЗ 14.33-14.04III		Axial	51.5	24.0	1.68	1.07	0.96	1
S47327	BH03 15.91-15.97m	Shale	Diametral	-	48.0	0.46	0.20	0.20	1
347327	61103 13.51-13.5711	Shale	Axial	51.5	34.0	1.09	0.49	0.48	1
S47328	BH03 16.11-16.24m	Shale	Diametral	-	49.0	0.16	0.06	0.06	1
517520	51103 10.11 10.2411	Share	Axial	51.6	30.0	0.86	0.44	0.41	1
<u>Failure</u>		e through fabric of e along bedding.	specimen oblique t	o bedding, not	influenced	by weal	k planes.		
			-existing plane, mic	rofracture vei	n or chemic	al altor:	ation		
		partial fracture.	existing plane, mic	ionacture, ver	If of chemic	araiter			
					Authorise	d Signa	itory:		
NAT	document are tracea	ble to Australian/national	asurements included in this standards. Accredited for t shall not be reproduced,		4	j	2		15/04/2019
	NATA Accredite	d Laboratory Numb	er: 14874		Chri	s Lloyd			Date
GEO	TECH								Macquarie Geotechr U7/8 10 Bradford Street Alexandria NSW

Uniaxial Compressive Strength				
Client:	Novo Rail	Sample Source:	BH03 7.26-7.37m	
Address:	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description:	Shale	
Project:	Project: Redfern Station Upgrade (39525- 06037) Report No.:		S47313-UCS	
Job No.:	S19163	Lab No.:	S47313	
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa	
Testing Machine:	: Matest 2000 kN Compression Machine Sample Curing: -		-	
Sampling Method:	Sampled by Client	Date Sampled:	Unknown	
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition	

Uniaxial Compressive Strength 0.99 MPa							
Date Tested:	13/04/2019	Moisture Content:	12.0	%			
Specimen Height:	96.3 mm	Duration of Test:	604	seconds			
Average Specimen Diameter:	50.6 mm	Rate of Displacement:	< 0.1	mm/min			
Failure Type: Tensile don	ninated	-					
Other Pertinent Observations:							
Deviation fromTest specimen length to diameter ratio falls outside of standard limitations of 2.5-3.0.Standard:							
Authorised Signatory: The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing. This document shall not be reproduced, except in full. Chris Lloyd							
NATA Accredited Laboratory Number: 14874 Date: 15/04/2019							
MACQUARIE Macquarie Geotechnica							
GEOŢECH	U7/8 10 Bra Alexandria I	dford Street NSW 2015					

Uniaxial Compressive Strength				
Client:	Novo Rail	Sample Source:	BH03 8.35-8.45m	
Address:	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description:	Shale	
Project:	Project: Redfern Station Upgrade (39525- 06037) Report No.:		S47316-UCS	
Job No.:	S19163	Lab No.:	S47316	
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa	
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-	
Sampling Method:	Sampled by Client	Date Sampled:	Unknown	
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition	

Uniaxial Compressive Strength 0.99 MPa						
Date Tested:	13/04/2019	Moisture Content:	12.6	%		
Specimen Height:	82.7 mm	Duration of Test:	604	seconds		
Average Specimen Diameter:	50.8 mm	Rate of Displacement:	< 0.1	mm/min		
Failure Type: Tensile do	minated					
Other Pertinent Observations:						
Deviation from Test specir Standard:						
			Authorised Signatory:			
in this document are t	calibrations and/or measurement raceable to Australian/national	standards.	120			
Accredited for complian document shall not be re	nce with ISO/IEC 17025 - Tes produced, except in full.	ting. This	m			
•		-	Christland	_		
NATA Accredited Labor	atory Number: 14874	Date:	Chris Lloyd 15/04/2019			
MACOULADIE		Geotechnical				
MACQUARIE				adford Street		
GEOŢECH				NSW 2015		

Uniaxial Compressive Strength				
Client:	Novo Rail	Sample Source:	BH03 9.96-10.11m	
Address:	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description:	Shale	
Project:	Project: Redfern Station Upgrade (39525- 06037) Report No.:		S47320-UCS	
Job No.:	S19163	Lab No.:	S47320	
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa	
Testing Machine:	Matest 2000 kN Compression Machine	-		
Sampling Method:	Sampled by Client	Date Sampled:	Unknown	
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition	

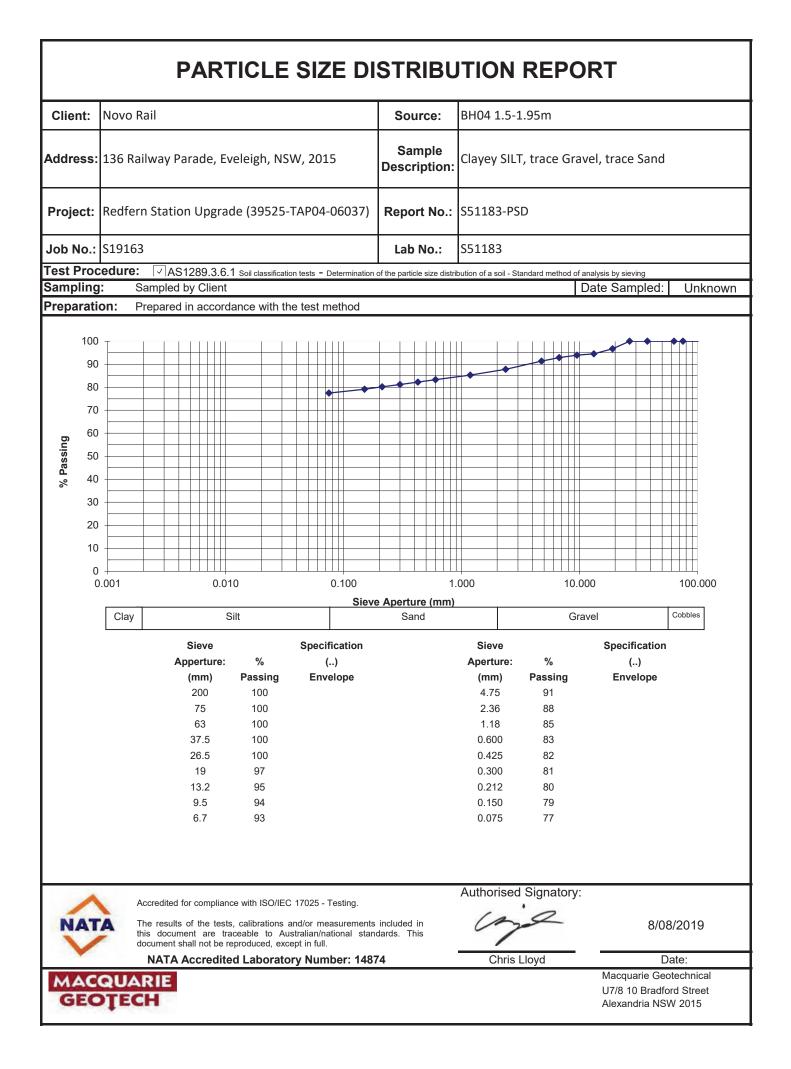
Uniaxia	l Compressive Stre	ngth 2.6 I	МРа			
Date Tested:	13/04/2019	Moisture Content:	10.3	%		
Specimen Height:	105.3 mm	Duration of Test:	621	seconds		
Average Specimen Diameter:	50.8 mm	Rate of Displacement:	< 0.1	mm/min		
Failure Type: Single shea	ar plane					
Other Pertinent Observations:						
Deviation from Test specie Standard:						
			Authorised Signatory:			
in this document are t	calibrations and/or measurements raceable to Australian/national str nce with ISO/IEC 17025 - Testin	andards.	ing			
document shall not be re						
		-	Chris Lloyd	_		
NATA Accredited Laboratory Number: 14874 Date: 15/04/2019						
MACQUARIE	Macquarie	Geotechnical				
MACQUARIE				adford Street		
GEOTECH Alexandria NSW 2015				NSW 2015		

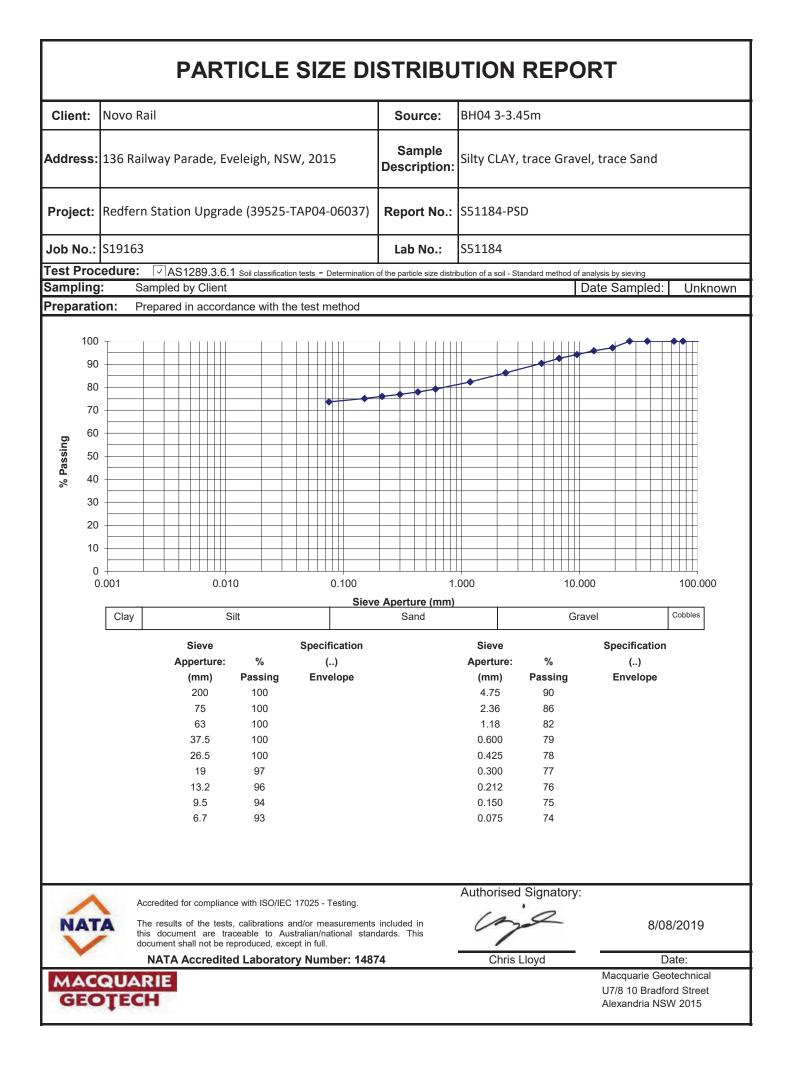
Uniaxial Compressive Strength				
Client:	Novo Rail	Sample Source:	BH03 11.29-11.38m	
Address:	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description:	Shale	
Project:	Project: Redfern Station Upgrade (39525- 06037) Report No.:		S47322-UCS	
Job No.:	S19163	Lab No.:	S47322	
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa	
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-	
Sampling Method:	Sampled by Client	Date Sampled:	Unknown	
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition	

13/04/20			Uniaxial Compressive Strength 1.3 MPa						
13/04/20	19	Moisture Content:		13.2	%				
78.2	mm	Duration of Test:		609	seconds				
48.3	mm	Rate of Displacement	:	< 0.1	mm/min				
inated									
Deviation from Test specimen length to diameter ratio falls outside of standard limitations of 2.5-3.0. Standard:									
			Authorised S	ignatory:					
ceable to Au	stralian/national sta	indards.	10'	0					
		g. This	7						
			Chris I	ovd	_				
NATA Accredited Laboratory Number: 14874 Date: 15/04/2019									
Macquarie Geotech				Geotechnical					
MACQUARIE			U	7/8 10 Bra	dford Street				
			A	lexandria I	NSW 2015				
	48.3 inated en length t librations and zeable to Au e with ISO/II oduced, exce	48.3 mm inated en length to diameter rational librations and/or measurements i ceable to Australian/national state with ISO/IEC 17025 - Testin oduced, except in full.	48.3 mm Rate of Displacement inated en length to diameter ratio falls outside of standar librations and/or measurements included peable to Australian/national standards. e with ISO/IEC 17025 - Testing. This oduced, except in full.	48.3 mm Rate of Displacement: inated inated en length to diameter ratio falls outside of standard limitations of librations and/or measurements included ceable to Australian/national standards. Authorised S e with ISO/IEC 17025 - Testing. This oduced, except in full. Chris Libration Chris Librational Standards. tory Number: 14874 Date: 15/04/2	48.3 mm Rate of Displacement: < 0.1				

Uniaxial Compressive Strength				
Client:	Novo Rail	Sample Source:	BH03 14.00-14.14m	
Address:	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description:	Shale	
Project:	Redfern Station Upgrade (39525- 06037)	Report No.:	S47326-UCS	
Job No.:	S19163	Lab No.:	S47326	
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa	
Testing Machine:	Matest 2000 kN Compression Machine	-		
Sampling Method:	Sampled by Client	Date Sampled:	Unknown	
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition	

Uniaxial Compressi	ive Strength	19 MP	а			
Date Tested: 13/04/2019	Moisture Co	ontent:	5.5	%		
Specimen Height: 99.8 mr	m Duration of	Test:	679	seconds		
Average Specimen Diameter: 51.6 mr	m Rate of Disp	lacement:	< 0.1	mm/min		
Failure Type: Tensile dominated	-					
Other Pertinent Observations:						
Deviation from Test specimen length to dia Standard:						
The results of the tests, calibrations and/or me in this document are traceable to Australia Accredited for compliance with ISO/IEC 17 document shall not be reproduced, except in fu	thorised Signatory:					
NATA Accredited Laboratory Number: 1	Date:	Chris Lloyd 15/04/2019	-			
GEOŢECH			Macquarie G U7/8 10 Brac Alexandria N	dford Street		


Uniaxial Compressive Strength				
Client:	Novo Rail	Sample Source:	BH03 16.11-16.24m	
Address:	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description:	Shale	
Project:	Project:Redfern Station Upgrade (39525- 06037)Report No.:		S47328-UCS	
Job No.:	S19163	Lab No.:	S47328	
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa	
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-	
Sampling Method:	Sampled by Client	Date Sampled:	Unknown	
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition	



Unia	xial Compressive Stre	ngth 23	MPa	
Date Tested:	13/04/2019	Moisture Content:	3.5	%
Specimen Height:	131.6 mm	Duration of Test:	714	seconds
Average Specimen Diameter:	51.6 mm	Rate of Displacement:	< 0.1	mm/min
Failure Type: Mixed	mode	• •		
Other Pertinent Observations:				
The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing. This document shall not be reproduced, except in full.			Authorised Signatory:	
NATA Accredited La	aboratory Number: 14874	Date:	Chris Lloyd 15/04/2019	
MACQUARIE GEOŢECH			•	Geotechnical Idford Street NSW 2015

	MOIST		ENT TE	ST REPORT	
Client:	Novo Rail		Job No:	S19163	
Address:	136 Railway Parade, Eveleigh, NS	W, 2015	Report No:	S51183-MC	
Project:	Redfern Station Upgrade (39525-T	AP04-06037)			
Test Proce	AS4133 1.1.1 RMS T120 Moi		ation of the moisture cor rials (Standard method)		
Sampling:		with the test method		Date Sampled:	Unknown
Preparatio Sample No.	Source	nun une lest metrioa	Sample De	scription	Moisture Content %
S51183	BH04 1.5-1.95m	Clay	_	Gravel, trace Sand	16.8
S51185	BH04 4.5-m		Silty C		15.5
Notes:	Accredited for compliance with ISO//EC The results of the tests, calibrations an		iis	Authorised Signatory:	
	document are traceable to Australian/ shall not be reproduced, except in full. NATA Accredited Laboratory	national standards. This docume		Chris Lloyd	8/08/2019 Date:
GEO					Macquarie Geotechnical U7/8 10 Bradford Street Alexandria NSW 2015

	SOIL CLASSIF	ICATION	REPORT		
Client	Novo Rail	Source	BH04 3-3.45m		
Address	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description	Silty CLAY, trace Gravel, trace Sand		
Project	Redfern Station Upgrade (39525-TAP04-06037)	Report No	S51184-PI		
Job No	S19163	Lab No	S51184		
	Image: Astronomy of the second sec	the liquid limit of a soil - Four p the liquid limit if a soil - One poi the plastic limit of a soil - Stand plasticity Index of a soil	nt Casagrande method (subsidiary method) ard method	led: Unknown	
Prepar	ation: Prepared in accordance with the test method				
	Liquid Limit (%) 63 Plastic Limit (%) 23	Linear Shri Plast	nkage (%) -		
	Plasticity Chart for Classification	40 50 Liquid Limit % : Dry Sieved : Oven Dried	Soils	80	
	Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included i document are traceable to Australian/national standards. This docu shall not be reproduced, except in full.		Authorised Signatory:	8/08/2019	
GEOTE	NATA Accredited Laboratory Number: 14874		Chris Lloyd	Date: Macquarie Geotechnical U7/8 10 Bradford Street Alexandria NSW 2015	

	SOIL CLASSIF	ICATION	REPORT	
Client	Novo Rail	Source	BH04 4.5-m	
Address	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description	Silty CLAY	
Project	Redfern Station Upgrade (39525-TAP04-06037)	Report No	S51185-PI	
Job No	S19163	Lab No	S51185	
	Image: Construction of the second	the liquid limit of a soil - Four p the liquid limit if a soil - One poi the plastic limit of a soil - Stand plasticity Index of a soil	int Casagrande method (subsidiary method) lard method	led: Unknown
Prepai	ation: Prepared in accordance with the test method			
	Liquid Limit (%) 57 Plastic Limit (%) 21	Linear Shri Plast	inkage (%) 9.0	
	Plasticity Chart for Classification	40 50 Liquid Limit % : Dry Sieved : Oven Dried	Soils	80
N	Accredited for compliance with ISO/IEC 17025 - Testing.		Authorised Signatory:	
NATA	The results of the tests, calibrations and/or measurements included i document are traceable to Australian/national standards. This docu shall not be reproduced, except in full.	n this iment	me	8/08/2019
	NATA Accredited Laboratory Number: 14874		Chris Lloyd	Date:
GEOTE				Macquarie Geotechnical U7/8 10 Bradford Street Alexandria NSW 2015

	POINT LOAD STRENGTH INDEX REPORT								
Client:	Novo Rail			Moisture Content Condition:	As receive	d			
Address:	136 Railway Parade, E	veleigh, NSW, 201	5	Storage History:	Core boxes	6			
Project:	Redfern Station Upgra	de (39525-TAP04-0	06037)	Report No:	S51186-PL	-			
Job No:	S19163			Date Tested:	6/08/2019				
Test Proce	edure:	AS4133 4.1	Rock strength tests - Determina	tion of point load strength	index				
Sampling:						Date	Sampled:		Unknown
Preparatio	Prepared in	accordance with the t	est method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Failure Mode
S51186	BH04 5.17-5.24m	Shale	Diametral	-	47.0	0.21	0.10	0.09	1
331100	BH04 3.17-3.24III	Silale	Axial	51.4	31.0	0.21	0.10	0.10	1
CE1107	BU04502600	Chala	Diametral	-	45.0	0.12	0.06	0.06	1
S51187	BH04 5.93-6.00m	Shale	Axial	50.5	19.0	0.08	0.07	0.06	1
051100			Diametral	-	48.0	0.39	0.17	0.17	1
S51188	BH04 6.35-6.40m	Shale	Axial	51.2	31.0	0.39	0.19	0.18	1
654400		Chala	Diametral	-	49.0	0.12	0.05	0.05	1
S51189	BH04 6.55-6.63m	Shale	Axial	51.4	16.0	0.21	0.20	0.16	1
S51190	PH04 7 28 7 42m	Chala	Diametral	-	48.0	0.34	0.15	0.14	1
331190	1190 BH04 7.38-7.42m Shale	Silale	Axial	51.5	20.0	0.34	0.26	0.22	1
S51191	BH04 7.82-7.89m	Shale	Diametral	-	48.0	0.36	0.16	0.15	1
551151	Bri04 7.82-7.85m	Share	Axial	51.5	24.0	0.39	0.25	0.22	1
S51192	BH04 8.43-8.48m	Shale	Diametral	-	49.0	0.07	0.03	0.03	1
001101		Share	Axial	51.4	18.0	0.20	0.17	0.14	1
S51193	BH04 8.69-8.74m	Shale	Diametral	-	48.0	0.09	0.04	0.04	1
			Axial	51.6	16.0	0.31	0.29	0.24	1
S51194	BH04 9.31-9.35m	Shale	Diametral	-	49.0	0.06	0.02	0.02	1
			Axial	51.9	11.0	0.24	0.33	0.25	1
S51195	BH04 9.83-9.88m	Shale	Diametral	-	49.0	0.06	0.02	0.02	1
			Axial	51.7	13.0	0.26	0.30	0.24	1
<u>Failure</u>	Modes 1 - Fracture	e through fabric of	specimen oblique t	o bedding, not	influenced	by weal	k planes.		
	2 - Fracture	e along bedding.							
	3 - Fracture	e influenced by pre	-existing plane, mic	crofracture, vei	n or chemic	al altera	ation.		
	4 - Chip or	partial fracture.							
	Accredited for compliance with ISO/IEC 17025 - Testing. Authorised Signatory:								
NAT		ts, calibrations and/or meas ble to Australian/national s ad, except in full.			4	2ª	2		9/08/2019
	NATA Accredite	d Laboratory Numb	er: 14874		Chri	s Lloyd			Date
	UARIE								Macquarie Geotechr Street
GEO	ТЕСН								Alexandria NSW 2015

Uniaxial Compressive Strength				
Client:	Novo Rail	Sample Source:	BH04 6.41-6.47m	
Address:	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description:	Shale	
Project:	Redfern Station Upgrade (39525- TAP04-06037)	Report No.:	S51188-UCS	
Job No.:	S19163	Lab No.:	S51188	
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa	
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-	
Sampling Method:	Sampled by Client	Date Sampled:	Unknown	
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition	

Uniaxia	I Compressive Stre	ngth 1.9	MPa			
Date Tested:	8/08/2019	Moisture Content:	9.5	%		
Specimen Height:	59.2 mm	Duration of Test:	615	seconds		
Average Specimen Diameter:	51.3 mm	Rate of Displacement:	< 0.1	mm/min		
Failure Type: Mixed mo	de					
Other Pertinent Observations:						
Deviation from Test species Standard:						
			Authorised Signatory:			
Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full.			Imp Q			
		-	Jacob Lloyd			
NATA Accredited Labo	9/08/2019					
MACQUARIE			Macquarie G	Geotechnical		
GEOŢECH			U7/8 10 Bra Alexandria N			

	Uniaxial Compressive Strength				
Client:	Novo Rail	Sample Source:	BH04 7.89-7.95m		
Address:	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description:	Shale		
Project:	Redfern Station Upgrade (39525- TAP04-06037)	Report No.:	S51190-UCS		
Job No.:	S19163	Lab No.:	\$51190		
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa		
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-		
Sampling Method:	Sampled by Client	Date Sampled:	Unknown		
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition		

Uniaxia	al Compressive Stre	ngth 0.47	MPa		
Date Tested:	8/08/2019	Moisture Content:	8.2	%	
Specimen Height:	54.8 mm	Duration of Test:	615	seconds	
Average Specimen Diameter:	128.5 mm	Rate of Displacement:	< 0.1	mm/min	
Failure Type: Mixed mo	de	•			
Other Pertinent Observations:					
Deviation from Test speci Standard:					
			Authorised Signatory:		
Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full.			Jupa		
			Jacob Lloyd		
NATA Accredited Labo	ratory Number: 14874	Date:	9/08/2019		
MACOUADIE			Macquarie (Geotechnical	
MACQUARIE GEOŢECH			U7/8 10 Bra Alexandria I	adford Street NSW 2015	

Uniaxial Compressive Strength				
Client:	Novo Rail	Sample Source:	BH04 8.63-8.69m	
Address:	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description:	Shale	
Project:	Redfern Station Upgrade (39525- TAP04-06037)	Report No.:	S51193-UCS	
Job No.:	S19163	Lab No.:	S51193	
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa	
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-	
Sampling Method:	Sampled by Client	Date Sampled:	Unknown	
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition	

Uniaxial Compressive Strength 2.8 MPa						
Date Tested:	8/08/2019	Moisture Content:	8.6 %			
Specimen Height:	58.3 mm	Duration of Test:	602 seconds			
Average Specimen Diameter:	51.0 mm	Rate of Displacement:	< 0.1 mm/min			
Failure Type: Mixed mo	de					
Other Pertinent Observations:						
Deviation from Test species Standard:						
			Authorised Signatory:			
Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full.			Jup Q			
		-	Jacob Lloyd			
NATA Accredited Labo	ratory Number: 14874	Date:	9/08/2019			
MACQUARIE			Macquarie Geotechnical			
GEOŢECH			U7/8 10 Bradford Street Alexandria NSW 2015			

	Uniaxial Compressive Strength					
Client:	Novo Rail	Sample Source:	BH04 9.78-9.83m			
Address:	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description:	Shale			
Project:	Redfern Station Upgrade (39525- TAP04-06037)	Report No.:	S51194-UCS			
Job No.:	S19163	Lab No.:	S51194			
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa			
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-			
Sampling Method:	Sampled by Client	Date Sampled:	Unknown			
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition			

Uniaxial Compressive Strength 4.7 MPa						
Date Tested:	8/08/2019	Moisture Content:	10.3	%		
Specimen Height:	45.3 mm	Duration of Test:	615	seconds		
Average Specimen Diameter:	51.6 mm	Rate of Displacement:	< 0.1	mm/min		
Failure Type: Mixed mod	e					
Other Pertinent Observations:						
Deviation from Test specim Standard:	nen length to diameter rati	o falls outside of standard l	imitations of 2.5-3.0.			
			Authorised Signatory:			
Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full.						
		-	Jacob Lloyd	-		
NATA Accredited Labora	atory Number: 14874	Date:	9/08/2019			
MACQUARIE			Macquarie G	Geotechnical		
GEOŢECH			U7/8 10 Brad Alexandria N			

	POINT LOAD STRENGTH INDEX REPORT								
Client:	Novo Rail			Moisture Content Condition:	As receive	d			
Address:	ress: 136 Railway Parade, Eveleigh, NSW, 2015		5	Storage History:	Core boxes	6			
Project:	Redfern Station Upgra	de (39525-TAP04-0	06037)	Report No:	S51196-PL	-			
Job No:	S19163			Date Tested:	6/08/2019				
Test Proce	edure:	AS4133 4.1	Rock strength tests - Determina	tion of point load strength	index				
Sampling:						Date	Sampled:		Unknown
Preparatio	Prepared in	accordance with the t	test method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Failure Mode
SE110C	DU04 10 20 10 42m	Chala	Diametral						
S51196	BH04 10.39-10.42m	Shale	Axial	51.6	20.0	0.40	0.30	0.26	1
S51197	BH04 10.67-10.71m	Shale	Diametral	-	50.0	0.06	0.02	0.02	1
551157	впо4 10.07-10.7111	Shale	Axial	51.6	12.0	0.43	0.55	0.42	1
S51198	BH04 11.44-11.50m	Shale	Diametral	-	50.0	0.25	0.10	0.10	1
551150	51104 11.44-11.5011	Shale	Axial	51.6	21.0	0.15	0.11	0.10	1
S51199	BH04 12.71-12.77m	Shale	Diametral	-	49.0	0.13	0.05	0.05	1
551155	51104 12.71 12.7711	Share	Axial	51.8	16.0	0.37	0.35	0.29	1
S51200	BH04 13.16-13.20m	Shale	Diametral	-	50.0	0.07	0.03	0.03	1
331200	BH04 13.10-13.2011	Shale	Axial	51.8	16.0	0.26	0.25	0.20	1
S51201	BH04 13.70-13.80m	Shale	Diametral	-	49.0	0.43	0.18	0.18	1
551201	5110113.7013.0011	Share	Axial	51.7	31.0	0.75	0.37	0.35	1
S51202	BH04 14.21-14.27m	Shale	Diametral	-	46.0	1.59	0.75	0.72	1
			Axial	51.7	28.0	1.13	0.61	0.57	1
S51203	BH04 14.88-14.93m	Shale	Diametral	-	48.0	0.43	0.19	0.18	1
			Axial	51.9	24.0	0.30	0.19	0.17	1
S51204	BH04 15.10-15.14m	Shale	Diametral	-	49.0	0.55	0.23	0.23	1
			Axial	51.7	20.0	0.43	0.33	0.28	1
S51205	BH04 15.76-15.85m	Shale	Diametral	-	49.0	0.99	0.41	0.41	1
			Axial	51.7	21.0	0.86	0.62	0.54	1
<u>Failure</u>	Modes 1 - Fracture	e through fabric of	specimen oblique t	o bedding, not	influenced	by weal	< planes.		
	2 - Fracture	e along bedding.							
	3 - Fracture	e influenced by pre	-existing plane, mid	crofracture, vei	n or chemic	al altera	ation.		
	4 - Chip or	partial fracture.							
	Accredited for complia	ince with ISO/IEC 17025 -	Testing.		Authorise	d Signa	tory:		
NAT		s, calibrations and/or meas ole to Australian/national s d, except in full.			4	200	2		9/08/2019
	NATA Accredite	d Laboratory Numb	er: 14874		Chri	s Lloyd			Date
MACO	QUARIE TECH								Macquarie Geotechr Street
520	Trease								Alexandria NSW 2015

	Uniaxial Compressive Strength				
Client:	Novo Rail	Sample Source:	BH04 10.94-11.00m		
Address:	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description:	Shale		
Project:	Redfern Station Upgrade (39525- TAP04-06037)	Report No.:	S51197-UCS		
Job No.:	S19163	Lab No.:	\$51197		
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa		
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-		
Sampling Method:	Sampled by Client	Date Sampled:	Unknown		
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition		

Uniaxial Compressive Strength 3.8 MPa						
Date Tested: 8/08	3/2019	Moisture Content:	10.0	%		
Specimen Height: 42	L.5 mm	Duration of Test:	694	seconds		
Average Specimen Diameter: 52	L.6 mm	Rate of Displacement:	< 0.1	mm/min		
Failure Type: Mixed mode						
Other Pertinent Observations:						
Deviation from Test specimen len Standard:	gth to diameter ratio	o falls outside of standard	limitations of 2.5-3.0.			
			Authorised Signatory:			
Accredited for compliance with IS0 The results of the tests, calibrati this document are traceable to document shall not be reproduced	ons and/or measurements Australian/national stan		Jupl			
			Jacob Lloyd	_		
NATA Accredited Laboratory N	lumber: 14874	Date:	9/08/2019			
MACQUARIE GEOŢECH				Geotechnical adford Street NSW 2015		

	Uniaxial Compressive Strength				
Client:	Novo Rail	Sample Source:	BH04 12.82-12.89m		
Address:	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description:	Shale		
Project:	Redfern Station Upgrade (39525- TAP04-06037)	Report No.:	S51199-UCS		
Job No.:	S19163	Lab No.:	S51199		
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa		
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-		
Sampling Method:	Sampled by Client	Date Sampled:	Unknown		
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition		

Uniaxial Compressive Stre	ength 6.9	MPa	
Date Tested: 8/08/2019	Moisture Content:	7.7	%
Specimen Height: 42.3 mm	Duration of Test:	610	seconds
Average Specimen Diameter: 51.6 mm	Rate of Displacement:	< 0.1	mm/min
Failure Type: Tensile dominated			
Other Pertinent Observations:			
Deviation from Test specimen length to diameter ra Standard:	tio falls outside of standard l	imitations of 2.5-3.0.	
		Authorised Signatory:	
Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurement this document are traceable to Australian/national st document shall not be reproduced, except in full.		Imp Q	
	-	Jacob Lloyd	
NATA Accredited Laboratory Number: 14874	Date:	9/08/2019	
MACQUARIE		Macquarie Ge	eotechnical
GEOŢECH		U7/8 10 Bradf Alexandria NS	

Uniaxial Compressive Strength				
Client:	Novo Rail	Sample Source:	BH04 13.26-13.32m	
Address:	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description:	Shale	
Project:	Redfern Station Upgrade (39525- TAP04-06037)	Report No.:	S51200-UCS	
Job No.:	S19163	Lab No.:	S51200	
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa	
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-	
Sampling Method:	Sampled by Client	Date Sampled:	Unknown	
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition	

Uniaxia	I Compressive Str	ength 1.0	MPa	
Date Tested:	8/08/2019	Moisture Content:	11.1	%
Specimen Height:	51.8 mm	Duration of Test:	600	seconds
Average Specimen Diameter:	51.4 mm	Rate of Displacement:	< 0.1	mm/min
Failure Type: Mixed mo	de	•		
Other Pertinent Observations:				
Deviation from Test speci Standard:	men length to diameter ra	tio falls outside of standard l	limitations of 2.5-3.0.	
•			Authorised Signatory:	
The results of the tests this document are tra	e with ISO/IEC 17025 - Testing. , calibrations and/or measureme ceable to Australian/national st pproduced, except in full.		Julp Q	
		-	Jacob Lloyd	_
NATA Accredited Labo	ratory Number: 14874	Date:	9/08/2019	
MACQUARIE GEOŢECH				Geotechnical Idford Street NSW 2015

	Uniaxial Compressive Strength				
Client:	Novo Rail	Sample Source:	BH04 14.93-15.00m		
Address:	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description:	Shale		
Project:	Redfern Station Upgrade (39525- TAP04-06037)	Report No.:	S51203-UCS		
Job No.:	S19163	Lab No.:	\$51203		
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa		
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-		
Sampling Method:	Sampled by Client	Date Sampled:	Unknown		
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition		

Uniaxial	Compressive Stre	ngth 0.71 I	ИРа	
Date Tested:	8/08/2019	Moisture Content:	11.2 %	
Specimen Height:	53.2 mm	Duration of Test:	620 second	ls
Average Specimen Diameter:	51.8 mm	Rate of Displacement:	< 0.1 mm/m	in
Failure Type: Other - see	photo			
Other Pertinent Observations:				
Deviation from Test specim Standard:	en length to diameter rati	o falls outside of standard li	mitations of 2.5-3.0.	
			Authorised Signatory:	
NATA The results of the tests,	with ISO/IEC 17025 - Testing. calibrations and/or measurements able to Australian/national star roduced, except in full.		Inf Q	
		-	Jacob Lloyd	
NATA Accredited Labora	tory Number: 14874	Date:	9/08/2019	
MACQUARIE GEOŢECH			Macquarie Geotechni U7/8 10 Bradford Stre Alexandria NSW 2015	et

	Uniaxial Compressive Strength				
Client:	Novo Rail	Sample Source:	BH04 15.14-15.23m		
Address:	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description:	Shale		
Project:	Redfern Station Upgrade (39525- TAP04-06037)	Report No.:	S51204-UCS		
Job No.:	S19163	Lab No.:	S51204		
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa		
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-		
Sampling Method:	Sampled by Client	Date Sampled:	Unknown		
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition		

Uniaxial Compressive Strength 5.7 MPa							
Date Tested:	8/08/2019	Moisture Content:	8.2	%			
Specimen Height:	81.1 mm	Duration of Test:	615	seconds			
Average Specimen Diameter:	51.8 mm	Rate of Displacement:	< 0.1	mm/min			
Failure Type: Mixed mo	de						
Other Pertinent Observations:							
Deviation from Test specin Standard:	nen length to diameter rat	io falls outside of standard l	imitations of 2.5-3.0.				
			Authorised Signatory:				
NATA The results of the tests	e with ISO/IEC 17025 - Testing. , calibrations and/or measuremen ceable to Australian/national sta produced, except in full.		Imp Q				
		-	Jacob Lloyd	-			
NATA Accredited Labor	atory Number: 14874	Date:	9/08/2019				
MACQUARIE			Macquarie (Geotechnical			
GEOŢECH			U7/8 10 Bra Alexandria N				

	F	POINT LC	AD STRE	NGTH	INDE	X R	EPOR	Т	
Client:	Novo Rail			Moisture Content Condition:	As receive	d			
Address:	136 Railway Parade, Eveleigh, NSW, 2015			Storage History:	Core boxes				
Project:	Redfern Station Upgrade (39525-TAP04-06037)			Report No:	S51206-PL				
Job No:	S19163			Date Tested:	6/08/2019				
Test Proce	edure:	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index				
Sampling:						Date	Sampled:		Unknown
Preparatio	Prepared in	accordance with the	test method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Failure Mode
S51206	BH04 16.06-16.12m	Shale	Diametral	-	49.0	0.78	0.32	0.32	1
			Axial	51.8	29.0	1.14	0.60	0.56	1
651207		Shale	Diametral	-	50.0	0.36	0.14	0.14	1
S51207	BH04 16.17-16.22m		Axial	51.8	20.0	0.88	0.67	0.58	1
654200	DU0446754670	Shale	Diametral	-	48.0	0.47	0.20	0.20	1
S51208	BH04 16.75-16.79m		Axial	51.9	25.0	0.13	0.08	0.07	1
651200	BH04 17.23-17.30m	Shale	Diametral	-	49.0	1.12	0.47	0.46	1
S51209			Axial	51.7	31.0	1.38	0.68	0.65	1
S51210	BH04 17.45-17.53m	Shale	Diametral	-	48.0	1.82	0.79	0.78	1
331210			Axial	51.7	34.0	1.35	0.60	0.59	1
S51211	BH04 17.92-17.96m	Shale	Diametral	-	49.0	0.99	0.41	0.41	1
551211	Brio4 17.52-17.50m	Share	Axial	51.6	15.0	0.85	0.86	0.70	1
Failure	Modes 1 - Fracture	e through fabric of	specimen oblique t	o bedding, not	influenced	by wea	k planes.		
	2 - Fracture	e along bedding.							
			ovicting plana mia	refrecture voi	n or chomic	alaltar	ation		
			-existing plane, mic	rofracture, vei	n or chemic	al alter	ation.		
	4 - Chip or	partial fracture.							
-	Accredited for complia	ance with ISO/IEC 17025 -	Testing.		Authorise	d Signa	itory:		
The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full.				age				9/08/2019	
	NATA Accredite	d Laboratory Numb	er: 14874		Chri	s Lloyd			Date
GEO									Macquarie Geotechr Street Alexandria NSW 2015

Uniaxial Compressive Strength								
Client:	Novo Rail	Sample Source:	BH04 16.87-16.95m					
Address:	136 Railway Parade, Eveleigh, NSW, 2015 Sample Descript		Shale					
Project:	Redfern Station Upgrade (39525- TAP04-06037)	Report No.:						
Job No.:	S19163	Lab No.:	\$51208					
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial compressive strength-Rock strength less than 50 MPa							
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-					
Sampling Method:	Sampled by Client	Date Sampled:	Unknown					
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition					

Uniaxial C	compressive Strei	ngth 11 I	MPa					
Date Tested: 8	3/08/2019	Moisture Content:	7.9	%				
Specimen Height:	56.7 mm	Duration of Test:	646	seconds				
Average Specimen Diameter:	51.8 mm	Rate of Displacement:	< 0.1	mm/min				
Failure Type: Tensile dominated								
Other Pertinent Observations:								
Deviation from Test specimen length to diameter ratio falls outside of standard limitations of 2.5-3.0. Standard:								
	Authorised Signatory:							
Accredited for compliance wit The results of the tests, cali this document are traceab document shall not be reprod	Jup Q							
		-	Jacob Lloyd					
NATA Accredited Laborato	9/08/2019							
MACQUARIE GEOŢECH			Macquarie Ge U7/8 10 Bradi Alexandria NS	ford Street				

Uniaxial Compressive Strength					
Client:	Novo Rail	Sample Source:	BH04 17.34-17.44m		
Address:	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description:	Shale		
Project:	Redfern Station Upgrade (39525- TAP04-06037)	Report No.:	S51209-UCS		
Job No.:	S19163	Lab No.:	S51209		
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa		
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-		
Sampling Method:	Sampled by Client	Date Sampled:	Unknown		
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition		

Uniaxia	I Compressive Stre	ength 8.3 I	MPa	
Date Tested:	5/08/2019	Moisture Content:	7.8	%
Specimen Height:	104.8 mm	Duration of Test:	610	seconds
Average Specimen Diameter:	51.8 mm	Rate of Displacement:	< 0.1	mm/min
Failure Type: Mixed mo	de			
Other Pertinent Observations:				
Deviation from Test speci Standard:	men length to diameter ra	tio falls outside of standard l	imitations of 2.5-3.0.	
			Authorised Signatory:	
Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full.			Inf Q	
		-	Jacob Lloyd	_
NATA Accredited Labo	ratory Number: 14874	Date:	9/08/2019	
MACQUARIE			Macquarie (Geotechnical
GEOŢECH			U7/8 10 Bra Alexandria I	dford Street NSW 2015

Uniaxial Compressive Strength					
Client:	Novo Rail	Sample Source:	BH04 17.60-17.77m		
Address:	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description:	Shale		
Project:	Redfern Station Upgrade (39525- TAP04-06037)	Report No.:	S51210-UCS		
Job No.:	S19163	Lab No.:	S51210		
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa		
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-		
Sampling Method:	Sampled by Client	Date Sampled:	Unknown		
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition		

Uniax	ial Compre	essive Stre	ngth 12	MPa		
Date Tested:	5/08/201	.9	Moisture Content:		8.0	%
Specimen Height:	145.9	mm	Duration of Test:		644	seconds
Average Specimen Diameter:	50.2	mm	Rate of Displacement:		< 0.1	mm/min
Failure Type: Mixed n	node					
Other Pertinent Observations:						
	ance with ISO/IEC	17025 - Testing		Authorised S	ignatory:	
Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full.				1	. 0	
NATA The results of the te this document are	ests, calibrations ar traceable to Aus	nd/or measurement tralian/national sta		Jul	lQ	_
NATA The results of the te this document are	ests, calibrations ar traceable to Aus	nd/or measurement tralian/national sta		Jacob L	loyd	_
NATA The results of the te this document are	ests, calibrations ar traceable to Aus e reproduced, exce	nd/or measurement tralian/national star pt in full.				-
The results of the tethis document are document shall not b	ests, calibrations ar traceable to Aus e reproduced, exce	nd/or measurement tralian/national star pt in full.	ndards. This	: 9/08/2	019	- Geotechnical

Uniaxial Compressive Strength					
Client:	Novo Rail	Sample Source:	BH04 17.79-17.87m		
Address:	136 Railway Parade, Eveleigh, NSW, 2015	Sample Description:	Shale		
Project:	Redfern Station Upgrade (39525- TAP04-06037)	Report No.:	S51211-UCS		
Job No.:	S19163	Lab No.:	S51211		
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa		
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-		
Sampling Method:	Sampled by Client	Date Sampled:	Unknown		
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition		

Uniaxial Compressive Strength 11 MPa							
Date Tested:	8/08/2019	Moisture Content:	6.1 %				
Specimen Height:	50.0 mm	Duration of Test:	681 seconds				
Average Specimen Diameter:	51.7 mm	Rate of Displacement:	< 0.1 mm/min				
Failure Type: Mixed mod	le						
Other Pertinent Observations:							
Deviation from Test specin Standard:	nen length to diameter rat	io falls outside of standard l	imitations of 2.5-3.0.				
			Authorised Signatory:				
NATA The results of the tests, this document are trac	Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full.						
		-	Jacob Lloyd				
NATA Accredited Labor	atory Number: 14874	Date:	9/08/2019				
MACQUARIE			Macquarie Geotechnical				
GEOŢECH		U7/8 10 Bradford Street Alexandria NSW 2015					

	S	OIL CHEMICAL P	ROPER	TIES REPORT	r
Client	Aurecon		Source	BH05 1.5-1.95m	
Address	Level 5, 116 Military Rd, Neutral Bay, Sydney NSW 2089		Sample Description	Gravelly CLAY	
Project	Redfern Station U	ograde (39525 - TAP04)	Report No.	B59995-SCP	
Job No	S19604		Lab No.	B59995 (S56875)	
Sampling: Preparatio	Sampled f	AS1289 4.3.1 Soil Chemical Tests - Determina AS 1289 4.4.1 Soil Chemical Tests - Determina AS 1012.20 Chloride and sulphate RMS T123 pH value of a soil (electrometric RMS T185 Resistivity of sands and granular RMS T200 Chloride content of roadbase RMS T1010 Quantitative determination of our RMS T1011 Quantitative determination of sul BS1377(1990 pt.3) Water soluble sulphate content APHA 4500 CI-B Chloride APHA 4500 CI-B Chloride APHA 4500 CI-B Chloride APHA 4500 CI-B Coloride APHA 2510 & 2520-B Electrical Conductivity TAI B117 Sulphides Present (This service oy Client Sulphides Present in accordance with the test method Sulphate content (ppm) Sulphate content (% w/w) Chloride ion content (ppm) Chloride ion content (% w/w) pH Electrical Corductivity (uS/cm) Mean Resistivity Ω.m (Resistivity) Density ratio (R _D) (Resistivity) Density index (I _D)	tion of the pH value of a so tion of the electrical resistent method) road construction material orides in soil phates in soil Not Covered by NATA Acc	vity of a soil - Method for sands and granular ma	aterial
NAT	Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full.		3	Box	18/12/2019
	NATA Accred	ited Laboratory Number: 14874		Brad Morris	Date:
	QUARIE TECH				Macquarie Geotechnical 3 Watt Drive Bathurst NSW 2795

	S	OIL CHEMICAL P	ROPER	TIES REPORT	
Client	Aurecon		Source	BH05 4.5-4.95m	
Address	Level 5, 116 Milita 2089	ry Rd, Neutral Bay, Sydney NSW	Sample Description	CLAY with gravel	
Project	Redfern Station U	ograde (39525 - TAP04)	Report No.	B59996-SCP	
Job No	S19604		Lab No.	B59996 (S56877)	
Sampling: Preparatio		AS1289 4.3.1Soil Chemical Tests - DeterminaAS 1289 4.4.1Soil Chemical Tests - DeterminaAS 1289 4.4.1Soil Chemical Tests - DeterminaAS 1012.20Chloride and sulphateRMS T123pH value of a soil (electrometricRMS T185Resistivity of sands and granulaRMS T200Chloride content of roadbaseRMS T1010Quantitative determination of chRMS T1011Quantitative determination of suBS1377(1990 pt.3)Water soluble sulphate contentAPHA 4500 SO4 2-BSulphateAPHA 4500 CI-BChlorideAPHA 2510 & 2520-BElectrical ConductivityTAI B117Sulphates Present (This service)	tion of the pH value of a so tion of the electrical resistant method) road construction material lorides in soil phates in soil Not Covered by NATA Acc	reditation) Teditation Tedit	al
NAT	The results of the t	pliance with ISO/IEC 17025 - Testing. ests, calibrations and/or measurements included in this asble to Australian/national standards. This documen uced, except in full.	3	Authorised Signatory:	18/12/2019
	NATA Accred	ited Laboratory Number: 14874		Brad Morris	Date:
					Macquarie Geotechnical 3 Watt Drive Bathurst NSW 2795

	MOIST	JRE CONT	ENT TE	ST REPORT	
Client:	Aurecon		Job No:	S19604	
Address:	Level 5, 116 Military Rd, Neutral Ba	ay, Sydney NSW 2089	Report No:	S56875-MC	
Project:	Redfern Station Upgrade (39525 -	TAP04)			
Test Proce	AS4133 1.1.1 RMS T120 Moit RMS T262 Det		ation of the moisture cor ials (Standard method)		
Sampling:	Sampled by Client n: Prepared in accordance w	ith the test method		Date Sampled:	7/12/2019
Preparatio Sample No.	Source	iui uie test metriod	Sample De	scription	Moisture Content %
S56875	BH05 1.5-1.95m		Sandy Silty CLA	-	21.1
S56876	BH05 3.0-3.45m		Silty C		17.6
S56877	BH05 4.5-4.95m				16.4
S56878	BH05 6.0-6.1m				12.2
		Silty CLAY Silty CLAY			
NAT	Accredited for compliance with ISO/IEC The results of the tests, calibrations an document are traceable to Australian/ shall not be reproduced, except in full.	d/or measurements included in th		Authorised Signatory:	19/12/2019
MAC	NATA Accredited Laboratory	Number: 14874		Chris Lloyd	Date: Macquarie Geotechnical U7/8 10 Bradford Street Alexandria NSW 2015

	SOIL CLASSIF	ICATION	REPORT	
Client	Aurecon	Source	BH05 1.5-1.95m	
Address	Level 5, 116 Military Rd, Neutral Bay, Sydney NSW 2089	Sandy Silty CLAY, with Gravel		
Project	Redfern Station Upgrade (39525 - TAP04)	Report No	S56875-PI	
Job No	S19604	Lab No	S56875	
Test Proce	edure: AS1289 2.1.1 Soil moisture content tests (Oven drying) AS1289 3.1.1 Soil classification tests - Determination of AS1289 3.1.2 Soil classification tests - Determination of AS1289 3.2.1 Soil classification tests - Determination of AS1289 3.3.1 Soil classification tests - Determination of AS1289 3.3.1 Soil classification tests - Calculation of th AS1289 3.4.1 Soil classification tests - Determination of Pling: Sampled by Client	the liquid limit of a soil - Four p the liquid limit if a soil - One po the plastic limit of a soil - Stand e plasticity Index of a soil	int Casagrande method (subsidiary method) lard method	led: 7/12/2019
Prepa	ation: Prepared in accordance with the test method		-	
	Liquid Limit (%) 54 Plastic Limit (%) 22	Linear Shri Plast	inkage (%) - icity Index 32	
	Plasticity Chart for Classification	40 50 Liquid Limit % E: Dry Sieved r: Oven Dried	Soils	80
N	Accredited for compliance with ISO/IEC 17025 - Testing.		Authorised Signatory:	
NATA	The results of the tests, calibrations and/or measurements included document are traceable to Australian/national standards. This doc shall not be reproduced, except in full.	in this ument	inje	19/12/2019
	NATA Accredited Laboratory Number: 14874		Chris Lloyd	Date:
GEOTE	ARIE CH			Macquarie Geotechnical U7/8 10 Bradford Street Alexandria NSW 2015

	SOIL CLASSIF	ICATION	REPORT			
Client	Aurecon	Source	BH05 3.0-3.45m			
Address	Level 5, 116 Military Rd, Neutral Bay, Sydney NSW 2089	Sample Description	Silty CLAY			
Project	Redfern Station Upgrade (39525 - TAP04)	Report No	S56876-PI			
Job No	S19604	Lab No	S56876			
	Image: Astronomy of the state of the st	the liquid limit of a soil - Four p the liquid limit if a soil - One po the plastic limit of a soil - Stanc e plasticity Index of a soil	int Casagrande method (subsidiary method) lard method	led: 7/12/2019		
Prepa	ation: Prepared in accordance with the test method					
	Liquid Limit (%) 59 Plastic Limit (%) 20	Linear Shr Plast	inkage (%) - icity Index 39			
	Plasticity Chart for Classification	40 50 Liquid Limit % P: Dry Sieved r: Oven Dried	Soils	80		
NATA	Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included document are traceable to Australian/national standards. This doci shall not be reproduced, except in full.	in this ument	Authorised Signatory:	19/12/2019		
	NATA Accredited Laboratory Number: 14874		Chris Lloyd	Date:		
GEOTE	CH			Macquarie Geotechnical U7/8 10 Bradford Street Alexandria NSW 2015		

	F	POINT LC	AD STRE	NGTH	INDE	X RI	EPOR	Т	
Client:	Aurecon			Moisture Content Condition:	As receive	d			
Address:	Level 5, 116 Military Ro	Level 5, 116 Military Rd, Neutral Bay, Sydney NSW 2089			Core boxes	6			
Project:	Redfern Station Upgra	de (39525 - TAP04)	Report No:	S56879-PL	-			
Job No:	S19604			Date Tested:	13/12/2019)			
Test Proce	edure:	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index				
Sampling:						Date	Sampled:		7/12/2019
Preparatio	Prepared in	accordance with the t	test method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Failure Mode
S56879		Chala	Diametral	-	48.0	0.04	0.02	0.02	1
2208/9	BH05 7.15-7.24m	Shale	Axial	50.5	34.0	0.08	0.04	0.04	1
65,000		Chala	Diametral	-	47.0	0.02	0.01	0.01	3
S56880	BH05 8.53-8.62m	Shale	Axial	51.0	30.0	0.13	0.07	0.06	1
656004		Chala	Diametral	-	48.0	0.05	0.02	0.02	1
S56881	BH05 9.43-9.51m	Shale	Axial	51.4	38.0	0.13	0.05	0.05	1
S56882	BH05 10.00-10.12m	Shale	Diametral	-	48.0	0.22	0.10	0.09	1
330662	BH05 10.00-10.1211	Sildle	Axial	51.5	36.0	0.87	0.37	0.36	1
S56883	BH05 11.17-11.23m	Shale	Diametral	-	46.0	0.03	0.01	0.01	3
330003	впоз 11.17-11.2311	Silale	Axial	51.2	29.0	0.20	0.11	0.10	1
S56884	BH05 12.19-12.32m	Shale	Diametral	-	48.0	0.47	0.20	0.20	1
550004	51105 12.15-12.5211	Shale	Axial	51.3	35.0	0.60	0.26	0.26	1
S56885	BH05 14.22-14.30m	05 14.22-14.30m Shale	Diametral	-	47.0	1.06	0.48	0.47	1
			Axial	51.9	41.0	0.91	0.34	0.34	1
S56886	BH05 15.90-16.0m	Shale	Diametral	-	49.0	0.73	0.30	0.30	1
			Axial	51.1	33.0	1.27	0.59	0.57	4
S56887	BH05 16.56-16.60m	Shale	Diametral	-	49.0	0.83	0.35	0.34	1
			Axial	51.5	39.0	1.10	0.43	0.43	3
Failure	Modes 1 - Fracture	through fabric of	specimen oblique t	o bedding not	influenced	by weal	nlanes		
<u>r unu c</u>			specifien oblique t	o bedding, not	innuenceu	by wear	v planes.		
		e along bedding.							
	3 - Fracture	e influenced by pre	-existing plane, mic	rofracture, vei	n or chemic	al altera	ation.		
	4 - Chip or	partial fracture.							
	Accredited for complia	ance with ISO/IEC 17025 -	Testing.		Authorise	d Signa	tory:		
NAT		ts, calibrations and/or meas ole to Australian/national s ed, except in full.			0	2-5	2		19/12/2019
	NATA Accredite	d Laboratory Numb	er: 14874		Chri	s Lloyd			Date
GEO	TECH					_			Macquarie Geotechr U7/8 10 Bradford Street
									Alexandria NSW

	F	POINT LC	AD STRE	NGTH	INDEX	K RI	EPOR	Т	
Client:	Aurecon			Moisture Content Condition:	As received	b			
Address:	Level 5, 116 Military Ro	d, Neutral Bay, Syd	ney NSW 2089	Storage History:	Core boxes	6			
Project:	Redfern Station Upgrade (39525 - TAP04)			Report No:	S56888-PL				
Job No:	S19604			Date Tested:	13/12/2019)			
Test Proce	edure:	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index				
Sampling:		Client				Date	Sampled:		7/12/2019
Preparatio	Prepared in	accordance with the	test method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Failure Mode
S56888	DUOE 17 22 17 50m	Shale	Diametral	-	49.0	2.20	0.92	0.91	1
330888	BH05 17.22-17.50m	Shale	Axial	51.5	25.0	2.10	1.28	1.16	1
S56889	BH05 18.11 - 18.33m	Shale	Diametral	-	48.0	0.77	0.33	0.33	2
550005	Britts 16.11 - 16.55iii	Shale	Axial	51.7	17.0	0.63	0.56	0.47	3
Failure	2 - Fracture 3 - Fracture	e along bedding.	specimen oblique t					·	
		Ince with ISO/IEC 17025 -	Testing.		Authorise	d Signa	tory:		
NAT	The results of the test	s, calibrations and/or measole to Australian/national s	surements included in this		5	j	2		7/01/2020
	NATA Accredite	d Laboratory Numb	er: 14874		Chri	s Lloyd			Date
GEO	TECH								Macquarie Geotechr U7/8 10 Bradford Street Alexandria NSW

Uniaxial Compressive Strength					
Client:	Aurecon	Sample Source:	BH05 17.22-17.50m		
Address:	Level 5, 116 Military Rd, Neutral Bay, Sydney NSW 2089	Sample Description:	Shale		
Project:	Redfern Station Upgrade (39525 - TAP04)	Report No.:	S56888-UCS		
Job No.:	S19604	Lab No.:	\$56888		
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa		
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-		
Sampling Method:	Sampled by Client	Date Sampled:	7/12/2019		
Storage History:	Sealed	Storage Environment:	Sealed at as received moisture condition		

Uniax	ial Compr	essive Stre	ngth 10	MPa		
Date Tested:	18/12/20	19	Moisture Content:		4.2	%
Specimen Height:	146.7	mm	Duration of Test:		618	seconds
Average Specimen Diameter:	51.5	mm	Rate of Displacement:		< 0.1	mm/min
Failure Type: Tensile d	ominated		• •			
Other Pertinent Observations:						
Accredited for compliance with ISO/IEC 17025 - Testing. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full.						
		a	Data	Chris	•	
NATA Accredited Lab	oratory Numb	per: 14874	Date	. 19/12/	/2019	
NATA Accredited Lab	oratory Numb	ber: 14874	Date			Geotechnical

Uniaxial Compressive Strength					
Client:	Aurecon	Sample Source:	BH05 18.11-18.33m		
Address:	Level 5, 116 Military Rd, Neutral Bay, Sydney NSW 2089	Sample Description:	Shale		
Project:	Redfern Station Upgrade (39525 - TAP04)	Report No.:	S56889-UCS		
Job No.:	S19604	Lab No.:	\$56889		
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	mpressive strength-Rock str	ength less than 50 MPa		
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-		
Sampling Method:	Sampled by Client	Date Sampled:	7/12/2019		
Storage History:	Sealed	Storage Environment:	Sealed at as received moisture condition		

Uniaxi	al Compr	essive Stre	ngth 7.8		MPa		
Date Tested:	18/12/20	19	Moisture Conter	it:		4.2	%
Specimen Height:	147.2	mm	Duration of Test:			605	seconds
Average Specimen Diameter:	51.7	mm	Rate of Displacer	ment:		< 0.1	mm/min
Failure Type: Tensile d	ominated		-				
Other Pertinent Observations:							
Accredited for compliance with ISO/IEC 17025 - Testing. Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full.							
NATA Accredited Labo	oratory Num	per: 14874		Date:	Chris 19/12/		
MACQUARIE						Macquarie (Geotechnical
GEOTECH U7/8 10 Bradford Str Alexandria NSW 201							

Redfern Station Investigation Works

Transport for NSW

Contamination Investigation Report

IA157700-RP-CI-0025 | 02 5 February 2018 TfNSW Project Number - 150031

Redfern Station Investigation Works

Project No:	IA157700
Document Title:	Contamination Investigation Report
Document No.:	IA157700-RP-CI-0025
Revision:	02
Date:	5 February 2018
Client Name:	Transport for NSW
Client No:	150031
Project Manager:	Josh Cowley
Author:	Michael Grasso and Michael Stacey
File Name:	J:\IE\Projects\04_Eastern\IA157700\21 Deliverables\Contamination Investigation report\IA157700-RP-CI-0025_Rev02_Contamination Investigation Report FINAL.docx

Jacobs Group (Australia) Pty Limited ABN 37 001 024 095 Level 7, 177 Pacific Highway North Sydney NSW 2060 Australia PO Box 632 North Sydney NSW 2059 Australia T +61 2 9928 2100 F +61 2 9928 2500 www.jacobs.com

© Copyright 2018 Jacobs Group (Australia) Pty Limited. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright.

Limitation: This document has been prepared on behalf of, and for the exclusive use of Jacobs' client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this document by any third party.

Revision	Date	Description	Ву	Review	Approved
01	22/12/17	Draft – Contamination Investigation Report	M Grasso	M Stacey	J Cowley
02	05/02/18	Final – Contamination Investigation Report	M Grasso	M Stacey	J Cowley

Document history and status

Contents

1.	Introduction	1
2.	Objectives	2
3.	Scope of works	3
4.	Site setting	4
4.1	Site description	4
4.2	Geology and soils	5
4.2.1	Soil landscapes and site geology	5
4.2.2	Acid sulphate soils	5
4.3	Previous reports	6
5.	Fieldwork	7
5.1	General	7
5.2	Depth intervals of sampling	7
5.3	Method of sample collection	8
5.4	Sample containers, method of sample storage and handling	8
5.5	Decontamination procedures	8
5.6	Sample logging	
5.7	Laboratory analysis	9
5.8	Analytical parameters and methods	
6.	Quality control plan10	0
6.1	Field QA/QC programme	
6.1.1	Environmental samples	0
6.1.2	Blind replicate samples	0
6.2	Laboratory QA/QC programme	0
6.2.1	Laboratory duplicate samples	0
6.2.2	Laboratory control samples	0
6.2.3	Surrogates10	0
6.2.4	Matrix spike 1	1
6.2.5	Method blanks 1	1
6.3	Data acceptance criteria1	1
7.	Quality assurance / quality control12	2
7.1	Field quality assurance	2
7.2	Field quality control	2
7.3	Laboratory quality assurance	2
7.4	Laboratory quality control	2
7.4.1	Laboratory duplicates	2
7.4.2	Laboratory control samples	2
7.4.3	Surrogates	2
7.4.4	Matrix spikes1	3
7.4.5	Method blanks 13	3
7.4.6	Sample holding times	3

7.4.7	Sample condition	13
7.5	QA/QC assessment	13
8.	Site assessment criteria	14
8.1	Aesthetics	14
8.2	Ecological investigation levels	14
8.3	Ecological screening levels	15
8.4	Health investigation levels	15
8.5	Management limits	17
8.6	Waste classification	18
9.	Results	19
9.1	Site stratigraphy	19
9.2	Aesthetics	20
9.3	Soil analytical results	20
9.3.1	Heavy metals	20
9.3.2	BTEX	20
9.3.3	TRH	20
9.3.4	PAH	20
9.3.5	OCP	20
9.3.6	PCB	20
9.3.7	Asbestos	20
9.4	Waste classification	21
10.	Conclusions and recommendations	22
10.1	Contamination	22
10.2	Waste Classification	22
10.3	Recommendations	22
11.	Limitations	23

<u>Tables</u>

Table A: QAQC – Soil

Table B: Soil Analytical Results

Appendix A. Site investigation plan and cross sections

Appendix B. Borehole logs

Appendix C. Laboratory certificates

Appendix D. EIL calculations

1. Introduction

Jacobs has been commissioned by Transport for NSW (TfNSW) to undertake a combined land survey, geotechnical investigation and contamination study to inform future development plans for Redfern Station and the surrounding precinct (referred to herein after as the site).

This report details the results of the preliminary contamination investigation.

The contamination scope of work consisted of six (6) boreholes and contamination sampling at locations nominated by TfNSW. The investigation works were completed between the 7 and 28 November, including works during two planned weekend rail track shutdowns (WE20 – 11/12 November 2017 and WE21 – 18/19 November 2017).

This report presents the results of the preliminary contamination investigation including the results of the fieldwork and laboratory testing, together with conclusions and recommendations.

2. Objectives

The objectives of the preliminary contamination investigation were to:

- Assess and describe the nature and extent of contamination (if present) at the site in context of a commercial/industrial land use (considered to be the most appropriate land use setting based on the current railway setting).
- Determine the waste classification of soils in accordance with the NSW EPA (2014) Waste Classification Guidelines Part 1: Classifying Waste.
- Provide recommendations for the management of contamination risk (if present) at the site.

3. Scope of works

The scope of works undertaken for the contamination investigation was as follows:

- Prepare a Safe Work Method Statement (SWMS) that identified the foreseeable risks and provided strategies for removing and/or managing the risks.
- Undertake a Dial Before You Dig (DBYD) search and service locating for underground services by a qualified service locator prior to commencement of field works.
- Excavation of six boreholes as part of the geotechnical investigation at locations nominated by TfNSW, logging and sampling of recovered materials.
- Analysis of soil/fill samples for contaminants of concern.
- Preparation of a contamination investigation report detailing observations made during the fieldwork program and the results of the laboratory analysis.

JACOBS

4. Site setting

4.1 Site description

Redfern Station is located approximately 1.3 km south of Central Station. The station has 12 platforms, two of which are underground (Platforms 11 and 12). Redfern Station is served by a single concourse connecting all 12 platforms with frontage onto the Lawson Street overbridge at the northern end of the station. There are three entrances to the Station; Lawson Street, Gibbons Street and an entrance at the southern end of Platform 10 which connects with the walkway to Australian Technology Park (ATP).

Platforms 1 through 10 are each provided with a single set of stairs and are connected by the concourse. Platforms 11 and 12 are located underground and are accessed via stairs and escalators from the Gibbons Street entrance end of the concourse. Select photographs are provided on plates 1 to 4.

Plate 1: Redfern Station, looking south-west from Platform 10

Plate 2: Redfern Station, looking north-east from Platform 4

Plate 3: Illawarra Relief compound area, looking south-west

Plate 4: Rock outcropping within the Illawarra Relief compound area

4.2 Geology and soils

The following information documents were available at the time of preparing this report:

- Sydney 1:100 000 Soil Landscape Series Sheet 9130
- Sydney 1:100 000 Geological Series Sheet 9130
- 1:25,000 Acid Sulfate Soils (ASS) Risk Map Sheet 91 30S3

4.2.1 Soil landscapes and site geology

An understanding of the soils and geology expected for the area surrounding the station site has been based on the available 1:100 000 soil landscape and geological maps. The expected soil and geological units at the station site is summarised in Table 4.1.

Table 4.1 - Geological units

Unit	Description			
Soil landscape				
(bt) Blacktown	The landscape is characterised by gentle undulating rises (slopes <5%) on Wianamatta Group shales and Hawkesbury Sandstone with local reliefs of up 30 m. This area is further denoted as "developed terrain". The expected residual soils are either:			
	 Red and brown residual podzolic soils, shallow to moderately deep (up to 100cm) located on crests, upper slopes and well drained areas; or Yellow podzolic soils and soloths, deep (between 150 to 300 cm) located on lower slopes and in areas of 			
	poor drainage.			
Geology				
(Rwa) Ashfield Shale	The site is expected to be underlain by Ashfield Shale unit which is a sequence of the Wianamatta Group. The Ashfield Shale sequence in the area typically comprises interbedded black to dark grey shales, laminites and fine to medium grained sandstones. These materials typically weather to form a residual profile of 1 to 3 metres of medium to high plasticity clays.			

The presence of the above geological units was confirmed from the observations made during this investigation with approximately 1.5 m thick layer of fill overlying 3.5 m of residual clay profile then shale/laminite bedrock.

4.2.2 Acid sulphate soils

Office of Environment and Heritage Acid Sulfate Soil (ASS) mapping of the area suggests that no known occurrence of ASS has been noted within the Redfern area.

4.3 **Previous reports**

The following documents were sourced during the preparation of this assessment. Copies of relevant information are included in **Appendix B** and investigation locations have been plotted onto the site plan in **Appendix A**, based on available records and have not been verified.

- (Jacobs May 2017) Station Upgrade Project Redfern Station SP3, Geotechnical Investigation Memorandum.
 - Four boreholes (BH1 to BH4) on the concourse area located at the corner of Gibbons and Lawson Street were progressed to depths of up to 5.0 m below ground level. The logs indicated fill up to 2.4 m underlain by residual and then extremely weathered shale.
- (GeoEnviro Consultancy Pty April 2015) Proposed Railway Platform Nos 6 and 7 Upgrade, Redfern Station, Geotechnical Investigation Report
 - Nine boreholes (BH1 to BH9) were drilled along the platform and were progressed to depths ranging from 0.3 to 3.3 m below existing platform level. The logs indicated fill up to 1.6 m underlain by residual and then extremely weathered shale at approximately 2.5 to 3 m depth below platform level.
 - One (1) test pit was excavated on the south west side of the existing station building in order to assess the existing footing conditions underlying foundation material. The test pit was excavated to a depth of 1.0m below existing platform level.
- (Novo Rail Alliance January 2015) Transport Access Program Redfern Station Easy Access Upgrade, Geotechnical Interpretive Report.
 - A single exploratory hole was advanced using push tube and rotary auger techniques to a depth of 12m below ground level. The ground conditions comprised poorly compacted granular fill (up to 0.5 m bgl) over residual soil (0.5 to 2.3 m bgl) becoming weathered shale from 2.3 m grading to low strength shale from 4.2 m. No coring was undertaken in this borehole, with the borehole terminated at 12 m.
- (RailCorp February 2010/2011) Formation Investigation and platform stability during track upgrading Redfern, Platform 6.
 - Eight test pits (8573-TP1 to 8573-TP8) were excavated within the 'four-foot' of the Down Local to depths between 0.68 and 1.0 m below track level. Generally, the test pits indicated Ballast overlying a capping layer up to 1.0 m depth. In some locations, this was underlain by residual soil or weathered shale bedrock.
 - Three boreholes (8573-BH1 to 8573-BH3) were drilled through platform 6 to depths between 3.0 to 3.4m. The borehole indicated fill up to 2.0 m overlying residual soils and weathered shale bedrock at the base of the borehole (approximately 3 m).
- (J&K January 2009) Proposed Track Reconditioning Redfern Station Platform Four, Geotechnical Investigation Report (proposed Redfern Station Platform 4 track reconditioning works between track kilometrages 0.950 km and 1.405 km)
 - During the initial field investigations in 2007, nine test pits (TL1 to TL9) were excavated at 50 m centres within the 'four-foot' using a 3.5 tonne excavator. The test pits were excavated to depths between 0.5 m and 1.35 m and dynamic cone penetration (DCP) tests were carried out within the test pit to depths extending between 1.2m and 2.0 m.
 - RailCorp then excavated six additional test pits in 2008 (8376-1 to 8376-6) in close proximity to the test pits excavated by J&K. The test pits were excavated to depths between 0.7 m and 1.1 m.
 - Generally, the test pits from both investigations encountered granular railway ballast overlying fill or natural clayey soils, then in a number of test pits, weathered shale bedrock.

5. Fieldwork

5.1 General

The preliminary contamination investigation (undertaken as part of the geotechnical investigation) was undertaken between 7 November and 28 November 2017, part of which was undertaken during planned weekend shutdowns of the rail line (WE20 and WE21) under the full time supervision of a Jacobs' geotechnical engineer. The investigation comprised the drilling of six (6) boreholes, undertaking in-situ SPTs (Standard Penetration Tests) and sampling for laboratory testing purposes. The surveyed positions of Jacobs' field investigation locations are as shown on the site plan included in **Appendix A**.

The field investigation comprised six boreholes (Boreholes BH1 to BH6) drilled to depths of 8.50 m to 10.40 m below existing ground level. Borehole BH1 was drilled in Eveleigh Carriage Works Yard behind platform one. Boreholes BH2, BH3 and BH4 were drilled in the country ends of Platforms 3, 4 and 9 respectively. Borehole BH5 was drilled in the Illawarra Relief Site Compound Excavation and Borehole BH6 was drilled in the Illawarra Relief Site Compound South Entry Forecourt.

Boreholes BH1, BH2, BH3 and BH4 were drilled using the XC rig, BH5 was drilled using the Commachio 205 and BH6 was drilled using the Hanjin DB8, all of which were track mounted rigs. The borehole locations are provided on the site plan in **Appendix A**. Boreholes were drilled using a tungsten carbide drill bit (TC) and then cored following SPT refusal or judgment made by the geotechnical engineer. All boreholes were extended by NMLC core drilling techniques to the levels provided in Table 5.1 below.

SPTs were carried out during borehole drilling at regular intervals within the soil and weathered rock horizons to recover representative samples.

Materials encountered in each borehole were logged by the Jacobs geotechnical engineer in accordance with Australian Standards AS1726-2017. Borehole logs are presented in **Appendix B**. The investigated borehole locations were surveyed by a surveyor from Jacobs. A summary of the borehole survey information, including elevation and termination depths are provided in Table 5.1.

Borehole No.	Termination Depth (m BGL) ¹	Easting (m) ²	Northing (m) ²	Surface Elevation (m AHD) ³
BH1	9.15	333321.80	6248324.58	25.90
BH2	8.50	333351.56	6248322.83	26.37
BH3	9.00	333359.66	6248314.17	26.48
BH4	10.00	333412.36	6248312.39	26.34
BH5	10.40	333481.43	6248345.75	24.03
BH6	9.90	333452.63	6248279.52	25.14
Notes:			-	·

Table 5.1 – Summar	v of borehole locations	and termination depth

m BGL = metres below ground level
 Coordinate system MGA94 Zone 56 H

Coordinate system MGA94 Zone 56 H
 m AHD = metres above Australian height datum

m AHD = metres above Australian height datur

5.2 Depth intervals of sampling

Soils samples for contamination testing were collected from the surface of the borehole locations (0.0 metre) and at 0.5 metre intervals until contact with natural soils and/or bedrock or at other discrete locations where there was evidence of potential contamination (e.g. odorous and/or discoloured materials, presence of erroneous wastes).

5.3 Method of sample collection

All soil samples were collected as grab samples from the surface of the borehole locations and from a decontaminated SPT sampler at depth. Samples were transferred to sample containers by Jacobs field staff by hand using disposable nitrile gloves. New nitrile gloves were used for the collection of each sample.

Care was taken to ensure that representative samples were obtained from the depth required and that the integrity was maintained, which is particularly important when dealing with potentially volatile components.

5.4 Sample containers, method of sample storage and handling

All soil samples were placed in jars provided by the primary laboratory Envirolab Services (Envirolab). All sample jars were fitted with Teflon lined lids. The jars were completely filled with soil, labelled with the date, unique sampling point identification and sampler information.

The soil jars once filled with sample and sealed, were immediately placed in an esky/cool box in which a cooling medium had been added to keep the samples below a temperature of approximately 4°C. At the end of the sampling program the samples in the cool box were transported to the laboratory. Custody seals were placed on the esky / cool box for delivery to the laboratory.

5.5 Decontamination procedures

The SPT sampler was decontaminated between sample locations by washing the sampler with a solution of phosphate free, laboratory grade detergent (Decon 90) and potable water and rinsing with potable water. All samples were collected using new, disposable nitrile gloves.

The physical attributes of samples such as soil/fill characteristics, obvious signs of contamination such as discolouration and/or odour were noted on a log.

All samples were transported to the laboratory under Chain-of-Custody (CoC) procedures and maintained in an ice-filled cool box. The CoC detailed the following information:

- Site identification
- The sampler
- Nature of the sample
- Collection time and date
- Analyses to be performed
- Sample preservation method.

5.6 Sample logging

Experienced Jacobs field staff completed soil logs during the borehole drilling exercise. The logs recorded the following data:

- Sample number and depth
- Soil classification, colour, consistency or density, moisture content and obvious indications of contamination
- Depth of excavation
- Excavation refusal
- Method of excavation
- The depth of first encountered free water.

5.7 Laboratory analysis

Soil samples were selected for analysis based generally on providing vertical and lateral coverage and on visual observations. A summary of the laboratory testing undertaken is detailed in Table 5.2.

Table 5.2 – Contamination laboratory testing

Laboratory Testing	Quantity
Heavy metals (As, Cd, Cr, Cu, Pb, Ni, Hg, Zn), hydrocarbon compounds (TRH, BTEX, PAH), pesticides (OCP), polychlorinated biphenyls (PCB) and asbestos (presence/absence).	11
Heavy metals, TRH, BTEX, PAH	1
Heavy metals, pH, cation exchange capacity (CEC) and % clay	2
Leachable (TCLP) nickel and benzo(a)pyrene	1
TCLP lead and mercury	1

5.8 Analytical parameters and methods

Jacobs commissioned Envirolab as the primary laboratory. Envirolab laboratories are National Association of Testing Authorities (NATA) accredited for the testing undertaken.

Where appropriate, the soil samples were analysed in accordance with NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013 (NEPC, 2013) guidelines using methods based on US Environment Protection Agency (US EPA) and American Public Health Association (APHA) approved analytical methods.

6. Quality control plan

Field and laboratory QA/QC requirements compliant with NEPC (2013) requirements (where applicable) were undertaken as part of the fieldwork program as outlined below.

6.1 Field QA/QC programme

Field QA/QC for this project consisted of the collection of a blind replicate sample.

6.1.1 Environmental samples

Environmental samples or field samples were the representative soil samples collected for analysis to determine aspects of their chemical composition.

6.1.2 Blind replicate samples

A blind replicate sample was provided by the collection of two environmental samples from the same location. These samples were preserved, stored, transported, prepared and analysed in an identical manner. As a minimum, the results of analyses on the blind replicate sample pair were assessed by calculating the Relative Percentage Differences (RPDs) between the results. The RPD was calculated as the difference between the results divided by their mean value and expressed as a percentage. If the RPD exceeded the value adopted for any analytes, additional investigation would be required, or justification provided for not conducting additional investigation.

Blind replicate samples were generally collected at a rate of one duplicate for every 20 environmental samples in accordance with AS 4482.1-2005 Guide to the sampling and investigation of potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds.

6.2 Laboratory QA/QC programme

The reliability of test results from the analytical laboratories was monitored according to the QA/QC procedures used by the NATA accredited laboratory. The QA/QC programme employed by Envirolab (the primary laboratory) specified holding times, extraction dates, method descriptions, CoC requirements, analysis, laboratory levels of reporting (LORs) and acceptance criteria for the results. Laboratory QA/QC requirements undertaken by Envirolab are based on NEPC 2013 requirements and are outlined below.

6.2.1 Laboratory duplicate samples

Laboratory duplicates provided data on analytical precision for each batch of samples.

Laboratory duplicates were performed at a rate of one duplicate for batches of 8-10 samples with an additional duplicate for each subsequent ten samples.

6.2.2 Laboratory control samples

Laboratory control samples consisted of a clean matrix (de-ionised water or clean sand) spiked with a known concentration of the analyte being measured. These samples monitored method recovery in clean samples and were used (where required) to evaluate matrix interference by comparison with matrix spikes.

6.2.3 Surrogates

For organic analyses, a surrogate was added at the extraction stage in order to verify method effectiveness. The surrogate was then analysed with the batch of samples and percentage recovery calculated.

6.2.4 Matrix spike

Matrix spikes consisted of samples spiked with a known concentration of the analyte being measured, in order to identify properties of the matrix that may hinder method effectiveness. Samples were spiked with concentrations equivalent to 5 to 10 times the LOR and percentage recovery calculated.

6.2.5 Method blanks

Method blanks (de-ionised water or clean sand) were carried through all stages of sample preparation and analysis at a rate of approximately 10%. Analyte concentrations in blanks should be less than the stated LOR. Reagent blanks were run if the method blank exceeded the LOR. The purpose of method blanks was to detect laboratory contamination.

6.3 Data acceptance criteria

The QA/QC was assessed against the Data Acceptance Criteria (DAC) provided in Table 6.1.

Table 6.1 – QA/QC compliance assessment

QA/QC Sample Type	Method of Assessment	Acceptable Range
	Field QA/QC	
Blind Replicates Samples	The assessment of blind replicate samples is undertaken by calculating the Relative Percent Difference (RPD) of the replicate concentration compared with the original sample concentration. The RPD is defined as: $\frac{ X1 - X2 }{\text{RPD} = 100 \text{ x}}$ Average Where: X1 and X2 are the concentration of the original and replicate/triplicate samples.	 The acceptable range depends upon the levels detected: 0 - 100% RPD (When the average concentration is < 5 times the LOR) 0 - 75% RPD (When the average concentration is 5 to 10 times the LOR) 0 - 50% RPD (When the average concentration is > 10 times the LOR)
	Laboratory QA/QC	
Laboratory Duplicates	Assessment as per Blind Replicates and Split Samples.	 The acceptable range depends upon the levels detected: 0 - 100% RPD (When the average concentration is < 4 times the LOR) 0 - 50% RPD (When the average concentration is 4 to 10 times the LOR) 0 - 30% RPD (When the average concentration is > 10 times the LOR)
Surrogates Matrix Spikes Laboratory Control Samples	Assessment is undertaken by determining the percent recovery of the known spike or addition to the sample. $\frac{C - A}{B}$ Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; C = Calculated Concentration.	 70% - 130% (General Analytes) 50% - 130% (Phenols) 60% - 130% (OP Pesticides)
Method Blanks	Each blank is analysed as per the original samples.	Analytical Result < LOR
Note: LC	DR = Laboratory Level of Reporting (LOR) or the minimum de	tection limit for a particular analyte.

7. Quality assurance / quality control

For the purpose of assessing the quality of data presented in this report, Jacobs collected and analysed various Quality Control (QC) samples (blind duplicate and blind triplicate sample), while the laboratory completed their own internal QC. The current section of this report is focused on the presentation of the results of these QC samples, adherence to Quality Assurance (QA) systems and discussion of deviations, if any from the DAC.

7.1 Field quality assurance

Field QA/QC for this project consisted of the collection of blind replicate and triplicate samples.

7.2 Field quality control

The following QC samples were collected for laboratory analysis:

• Blind Replicate: DUPB (duplicate of soil sample BH5/0.0-0.1).

One blind replicate sample was analysed to assess the quality control during the field sampling program. This equates to 9% blind replicate analysis. This blind replicate analysis exceeds and therefore conforms to the AS 4482.1 – 2005 requirement of 5%.

The RPDs for all analytes for the soil blind replicate pairs conformed to the DAC with the exception of copper and lead concentrations. It is inherently difficult to obtain representative duplicate samples from heterogeneous fill material which cannot be homogenised to retain volatiles. The exceedances of the RPD for selected heavy metals in these samples are unlikely to affect the usability of the data set. RPD results for soil are presented in Table A.

7.3 Laboratory quality assurance

All analysis was undertaken by a NATA accredited laboratory using NATA accredited analytical methods.

7.4 Laboratory quality control

Where undertaken, laboratory QC data is presented in full in the laboratory certificates in Appendix C.

7.4.1 Laboratory duplicates

RPDs for all laboratory duplicates for soil samples conformed to the DAC with the exception of RPDs reported for PAH and lead in Envirolab laboratory batch 180999.

The Envirolab laboratory report stated that the RPD for PAHs was acceptable due to the homogenous nature of the sample.

A triplicate result for heavy metals was undertaken for laboratory sample 180999-5. For the purposes of assessing contamination, Jacobs will utilise the highest heavy metal concentration from both samples.

The exceedance for laboratory duplicates is unlikely to affect the usability of the data set.

7.4.2 Laboratory control samples

Recoveries for all laboratory control samples for soil and water conformed to the DAC.

7.4.3 Surrogates

Recoveries for all laboratory surrogate samples for soil conformed to the DAC.

7.4.4 Matrix spikes

Recoveries for all matrix spike control samples for soil and water conformed to the DAC.

7.4.5 Method blanks

All method blanks for soil and water reported analyte concentrations below the laboratory LOR and therefore conformed to the DAC.

7.4.6 Sample holding times

All soil and water samples were extracted and analysed within the specified holding times.

7.4.7 Sample condition

All samples were received by the analytical laboratories in correctly preserved and chilled containers with no reported breakages. The individual sample receipts are presented with the laboratory reports in Appendix C.

7.5 QA/QC assessment

It is concluded that the laboratory data are of acceptable quality and are considered useable in making conclusions and recommendations regarding the condition of the respective sites.

8. Site assessment criteria

To address potential health impacts at the site, Jacobs compared the analytical testing results against a set of health and ecological based soil investigation levels to be referred to as Site Assessment Criteria (SAC) appropriate for the current land use (i.e. commercial/industrial guidelines, given the current land use / railway setting). That is, the SAC have been set at levels that provide confidence that contaminant concentrations below the SAC will not adversely affect human health or environmental receptors.

The SAC developed for the investigation was derived (where applicable) from the following guidelines.

- NEPC (2013) Schedule B1 Guideline on Investigation levels for Soil and Groundwater.
- The Dutch (2000) groundwater intervention levels for Total Petroleum Hydrocarbons fractions.

8.1 **Aesthetics**

Aesthetics on sites relates to the presence of observable odours, discoloration and erroneous wastes materials in soil which could possibly indicate contamination. Such olfactory evidence can point to how receptors can be impacted by vapours on and migrating from the site. Odour threshold for organic substances can be exceeded in off-site settings (through groundwater transmission of hydrocarbons) and whilst may not represent a direct health risk, could possibly prompt civil action. Aesthetics were continually assessed during the investigation and reported (where present) on the field logs.

8.2 **Ecological investigation levels**

EILs were generated using the NEPC (2013) – Volume 2 – Table 1B (1-7). For the site, it has been assessed that the EILs will apply to contaminants within the top 2 metres of soil at the surface / ground level which corresponds to the root zone and habitation zone of many species. Additionally, typical background concentrations were required to be calculated in order to derive selected EILs. To generate the EILs for the investigation, Jacobs have used the methodology as described in Appendix D and summarised below.

EILs were generated for heavy metals, DDT and naphthalene. Samples BH4/1.5 and BH2SPT/3.0 were assumed to be representative of the 'background conditions' due to the samples being taken from natural soils/rock and that the soil at this location was unlikely to be impacted by anthropogenic sources. The EILs were calculated (where appropriate) using the NEPC (2013) equation:

EIL = ABC1 + ACL2

EIL calculation are presented as Appendix D. A summary of the adopted EILs is presented as Table 8.1.

Table 8.1 - Ecological investigation levels (expressed as mg/kg).

Compounds	Ecological Investigation Level
Arsenic	160 1
Cadmium	32
Chromium	665 ³
Copper	140 ³
Lead	1,808 ³
Mercury	1 2
Nickel	55 ³

¹ ABC is ambient background concentration (the soil concentration in a specified locality that is the sum of the naturally occurring background level and the contaminant levels that have been introduced from diffuse or non-point sources by general anthropogenic activity). ² ACL is added contaminant limit (the added concentration (above the ABC) of a contaminant above which further appropriate investigation and valuation of the impact on ecological

values is required).

Compounds	Ecological Investigation Level
Zinc	218 ³
DDT	640 ¹
Naphthalene	370 1

¹ Generic EILs for aged arsenic/DDT/Naphthalene from Table 1B(5) in NEPC (2013).

² EILs from NEPC1999 (no EILs specified for contaminants in NEPC 2013).

³ EILs derived from NEPC (2013) equation ABC+ACL.

8.3 Ecological screening levels

Ecological Screening Levels (ESLs) are focused on petroleum hydrocarbon and total recoverable hydrocarbon (TRH) compounds and are compared against actual site conditions (sub-surface materials and depth) to assess the potential risk to terrestrial ecosystems. For the purposes of calculating the ESLs, the generic soil type (i.e. three broad classes of sands, silts or clays) and land use need to be defined.

Based on site observations and for the purposes of this investigation, Jacobs considered a clay soil to be most representative of soil texture at the site. As such, Jacobs has adopted ESLs for fine grained soil type.

Table 8.2 summarises the adopted ESL criteria for soils (based on the current commercial/industrial land use of the site and soil type observed during the investigation).

Compounds / Fraction	Ecological Screening Levels ¹
F1 (C6 – C10)	215
F2 (>C10 – C16)	170
F3 (>C16 – C34)	2500
F4 (>C34 – C40)	6600
Benzene	95
Toluene	135
Ethylbenzene	185
Xylenes	95
Benzo(a)pyrene	0.7

¹ Table 1B(6) ESLs for TPH fractions F1 – F4, BTEX and Benzo(a)pyrene in fine grained soils (commercial and industrial) - NEPC (2013).

8.4 Health investigation levels

To address potential health impacts at the site, Jacobs compared the soil analytical testing results against a set of health based Soil Investigation Levels (SILs) appropriate for commercial/industrial land use in context of the current land use (railway setting) of the site and have taken into consideration the potential for contamination in soil to impact upon groundwater and generate vapours which could impact upon on human receptors. The health based SILs have been derived from the NEPC (2013) guidelines. The adopted SILs are summarised in Table 8.3.

HILs have been developed for a broad range of metals and organic substances. The HILs are applicable for assessing human health risk via all relevant pathways of exposure. The HILs are generic to all soil types and apply generally to a depth of three m below the surface for residential use. The guidance does not specify a depth range for commercial/industrial use. As a conservative measure, Jacobs have adopted a soil depth of 3m below the surface to assess contamination risk.

HSLs have been developed for selected petroleum compounds and fractions and are applicable to assessing human health risk via the inhalation and direct contact pathways. The HSLs depend on specific soil physiochemical properties, land use scenarios, and the characteristics of building structures. They apply to different soil types, and depths below surface to >4 metres. Further details on their use are provided in Friebel and Nadebaum (2011a, 2011b & 2011c).

The HSLs defined within the NEPC (2013) relate only to the volatile fractions of the petroleum hydrocarbons range i.e. BTEX, naphthalene and TRH C6 – C10, TRH C10 – C16.

Jacobs has adopted the lower value from the following criteria as a conservative measure:

- NEPC (2013) Health Investigation Level recommended from exposure setting 'D' which includes premises such as shops, offices, factories and industrial sites (i.e. sites with minimal exposure opportunities).
- Friebel, E & Nadebaum, P (September 2011) Technical Report No.10, Health screening levels for petroleum hydrocarbons in soil and groundwater. Part 1: Technical development document - HSL-D Commercial / Industrial Criteria and Intrusive Maintenance Worker (Table A4).

NEPC (2013) provides health based screening levels for different forms of asbestos contamination in soil. To apply these screening levels, significant investigations, excavation and sample volumes are required to assess the volume of asbestos relative to soil. Jacobs have adopted a high-level criterion to assess the presence / absence of asbestos in soil samples and to determine whether additional investigations are required to assess the risk to site users. The high level criterion adopted by Jacobs is no asbestos in any form present in soil samples or observed on surface soils and in excavated materials.

The adopted SIL are detailed in Table 8.3.

Table 8.3 - Soil investigation levels (expressed mg/kg)

Compounds / Fraction	Soil Investigation Levels			
Heavy Metals				
Arsenic (total)	3,000 1			
Cadmium	900 ¹			
Chromium (VI)	3,600 1			
Copper	240,000 ¹			
Lead	1,500 ¹			
Mercury (inorganic)	7301			
Nickel	6,000 ¹			
Zinc	400,000 ¹			
	Polychlorinated Biphenyls (PCBs)			
PCBs	7 1			
	Polycyclic Aromatic Hydrocarbons (PAHs)			
Naphthalene	NL 2			
BaP TEQ	40 1			
Total PAH	4,000 ¹			
Total Recoverable Hydrocarbons (TRH) 3				
C6-C10	26,000			
>C ₁₀ -C ₁₆	20,000			

Compounds / Fraction	Soil Investigation Levels			
>C ₁₆ -C ₃₄	27,000			
>C ₃₄ -C ₄₀	38,000			
Organochlorine Pesticides (OCP) ¹				
DDT+DDE+DDD		3,6	600	
Aldrin and dieldrin		4	5	
Chlordane		53	30	
Endosulfan	2,000			
Endrin	100			
Heptachlor	50			
HCB	80			
Methoxychlor	2,500			
Mirex	100			
Toxaphene	160			
	F1, F2 and BTEX (base	d on CLAY soil type) #		
Depth (m)	0 – <1	1 – <2	2 – <4	>4
F1 (C ₆ -C ₁₀ minus sum of BTEX concentrations)	310 ²	480 ²	26000 ²	26000 ³
F2 (>C10-C16 minus naphthalene)	20,000 ³	20,000 ³	20,000 ³	20,000 ³
Benzene	4 2	6 ²	9 2	20 ²
Toluene	99,000 ³	99,000 ³	99,000 ³	99,000 ³
Ethylbenzene	27,000 ³	27,000 ³	27,000 ³	27,000 ³
Xylenes	81,000 ³	81,000 ³	81,000 ³	81,000 ³
Naphthalene	11,000 ³	11,000 ³	11,000 ³	11,000 ³
Asbestos				
All forms of asbestos No asbestos in any form present in soil samples or observed on surface soils and in excavated materials			d in excavated materials	

¹ NEPC (2013) Table 1 A(1) Health investigations levels for soil contaminants – Commercial / Industrial D.

² NEPC (2013) Table 1 A(3) Soil HSLs for vapour intrusion – commercial/industrial, 0 to <1, 1 - <2, 2 - <4, >4 m CLAY.

³ HSL-D Commercial / Industrial Criteria Soil Vapour and Direct Contact detailed within Table A4, Friebel, E & Nadebaum, P 2011, Soil Health screening levels for direct contact, Technical Report 10.

⁴ NEPC (2013) Table 1A(3) Soil HSLs for Vapour Intrusion (mg/kg) HSL D Commercial / Industrial.

NL - NL indicates the HSL is not limiting (see Footnote 5, Table 1A(3)).

TEQ - Toxic Equivalent.

Soil Vapour as the primary Exposure Pathway to impact potential receptors.

8.5 Management limits

Within NEPC (2013), management limits are applied to petroleum hydrocarbons, which are considered in addition to the SAC (HILs, EILs, ESLs etc). These Management limits reflect the nature and properties of petroleum hydrocarbons and their potential effects such as:

- formation of observable light non-aqueous phase liquids (LNAPL)
- fire and explosive hazards

• effects on buried infrastructure e.g. penetration of, or damage to, in-ground services by hydrocarbons.

The application of the management limits will require site specific factors to be considered in more detail. These factors include, but are not limited to, depth of building basements and services (where applicable) and depth to groundwater in order to determine the maximum depth to which the limits should apply. When the management limits are exceeded, further site-specific assessment and management may enable any identified risk to be addressed.

The presence of site TRH contamination at the levels of the management limits does not imply that there is no need for administrative notification or controls in accordance with jurisdiction requirements. Adopted management limits for petroleum hydrocarbons for fine grained soils are detailed in Table 8.4.

Table 8.4 - Management limits for TPH fractions F1-F4 in soil (adapted from NEPC 2013 Schedule B1)

TRH Fraction	Soil Texture	Management Limits1 (mg/kg dry soil) – Commercial/Industrial
F1 ² C ₆ - C ₁₀	Coarse	800
F2 ² >C ₁₀ -C ₁₆	Coarse	1,000
F3 >C ₁₆ -C ₃₄	Coarse	5,000
F4 >C ₃₄ -C ₄₀	Coarse	10,000

¹ Management limits are applied after consideration of relevant ESLs and HSLs.

² Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

8.6 Waste classification

Waste classification is defined in Schedule 1 of the Protection of the Environment Operations Act 1997 ("POEO Act"), and in the NSW EPA (2014) Waste Classification Guidelines (the waste guidelines)

To assist in the appropriate classification of waste, Tables 1 and 2 in Part 1 of the waste guidelines provides a list of chemical contaminants that are used in the classification of waste. These guidelines provide a framework whereby waste materials can be classified for appropriate offsite disposal at suitably licenced facilities.

The waste guidelines contain a two-stage process for the chemical classification of waste. The first stage involves the comparison of total or Specific Contaminant Concentrations (SCC) with Contaminant Threshold (CT) values (Table 1). The second stage of waste characterisation involves the determination of leachable contaminant concentrations using the TCLP. In this stage, both SCC and leachable concentrations are used to classify waste. The final waste classification is determined jointly by SCC and leachable concentrations. It should be noted that in the instance that either SCC or leachable concentration criteria for one contaminant are exceeded, then the higher waste category should be adopted.

9. Results

9.1 Site stratigraphy

A summary of the sub-surface material sampled in the boreholes (BH1 - BH6) and the respective laboratory analysis is provided in Table 9.1.

Sample ID	Depth (mBGL)	Material Description	Samples Tested
BH1	0.0-0.1	FILL: Gravelly CLAY: Brown, medium plasticity, gravel is fine to coarse, subangular to angular, with a trace of root fibres	Heavy metals, TRH, BTEX, PAH, OCP, PCI and asbestos. TCLP nickel and benzo(a)pyrene.
BH1	0.3-0.4	FILL: Silty SAND: Brown, fine to medium grained, with a trace of clay and gravel.	Heavy metals, TRH, BTEX, PAH, OCP, PCI and asbestos. TCLP lead and mercury.
BH2	0.8-0.9	FILL: Clayey SAND: Brown, fine to medium grained with some medium to coarse, subangular to subrounded gravel.	Heavy metals, TRH, BTEX, PAH, OCP, PCI and asbestos.
BH2	1.0-1.1	FILL: Clayey SAND: Brown, fine to medium grained with some medium to coarse, subangular to subrounded gravel.	Heavy metals, TRH, BTEX, PAH, OCP, PC and asbestos.
ВНЗ	0.6-0.7	FILL: Silty CLAY: Orange-brown and red-brown, high plasticity with trace of sand and fine subangular gravel. At 0.6m, buried pavement, approximately 100mm thick, including asphalt over bricks.	Heavy metals, TRH, BTEX, PAH, OCP, PC and asbestos.
BH3	1.1-1.2	FILL: Silty CLAY: Orange-brown and red-brown, high plasticity with trace of sand and fine subangular gravel.	Heavy metals, TRH, BTEX, PAH, OCP, PC and asbestos.
BH4	0.4	FILL: Gravelly CLAY: Brown, medium plasticity, gravel is fine to coarse, subangular to angular.	Heavy metals, TRH, BTEX, PAH, OCP, PC and asbestos.
BH4	1.5	Silty CLAY: Grey and red-brown, high plasticity with ironstone gravel	Heavy metals, TRH, BTEX, PAH, OCP, PC and asbestos. pH, CEC and % clay.
BH5	0.0-0.1	FILL: Sandy Gravelly CLAY: Brown and red-brown, low to medium plasticity, gravel is fine to medium.	Heavy metals, TRH, BTEX, PAH, OCP, PC and asbestos.
BH5	0.5-0.95	FILL: Sandy Gravelly CLAY: Brown and red-brown, low to medium plasticity, gravel is fine to medium. From 0.5m, coal layer (100mm). FILL: Silty Sandy CLAY: Brown and red-brown, medium to high plasticity, sand is fine to coarse grained, with a trace of siltstone lenses.	Heavy metals, TRH, BTEX, PAH, OCP, PC and asbestos.
DUPB (duplicate of BH5/0.0-0.1)	0.0-0.1	FILL: Sandy Gravelly CLAY: Brown and red-brown, low to medium plasticity, gravel is fine to medium	Heavy metals, TRH, BTEX, PAH.
BH6	0.6	FILL: Sandy Clayey GRAVEL: Dark grey and brown, fine to coarse, subanagular to subrounded. At 0.4m, some broken bricks. At 0.6m, some shale cobbles and boulders up to 300mm.	Heavy metals, TRH, BTEX, PAH, OCP, PC and asbestos.
BH2SPT/3.0	3.0	Silty CLAY: Grey mottled red-brown, high plasticity with trace of ironstone gravel.	Heavy metals. pH, CEC and %clay.

9.2 Aesthetics

Fill was identified overlying natural materials at all borehole locations. Plastic debris and bricks were observed in boreholes BH1 and BH6 respectively. Buried asphalt pavements were identified in BH2 and BH3. No potential asbestos containing materials, odorous or discoloured materials were identified in the material recovered from the boreholes.

9.3 Soil analytical results

Soil analytical results from samples collected from boreholes BH1 - BH6 in comparison to the SAC are discussed below. Analytical results are provided in Table B. Laboratory certificates of analysis are presented in **Appendix C**.

9.3.1 Heavy metals

Concentrations of heavy metals in all samples analysed were below the SAC with the following exceptions:

- Copper concentrations in BH1/0.3-0.4 (510 mg/kg) exceed the ecological investigation level of 140 mg/kg
- Zinc concentrations in BH4/1.5 (220 mg/kg), BH1/0.0-0.1 (240 mg/kg) and BH1/0.3-0.4 (880 mg/kg) exceed the ecological investigation level of 140 mg/kg.

9.3.2 BTEX

Concentrations of BTEX compounds in all samples analysed were below the LOR and below the SAC.

9.3.3 TRH

Concentrations of TRH in all samples analysed were below the SAC.

9.3.4 PAH

Concentrations of all PAH compounds in all samples analysed were below the SAC with the following exception:

• Benzo(a)pyrene in BH1/0.0-0.1 (0.87 mg/kg) marginally exceed the ecological screening level of 0.7 mg/kg.

9.3.5 OCP

Concentrations of all OCP compounds in all samples were below the LOR and below the SAC.

9.3.6 PCB

Concentrations of all PCB compounds in all samples analysed were below the SAC.

9.3.7 Asbestos

No asbestos or respirable fibres were identified in any of the analysed soil samples.

9.4 Waste classification

Soil analytical results with respect to waste classification are presented below. Laboratory certificates of analysis are presented in Appendix C.

- Total concentrations of benzo(a)pyrene and nickel in sample BH1/0.0-0.1 were detected above the CT1 Thresholds for maximum values of specific contaminant concentration (SCC) for classification without TCLP (Table 1:CT1 and CT2 values for classifying waste by chemical assessment without the TCLP test).
- Total concentrations of lead and mercury in sample BH1/0.3-0.4 were detected above the CT1 Thresholds for maximum values of specific contaminant concentration (SCC) for classification without TCLP (Table 1:CT1 and CT2 values for classifying waste by chemical assessment without the TCLP test).
- Subsequent TCLP analysis of BH1/0.0-0.1 and BH1/0.3-0.4 for the respective analytes exceeding the CT1 thresholds returned concentrations below the TCLP1 and SCC1 Thresholds for maximum values for leachable concentration and specific contaminant concentration when used together (Table 2: Leachable concentration (TCLP) and specific contaminant concentration (SCC) values for classifying waste by chemical assessment).
- All other samples reported analyte concentrations which would classify the sampled material as general solid waste.

Based on field observations and the results of the laboratory analysis, the material to the limit of the investigation would be classified as General Solid Waste (non-putrescible) in accordance with the waste guidelines (NSW EPA, 2014).

10. Conclusions and recommendations

10.1 Contamination

The results of the contamination investigation (to the limit of the investigation) did not identify significant contamination which would constrain a development consistent with the current use of the site (i.e. railway setting – commercial/industrial land use).

Selected heavy metals and benzo(a)pyrene were detected in a number of samples at concentrations exceeding ecological assessment criteria. The exceedances of these ecological assessment criteria in a small number of samples are unlikely to pose a risk to future development as the areas investigated are already highly modified (contain filling) and is unlikely to represent a sensitive terrestrial ecosystem.

10.2 Waste Classification

Based on field observations and the results of the laboratory analysis, the material to the limit of the investigation would be classified as General Solid Waste (non-putrescible) in accordance with the waste guidelines (NSW EPA, 2014).

10.3 Recommendations

At the time of preparing this report, the strategic concepts for the Redfern Station and precinct upgrade were in development and were not known. It is recommended that once concepts have been developed, additional contamination advice be sought or the report updated to confirm assumptions made including any recommendations on further testing that may be warranted.

The contamination investigation was preliminary in nature. With fill identified in all borehole locations and the current and historical use of the site as a railway, there is the potential for other areas of contamination to be present across the site which were not assessed as part of this investigation. Once concepts are developed, it is likely that additional contamination investigations and waste classifications will be required in areas which have not been subjected to investigations.

11. Limitations

The sole purpose of this report is to present the interpretive results from the contamination investigation carried out by Jacobs for Transport for NSW ('the Client') in connection with the Redfern Station Investigation Works. This report was produced in general accordance with and is limited to the scope of services set out in the contract between Jacobs and the Client. That scope of services, as described in this report, was developed with the Client.

All reports and conclusions that deal with sub-surface conditions are based on interpretation and judgement and as a result have uncertainty attached to them. You should be aware that this report contains interpretations and conclusions which are uncertain, due to the nature of the investigations. No study can investigate every risk, and even a rigorous assessment and/or sampling programme may not detect all problem areas within a site.

This report is based on assumptions that the site conditions as revealed through sampling are indicative of conditions throughout the site. The findings are the result of standard assessment techniques used in accordance with normal practices and standards, and (to the best of Jacobs' knowledge) they represent a reasonable interpretation of the current conditions on the site.

Sampling techniques, by definition, cannot determine the conditions between the sample points and so this report cannot be taken to be a full representation of the sub-surface conditions. This report only provides an indication of the likely sub surface conditions.

Conditions encountered when site work commences may be different from those inferred in this report, for the reasons explained in this limitation statement. If site conditions encountered during site works are different from those encountered during Jacobs' site investigation, Jacobs reserves the right to revise any of the findings, observations and conclusions expressed in this report.

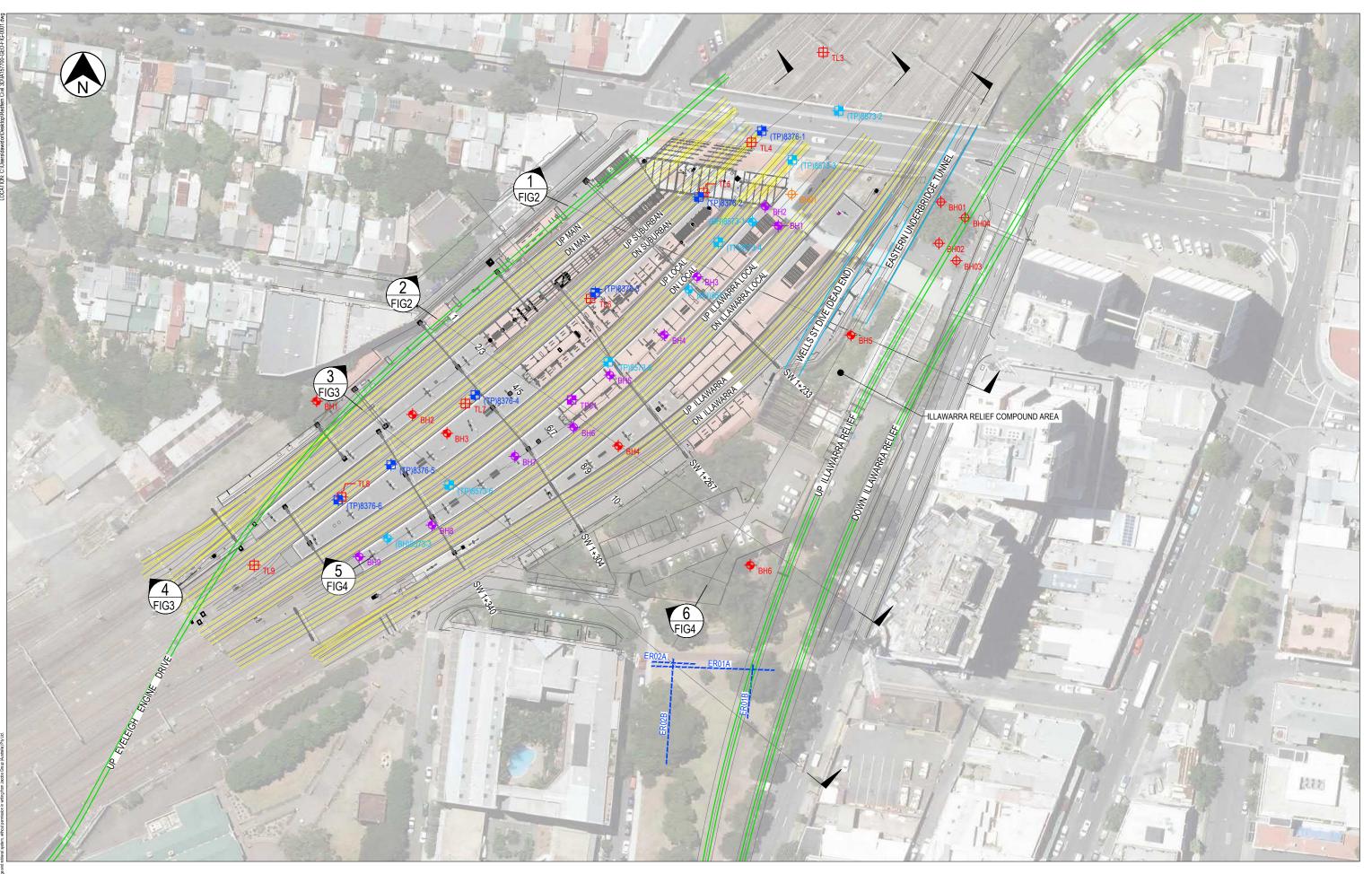
The passage of time, manifestation of latent conditions or impacts of future events may require further examination of the project and subsequent data analysis, and re-evaluation of the data, findings, observations and conclusions expressed in this report.

In preparing this report, Jacobs has relied upon, and presumed accurate, information provided by the Client and from other sources. Except as otherwise stated in the report, Jacobs has not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

Jacobs has prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

This report should be read in full and no excerpts are to be taken as representative of the findings. No responsibility is accepted by Jacobs for use of any part of this report in any other context.

This report has been prepared on behalf of, and for the exclusive use of, the Client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the Client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party.

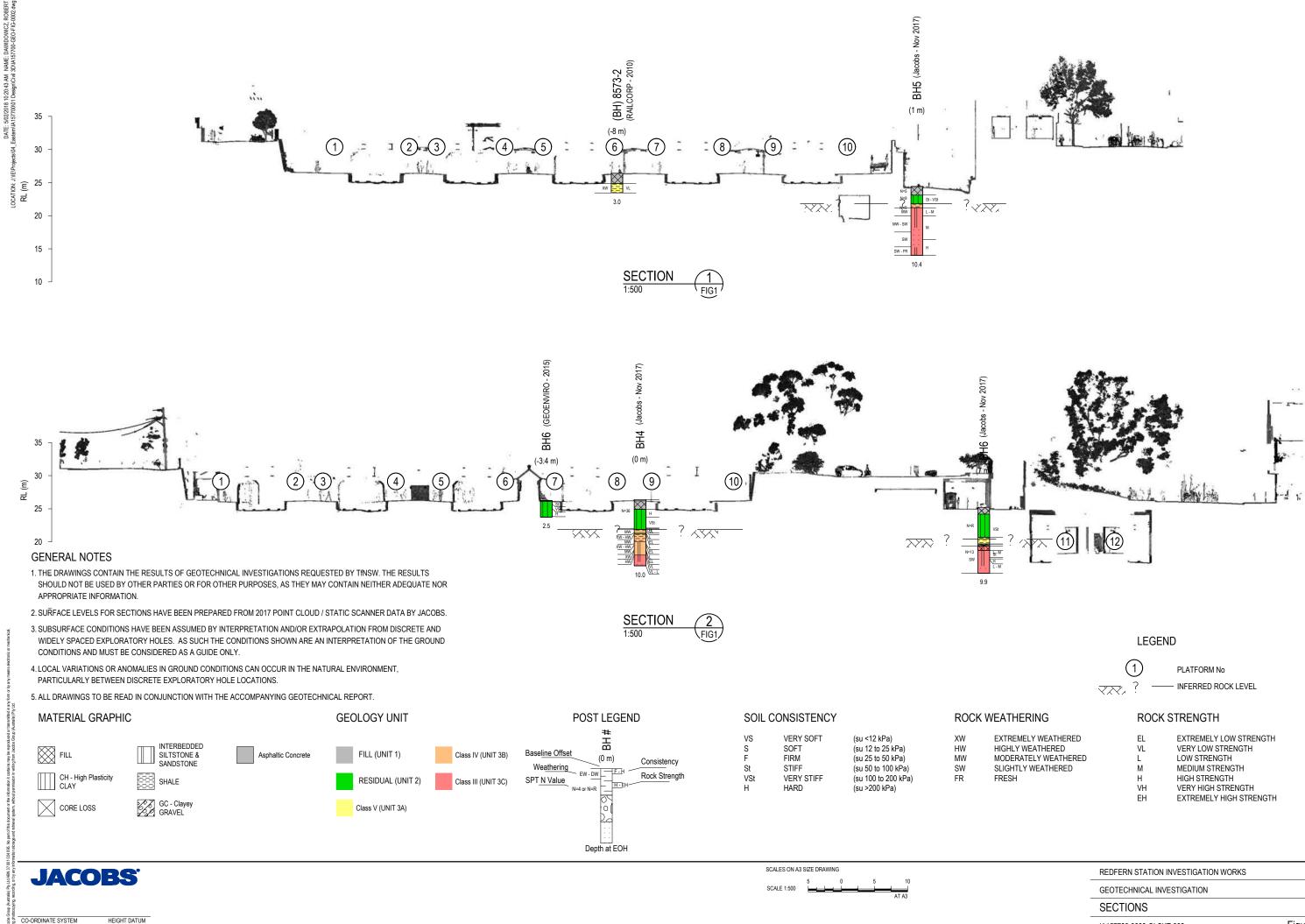

Tables

5/0.0-0.1 rimary <25 <25 <25 <0.2 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <100 <50 <100 <50 <100 <50 <0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.6 1 0.3 <tr< th=""><th>DUPB Blind <25 <25 <25 <0.2 <0.5 <1 <100 <50 <50 <100 <50 <100 <50 <100 <50 <0.1 0.2 <0.1 0.2 1.4 0.7 1.8 1.8 1.8 1.8 0.9 0.8 1 0.69 0.3 <0.1 0.9 0.9 0.9 0.9 0.9 0.9 <t< th=""><th>RPD 0% 2% 32% 32% 32% 0%</th></t<></th></tr<>	DUPB Blind <25 <25 <25 <0.2 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <100 <50 <50 <100 <50 <100 <50 <100 <50 <0.1 0.2 <0.1 0.2 1.4 0.7 1.8 1.8 1.8 1.8 0.9 0.8 1 0.69 0.3 <0.1 0.9 0.9 0.9 0.9 0.9 0.9 <t< th=""><th>RPD 0% 2% 32% 32% 32% 0%</th></t<>	RPD 0% 2% 32% 32% 32% 0%
<25 <25 <25 <0.5 <1 <1 <1 <1 <1 <1 <100 <100 <100 <50 <100 <0.0 <0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.4 1.3 0.6 1 0.6.1 0.3 0.7 0.8 0.8	<25 <25 <25 <0.5 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <100 <50 <100 <50 <100 <50 <0.1 0.2 <0.1 0.2 1.4 0.7 1.8 1.8 1.8 1.8 0.9 0.3 <0.1 0.4 0.9 0.9 0.9	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0
<25	<25	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0
<25	<25	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0
<0.2	<0.2	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0
<0.5	<0.5	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0
<1	<1	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 67% 0% 67% 0% 67% 0% 67% 2% 2% 22% 0% 0% 12% 0% 0% 28% 12%
<2	<2	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 67% 67% 43% 55% 55% 32% 43% 22% 12% 0% 0% 0% 12% 0%
<1	<1	0% 0% 0% 0% 0% 0% 0% 0% 0% 67% 67% 43% 55% 32% 32% 32% 12% 0% 0% 0% 12% 0% 0% 12%
<1	<1	0% 0% 0% 0% 0% 0% 0% 0% 0% 67% 67% 67% 43% 55% 32% 32% 12% 0% 0% 12% 0% 29%
<1	<1	0% 0% 0% 0% 0% 0% 0% 0% 67% 0% 67% 0% 67% 43% 55% 32% 32% 32% 32% 12% 0% 0% 12% 0% 29% 0% 12%
<50	<50	0% 0% 0% 0% 0% 0% 0% 67% 67% 67% 67% 67% 32% 32% 12% 0% 0% 12% 0% 12% 12%
<100 <100 <50 <50 <100 <100 <100 <0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<100 <100 <50 <50 <100 <100 <50 <0.1 0.2 <0.1 0.2 <0.1 0.2 1.4 0.7 1.8 1.8 0.9 0.8 1 0.69 0.3 <0.1 0.69 0.3 <0.1 0.4 10 0.9 0.9 0.9 0.9	0% 0% 0% 0% 0% 0% 67% 67% 43% 55% 55% 32% 43% 22% 12% 0% 0% 0% 0% 0% 29% 26% 12%
<100 <100 <50 <50 <100 <100 <100 <0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<100 <100 <50 <50 <100 <100 <50 <0.1 0.2 <0.1 0.2 <0.1 0.2 1.4 0.7 1.8 1.8 0.9 0.8 1 0.69 0.3 <0.1 0.69 0.3 <0.1 0.4 10 0.9 0.9 0.9 0.9	0% 0% 0% 0% 0% 0% 67% 67% 43% 55% 55% 32% 43% 22% 12% 0% 0% 0% 0% 0% 29% 26% 12%
<100 <50 <50 <100 <100 <100 <0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<100 <50 <50 <100 <100 <100 <50 <0.1 0.2 <0.1 0.2 <0.1 0.2 1.4 0.7 1.8 1.8 0.9 0.8 1 0.9 0.9 0.3 <0.1 0.69 0.3 <0.1 0.4 10 0.9 0.9 0.9 0.9	0% 0% 0% 0% 0% 67% 67% 43% 55% 32% 32% 32% 12% 0% 0% 0% 0% 29% 0% 28% 12%
<50	$\begin{array}{c} <50 \\ <50 \\ <50 \\ <100 \\ <100 \\ <50 \\ \hline \\ \\ <0.1 \\ 0.2 \\ <0.1 \\ 0.2 \\ <0.1 \\ 0.2 \\ 1.4 \\ 0.7 \\ 1.8 \\ 1.8 \\ 0.9 \\ 0.8 \\ 1 \\ 0.69 \\ 0.3 \\ <0.1 \\ 0.69 \\ 0.3 \\ <0.1 \\ 0.4 \\ 10 \\ 0.9 \\$	0% 0% 0% 0% 0% 67% 67% 67% 67% 67% 32% 32% 32% 32% 32% 12% 0% 0% 12% 0% 12%
<50	<50	0% 0% 0% 0% 67% 67% 67% 65% 32% 32% 32% 32% 32% 29% 0% 12% 0% 29% 0% 12%
<100 <100 <50 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	<100 <100 <50 <0.1 0.2 <0.1 0.2 <0.1 0.2 1.4 0.7 1.8 1.8 0.9 0.8 1 1 0.69 0.3 <0.1 0.69 0.3 <0.1 0.4 10 0.9 0.9 0.9	0% 0% 0% 67% 0% 67% 43% 55% 32% 32% 22% 0% 0% 0% 0% 0% 0% 29% 22% 12%
<100 <50 0.1 0.1 0.1 0.1 0.9 0.4 1.3 0.8 0.6 1 0.61 0.3 <0.1 0.3 <0.1 0.3 <0.1 0.3 0.3 7.7 0.8 0.8 0.8 0.8 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	<100 <50 <0.1 0.2 <0.1 0.2 1.4 0.7 1.8 1.8 1.8 0.9 0.8 1 0.69 0.8 1 0.69 0.3 <0.1 0.4 10 0.9 0.9	0% 0% 0% 67% 43% 55% 32% 32% 22% 22% 0% 12% 0% 0% 0% 29% 28% 12%
<50 <0.1 0.1 0.1 0.1 0.9 0.4 1.3 1.3 0.8 0.6 1 0.61 0.3 <0.1 0.3 <0.1 0.3 <0.1 0.3 0.3 7.7 0.8 0.8 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	<50 <0.1 0.2 (0.1 0.2 1.4 0.7 1.8 1.8 1.8 0.9 0.8 1 0.69 0.3 <0.1 0.69 0.3 <0.1 0.4 10 0.9 0.9 0.9	0% 67% 67% 67% 43% 55% 32% 32% 12% 0% 0% 0% 0% 0% 29% 26% 12%
<0.1	<0.1	0% 67% 0% 67% 43% 55% 32% 32% 29% 0% 12% 0% 0% 0% 0% 29% 28% 12%
0.1 <0.1	0.2 <0.1	67% 0% 67% 43% 55% 32% 32% 29% 0% 12% 0% 12% 0% 29% 28% 12%
0.1 <0.1	0.2 <0.1	67% 0% 67% 43% 55% 32% 32% 29% 0% 12% 0% 12% 0% 29% 28% 12%
<0.1 0.1 0.9 0.4 1.3 1.3 0.8 0.6 1 0.6 1 0.6 0.3 <0.1 0.3 7.7 0.8 0.8	<0.1	0% 67% 43% 55% 32% 12% 29% 0% 12% 0% 0% 0% 29% 28% 12%
0.1 0.9 0.4 1.3 1.3 0.8 0.6 1 0.61 0.3 <0.1	0.2 1.4 0.7 1.8 1.8 0.9 0.8 1 0.69 0.3 <0.1	67% 43% 55% 32% 22% 22% 0% 0% 0% 0% 0% 0% 29% 26% 12%
0.9 0.4 1.3 1.3 0.8 0.6 1 1.3 0.61 0.6 0.3 - 7.7 0.8 0.8 0.8	1.4 0.7 1.8 0.9 0.8 1 0.69 0.3 <0.1	43% 55% 32% 12% 29% 0% 12% 0% 0% 29% 26% 12%
0.4 1.3 1.3 0.8 0.61 0.3 <0.1	0.7 1.8 1.8 0.9 0.8 1 0.69 0.3 <0.1	55% 32% 32% 12% 0% 0% 0% 29% 0% 12% 0% 12% 12% 12% 12% 12% 29% 26% 12% 12%
0.4 1.3 1.3 0.8 0.61 0.3 <0.1	0.7 1.8 1.8 0.9 0.8 1 0.69 0.3 <0.1	55% 32% 32% 12% 0% 0% 0% 29% 0% 12% 0% 12% 12% 12% 12% 12% 29% 26% 12% 12%
1.3 1.3 0.8 0.61 0.3 <0.1	1.8 1.8 0.9 0.8 1 0.69 0.3 <0.1	32% 32% 12% 29% 0% 12% 0% 0% 29% 26% 12% 12%
1.3 0.8 0.6 1 0.61 0.3 <0.1	1.8 0.9 0.8 1 0.69 0.3 <0.1	32% 12% 29% 0% 12% 0% 0% 29% 26% 12%
0.8 0.6 1 0.6 0.61 0.3 <0.1	0.9 0.8 1 0.69 0.3 <0.1	12% 29% 0% 12% 0% 0% 29% 26% 12% 12%
0.6 1 0.61 0.3 <0.1	0.8 1 0.69 0.3 <0.1	29% 0% 12% 0% 0% 29% 26% 12% 12%
1 0.61 0.3 <0.1	1 0.69 0.3 <0.1 0.4 10 0.9 0.9	0% 12% 0% 0% 29% 26% 12% 12%
0.61 0.3 <0.1 0.3 7.7 0.8 0.8	0.69 0.3 <0.1 0.4 10 0.9 0.9	12% 0% 0% 29% 26% 12%
0.3 <0.1 0.3 7.7 0.8 0.8	0.3 <0.1	0% 0% 29% 26% 12%
<0.1 0.3 7.7 0.8 0.8	<0.1 0.4 10 0.9 0.9	0% 29% 26% 12% 12%
0.3 7.7 0.8 0.8	0.4 10 0.9 0.9	29% 26% 12% 12%
7.7 0.8 0.8	10 0.9 0.9	26% 12% 12%
0.8 0.8	0.9 0.9	12% 12%
0.8	0.9	12%
0.8	0.9	12%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
		0%
<0.1	-	
<0.1	-	0%
<0.1	-	0%
		0%
<0.1	-	0%
	-	0%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
<0.1	-	0%
8	5	46%
<0.4	<0.4	0%
6	8	29%
		52%
		90%
		0%
~U.1		29%
3	120	48%
	<0.1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

					ent Criteria (SAC)												1		·	
Compounds	Units	LOR	EIL	ESL	HIL	ML	BH4 - 0.4	BH4 - 1.5	BH6 - 0.6	BH1/0.0-0.1	BH1/0.3-0.4	BH2/0.8-0.9	BH2/1.0-1.1	BH3/0.6-0.7	BH3/1.1-1.2	BH2STP/3.0	BH5/0.0-0.1	BH5/0.5-0.95	DUPB 125	BH5 -
1 C6 - C9 1 C6 - C10	mg/kg mg/kg	25 25			26.000		<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25		<25 <25	<25 <25	<25 <25	
H C6 - C10 lessBTEX (F1)	mg/kg	25		215	310	800	<25	<25	<25	<25	<25	<25	<25	<25	<25		<25	<25	<25	+
zene	mg/kg	0.2		95	4		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	1
uene	mg/kg	0.5		135	99,000		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	
lylbenzene	mg/kg	1		185	27,000		<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	
+p-xylene	mg/kg	2					<2	<2	<2	<2	<2	<2	<2	<2	<2		<2	<2	<2	
Xylene	mg/kg	1					<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	+
aphthalene otal +ve Xylenes	mg/kg	1		95	81,000		<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1		<1 <1	<1 <1	<1 <1	+
Juli tve Aylelles	mg/kg	1		35	81,000		~1	<1	< <u>1</u>		< <u>1</u>	~1	~1	< <u>1</u>	×1			~1		
																			ļ	
RH C10 - C14	mg/kg	50					<50	<50	<50	<50	<50	<50	<50	<50	<50		<50	<50	<50	—
RH C15 - C28 RH C29 - C36	mg/kg	100					<100 <100	<100 160	<100 <100	150 240	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100		<100 <100	<100 <100	<100 <100	+
RH >C10-C16	mg/kg mg/kg	50			20,000		<100	<50	<100	<50	<100	<100	<100	<100	<100		<100	<100	<100	
RH >C10 - C16less Naphthalene (F2)	mg/kg	50			800	1,000	<50	<50	<50	<50	<50	<50	<50	<50	<50		<50	<50	<50	+
RH >C16-C34	mg/kg	100			27,000	5,000	<100	130	<100	290	<100	<100	<100	<100	<100		<100	<100	<100	
RH >C34-C40	mg/kg	100			38,000	10,000	<100	100	<100	180	<100	<100	<100	<100	<100		<100	<100	<100	
otal +ve TRH (>C10-C40)	mg/kg	50					<50	240	<50	470	<50	<50	<50	<50	<50		<50	<50	<50	
																				1
phthalene	mg/kg	0.1	370		4.3		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	
enaphthylene	mg/kg	0.1					<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1		0.1	<0.1	0.2	\vdash
enaphthene	mg/kg	0.1					<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ļ	<0.1	<0.1	<0.1	—
uorene	mg/kg	0.1					<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		0.1	<0.1	0.2	+
enanthrene	mg/kg	0.1					<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	0.8	0.4 <0.1	0.4	0.1 <0.1	<0.1	<0.1 <0.1		0.9	<0.1	1.4 0.7	+
ithracene ioranthene	mg/kg mg/kg	0.1					<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	0.2	<0.1 0.9	<0.1 0.4	<0.1 0.2	<0.1	<0.1 <0.1	<u> </u>	0.4	<0.1	0.7	+
vrene	mg/kg	0.1					<0.1	<0.1	<0.1	1.8	0.9	0.4	0.2	<0.1	<0.1		1.3	0.1	1.8	+
nzo(a)anthracene	mg/kg	0.1					<0.1	<0.1	<0.1	1.0	0.5	0.1	<0.1	<0.1	<0.1	İ	0.8	<0.1	0.9	1
rysene	mg/kg	0.1					<0.1	<0.1	<0.1	0.9	0.5	0.1	<0.1	<0.1	<0.1		0.6	<0.1	0.8	t
nzo(b,j+k)fluoranthene	mg/kg	0.2					<0.2	<0.2	<0.2	2	0.8	<0.2	<0.2	<0.2	<0.2		1	<0.2	1	
nzo(a)pyrene	mg/kg	0.05		0.7			<0.05	<0.05	<0.05	0.87	0.4	0.1	<0.05	<0.05	<0.05		0.61	<0.05	0.69	1
deno(1,2,3-c,d)pyrene	mg/kg	0.1					<0.1	<0.1	<0.1	0.4	0.2	<0.1	<0.1	<0.1	<0.1		0.3	<0.1	0.3	\perp
penzo(a,h)anthracene	mg/kg	0.1					<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<u> </u>	<0.1	<0.1	<0.1	+
nzo(g,h,i)perylene tal +vePAH's	mg/kg	0.1			4.000		<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	0.4	0.3	<0.1	<0.1 0.4	<0.1 <0.05	<0.1 <0.05		0.3	<0.1 0.3	0.4	+
ai +vePAH's nzo(a)pyrene TEQ calc (zero)	mg/kg mg/kg	0.05			4,000		<0.05	<0.05	<0.05	10	0.6	1.4	<0.5	<0.05	<0.05		0.8	<0.5	0.9	
nzo(a)pyrene TEQ calc(half)	mg/kg	0.5			40		<0.5	<0.5	<0.5	1.3	0.6	<0.5	<0.5	<0.5	<0.5		0.8	<0.5	0.9	
nzo(a)pyrene TEQ calc(PQL)	mg/kg	0.5			40		<0.5	<0.5	<0.5	1.3	0.6	<0.5	<0.5	<0.5	<0.5		0.8	<0.5	0.9	+
	0,.0									-										1
B ha-BHC	mg/kg mg/kg	0.1			80		<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1		<0.1	<0.1 <0.1		
mma-BHC	mg/kg	0.1					<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	· · · · · · · · · · · · · · · · · · ·	
ta-BHC	mg/kg	0.1					<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	('	1
ptachlor	mg/kg	0.1			50		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	í – – – – – – – – – – – – – – – – – – –	1
Ita-BHC	mg/kg	0.1					<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	i i	
drin	mg/kg	0.1			45		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	·'	
eptachlor Epoxide	mg/kg	0.1			50		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	·'	_
mma-Chlordane	mg/kg	0.1			530		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<u>ا</u>	
pha-chlordane Idosulfan I	mg/kg mg/kg	0.1			530 2,000		<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1		<0.1	<0.1	·'	
p-DDE	mg/kg	0.1			2,000		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	/ [/]	-
eldrin	mg/kg	0.1			45		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	[]	
drin	mg/kg	0.1			100		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	/ · · · · ·	-
-DDD	mg/kg	0.1					<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	í ,	
dosulfan II	mg/kg	0.1			2,000		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1		
-DDT	mg/kg	0.1	640				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1		1
drin Aldehyde	mg/kg	0.1			100		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1		+
dosulfan Sulphate	mg/kg	0.1			2,000		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ļ	<0.1	<0.1	·'	┥
ethoxychlor	mg/kg	0.1			2,500 3,600		<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	·'	+
tal +ve DDT+DDD+DDE	mg/kg	0.1			3,600		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	!	\vdash
																				+
clor 1016	mg/kg	0.1					<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1		1
clor 1221	mg/kg	0.1					<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<u> </u>	<0.1	<0.1	·'	+
oclor 1232 oclor 1242	mg/kg mg/kg	0.1					<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1		<0.1 <0.1	<0.1 <0.1	[_]	+
oclor 1242	mg/kg	0.1					<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	J	+
oclor 1248	mg/kg	0.1					<0.1	<0.1	<0.1	<0.2	0.3	<0.1	<0.1	<0.1	<0.1	1	<0.1	<0.1	I	1
oclor 1260	mg/kg	0.1					<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1		
tal +ve PCBs (1016-1260)	mg/kg	0.1			7		<0.1	<0.1	<0.1	<0.2	0.3	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1		—
enic	mg/kg	4	160		3,000 900		8	<4	6	16	25	<4	<4	5	10	<4	8	16	5	+
dmium	mg/kg	0.4	3		900		<0.4	<0.4	<0.4	0.5	2	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	1	<0.4	
romium	mg/kg	1	665		3,600		8	5	7	12	12	3	9	33	45	13	6	23	8	
pper	mg/kg	1	140		240,000		14	<1	35	140	510	2	14	<1	2	<1	30	42	51	
ad	mg/kg	1	1808		1.500		31	8	21	300	840	19	18	11	18	11	32	48	84	
ercury	mg/kg	0.1	1		730		0.2	<0.1	<0.1	1.2	5.9	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
kel	mg/kg	1	55 218		6,000 400,000		1	<1	9	48 240	18	<1 7	2	2	1	<1	3	6	4	+
c	mg/kg	1	218		400,000		13	220	37	240	880	1	12	۷.	3	8	92	91	150	+
																			 	1
estos	1				No asbestos		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	<u>ا</u>	+
pestos pestos pirable Fibres					No respirable fibr	es	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	•	1

Appendix A. Site investigation plan and cross sections

JACC	DQ'		CURRENT INVESTIGATION		PREVIOUS STUDIES					SCALES ON A3 SIZE DRAWING	
JALL		+	Borehole (JACOBS Nov 2017)	Φ	Borehole (JACOBS May 2017)	+	Borehole (Railcorp 2010)	⊕	Test Pit (J&K 2007)	SCALE 1:1000 0 10 20 AT A3	
			Electrical Resistivity Test	Φ	Borehole (NovoRail 2014)	-	Test Pit (Railcorp 2010)				
CO-ORDINATE SYSTEM	HEIGHT DATUM			+	Borehole (GeoEnviro 2015)	-	Test Pit (Railcorp 2008)				

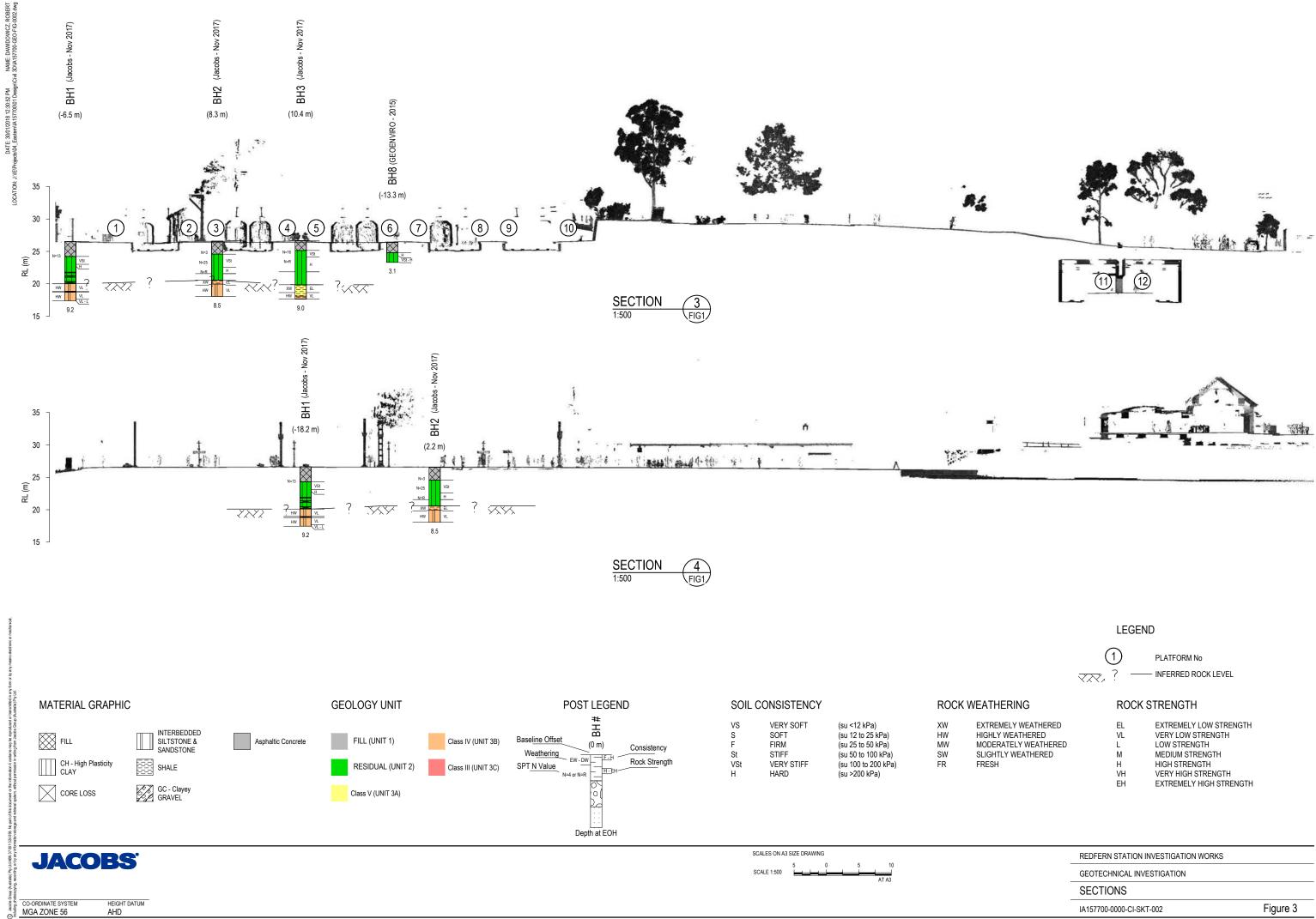

REDFERN STATION INVESTIGATION WORKS

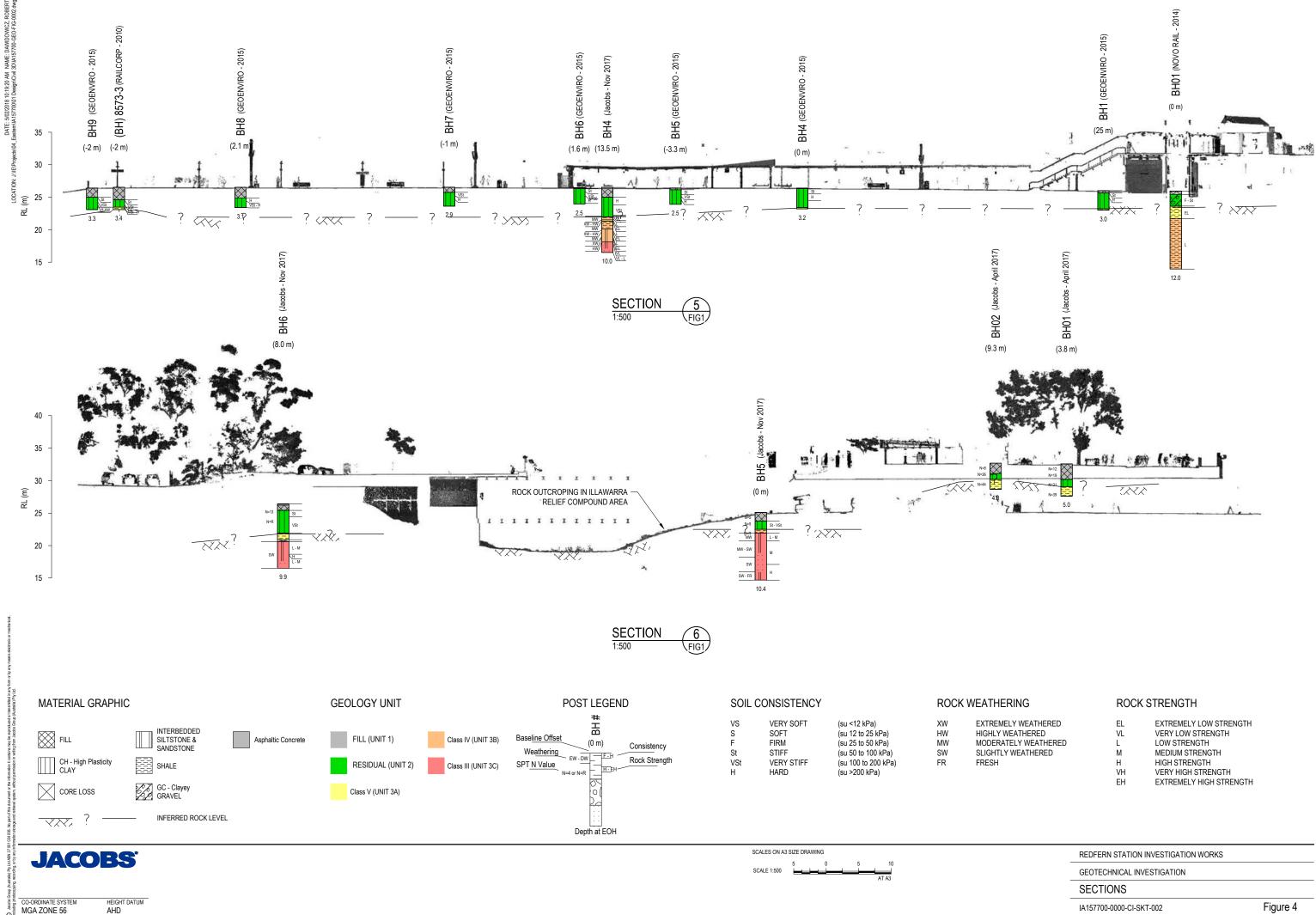
GEOTECHNICAL INVESTIGATION

SITE PLAN

IA157700-0000-CI-SKT-001

Figure 1




CO-ORDINATE SYSTEM MGA ZONE 56 AHD

EL	EXTREMELY LOW STRENGTH
VL	VERY LOW STRENGTH
L	LOW STRENGTH
Μ	MEDIUM STRENGTH
Н	HIGH STRENGTH
VH	VERY HIGH STRENGTH
EH	EXTREMELY HIGH STRENGTH

IA157700-0000-CI-SKT-002

Figure 2

EL	EXTREMELY LOW STRENGTH
VL	VERY LOW STRENGTH
L	LOW STRENGTH
М	MEDIUM STRENGTH
Н	HIGH STRENGTH
VH	VERY HIGH STRENGTH
EH	EXTREMELY HIGH STRENGTH

Appendix B. Borehole logs

Soil Description

MATERIAL DESCRIPTION

Г

Soil description is based on an assessment of disturbed samples, as recovered from boreholes and excavation, and from undisturbed materials as seen in excavation and exposures or in undisturbed samples.

CLASSIFICATION

Soils are described in general accordance with AS1726-1993 and the Unified Soil Classification (USC) as shown below.

(E	Field Identification procedures (Excluding particles larger than 63 mm and basing fractions on estimated mass)			mm and	Code	Typical Names	Describing Soils		Laborato	ry Classification Cr	iteria				
	fraction	AVELS o fines)	sub: inter eno	stantial amou mediate size ugh fines to b	range in grain size and antial amounts of all ediate sizes, not h fines to bind coarse , no dry strength GW Well graded gravels, GW gravel-sand mixtures, little or no fines gravel, GW gravel-sand mixtures, little or no fines gravel, GW gravel-sand mixtures, approximate % of sand and gravel,			mbol, indicate pproximate % of and and gravel,		symbol, indicate approximate % of sand and gravel,		Greater than 4 $c_{\mu} = \frac{D_{60}}{D_{10}}$	Between 1 & 3 $c_c = \frac{(D_{30})^2}{D_{10}xD_{60}}$		
075 mm	More than 50% of coarse fraction is larger than 2.36 mm	CLEAN GRAVELS (Little or no fines)	rang inter not	dominantly or ge of sizes wit mediate size enough fines rse grains, no ngth	th some s missing, to bind	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines, uniform gravels	maximum size, angularity, surface condition, and strength of coarse grains: colour, amount plasticity of fine component.		Determine	Not meeting all gr for GW.	adation requirements			
s arger than 0.	GRAVELS More than 50% is larger than 2.	NITH FINE ble fines)	of n	y' materials w on-plastic fine lium dry stren	es, zero to	GM	Silty gravels, gravel- sand-silt mixtures	For undisturbed soils add information on		percentages of gravel and sand from grain size curve Depending on	Atterberg limits below 'A' line or PI less than 4	Above 'A' line with PI between 4 and 7			
AINED SOILS an 63 mm is I	GRAVE	GRAVELS WITH FINE (Appreciable fines)	of p	y' materials w lastic fines, m i dry strength	edium to	GC	Clayey gravels, gravel-sand-clay mixtures	moisture content, degree of compactness, stratification, cementation, and		percentage smaller than 0.075 mm size coarse grained soils are classified	Atterberg limits above 'A' line with PI greater than 7	are borderline cases requiring use of dual symbols.			
COARSE GRAINED SOILS laterial less than 63 mm is la	action	ANDS fines)	sub: inter eno	e range in gra stantial amou mediate size ugh fines to b ns, no dry stro	nts of all s, not ind coarse	SW	Well graded sands, gravelly sands, little or no fines	odour. Give local and other pertinent descriptive	ation	as follows: Less than 5% GW, GP, SW, SP More than 12%	Greater than 6 $c_u = \frac{D_{e0}}{D_{t0}}$	Between 1 & 3 $c_{c} = \frac{(D_{30})^{2}}{D_{10}xD_{60}}$			
COARSE GRAINED SOILS More than 50% of material less than 63 mm is larger than 0.075 mm	50% of coarse fraction than 2.36 mm	CLEAN SANDS (little or no fines)	rang inter not	dominantly or ge of sizes wit mediate size enough fines rse grains, no ngth	h some s missing, to bind	SP	Poorly graded sands and gravelly sands; little or no fines, uniform sands	information. Example: SILTY SAND (SM), fine to coarse, light grey, about 20%	as given under field identification	GM, GC, SM, SC 5% to 12% Borderline cases requiring use of dual symbols		radation requirements or SW			
Mor	SANDS More than 50% is smaller than	TH FINES ble fines)	of n	y' materials w on-plastic fine lium dry stren	es, zero to	SM	Silty sands, sand-silt mixtures	strong angular gravel particles – 10mm max. size, rounded and sub- angular sand,	s as given ur		Atterberg limits below 'A' line or PI less than 4	Above 'A' line with PI between 4 and 7			
	SAND	SANDS WITH FINES (Appreciable fines)	of p	y' materials w lastic fines, m i dry strength	edium to	SC	Clayey sands, sand- clay mixtures	about 12% non- plastic fines, moist, dense alluvial sand.	g the fraction		Atterberg limits above 'A' line with PI greater than 7	are borderline cases requiring use of dual symbols			
	IDEN			PROCEEDU	RES ON FRAG	CTIONS	< 0.075 mm		ntifyin						
E		STREM		DILATANCY	TOUGHNESS			Give typical name,	in ide	Plasticity Chart					
ED SOILS 63 mm is smaller than 0.075 mm	SILTS AND CLAYS Liquid limit <50	None		Quick to slow	None	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with low plasticity. Silts of low to medium Liquid Limit	symbol, and indicate degree and character of plasticity, colour, amount and size of coarse grains.	Use grain size curve in identifying the fractions	50 45 40 & 35		CH RUNR			
INED SOILS an 63 mm is sma	SILTS AND CLAY Liquid limit <50	Med to h		None to very slow	Medium	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays	For undisturbed soils add information on	Use gra	35	CI	ОН			
N IN		Low med		Slow	Low	OL*	Organic silts and organic silt-clays of low to medium plasticity	moisture content, consistency, structure, stratification, and odour. Give local or geologic name and other pertinent descriptive	consistency, structure, stratification, and	moisture content, consistency, structure, stratification, and	10	CL OL OL OL	or MH		
FINE GRA More than 50% of material less th	SILTS AND CLAYS Liquid limit >50	Low med		Slow to none	Low to medium	МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, silts of high Liquid Limit			0 10	0 60 70 80 6)				
re than 5	LTS AND CLAY Liquid limit >50	High very		None	High	СН	Inorganic clays of high plasticity	Example:		Laboratory: MC Moisture Cont		num Dry Density			
Mor	SII	Med to h		None to very slow	Low to medium	OH*	Organic clays of high plasticity	CLAYEY SILT (ML), brown, low plasticity, trace sand, firm, dry, numerous vertical		LL Liquid Limit PL Plastic Limit PI Plasticity Index LS Linear Shrinka	PSD Partic x UU Undra	um Moisture Content le Size Distribution ained Unconsolidated olidated Undrained			
ORG	GHLY GANIC DILS	sp	ongy 1	entified by col feel and frequ iibrous texture	ently by	Pt*	Peat and other highly organic soils	root holes.		ρ _p Particle Densi ρ _b Bulk Density ρ _d Dry Density	ty CD Cons I _{s(50)} Point	olidated Drained Load Index ial Compressive			

Boundary classifications – Soils possessing characteristics of two groups are designated by combinations of group symbols. For example GW-GC, well graded gravel-sand mixture with clay binder. * effervesces with H_2O_2

DESCRIPTION OF A SOIL

- Colour i.
- Plasticity or particle characteristics of soil ii. Secondary components name
- iii.
- iv. Estimated proportion v.
- Secondary component plasticity or particle characteristics vi
- Other minor soil components Structure of soil, geological origin vii.
- viii. Consistency / density
- ix. Moisture condition

Те	rm	Grain Size	Shape and Texture	Field Guide
CL	AY	< 2 µm	Shiny	Not visible under 10x
SI	LT	7 – 75 µm	Dull	Visible under 10x
	Fine	0.075 – 0.2 mm		Visible by eye
SAND	Medium	0.2 – 0.6 mm		Visible at < 1 mm
	Course	0.6 – 2.36 mm	Angular / sub -	Visible at < 3 mm
	Fine	2.36 – 6 mm	angular /	Visible at < 5 mm
GRAVEL	Medium	6 – 20 mm	sub -	Road Gravel
	Course	20 – 63 mm	rounded /	Rail ballast
COBBLES		63 – 200 mm		Beaching
BOUL	DERS	> 200 mm		

COLOUR

The colour of a soil should be described using simple terns, such as black, white, grey, red, brown, orange, yellow green or blue. These may be modified as necessary by 'pale', 'dark' or 'mottled'. Borderline colours may be described as a combination of these colours (e.g. orange brown). Where a soil consists of a primary colour with a secondary mottling it should be described as (primary colour) mottled (first colour) and (secondary colour). Where a soil consists of two colours presented in roughly equal proportions the colour description should be mottled (first colour) and (secondary).

PARTICLE CHARACTERISTICS - COARSE GRAINED SOILS

Sub-rounded

Term	Description
Well Graded	Having good representation of all particle sizes
Poorly graded	With one or more intermediate size poorly represented
Gap graded	With one or more intermediate sizes absent
Uniform	Essentially of one size

ANGULARITY - COARSE GRAINED SOILS

Rounded

LAS	этю	CITI	Y

1

Р

Liquid	limit (%)	Description
4	35	Low plasticity
>35	to ≤ 50	Medium plasticity
>	· 50	High plasticity

DESCRIPTIVE TERMS FOR SECONDARY AND MINOR COMPONENTS

Coa	rse Grained Soils	Fine grained soils					
% Fines	Modifier	% Coarse	Modifier				
≤ 5	Omit or use 'trace'	≤ 15	Omit, or use 'trace'				
>5 to ≤12	Describe as 'with clay/ silt' as applicable	>15 to ≤ 30	Describe as 'with sand/ gravel' as applicable				
> 12	Prefix soil type as 'clayey/silt' as applicable	> 30	Prefix soil type as 'sandy/ gravelly' as applicable				

CONSISTENCY TERMS - COHESIVE SOILS

Term	Undrained shear strength	SPT (N) Blow Count	Field Guide to consistency
Very Soft (VS)	<12	0-2	Easily penetrated several centimetres by fist, exudes between fingers when squeezed in fist
Soft (S)	12 – 25	2-4	Easily penetrated several centimetres by thumb, easily moulded by light finger pressure
Firm (F)	25 – 50	4 - 8	Can be penetrated several centimetres by thumb with moderate effort, and moulded between the fingers by strong pressure
Stiff (St)	50 – 100	8 – 15	Readily indented by thumb but penetrated only with difficultly. Cannot be moulded by fingers
Very Stiff (VSt)	100 – 200	15 –30	Readily intended by thumb nail, still very tough
Hard (H)	>200	>30	Indented with difficulty by thumb nail, brittle

CONSISTENCY TERMS - NON COHESIVE SOILS

Term	Density Index (%)	SPT (N) Blow Count	Field Guide to Density	
Very Loose (VL)	< 15	0 – 4	Ravels	
Loose (L)	15 – 35	4 – 10	Shovels easily	
Medium Dense (MD)	35 – 65	10 – 30	Shovelling very difficult	
Dense (D)	65 - 85	30 - 50	Pick required	
Very Dense (VD)	> 85	50 -100	Pick difficult	

MOISTURE

Description
Hard and friable or powdery, moisture content well below plastic limit
Soil feels cool, darkened in colour, can be moulded, near plastic limit
Soil feels cool, dark, usually weakened, free water, moisture content well above plastic limit

STRUCTURE

Description
Soils may consist of separate zones different in colour, grain size or other properties.
The thickness, orientation and any distinguishing features of the zone should be described i.e. gradational or distinct boundaries. The patterns of these zones may be described using layer (zone is continuous), lens (a discontinuous layer of different material, with lenticular shape) or pocket (irregular inclusion of different materials).
The dimensions, orientation and spacing of the defects should be given.
The surface of the defects should be described in terms of texture (rough, polished) and coating.
Defects may be re-cemented and may be stronger than the parent soils.
Defects may include fissures, cracks, roots, roots and tube holes, infill tubes, in-filled seams, dykes.
Soils or defects within soils may be cemented together by various agencies.
The nature of the cementing agent should be identified if possible, strength, reaction to acid and the like.
Weakly cemented – If the cementing agent allows the particle aggregation to be easily fractured by hand when the soil is saturated.
Strongly cemented – If the cementing agent prevents fracturing by hand of the particle when the soil is saturated (use strength classification as per rock)

ADDITIONAL OBSERVATIONS

Geological origin

Term	Description
Weathered in	Extremely weathered soil - Structure and fabric of parent rock visible
place soils	Residual soil - Structure and fabric of parent rock not visible
Transported soils	Aeolian soil - Deposited by wind
	Alluvial soil - Deposited by streams and rivers
	Colluvial soil -Deposited on slopes (transported down slope)
	Lacustrine soil - Deposited by lakes
	Marine soil - Deposited in ocean, bays, beaches and estuaries
Fill materials	Soil Fill - Describe soil type, UCS symbol and add 'FILL'
	Rock Fill - Rock type, degree of weathering, and word 'FILL'
	Domestic Fill - Percent soil or rock, whether pretrucible or not
	Industrial Fill - Percent soil, whether contaminated, particle size & type of waste product, i.e. – brick, concrete, metal

Any scour should be noted.

ORGANIC OR ARTIFICIAL MATERIALS

Preferred Terms	Secondary Description
Organic matter	Fibrous peat, charcoal, wood fragments, roots (greater than 2 mm diameter), root fibres (less than 2 mm diameter)
Waste fill	Domestic refuse, oil, bitumen, brickbats, concrete rubble, fibrous plaster, wood pieces, wood shavings, saw dust, iron filings, drums, steel bars, steel scrap, bottles, broken glass, leather.

Rock Description

ROCK TYPE

Composition of the rock material i.e. colour, grain size, structure, texture, fabric, mineral composition, hardness alteration, cementation etc. as applicable. Condition of the material i.e. estimated strength, weathering and moisture condition. Rock mass properties i.e. structure of rock, defects – type, orientation spacing, roughness, waviness and continuity and weathering (of the rock mass).

GRAIN SIZE

Particle size scales depends on rock type. For sedimentary rocks, the following descriptors can be used:

- Sand terms for sandstone
- Gravel terms for conglomerates and breccias
- No description of grainsize is required for claystone, siltstone, shale and mudstone etc.

For metamorphic and igneous rocks, record the typical grain size in millimetres

COLOUR

The colour of a rock should be described using simple terms, such as black, white, grey, red, brown, orange, yellow, green or blue. These may be modified as necessary by 'pale', 'dark' or 'mottled'. Borderline colours may be described as a combination of these colours (e.g. grey green).

STRUCTURE

Terms typically used to describe the structure of a rock mass where possible include:

- Sedimentary rocks bedded, laminated
- Metamorphic foliated, banded, cleaved
- Igneous rocks massive, flow banded.
- The spacing or thickness of these structural features should be given as described in the table below:

Bedding Term	
Very thinly laminated	
Thinly laminated	
Laminated	
Thinly Bedded	
Medium bedding	
Thickly bedded	
Very thickly bedded	

TEXTURE

Туре	Definition
Massive	Effectively Homogeneous and isotropic. Bulky or equidimensional and elongated or tabular grains uniformly distributed.
Distinct	Bedded, foliated, cleaved – effectively homogeneous with planar anisotropy. Elongated or tabular grains or pores in a layered arrangement. The arrangement of grains, referred to as the rock fabric, may show a preferred orientation.

STRENGTH

Term	Code	I _{s(50)} (MPa)	Field Guide to Strength
Extremely Low	EL	≤ 0.30	Easily remoulded by hand to a material with soil properties.
Very Low	VL	> 0.03 to ≤0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.
Low	L	> 0.1 to ≤ 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blow of the pick point; has dull sound under hammer. A piece of core 150 mm long 50 mm in diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium	М	> 0.3 to ≤ 1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm in diameter can be broken by hand with difficulty.
High	н	> 1 to ≤ 3	A piece of core 150 mm long by 50 mm in diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High	VH	> 3 to ≤ 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High	EH	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

 These terms refer to the strength of the rock material and not to the strength of the rock mass which may be considered weaker due to the effect of rock defects.

2. The field guide visual assessment of rock strength may be used for preliminary assessment or when point load testing is not available.

3. Anisotropy of rock material samples may affect the field assessment of strength

WEATHERING CLASSIFICATION

Designed the only of the Definition		
Degree of weathering		Definition
Residual soil (RS)		Soil developed from weathering of rock in-situ. The mass structure and substance fabric are no longer evident.
Extremely weathered rock (XW)		Rock is weathered to such an extent that it has soil properties. It disintegrates or can be remoulded in water. It shows a rock fabric but is described as a soil.
Highly weathered rock (HW)	Distinctly weathered (DW)*	Secondary minerals often weathered to clay. Staining of most grain boundaries and some disintegration due to weakening of grain bonds. Often significant loss of strength. However cementing of joints can occasionally lead to strengthening.
Moderately weathered rock (MW)		Staining and pitting of most secondary minerals and other grain boundaries. The loss of strength depends on the weathering and extent of secondary minerals in the rock matrix. The rock substance may be highly discoloured, usually by iron staining.
Slightly weathered rock (SW)		Secondary minerals are stained but not pitted, slight staining at some grain boundaries. Little or no change of strength indicated by amount of colour change.
Fresh rock (F)		Rock shows no sign of decomposition or staining. Relatively strong.

*Distinctly Weathered indicates a distinct change in colour, hardness and/or friability and not distinguishable into HW or MW

DESCRIPTION OF A DISCONTINUITY

- Depth
- Dip
- Infill material
 Aperture observation
- Aperture observationPlanarity
- Small scale roughness
- Aperture measurement (mm)
- Remark
- Roughness Class

INFILL MATERIAL

Code	Description
CA	Calcite
СН	Clay
CG	Clayey gravel
GM/ GP/ GW	Gravel
Fe	Iron oxide
Fe Clay	Iron oxide clay
Qz	Quartz
Х	Carbonaceous

APERTURE OBSERVATION

Term	Code	Description
Clean	CN	No visible coating or infill
Stain	Sn	No visible coating or infill but surfaces are discoloured by mineral staining
Veneer <1 mm	VR	A visible coating or soil or mineral substance but usually unable to be measured. If discontinuous over the plane, patchy veneer.
Coating >1 mm to <10mm	СТ	A visible coating or infilling of soil or mineral substance. Describe composition and thickness.
Filling (Filled) >10 m	Filled	A visible filling of soil or mineral substance. Describe composition and thickness.

PLANARITY

Description
Curved
Discontinuous
Irregular
Planar
Stepped

SMALL SCALE ROUGHNESS

Code	Description
POL	Polished
RF	Rough
S	Smooth
SL	Slickensided
VR	Very rough

ROUGHNESS CLASS

Code	Description
1	Rough or irregular, stepped
II	Smooth, stepped
III	Slickensided, stepped
IV	Rough or irregular, undulating
IX	Slickensided, planar
V	Smooth, undulating
VI	Slickensided, undulating
VII	Rough or irregular, planar

TYPE OF DISCONTINUITY

Term	Code	Des	scription					
Bedding	BP	Generally no micro fractures	Arrangement in layers, of mineral grains of similar					
Foliation	FL	Discontinuous micro	sizes or composition, and/or arrangement of					
Cleavage	CL	fractures may be present, near parallel	elongated to tabular minerals near parallel to					
Schistosity	SH	to the layering	one another, and/ or to the layers.					
Contact	со	A contact is the surface another.	along which one rock touches					
Joint	JT	A discontinuity or crack, planar, curved, irregular, across which the rock usually has little tensile strength. The joint may be open (filled with air or water) or filled by soil substance or by rock substance or rock substance which acts as a cement, joint surface may be rough, smooth or slickensided						
Shear seam/ zone	SS/ SZ	material intersected by c <50 mm) joints and/ or m (cleavage) planes. The joints are at small a	ngles to the zone boundaries. curved and divide the mass					
Crushed seam/ zone	rushed seam/ CS/ CS/ CS/ CS/ CS/ CS/ CS/ CS/ CS/ CS							
Decomposed seam / zone	DS/ DZ	Seam or zone of any sha roughly parallel boundar is discoloured and usual The boundaries with free gradational.	ies in which the rock material ly weakened. sh rock are usually the fresh rock are usually					
Infill seam/ zone	IS	Seam or zone of any shape, but commonly with roughly parallel boundaries composed of soil substance. The infill is caused by migration of soil and into open joints. May show layering roughly parallel to the zone boundaries. Geological structures in the adjacent rock do not continue into the infill substance.						
Vein	VN	vein is a distinct sheet lik minerals within a rock	ke body of crystallized					
Dyke	DK	Dykes are sheet-like bodies of igneous rock that cut across sedimentary bedding or foliations in rocks. They may be single or multiple in nature.						
Sill	SI	A sill is an intrusion of m underground between th rock	agma that spreads le layers of another kind of					
Void	VO	A completely empty space	ce.					

Refer to Table A10 in AS1726-1993

Drilling

DRILLING / EXCAVATION METHOD

Code	Description
AD/V	Auger drilling V-bit
AD/T	Auger drilling with TC-bit
AT	Air track
В	Bulldozer
BD	Backhoe bucket
BH	Washbore drag pit
CA	Casing advancer
E	Excavator
EH	Excavator with hammer
HA	Hand auger
NMLC	NMLC core barrel
HMLC	HMLC core barrel
NQ3	Wire line NQ core barrel
HQ3	Wire line HQ core barrel
PQ3	Wire line PQ core barrel
PT	Push tube
RR	Rock roller
WB	Washbore
х	Existing excavation
N	Natural exposure

WATER/ DRILLING FLUID

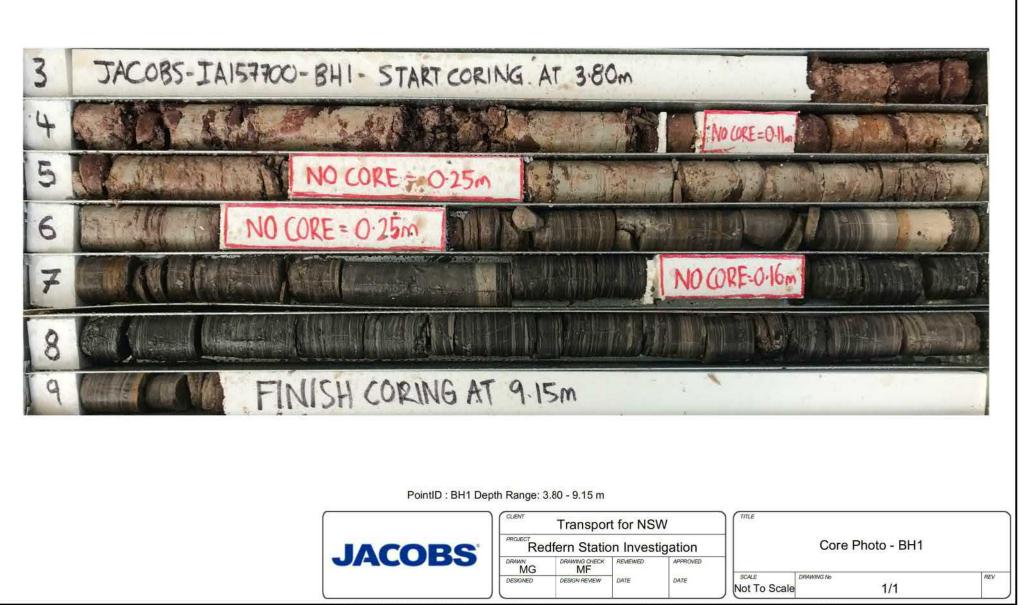
WATEN DRIELING FEOD									
Symbol	Description								
\square	Water loss: partial								
	Water loss: complete								
► ►	Water inflow								
	Water outflow								
<u> </u>	Water level: drilling								
	Water level: standing								

DRILLING PENETRATION

DRILLING PENETRATION										
Ease of penetration in non-core drilling										
Code Description										
VE	Very easy									
E	Easy									
F	Firm									
Н	Hard									
VH	Very hard									

SAMPLES AND FIELD TEST

Code	Description
В	Bulk disturbed sample
BLK	Block sample
DS	Small disturbed sample
ES	Soil sample for environmental testing
EW	Water sample for environmental testing
LB	Large bulk disturbed sample
Р	Piston sample
SPT	Standard Penetration Test
VS	Vane shear test
HP	Hand penetrometer test
U	Undisturbed push in sample


BACKFILL / WELL DETAIL

Symbol	Description
	Cement seal
	Grout backfill
	Blank pipe
	Slotted pipe
	Filter pack: sand filter
	Bentonite seal
	Backfill – excavated material

	JACOBS NON-CORE DRILL HOLE - GEOLOGICAL LOG HOLE NO : BH1 CLIENT : Transport for NSW PROJECT : Redferm Station Investigation Works FILE / JOB NO : IA157700 COCATION : Redfern, NSW PROJECT : Redferm Station Investigation Works SHEET : 1 OF 3												
F	os	ITION	N : E	E: 33						34 Zone 56) SURFACE ELEVATION : 25.90 (AHD)	ANG	GLE F	ROM HORIZONTAL : 90°
F	lG	TYPE	: X	0		MO	UNT	INC	G :	Track CONTRACTOR : Terratest		DR	ILLER : BM
	AT	E ST/	ARTE	D:2	20/11/201	7 DAT	ECC	DM	PLE	TED : 20/11/2017 DATE LOGGED : 20/11/2017 LOGGED E	BY : 1	MG	CHECKED BY :
\vdash							1			MATERIAL			
	200	RESS		RILLIN					z			≻	
	& CASING	WATER	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC	FOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
					ES 0.10m 0.30m ES	- 0.0 — - -		\times		0.10m FILL: Gravelly CLAY: Brown, medium plasticity, gravel is fine to coarse, subangular to angular, with a trace of root fibres. FILL: Silty SAND: Brown, fine to medium grained, with a trace of clay and gravel.			FILL 0.30: Plastic bottle and plastic debris
- UUN					0.40m 0.60m ES 0.70m			\approx		0.50m FILL: Gravelly CLAY: Orange-brown, high plasticity, gravel is fine to coarse, subangular to subrounded.			recovered.
			E		1.00m ES (1.10m	1.0		\approx		From 0.9m, reducing in gravel amount.	м		-
-						-		\sim		From 1.5m, colour change to red-brown.			
	CASING		F		2.00m SPT 6,6,7 N=13	2.0-		\approx		2.30m			2.00: Sandstone gravel recovered in SPT.
			Е		2.45m	-	ĨĬĬ	Ť		Silty CLAY: Red-brown and pale grey, high plasticity.			RESIDUAL SOIL
AD/T						-						VSt	2.70: Increased drilling resistance.
			F			3.0 —			СН		D	Vot	-
11-10-01070			н	ved	3.50m D 3.70m	-				3.80m		н	
20.00				Obser						Continued as Cored Drill Hole			3.80: TC-bit refusal at 3.8m.
i). vaco				Not		4.0 —							-
						-							-
0-11.07 7:1.000 000000						-	-						
						5.0 —							-
						-	-						
2/2011 00:00 P						6.0 —							-
in the second						-							
						7.0-							-
						-							
2 1 10.010						8.0 -							
d	etai	Explai ils of a sis of	bbrev	iatior	าร								

200		V · E	. 333304			N : Redfern, NSW 24.6 (MGA94 Zone 56) SURFACE ELEVATIO		5 00			FROM	M HORIZONTAL : 90°
		<u> </u>		1.0, IN. (Terratest			ER : BM
DAT	E ST	ARTE	D: 20/1	1/2017	DATE	COMPLETED : 20/11/2017 DATE LOGGED : 2	20/11/2	2017	LOGGE	DBY:MG		CHECKED BY :
CAS			TER : I	HQ		BARREL (Length) : BIT :				B		NDITION :
ROG	RESS	DRILL ାଡ୍ଡ				MATERIAL		ESTIN	ATED STRENGTH	NATURAL		FRACTURES ADDITIONAL DATA
& CASING	WATER	문제 (CORE LOSS 코티 RUN %)	SAMPLES & FIELD TESTS	O DEPTH (m)	GRAPHIC LOG	DESCRIPTION ROCK TYPE : Colour, Grain size, Structure (texture, fabric, mineral composition, hardness alteration, cementation, etc as applicable)	Weathering	g _	Is(50) • - Axial O - Diametral · · · · · · · · · · · · · · · · · · ·	FRACTURE (mm)	VISUAL	(joints, partings, seams, zones, el Description, orientation, infilling or coating, shape, roughness, thickness, other
				- - 1.0 -								
				2.0								
				3.0 —								
	▲ SSO1 %0	0% LOSS		4.0-		3.80m START CORING AT 3.80m Sitty CLAY: Pale grey with some red-brown ironstone gravel, high plasticity, dry, hard, gravel is medium to coarse, subangular to angular.						
	-	4.65 24%		-		4.70m						
	ross – – – I	LOSS		5.0 —		4.81m CORE LOSS 0.11m (4.70-4.81) Sitty CLAY: Pale grey with some red-brown ironstone gravel, high plasticity, dry, hard, gravel is medium to coarse, subangular to angular. 5.24m CORE LOSS 0.25m (5.24-5.49)					_	
0				6.0		5.49m Silty CLAY: Pale grey with some red-brown ironstone laminae, high plasticity, dry, hard.						
		6.15 17% LOSS		-		6.15m CORE LOSS 0.25m (6.15-6.40) 6.40m						
			ls(50) a=0.05 d=0.12 MPa	7.0		6.50m Silty CLAY: Pale grey with some red-brown ironstone laminae, high plasticity, dry, hard. INTERLAMINATED SILTSTONE & SANDSTONE (60% siltstone 40% sandstone): Grey and pale grey, sandstone is fine grained, distinctly laminated at 0-5°, some iron staining along defects. From 6.80m, becoming dark grey and pale grey. From 7.29 to 7.46m, clay seam, grey and pale grey.	HW		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ALL DEFECTS ARE SUB-HORIZONTAL BEDDING PARTINGS UNLESS NOTED OTHERWISE (0-5°) 6.65 to 6.74: VN, Cu, 80-90°, Fe. 6.74 to 6.83: Highly fractured. 6.91 to 6.97: Clay SM, 60mm. 7.06 to 7.10: FZ, 40mm. 7.13 7.23
		7.65				7.65m						↓ 7.29 to 7.46: Clay SM, 170mm. √ 7.48
	5% LOSS	11% LOSS	Is(50) a=0.01 d=0.07 MPa	-		7.65m 7.81m CORE LOSS 0.16m (7.65-7.81)	HW					7.81 7.83

												HOLE NO : BH1
J	AC	OB	S	CLI LO	ENT CATION	CORED DRIL : Transport for NSW PROJE : Redfern, NSW			LOG Station Investiga	tion Works	I	FILE / JOB NO: IA157700 SHEET: 3 OF 3
				1.8, N:		4.6 (MGA94 Zone 56) SURFACE E						M HORIZONTAL : 90°
				1/2017		ITING: Track COMPLETED: 20/11/2017 DATE LOG	CONTRACT GED : 20/11		R : Terratest	DF DBY:MG	RILLE	R : BM CHECKED BY :
			ETER :		DATE	BARREL (Length) : BIT :	GED . 20/11	/20	UTT LOGGEL		гсо	NDITION :
		DRILL	ING		RACTURES							
PRO	GRESS	-oss	s & STS	(n	<u>∪</u>	DESCRIPTION	bu	0	ESTIMATED STRENGTH Is(50)	NATURAL FRACTURE	_	ADDITIONAL DATA
DRILLING & CASING	WATER	데데 (CORE LOSS 데데 (CORE LOSS	SAMPLES & FIELD TESTS	0.8 DEPTH (m)	GRAPHIC LOG	ROCK TYPE : Colour, Grain size, Stru (texture, fabric, mineral composition, ha alteration, cementation, etc as applic	irdness 🛛 🖁	ū	●-Axial O-Diametral [©] [©] [©] [©] [©] [©] [©] ^U [©] ^U [©] [©] [©] [©] ^U [©] ^U [©] ^U [©] ^U	8 8 6 8 8 9 8 9 9 8	VISUAL	(joints, partings, seams, zones, etc) Description, orientation, infilling or coating, shape, roughness, thickness, other
		11% LOSS		-		INTERLAMINATED SILTSTONE & SANDSTC siltstone 40% sandstone): Grey and pale grey sandstone is fine grained, distinctly laminated (continued)	<i>'</i> ,	v				7.95: Sandstone SM. 8.06 - 8.14 -
- NMLC -	5% LOSS		Is(50) a=0.03 d=0.09 MPa	-								- 8.27 - - 8.31 - 8.38 - - 8.41 - - 8.5 - 8.53 -
		9.15	ls(50) a=0.04 d=0.08	9.0 —		From 8.90m, becoming grey-brown, increasin 9.15m Hole Terminated at 9.15 m	g strength.					L 8.62 - 8.64 - 8.69 - 8.75 - 8.78
			MPa	-		Hole Terminated at 9.15 m Target depth						- 8.82 - 8.91: Fe. - 8.97: Fe. - 9.11 - 9.13
				10.0								
11-70-01 07 0'00'C 300'C 1-1				11.0 — - -								
				12.0 — - -								-
סטטיאט המוקנו ובני מוא זו טומ יאי י				13.0 — - -								
יייייייייייייייייייייייייייייייייייייי				14.0 — - -								
				- 15.0 — - - -								
See	Expla	Inatory	Notes fo	16.0								
deta & ba	ils of	abbrev	riations iptions.									

J	JACOBS NON-CORE DRILL HOLE - GEOLOGICAL LOG HOLE NO : BH2 CLIENT : Transport for NSW PROJECT : Redfern Station Investigation Works FILE / JOB NO : IA157700 COCATION : Redfern, NSW PROJECT : Redfern Station Investigation Works SHET : 1 OF 3														
PC	SITION	N : E	: 333					4 Zone 56) SURFACE ELEVATION : 26.37 (AHD)	ANC	GLE F	ROM HORIZONTAL : 90°				
	G TYPE					UNTIN					ILLER : PB				
DA	TE ST.	ARTE	D: 1	18/11/201	7 DAT		IPLE	TED : 18/11/2017 DATE LOGGED : 18/11/2017 LOGGED E	3Y : I	MG	CHECKED BY :				
			ILLIN				1_	MATERIAL	1						
	MATER WATER	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations				
					- 0.0			 Asphaltic CONCRETE. FILL: Gravelly SAND: Brown, fine to coarse grained, gravel is fine to coarse, subangular to angular. 0.45m 	D		FILL -				
- DDN				0.80m ES				FILL: Clayey SAND: Brown, fine to medium grained with some medium to coarse, subangular to subrounded gravel.		_	0.40: Buried Asphalt pavement, 50mm thick.				
				ES (1.10m	- 1.0 			At 1.0m, with some red-brown and grey clay.	м		-				
		E		1.50m SPT 4,1,2 N=3.				1.50m	D	-	-				
				<u>1.95m</u>	2.0-			2.00m Silty CLAY: Grey mottled red-brown, high plasticity with trace of ironstone gravel.			RESIDUAL SOIL				
					-										
— AD/T —				3.00m SPT 5,10,15 N=25.	- 3.0					VSt	-				
-			rved	3.45m			сн		D		-				
		F	Not Observed		4.0-						-				
				4.50m SPT 11,16,5/20m HB, N=R.	- nm -					н					
				4.82m				5.00m			-				
					- 5.0			Continued as Cored Drill Hole			-				
					-	-					-				
					6.0-	-					-				
					-	-					-				
					7.0-	-					-				
					-						-				
					8.0-										
det	e Expla tails of a basis of	abbrev	iatior	าร											

CORED DRILL HOLE LOG HOLE NO : BH2 CLIENT : Transport for NSW PROJECT : Redfern Station Investigation Works FILE / JOB NO : IA157700 COATION : Redfern, NSW PROJECT : Redfern Station Investigation Works FILE / JOB NO : IA157700 POSITION : E: 333351.6, N: 6248322.8 (MGA94 Zone 56) SURFACE ELEVATION : 26.37 (AHD) ANGLE FROM HORIZONTAL : 90° RIG TYPE : XC MOUNTING : Track CONTRACTOR : Terratest DRILLER : PB															
POS	SITIO	N : E	: 33335				SURFACE ELEVAT	TION :	26.3	87 (AHD)		ANG	LE F	RON	/ HORIZONTAL : 90°
RIG	TYP	E : X(C		MOU	NTING : Track	CON	TRACT	OR	: Terrates	t		DF	RILLE	R : PB
					DATE	COMPLETED : 18/11/2		: 18/11	/201	7 LOGG	ED B	Y : N			CHECKED BY :
CAS		DIAME DRILL	ETER :	HQ	<u> </u>	BARREL (Length) : 1	.50 m BIT : MATERIAL						BI		NDITION : FRACTURES
PROG								_	EST	IMATED STRENGT	H N/	ATUR	۹L	F	ADDITIONAL DATA
& CASING	WATER	문제 (CORE LOSS 로마 %)	SAMPLES & FIELD TESTS	0 0 DEPTH (m)	GRAPHIC LOG	ROCK TYPE : Colou (texture, fabric, minera	RIPTION ur, Grain size, Structure al composition, hardness tion, etc as applicable)	Weathering	EL_0.03	Is(50) - Axial O - Diametral	FR	ACTU (mm)	RE	VISUAL	(joints, partings, seams, zones, etc) Description, orientation, infiling or coating, shape, roughness, thickness, other
						5.00m START CORING AT 5.0									
Ī		0% LOSS		-		gravel, high plasticity, d	with some red-brown ironstone ry, hard.								
		5.50 0% LOSS				From 5.5m, ironstone g	ravel is absent.								
				-		siltstone 40% sandston sandstone is fine graine	TSTONE & SANDSTONE (60' e): Grey and pale grey, ad, distinctly laminated at 0-5°,								SUB-HORIZONTAL BEDDING PARTINGS UNLESS NOTED OTHERWISE (0-5°). -6.10: Clay SM 50mm. -6.30: Clay SM 50mm. -6.36 -6.40 -6.44: JT, 90 degrees, Cu, Infilled. -6.48
		7.00 0% LOSS	Is(50) d=0.05 a=0.05 MPa Is(50) d=0.01 a=0.1	7.0		some iron staining alon	g defects.		Φ						 - 6.57 to 6.6: Clay SM 30mm. - 6.673; Fe. - 6.89; Fe, JT, 70 to 90 degrees, St. Infiled. - 7.10 - 7.14 - 7.17: Clay SM. - 7.21: Clay SM. - 7.25: Clay, SM. - 7.35: Clay, SM.
detai	ils of	anatory abbrev f descri		⊿ _{8.0} — or		1		I	<u> </u>	<u>ear i i i i</u>		#			□ -7.37

J	AC	ОВ	S		ENT	: Transport for NSW	ORED DRILL H PROJECT :				ation Works	F	HOLE NO : BH2 FILE / JOB NO : IA157700 SHEET : 3 OF 3
LOCATION : Rearem, NSW POSITION : E: 333351.6, N: 6248322.8 (MGA94 Zone 56) SURFACE ELEVATION : 26.37 (AHD) ANGLE FROM HORIZOL													
RIG	TYPE	E : X(2		MOU	NTING : Track	CO	NTRAC	TOR	: Terratest			R : PB
					DATE	COMPLETED : 18/11/ BARREL (Length) :): 18/1	1/201	7 LOGGE	DBY:MG	тсо	CHECKED BY : NDITION :
]		ING			DARREL (Length) .	MATERIAL						RACTURES
CAS PROG SCASING SCASING SCASING	MATER	일 (CORE LOSS 특 RUN %)	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	ROCK TYPE : Col (texture, fabric, mine	CRIPTION our, Grain size, Structure ral composition, hardnes tation, etc as applicable)	ss ‡		TIMATED STRENGTH Is(50) ● - Axial O - Diametral	NATURAL FRACTURE (mm)	VISUAL	ADDITIONAL DATA (joints, partings, seams, zones, etc) Description, orientation, infilling or coating, shape, roughness, thickness, other
	- SSO1 %0	LUSS		8.0-		siltstone 40% sandsto sandstone is fine gra	ILTSTONE & SANDSTONE (6 one): Grey and pale grey, ined, distinctly laminated at 0-5 ong defects. (continued)						- 7.38 - 7.42, Clay SM 10mm. - 7.47 - 7.52 - 7.55
	*	8.50	ls(50) d=0.04 a=0.09 MPa	-		8.50m Hole Terminated at 8 Target depth	.50 m						7.59-7.63: Clay SM 40mm. 7.68 7.71 7.74 7.82 7.93
				9.0									- 7.98 to 8.06: Fz. - 8.06 - 8.10: Clay SM 40mm. - 8.17 to 8.22: Clay SM 50mm. - 8.22 - 8.27: Fe. - 8.33: Fe. - 8.33: Fe. - 8.35 - 8.40: Fe.
				- 10.0 — - -									-
				- - 11.0 — - -	-								-
See detai				- - 12.0 — - -									
				- - 13.0 — - -									-
				- - 14.0 — - -									-
				- - 15.0 — - -									-
See	Exola	natory	Notes fo	- - 16.0									
deta & ba	ils of a	abbrev	iations ptions.										

JACOBS - IA157700 - BH2 - START CORING AT 5.00m
5 6 7 8 FINISH CORING AT 8:50m
PointID : BH2 Depth Range: 5.00 - 8.50 m Image: 5.00 - 8

JACOBS 3.01.2 LIB GLB GrfcTbr DG PHOTO CORE PHOTO 1 PER PAGE IA157700 GPJ <</p>

J	AC	OB	S		LIENT	: 1	Frans	I-CORE DRILL HOLE - GEOLOGICAL L port for NSW PROJECT : Redfern Station Investigation m, NSW			HOLE NO : BH3 FILE / JOB NO : IA157700 SHEET : 1 OF 3
PO	SITIO	N : E	E: 333					24 Zone 56) SURFACE ELEVATION : 26.48 (AHD)	ANG	GLE F	ROM HORIZONTAL : 90°
	S TYP					UNTIN					ILLER : PF
DA	TE ST	ARTE	D: 1	19/11/201	7 DAT	ECO	MPLE	TED : 19/11/2017 DATE LOGGED : 19/11/2017 LOGGED E	3Y : I	MG	CHECKED BY :
		DF	RILLIN	JG				MATERIAL			
PRO	GRESS				Ê	0	N			≿	
DRILLING & CASING	WATER	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	0 0 DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	
				0.05m ES 0.15m 0.30m ES	/ _			Asphaltic CONCRETE. FILL: Gravelly SAND: Brown and grey, fine to coarse grained sand gravel is fine to coarse, subangular to angular. 0.40m	D		FILL -
				0.40m 0.60m ES 0.70m 1.10m ES 1.20m 1.50m	1.0 —		****	FILL: Silty CLAY: Orange-brown and red-brown, high plasticity with trace of sand and fine subangular gravel. At 0.6m, buried pavement, approximately 100mm thick, including asphalt over bricks.	м		0.80: Terracotta pipe at 0.8m depth, hole moved 0.5m.
CASING		E		SPT 3,7,9 N=16.	2.0		_	Silty CLAY: Red-brown and pale-grey, high plasticity with a trace of ironstone gravel.	м	VSt	RESIDUAL SOIL
ar second start at our root of the second start of the second sta			Not Observed	3.00m SPT 9.16,10/50n HB, N=R. 3.35m	- 3.0 		СН	4.80m	D	н	-
det	= Explain of a sis of	abbre	viation	IS	5.0			Continued as Cored Drill Hole			

000		N				I: Redfern, NSW				ation Works		SHEET : 2 OF 3
		N : E E : X(9.7, N:		4.2 (MGA94 Zone 56) SURFACE ELEVAT NTING : Track CON			: Terratest			M HORIZONTAL : 90° ER : PF
AT	E ST	ARTE	D: 19/1	1/2017	DATE	COMPLETED : 19/11/2017 DATE LOGGED :	19/11/	2017	7 LOGGE	DBY:MG		CHECKED BY :
AS			TER : I	HQ		BARREL (Length) : 1.50 m BIT :				Bľ		NDITION :
200		DRILL				MATERIAL		ESTI	MATED STRENGTH	NATURAL		FRACTURES ADDITIONAL DATA
& CASING	WATER	면접 (CORE LOSS 편품 RUN %)	SAMPLES & FIELD TESTS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GRAPHIC LOG	DESCRIPTION ROCK TYPE : Colour, Grain size, Structure (texture, fabric, mineral composition, hardness alteration, cementation, etc as applicable)	Weathering	0.03	Is(50) • Axial • Diametral •	FRACTURE (mm)	VISUAL	(joints, partings, seams, zones, e Description, orientation, infiling or coating, shape, roughness, thickness, other
	% Foss	0% LOSS		5.0		4.80m START CORING AT 4.80m Silty CLAY: Pale grey with a trace of red-brown stainin high plasticity, dry, hard.	3.					ALL DEFECTS ARE SUB-HORIZONTAL BEDDING PARTINGS UNLESS NOTED OTHERWISE (0-5 degrees).
		6.20 0% LOSS		- 6.0 — -		6.35m						
				7.0		Silty CLAY: Grey-brown, with red-brown ironstone laminae, high plasticity, dry, hard. 6.80m SHALE: Dark grey and pale grey, thinly laminated to laminated.	xw					 6.8 to 7.15: Highly fractured, with iron staining in defects. 7.15 7.25
	- 0% LOSS	7.55 0% LOSS	ls(50) d=0 a=0.01 MPa	8.0 -		7.55m SHALE: Pale grey with iron staining. From 7.70m, colour is brown. 8.00m						7.32 7.45 7.5 7.55 to 8.00: Clay SM.

J	AC	OB	S			CC : Transport for NSW : Redfern, NSW	PROJECT : Re				ation Works		HOLE NO : BH3 FILE / JOB NO : IA157700 SHEET : 3 OF 3
POS		N : E	: 33335			1.2 (MGA94 Zone 56)	SURFACE ELEVATIO	N : 2	26.48	(AHD)	ANGLE F	RO	M HORIZONTAL : 90°
		E : X0				NTING : Track				Terratest		RILLE	ER : PF
					DATE		D17 DATE LOGGED : 1	9/11/2	2017	LOGGE	DBY:MG	T 00	CHECKED BY :
CAS		DIAME DRILL	ETER : ING	ΗQ	<u> </u>	BARREL (Length) : 1	.50 m BIT : MATERIAL				BI		NDITION : FRACTURES
PROG				-				–	ESTIM	ATED STRENGTH Is(50)	NATURAL		ADDITIONAL DATA
& CASING	WATER	문제 (CORE LC 코티 RUN %)	SAMPLES & FIELD TESTS	- - - - - - - - - - - - - - - - - - -	GRAPHIC LOG	ROCK TYPE : Color (texture, fabric, minera alteration, cementa	RIPTION ur, Grain size, Structure al composition, hardness tion, etc as applicable)			a(50) ● - Axial D - Diametral	FRACTURE (mm)	VISUAL	(joints, partings, seams, zones, etc) Description, orientation, infilling or coating, shape, roughness, thickness, other
		0% LOSS		-		SHALE: Dark grey and laminated.	brown, thinly laminated to	HW					- 8.15 to 8.25: Clay SM. - 8.25 to 8.30: Clay SM, orange brown. - 8.3 to 8.54: Highly fractured. - 8.64 - 8.84
•	<u> </u>	9.00	Is(50) d=0 a=0.04 MPa	9.0		9.00m Hole Terminated at 9.00 Target depth) m						
													-
See detai & bas				- - - 13.0 —									
				- - - 14.0 - -									
				- - 15.0 — - -									
detai	ls of a	abbrev	Notes for viations iptions.	16.0 — or									

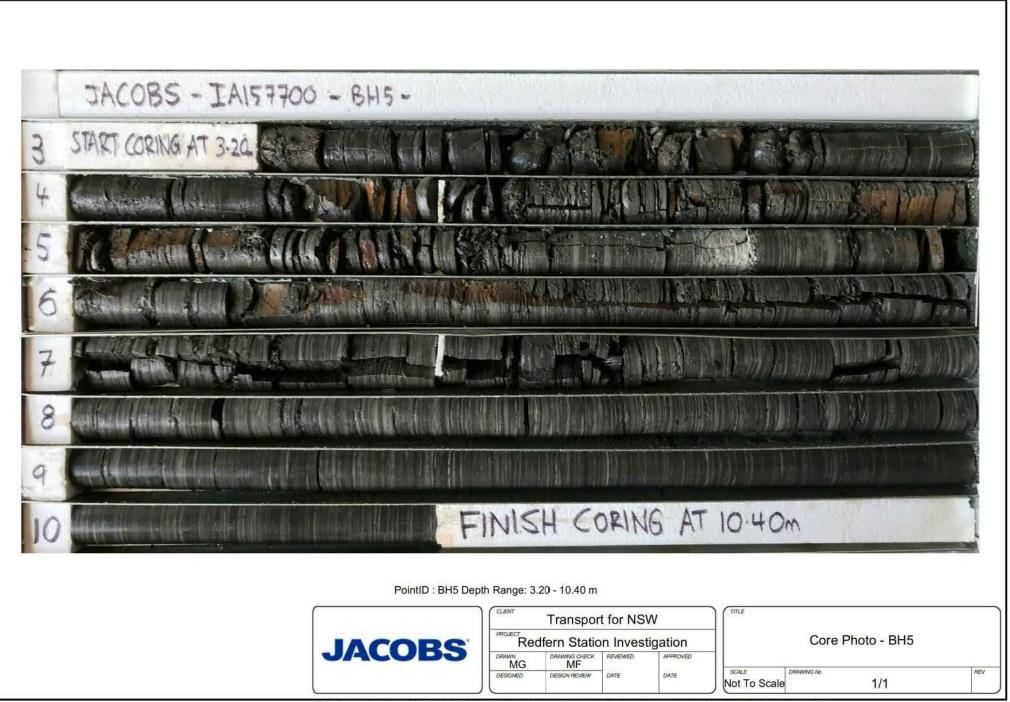
4	JACOBS-IA157700-BH3-START CORING AT 4.80m
5	The state of the s
6	A CALLER AND THE REPORT OF ANY AND
7	CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR
8	
F	INISH CORING AT 9.00m
	PointID : BH3 Depth Range: 4.80 - 9.00 m
	PROJECT Redfern Station Investigation Core Photo - BH3 DRAWN DRAWN DRAWN OVERCH APPROVED DRAWN DESIGN REVIEW DATE DATE DRAWNS No

JACOBS 3.01.2 LIB GLB GrfcTbi DG PHOTO CORE PHOTO 1 PER PAGE IA157700 GPJ «OtrawingFile» 04/12/2017 17:43 8.30.003 Datget Lab and In Sku Tool - DGD J Lib: Jacobs 3.01.2 2017-03-09 Pr; Jacobs 3.00.0 2016-07-17

J	AC	OB	S			: T	rans	I-CORE DRILL HOLE - GEOLOGICAL L port for NSW PROJECT : Redferm Station Investigation m, NSW			HOLE NO : BH4 FILE / JOB NO : IA157700 SHEET : 1 OF 3
PC	SITIO	N : E	E: 33					94 Zone 56) SURFACE ELEVATION : 26.34 (AHD)	ANG	GLE F	ROM HORIZONTAL : 90°
				,		UNTIN					ILLER : BM/PF
DA	TE ST	ARTE	D: ´	11/11/201	7 DAT	ECON	/IPLE	TED : 12/11/2017 DATE LOGGED : 11/11/2017 LOGGED B	SY : N	MG	CHECKED BY : MF
_						1		MATERIAL			
PRC	GRESS		-				z	MATERIAL		<u>ک</u>	
DRILLING	_	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
AD/T					0.0 —			Asphaltic CONCRETE 0.20m			FILL
Ť				0.40m ES 0.50m				FILL: Gravelly CLAY: Brown, medium plasticity, gravel is fine to coarse, subangular to angular. 0.50m FILL: Silty CLAY: Grey mottled red-brown, medium to high plasticity.			-
- DDN				0.80m ES 0.90m					D		-
¥		E			-						1.00: Possibly Residual Soil. - 1.30: Platform height is 1.3m above rail ballast.
				1.50m SPT 8,11,25 N=36			¥	1.50m			RESIDUAL SOIL 1.80: SPT hammer bouncing from 1.8m
ONISO				1.95m	2.0-	-				н	
л-				2.50m D 2.70m SPT 2,5,17							
AD/T				3.15m	3.0	-	СН		D		cobble
		F	ved	D 3.50m	-	-				VSt	3.50: SPT unable to be performed due to hole cave-in
			Not Observed		4.0-	-					_
		н			-			4.40m From 4.30m, becoming grey to dark grey		н	4.30: TC-bit refusal
2								Continued as Cored Drill Hole			-
					5.0	-					-
50					-	-					-
5					-	-					-
					6.0-	-					-
					-	-					-
					7.0 —						_
					-	1					-
					-						-
					-	1					-
det	e Expla ails of a asis of	abbrev	iatior	าร	3 _{8.0} –	I	1	1	<u> </u>	I	l

		OB		LO		CORED DRILL HC : Transport for NSW PROJECT : Re : Redfern, NSW			ation Works		HOLE NO : BH4 FILE / JOB NO : IA157700 SHEET : 2 OF 3			
				2.4, N:		2.4 (MGA94 Zone 56) SURFACE ELEVATIO					M HORIZONTAL : 90°			
		E : X0		4/0047				OR : Terratest		RILLE	ER : BM/PF			
			D : 11/1 TER : I		DATE	COMPLETED : 12/11/2017 DATE LOGGED : ' BARREL (Length) : 0.80 m BIT :	1/11/	2017 LOGGE	DBY:MG		CHECKED BY : MF			
CAS						MATERIAL			Ы	FRACTURES				
PROG				~			5	ESTIMATED STRENGTH Is(50)	NATURAL		ADDITIONAL DATA			
& CASING	WATER	R (CORE LOSS 코트 RUN %)	SAMPLES & FIELD TESTS	0 0 DEPTH (m)	GRAPHIC LOG	DESCRIPTION ROCK TYPE : Colour, Grain size, Structure (texture, fabric, mineral composition, hardness alteration, cementation, etc as applicable)	Weathering	IS(50) ● - Axial O - Diametral © - Ŏ; Ŏ; Ŏ; Ţ, ♡, Ţ IJ J J J J	FRACTURE (mm)	VISUAL	(joints, partings, seams, zones, etc) Description, orientation, infilling or coating, shape, roughness, thickness, other			
						4.40m START CORING AT 4.40m					- ALL DEFECTS ARE			
1		0% LOSS				4.55m Silty CLAY: Grey, high plasticity, dry, very stiff.					SUB-HORIZONTAL BEDDING PARTINGS UNLESS NOTED			
		5.20 0% LOSS	ls(50) d=0.1 a=0.07 MPa	- 5.0 — - -		5.00m SHALE: Brown and grey, thinly laminated. SHALE: Brown and grey, thinly laminated. SHALE: Dark grey, laminated with iron staining in defects.	xw <u>hw</u> Mw				OTHERWISE (0-5°) 4.40 to 4.55: Clay SM, 150mm 4.70: JT, 90°, PI, R 4.77 5.00 5.04: Clay SM, 30mm 5.07 to 5.12: FZ. 5.13: Clay SM, 60mm 5.36: JT, 80°, PI, Sr 5.40: Fe 5.54: JT, 70-80°, PI, Sr 5.65 5.80 to 6.00: JT, 60-80°, Cu,			
NMLC	- 10% LOSS	6.00 0% LOSS	ls(50) d=0.13 a=0.06 MPa	6.0		6.40m INTERLAMINATED SILTSTONE & SANDSTONE (60% siltstone 40% sandstone): Dark grey and grey					R, Fe 5.00 6.13: Clay infill 6.17: JT, 20-30°, PI, R, Fe 6.23 6.40: JT, 70°, PI, R, Fe 6.45: Clay SM, 20mm 6.49: Fe			
		6.80 0% LOSS	ls(50) d=0 a=0.08 MPa	7.0-		sandstone is fine grained, distinčtly lamināted at 0-5°.	xw <u>H</u> w MW				6.65 to 6.80: FZ. 6.82 6.89 6.95 to 7.09: Highly fractured. 7.38: Clay SM, 10mm 7.42: Clay SM, 40mm			
	- 10% LOSS	7.60 0% LOSS	ls(50) d=0 a=0.11 MPa	-			XW HW				7.52 7.55 7.60 to 7.72: Clay SM. 7.83: Clay infill 7.87: Clay infill			
deta	ils of a	abbrev	Notes fo iations ptions.	r 8.0 —							File: 14157700 BH4 2 OF			

ſ	- 1		OB	S										HOLE NO : BH4 FILE / JOB NO : IA157700
					LO		: Transport for NSW : Redfern, NSW	PROJECT : F					ŝ	SHEET : 3 OF 3
- H			N : E E : X0		2.4, N:		1.4 (MGA94 Zone 56)	SURFACE ELEVAT			(AHD) Terratest			I HORIZONTAL : 90° R : BM/PF
- H					1/2017		COMPLETED : 12/11/2					DBY:MG		CHECKED BY : MF
ł	CAS		DIAME	ETER :	HQ		BARREL (Length) : (0.80 m BIT : MATERIAL				Bľ		NDITION : RACTURES
F	PROG				Ê	U	DES		g	ESTIN	MATED STRENGTH Is(50)	NATURAL FRACTURE		ADDITIONAL DATA
	& CASING	- WATER	E (CORE LOSS E RUN %)	SAMPLES & FIELD TESTS	0.8 DEPTH (m)	GRAPHIC LOG	ROCK TYPE : Colo (texture, fabric, miner alteration, cementa	our, Grain size, Structure ral composition, hardness ation, etc as applicable)	Š		●-Axial O-Diametral	(mm)	VISUAL	(joints, partings, seams, zones, etc) Description, orientation, infilling or coating, shape, roughness, thickness, other
		10% LOSS	0% LOSS 8.40 0%		-		siltstone 40% sandstor	LTSTONE & SANDSTONE (60% ne): Dark grey and grey ned, distinctly laminated at 0-5°.	6 HV	/				L 7.92 8.07 - 8.07 - 8.14: JT, 70°, PI, Sr, Fe 8.27: Clay infill 8.34: Clay SM, 10mm -
	NMLC	- 10% LOSS	LOSS	Is(50) d=0.11 a=0.19 MPa	9.0									8.54: Clay infill 8.57 - 8.64: Clay SM, 15mm 8.76 - 8.82: Clay SM, 20mm 8.88: Clay SM, 10mm 8.83: Clay SM, 10mm
	Z	SS SS	9.20 0% LOSS		-									9.08: Clay SM, 30mm 9.17: JT, 80-90°, PI, R 9.25: Clay SM, 10mm 9.29 9.34: Clay SM, 20mm
	V		10.00	ls(50) d=0.2 a=0.05	10.0		10.00m			•	9			- 9.43: Clay SM, 10mm 9.54 9.75: Clay SM, 10mm 9.75: Clay SM, 10mm 9.77: Clay SM, 10mm 9.88: Clay SM, 10mm
5-07-17				MPa			Hole Terminated at 10 Target depth	.00 m						~ <u><u>9.95</u> 7 - - - - - - -</u>
					- - 12.0 - -									-
					- 13.0 — - -									-
					15.0 — - - -									
	detai	ls of a	abbrev	Notes fo viations iptions.	16.0 — or								I	I


4 BH4 - START CORING AT 4.40m
50 CANADA - CANADA AND AND AND AND AND AND AND AND AN
8
FINISH CORING AT 10.0m
PointID : BH4 Depth Range: 4.40 - 10.00 m ICUENT Transport for NSW PROJECT Redfern Station Investigation DRAWING CHECK REMEWED DATE DATE DATE DATE DATE DATE DATE DA

JACOBS 3.01.2 LIB.GLB GrfcTb DG PHOTO CORE PHOTO 1 PER PAGE IA15/7700.GPJ <</p>

J	AC	OE	S	CL LC	LIENT	: T	Fransi	N-CORE				OGICAI ation Investiga			HOLE NO : BH5 FILE / JOB NO : IA157700 SHEET : 1 OF 3
						345.8 (1	MGA	94 Zone 56)	SURFAC	E ELEVA	ΓΙΟΝ : 24.	03 (AHD)	ANC	GLE F	ROM HORIZONTAL : 90°
RIG	TYPE	: C	omma	achio 205	6 MC	DUNTIN	IG :	Track		CON	ITRACTOR	R : Terratest		DR	ILLER : AZ
DAT	E ST/	ARTE	D: 2	28/11/201	7 DAT	LE COM	/IPLE	TED : 28/11/2	017 DATE L	OGGED	: 28/11/20	17 LOGGE	DBY:	MG	CHECKED BY :
			RILLIN					1			MA	TERIAL		1	
BRILLING 8 CASING	WATER	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	So	il Type, Colour, Pl	RIAL DESCR lasticity or Pa and Minor C	article Charac	steristic	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
				ES 0.10m 0.50m	- 0.0 - -			plasticity,	dy Gravelly CLAY: gravel is fine to m	edium.	red-brown, lov	v to medium			FILL
				SPT 3,2,3 N=5 0.95m	- - 1.0 —			FILL: Silty	n, <u>coal layer (100r</u> Sandy CLAY: Bro e to coarse graine	own and red-	brown, mediur ce of siltstone	m to high plastici lenses.			-
AD/T CASING		E		D <u>1.50m</u> SPT 4,2,7 N=9 1.95m		-	СН		Y: Grey and orang	ie-brown, hig	h plasticity, wi	th some siltstone	, — - М	St - VSt	RESIDUAL SOIL
			_		-	-		<u>2.60m</u>	Grey, highly weath	ered, very lo			_		
		F		2.80m D 3.00m SPT 10/50mm,	3.0		ي بايا يا با با با با با				Ū				-
**			-	HB N=R			-	3.20m Continued	as Cored Drill Ho	ble				1	
				3.05m		-									-
			p		-	1									-
			serve		-	-									-
			Not Observed		4.0	-									_
			Ž												
					-]									-
					-	1									-
						-									-
						_									-
					5.0										
					5.0	1									
					-	-									-
						-									-
															_
					-	1									-
					6.0 -	-									-
					.	-									-
															_
					-	1									-
					.	-									-
					7.0-	4									-
					-]									
					-	1									-
					.	-									-
Ĩ					.	4	1								-
L					8.0-										
See	Explai	natory	/ Note	s for	0.0-										
	ils of a isis of														

JA		OB	5		ENT CATION	: Transport for NSW PROJECT : R : Redfern, NSW			ation Works		FILE / JOB NO : IA157700 SHEET : 2 OF 3
			: 333481 mmachi			5.8 (MGA94 Zone 56) SURFACE ELEVATI JTING : Track CONT		24.03 (AHD) OR : Terratest			M HORIZONTAL : 90° ER : AZ
						COMPLETED : 28/11/2017 DATE LOGGED :			DBY:MG		CHECKED BY :
			TER : I			BARREL (Length) : 3.00 m BIT :				г сс	NDITION :
		RILLI				MATERIAL		·			FRACTURES
COGRE	WATER	데 (CORE LOSS 데데 %)	SAMPLES & FIELD TESTS	O DEPTH (m)	GRAPHIC LOG	DESCRIPTION ROCK TYPE : Colour, Grain size, Structure (texture, fabric, mineral composition, hardness alteration, cementation, etc as applicable)	Weathering	ESTIMATED STRENGTH Is(50)	NATURAL FRACTURE (mm)	VISUAL	ADDITIONAL DATA (joints, partings, seams, zones, et Description, orientation, infilling or coating, shape, roughness, thickness, other
	▲	0% LOSS	ls(50) d=0.01 a=0.23 MPa			3.20m START CORING AT 3.20m INTERLAMINATED SILTSTONE & SANDSTONE (65% siltstone 35% sandstone): Dark grey, sandstone is pale grey and fine grained, with some iron staining in defects, distinctly laminated at 0-5°.					ALL DEFECTS ARE SUB-HORIZONTAL BEDDING PARTINGS UNLESS NOTED OTHERWISE (0-5') 3.20 to 3.28: Clay SM 3.30 -3.35 -3.41 -3.48 to 3.84: Highly fractured with iron. -3.93 -4.10
		4.40 0% LOSS	ls(50) d=0.31 a=1.02 MPa	- - 5.0 — - - 6.0 —		From 5.50m, increasing in sandstone, 40-50%.	MW SŴ				4.22 to 4.52: Highly fractured. 4.59 to 4.84: Highly fractured. 4.89 5.13 5.23 to 5.50: Highly fractured. 5.54 5.67 5.70 to 5.77: Pale grey. 5.88 5.95 6.08 6.13
		7.40 0% LOSS	Is(50) d=0.02 a=0.26 MPa Is(50) d=0.08 a=0.19 MPa	- - 7.0 - - -		From 6.86m, iron absent in defects.	sw				6.17 to 7.61: St. 80°, PI, R, Fe (No Fe from 6.86m). 6.33 6.42 6.44 6.53 6.58 6.68 6.69 6.69 6.72 6.72 6.76 6.84 6.91, St. 6.93 6.93 6.93 6.93 6.94 7.10: St. 7.10: St. 7.15 7.54 7.54 7.61

Γ										06			HOLE NO : BH5
	J	AC	OB	S		IENT CATION	: Transport for NSW : Redfern, NSW				tion Works		FILE / JOB NO : IA157700 SHEET : 3 OF 3
- H-	POSITION : E: 333481.4, N: 6248345.8 (MGA94 Zone 56) SURFACE ELEVATION : 24.03 (AHD) ANGLE FROM HORIZONTAL : 90° RIG TYPE : Commachio 205 MOUNTING : Track CONTRACTOR : Terratest DRILLER : AZ												
- H							CONTROL CONTRO				DF DBY:MG	ILLE	CHECKED BY :
- H-				TER :			BARREL (Length) : 3.00 m BIT :					г со	NDITION :
		[1		MATERIAL	-	_			F	RACTURES
P	& CASING 0	WATER	표명 (CORE LOSS 코티 RUN %)	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	DESCRIPTION ROCK TYPE : Colour, Grain size, Structure (texture, fabric, mineral composition, hardness alteration, cementation, etc as applicable)	Weathering		STIMATED STRENGTH Is(50) • - Axial O - Diametral · · · · · · · · · · · · · · · · · · ·	NATURAL FRACTURE (mm)	VISUAL	ADDITIONAL DATA (joints, partings, seams, zones, etc) Description, orientation, infiling or coating, shape, roughness, thickness, other
			0% LOSS		- 8.0		INTERLAMINATED SILTSTONE & SANDSTONE (55% siltstone 45% sandstone): Dark grey, sandstone is pale grey and fine grained, distinctly laminated at 0-5°.	SW					⊢ 7.65 ⊢ 7.75 ⊢ 7.84 to 7.92: JT, Pl, 80°, SR. – ⊢ 8.03 − 8.11 ⊢ 8.23: Clay SM 5mm. –
		SSO1 %06		Is(50) d=0.26 a=2.09 MPa Is(50) d=0.26 a=2.24 MPa			From 9.10m, decreasing in sandstone (30%).	SW FR	1 i				■ 8.25: Clay SM 5mm. ■ 8.37 - 8.50 - 8.61: Clay SM 10mm. ■ 8.82 - 9.04 - 9.16 - 9.28 - -
				. (50)	-								-
\mathbf{F}	*	¥	10.40	ls(50) 			10.40m Hole Terminated at 10.40 m						
39 Prj: Jacobs 3.00.0 2016-07-17					- 11.0 - - - 12.0	-							
18/12/2017 09:34 8:30.003 Datget Lab and In Situ Tool - DGD LIIb: Jacobs 3:01.2 2017-03-					- - - 13.0 - - - - - - - - - - - - - - - - - -								- - - - - - - - - - - - - - - - - - -
ŝ	etail	ls of a	abbrev	Notes fo	- - - - - - - - - - - - - - - - - - -								- - - - - - - - - - - - - -
ACOBS	details of abbreviations & basis of descriptions.												

JACOBS 3.01.2 LIB.GLB GrfcTbi DG PHOTO CORE PHOTO 1 PER PAGE IA157700. GPJ <</p>

	J	AC	OB	S		LIENT DCATIO	: T	rans	I-CORE DRILL HOLE - GEOLOGICAL I ort for NSW PROJECT : Redferm Station Investigatio n, NSW			HOLE NO : BH6 FILE / JOB NO : IA157700 SHEET : 1 OF 3
-									4 Zone 56) SURFACE ELEVATION : 25.14 (AHD)	ANG		ROM HORIZONTAL : 90°
		TYPE E ST/		-					Track CONTRACTOR : Terratest TED : 07/11/2017 DATE LOGGED : 07/11/2017 LOGGED E	3Y : I		ILLER : BM CHECKED BY : MF
							T					
	209	RESS		RILLIN				z	MATERIAL		≻	
	& CASING	WATER	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
	1				0.20m	0.0			Asphaltic CONCRETE 0.20m			FILL
					ES 0.30m				FILL: Sandy Clayey GRAVEL: Dark grey and brown, fine to coarse, subanagular to subrounded.			-
QQN					0.60m			\$	At 0.4m, some broken bricks.	D		
					ES 0.70m			3	At 0.6m, some shale cobbles and boulders up to 300mm.			_
					1.00m	1.0		}	1.00m			
11					SPT 3,6,7 N=13	-			Silty CLAY: Grey mottled red-brown, high plasticity.			RESIDUAL SOIL
					1.45m	_						1.20: Hole collapse prior to SPT.
					1.4011	1.					St	-
						_						-
			E			2.0						
												-
						_						-
					2.50m SPT 8,21,11/90m	- 			At 2.5m, as above, with some orange-brown mottling.			2.50: Hole collapse prior to SPT.
	CASING				HB, N=R	-		сн		D		
					2.89m	3.0 —						2.80: SPT bouncing on lense of dark grey shale.
2						· ·						-
- ADN						.					VSt	-
						_						-
-01 07 0.0				erved	3.80m							3.70: Increased drilling resistance.
0.0				Not Observed	D 4.00m	4.0						
a Lihot				ž		-						4.00: SPT unable to be performed due to hole cave-in.
1-01-1-01						-						-
77. 0.0 0			F			-			4.50m			
0.04000						-			remotions to sincy day.			-
						5.0						-
					5.30m	-		11111				-
					D 5.50m	1 -			5.50m			-
	1				0.0011	-			Continued as Cored Drill Hole			5.50: SPT bouncing when attempted.
0.000						-	-					-
0 00 20 20						6.0 —	-					-
1 07/7						-	-					-
0						-	-					-
Idwillight						-						-
						-	-					-
100110						7.0 —	-					-
						-	-					-
DOVEL						-	-					-
ov or fi						-	-					-
						-	-					-
s	ee l	Explai	natory	Note	s for	8.0-					1	
		ls of a sis of										

J		OB	S		ENT CATION	: Transport for NSW : Redfern, NSW	PROJECT :				ation Works		FILE	DLE NO : BH6 E / JOB NO : IA157700 EET : 2 OF 3
POSI	TION	N : E	: 333452	2.6, N: (6248279	9.5 (MGA94 Zone 56)	SURFACE ELEVA	TION : :	25.1	4 (AHD)	ANGL	E FRO	ОМ Н	ORIZONTAL : 90°
			injin DB8			NTING : Track				: Terratest			ER	: BM
			TER : F		DATE	COMPLETED : 07/11/2 BARREL (Length) :		: 07/11/	201	/ LOGGE	DBY: MO			CHECKED BY : MF
/ 101	0	RILLI				Diritice (Eengiri)	MATERIAL							ACTURES
ROGF	RESS	oss	s & sTS	(L	с	DES	CRIPTION	b	ESTI	MATED STRENGTH Is(50)	NATURAL FRACTURI			ADDITIONAL DATA
& CASING	WATER	데일 (CORE LOSS 코티 RUN %)	SAMPLES & FIELD TESTS	O DEPTH (m)	GRAPHIC LOG	ROCK TYPE : Colo (texture, fabric, mine	our, Grain size, Structure ral composition, hardne: ation, etc as applicable)	ss sat	EL -0.03	●-Axial O-Diametral	(mm)	/ISUA	(j	joints, partings, seams, zones, e Description, orientation, infilling or coating, shape, roughness, thickness, other
				_		5.50m START CORING AT 5	50m							
	A	20% LOSS			\square	5.50m START CORING AT 5 CORE LOSS 0.30m (5			\uparrow	+ + + + + 			+	ALL DEFECTS ARE SUB-HORIZONTAL BEDDING
						5.80m		\square						PARTINGS UNLESS NOTED OTHERWISE (0-5°) 5.80
			ls(50) d=0.27	6.0 —		INTERLAMINATED SI siltstone 30% sandsto	LTSTONE & SANDSTONE (7 ne): Dark grey and pale grey,	'0% SW				i	-	5.95
	ross		a=0.36 MPa	5.0		sandstone is fine grain some iron staining alo	ne): Dark grey and pale grey, ied, distinctly laminated at 0-1 ng defects.	υ,						6.05
	Water LOSS											i		6.25: JT, 70°, Fe, Pl, R
	-5% M													6.36
				-	· · · · · ·							i	\vdash	6.63: Fe
				-							│ │ │ ┛ │ ⊨╅┚╎ │		5	6.75: Fe 6.83: SM, 10mm, Fe, Pl, R
	Y	7.00	ls(50) d=0.45 a=0.55	7.0									5	6.85: SM, 5mm, Fe, Pl, R 6.9: 15°
	Ī	0% LOSS	a=0.55 MPa											
	· SSO.												L	7.26 7.27 7.28: SM 10mm Fa
	5% Water LOSS													7.28: SM, 10mm, Fe 7.36
	5% W													7.58
	Ĩ		ls(50) d=0.16 a=0.43	-		strength	section 100mm, grey, high							
			MPa	8.0		8.00m								

CORED DRILL HOLE LOG CLIENT : Transport for NSW PROJECT : Redfern Station Investigation Wo LOCATION : Redfern, NSW PROJECT : Redfern Station Investigation Wo								HOLE NO : BH6 Works FILE / JOB NO : IA157700 SHEET : 3 OF 3							
POS	SITIO	N : E	E: 33345			9.5 (MGA94 Zone 56)	SURFACE ELEV	ATION	1:2	5.14 (AHD)		ANG	LE FI	RON	1 HORIZONTAL : 90°
			anjin DB			NTING : Track				DR : Terratest				ILLE	R : BM
					DATE	COMPLETED : 07/11/2		D : 07	/11/2	2017 LOGGI	ED BY	(: M			CHECKED BY : MF
CAS		DIAME	ETER :	HQ		BARREL (Length) : 3	3.00 m BIT : MATERIAL						BH		NDITION : RACTURES
PROG										ESTIMATED STRENGTI	I NA	ATURA	L		ADDITIONAL DATA
& CASING	WATER	CORE LOSS ADD CORE LOSS S% HIRUN %)	SAMPLES & FIELD TESTS	0.8 DEPTH (m)	GRAPHIC LOG	ROCK TYPE : Colo (texture, fabric, miner alteration, cementa	CRIPTION ur, Grain size, Structur al composition, hardne tition, etc as applicable TSTONE & SANDSTONE re): Dark grey and pale grey	ess ;) (60%	& Weathering	Is(50) O - Diametral O - Diametral O - Diametral O - Diametral		ACTUF (mm)	RE	VISUAL	(joints, partings, seams, zones, etc) Description, orientation, infilling or coading, shape, roughness, thickness, other
	5% Water LOSS		ls(50) d=0.6 a=0.12 MPa			sandstone is fine grain some iron staining alor	ed, distinctly laminated at 0-	(['] -10°,							8.22 8.33: JT, 30-40°, ST, R 8.47: JT, 80-90°, Wa, R 8.57 8.7 8.75 8.76 8.93: SM, 10mm, PI, R 9.12 9.45 9.61: SM, 5mm, PI, R
		9.90	ls(50)	-		9.90m						Ľ			9.82: St.
			MPa			Target depth									
deta	ils of	abbrev	Notes for riations iptions.	- 16.0 or											

5 JACOBS-JAI57	700 - BH6 - START (0	KING AT 5.50m	NO CORE = 0.3	M	
7					
B. LIPKI	H AND	STAND 1			
C C C				Kidle Mill	FINISH CORING AT 9.90m
<u>L'hand</u>					CORING AT 9-90

JACOBS 3.01.2 LIB.GLB GrfcTb DG PHOTO CORE PHOTO 1 PER PAGE IA15/7700.GPJ <</p>

Appendix C. Laboratory certificates

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 179707

Client Details	
Client	Jacobs Group (Australia) Pty Ltd
Attention	Michael Stacey
Address	Level 7, 177 Pacific Highway, North Sydney, NSW, 2060

Sample Details	
Your Reference	<u>IA157700</u>
Number of Samples	5 Soil
Date samples received	13/11/2017
Date completed instructions received	13/11/2017

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details Date results requested by 20/11/2017 Date of Issue 17/11/2017

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Paul Ching, Senior Analyst Steven Luong, Senior Chemist

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Paul Ching **Results Approved By** Dragana Tomas, Senior Chemist Long Pham, Team Leader, Metals Nick Sarlamis, Inorganics Supervisor

Authorised By

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		179707-1	179707-3	179707-5
Your Reference	UNITS	BH4 - 0.4	BH4 - 1.5	BH6 - 0.6
Date Sampled		11/11/2017	11/11/2017	07/11/2017
Type of sample		Soil	Soil	Soil
Date extracted	-	14/11/2017	14/11/2017	14/11/2017
Date analysed	-	15/11/2017	15/11/2017	15/11/2017
TRH C ₆ - C ₉	mg/kg	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	83	85	85

svTRH (C10-C40) in Soil				
Our Reference		179707-1	179707-3	179707-5
Your Reference	UNITS	BH4 - 0.4	BH4 - 1.5	BH6 - 0.6
Date Sampled		11/11/2017	11/11/2017	07/11/2017
Type of sample		Soil	Soil	Soil
Date extracted	-	14/11/2017	14/11/2017	14/11/2017
Date analysed	-	15/11/2017	15/11/2017	15/11/2017
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	160	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	130	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	240	<50
Surrogate o-Terphenyl	%	77	78	77

PAHs in Soil				
Our Reference		179707-1	179707-3	179707-5
Your Reference	UNITS	BH4 - 0.4	BH4 - 1.5	BH6 - 0.6
Date Sampled		11/11/2017	11/11/2017	07/11/2017
Type of sample		Soil	Soil	Soil
Date extracted	-	14/11/2017	14/11/2017	14/11/2017
Date analysed	-	14/11/2017	14/11/2017	14/11/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	87	95	90

Organochlorine Pesticides in soil				
Our Reference		179707-1	179707-3	179707-5
Your Reference	UNITS	BH4 - 0.4	BH4 - 1.5	BH6 - 0.6
Date Sampled		11/11/2017	11/11/2017	07/11/2017
Type of sample		Soil	Soil	Soil
Date extracted	-	14/11/2017	14/11/2017	14/11/2017
Date analysed	-	14/11/2017	14/11/2017	14/11/2017
НСВ	mg/kg	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	94	90	91

PCBs in Soil				
Our Reference		179707-1	179707-3	179707-5
Your Reference	UNITS	BH4 - 0.4	BH4 - 1.5	BH6 - 0.6
Date Sampled		11/11/2017	11/11/2017	07/11/2017
Type of sample		Soil	Soil	Soil
Date extracted	-	14/11/2017	14/11/2017	14/11/2017
Date analysed	-	14/11/2017	14/11/2017	14/11/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCLMX	%	94	90	91

Acid Extractable metals in soil				
Our Reference		179707-1	179707-3	179707-5
Your Reference	UNITS	BH4 - 0.4	BH4 - 1.5	BH6 - 0.6
Date Sampled		11/11/2017	11/11/2017	07/11/2017
Type of sample		Soil	Soil	Soil
Date prepared	-	14/11/2017	14/11/2017	14/11/2017
Date analysed	-	14/11/2017	14/11/2017	14/11/2017
Arsenic	mg/kg	8	<4	6
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	8	5	7
Copper	mg/kg	14	<1	35
Lead	mg/kg	31	8	21
Mercury	mg/kg	0.2	<0.1	<0.1
Nickel	mg/kg	1	<1	9
Zinc	mg/kg	13	220	37

Clay 50-120g		
Our Reference		179707-3
Your Reference	UNITS	BH4 - 1.5
Date Sampled		11/11/2017
Type of sample		Soil
Date prepared	-	14/11/2017
Date analysed	-	17/11/2017
Clay in soils <2µm	% (w/w)	54

Misc Inorg - Soil		
Our Reference		179707-3
Your Reference	UNITS	BH4 - 1.5
Date Sampled		11/11/2017
Type of sample		Soil
Date prepared	-	15/11/2017
Date analysed	-	15/11/2017
pH 1:5 soil:water	pH Units	5.5

CEC		
Our Reference		179707-3
Your Reference	UNITS	BH4 - 1.5
Date Sampled		11/11/2017
Type of sample		Soil
Date prepared	-	15/11/2017
Date analysed	-	15/11/2017
Exchangeable Ca	meq/100g	0.3
Exchangeable K	meq/100g	0.2
Exchangeable Mg	meq/100g	1.2
Exchangeable Na	meq/100g	0.26
Cation Exchange Capacity	meq/100g	2.0

Moisture				
Our Reference		179707-1	179707-3	179707-5
Your Reference	UNITS	BH4 - 0.4	BH4 - 1.5	BH6 - 0.6
Date Sampled		11/11/2017	11/11/2017	07/11/2017
Type of sample		Soil	Soil	Soil
Date prepared	-	14/11/2017	14/11/2017	14/11/2017
Date analysed	-	15/11/2017	15/11/2017	15/11/2017
Moisture	%	12	22	10

Asbestos ID - soils				
Our Reference		179707-1	179707-3	179707-5
Your Reference	UNITS	BH4 - 0.4	BH4 - 1.5	BH6 - 0.6
Date Sampled		11/11/2017	11/11/2017	07/11/2017
Type of sample		Soil	Soil	Soil
Date analysed	-	17/11/2017	17/11/2017	17/11/2017
Sample mass tested	g	Approx. 30g	Approx. 30g	Approx. 55g
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
Trace Analysis	-	detected No asbestos detected	detected No asbestos detected	detected No asbestos detected

Method ID	Methodology Summary
AS1289.3.6.3	Determination Particle Size Analysis using AS1289.3.6.3 and AS1289.3.6.1 and in house method INORG-107. Clay fraction at <2µm reported.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.

Method ID	Methodology Summary
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" are="" at="" conservative<br="" is="" most="" pql.="" the="" this="">approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present. 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and<br="" approach="" are="" conservative="" is="" least="" the="" this="" zero.="">is more susceptible to false negative TEQs when PAHs that contribute to the TEQ calculation are present but below PQL. 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" are="" half="" hence="" mid-point<br="" pql.="" stipulated="" the="">between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Ora 014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-014	Son samples are extracted with methanol and spiked into water phon to analysing by purge and trap GC-NS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-			14/11/2017	[NT]		[NT]	[NT]	14/11/2017	
Date analysed	-			15/11/2017	[NT]		[NT]	[NT]	15/11/2017	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	88	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	88	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	81	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	88	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	89	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	90	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	88	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	92	[NT]		[NT]	[NT]	91	

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-			14/11/2017	[NT]		[NT]	[NT]	14/11/2017	
Date analysed	-			15/11/2017	[NT]		[NT]	[NT]	15/11/2017	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	95	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	97	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	91	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	95	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	97	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	91	
Surrogate o-Terphenyl	%		Org-003	78	[NT]		[NT]	[NT]	86	

QUAL	ITY CONTRC	L: PAHs	in Soil			Du	Duplicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-			14/11/2017	[NT]		[NT]	[NT]	14/11/2017	
Date analysed	-			14/11/2017	[NT]		[NT]	[NT]	14/11/2017	
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	85	
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	89	
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	84	
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	78	
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	82	
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	93	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]		[NT]	[NT]	88	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	90	[NT]		[NT]	[NT]	118	

QUALITY COM	NTROL: Organo	chlorine I	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]	
Date extracted	-			14/11/2017	[NT]		[NT]	[NT]	14/11/2017		
Date analysed	-			14/11/2017	[NT]		[NT]	[NT]	14/11/2017		
НСВ	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	88		
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	85		
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	76		
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	73		
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	74		
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	76		
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	81		
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	73		
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	79		
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	78		
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-005	85	[NT]		[NT]	[NT]	99		

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-			14/11/2017	[NT]		[NT]	[NT]	14/11/2017	
Date analysed	-			14/11/2017	[NT]		[NT]	[NT]	14/11/2017	
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	124	
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCLMX	%		Org-006	85	[NT]		[NT]	[NT]	101	

QUALITY CONT	ROL: Acid E	Extractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date prepared	-			14/11/2017	[NT]		[NT]	[NT]	14/11/2017	
Date analysed	-			14/11/2017	[NT]		[NT]	[NT]	14/11/2017	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	118	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	108	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	117	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	114	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	109	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	103	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	108	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	112	

QUALITY	CONTROL	: Misc Ino	rg - Soil		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]	
Date prepared	-			15/11/2017	[NT]		[NT]	[NT]	15/11/2017		
Date analysed	-			15/11/2017	[NT]		[NT]	[NT]	15/11/2017		
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	102		

QU/	ALITY CONT	ROL: CE	C			Duj	olicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			15/11/2017	[NT]	[NT]	[NT]	[NT]	15/11/2017	
Date analysed	-			15/11/2017	[NT]	[NT]	[NT]	[NT]	15/11/2017	
Exchangeable Ca	meq/100g	0.1	Metals-009	<0.1	[NT]	[NT]	[NT]	[NT]	102	
Exchangeable K	meq/100g	0.1	Metals-009	<0.1	[NT]	[NT]	[NT]	[NT]	109	
Exchangeable Mg	meq/100g	0.1	Metals-009	<0.1	[NT]	[NT]	[NT]	[NT]	98	
Exchangeable Na	meq/100g	0.1	Metals-009	<0.1	[NT]	[NT]	[NT]	[NT]	102	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 179707-1, 3, 5 were sub-sampled from jars provided by the client.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Jacobs Group (Australia) Pty Ltd
Attention	Michael Stacey

Sample Login Details	
Your reference	IA157700
Envirolab Reference	179707
Date Sample Received	13/11/2017
Date Instructions Received	13/11/2017
Date Results Expected to be Reported	20/11/2017

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	5 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	9.3
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticidesin soil	PCBsin Soil	Acid Extractable metalsin soil	Clay 50-120g	pH1:5 soil:water	CEC	Asbestos ID - soils	On Hold
BH4 - 0.4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	
BH4 - 0.8											\checkmark
BH4 - 1.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	
BH6 - 0.2											\checkmark
BH6 - 0.6	✓	✓	✓	✓	✓	✓				✓	

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

ENVIROL	BB	INIRO	N OF	CHAIN OF CUSTODY ENVIROLAB GROUP - National Pr	DDY - Client onal Phone number 1	CHAIN OF CUSTODY - Client ENVIROLAB GROUP - National Phone number 1300 42 43 44	Ph 02 9910 6200 / sydney@envirolab.com.au Perth Lab - MPL Laboratories 16-18 Havden Crt Mvaree. WA 6154	12 Ashley St, Chatswood, NSW 2067 Ph 02 9910 6200 / sydney@envirolab.com.au Perth Lab - MPL Laboratories 16-18 Havden Crt Mvaree. WA 6154
Client: Contact Person:	Jacobs		ts	Cen	Client Project Name /	Client Project Name / Number / Site etc (ie report title): エム / Sフラ O O	Ph 08 9317 2505 / lab@mpl.com.au	@mpl.com.au
Project Mgr:				1	PO No.:		14 Dalmore Drive Scoresby VIC 3179	rolab Services resby VIC 3179
Sampler:	Vichael	S	2555	0	Envirolab Quote No. :		Ph 03 9763 2500 / melb	Ph 03 9763 2500 / melbourne@envirolab.com.au
Address:	TT Pacia	エン	57		Date results require	ed:	Brisbane Lab - Envirolab Services	lab Services
HON	- Sydner	F	206	Oa	Or choose: (standard	Or choose: standard) same day / 1 day / 2 day / 3 day	20a, 10-20 Depot St, Banyo, QLD 4014 Ph 07 3266 9532 / brisbane@envirolab.	20a, 10-20 Depot St, Banyo, OLD 4014 Ph 07 3266 9532 / brisbane@envirolab.com.au
Phone: 9037	Lahi	Mob: OL UC		861835	1	Note: Inform lab in advance if urgent turnaround is required - surcharges apply	1	lab Services
Fax:		0			Lab comments:		7 Palmerton Road Wind Ph 0406 350 706 / adek	7 Palmerton Road Windsor Gardens, SA 5087 Ph 0406 350 706 / adelaide@envirolab.com.au
Email: W/Char	-	10,4	aceps.	- Cem		Tasts Domitrad		Comments
	Sample information	tornation	-			lests kequired		
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Gemb. SA			Provide as much information about the sample as you can
	7-0- 172		ווינויוט		1			
4	8.0 - MIX		11-11-11					anot
20	1		(1-11-17)		1		Envirelat Services	
4	0		1-11-0			Enviround Ch	Chafswood NSW 2067	Ang
L	11.		51111		1	-	Ph: (02) 9910 6200	
2	91		1 minut		1	1 JON GOC	26303	
				1		Date Received:	13.11/3	
				10		Time Received:	Co:// :	
				2		Received by: CE	bient	
				1/1		Cooling: Accellopack	epack	
						Security.	Security: IntacyBrokeh/None	
Delinouiched	Dolinouisted hv (commanu): . 160	Scho			Received by (company):	pany): ELS	Lab use only:	
Deint Name.	H		5	8	Print Name: UZ	20	Samples Received: Cool or Ambient (circle one)	or Ambient (circle one)
Date & Time:	2	171	57:			13.11.7 11:00	Temperature Received at: 9.3 °C	t: 9.3°C (if applicable)
	1	-			Signature:	R	Transported by: Hand delivered / courier	elivered / courier

13/11 COC

CERTIFICATE OF ANALYSIS 180317

Client Details	
Client	Jacobs Group (Australia) Pty Ltd
Attention	Michael Stacey
Address	Level 7, 177 Pacific Highway, North Sydney, NSW, 2060

Sample Details	
Your Reference	<u>IA157700</u>
Number of Samples	13 Soil
Date samples received	21/11/2017
Date completed instructions received	21/11/2017

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report DetailsDate results requested by28/11/2017Date of Issue28/11/2017NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Paul Ching, Senior Analyst

Steven Luong, Senior Chemist

Nick Sarlamis, Inorganics Supervisor

Priya Samarawickrama, Senior Chemist

Analysed by Asbestos Approved Identifier: Matt Tang Authorised by Asbestos Approved Signatory: Paul Ching **Results Approved By** Dragana Tomas, Senior Chemist Long Pham, Team Leader, Metals Authorised By

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		180317-1	180317-2	180317-5	180317-6	180317-9
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0.0-0.1	0.3-0.4	0.8-0.9	1.0-1.1	0.6-0.7
Date Sampled		18/11/2017	18/11/2017	18/11/2017	18/11/2017	18/11/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	23/11/2017	23/11/2017	23/11/2017	23/11/2017	23/11/2017
Date analysed	-	24/11/2017	24/11/2017	24/11/2017	24/11/2017	24/11/2017
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	128	118	118	114	114

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		180317-10
Your Reference	UNITS	BH3
Depth		1.1-1.2
Date Sampled		18/11/2017
Type of sample		Soil
Date extracted	-	23/11/2017
Date analysed	-	24/11/2017
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	123

svTRH (C10-C40) in Soil						
Our Reference		180317-1	180317-2	180317-5	180317-6	180317-9
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0.0-0.1	0.3-0.4	0.8-0.9	1.0-1.1	0.6-0.7
Date Sampled		18/11/2017	18/11/2017	18/11/2017	18/11/2017	18/11/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	23/11/2017	23/11/2017	23/11/2017	23/11/2017	23/11/2017
Date analysed	-	24/11/2017	24/11/2017	24/11/2017	24/11/2017	24/11/2017
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	150	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	240	<100	<100	<100	<100
TRH >C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	290	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	180	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	470	<50	<50	<50	<50
Surrogate o-Terphenyl	%	85	77	76	78	79

svTRH (C10-C40) in Soil		
Our Reference		180317-10
Your Reference	UNITS	BH3
Depth		1.1-1.2
Date Sampled		18/11/2017
Type of sample		Soil
Date extracted	-	23/11/2017
Date analysed	-	24/11/2017
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	79

PAHs in Soil						
Our Reference		180317-1	180317-2	180317-5	180317-6	180317-9
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0.0-0.1	0.3-0.4	0.8-0.9	1.0-1.1	0.6-0.7
Date Sampled		18/11/2017	18/11/2017	18/11/2017	18/11/2017	18/11/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	23/11/2017	23/11/2017	23/11/2017	23/11/2017	23/11/2017
Date analysed	-	23/11/2017	23/11/2017	23/11/2017	23/11/2017	23/11/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.8	0.4	0.4	0.1	<0.1
Anthracene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	2.0	0.9	0.4	0.2	<0.1
Pyrene	mg/kg	1.8	1	0.3	0.1	<0.1
Benzo(a)anthracene	mg/kg	1.0	0.5	0.1	<0.1	<0.1
Chrysene	mg/kg	0.9	0.5	0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	2	0.8	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.87	0.4	0.1	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.4	0.2	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.4	0.3	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	10	5.0	1.4	0.4	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.3	0.6	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.3	0.6	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.3	0.6	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	85	90	91	94	94

PAHs in Soil		
Our Reference		180317-10
Your Reference	UNITS	BH3
Depth		1.1-1.2
Date Sampled		18/11/2017
Type of sample		Soil
Date extracted	-	23/11/2017
Date analysed	-	23/11/2017
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	92

Organochlorine Pesticides in soil						
Our Reference		180317-1	180317-2	180317-5	180317-6	180317-9
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0.0-0.1	0.3-0.4	0.8-0.9	1.0-1.1	0.6-0.7
Date Sampled		18/11/2017	18/11/2017	18/11/2017	18/11/2017	18/11/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	23/11/2017	23/11/2017	23/11/2017	23/11/2017	23/11/2017
Date analysed	-	23/11/2017	23/11/2017	23/11/2017	23/11/2017	23/11/2017
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	77	80	76	77	77

Organochlorine Pesticides in soil		
Our Reference		180317-10
Your Reference	UNITS	BH3
Depth		1.1-1.2
Date Sampled		18/11/2017
Type of sample		Soil
Date extracted	-	23/11/2017
Date analysed	-	23/11/2017
НСВ	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	75

PCBs in Soil						
Our Reference		180317-1	180317-2	180317-5	180317-6	180317-9
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0.0-0.1	0.3-0.4	0.8-0.9	1.0-1.1	0.6-0.7
Date Sampled		18/11/2017	18/11/2017	18/11/2017	18/11/2017	18/11/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	23/11/2017	23/11/2017	23/11/2017	23/11/2017	23/11/2017
Date analysed	-	23/11/2017	23/11/2017	23/11/2017	23/11/2017	23/11/2017
Aroclor 1016	mg/kg	<0.2	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.2	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.2	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.2	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.2	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.2	0.3	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.2	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.2	0.3	<0.1	<0.1	<0.1
Surrogate TCLMX	%	77	80	76	77	77

PCBs in Soil		
Our Reference		180317-10
Your Reference	UNITS	BH3
Depth		1.1-1.2
Date Sampled		18/11/2017
Type of sample		Soil
Date extracted	-	23/11/2017
Date analysed	-	23/11/2017
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCLMX	%	75

Acid Extractable metals in soil						
Our Reference		180317-1	180317-2	180317-5	180317-6	180317-9
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0.0-0.1	0.3-0.4	0.8-0.9	1.0-1.1	0.6-0.7
Date Sampled		18/11/2017	18/11/2017	18/11/2017	18/11/2017	18/11/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/11/2017	23/11/2017	23/11/2017	23/11/2017	23/11/2017
Date analysed	-	23/11/2017	23/11/2017	23/11/2017	23/11/2017	23/11/2017
Arsenic	mg/kg	16	25	<4	<4	5
Cadmium	mg/kg	0.5	2	<0.4	<0.4	<0.4
Chromium	mg/kg	12	12	3	9	33
Copper	mg/kg	140	510	2	14	<1
Lead	mg/kg	300	840	19	18	11
Mercury	mg/kg	1.2	5.9	<0.1	<0.1	<0.1
Nickel	mg/kg	48	18	<1	2	2
Zinc	mg/kg	240	880	7	12	2

Acid Extractable metals in soil			
Our Reference		180317-10	180317-11
Your Reference	UNITS	BH3	BH2_STP
Depth		1.1-1.2	3.0
Date Sampled		18/11/2017	18/11/2017
Type of sample		Soil	Soil
Date prepared	-	23/11/2017	23/11/2017
Date analysed	-	23/11/2017	23/11/2017
Arsenic	mg/kg	10	<4
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	45	13
Copper	mg/kg	2	<1
Lead	mg/kg	18	11
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	1	<1
Zinc	mg/kg	3	8

Moisture						
Our Reference		180317-1	180317-2	180317-5	180317-6	180317-9
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0.0-0.1	0.3-0.4	0.8-0.9	1.0-1.1	0.6-0.7
Date Sampled		18/11/2017	18/11/2017	18/11/2017	18/11/2017	18/11/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/11/2017	23/11/2017	23/11/2017	23/11/2017	23/11/2017
Date analysed	-	24/11/2017	24/11/2017	24/11/2017	24/11/2017	24/11/2017
Moisture	%	7.6	11	19	23	19

Moisture			
Our Reference		180317-10	180317-11
Your Reference	UNITS	BH3	BH2_STP
Depth		1.1-1.2	3.0
Date Sampled		18/11/2017	18/11/2017
Type of sample		Soil	Soil
Date prepared	-	23/11/2017	23/11/2017
Date analysed	-	24/11/2017	24/11/2017
Moisture	%	20	16

Asbestos ID - soils						
Our Reference		180317-1	180317-2	180317-5	180317-6	180317-9
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0.0-0.1	0.3-0.4	0.8-0.9	1.0-1.1	0.6-0.7
Date Sampled		18/11/2017	18/11/2017	18/11/2017	18/11/2017	18/11/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	27/11/2017	27/11/2017	27/11/2017	27/11/2017	27/11/2017
Sample mass tested	g	Approx. 35g	Approx. 35g	Approx. 35g	Approx. 40g	Approx. 35g
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Red clayey soil
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibre detected				
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils		
Our Reference		180317-10
Your Reference	UNITS	BH3
Depth		1.1-1.2
Date Sampled		18/11/2017
Type of sample		Soil
Date analysed	-	27/11/2017
Sample mass tested	g	Approx. 35g
Sample Description	-	Red clayey soil
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibre detected
Trace Analysis	-	No asbestos detected

Misc Inorg - Soil			
Our Reference		180317-9	180317-11
Your Reference	UNITS	BH3	BH2_STP
Depth		0.6-0.7	3.0
Date Sampled		18/11/2017	18/11/2017
Type of sample		Soil	Soil
Date prepared	-	24/11/2017	24/11/2017
Date analysed	-	24/11/2017	24/11/2017
pH 1:5 soil:water	pH Units	7.8	5.0
Chloride, Cl 1:5 soil:water	mg/kg	<10	20
Sulphate, SO4 1:5 soil:water	mg/kg	52	39
Resistivity	ohm m	110	240

Clay 50-120g		
Our Reference		180317-11
Your Reference	UNITS	BH2_STP
Depth		3.0
Date Sampled		18/11/2017
Type of sample		Soil
Date prepared	-	22/11/2017
Date analysed	-	23/11/2017
Clay in soils <2µm	% (w/w)	71

CEC		
Our Reference		180317-11
Your Reference	UNITS	BH2_STP
Depth		3.0
Date Sampled		18/11/2017
Type of sample		Soil
Date prepared	-	24/11/2017
Date analysed	-	24/11/2017
Exchangeable Ca	meq/100g	0.4
Exchangeable K	meq/100g	0.2
Exchangeable Mg	meq/100g	2.1
Exchangeable Na	meq/100g	<0.1
Cation Exchange Capacity	meq/100g	2.7

Method ID	_ Methodology Summary
AS1289.3.6.3	Determination Particle Size Analysis using AS1289.3.6.3 and AS1289.3.6.1 and in house method INORG-107. Clay fraction at <2µm reported.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons. Resistivity is calculated from Conductivity.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Alternatively determined by colourimetry/turbidity using Discrete Analyer.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.

Method ID	Methodology Summary
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" are="" at="" conservative<br="" is="" most="" pql.="" the="" this="">approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present. 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and<br="" approach="" are="" conservative="" is="" least="" the="" this="" zero.="">is more susceptible to false negative TEQs when PAHs that contribute to the TEQ calculation are present but below PQL. 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" are="" half="" hence="" mid-point<br="" pql.="" stipulated="" the="">between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Ora 014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-014	Son samples are extracted with methanol and spiked into water phon to analysing by purge and trap GC-NS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			23/11/2017	1	23/11/2017	23/11/2017		23/11/2017	
Date analysed	-			24/11/2017	1	24/11/2017	24/11/2017		24/11/2017	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	106	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	106	
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	100	
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	111	
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	103	
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	109	
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	101	
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	126	1	128	124	3	119	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			23/11/2017	1	23/11/2017	23/11/2017		23/11/2017	
Date analysed	-			24/11/2017	1	24/11/2017	24/11/2017		24/11/2017	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	105	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	150	120	22	102	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	240	280	15	106	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	105	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	290	290	0	102	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	180	240	29	106	
Surrogate o-Terphenyl	%		Org-003	78	1	85	82	4	86	

QUAL	ITY CONTRO	TY CONTROL: PAHs in Soil				Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]	
Date extracted	-			23/11/2017	1	23/11/2017	23/11/2017		23/11/2017		
Date analysed	-			23/11/2017	1	23/11/2017	23/11/2017		23/11/2017		
Naphthalene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	89		
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	1	0.2	<0.1	67	[NT]		
Acenaphthene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]		
Fluorene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	93		
Phenanthrene	mg/kg	0.1	Org-012	<0.1	1	0.8	0.5	46	91		
Anthracene	mg/kg	0.1	Org-012	<0.1	1	0.2	0.2	0	[NT]		
Fluoranthene	mg/kg	0.1	Org-012	<0.1	1	2.0	1.9	5	93		
Pyrene	mg/kg	0.1	Org-012	<0.1	1	1.8	1.7	6	99		
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	1	1.0	1.1	10	[NT]		
Chrysene	mg/kg	0.1	Org-012	<0.1	1	0.9	0.9	0	99		
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	1	2	2	0	[NT]		
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	1	0.87	0.88	1	78		
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	1	0.4	0.4	0	[NT]		
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	1	0.1	0.1	0	[NT]		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	1	0.4	0.5	22	[NT]		
Surrogate p-Terphenyl-d14	%		Org-012	98	1	85	88	3	110		

QUALITY CONT	ROL: Organc	chlorine l	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]	
Date extracted	-			23/11/2017	1	23/11/2017	23/11/2017		23/11/2017		
Date analysed	-			23/11/2017	1	23/11/2017	23/11/2017		23/11/2017		
НСВ	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]		
alpha-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	92		
gamma-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]		
beta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	97		
Heptachlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	90		
delta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]		
Aldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	90		
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	91		
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]		
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]		
Endosulfan I	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]		
pp-DDE	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	102		
Dieldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	97		
Endrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	89		
pp-DDD	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	100		
Endosulfan II	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]		
pp-DDT	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]		
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]		
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	80		
Methoxychlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]		
Surrogate TCMX	%		Org-005	76	1	77	79	3	92		

QUALIT	Y CONTRO	L: PCBs	in Soil		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]	
Date extracted	-			23/11/2017	1	23/11/2017	23/11/2017		23/11/2017		
Date analysed	-			23/11/2017	1	23/11/2017	23/11/2017		23/11/2017		
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	1	<0.2	<0.2	0	[NT]		
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	1	<0.2	<0.2	0	[NT]		
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	1	<0.2	<0.2	0	[NT]		
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	1	<0.2	<0.2	0	[NT]		
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	1	<0.2	<0.2	0	[NT]		
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	1	<0.2	<0.2	0	109		
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	1	<0.2	<0.2	0	[NT]		
Surrogate TCLMX	%		Org-006	76	1	77	79	3	77		

QUALIT	Y CONTRO	L: PCBs	in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	2	23/11/2017	23/11/2017		[NT]	
Date analysed	-			[NT]	2	23/11/2017	23/11/2017		[NT]	
Aroclor 1016	mg/kg	0.1	Org-006	[NT]	2	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-006	[NT]	2	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-006	[NT]	2	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-006	[NT]	2	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-006	[NT]	2	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-006	[NT]	2	0.3	0.3	0	[NT]	
Aroclor 1260	mg/kg	0.1	Org-006	[NT]	2	<0.1	<0.1	0	[NT]	
Surrogate TCLMX	%		Org-006	[NT]	2	80	91	13	[NT]	

QUALITY CONT	ROL: Acid E	Extractable	e metals in soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			23/11/2017	1	23/11/2017	23/11/2017		23/11/2017	
Date analysed	-			23/11/2017	1	23/11/2017	23/11/2017		23/11/2017	
Arsenic	mg/kg	4	Metals-020	<4	1	16	21	27	108	
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	0.5	0.6	18	101	
Chromium	mg/kg	1	Metals-020	<1	1	12	14	15	107	
Copper	mg/kg	1	Metals-020	<1	1	140	180	25	105	
Lead	mg/kg	1	Metals-020	<1	1	300	350	15	101	
Mercury	mg/kg	0.1	Metals-021	<0.1	1	1.2	1.7	34	106	
Nickel	mg/kg	1	Metals-020	<1	1	48	54	12	103	
Zinc	mg/kg	1	Metals-020	<1	1	240	310	25	108	

QUALITY	CONTROL	Misc Ino		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			24/11/2017	[NT]		[NT]	[NT]	24/11/2017	
Date analysed	-			24/11/2017	[NT]		[NT]	[NT]	24/11/2017	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	99	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	107	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	109	
Resistivity	ohm m	1	Inorg-002	<1	[NT]		[NT]	[NT]	[NT]	

QU/	ALITY CONT	ROL: CE		Duj	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			24/11/2017	[NT]	[NT]	[NT]	[NT]	24/11/2017	
Date analysed	-			24/11/2017	[NT]	[NT]	[NT]	[NT]	24/11/2017	
Exchangeable Ca	meq/100g	0.1	Metals-009	<0.1	[NT]	[NT]	[NT]	[NT]	103	
Exchangeable K	meq/100g	0.1	Metals-009	<0.1	[NT]	[NT]	[NT]	[NT]	106	
Exchangeable Mg	meq/100g	0.1	Metals-009	<0.1	[NT]	[NT]	[NT]	[NT]	99	
Exchangeable Na	meq/100g	0.1	Metals-009	<0.1	[NT]	[NT]	[NT]	[NT]	97	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

PCBs in Soil (sample 1,1d) - PQL has been raised due to interference from analytes(other than those being tested) in the sample/s.

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container. Note: Samples 180317-1, 2, 5, 6, 9 & 10 were sub-sampled from jars provided by the client.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Jacobs Group (Australia) Pty Ltd
Attention	Michael Stacey

Sample Login Details	
Your reference	IA157700
Envirolab Reference	180317
Date Sample Received	21/11/2017
Date Instructions Received	21/11/2017
Date Results Expected to be Reported	28/11/2017

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	13 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12.6
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticidesin soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils	pH1:5 soil:water	Chloride, Cl1:5 soil:water	Sulphate, SO41:5 soil:water	Resistivity	Clay 50-120g	CEC	On Hold
BH1-0.0-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							
BH1-0.3-0.4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							
BH1-0.6-0.7														\checkmark
BH1-1.0-1.1														\checkmark
BH2-0.8-0.9	1	✓	✓	\checkmark	\checkmark	✓	\checkmark							
BH2-1.0-1.1	✓	✓	✓	\checkmark	✓	✓	✓							
BH3-0.05-0.15														✓
BH3-0.3-0.4														\checkmark
BH3-0.6-0.7	✓	✓	✓	\checkmark	✓	✓	✓	√	√	✓	✓			
BH3-1.1-1.2	✓	✓	✓	✓	✓	✓	✓							
BH2_STP-3.0						\checkmark		✓	✓	✓	✓	\checkmark	\checkmark	
BH3-1.5														\checkmark
DUPA														✓

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Services I, NSW 2067 y@envirolab.com.au tories	e, WA 6154 mbl.com.au		ab Services sbv VIC 3179	ourne@envirolab.com.au	h Services	ryo, QLD 4014	ane@envirolab.com.au	o Services	sor Gardens, SA 5087 ide@envirolah.com au		Comments	Provide as much information about the sample as you can			19/01	140101			1-told	. Hold.					•	*	Ambient (circle one)	/2 '6 (if applicable)	vered / courier
	16-18 Hayden Crt Myaree, WA 6154 Ph 08 9317 2505 / lab@mpl.com.au		14 Dalmore Drive Scoresby VIC 3179	Ph 03 9763 2500 / melbourne@envirolab.com.au	Brishane I ah - Envirolah Services	20a, 10-20 Depot St, Banyo, QLD 4014	Ph 07 3266 9532 / brisbane@envirolab.com.au	Adelaide Lab - Envirolab Services	7 Palmerton Road Windsor Gardens, SA 5087 Ph 0406 350 706 / adelarde@envirolah.com au			1	·			Envirolab Services	12 Ashley St	Ph: (02) 9910 6200	18,8/7	21/11/17	10:30	N	ent /2.6	11/Broken Miana		Lab use only:	Samples Received: Cool or Ambient (circle one)	Temperature Received at:	Transported by: Hand delivered / courier
22527	te etc (ie report title):	0					1 day / 2 day / 3 day	und is required - surcharges apply	¥		Tests Required					0	Enviroles)		Date Received:	hereived:	>	C voling: Centrolen	aurity. (a) the				05.01	
CHAIN OF CUSTODY - Client ENVIROLAB GROUP - National Phone number 1300 42 43 44	ame / Number	JAIS7700	10	Envirolab Quote No. :	Date results required:	(oose standard same day / 1 day / 2 day / 3 day	Note: Inform lab III advance if urgent turnaround is required - surcharges apply	Lab comments:																	ived by (company): R.(Print Name: M7	Date & Time: 21/11/17	Signature:
CHAIN OF CUSTODY ENVIROLAB GROUP - National PI	Client		PO No.	4. U		.09	Or choose	5		Com		Type of sample		7			1)	l _j i	1	1				Receiv	Print	Date	Signa
IN OF		Sta Carl		Or v w	507	192		0406 861 83	-	acobs-		Date sampled	K	1-	27	17	2	0/	Y	02	2	4	8	?/			Cen	0	
CHA		くく		3	L'D'S	m		Mob: C		5	mat	Depth	-	5	0		5		(S	5	C.	2	10.	CONT	1 Mil	scolos	NK	2:51	
BB	Jacebs	" Miche		Nichae	17 Pack	White all		321467		all sheer		Client Sample ID or information	Rul 10.0-0.1	1 4.3-0.	0	1-0-1/1712	2 0-8-0	T-	Ruz, 10-05-0-15	43 /	1310-6	11	1der	12	Dup A race	ov (company):	VICher	11.11.12	(July)
ENVIROL	Client:	Contact Person:	Project Mgr:	Sampler:	Address: ()	1Sen		Phone: 9032	Fax:	Email: WNICVOLL		Envirolab Sample ID	1 2	2	201		5				8	0 0/				uished l	Print Name:	Date & Time:	Signature:

Ellen Wandala Gamage

From: Sent: To: Cc: Subject: Stacey, Michael <Michael.Stacey@jacobs.com> Tuesday, 21 November 2017 5:05 PM Ellen Wandala Gamage Grasso, Michael RE: IA157700

Apologies Ellen.

Can I get sample BH2_STP-3.0 analysed for heavy metals, pH, CEC and %clay.

The other samples can be put on hold.

Thanks for picking this up.

Michael Stacey, BAppSc, GradCertEnvEng Jacobs Principal Environmental Scientist | Buildings & Infrastructure | Eastern Asia Pacific + 61 2 9032 1467 + 61 (0)406 861 835 mobile <u>Michael Stacey@jacobs.com</u>

Level 7 177 Pacific Highway North Sydney NSW 2060 Australia www.jacobs.com

#180317

Jacobs is committed to working with its clients to deliver a sustainable future for all. Please consider the environment before printing this e-mail. Notice - This message contains confidential information intended only for the exclusive use of the addressee named above. No confidentiality is waived or lost by any mistaken transmission to you. If you have received this message in error please delete the document and notify us immediately.

Any opinion, text, documentation or attachment received is valid as at the date of issue only. The recipient is responsible for reviewing the status of the transferred information and should advise us immediately upon receipt of any discrepancy.

All email sent to Jacobs will be intercepted, screened and filtered by Jacobs or its approved Service Providers.

From: Ellen Wandala Gamage [mailto:EWandalaGamage@envirolab.com.au] Sent: Tuesday, 21 November 2017 4:30 PM To: Stacey, Michael <Michael.Stacey@jacobs.com> Subject: [EXTERNAL] IA157700

Hi Michael, Just informing you that extra samples BH2_STP-3.0, BH3-1.5 and DUPA have been received, would these be scheduled for any analysis? Much appreciated Ellen

Regards,

Ellen Wandala Gamage | Customer Service (12pm - 8pm) | Envirolab Services Pty Ltd

Ellen Wandala Gamage

From:	Grasso, Michael < Michael.Grasso@jacobs.com>
Sent:	Wednesday, 22 November 2017 2:40 PM
То:	Ellen Wandala Gamage
Cc:	Stacey, Michael; Raynsford, Scott
Subject:	Re: [EXTERNAL] FW: IA157700

Hi Ellen, sorry for the confusion.

For Durability (pH, SO4, CL, Resistivity), could we get the following samples tested only BH2 SPT 3.0m #い BH3 0.6 to 0.7m # つ BH4 SPT 1.5m (# 17 つつつん)

Kind Regards,

ELS Ref 180317

Michael Grasso

Kind Regards,

Michael Grasso, BE (Hons) Jacobs Geotechnical Engineer | Buildings & Infrastructure | Eastern Asia Pacific +61 2 9032 1032 +61 434 043 795 Michael.Grasso@jacobs.com

177 Pacific Highway North Sydney NSW 2060 Australia www.jacobs.com

From: Ellen Wandala Gamage <EWandalaGamage@envirolab.com.au>
Sent: Wednesday, November 22, 2017 1:54:52 PM
To: Grasso, Michael
Cc: Stacey, Michael; Raynsford, Scott
Subject: [EXTERNAL] FW: IA157700

Hi Michael, Just wondering if you can confirm the questions below? Thanks Ellen

Regards,

Ellen Wandala Gamage | Customer Service (12pm - 8pm) | Envirolab Services Pty Ltd

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 180317-A

Client Details	
Client	Jacobs Group (Australia) Pty Ltd
Attention	Michael Stacey
Address	Level 7, 177 Pacific Highway, North Sydney, NSW, 2060

Sample Details	
Your Reference	<u>IA157700</u>
Number of Samples	Additional Testing on 2 Soils
Date samples received	21/11/2017
Date completed instructions received	28/11/2017

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details						
Date results requested by	05/12/2017					
Date of Issue	04/12/2017					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Matt Tang Authorised by Asbestos Approved Signatory: Paul Ching **Results Approved By** Jeremy Faircloth, Organics Supervisor Long Pham, Team Leader, Metals

Authorised By

David Springer, General Manager

Metals in TCLP USEPA1311			
Our Reference		180317-A-1	180317-A-2
Your Reference	UNITS	BH1	BH1
Depth		0.0-0.1	0.3-0.4
Date Sampled		18/11/2017	18/11/2017
Type of sample		Soil	Soil
Date extracted	-	30/11/2017	30/11/2017
Date analysed	-	30/11/2017	30/11/2017
pH of soil for fluid# determ.	pH units	7.5	8.9
pH of soil TCLP (after HCI)	pH units	1.8	1.8
Extraction fluid used	-	1	1
pH of final Leachate	pH units	5.0	5.0
Lead in TCLP	mg/L	[NA]	1.1
Mercury in TCLP	mg/L	[NA]	<0.0005
Nickel in TCLP	mg/L	<0.02	[NA]

PAHs in TCLP (USEPA 1311)		
Our Reference		180317-A-1
Your Reference	UNITS	BH1
Depth		0.0-0.1
Date Sampled		18/11/2017
Type of sample		Soil
Date extracted	-	30/11/2017
Date analysed	-	30/11/2017
Naphthalene in TCLP	mg/L	<0.001
Acenaphthylene in TCLP	mg/L	<0.001
Acenaphthene in TCLP	mg/L	<0.001
Fluorene in TCLP	mg/L	<0.001
Phenanthrene in TCLP	mg/L	<0.001
Anthracene in TCLP	mg/L	<0.001
Fluoranthene in TCLP	mg/L	<0.001
Pyrene in TCLP	mg/L	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001
Total +ve PAH's	mg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	82

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-012	Leachates are extracted with Dichloromethane and analysed by GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.

QUALITY CONTROL: Metals in TCLP USEPA1311				Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			30/11/2017	[NT]		[NT]	[NT]	30/11/2017	
Date analysed	-			30/11/2017	[NT]		[NT]	[NT]	30/11/2017	
Lead in TCLP	mg/L	0.03	Metals-020 ICP- AES	<0.03	[NT]		[NT]	[NT]	110	
Mercury in TCLP	mg/L	0.0005	Metals-021 CV-AAS	<0.0005	[NT]		[NT]	[NT]	108	
Nickel in TCLP	mg/L	0.02	Metals-020 ICP- AES	<0.02	[NT]	[NT]	[NT]	[NT]	114	[NT]

QUALITY CON	ROL: PAHs		Duplicate				Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			30/11/2017	[NT]		[NT]	[NT]	30/11/2017	
Date analysed	-			30/11/2017	[NT]		[NT]	[NT]	30/11/2017	
Naphthalene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	72	
Acenaphthylene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Acenaphthene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluorene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	80	
Phenanthrene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	81	
Anthracene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluoranthene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	72	
Pyrene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	77	
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Chrysene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	89	
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-012	<0.002	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	82	
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	77	[NT]		[NT]	[NT]	74	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.				
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.				
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.				
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.				
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.				
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than				

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Aileen Hie

From:Stacey, Michael <</th>Sent:Tuesday, 28 NoveTo:SydneyMailboxCc:Grasso, Michael;Subject:TCLP testing - En

Stacey, Michael <Michael.Stacey@jacobs.com> Tuesday, 28 November 2017 2:38 PM SydneyMailbox Grasso, Michael; Raynsford, Scott TCLP testing - Envirolab Lab Batch 180317

Can I get the following testing undertaken on samples from Envirolab batch 180317.

- Sample 180317-1 (BH1/0.0-0.1): TCLP nickel and benzo(a)pyrene
- Sample 180317-2 (BH2/0.3-0.4): TCLP lead and mercury.

Standard TAT is fine.

Michael Stacey, BAppSc, GradCertEnvEng Jacobs Principal Environmental Scientist | Buildings & Infrastructure | Eastern Asia Pacific + 61 2 9032 1467 + 61 (0)406 861 835 mobile Michael.Stacey@jacobs.com

Level 7 177 Pacific Highway North Sydney NSW 2060 Australia www.jacobs.com Envirolab Ref: 180317A Due: 5/12/17 Std T/A.

Jacobs is committed to working with its clients to deliver a sustainable future for all. Please consider the environment before printing this e-mail. Notice - This message contains confidential information intended only for the exclusive use of the addressee named above. No confidentiality is waived or lost by any mistaken transmission to you. If you have received this message in error please delete the document and notify us immediately.

Any opinion, text, documentation or attachment received is valid as at the date of issue only. The recipient is responsible for reviewing the status of the transferred information and should advise us immediately upon receipt of any discrepancy.

All email sent to Jacobs will be intercepted, screened and filtered by Jacobs or its approved Service Providers.

NOTICE - This communication may contain confidential and privileged information that is for the sole use of the intended recipient. Any viewing, copying or distribution of, or reliance on this message by unintended recipients is strictly prohibited. If you have received this message in error, please notify us immediately by replying to the message and deleting it from your computer.

CERTIFICATE OF ANALYSIS 180999

Client Details	
Client	Jacobs Group (Australia) Pty Ltd
Attention	Michael Grasso, Michael Stacey
Address	Level 7, 177 Pacific Highway, North Sydney, NSW, 2060

Sample Details	
Your Reference	<u>IA157700</u>
Number of Samples	4 soil
Date samples received	29/11/2017
Date completed instructions received	30/11/2017

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report DetailsDate results requested by07/12/2017Date of Issue06/12/2017NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lulu Scott

Results Approved By

Dragana Tomas, Senior Chemist Long Pham, Team Leader, Metals Lulu Scott, Asbestos Supervisor Steven Luong, Senior Chemist

Authorised By

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		180999-1	180999-2	180999-4
Your Reference	UNITS	BH5	BH5	DUP B
Depth		0.0-0.1	0.5-0.95	-
Type of sample		soil	soil	soil
Date extracted	-	01/12/2017	01/12/2017	01/12/2017
Date analysed	-	04/12/2017	04/12/2017	04/12/2017
TRH C ₆ - C ₉	mg/kg	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	103	103	107

svTRH (C10-C40) in Soil				
Our Reference		180999-1	180999-2	180999-4
Your Reference	UNITS	BH5	BH5	DUP B
Depth		0.0-0.1	0.5-0.95	-
Type of sample		soil	soil	soil
Date extracted	-	01/12/2017	01/12/2017	01/12/2017
Date analysed	-	02/12/2017	02/12/2017	02/12/2017
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50
Surrogate o-Terphenyl	%	88	92	88

PAHs in Soil				
Our Reference		180999-1	180999-2	180999-4
Your Reference	UNITS	BH5	BH5	DUP B
Depth		0.0-0.1	0.5-0.95	-
Type of sample		soil	soil	soil
Date extracted	-	01/12/2017	01/12/2017	01/12/2017
Date analysed	-	01/12/2017	01/12/2017	01/12/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	0.2
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	0.2
Phenanthrene	mg/kg	0.9	<0.1	1.4
Anthracene	mg/kg	0.4	<0.1	0.7
Fluoranthene	mg/kg	1.3	0.1	1.8
Pyrene	mg/kg	1.3	0.1	1.8
Benzo(a)anthracene	mg/kg	0.8	<0.1	0.9
Chrysene	mg/kg	0.6	<0.1	0.8
Benzo(b,j+k)fluoranthene	mg/kg	1	<0.2	1
Benzo(a)pyrene	mg/kg	0.61	<0.05	0.69
Indeno(1,2,3-c,d)pyrene	mg/kg	0.3	<0.1	0.3
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.3	<0.1	0.4
Total +ve PAH's	mg/kg	7.7	0.3	10
Benzo(a)pyrene TEQ calc (zero)	mg/kg	0.8	<0.5	0.9
Benzo(a)pyrene TEQ calc(half)	mg/kg	0.8	<0.5	0.9
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	0.8	<0.5	0.9
Surrogate p-Terphenyl-d14	%	86	95	84

Organochlorine Pesticides in soil			
Our Reference		180999-1	180999-2
Your Reference	UNITS	BH5	BH5
Depth		0.0-0.1	0.5-0.95
Type of sample		soil	soil
Date extracted	-	01/12/2017	01/12/2017
Date analysed	-	01/12/2017	01/12/2017
нсв	mg/kg	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	87	91

PCBs in Soil			
Our Reference		180999-1	180999-2
Your Reference	UNITS	BH5	BH5
Depth		0.0-0.1	0.5-0.95
Type of sample		soil	soil
Date extracted	-	01/12/2017	01/12/2017
Date analysed	-	01/12/2017	01/12/2017
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCLMX	%	87	91

Acid Extractable metals in soil					
Our Reference		180999-1	180999-2	180999-4	180999-5
Your Reference	UNITS	BH5	BH5	DUP B	BH5 - [TRIPLICATE]
Depth		0.0-0.1	0.5-0.95	-	0.0-0.1
Type of sample		soil	soil	soil	soil
Date prepared	-	01/12/2017	01/12/2017	01/12/2017	01/12/2017
Date analysed	-	01/12/2017	01/12/2017	01/12/2017	01/12/2017
Arsenic	mg/kg	8	16	5	6
Cadmium	mg/kg	<0.4	1	<0.4	<0.4
Chromium	mg/kg	6	23	8	8
Copper	mg/kg	30	42	51	47
Lead	mg/kg	32	48	84	75
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	6	4	7
Zinc	mg/kg	92	91	150	150

Moisture				
Our Reference		180999-1	180999-2	180999-4
Your Reference	UNITS	BH5	BH5	DUP B
Depth		0.0-0.1	0.5-0.95	-
Type of sample		soil	soil	soil
Date prepared	-	01/12/2017	01/12/2017	01/12/2017
Date analysed	-	04/12/2017	04/12/2017	04/12/2017
Moisture	%	17	58	19

Asbestos ID - soils			
Our Reference		180999-1	180999-2
Your Reference	UNITS	BH5	BH5
Depth		0.0-0.1	0.5-0.95
Type of sample		soil	soil
Date analysed	-	06/12/2017	06/12/2017
Sample mass tested	g	Approx. 30g	Approx. 10g
Sample Description	-	Brown coarse- grained soil & rocks	Black fine- grained soil
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected

Method ID	_ Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.

Method ID	Methodology Summary
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" are="" at="" conservative<br="" is="" most="" pql.="" the="" this="">approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present. 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and<br="" approach="" are="" conservative="" is="" least="" the="" this="" zero.="">is more susceptible to false negative TEQs when PAHs that contribute to the TEQ calculation are present but below PQL. 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" are="" half="" hence="" mid-point<br="" pql.="" stipulated="" the="">between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Ora 014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-014	Son samples are extracted with methanol and spiked into water phon to analysing by purge and trap GC-NS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	180999-2
Date extracted	-			01/12/2017	1	01/12/2017	01/12/2017		01/12/2017	01/12/2017
Date analysed	-			04/12/2017	1	04/12/2017	04/12/2017		04/12/2017	04/12/2017
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	100	72
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	100	72
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	104	80
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	103	76
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	99	69
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	98	67
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	96	66
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	103	1	103	110	7	98	102

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil						olicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	180999-2
Date extracted	-			01/12/2017	1	01/12/2017	01/12/2017		01/12/2017	01/12/2017
Date analysed	-			02/12/2017	1	02/12/2017	02/12/2017		02/12/2017	02/12/2017
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	109	107
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	116	114
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	<100	<100	0	109	108
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	109	107
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	<100	<100	0	116	114
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	<100	<100	0	109	108
Surrogate o-Terphenyl	%		Org-003	98	1	88	88	0	97	92

QUAL	ITY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	180999-2
Date extracted	-			01/12/2017	1	01/12/2017	01/12/2017		01/12/2017	01/12/2017
Date analysed	-			01/12/2017	1	01/12/2017	01/12/2017		01/12/2017	01/12/2017
Naphthalene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	94	90
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	1	0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012	<0.1	1	0.1	<0.1	0	97	96
Phenanthrene	mg/kg	0.1	Org-012	<0.1	1	0.9	0.3	100	98	97
Anthracene	mg/kg	0.1	Org-012	<0.1	1	0.4	0.2	67	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	1	1.3	0.6	74	92	92
Pyrene	mg/kg	0.1	Org-012	<0.1	1	1.3	0.7	60	100	98
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	1	0.8	0.4	67	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012	<0.1	1	0.6	0.4	40	107	105
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	1	1	0.7	35	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	1	0.61	0.4	42	91	81
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	1	0.3	0.2	40	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	1	0.3	0.3	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012	92	1	86	87	1	102	103

QUALITY CONT	ROL: Organo	chlorine l	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	180999-2
Date extracted	-			01/12/2017	1	01/12/2017	01/12/2017		01/12/2017	01/12/2017
Date analysed	-			01/12/2017	1	01/12/2017	01/12/2017		01/12/2017	01/12/2017
НСВ	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	96	99
gamma-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	99	102
Heptachlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	94	97
delta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	91	94
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	95	98
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	105	109
Dieldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	102	105
Endrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	92	95
pp-DDD	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	100	103
Endosulfan II	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	88	89
Methoxychlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-005	89	1	87	89	2	104	109

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	180999-2
Date extracted	-			01/12/2017	1	01/12/2017	01/12/2017		01/12/2017	01/12/2017
Date analysed	-			01/12/2017	1	01/12/2017	01/12/2017		01/12/2017	01/12/2017
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	100	88
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCLMX	%		Org-006	89	1	87	89	2	87	89

QUALITY CONT	ROL: Acid E	Extractable	e metals in soil			Du	olicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	180999-2
Date prepared	-			01/12/2017	1	01/12/2017	01/12/2017		01/12/2017	01/12/2017
Date analysed	-			01/12/2017	1	01/12/2017	01/12/2017		01/12/2017	01/12/2017
Arsenic	mg/kg	4	Metals-020	<4	1	8	4	67	110	86
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	101	90
Chromium	mg/kg	1	Metals-020	<1	1	6	7	15	108	94
Copper	mg/kg	1	Metals-020	<1	1	30	34	12	108	100
Lead	mg/kg	1	Metals-020	<1	1	32	70	75	108	94
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	102	99
Nickel	mg/kg	1	Metals-020	<1	1	3	4	29	103	90
Zinc	mg/kg	1	Metals-020	<1	1	92	130	34	106	75

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform. Faecal Enterococci. & E.Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

PAHs in Soil - The RPD for duplicate results is accepted due to the non homogenous nature of sample 1.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 180999-1 for Pb. Therefore a triplicate result has been issued as laboratory sample number 180999-5.

Asbestos: A portion of the supplied samples were sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that these sub-samples are indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container. Note: Samples 180999-1 & 2 were sub-sampled from jars provided by the client.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Jacobs Group (Australia) Pty Ltd
Attention	Michael Grasso, Michael Stacey

Sample Login Details	
Your reference	IA157700
Envirolab Reference	180999
Date Sample Received	29/11/2017
Date Instructions Received	30/11/2017
Date Results Expected to be Reported	07/12/2017

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	4 soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	8.8
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticidesin soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils	On Hold
BH5-0.0-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH5-0.5-0.95	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH5-1.5-1.95								\checkmark
DUP B	\checkmark	\checkmark	\checkmark			\checkmark		

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Sydney Lab - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 Ph 02 9910 6200 / sydney@envirolab.com.au Perth Lab - MPL Laboratories	 2.8 Sydney Lab - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 Ph 02 9910 6200 / sydney@envirolab. Perth Lab - MPL Laboratories 16-18 Hayden Crt Myaree. WA 6154 Ph 08 9317 2505 / lab@mpl.com.au Melbourne Lab - Envirolab Services 1A Dalmore Drive Scoresby VIC 3179 Ph 03 9763 2500 / melbourne@envirola Brisbane Lab - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 401, Ph 07 3266 9532 / brisbane@envirolat Adelaide Lab - Envirolab Services 7 Palmerton Road Windsor Gardens, 5 Ph 0406 350 706 / adelaide@envirolat 		Comments	Provide as much information about the sample as you can			14000		Envirotañ Santices	Environcia 12.4 v St	Ph: (02) 99/0 6200	100 No: 180999	Date Received: 050/11/00 201	:p	Received by	Tempi Odoti Antijent Cooling: Icelitepack	Lab use only:	Samples Received: Cool or Ambient (circle one)	Temperature Received at: (if applicable)	ALT Transported by: Hand delivered / courier						
CHAIN OF CUSTODY - Client 22528 ENVIROLAB GROUP - National Phone number 1300 42 43 44	Client Project Name / Number / Site etc (ie report title):	PO No.:	Envirolab Quote No. :	Date results required:		Or choose: standard/ same day / 1 day / 2 day / 3 day Note: inform lab in advance if uncent turnaround is required - sucharges apply	Lab comments:		Tests Required	AZ-0400 E. Conb. 3					6								Received by (company): CU	Print Name: P. Car	Date & Time: 20 11 1017 30 1-12012	Signature: 12.00 945
Envirourab CHAIN OF CUSTODY	Client: Jacobs	1000000	Michael Cuesso	in acide Hun	North Sydney NSU ZOGO	Phone: 9027 1467 Mobi Mich 841 826		Email: Wichard Strang Reebs. Coun	Sample into marion	Envirolab Client Sample ID or Depth Date Type of sample ID information	1 245 10.6-0.1	2 845/250515	-	4 Dup 8.									Relinquished by (company): Jacobs	Print Name: MIChael Steen	Date & Time: 20.1(.1) 9100	Signature: AD 1

Appendix D. EIL calculations

NEPM 2013 Ecological Investigation Limits Methodology

Ecological investigation levels (EILs) for the protection of terrestrial ecosystems have been derived for common contaminants in soil based on a species sensitivity distribution (SSD) model developed for Australian conditions. EILs have been derived for As, Cu, CrIII, DDT, naphthalene, Ni, Pb and Zn.

EILs apply principally to contaminants in the top 2 metres of soil at the finished surface/ground level which corresponds to the root zone and habitation zone of many species. In arid regions, where the predominant species may have greater root penetration, specific considerations may result in their application to 3 metres depth.

The methodology assumes that the ecosystem is adapted to the ambient background concentration (ABC) for the locality and that it is only adding contaminants over and above this background concentration which has an adverse effect on the environment.

The ABC of a contaminant is the soil concentration in a specified locality that is the sum of the naturally occurring background level and the contaminant levels that have been introduced from diffuse or non-point sources by general anthropogenic activity not attributed to industrial, commercial, or agricultural activities, for example, motor vehicle emissions.

The preferred method to determine the ABC is to measure the ABC at an appropriate reference site. This approach is essential in areas where there is a high naturally occurring background level such as will occur in mineralised areas.

An added contaminant limit (ACL) is the added concentration (above the ABC) of a contaminant above which further appropriate investigation and evaluation of the impact on ecological values is required. The EIL is derived by summing the ACL and the ABC.

ACLs are based on the soil characteristics of pH, CEC and clay content. Empirical relationships that can model the effect of these soil properties on toxicity are used to develop soil-specific values. These soil-specific values take into account the biological availability of the element in various soils. In this approach different soils will have different contaminant EILs rather than a single generic EIL for each contaminant.

The adopted soil characteristics (pH, clay content and cation exchange capacity) have been selected from samples BH4/1.5 (silty clay) and BH2SPT/3.0 (silty clay) as the samples were considered to be representative of the natural conditions across the site and that the soil/rock at these locations were unlikely to be impacted by anthropogenic sources due to the sample depths.

ACLs				mg/l	kg				
ACLS	BH4/1.5	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc
рН	5.5				190				
CEC	2				140			55	280
% clay	54			660					
Generic	-					1800			

Table 1.1: Calculating the ACL

ACLs				mg/	kg				
ACES	BH2SPT/3.0	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc
pН	5.0				190				
CEC	2.7				140			55	210
% clay	71			660					
Generic	-					1800			

Information derived from **Table 1B(1)** Soil-specific added contaminant limits for aged zinc in soils, **Table 1B(2)** Soil-specific added contaminant limits for aged copper in soils, **Table 1B(3)** Soil-specific added contaminant limits for aged chromium III and nickel in soils, **Table 1B(4)** Generic added contaminant limits for lead in soils (commercial/industrial) irrespective of their physicochemical properties (NEPM 2013.

Table 1.2: Calculating the ABC

		mg/kg										
ABC	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc				
BH4/1.5	n/a	n/a	665	140	1808	n/a	55	500				

		mg/kg									
ABC	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc			
BH2SPT/3.0	n/a	n/a	673	140	1811	n/a	55	218			

The EIL is derived by summing the ACL and the ABC. The following rounding rules are applicable to EILs:

- <1 to nearest 0.1
- 1 to <10 to nearest integer
- 10 to < 100 to nearest 5
- 100 to <1000 to nearest 10
- ≥1000 to nearest 100

The EIL have been calculated using the lowest criteria from both of the reference locations.

Table 1.3: Calculating the EIL

EILs					mg/kg					
LILS	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	DDT	Naphth.
ABC + ACL			665 ³	140 ³	1808 ³		55 ³	218 ³		
NEPM 2013	160 ¹								640 ¹	370 ¹
NEPM 1999		3 ²				1 ²				

¹Generic EILs for aged arsenic, DDT and Naphthalene from **Table 1B(5)** for commercial/industrial land use.

²EILs from NEPM 1999 (no EILs specified for contaminants in NEPM 2013).

³EILs derived from NEPM 2013 equation ABC+ACL.

Redfern Station Investigation Works

Transport for NSW

Geotechnical Investigation Report

IA157700-RP-GI-0023 | 02 5 February 2018 TfNSW Project Number - 150031

Redfern Station Investigation Works

Project No:	IA157700
Document Title:	Geotechnical Investigation Report
Document No.:	IA157700-RP-GI-0023
Revision:	02
Date:	5 February 2018
Client Name:	Transport for NSW
Client No:	150031
Project Manager:	Josh Cowley
Author:	Michael Grasso
File Name:	J:\IE\Projects\04_Eastern\IA157700\21 Deliverables\Geotechnical Investigation Report\IA157700-RP-GI-0023_Rev02_Geotechnical Investigation Report FINAL.docx

Jacobs Group (Australia) Pty Limited ABN 37 001 024 095 Level 7, 177 Pacific Highway North Sydney NSW 2060 Australia PO Box 632 North Sydney NSW 2059 Australia T +61 2 9928 2100 F +61 2 9928 2500 www.jacobs.com

© Copyright 2018 Jacobs Group (Australia) Pty Limited. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright.

Limitation: This document has been prepared on behalf of, and for the exclusive use of Jacobs' client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this document by any third party.

Revision	Date	Description	Ву	Review	Approved
01	22/12/17	Draft – Geotechnical Investigation Report	M Grasso	S Raynsford	J Cowley
02	05/02/18	Final – Geotechnical Investigation Report	M Grasso	S Raynsford	J Cowley

Document history and status

Contents

1.	Introduction	1
2.	Site setting	2
2.1	Site description	2
2.2	Geology and soils	3
2.2.1	Soil landscapes and site geology	3
2.2.2	Acid Sulphate soils	3
2.3	Previous reports	4
3.	Geotechnical Investigation	5
3.1	General	5
3.2	Borehole investigation	5
3.3	Soil electrical resistivity	6
3.4	Service locating	6
3.5	Laboratory testing	6
4.	Laboratory & field testing	8
4.1	Soil mechanical testing	8
4.2	Chemical testing	8
4.3	Rock testing	9
4.4	Soil resistivity test results	
5.	Geotechnical design profile 12	2
5.1	Subsurface Profile	2
5.2	Groundwater considerations	
6.	Recommendations	3
6.1	General 1:	3
6.2	Excavation support	3
6.3	Foundation conditions	4
6.3.1	High Level Foundations	
6.3.2	Piled Foundation Systems14	4
6.3.3	Inspection and Checking Procedures1	5
6.3.4	Durability for structures (soil)	5
6.3.5	Earthquake considerations	5
7.	Summary10	6
8.	Limitations1	7
9.	References 18	B

- Appendix A. Site investigation plan and cross sections
- Appendix B. Background information
- Appendix C. Explanatory notes and borehole logs
- Appendix D. Laboratory testing certificates
- Appendix E. Soil resistivity information

1. Introduction

Jacobs has been commissioned by Transport for NSW (TfNSW) to undertake a combined land survey, geotechnical investigation and contamination study to inform future development plans for Redfern Station and the surrounding precinct.

The combined geotechnical and contamination scope of work consisted of six (6) boreholes, contamination sampling and resistivity testing at the locations nominated by TfNSW. The investigation works were completed between the 7 and 28 November, including works during two planned weekend rail track shutdowns (WE20 – 11/12 November 2017 and WE21 – 18/19 November 2017).

This report presents the geotechnical investigation results, including the results of fieldwork and laboratory testing, together with comments and recommendations on the following:

- Inferred subsurface conditions and ground model, including likely depth of soil and rock (and characteristics).
- Summary of the geotechnical test results.
- Discussion on soil resistivity test results.
- Recommendations on foundation types and preliminary design parameters for structures.
- Discussion on excavation conditions (of identified units) including preliminary recommendations on design parameters for support design.
- Preliminary comments on geotechnical issues and risks.

Results from the contamination testing undertaken as part of these works are provided under the Contamination Investigation Report (IA157700-RP-CI-0025_Rev02) dated 5 February 2018.

2. Site setting

2.1 Site description

Redfern Station is located approximately 1.3 km south of Central Station. The station has 12 platforms, two of which are underground (Platforms 11 and 12). Redfern Station is served by a single concourse connecting all 12 platforms with frontage onto the Lawson Street overbridge at the northern end of the station. There are three entrances to the Station; Lawson Street, Gibbons Street and an entrance at the southern end of Platform 10 which connects with the walkway to the Australian Technology Park (ATP).

Platforms 1 through 10 are each provided with a single set of stairs and are connected by the concourse. Platforms 11 and 12 are located underground and are accessed via stairs and escalators from the Gibbons Street entrance end of the concourse. Select photographs are provided on plates 1 to 4.

Plate 1: Redfern Station, looking south-west from Platform 10

Plate 2: Redfern Station, looking north-east from Platform 4

Plate 3: Illawarra Relief compound area, looking south-west

Plate 4: Rock outcropping within the Illawarra Relief compound area

2.2 Geology and soils

The following information documents were available at the time of preparing this report:

- Sydney 1:100 000 Soil Landscape Series Sheet 9130
- Sydney 1:100 000 Geological Series Sheet 9130
- 1:25,000 Acid Sulfate Soils (ASS) Risk Map Sheet 91 30S3

2.2.1 Soil landscapes and site geology

An understanding of the soils and geology expected for the area surrounding the station site has been based on the available 1:100 000 soil landscape and geological maps. The expected soil and geological units at the station site are summarised in Table 2.1.

Table 2.1 – Geological units

Unit	Description
Soil landscape	
(bt) Blacktown	The landscape is characterised by gentle undulating rises (slopes <5%) on Wianamatta Group shales and Hawkesbury Sandstone with local reliefs of up 30 m. This area is further denoted as "developed terrain".
	The expected residual soils are either:
	 Red and brown residual podzolic soils, shallow to moderately deep (up to 100 cm) located on crests, upper slopes and well drained areas; or
	 Yellow podzolic soils and soloths, deep (between 150 to 300 cm) located on lower slopes and in areas of poor drainage.
Geology	
(Rwa) Ashfield Shale	The site is expected to be underlain by Ashfield Shale unit which is a sequence of the Wianamatta Group.
	The Ashfield Shale sequence in the area typically comprises interbedded black to dark grey shales, laminites and fine to medium grained sandstones. These materials typically weather to form a residual profile of 1 to 3 metres of medium to high plasticity clays.

The presence of the above geotechnical units was confirmed from the results of the geotechnical investigations with approximately 1.5 m thick layer of fill overlying 3.5 m of residual clay profile then shale/laminite bedrock.

2.2.2 Acid Sulphate soils

Office of Environment and Heritage Acid Sulfate Soil mapping of the area suggests that no known occurrence of Acid Sulfate Soils has been noted within the Redfern area.

2.3 **Previous reports**

The following documents were sourced during the preparation of this assessment. Copies of relevant information are included in **Appendix B** and investigation locations have been plotted onto the site plan in **Appendix A**, based on available records and have not been verified.

- (Jacobs May 2017) Station Upgrade Project Redfern Station SP3, Geotechnical Investigation Memorandum.
 - Four boreholes (BH1 to BH4) on the concourse area located at the corner of Gibbons and Lawson Street were progressed to depths of up to 5.0 m below ground level. The logs indicated fill up to 2.4 m underlain by residual and then extremely weathered shale.
- (GeoEnviro Consultancy Pty April 2015) Proposed Railway Platform Nos 6 and 7 Upgrade, Redfern Station, Geotechnical Investigation Report
 - Nine boreholes (BH1 to BH9) were drilled along the platform and were progressed to depths ranging from 0.3 to 3.3 m below existing platform level. The logs indicated fill up to 1.6 m underlain by residual and then extremely weathered shale at approximately 2.5 to 3 m depth below platform level.
 - One (1) test pit was excavated on the south west side of the existing station building in order to assess the existing footing conditions underlying foundation material. The test pit was excavated to a depth of 1.0m below existing platform level.
- (Novo Rail Alliance January 2015) Transport Access Program Redfern Station Easy Access Upgrade, Geotechnical Interpretive Report.
 - A single exploratory hole was advanced using push tube and rotary auger techniques to a depth of 12m below ground level. The ground conditions comprised poorly compacted granular fill (up to 0.5 m bgl) over residual soil (0.5 to 2.3 m bgl) becoming weathered shale from 2.3 m grading to low strength shale from 4.2 m. No coring was undertaken in this borehole, with the borehole terminated at 12 m.
- (RailCorp February 2010/2011) Formation Investigation and platform stability during track upgrading Redfern, Platform 6.
 - Eight test pits (8573-TP1 to 8573-TP8) were excavated within the 'four-foot' of the Down Local to depths between 0.68 and 1.0 m below track level. Generally, the test pits indicated Ballast overlying a capping layer up to 1.0 m depth. In some locations, this was underlain by residual soil or weathered shale bedrock.
 - Three boreholes (8573-BH1 to 8573-BH3) were drilled through platform 6 to depths between 3.0 to 3.4m. The borehole indicated fill up to 2.0 m overlying residual soils and weathered shale bedrock at the base of the borehole (approximately 3 m).
- (J&K January 2009) Proposed Track Reconditioning Redfern Station Platform Four, Geotechnical Investigation Report (proposed Redfern Station Platform 4 track reconditioning works between track kilometrages 0.950 km and 1.405 km)
 - During the initial field investigations in 2007, nine test pits (TL1 to TL9) were excavated at 50 m centres within the 'four-foot' using a 3.5 tonne excavator. The test pits were excavated to depths between 0.5 m and 1.35 m and dynamic cone penetration (DCP) tests were carried out within the test pit to depths extending between 1.2m and 2.0 m.
 - RailCorp then excavated six additional test pits in 2008 (8376-1 to 8376-6) in close proximity to the test pits excavated by J&K. The test pits were excavated to depths between 0.7 m and 1.1 m.
 - Generally, the test pits from both investigations encountered granular railway ballast overlying fill or natural clayey soils, then in a number of test pits, weathered shale bedrock.

3. Geotechnical Investigation

3.1 General

The current geotechnical investigation was undertaken between 7 November and 28 November 2017, part of which was undertaken during planned weekend shutdowns of the rail line (WE20 and WE21). Works were undertaken under the full time supervision of a Jacobs' geotechnical engineer. The investigation comprised the drilling of six (6) boreholes, undertaking in-situ SPTs (Standard Penetration Tests) and sampling for laboratory testing purposes including contamination. The surveyed positions of Jacobs' field investigation locations are as shown on the site plan included in **Appendix A**. The details of the fieldwork including in-situ testing, potholing, laboratory testing program and resistivity testing are described below.

3.2 Borehole investigation

The field investigation comprised six boreholes (Boreholes BH1 to BH6) drilled to depths of 8.50 m to 10.40 m below existing ground level. Borehole BH1 was drilled in Eveleigh Carriage Works Yard behind platform one. Boreholes BH2, BH3 and BH4 were drilled in the country ends of Platforms 3, 4 and 9 respectively. Borehole BH5 was drilled in the Illawarra Relief Site Compound Excavation and Borehole BH6 was drilled in the Illawarra Relief Site Compound Excavation and Borehole BH6 was drilled in the Illawarra Relief Site Compound Excavation and Borehole BH6 was drilled in the Illawarra Relief Site Compound Excavation and Borehole BH6 was drilled in the Illawarra Relief Site Compound South Entry Forecourt.

Boreholes BH1, BH2, BH3 and BH4 were drilled using the XC rig, BH5 was drilled using the Commachio 205 and BH6 was drilled using the Hanjin DB8, all of which were track mounted drill rigs. Boreholes were drilled using a tungsten carbide drill bit (TC) and then rock coring. All boreholes were extended by NMLC core drilling techniques to the levels provided in Table 3.1 below.

SPTs were carried out during borehole drilling at regular intervals within the soil and weathered rock horizons, to assess in-situ strength/relative density of materials and to recover representative samples. Samples were also collected for contamination testing purposes, with results of this testing reported under a separate cover (refer to the '*Contamination Investigation Report*'). Rock core recovered from the drilling was packed in core trays, then logged and photographed.

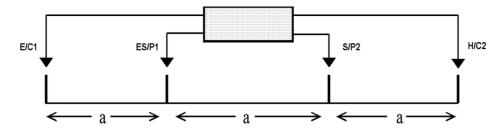
Materials encountered in each borehole were logged by the Jacobs geotechnical engineer in accordance with Australian Standards AS1726-2017 and Jacobs 'Field Investigation Explanatory Notes' which are included along with the engineering logs in **Appendix C**. The investigated borehole locations were surveyed by a surveyor from Jacobs. A summary of the borehole survey information, including elevation and termination depths are provided in Table 3.1.

Table 3.1 – Summary of borehol	e locations and termination depth
--------------------------------	-----------------------------------

Borehole No.	Termination Depth (m BGL) ¹	Easting (m) ²	Northing (m) ²	Surface Elevation (m AHD) ³
BH1	9.15	333321.8	6248324.6	25.9
BH2	8.50	333351.6	6248322.8	26.4
BH3	9.00	333359.7	6248314.2	26.5
BH4	10.00	333412.4	6248312.4	26.3
BH5	10.40	333481.4	6248345.8	24.0
BH6	9.90	333452.6	6248279.5	25.1

Notes:

1. m BGL = metres below ground level


- 2. Coordinate system MGA94 Zone 56 H
- 3. m AHD = metres above Australian height datum

3.3 Soil electrical resistivity

Soil resistivity testing was undertaken in Gibbons Street Reserve. The resistivity tests were carried out using a 4-electrode Wenner configuration (refer Figure 3-1) to measure the electrical resistivity properties of the soils. All test locations were set out by tape measurement. The location of the traverses is provided on the site investigation plan (Figure 1) in **Appendix A** and summarised below in Table 3.2. At each test location, two traverses were undertaken at right angles to each other (test A and B); with a series of readings undertaken for each traverse with electrode spacing's ranging from 0.5 m to 10 m.

Figure 3-1: Resistivity Test Configuration and Calculation

Calculation: Material Resistivity ρ (Ω .m) = 2 * π * a (m) * R(Ω) (where a is the probe spacing and R is the measured resistivity)

The tests were undertaken using a Megger DET4TC Four Pole Soil Resistivity Testing Kit. Calculation sheets of the resistivity tests are provided in **Appendix E**.

Location ID	Site	Traverse Spacing's (m) Test A / Test B
ER01	Gibbons Street Reserve	0.5,1,2,4,8,10 / 0.5,1,2,4,8
ER02	Gibbons Street Reserve	0.5,1,2,4 / 0.5,1,2,4,8,10

3.4 Service locating

As part of the geotechnical investigations, a review of Dial Before You Dig (DBYD) and Detailed Service Survey (DSS) drawings were carried out for the site area to obtain information on the services and utilities (under and above ground) within the site area and around the site.

Prior to drilling, services were also located using GPR techniques, followed by non-destructive digging (NDD) to confirm no services in high risks areas prior to drilling. All boreholes were backfilled on completion with cement, stabilised sand, bentonite plug and reinstated with a cold mix asphalt layer for locations within the platforms.

3.5 Laboratory testing

Laboratory tests were conducted on selected soil and rock samples retrieved from the boreholes to assess the chemical and mechanical properties of the materials. The samples, including disturbed, SPT and rock core samples were submitted to a laboratory for the type and quantity of testing outlined in Table 3.3.

Laboratory testing was performed using a NATA registered laboratory in accordance with the relevant Australian Standard. Laboratory test certificates presented in **Appendix D**.

Table 3.3 – Proposed laboratory testing

Laboratory Test	Quantity	Methodology
Moisture Content	10	AS1289.2.1.1, 2.1.4
Atterberg Limits and Linear Shrinkage	6	AS1289.3.1.1, 3.2.1, 3.3.1 and 3.4.1
Grading (19 to 0.075 mm)	6	AS1289.3.6.1
Durability Suite (pH, chlorides, sulphates and resistivity)	3	APHA
Point Load Test	27	AS4133.4.1

4. Laboratory & field testing

This section of the report provides the details of the laboratory test results. The purpose of the completed laboratory testing was to confirm visual descriptions and material classifications adopted by Jacobs's geotechnical engineer during field work and derive the engineering properties of each material unit based on standardised test methods and published correlations to assist with developing design parameters.

4.1 Soil mechanical testing

Selected soil samples collected during the field investigation were tested in the laboratory for the measurements of field moisture content (FMC), Atterberg limits, and Particle Size Distribution (PSD). The results of testing are summarised in Table 4.1.

Develop	Sample		FMC ¹	LL ¹	PL ¹	Pl ¹	LS ¹	Grading ²		
Borehole No.	Depth (m)	Description	(%)	(%)	(%)	(%)	(%)	Clay/Silt (%)	Sand (%)	Gravel (%)
BH1	3.5-3.7	Silty CLAY	19.1	66	23	43	12.5	-	-	-
BH1	4.1-4.3	Gravelly Silty CLAY	18.3	-	-	-	-	62	4	34
BH2	4.5-4.8	Silty CLAY	16.9	64	24	40	10.0	92	6	2
BH3	3.0-3.45	Silty CLAY	16.4	63	21	42	13.0	85	9	6
BH4	2.5-2.7	Silty CLAY	17.0	62	22	40	10.5	-	-	-
BH4	2.7-3.15	Silty CLAY	15.8	-	-	-	-	79	12	9
BH5	1.3-1.5	Sandy Silty CLAY	11.1	29	16	13	5.5	43	35	22
BH5	2.8-3.0	Sandy Silty CLAY	10.3	-	-	-	-	-	-	-
BH6	2.5-2.95	Silty CLAY	13.2	-	-	-	-	71	12	17
BH6	3.8-4.0	Silty CLAY	12.2	50	20	30	10.0	-	-	-

Table 4.1 – Summary of soil mechanical test results

Notes:

1. FMC = Field Moisture Content, LL = Liquid Limit, PI = Plasticity Index, LS = Linear Shrinkage

2. Grading: Clay/Silt <0.075 mm, Sand 0.075 to 2.36mm, Gravel > 2.36mm

Based on the results of the laboratory testing, the residual clay soils classify as a silty clay of high plasticity and are considered moderately to highly reactive based on a LL of 50 to 66% and Pl's in the range of 30 to 43%.

4.2 Chemical testing

Selected soil samples collected during the field investigation were tested in the laboratory for the measurement of pH, sulphates, chlorides, conductivity/resistivity to assess durability for buried structures. The results of testing are summarised in Table 4.2.

Table 4.2 – Summary of soil chemical test results

Borehole No.	Sample Depth (m)	Soil Conditions ¹ (A or B)	рН	Sulphate (mg/kg)	Chloride (mg/kg)	Resistivity² (ohm cm)
BH2	3.0-3.45	В	5.0	39	20	24,000
BH3	0.6-0.7	В	7.8	52	<10	11,000

Borehole No.	Sample Depth (m)	Soil Conditions ¹ (A or B)	рН	Sulphate (mg/kg)	Chloride (mg/kg)	Resistivity ² (ohm cm)
BH4	1.5-1.95	В	5.3	90	10	13,000

Notes:

1. Soil Types A (High permeability – sands and gravel) and B (low permeability – clays) based on classification in AS2159

2. 1:2 dry sample basis

Results from durability testing indicated pH in range of (5.3 to 7.8), low chlorides (<10 to 20 mg/kg) and sulfates (39 to 90 mg/kg) and resistivity value of (11,000 to 24,000 ohm.cm). Reference to the AS2159 'Piling – Design and Installation' indicates that the results are generally in accordance with the 'non aggressive' classification for steel and 'mild' for concrete structures buried below ground.

The designers should review the results and make due allowance in their design for corrosion based on the recommended allowances in AS2159 or from local experience or other relevant references. Please note that no sampling or testing for durability has been undertaken for groundwater.

4.3 Rock testing

Representative samples of rock core recovered from the boreholes were tested to determine Point Load Strength index (Is50). The test results are summarised in Table 4.3, with point load data also plotted on the individual borehole logs included in **Appendix C**. The laboratory test certificates are attached in **Appendix D**.

Borehole Sample		Uncorrected Point Load Strength (Is)		Point Load Strength (Is50)	
No.	Depth (m)	Diametral (MPa)	Axial (MPa)	Diametral (MPa)	Axial (MPa)
BH1	6.50-6.58	0.06	0.15	0.05	0.12
BH1	7.94-7.99	0.01	0.09	0.01	0.07
BH1	8.52-8.60	0.03	0.10	0.03	0.09
BH1	9.00-9.07	0.04	0.09	0.04	0.08
BH2	6.92-6.98	0.05	0.06	0.05	0.05
BH2	7.92-7.98	0.01	0.12	0.01	0.10
BH2	8.42-8.49	0.04	0.11	0.04	0.09
BH3	7.33-7.99	0.00	0.01	0.00	0.01
BH3	8.87-8.94	0.00	0.05	0.00	0.04
BH4	4.90-4.98	0.10	0.07	0.10	0.07
BH4	5.90-6.00	0.13	0.06	0.13	0.06
BH4	6.90-7.00	0.00	0.08	0.00	0.08
BH4	7.71-7.82	0.00	0.11	0.00	0.11
BH4	8.68-8.77	0.11	0.18	0.11	0.19
BH4	9.83-9.95	0.20	0.05	0.20	0.05
BH5	3.92-3.99	0.01	0.25	0.01	0.23
BH5	5.87-5.93	0.32	1.20	0.31	1.02
BH5	6.32-6.36	0.02	0.37	0.02	0.26

Table 4.3 – Summary of rock test results

Borehole Sample		Uncorrected Point	Load Strength (Is)	Point Load Strength (Is50)	
No.	Depth (m)	Diametral (MPa)	Axial (MPa)	Diametral (MPa)	Axial (MPa)
BH5	7.90-7.98	0.08	0.24	0.08	0.19
BH5	8.93-8.99	0.27	2.41	0.26	2.09
BH5	9.48-9.56	0.26	2.45	0.26	2.24
BH5	10.31-10.39	0.26	1.11	0.25	1.00
BH6	5.88-5.96	0.27	0.35	0.27	0.36
BH6	6.90-7.00	0.46	0.58	0.45	0.55
BH6	7.86-7.94	0.16	0.43	0.16	0.43
BH6	8.92-9.00	0.60	0.13	0.60	0.12
BH6	9.82-9.90	0.13	1.03	0.13	0.99

The results from point load testing were used to calibrate the field assessment of recovered rock core and generally confirmed field assessments. This information has been used to inform the rock mass classification undertaken in Section 5.

4.4 Soil resistivity test results

The results for the soil resistivity testing are summarised in Table 4.4 below with the location of the traverses provided on the site investigation plan in **Appendix A**, with calculation sheets provided in **Appendix E**.

	Tes	st A	Test B		
Probe Spacing, a (m)	Measured resistivity R (Ω)	Material resistivity¹ ρ (Ω.m)	Measured resistivity R (Ω)	Material resistivity¹ ρ (Ω.m)	
Test ID: ER01					
10	1.63	102	-	-	
8	1.88	94	0.82	41	
4	5.45	137	5.18	130	
2	9.81	123	11.44	144	
1	6.11	38	21.1	133	
0.5	Error	-	40.9	128	
Test ID: ER02					
10	-	-	2.66	167	
8	-	-	4.14	208	
4	9	226	10.17	256	
2	10	126	16	201	
1	12	75	26	163	
0.5	43.4	136	45.8	144	

Table 4.4 – Soil resistivity test results

Notes:

1. Material resistivity (ρ) = 2 * π * a * R (where *a* is the probe spacing and *R* is the measured resistivity)

Results from soil resistivity testing indicated the material resistivity in range of (38 to 256 Ω .m) with an average of 137 Ω .m. Reference to Table 2-3 in the literature '*Military Handbook 419 (MIL-HDBK-419A)*' indicates that the subsurface material is generally in accordance with clay with a varying proportion of sand and gravel. These results correspond to the site conditions experienced during the field investigations.

5. Geotechnical design profile

5.1 Subsurface Profile

Based on the review of available geotechnical information and results of the investigation, a geotechnical model has been developed for the site to assess the excavation and foundation conditions. A brief description of each of the identified geotechnical units is provided in Table 5.1, in order of increasing depth. The soil types and strengths have been inferred based on SPT testing and field assessment for the soil units, with point load testing results and field assessment used for the rock units. A classification of the rock-mass has also been provided which has generally been undertaken in accordance with the guidelines presented in 'Foundations on Sandstone and Shale in the Sydney Basin' (Pells et al, 1998).

This rock mass classification along with the inferred boundary between geotechnical units is provided on Sections 1 to 6 included in **Appendix A**. Note that the location of sections prepared were requested by TfNSW, with the subsurface information shown on the drawings only considered accurate at borehole locations (witnessed by Jacobs). The subsurface conditions between these locations represent Jacobs interpretation and is considered approximate only.

Topography	20 to 30 m AHD ¹	20 to 30 m AHD ¹				
Soils	(bt) Blacktown	(bt) Blacktown				
Geology	(Rwa) Ashfield Shale	(Rwa) Ashfield Shale				
Unit	Origin	Material Description	Relevant Jacobs Boreholes			
1	Fill	Variable, Gravelly/silty clay and gravelly sand, gravel is fine to coarse, sub-angular to angular, clay is medium to high plasticity	All			
2	Residual Soils	Silty clay: typically, very stiff to hard, dry to moist, pale grey and red-brown with ironstone gravel.	All			
ЗА	Shale Bedrock <i>(Class V)</i> ²	Shale/ Interlaminated Siltstone & Sandstone: typically, extremely to very low strength, extremely to highly weathered, highly fractured, grey-brown	BH3, BH6			
3В	Shale Bedrock (<i>Cla</i> ss <i>IV</i>) ²	Interlaminated Siltstone & Sandstone: typically, low strength, moderately weathered, moderately fractured, grey and dark grey	BH1, BH2, BH3, BH4, BH5			
3C	Shale Bedrock <i>(Cla</i> ss <i>III)</i> ²	Interlaminated Siltstone & Sandstone: typically, medium to high strength, moderately to slightly weathered, dark grey and pale grey	BH4, BH5, BH6			

Table 5.1 – Subsurface profile summary

Notes:

1. m AHD = metres above Australian height datum

2. A classification rock mass undertaken in accordance with the guidelines presented in 'Foundations on Sandstone and Shale in the Sydney Basin' (Pells et al, 1998)

5.2 Groundwater considerations

No free groundwater was observed in the overburden soils or bedrock whilst the bores remained open. It is noted that the boreholes were backfilled immediately following drilling and sampling, thus precluding any longer-term monitoring or observation of groundwater levels. Introduction of water during core drilling may have obscured any observations.

6. Recommendations

6.1 General

At the time of preparing this report, the strategic concepts for the Redfern Station and precinct upgrade were in development and not known. The following preliminary recommendations have been made to assist designers in developing concepts with regards to foundation conditions and general excavation support and retaining wall design requirements. It is recommended that once concepts have been developed that additional geotechnical advice be sought and report updated to confirm assumptions made including any recommendations on further testing that may be warranted.

6.2 Excavation support

Based on the results of the investigations, the ground conditions are expected to comprise Unit 1 and 2 (and possibly 3A) within the platform areas. Excavation in the overlying soil and rock (Units 1, 2 and 3A) should be achievable using conventional excavation type equipment pending access constraints for equipment (i.e. confined excavation footprints). Excavation into rock units 3B and 3C (if required) may need assistance with hydraulic rock breakers, hammers and rock saws. It should be noted that the classification provided is for design of foundations and incorporates recommended allowances for rock defects such as fracture zones and clay seams.

The actual intact rock strength in some cases may be higher than the rock classification suggests, and reference should be made to the bore log when assessing the excavation characteristics of these materials. The approximate boundaries for the different classes of rock have been provided on Figures 2 to 4 in **Appendix A**.

Specific information on excavation requirements at the site was not known at the time of preparing this report. Further geotechnical advice should be sought on specific recommendations for excavation support types and design, once known given proximity to sensitive infrastructure (services, tunnels, structures, track, roadways etc.). As such, temporary battered excavations are unlikely to be viable, with structural support/retaining walls systems required for any excavation works near the station.

For preliminary design of such retaining systems, either temporary or permanent, the soil properties given in Table 6.1 have been provided. Any excavation support system should consider surcharge loads (e.g. construction traffic, footings from adjoining buildings, etc.) and short and long term groundwater pressures as appropriate.

Geotechnical Units	Summary Description	Bulk Density kN/m³	Undrained Strength Cu (kPa)	Drained Strength C' (kPa)	Friction Angle ø' (deg)	Elastic Modulus E' (MPa)
Unit 1	Stiff Gravelly and Silty CLAY	20	100	0	26	30
Unit 2	Very stiff to hard Silty CLAY	20	200	10	30	50
Unit 3A	Class V (Shale)	21	-	30	35	100
Unit 3B	Class IV (Shale)	22	-	100	35	500

Table 6.1 – Recommended parameters for preliminary excavation support design

Note:

1. Parameters provided above estimated based on published correlations with field results and Foundation Analysis and Design, Bowles, 1997

6.3 Foundation conditions

Currently there is no information available on foundation loads and foundation layouts for the proposed station upgrade, however, it is anticipated that the following foundation systems may be feasible for canopy, OHWS or walkway type structures.

- Shallow foundations (strip footings, pad footings, slab on grade) founded within residual clay (Unit 2) or weathered shale/sandstone (Unit 3A); or
- Piled Foundation systems (bored piers) extended to found within Units 3A (or better).

Jacobs notes that there are various footing options available for the project and it is recommended that foundation design and foundation layouts be subject to a geotechnical review once structure types, typical loads and layouts are established.

6.3.1 High Level Foundations

Consideration could be given to the use of high level pad or strip footings where depth to good foundation materials are less than a few metres. The recommended design parameters in terms of serviceability and ultimate bearing pressure for shallow foundations are given in Table 6.2 assuming minimum 500 mm embedment into each unit.

Table 6.2 – Serviceabilit	y and Ultimate bearing pressures	for shallow foundation on rock
	y and entimate wearing procedure	

Unit	Description	Serviceability End Bearing Capacity (kPa)	Ultimate End Bearing Capacity (kPa)	
Unit 2	Stiff (or better) residual soils	150	450	
Unit 3A	Class V – Shale	700	3000	

Notes:

- 1. The recommended values given in the table above assume that the bearing surfaces are clean and free from spoil and other soft and loose material and free of water at the time of placement of concrete. The bases of the pad and strip footings should be swept clean.
- Predictions on foundation settlements can be estimated once foundation loads and layouts are known. For foundations on soil, consideration should be given to shrink/swell movement. For foundations on rock, proportioned for the above serviceability bearing pressures, settlements of <1% of minimum footing dimension could be expected.

6.3.2 Piled Foundation Systems

Alternatively, the use of bored piers founded on rock may be preferred. Recommended geotechnical design parameters for pile foundations are provided below in Table 6.3 below. Jacobs has interpreted the underlying bedrock, based on the guidelines presented in Pells et al. "Design Loadings for Foundations on Shale and Sandstone in the Sydney Region", Australian Geomechanics Journal, 1978 and the more recent paper also Pells et al (December 1998) "Foundations on Sandstone Shale in the Sydney Region" and provided preliminary end bearing and shaft adhesion parameters.

The approximate boundaries for the different classes of rock have been provided on Figures 2 to 4 in **Appendix A**.

Material and Classification	Allowable End Bearing Pressure (kPa)	Ultimate End Bearing Pressure (kPa)	Ultimate Shaft Adhesion (kPa)	
Unit 3: Bedrock				
Unit 3A – Class V (Shale)	700	3000	50	
Unit 3B – Class IV (Shale)	1000	3000	150	
Unit 3C - Class III (Shale)	2500	8000	350	

Table 6.3 – Rock Classification and Preliminary Allowable Design Pressures

Notes:

- 1. Parameters provided above estimated based on published correlations with field results based on recommendation contained within "Foundations on Sandstone and Shale in the Sydney Region", December 1998
- 2. Clean socket of R2 roughness or better
- 3. Serviceability end bearing pressures to result in settlements of 1% or less of minimum footing dimension.

These above values assume that piles are socketed a minimum of 500 mm. For bored pile construction, it will be necessary to use a cleaning bucket to ensure that the base of the pile is clean of drilling debris. If pile capacities rely on shaft adhesion, then it will also be necessary to use a sidewall roughing tool to ensure that the design shaft adhesion values can be achieved. Shaft adhesion in the fill and overburden soils should be ignored for design of rock end bearing and socketed piles.

6.3.3 Inspection and Checking Procedures

All foundation excavations (including those for high level footings and piles) should be kept free of ponded water to prevent softening of the founding strata. Excavations should not be left open overnight. All footings should be excavated, cleaned, and poured with minimal delay to avoid deterioration of the bearing surface. Where appropriate side wall support/pile casing should be provided to support unstable excavation conditions are encountered. The base of all excavations should be inspected immediately prior to foundation construction to check that loose debris has been removed.

For bored piles founded in rock, it will be necessary to conduct geotechnical inspections of footing sites. The recommended minimum investigation or proving techniques are as outlined in (Pells et al., 1978) for the Class of rock being specified.

6.3.4 Durability for structures (soil)

Reference to the AS2159 '*Piling – Design and Installation*' indicates that the results are generally in accordance with a 'mild' classification for concrete and 'non-aggressive' classification for steel structures buried below ground in soil. The designers should review the results and make due allowance in their design for corrosion based on the recommended allowances from the codes. It is recommended that groundwater testing should also be undertaken to further assess durability.

6.3.5 Earthquake considerations

Structural design for earthquake loads should be carried out in accordance with the relevant provisions as detailed in AS1170.4 *"Structural Design Actions Part 4: Earthquake Actions in Australia"* or other specified standard. The following lists the site sub-soil class and hazard factors based on reference to AS1170.4:

- Based on soil conditions (up to 6.5 m soil over bedrock) the sub-soil class is assessed as "Ce Shallow Soil Site".
- Based on location Hazard Factor (Z) of 0.08.

7. Summary

Some preliminary geotechnical constraints/risks identified as part of these early geotechnical investigations are listed as follows:

- Moderately deep clay and deeply weathered shale/laminite profile (Specifically Platform areas) was
 encountered in BH1 to BH4. Generally better quality shale/laminate (medium strength or better) was only
 observed in the eastern side of the alignment (BH5 and BH6). As such, there may be some limitation in
 available pile bearing and shaft adhesion capacities for rock socketed piles.
- The location of new foundations and structures may be in close proximity to existing tunnel infrastructure. A number of existing rail tunnels (operational and disused) have been identified including Up Eveleigh Engine Dive (Active), Wells Street Dive (Disused), Eastern Underbridge and the Up and Down Illawarra Relief Tunnels (Active). Any works would need to consider the current Sydney Trains guideline for any development works (excavation/foundations etc.) near the railway tunnels (Refer - Transport for NSW document, 'Development Near Rail Tunnels' T HR CI 12051 ST').
- Condition and stability of the existing railway platforms. A structural and geotechnical review of the stability of the existing platforms is recommended, depending on proposal for upgrading the station. Assessment would need to consider current stability and condition and also potential for piling equipment on platforms for canopy, stairs, overbridge or other structure foundation construction.
- Condition and stability of the existing disused Illawarra Relief compound area. The existing structures (primarily sheet pile wall) and retaining walls in this area appear in poor to moderate condition, and possibly installed as temporary support measures only for planned additional rail tunnels that never progressed. Structural inspection and review of this area is recommended to assess condition and any temporary repairs that may be required in the interim for planned construction works. Permanent solutions will need to consider the decommissioning and replacement pending final plans for this area.
- Currently no information on groundwater quality or depth has been obtained. If deeper works are proposed at the site, then specific piezometer installation and sampling of groundwater quality and levels may be required to inform on any minor dewatering requirements.

It should be note that at the time of preparing this report, the strategic concepts for the Redfern Station and precinct upgrade were in development and not known or provided for comment. The assessment and recommendations have been made to assist designers in developing concepts with regards to foundations conditions and general excavation support design. Once concepts have been developed, additional geotechnical advice will be required to confirm assumptions made. This includes any recommendations on further testing that may be warranted to address potential geotechnical risks listed above and/or identify additional geotechnical risks for the project.

8. Limitations

The sole purpose of this report is to present the interpretive results from geotechnical investigations carried out by Jacobs for Transport for NSW ('the Client') in connection with the Redfern Station Investigation Works. This report was produced in general accordance with and is limited to the scope of services set out in the contract between Jacobs and the Client. That scope of services, as described in this report, was developed with the Client.

An assessment or study of on-site conditions investigates the potential for exposure to the presence of inadequate bearing ground. All reports and conclusions that deal with sub-surface conditions are based on interpretation and judgement and as a result have uncertainty attached to them. You should be aware that this report contains interpretations and conclusions which are uncertain, due to the nature of the investigations. No study can investigate every risk, and even a rigorous assessment and/or sampling programme may not detect all problem areas within a site.

This report is based on assumptions that the site conditions as revealed through sampling are indicative of conditions throughout the site. The findings are the result of standard assessment techniques used in accordance with normal practices and standards, and (to the best of Jacobs' knowledge) they represent a reasonable interpretation of the current conditions on the site.

Sampling techniques, by definition, cannot determine the conditions between the sample points and so this report cannot be taken to be a full representation of the sub-surface conditions. This report only provides an indication of the likely sub surface conditions.

Conditions encountered when site work commences may be different from those inferred in this report, for the reasons explained in this limitation statement. If site conditions encountered during site works are different from those encountered during Jacobs' site investigation, Jacobs reserves the right to revise any of the findings, observations and conclusions expressed in this report.

The passage of time, manifestation of latent conditions or impacts of future events may require further examination of the project and subsequent data analysis, and re-evaluation of the data, findings, observations and conclusions expressed in this report.

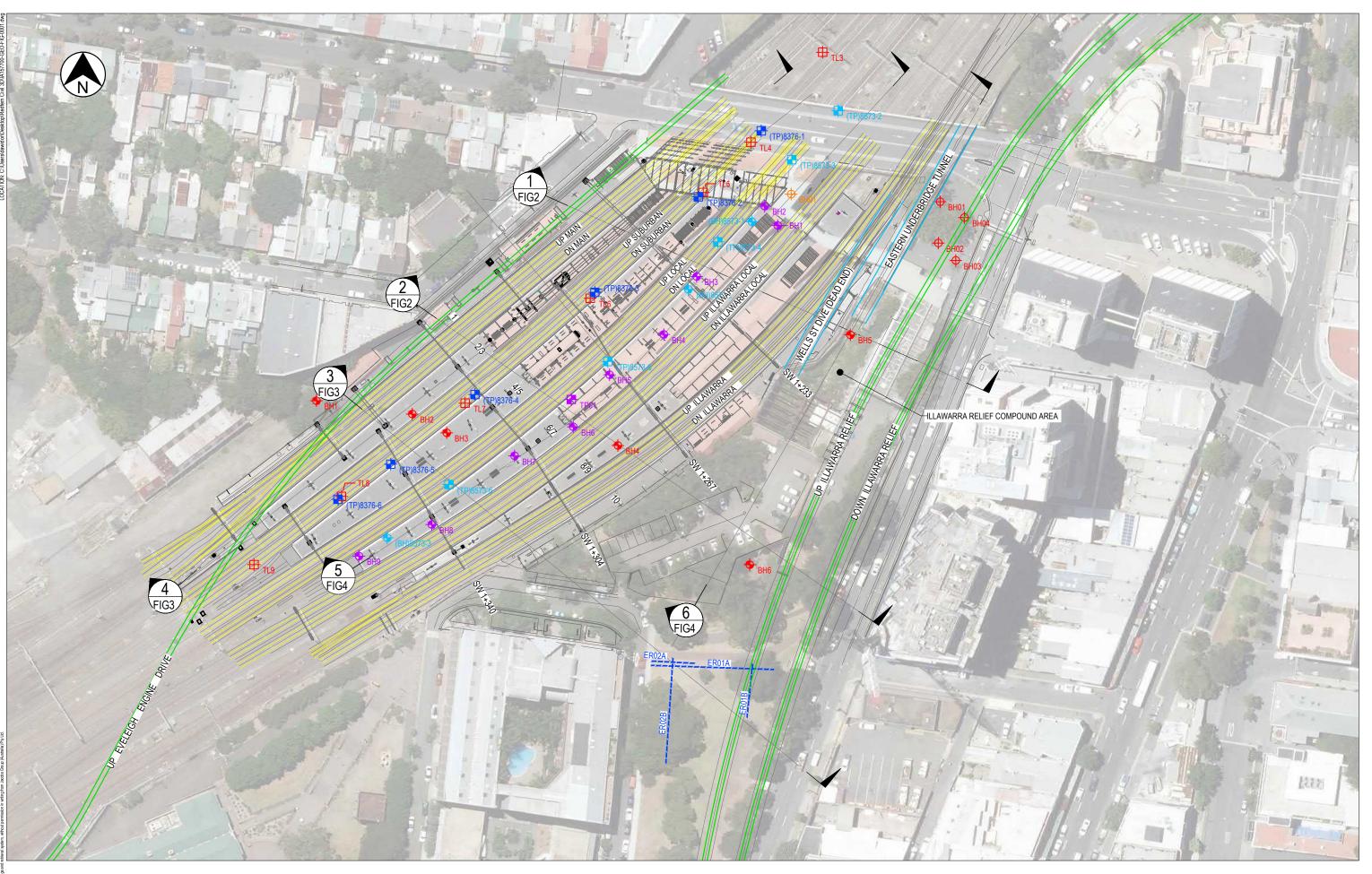
In preparing this report, Jacobs has relied upon, and presumed accurate, information provided by the Client and from other sources. Except as otherwise stated in the report, Jacobs has not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

Jacobs has prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

This report does not address environmental or geo-environmental issues including the presence of any contaminants or hazardous materials at the site unless Jacobs was specifically and expressly retained to do so. Except as specifically stated in this report, Jacobs makes no statement or representation of any kind concerning the suitability of the site for any purpose or the permissibility of any use.

This report should be read in full and no excerpts are to be taken as representative of the findings. No responsibility is accepted by Jacobs for use of any part of this report in any other context.

This report has been prepared on behalf of, and for the exclusive use of, the Client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the Client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party.

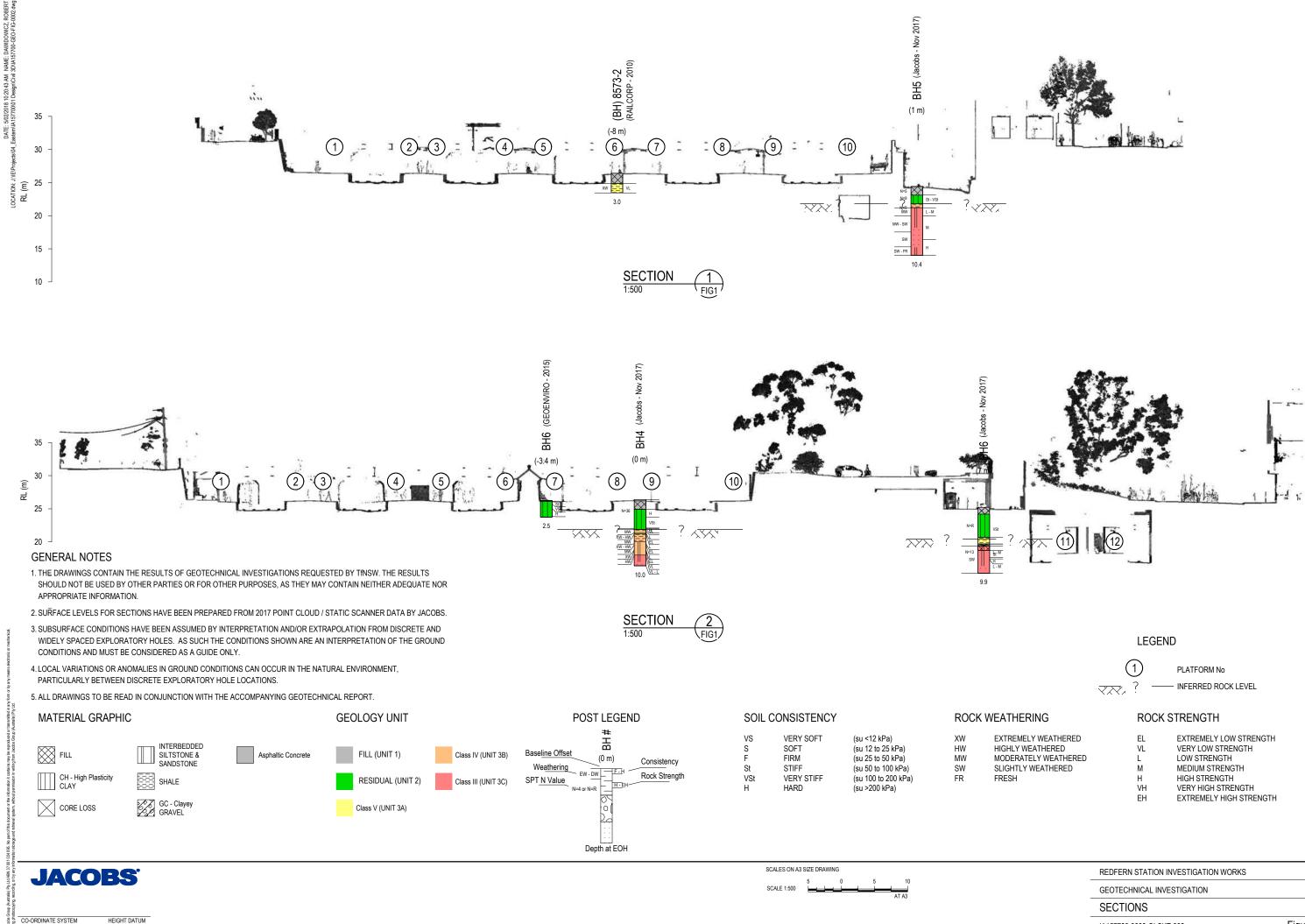


9. References

- Bowles, J. E. (1997), Foundation Analysis and Design, McGraw-Hill.
- Department of Defence (1987), Military Handbook (MIL-HDBK-419A), Grounding, bonding, and shielding for electronic equipments and facilities, 29 December 1987
- Departments of Land and Water Conservation (1997), Sydney 1:25 000 Acid Sulfate Soils (ASS) Risk Map, Sheet No. 91 30S3 Botany Bay, Edition two, NSW.
- Department of Minerals and Energy (1983), Sydney 1:100 000 Geological Series Sheet, Sheet No. 9130 and Notes, Edition 1, NSW
- GeoEnviro Consultancy Pty Ltd (2015), Proposed Railway Platform Nos 6 and 7 Upgrade, Redfern Station, Geotechnical Investigation Report (Ref: JGI5894A-r1), April 2015
- Jacobs (2017), Station Upgrade Project Redfern Station SP3, Geotechnical Investigation Memorandum, 30 May 2017
- J&K (2009), Proposed Track Reconditioning Redfern Station Platform Four (0.950km to 1.405km), Geotechnical Investigation Report (Ref: 21693ZHrpt2), 6 January 2009
- Novo Rail Alliance (2015), Transport Access Program Redfern Station Easy Access Upgrade, Geotechnical Interpretive Report (Ref. No: TAP02-REP-CG-0001), 15 January 2015
- Pells, P. J. N, Douglas, D. J., Rodway, B, Thorne, C, McMahon, B. K. (1978), Design Loadings for Foundations on Shale and Sandstone in the Sydney Region, Australian Geomechanics Journal, Pages 31 – 39.
- Pells, P. J. N, Mostyn, G. Walker B. F. (1998), Foundations on Sandstone and Shale in the Sydney Region, Australian Geomechanics Journal, Pages 17 29.
- RailCorp (2011), Formation Investigation and platform stability during track upgrading Redfern, Platform 6, Down Local. 1.020 km – 1.460 km (Ref: Proj 8573), 15 February 2011
- Standards Australia International (2009), Australian Standard AS2159 2009 Pile Design and Installation.
- Standards Australia International (2017), Australian Standard AS1726 2017 Geotechnical Site Investigation.
- Standards Australia International (2002), Australian Standard AS4678 2002 Earth retaining structures
- Standards Australia International (2002), Australian Standard AS1170.0– 2002 Structural Design Actions Part 0: General Principles
- Standards Australia International (2007), Australian Standard AS1170.4–2007 Structural Design Actions, Part 4: Earthquake Actions in Australia

Appendix A. Site investigation plan and cross sections

	DC'		CURRENT INVESTIGATION		PREVIOUS STUDIES					SCALES ON A3 SIZE DRAWING	
JACC	JB3	+	Borehole (JACOBS Nov 2017)	Φ	Borehole (JACOBS May 2017)	+	Borehole (Railcorp 2010)	⊕	Test Pit (J&K 2007)	SCALE 1:1000	
			Electrical Resistivity Test	Φ	Borehole (NovoRail 2014)	-	Test Pit (Railcorp 2010)			AT AS	
CO-ORDINATE SYSTEM	HEIGHT DATUM				Borehole (GeoEnviro 2015)	-	Test Pit (Railcorp 2008)				

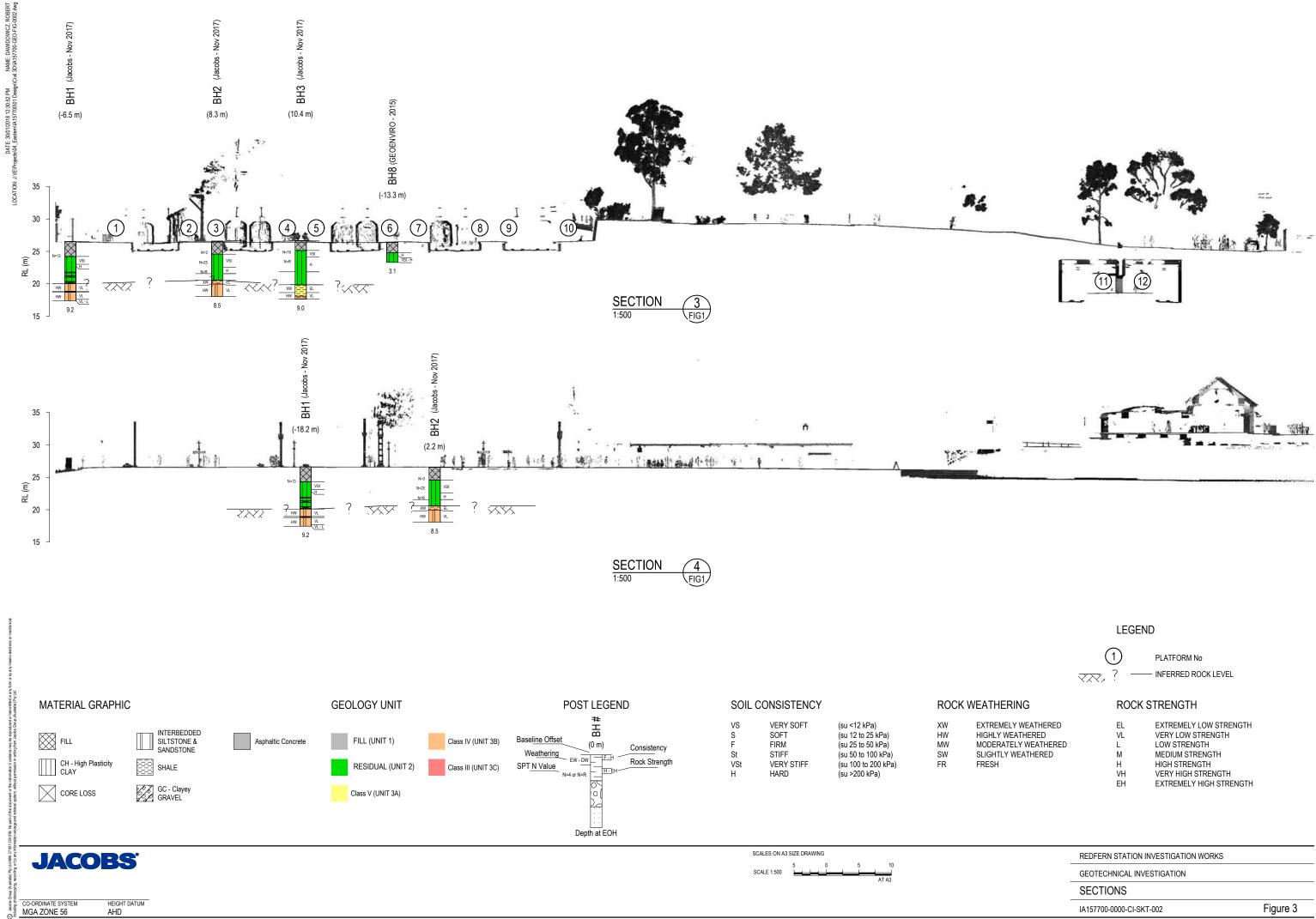

REDFERN STATION INVESTIGATION WORKS

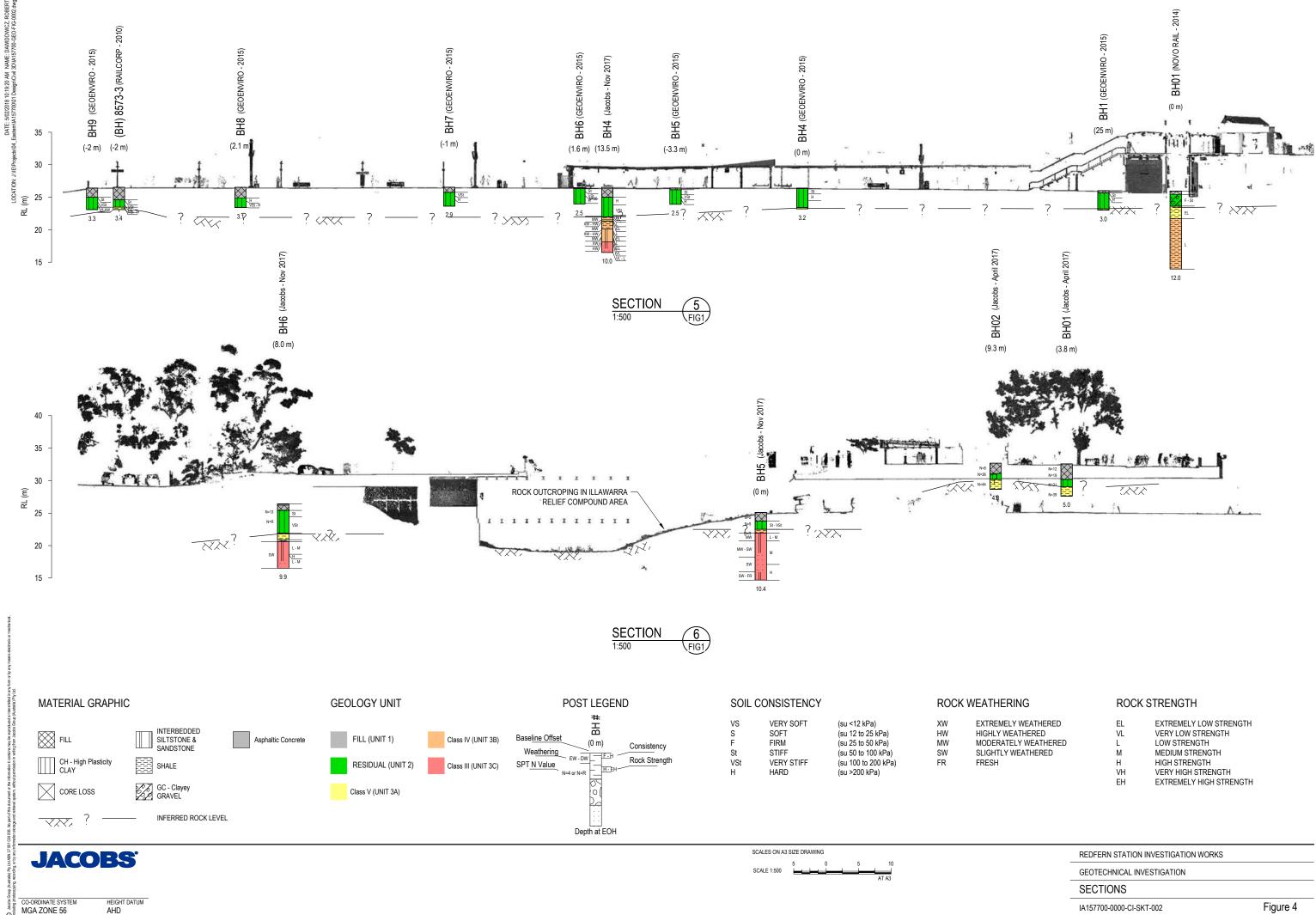
GEOTECHNICAL INVESTIGATION

SITE PLAN

IA157700-0000-CI-SKT-001

Figure 1

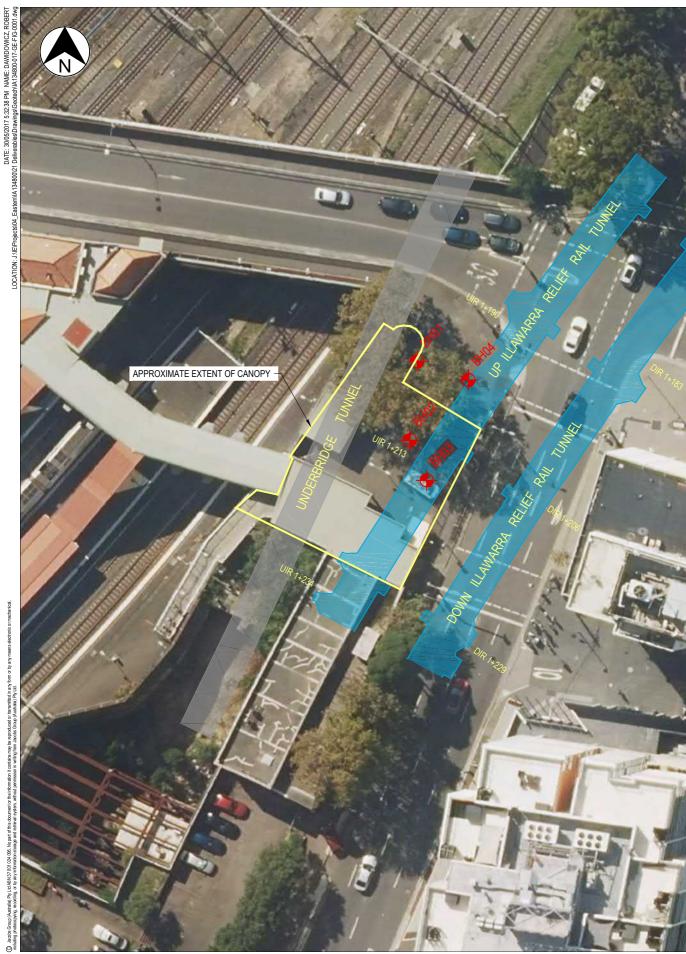



CO-ORDINATE SYSTEM MGA ZONE 56 AHD

EL	EXTREMELY LOW STRENGTH
VL	VERY LOW STRENGTH
L	LOW STRENGTH
Μ	MEDIUM STRENGTH
Н	HIGH STRENGTH
VH	VERY HIGH STRENGTH
EH	EXTREMELY HIGH STRENGTH

IA157700-0000-CI-SKT-002

Figure 2



EL	EXTREMELY LOW STRENGTH
VL	VERY LOW STRENGTH
L	LOW STRENGTH
М	MEDIUM STRENGTH
Н	HIGH STRENGTH
VH	VERY HIGH STRENGTH
EH	EXTREMELY HIGH STRENGTH

Appendix B. Background information

CO-ORDINATE SYSTEM MGA ZONE 56

JACOBS

SCALE 1:500

HEIGHT DATUM

10

AT A4

LEGEND

Borehole Location

Transport for NSW - Sydney Trains

Station Upgrade Project - Redfern Station SP3 Borehole Location Plan IA134800-017-GE-FIG-0001

FIGURE 1

.....

Soil Description

MATERIAL DESCRIPTION

Г

Soil description is based on an assessment of disturbed samples, as recovered from boreholes and excavation, and from undisturbed materials as seen in excavation and exposures or in undisturbed samples.

CLASSIFICATION

Soils are described in general accordance with AS1726-1993 and the Unified Soil Classification (USC) as shown below.

(E	Field Identification procedures (Excluding particles larger than 63 mm and basing fractions on estimated mass)		icles larger than 63 mm and		mm and	Code	Typical Names	Describing Soils	Laboratory Classification Criteria		iteria	
	fraction	AVELS o fines)	sub: inter eno	e range in gra stantial amou mediate size ugh fines to b ns, no dry stro	nts of all s, not ind coarse	GW	Well graded gravels, gravel-sand mixtures, little or no fines	Give typical name, symbol, indicate approximate % of sand and gravel,			Greater than 4 $c_{\mu} = \frac{D_{60}}{D_{10}}$	Between 1 & 3 $c_c = \frac{(D_{30})^2}{D_{10}xD_{60}}$
075 mm	More than 50% of coarse fraction is larger than 2.36 mm	CLEAN GRAVELS (Little or no fines)	rang inter not	dominantly or ge of sizes wit mediate size enough fines rse grains, no ngth	th some s missing, to bind	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines, uniform gravels	maximum size, angularity, surface condition, and strength of coarse grains: colour, amount plasticity of fine component.		Determine	Not meeting all gr for GW.	adation requirements
s arger than 0.	GRAVELS More than 50% is larger than 2.	NITH FINE ble fines)	of n	y' materials w on-plastic fine lium dry stren	es, zero to	GM	Silty gravels, gravel- sand-silt mixtures	For undisturbed soils add information on		percentages of gravel and sand from grain size curve Depending on	Atterberg limits below 'A' line or PI less than 4	Above 'A' line with PI between 4 and 7
AINED SOILS an 63 mm is I	GRAVE	GRAVELS WITH FINE (Appreciable fines)	of p	y' materials w lastic fines, m i dry strength	edium to	GC	Clayey gravels, gravel-sand-clay mixtures	moisture content, degree of compactness, stratification, cementation, and		percentage smaller than 0.075 mm size coarse grained soils are classified	Atterberg limits above 'A' line with PI greater than 7	are borderline cases requiring use of dual symbols.
COARSE GRAINED SOILS laterial less than 63 mm is la	action	ANDS fines)	sub: inter eno	e range in gra stantial amou mediate size ugh fines to b ns, no dry stro	nts of all s, not ind coarse	SW	Well graded sands, gravelly sands, little or no fines	odour. Give local and other pertinent descriptive	ation	as follows: Less than 5% GW, GP, SW, SP More than 12%	Greater than 6 $c_u = \frac{D_{e0}}{D_{t0}}$	Between 1 & 3 $c_{c} = \frac{(D_{30})^{2}}{D_{10}xD_{60}}$
COARSE GRAINED SOILS More than 50% of material less than 63 mm is larger than 0.075 mm	50% of coarse fraction than 2.36 mm	CLEAN SANDS (little or no fines)	rang inter not	dominantly or ge of sizes wit mediate size enough fines rse grains, no ngth	h some s missing, to bind	SP	Poorly graded sands and gravelly sands; little or no fines, uniform sands	information. Example: SILTY SAND (SM), fine to coarse, light grey, about 20%	as given under field identification	GM, GC, SM, SC 5% to 12% Borderline cases requiring use of dual symbols		radation requirements or SW
Mor	SANDS More than 50% is smaller than	TH FINES ble fines)	of n	y' materials w on-plastic fine lium dry stren	es, zero to	SM	Silty sands, sand-silt mixtures	strong angular gravel particles – 10mm max. size, rounded and sub- angular sand,	s as given ur		Atterberg limits below 'A' line or PI less than 4	Above 'A' line with PI between 4 and 7
	SAND	SANDS WITH FINES (Appreciable fines)	of p	y' materials w lastic fines, m i dry strength	edium to	SC	Clayey sands, sand- clay mixtures	about 12% non- plastic fines, moist, dense alluvial sand.	g the fractions		Atterberg limits cases requ	are borderline cases requiring use of dual symbols
	IDEN			PROCEEDU	RES ON FRA	CTIONS	< 0.075 mm		ntifyin			
ШШ		STREE		DILATANCY	TOUGHNESS			Give typical name,	in ide		Plasticity Chart	
ED SOILS 63 mm is smaller than 0.075 mm	SILTS AND CLAYS Liquid limit <50	None		Quick to slow	None	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with low plasticity. Silts of low to medium Liquid Limit	symbol, and indicate degree and character of plasticity, colour, amount and size of coarse grains.	Use grain size curve in identifying the fractions	50 45 40 \$\vert\$ 35		
INED SOILS an 63 mm is sma	SILTS AND CLAY Liquid limit <50	Med to h		None to very slow	Medium	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays	For undisturbed soils add information on	Use gr	(%) 35 x ap ul 25 tiptstep 20 20 15	ОН	
N IN		Low med		Slow	Low	OL*	Organic silts and organic silt-clays of low to medium plasticity	moisture content, consistency, structure, stratification, and odour. Give local or geologic name and other pertinent descriptive	10	CL OL OL OL	or MH	
FINE GRA More than 50% of material less th	SILTS AND CLAYS Liquid limit >50	Low med		Slow to none	Low to medium	MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, silts of high Liquid Limit			0 <u>10</u>	60 60 70 80 %)	
re than £	LTS AND CLAY Liquid limit >50	High very		None	High	СН	Inorganic clays of high plasticity	Example:		Laboratory: MC Moisture Cont		num Dry Density
Mo	Med Med			None to very slow	Low to medium	OH*	Organic clays of high plasticity	CLAYEY SILT (ML), brown, low plasticity, trace sand, firm, dry, numerous vertical		LL Liquid Limit PL Plastic Limit PI Plasticity Index LS Linear Shrinka	PSD Partic x UU Undra	num Moisture Content cle Size Distribution ained Unconsolidated olidated Undrained
ORG SC	GHLY GANIC DILS	sp	ongy 1	entified by col feel and frequ fibrous texture	ently by	Pt*	Peat and other highly organic soils	root holes.		$\begin{array}{ll} \rho_{p} & \text{Particle Densit} \\ \rho_{b} & \text{Bulk Density} \\ \rho_{d} & \text{Dry Density} \end{array}$	ty CD Cons I _{s(50)} Point	olidated Drained Load Index ial Compressive gth

Boundary classifications – Soils possessing characteristics of two groups are designated by combinations of group symbols. For example GW-GC, well graded gravel-sand mixture with clay binder. * effervesces with H_2O_2

DESCRIPTION OF A SOIL

- Colour i.
- Plasticity or particle characteristics of soil ii. Secondary components name
- iii.
- iv. Estimated proportion v.
- Secondary component plasticity or particle characteristics
- vi Other minor soil components vii.
- Structure of soil, geological origin viii. Consistency / density
- ix. Moisture condition

Те	rm	Grain Size	Shape and Texture	Field Guide
CL	AY	< 2 µm	Shiny	Not visible under 10x
SI	LT	7 – 75 µm	Dull	Visible under 10x
	Fine	0.075 – 0.2 mm		Visible by eye
SAND	Medium	0.2 – 0.6 mm		Visible at < 1 mm
	Course	Course 0.6 – 2.36 mm Angular / sub -		Visible at < 3 mm
	Fine	2.36 – 6 mm	angular /	Visible at < 5 mm
GRAVEL			sub -	Road Gravel
	Course	20 – 63 mm	rounded /	Rail ballast
COBBLES		63 – 200 mm		Beaching
BOUL	DERS	> 200 mm		

COLOUR

The colour of a soil should be described using simple terns, such as black, white, grey, red, brown, orange, yellow green or blue. These may be modified as necessary by 'pale', 'dark' or 'mottled'. Borderline colours may be described as a combination of these colours (e.g. orange brown). Where a soil consists of a primary colour with a secondary mottling it should be described as (primary colour) mottled (first colour) and (secondary colour). Where a soil consists of two colours presented in roughly equal proportions the colour description should be mottled (first colour) and (secondary).

PARTICLE CHARACTERISTICS - COARSE GRAINED SOILS

Term	Description
Well Graded	Having good representation of all particle sizes
Poorly graded	With one or more intermediate size poorly represented
Gap graded	With one or more intermediate sizes absent
Uniform	Essentially of one size

ANGULARITY - COARSE GRAINED SOILS

Rounded Sub-rounded

3

LASTICITY					
Liquid limit (%)	Description				
≤ 35	Low plasticity				
>35 to ≤ 50	Medium plasticity				
> 50	High plasticity				

DESCRIPTIVE TERMS FOR SECONDARY AND MINOR COMPONENTS

Coa	rse Grained Soils	Fine grained soils					
% Fines	Modifier	% Coarse	Modifier				
≤ 5	Omit or use 'trace'	≤ 15	Omit, or use 'trace'				
>5 to ≤12	Describe as 'with clay/ silt' as applicable	>15 to ≤ 30	Describe as 'with sand/ gravel' as applicable				
> 12	Prefix soil type as 'clayey/silt' as applicable	> 30	Prefix soil type as 'sandy/ gravelly' as applicable				

CONSISTENCY TERMS - COHESIVE SOILS

Term	Undrained shear strength	SPT (N) Blow Count	Field Guide to consistency
Very Soft (VS)	<12	0-2	Easily penetrated several centimetres by fist, exudes between fingers when squeezed in fist
Soft (S)	12 – 25	2-4	Easily penetrated several centimetres by thumb, easily moulded by light finger pressure
Firm (F)	25 – 50	4 - 8	Can be penetrated several centimetres by thumb with moderate effort, and moulded between the fingers by strong pressure
Stiff (St)	50 – 100	8 – 15	Readily indented by thumb but penetrated only with difficultly. Cannot be moulded by fingers
Very Stiff (VSt)	100 – 200	15 –30	Readily intended by thumb nail, still very tough
Hard (H)	>200	>30	Indented with difficulty by thumb nail, brittle

CONSISTENCY TERMS - NON COHESIVE SOILS

Term	Density Index (%)	SPT (N) Blow Count	Field Guide to Density		
Very Loose (VL)	< 15	0 – 4	Ravels		
Loose (L)	15 – 35	4 – 10	Shovels easily		
Medium Dense (MD)	35 – 65	10 – 30	Shovelling very difficult		
Dense (D)	65 - 85	30 – 50	Pick required		
Very Dense (VD)	> 85	50 -100	Pick difficult		

MOISTURE

Term (Symbol)	Description
Dry	Looks and feels dry, cohesive soils hard and friable
Moist	Soil feels cool, darkened in colour, tends to cohere
Wet	Free water on remoulding
< Wp	Hard and friable or powdery, moisture content well below plastic limit
Wp	Soil feels cool, darkened in colour, can be moulded, near plastic limit
> Wp	Soil feels cool, dark, usually weakened, free water, moisture content well above plastic limit

STRUCTURE

Term	Description
Zoning	Soils may consist of separate zones different in colour, grain size or other properties.
	The thickness, orientation and any distinguishing features of the zone should be described i.e. gradational or distinct boundaries. The patterns of these zones may be described using layer (zone is continuous), lens (a discontinuous layer of different material, with lenticular shape) or pocket (irregular inclusion of different materials).
Defects	The dimensions, orientation and spacing of the defects should be given. The surface of the defects should be described in terms of texture
	(rough, polished) and coating.
	Defects may be re-cemented and may be stronger than the parent soils.
	Defects may include fissures, cracks, roots, roots and tube holes, infill tubes, in-filled seams, dykes.
Cementing	Soils or defects within soils may be cemented together by various agencies.
	The nature of the cementing agent should be identified if possible, strength, reaction to acid and the like.
	Weakly cemented – If the cementing agent allows the particle aggregation to be easily fractured by hand when the soil is saturated.
	Strongly cemented – If the cementing agent prevents fracturing by hand of the particle when the soil is saturated (use strength classification as per rock)

ADDITIONAL OBSERVATIONS

Geological origin

Term	Description
Weathered in	Extremely weathered soil - Structure and fabric of parent rock visible
place soils	Residual soil - Structure and fabric of parent rock not visible
	Aeolian soil - Deposited by wind
	Alluvial soil - Deposited by streams and rivers
Transported soils	Colluvial soil -Deposited on slopes (transported down slope)
00110	Lacustrine soil - Deposited by lakes
	Marine soil - Deposited in ocean, bays, beaches and estuaries
	Soil Fill - Describe soil type, UCS symbol and add 'FILL'
Fill materials	Rock Fill - Rock type, degree of weathering, and word 'FILL'
	Domestic Fill - Percent soil or rock, whether pretrucible or not
	Industrial Fill - Percent soil, whether contaminated, particle size & type of waste product, i.e. – brick, concrete, metal

Any scour should be noted.

ORGANIC OR ARTIFICIAL MATERIALS

Preferred Terms	Secondary Description
Organic matter	Fibrous peat, charcoal, wood fragments, roots (greater than 2 mm diameter), root fibres (less than 2 mm diameter)
Waste fill	Domestic refuse, oil, bitumen, brickbats, concrete rubble, fibrous plaster, wood pieces, wood shavings, saw dust, iron filings, drums, steel bars, steel scrap, bottles, broken glass, leather.

Rock Description

ROCK TYPE

Composition of the rock material i.e. colour, grain size, structure, texture, fabric, mineral composition, hardness alteration, cementation etc. as applicable. Condition of the material i.e. estimated strength, weathering and moisture condition. Rock mass properties i.e. structure of rock, defects – type, orientation spacing, roughness, waviness and continuity and weathering (of the rock mass).

GRAIN SIZE

Particle size scales depends on rock type. For sedimentary rocks, the following descriptors can be used:

- Sand terms for sandstone
- Gravel terms for conglomerates and breccias
- No description of grainsize is required for claystone, siltstone, shale and mudstone etc.

For metamorphic and igneous rocks, record the typical grain size in millimetres

COLOUR

The colour of a rock should be described using simple terms, such as black, white, grey, red, brown, orange, yellow, green or blue. These may be modified as necessary by 'pale', 'dark' or 'mottled'. Borderline colours may be described as a combination of these colours (e.g. grey green).

STRUCTURE

Terms typically used to describe the structure of a rock mass where possible include:

- Sedimentary rocks bedded, laminated
- Metamorphic foliated, banded, cleaved
- Igneous rocks massive, flow banded.
- The spacing or thickness of these structural features should be given as described in the table below:

Bedding Term	
Very thinly laminated	
Thinly laminated	
Laminated	
Thinly Bedded	
Medium bedding	
Thickly bedded	
Very thickly bedded	

TEXTURE

Туре	Definition
Massive	Effectively Homogeneous and isotropic. Bulky or equidimensional and elongated or tabular grains uniformly distributed.
Distinct	Bedded, foliated, cleaved – effectively homogeneous with planar anisotropy. Elongated or tabular grains or pores in a layered arrangement. The arrangement of grains, referred to as the rock fabric, may show a preferred orientation.

STRENGTH

Term	Code	I _{s(50)} (MPa)	Field Guide to Strength
Extremely Low	EL	≤ 0.30	Easily remoulded by hand to a material with soil properties.
Very Low	VL	> 0.03 to ≤0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.
Low	L	> 0.1 to ≤ 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blow of the pick point; has dull sound under hammer. A piece of core 150 mm long 50 mm in diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium	М	> 0.3 to ≤ 1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm in diameter can be broken by hand with difficulty.
High	н	> 1 to ≤ 3	A piece of core 150 mm long by 50 mm in diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High	VH	> 3 to ≤ 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High	EH	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

 These terms refer to the strength of the rock material and not to the strength of the rock mass which may be considered weaker due to the effect of rock defects.

2. The field guide visual assessment of rock strength may be used for preliminary assessment or when point load testing is not available.

3. Anisotropy of rock material samples may affect the field assessment of strength

WEATHERING CLASSIFICATION

Degree of weathering		Definition
Residual soil (RS)		Soil developed from weathering of rock in-situ. The mass structure and substance fabric are no longer evident.
Extremely weathered rock (EW)		Rock is weathered to such an extent that it has soil properties. It disintegrates or can be remoulded in water. It shows a rock fabric but is described as a soil.
Highly weathered rock (HW)	Distinctly weathered (DW)*	Secondary minerals often weathered to clay. Staining of most grain boundaries and some disintegration due to weakening of grain bonds. Often significant loss of strength. However cementing of joints can occasionally lead to strengthening.
Moderately weathered rock (MW)		Staining and pitting of most secondary minerals and other grain boundaries. The loss of strength depends on the weathering and extent of secondary minerals in the rock matrix. The rock substance may be highly discoloured, usually by iron staining.
Slightly weathered rock (SW)		Secondary minerals are stained but not pitted, slight staining at some grain boundaries. Little or no change of strength indicated by amount of colour change.
Fresh rock (F)		Rock shows no sign of decomposition or staining. Relatively strong.

*Distinctly Weathered indicates a distinct change in colour, hardness and/or friability and not distinguishable into HW or MW

DESCRIPTION OF A DISCONTINUITY

- Depth
- Dip
- Infill material
 Aperture observation
- Aperture observationPlanarity
- Small scale roughness
- Aperture measurement (mm)
- Remark
- Roughness Class

INFILL MATERIAL

Code	Description
CA	Calcite
СН	Clay
CG	Clayey gravel
GM/ GP/ GW	Gravel
Fe	Iron oxide
Fe Clay	Iron oxide clay
Qz	Quartz
X	Carbonaceous

APERTURE OBSERVATION

Term	Code	Description
Clean	CN	No visible coating or infill
Stain	Sn	No visible coating or infill but surfaces are discoloured by mineral staining
Veneer <1 mm	VR	A visible coating or soil or mineral substance but usually unable to be measured. If discontinuous over the plane, patchy veneer.
Coating >1 mm to <10mm	СТ	A visible coating or infilling of soil or mineral substance. Describe composition and thickness.
Filling (Filled) >10 m	Filled	A visible filling of soil or mineral substance. Describe composition and thickness.

PLANARITY

Description
Curved
Discontinuous
Irregular
Planar
Stepped

SMALL SCALE ROUGHNESS

Code	Description
POL	Polished
RF	Rough
S	Smooth
SL	Slickensided
VR	Very rough

ROUGHNESS CLASS

Code	Description
I	Rough or irregular, stepped
II	Smooth, stepped
III	Slickensided, stepped
IV	Rough or irregular, undulating
IX	Slickensided, planar
V	Smooth, undulating
VI	Slickensided, undulating
VII	Rough or irregular, planar

TYPE OF DISCONTINUITY

Term	Code	Description						
Bedding	BP	Generally no micro fractures	Arrangement in layers, of mineral grains of similar					
Foliation	FL	Discontinuous micro	sizes or composition, and/or arrangement of					
Cleavage	CL	fractures may be present, near parallel	elongated to tabular minerals near parallel to one another, and/ or to the					
Schistosity	SH	to the layering	layers.					
Contact	со	A contact is the surface another.	along which one rock touches					
Joint	JT	across which the rock us strength. The joint may be open (f by soil substance or by r	illed with air or water) or filled rock substance or rock a cement, joint surface may					
Shear seam/ zone	Shear seam/ SS/ SS/ SS/ SS/ SS/ SS/ SS/ SS/ SS/ S							
Crushed seam/ zone	CS/ CZ	these. Some minerals maybe altered or decomposed but this						
Decomposed seam / zone	DS/ DZ							
Infill seam/ zone	IS	roughly parallel boundar substance. The infill is caused by m joints. May show layering roug boundaries. Geological structures in	The infill is caused by migration of soil and into open oints. May show layering roughly parallel to the zone					
Vein	VN	vein is a distinct sheet lik minerals within a rock	e body of crystallized					
Dyke	DK	Dykes are sheet-like bodies of igneous rock that cut across sedimentary bedding or foliations in rocks. They may be single or multiple in nature.						
Sill	SI	A sill is an intrusion of m underground between th rock	agma that spreads le layers of another kind of					
Void	VO	A completely empty spa	ce.					

Refer to Table A10 in AS1726-1993

Drilling

DRILLING / EXCAVATION METHOD

Code	Description
AD/V	Auger drilling V-bit
AD/T	Auger drilling with TC-bit
AT	Air track
В	Bulldozer
BD	Backhoe bucket
BH	Washbore drag pit
CA	Casing advancer
E	Excavator
EH	Excavator with hammer
HA	Hand auger
NMLC	NMLC core barrel
HMLC	HMLC core barrel
NQ3	Wire line NQ core barrel
HQ3	Wire line HQ core barrel
PQ3	Wire line PQ core barrel
PT	Push tube
RR	Rock roller
WB	Washbore
Х	Existing excavation
N	Natural exposure

WATER/ DRILLING FLUID

WATER DRIELING FLOD									
Symbol	Description								
\square	Water loss: partial								
	Water loss: complete								
► ►	Water inflow								
	Water outflow								
<u> </u>	Water level: drilling								
	Water level: standing								

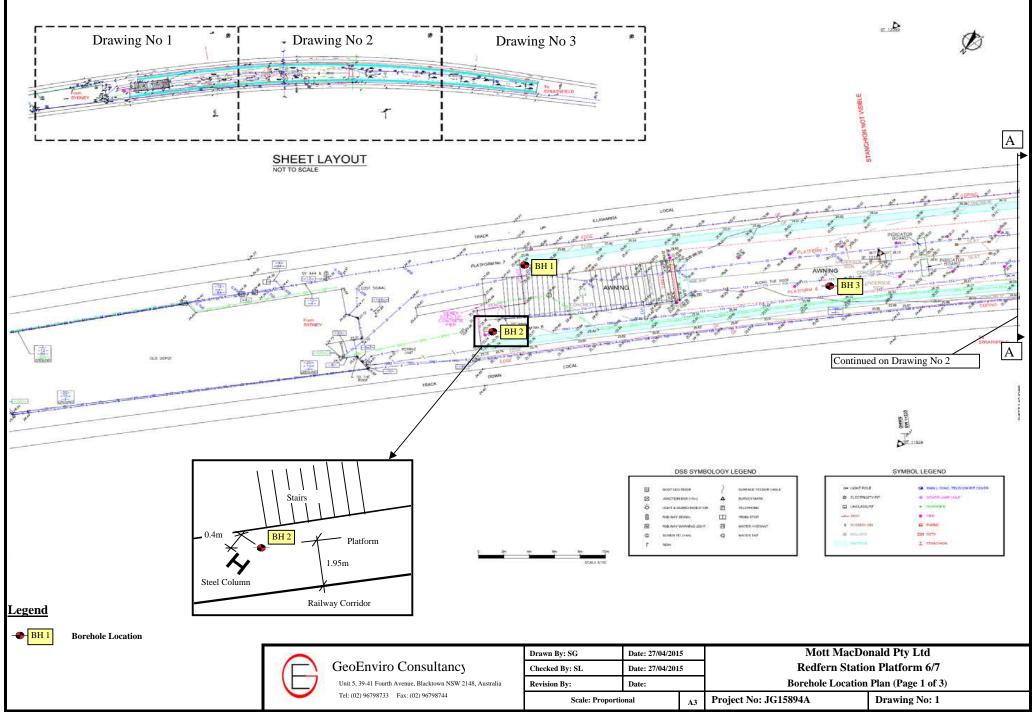
DRILLING PENETRATION

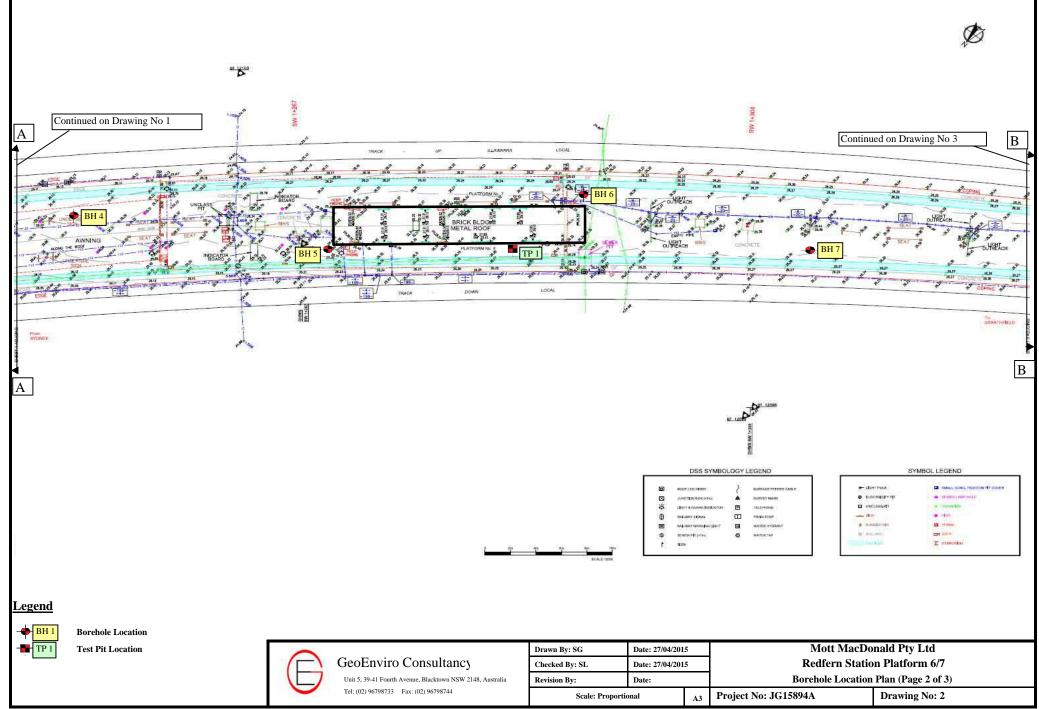
DRILLING PENETRATION									
Ease of penetration in non-core drilling									
Code Description									
VE	Very easy								
E	Easy								
F	Firm								
Н	Hard								
VH	Very hard								

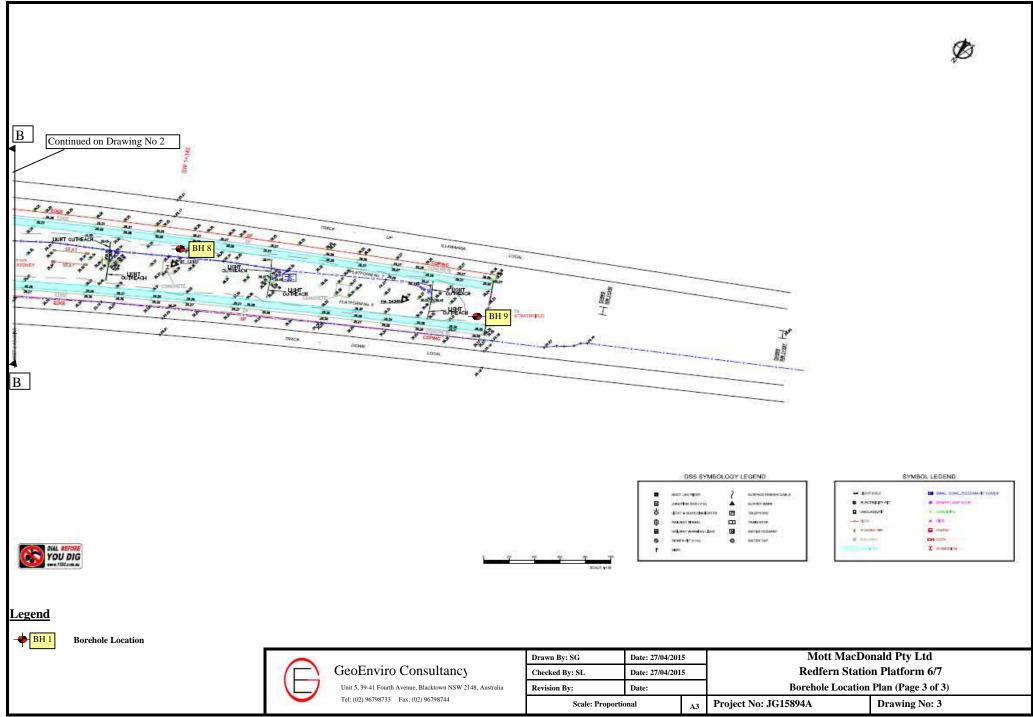
SAMPLES AND FIELD TEST

Code	Description
В	Bulk disturbed sample
BLK	Block sample
DS	Small disturbed sample
ES	Soil sample for environmental testing
EW	Water sample for environmental testing
LB	Large bulk disturbed sample
Р	Piston sample
SPT	Standard Penetration Test
VS	Vane shear test
HP	Hand penetrometer test
U	Undisturbed push in sample

BACKFILL / WELL DETAIL


Symbol	Description
	Cement seal
	Grout backfill
	Blank pipe
	Slotted pipe
	Filter pack: sand filter
	Bentonite seal
	Backfill – excavated material


J	AC	OB	S	CI	LIENT OCATIO		vdne	v Train	S PROJECT : Redfern Static		-00	6	HOLE NO : BH01 FILE / JOB NO : IA134800 SHEET : 1 OF 1
POS	SITION	۱ :						,	SURFACE ELEVATION :		ANG	GLE F	ROM HORIZONTAL : 90°
	TYPE			•		DUNTIN			CONTRACTOR :	2			ILLER : D. Jones
DAT	E ST/	ARTE	D: 1	3/04/201	7 DAT	TE CON	1PLE	TED :	13/04/2017 DATE LOGGED : 13/04/2017	LOGGED B	BY : N	MG	CHECKED BY :
		DF	RILLIN	IG		1			MATE	RIAL			
PROC	GRESS	UN U	TER	s & STS	Ê	U	LION				₩ N	Х П К С	
DRILLING & CASING	WATER	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteri: Secondary and Minor Components	stic	MOISTUF	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
					0.0			0.03m/ 0.15m	Asphaltic CONCRETE: 30mm thick.	/			PAVEMENT
				0.30m				\	FILL: Sandy GRAVEL: Grey and dark grey, fine to mediun o angular, sand is fine to coarse grained.				FILL
				ES 0.50m SPT 5,6,6 N=12					FILL: Silty SAND: Brown and grey, fine to medium grained ine to medium subangular to angular gravel and a trace o	d, with some of clay fines.	D		
				0.95m			}	0.90m		P			
				1.30m	1.0-				FILL: Silty CLAY: Brown and grey mottled red-brown, med with a trace of sand and fine subangular to angular gravel	lum plasticity, I.			
				ES 1.50m] -	-888	Ŕ						
		E		SPT 6,8,11 N=19					At 1.50m, with some fine to coarse subangular to angular	gravel.	D - M		
			/ed	1.95m	2.0-								
			Not Observed				<u> </u>	2.40m					
T PT			Not O						Silty CLAY: Grey mottled red-brown, high plasticity.				RESIDUAL SOIL
				2.80m		V//							
				ES	1 -	\mathbb{V}/\mathbb{V}							
				3.00m SPT 10,14,17	3.0	$\langle / / \rangle$	CI		From 3.00m, with some iron indurated bands.		м	Н	3.00: HP: >600, >600, >600 kPa
				N=31	-	$\langle / / \rangle$	1						
				3.45m		\mathbf{V}/\mathbf{A}		0.50					
					-				SHALE: Grey mottled red-brown, extremely weathered, extremeth, indistinctly laminated.	xtremely low			BEDROCK
					4.0-								
		F			-								
				4.50m SPT									
				10,18,21 N=39	-				From 4.50m, becoming grey mottled red-brown and orang	je-brown.			
					-								
Y				4.95m	5.0			4.95m	Hole Terminated at 4.95 m				
					-	-							
						1							
					-	-							
					6.0 —	1							
						1							
					-	-							
					-	-							
						_							
					7.0								
					7.0-	1							
					-	1							
					-	1							
					-	-							
					-	-							
	<u> </u>			Ļ	8.0								
deta	Explai ils of a isis of	bbrev	riation	S									


J	AC	OB	S			: 5	Sydne	I-CORE DRILL HOLE - GEOLOGICAL y Trains PROJECT : Redfern Station ENE SP3 n, NSW	LOG	6	HOLE NO : BH02 FILE / JOB NO : IA134800 SHEET : 1 OF 1
PO	SITION	N :				UN . 1	Veule	SURFACE ELEVATION :	ANG	GLE FI	ROM HORIZONTAL : 90°
RIG	TYPE	E : D	rill Ri	g	MC	DUNTIN	IG :	Track CONTRACTOR : Terratest Pty	/ Ltd	DR	ILLER : D. Jones
DA	TE ST.	ARTE	D: 1	3/04/201	7 DAT	LE COV	/IPLE	TED : 13/04/2017 DATE LOGGED : 13/04/2017 LOGGED	BY : N	MG	CHECKED BY :
		DF	RILLIN	IG				MATERIAL			
PRO	GRESS	G ION	ATER	s & STS	Ê	U	TION		щN	≻ vu vu vu	
DRILLING & CASING	WATER	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	0.0 DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTUF	CONSISTENCY RELATIVE DENSITY	
					0.0-			Apphaltic CONCRETE: 30mm thick.	D	1	PAVEMENT
				0.30m ES			\$	to angular, sand is fine to coarse grained.		1	FILL
				0.50m SPT 4,3,5 N=8				FILL: Silty SAND: Brown, fine to medium grained, with some fine to medium subangular to angular gravel and some clay fines.			
					-		}	0.75m FILL: Silty CLAY: Brown and grey mottled red-brown, medium plasticity,			0.80: HP: 470, 550, 500 kPa
				0.95m	1.0		8	with some iron indurated bands.	D - M		
		Е			.		8				
		-		1.30m ES	1.		3				
				1.50m SPT 6.9.17	1.	XXX		1.60m			
			rved	6,9,17 N=26				Silty CLAY: Grey mottled red-brown, high plasticity.			RESIDUAL SOIL 1.70: HP: >600, >600, >600 kPa
			Not Observed	1.95m	2.0						
- PT			Not		2.0-	V/	СІ		м	н	
					-						
					-			2.50m SHALE: Grey mottled red-brown and orange-brown, extremely			BEDROCK
				2.80m	-		1111	weathered, extremely low strength, indistinctly laminated.			
				2.80m ES							
				3.00m SPT 11,17,27	3.0						
		F		N=44							
				3.45m 3.50m							
				ES 3.70m	-						
				D	-			From 3.70m, becoming grey and dark grey.			
┝╨	-			4.00m	4.0		-	4.00m Hole Terminated at 4.00 m			
					-						
					-	-					
					-	_					
					-						
					5.0 —						
					-	-					
					-						
					-						
						_					
					6.0-						
					.						
					.						
					7.0-						
					1.0						
					-						
					-	1					
					-	1					
					-	1					
deta	Expla ails of a	abbrev	viation	S	8.0 -	•				•	
	asis of										

J	AC	OB	S	CI			Sydne	ey Trai	DRE DRILL HOLE - GEOLOGICAL L ns PROJECT : Redfern Station ENE SP3 W	.00	•	HOLE NO : BH03 FILE / JOB NO : IA134800 SHEET : 1 OF 1
POS	SITION	N :			00/111		conc	, rec	SURFACE ELEVATION :	ANG	GLE FI	ROM HORIZONTAL : 90°
	TYPE			-		DUNTIN						ILLER : D. Jones
DAT	E ST	ARTE	D: 1	3/04/201	7 DAT	E CON	1PLE	TED	: 13/04/2017 DATE LOGGED : 13/04/2017 LOGGED B	Y : I	ЛG	CHECKED BY :
		DF	RILLIN	IG					MATERIAL			
PROG	GRESS				Ê	0	NO			шz	۲. ۲.	
DRILLING & CASING	WATER	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	0 0 DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURI	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
					0.0	\otimes		0.03m/ 0.20m	Asphaltic CONCRETE: 30mm thick.	D		PAVEMENT
				0.30m ES				0.30m	FILL: Sandy GRAVEL: Grey and dark grey, fine to medium, subangular to angular, sand is fine to coarse grained.		1	FILL
				0.50m					FILL Sitty SAND: Brown and yellow-brown, fine to medium grained, with some fine to medium subangular to angular gravel and a trace of clay fines.			
				SPT 2,4,6 N=10	-				FILL: Silty CLAY: Brown and grey mottled red-brown, medium plasticity,	D - M		
					-	\otimes			with some fine to medium subangular gravel.			
				0.95m 1.00m ES	1.0		8					-
				1.20m				1.10m	Silty CLAY: Grey mottled red-brown, high plasticity.			RESIDUAL SOIL
				1.30m ES								
		Е		1.50m SPT	-	$\langle / /$						1.50: HP: 580, 440, 450 kPa
			eq	8,11,12 N=23	-	V//						
			Not Observed	1.95m	-	$\langle / / \rangle$					VSt - H	
- Fq			Not O	1.0011	2.0 —	\langle / \rangle	С			м		-
					-	$\langle / / \rangle$	1					
				2.50m	-	$\langle / / \rangle$	1					
				D	1.	\mathbb{X}/\mathbb{A}	1					
											н	
				3.00m	3.0			3.00m				
				SPT 9,17,16 N=33	3.0-				SHALE: Grey mottled red-brown and orange-brown, extremely weathered, extremely low strength, with some iron indurated bands.			BEDROCK
				N=33	-							
		F		3.45m 3.50m								
				D	-				From 3.50m, becoming grey and dark grey.			
					-							
L 🕇	-			4.00m	4.0			4.00m	Hole Terminated at 4.00 m			
					-							
					-							
					-							
					5.0 —							
					-							
					-							
					-							
					-	-						
					6.0 -	_						-
					-							
					-							
					7.0-	-						
					-	_						
					-	-						
					-	-						
					.							
					8.0-							
deta	Expla ils of a	bbre	viation	IS								
	isis of											

25	SITIO	N :			CATIO				SURFACE ELEVATION :	ANG	GLE FI	ROM HORIZONTAL : 90°
IG	TYPE	E : D	rill Rig	g	MO	UNTIN	G :	Track	CONTRACTOR : Terratest Pty I	_td	DR	ILLER : D. Jones
A	TE ST	ARTE	D: 1	3/04/201	7 DAT	ECOM	IPLE	TED	13/04/2017 DATE LOGGED : 13/04/2017 LOGGED B	Y : N	ИG	CHECKED BY :
		DF	RILLIN	IG		[MATERIAL			
RO	GRESS	UN NO	TER	s & STS	Ê	υ	LION			шZ	Х С	
& CASING	WATER	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTUR	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
•					0.0			0.03m/ 0.15m	Asphaltic CONCRETE: 30mm thick.	D		PAVEMENT
				0.30m ES	-		2		FILL: Sandy GRAVEL: Grey and dark grey, fine to medium, subangular to angular, sand is fine to coarse grained.			FILL
				0.50m SPT 2,2,3 N=5			2 2 2 2		FILL: Silty CLAY: Dark brown, grey, low to medium plasticity, with a trace of fine subangular gravel. At 0.50m, with a trace of tree roots.			
				0.95m	-							
					1.0					D - M		
				1.30m ES	-							
		E		1.50m	-		>					
			5	SPT 4,4,4 N=8	-				At 1.50m, with some fine to coarse subangular to angular gravel.			
			serve						From 1.80 m to 1.90 m, pale grey sandstone.			
- PT -			Not Observed	1.95m	2.0 —	\not		2.00m	Silty CLAY: Grey mottled red-brown, high plasticity with some iron			RESIDUAL SOIL
				2.30m	-				indurated bands.			
				ES 2.50m	1 -							
				D	1 -		CI			м	н	2.50: HP: 540, 510, 570 kPa
				2.70m	-							
				3.00m	3.0			3.00m				
				SPT 8,16,23 N=39	_				SHALE: Grey mottled red-brown and orange-brown, extremely weathered, extremely low strength.			BEDROCK
		F		3.45m								
				3.70m D	-							
				4.00m	-			4.00				
-				4.00m	4.0			4.00m	Hole Terminated at 4.00 m			
					-							
					-							
					-	-						
					-	-						
					5.0 —							
					-							
					-	-						
					-							
					_							
					6.0							
					0.0							
					-							
					-							
					-							
					7.0 —							
					-	-						
					-	-						
					-							
					-							
					8.0 —							

Borehole Report

Borehole no: 1

Client: Mott MacDaonald Pty Ltd									Job no: JG15894A				
Proj	Project: Proposed Station Platform Upgrade									Date: 09/04/2015			
Loca	Location: Redfern Station Platform 6/7									Logged by: SL			
Drill	Drill Model and Mounting: Track DM40 Slope: 90 degrees									R.L. Surface:			
Hole Diameter: 100mm							Bearing: -	Datum:					
Method	Support	Water	Notes: Samples, Tests, etc	Depth(m)	Classification Symbol	Unified Soil Classification	Material Description Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component	Moisture Content	Consistency/Density Index	Dynamic Cone Penetrometer	Structure and Additional Observations		
GER					\times		Asphaltic Concrete- 40mm		ST	3	_		
SPIRAL AUGER	NIL	NIL			***		Crushed rock - 90mm Fill: Silty Clay: Medium plasticity, grey brown	D-M		2	-		
PIRA					X					4	– –		
S				0.5	X	CI	Silty Clay: Medium plasticity, grey	D-M	Н	13 14	-		
					X					21			
					X					20 12	-		
				1.0	X					20	-		
					X					18	DCP Terminated at 1.07m		
					X						-		
					X						_		
				1.5	X	CI	Silty Clay: Medium plasticity, grey	D-M			-		
					X	-					-		
					X						-		
				2.0	X						_		
					X						_		
					X	CI	Silty Clay: Medium plasticity, grey	D			-		
					X						-		
				2.5							-		
											-		
					X	CI	Silty Clay: Medium plasticity, grey, with weak shale bands, very stiff to hard	D					
				3.0			Shale: Grey, extremely to distinctly weathered, low strength				Auger Refusal		
							End BH 1 at 3.0m				_		
1											-		
				_									
1				3.5									
1				_	1								
				_]						F		
1				4.0	$\left \right $								
			4		- 1			-		-	-		
L													

Borehole Report

Borehole no: 2

Client: Mott MacDaonald Pty Ltd Job no: JG											5894A			
Project: Proposed Station Platform Upgrade										/04/2	2015			
Loca	ation	: Red	dfern S	station PI	atforr	n 6/7		Log	ged I	by: S	SL .			
Drill	Drill Model and Mounting: Track DM40 Slope: 90 degrees									R.L. Surface:				
Hole	Dian	neter:	100mr	n			Bearing: -	Datum:						
Method	Support	Water	Notes: Samples, Tests, etc	Depth(m)	Classification Symbol	Unified Soil Classification	Material Description Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component	Moisture Content	Consistency/Density Index	Dynamic Cone Penetrometer	Structure and Additional Observations			
GER					***		Asphaltic Concrete - 40mm				-			
SPIRAL AUGER	NIL	NIL		0.5	***		Fill: Silty Sand, fine to medium grained, with some grave				- - -			
					\otimes		Fill: Silty Clay: Medium plasticity, with gravel	M-W			_			
							End BH 2 at 0.65m				Hand Auger Refusal on Concrete. A steel bolt was noted on top of the concrete			

GeoEnviro Consultancy Pty Ltd Unit 5, 39-41 Fourth Avenue, Blacktown NSW 2148, Australia Tel: (02) 96798733 Fax: (02) 96798744

Borehole Report

Borehole no: 3

Client: Mott MacDaonald Pty Ltd									no: 、	JG15	5894A	
Project: Proposed Station Platform Upgrade										/04/2	2015	
				Station Pl				Log	ged l	by: S	۱L	
Drill	Mode	el and	d Mount	ting: Tracl	k DM4	0	Slope: 90 degrees	R.L. Surface:				
Hole Diameter: 100mm							Bearing: -	Datum:				
Method	Support	Water	Notes: Samples, Tests, etc	Depth(m)	Classification Symbol	Unified Soil Classification	Material Description Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component	Moisture Content	Consistency/Density Index	Dynamic Cone Penetrometer	Structure and Additional Observations	
SPIRAL AUGER	NIL	NIL			*		Asphaltic Concrete - 40mm			5	-	
PIRAL					~~~~		End BH 3 at 0.3m			7	Fill?	
05				0.5						27 8		
				_	-					6 4	Natural clay	
				_						4		
				1.0						7 6	–	
										6 11	-	
					-					11 16	F	
				1.5						17	-	
					-					20 22	-	
				2.0								
				2.0							-	
				2.5	-						-	
											F	
											-	
				3.0							<u> </u>	
					-						-	
											-	
				3.5	-						-	
					-						-	
				_							F	
				4.0							<u> </u>	

Borehole Report

Borehole no: 4

	Client: Mott MacDaonald Pty Ltd Job no: JG15894A													
Client: Mott MacDaonald Pty Ltd										Date: 09/04/2015				
Proj	Project: Proposed Station Platform Upgrade													
Loc	ation	: Red	dfern S	tation Pl		Logged by: SL								
Drill	Mode	and	l Mounti	ng: Track	R.L. Surface:									
Hole	Dian	neter	100mm	n	г г		Bearing: -	Datum:						
Method	Support	Water	Notes: Samples, Tests, etc	Depth(m)	Classification Symbol	Unified Soil Classification	Material Description Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component	Moisture Content	Consistency/Density Index	Dynamic Cone Penetrometer	Structure and Additional Observations			
GER					XXX		Asphaltic Concrete - 50mm		St	-				
- AUC	NIL	NIL				I-CH	Crushed rock - 50mm Silty Clay: Medium to high plasticity, grey with red mottle	D-M		2	_			
SPIRAL AUGER							with trace ironstone gravel			2	_			
S				0.5	X					4	_			
					X					3	-			
					X					3	_			
				1.0	X				Н	5 9	_			
				1.0	X					11	_			
					X					13	_			
					X					17 11	-			
				1.5	X					11	_			
					X					13	_			
							Silty Clay: Medium to high plasticity, grey with red mottle with trace ironstone gravel	D-M		11 13	_			
					X		C C			16	DCP Terminated at 1.90m			
				2.0			Site Class Madium to bick placticity and brown with	D-M			_			
							Silty Clay: Medium to high plasticity, red-brown, with some ironstone gravel	D-IVI			-			
					X						_			
					X						-			
				2.5	X						-			
					X						_			
							Silty Clay: Medium to high plasticity, grey, with some shale bands	D-M			-			
				3.0	X						_			
							Shale, extremely low strenght, extremely weathered rock							
┢							End Bh 4 at 3.20m				Auger Refusal			
				3.5							_			
1											-			
1														
1				4.0							_			
\vdash				4.0										

c:\\Lab\report\R007

								loh	no:	IG15	i894A
				onald Pty							
_		-		tation P		-	-			/04/2	
				tation Pl				Log		by: S	
				ng: Track	k DM4	0	Slope: 90 degrees		R.L.	Surfa	ace:
Hole	Diam	neter	100mm	า			Bearing: -	1	Datu	ım:	
Method	Support	Water	Notes: Samples, Tests, etc	Depth(m)	Classification Symbol	Unified Soil Classification	Material Description Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component	Moisture Content	Consistency/Density Index	Dynamic Cone Penetrometer	Structure and Additional Observations
GER					\otimes		Asphaltic Concrete :50mm thick Fill: Silty Clay: Medium plasticity, red yellow brown,		St	- 4	-
SPIRAL AUGER	NIL	NIL			$\frac{1}{2}$		some gravel, 150mm thick		0	1	
PIRA					X	CI-CH	Silty Clay: Medium to high plasticity, grey with red mottle	М		1	_
S				0.5	X		with trace ironstone gravel			3	-
					X					4	_
					X					3	_
				1.0	X	CI-CH	Silty Clay: Medium to high plasticity, grey with red mottle with gravel	IVI-VV		2	-
					X	CI-CH	Silty Clay: Medium to high plasticity, grey with red mottle	D-M	VSt	8	
					X		with ironstone gravel			8	_
					X				н	8 15	-
				1.5	X					13	_
					X					12 14	_
					X					22	-
					X					7	DCP Terminated at 1.83m
				2.0	X						-
					X						-
					X						_
1				<u>.</u>	X						Auger Refusal
				2.5	/ //		End BH 5 at 2.50m				on weathered shale
1											
1											-
1				3.0							
1											
1											-
1											
1				3.5							-
1											-
1				-							
┣─				4.0							

							1-1			0044
Clie	nt: M	ott N	/acDao	nald Pty	y Ltd					894A
Proj	ect: F	⊃rop	osed St	tation P	latform l	ograde			/04/2	
Loca	ation	Red	dfern St	tation Pl	latform 6	7	Log	ged l	oy: S	L
Drill	Mode	and	l Mountir	ng: Tracl	k DM40	Slope: 90 degrees		R.L.	Surfa	ace:
Hole	Diam	neter	100mm	ı		Bearing: -	<u> </u>	Datu	ım:	
Method	Support	Water	Notes: Samples, Tests, etc	Depth(m)	Classification Symbol Linifiad Soil Classification	Material Description Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component	Moisture Content	Consistency/Density Index	Dynamic Cone Penetrometer	Structure and Additional Observations
GER					××	Asphaltic Concrete: 50mm thick		St	- 3	-
SPIRAL AUGER	NIL	NIL			X	Base Coarse: 80mm thick Fill: Sand and Gravel, 50mm thick		51	3	_
PIRAI					CI-	H Silty Clay: Medium to high plasticity, grey with brown	D-M		2	-
SI				0.5	X	mottle			6 5	-
					X			VSt	6	—
					X				7	-
				1.0	X				8 6	-
				1.0	X				5	_
				_	X.				7	-
						H Silty Clay: Medium to high plasticity, grey with red mottle	D-M	Н	9 11	-
				1.5	X				8	_
					X				8	-
					X				8 9	_
					X				14	_
				2.0	X				15	-
					X				12 13	_
					X				15	-
				2.5	X				22	DCP Terminated at 2.40m
\vdash			\vdash	2.5	///	End BH 6 at 2.50m				
					4					-
				3.0						
					4					-
					-					-
]					
				3.5	4					-
					1					-
					1					
				4.0						-
⊢				4.0		1	I			

Clie	nt: M	ott N	lacDao	onald Pty	y Ltd			Job	no: 、	JG15	5894A
				tation P		n Up	grade	Date	e: 09	/04/2	2015
				tation Pl			-	Log	ged l	by: S	iL
Drill	Mode	l and	Mounti	ng: Tracł	k DM4	0	Slope: 90 degrees		R.L.	Surfa	ace:
Hole	Diam	neter:	100mm	า			Bearing: -		Datu	ım:	
Method	Support	Water	Notes: Samples, Tests, etc	Depth(m)	Classification Symbol	Unified Soil Classification	Material Description Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component	Moisture Content	Consistency/Density Index	Dynamic Cone Penetrometer	Structure and Additional Observations
GER					***		Asphaltic Concrete: 70mm thick			-	_
SPIRAL AUGER	NIL	NIL		0.5			Fill: Crushed rock, 100mm thick Fill: Silty Clay: Medium plasticity, red-brown	м	St	3 2 5 10 5	Appeared loose
					$\frac{1}{2}$		Silty Clay: Medium to high plasticity, grey with reddish-			4	
				1.0 1.5 2.0 2.5		CI-CH	Silty Clay: Medium to high plasticity, grey with reddish- brown mottle Silty Clay: Medium to high plasticity, pale grey with red mottle, with some ironstone gravel Silty Clay: Medium to high plasticity, pale grey	M D-M	VSt H	5 7 7 7 8 11 11 9 9 12 11	DCP Terminated at 1.90m
				3.0			End BH 7 at 2.90m				

Clie	nt: M	ott N	lacDao	nald Pty	u I td			Job	no: 、	JG15	i894A
				tation Pl		m L Inv	arada		e: 09		
_		-		tation Pl		-	-		ged I		
				ng: Track			Slope: 90 degrees	9	-	Surfa	
			100mm	-	K DIVI4	0	Bearing: -		R.∟. Datu		ace.
11010	Diail	ietei.	1001111	1		c	Dearing				
Method	Support	Water	Notes: Samples, Tests, etc	Depth(m)	Classification Symbol	Unified Soil Classification	Material Description Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component	Moisture Content	Consistency/Density Index	Dynamic Cone Penetrometer	Structure and Additional Observations
GER					***		Asphaltic Concrete: 65mm thick		L	- 6	_
SPIRAL AUGER	NL	NIL			***		Fill: Silty Clay: Medium plasticity, grey-brown to red-			3	-
PIRA					***		brown,	М		2	_
S				0.5	***					3 2	Loose Fill
					***		Fill: Clayey Sand, fine to medium grained, yellow-brown	М		2	_
					***					3	_
				1.0	***				St-	3 8	
					***				VSt	5	_
					***		Fill: Sandy Clay/Clayey Sand, medium plasticity, yellow-brown			4	-
					***		yenow-blown			5	-
				1.5	***					6	_
					$\frac{1}{2}$	CI-CH	Silty Clay: Medium to high plasticity	м		7 7	
					X	01 011				8	
					X				н	13	_
				2.0	X					17 22	DCP Terminated at 2.10m
					X						Bor Tommatod at 2. Tom
					X		Silty Clay: Medium to high plasticity, pale grey				-
				2.5	X		to hard	MC =PL	(Vst -H)		-
					X						-
					X						_
					X						-
				3.0	X						-
<u> </u>					N		End BH 8 at 3.10m				
1											
1											_
1				3.5							-
1											
1											-
1				4.0							-
	•										
L											

<u></u>								Joh	no.	IG15	5894A
				onald Pty							
-		-		tation PI			-			/04/2	
				tation PI				Log	-	by: S	
				ng: Track	CDM4	0	Slope: 90 degrees			Surfa	ace:
Hole	Dian	neter:	100mm	า			Bearing: -	1	Datu	ım:	
Method	Support	Water	Notes: Samples, Tests, etc	Depth(m)	Classification Symbol	Unified Soil Classification	Material Description Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component	Moisture Content	Consistency/Density Index	Dynamic Cone Penetrometer	Structure and Additional Observations
GER					***		Asphaltic Concrete: 50mm thick			-	_
SPIRAL AUGER	NIL	NIL			***		Fill: Silty Clay: Medium plasticity, red-brown		St	3	-
PIRA				_	***		Fill: Silty Clay: Medium to high plasticity, grey-brown,	М		2	-
S				0.5	***		with trace gravel			2	Appeared Loose
					***				F	2	
					***					1	_
				1.0	***					1 1	-
					***					1	
					***				St	2	-
					\otimes				01	2	_
				1.5	X	CI-CH	Silty Clay: Medium to high plasticity	М	St	2	_
					X				VSt	4 10	-
					X					9	-
					X	CI-CH	Silty Clay: Medium to high plasticity, yellow-brown, with some sand	M-W		6 5	_
				2.0		SC	Sandy Clay/Clayey Sand: Medium plasticity, fine	M-W		5 6	-
				_			to medium grained, yellow brown		н	10	
					I)	CI	Silty Clay: Medium plasticity to very stiff	МС		11 13	-
				2.5	X	01	only only. We durn plasticity to very stin	>=		17	DCP Terminated at 2.50m
				_	X			PL			_
					X						-
				_	X						_
				3.0	X						_
					X						-
					X						-
1				25			End BH 9 at 3.30m				-
1				3.5							
1											F I
											-
				4.0							–
L											

ח 1: .

Ies	st P	'It F	kep	ort				Test	t Pit I	No:	1
Clier	nt: Mo	ott Ma	acDor	nald Pty L	td			Job	no: 、	JG15	5894A
Proje	ect: P	ropos	sed S	Station Pla	tform	n Upg	rade	Date	e: 09	/04/2	2015
Loca	tion:	Redf	ern S	tation Pla	tform	n 6/7		Log	ged I	oy: S	SG
Equip	ment	: Man	ual					R.L.	Surfa	ce:	
Pit Di	mens	ions: (0.7m	x 0.5m x 1.	0m	1		Datu	ım:		1
Method	Support		Notes: Samples, Tests, etc	Depth(m)	Classification Symbol	Unified Soil Classification	Material Description Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component	Moisture Content	Consistency/Density Index	DCP Blow Counts	Structure and Additional Observations
	NIL	DRY					Asphaltic Concrete - 60mm		F	-	+
NOI							Fill: Gravelly Silty Clay: Medium plasticity, grey red,	M-W		1	+
MANUAL EXCAVATION				0.5			with ironstone gravel		St	1 5	+
T EXC				0.5					01	3	
ANUA						CI-CH	Silty Clay: Medium to high plasticity, grey with red	Μ		2	F
Σ							mottle, with fine to coarse grained ironstone gravel			5 5	+
				1.0						3	
							End Test Pit 1 at 1.0m		VSt	5 7	+
										8	+
										9	I.
				1.5						8 8	+
										7	
									Н	9	F
				2.0						13 13	+
										13	<u> </u>
										14 17	DCP Terminated at 2.30m
				2.5							
											-
				0.0							-
				0.0							E
											F
											-
				0.5							F
											F
							Concrete				E
											F
				1.0		I		I			

Photo 1: Footing excavation for Station Building

Photo 2: Test Pit 1

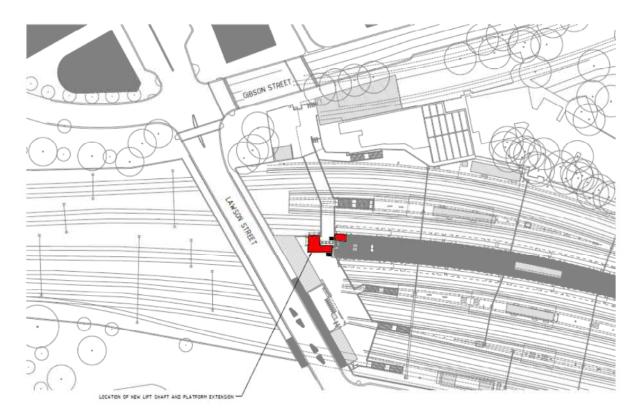


Photo 3: Concrete footing at the base of the test pit,

Figure 1 Site Location Plan

Final Redfern Report Rev2.docx

Borehole No: BH01

Engineering Log - Borehole

SHEET 1 OF 2

C	om	-	ed	ing Drilli	ng	22.11.14 22.11.14	Northing Easting	1248365.10 318302.30	Slope Bearing		0° -	Equipmen Ground Le	evel 2	Geoprobe 7822DT 4.85 AHD
D	RIL		G				MATERI	AL DESCRIPTION				TESTING, SA	AMPLING	& OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: colour and	cription of Soil plasticity/grainsize, other components)		Moisture Condition	Consistency	Tests	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observation
		-	- - -		SM			parse grained, pale grey, etation, appears poorly co					D	FILL
NDD		- - 24 -	 1		CI	Clayey GRAVE	EL: grey, with iron	n staining					D	RESIDUAL SOIL
		-	- - - -		CL- CI	Gravelly CLAY extremely weat	low to medium phered, thinly lam	plasticity, grey, with iron s inated, very low strength	taining and shale				D	
F			-								F to St		D	
		-	2							D			D	
		-	_										D	
AD/T		22 21 20 19 18 18 18 17	3			As above, but o strength SHALE: grey, k		hrough, suspected shale I	ense of medium	M				

Borehole No: BH01

Engineering Log - Borehole

SHEET 2 OF 2

	Clier Proje Loca	ect		No	vo R vo R dferr	ail Transport	Access Prog	gram - Redfern Station			L	roject No. 39 ogged By S hecked By JI		38-3000
	Starl Com			ing Drillir	ng	22.11.14 22.11.14	Northing Easting	1248365.10 318302.30	Slope Bearing		0° 	Equipment Ground Lev		Geoprobe 7822DT 4.85 AHD
	DRIL	LIN	G				MATERI	AL DESCRIPTION				TESTING, SA	MPLING	& OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type:	ription of Soil plasticity/grainsize, other components)		Moisture Condition	Consistency	Tests	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
AURECON SYD LIB 05 NOVORAIL.GLB Log NOVORAIL NON CORED LOG 39525 - TAP02 REDFERN GPJ < <drawingfile>> 1401/2015 1349 8.30.004 Developed by Dagel AD/T</drawingfile>							Terminated at 1:			w			D	Target depth
	Rem	iai KS												

BALLAST DEPTH & CONDITION SURVEY RESULTS

LOCATION : REDFERN 1.020KM to 1.460KM – Down Local	PROJ NO: 8573	
DATE OF INVESTIGATION : 23/01/10	LOGGED BY: PG	REVIEWED BY: PG

					B	ALLAST		CA	PPING	FORMATION	*End Of	TRACK	INVIRON	2312477	LEVEL	TCM to	TCM to	REMARKS
Mast Structure Number	Km	Sleeper Type	Thickness Sleeper + Rail	* Base	Thickness	Description	* Base	Thickness	Description	Description	Hole	Dnside	Upside	Dnside	Upside	Dn Rail	Up Rail	
TP1 SW1+080	1.081	Timber	320	700	380	Moderately fouled with silts, gravels & trace clay, medium dense, dry. 700 – Non Woven Geofabric	950	250	Sandy gravels & clay, medium dense, moist. 950 – Woven Geofabric	950-1000 - Clayey silt, grey, loose to medium dense. 1000 - Bedrock - Shale, EW-VW, CW-HW.	1030	Cutting	Cutting	Tracks	Tracks	920	970	Pipes across the track. Sump on the Downside. Invert =1750mm BRL
TP2 Lawson Street Over Bridge 4 foot	1.167	Timber	320	700	380	320-550 Slightly fouled with silts. 550-700 Moderately fouled with silts & gravels, medium dense, dry. 700 – Non Woven Geofabric See Excavation Log	880	180	Sandy gravels & clay, medium dense, moist. 880 – Woven Geofabric	880 – Clayey silt & ironstone, grey, medium dense, moist. 1000 – Dense.	1000	Cutting	Cutting	Pier O/B	Pier O/B			Pipes across the track. Sump on the Down Cess. Invert –1500mm BRL Sump in 6ft at O/B at 1.168km
TP3 Lawson Street Over Bndge Country end Downside 4 foot	1.187	Timber	320			See Excavation Log						Cutting	Cutting	Pier O/B	Pier O/B			
TP4 Platform 4 foot	1.220	Timber	330	920	590	Moderately fouled with sands, silts & gravels, medium dense, dry to damp. 920 – Non Woven Geofabric See Excavation Log	1000	80	Sandy gravels & clay, thin layer.	1000 – Compacted brick fill, very dense. 1000 – Bucket Refusal	1000	Platform	Platform					

RailCorp - Geotechnical Services

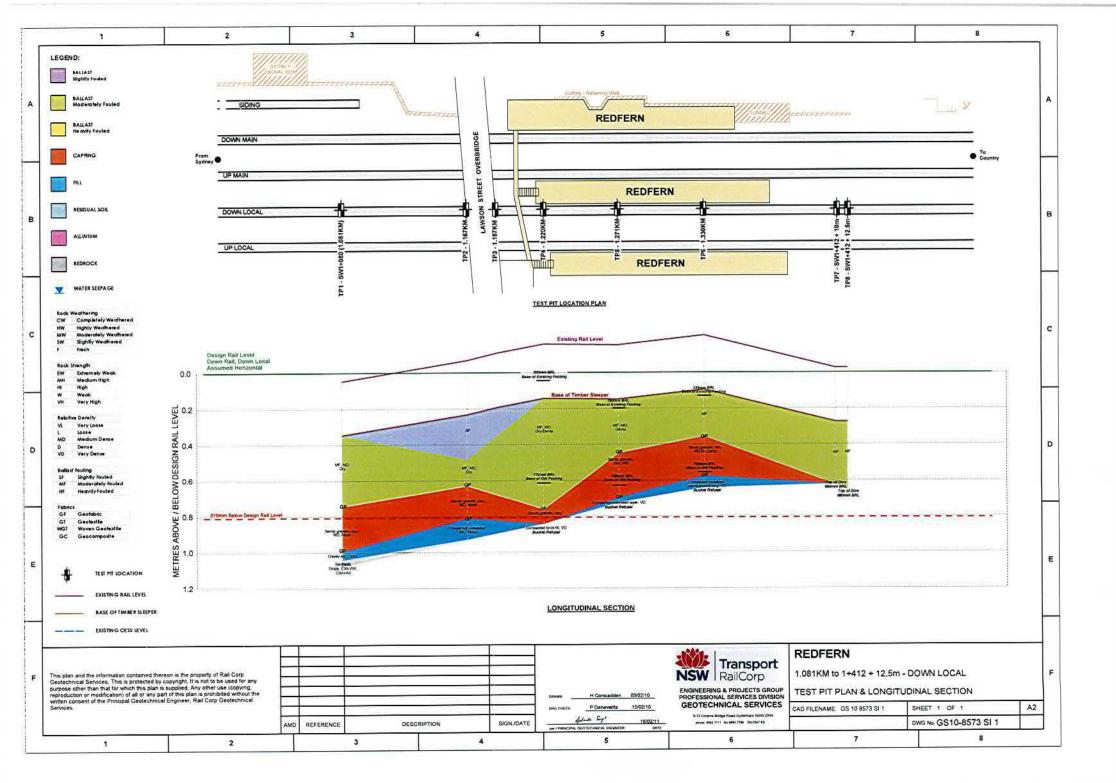
Page 1 of 2 G:\Projects\8573 Redfern\drafting Jan 2010\8573 test pit summary.doc

BALLAST DEPTH & CONDITION SURVEY RESULTS

					8	ALLAST		CA	PPING	FORMATION	*End Of	TRACK	NVIRON	340395	LEVEL	TCM to	TCM to	REMARKS
Mast Structure Number	Km	Sleeper Type	Thickness Sleeper + Rail	* Base	Thickness	Description	* Base	Thickness	Description	Description	Hole	Dnside	Upside	Dnside	Upside	Dn Rail	Up Rail	
TP5 Platform 4 foot	1,271	Timber	320	600	280	Moderately fouled with silts, sands & gravels, medium dense, damp. 600 – Non Woven Geofabric See Excavation Log	850	250	Sandy gravels & clay, medium dense. 850 – Woven Geofabric	850 – Compacted stabilised layer, very dense. 880 – Bucket Refusal	880	Platform	Platform					
TP6 Platform 4 foot	1,330	Timber	320	560	240	Moderately fouled with sands, silts & gravels. 560 – Non Woven Geofabric See Excavation Log	780	220	Sandy gravels & clay, medium dense to dense, damp. 780 – Woven Geofabric	780 – Compacted ironstone, some bricks & slag, very dense. 850 – Bucket Refusal	850	Platform	Platform			600		Contamination sample taken Pin on the wall at 1.331km
TP7 SW1+412 + 10.0m Engine Dive 4 foot		Timber	300	650	350	Moderately fouled with silts & gravels.				650mm BRL – Top of dive	650							
TP8 SW1+412 + 12.5m 4 foot		Timber	300	680	30	Moderately fouled with silts & gravels.				680mm BRL – Top of dive	680							

Quantitive Desc	riptor to Field Classification
	% passing 9.5mm sieve
Slightly Fouled	0-5
Moderately Fouled	5-10
Heavily Fouled	>10

	Legend
*	mm below the low rail level
MC	Moisture content
PL	Plastic
PP	Pocket penetrometer reading in kPa
Emb	Embankment


NSW RailCor	p ort	EN		RING EXC					TEST PIT Nº:	85	73-:	2
PROJECT: REDFI				START OF TEST	PIT:	OP OF RAIL	= 00	LOGGED BY	C PG DAT	E: 23	01/	10
FEATURE: FORM	ATION / FOOTING INVESTIG ON ST OVERBRIDGE @ 1.1		www.en	EXCAVATION D	MENSION	:_BETWEE			HC DAT BY: PG DAT			
GEOLOGIC	AL DESCRIPTION	DEPTH (m)		GRAPHIC	REPRESE	NTATION		S	L PROPERTIES, TRUCTURE &	CONSISTTENCY REL. DENSITY	MOISTURE	GROUNDWATER
ype of Deposit	Characteristics							DI	SCONTINUITIES	CONSI REL.	OM	GROU
		1.0										
		0.8										
		0.6 —										
		0.4										
		0.2			1400		Down DO Rail LO					
		0.0	BRICK				l					
		0.2		570	280	450	Timber Sleepe					
		0.4										
		0.6				EOH @ 700	Geofabric @ 700mr mm erminated at					
		1.0				' 700mm BRL, restrictions.						
		1.2										

the second of the second	TP ERN ATION / FOOTING INVESTIG ON ST OVERBRIDGE @ 1.1	SATION		EXCAVATI	ON DIMEN				PERS DRAW	ED BY: PG D /N BY: HC D KED BY: PG D	ATE:		02/10	<u>.</u>
	AL DESCRIPTION	DEPTH (m)				RESENTAT	ION			SOIL PROPERTIES	i,	CONSISTTENCY REL. DENSITY	GROUNDWATER	GROUNDWATCH
ype of Deposit	Characteristics	DE								DISCONTINUITIES	5	CONSIA REL. D	NID BO	
		1.0					-							
		0.8												
		0.6 —	/											
		0.4				275								
		0.2	BRICK	*		N	,	Down Rail	DOWN LOCAL					
		0.0	PIER				Ì	ļ	mm					
		0.2	華華	240	510			mber Sle	eper/////					
		0.6					+	/						
		0.8		- <u></u>	ncrete	P EOH @	2 780mm							
		1.0				•								
		1.2												

NSW Rail	nsport Corp	ENG	RAIL CORP GEOTECHNICAL SERVICES GINEERING EXCAVATION LOG	8573-4	
PROJECT: R			START OF TEST PIT: TOP OF RAIL = 00 LOGGED BY: PG DATE	: 23/01/10	
FEATURE:	ORMATION / FOOTING INVESTIC LATFORM @ 1.220KM - DOWN L		EXCAVATION DIMENSION : BETWEEN SLEEPERS DRAWN BY: HC DATE		
GEOLO	GICAL DESCRIPTION	DEPTH (m)	GRAPHIC REPRESENTATION SOIL PROPERTIES, STRUCTURE &	CONSISTTENCY REL. DENSITY MOISTURE GROUNDWATER	SAMPLES TESTS
Type of Deposit	Characteristics	DE	DISCONTINUITIES	CONSIS REL. D MOIS GROUN	SAMPLE
ATFORM DOTING Rail Let	Rail Level	0.8 0.6 0.4 0.2 0.0 0.0	Concrete: R R R BRICK 1030 H Pown Rain DOWN LOCAL		
	Silty clay.	obs	titom of footing served @ 200mm BRL unded on soft-firm ty Clay ? 幸 Old footing ? 译		
	Silty clay. EOH @ 850mm	obs	served @ 770mm BRL unded on stiff Silty clay. EOH @ 850mm		
		Taure 1	ote - (Additional investigation shown in red - done on the 29/01/11)		

NSW Rai	ICorp		RAIL CORP GEOTECHNICAL SERVICES GINEERING EXCAVATION LOG	8573	-5	
PROJECT: _ R			START OF TEST PIT:TOP_OF_RAIL = 00LOGGED BY:PGDATE:	23/0	1/10	Í.
	ORMATION / FOOTING INVESTIC LATFORM @ 1.271KM - DOWN I					1000
GEOLO	GICAL DESCRIPTION	DEPTH (m)	GRAPHIC REPRESENTATION SOIL PROPERTIES, STRUCTURE &	DINSISTTENCY EL. DENSITY MOISTURE	GROUNDWATER	Contraction of the
Type of Deposit	Characteristics	BC	DISCONTINUITIES	CONSISTTENC REL. DENSIT MOISTURE	GROUN	
PLATFORM FOOTING		1.0 <i>^.</i> C	Concrete*			
		0.8 ····				
		_{0.6} 开				
		0.4 0.2 프				
	Rail Level	0.0				
		0.2	Timber Sleeper			
	Silty clay.	@ 3 Fou	ttom of footing observed BRICK 350mm BRL unded on Silty clay.	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
	Silty clay.	0.6	Old Footing Stiff-Very Stiff			
	EOH @ 820mm	1.0	Bottom of old footing observed EOH @ 820mm @ 780mm BRL, founded on Stiff-Very Stiff Silty clay.			
		1.2				

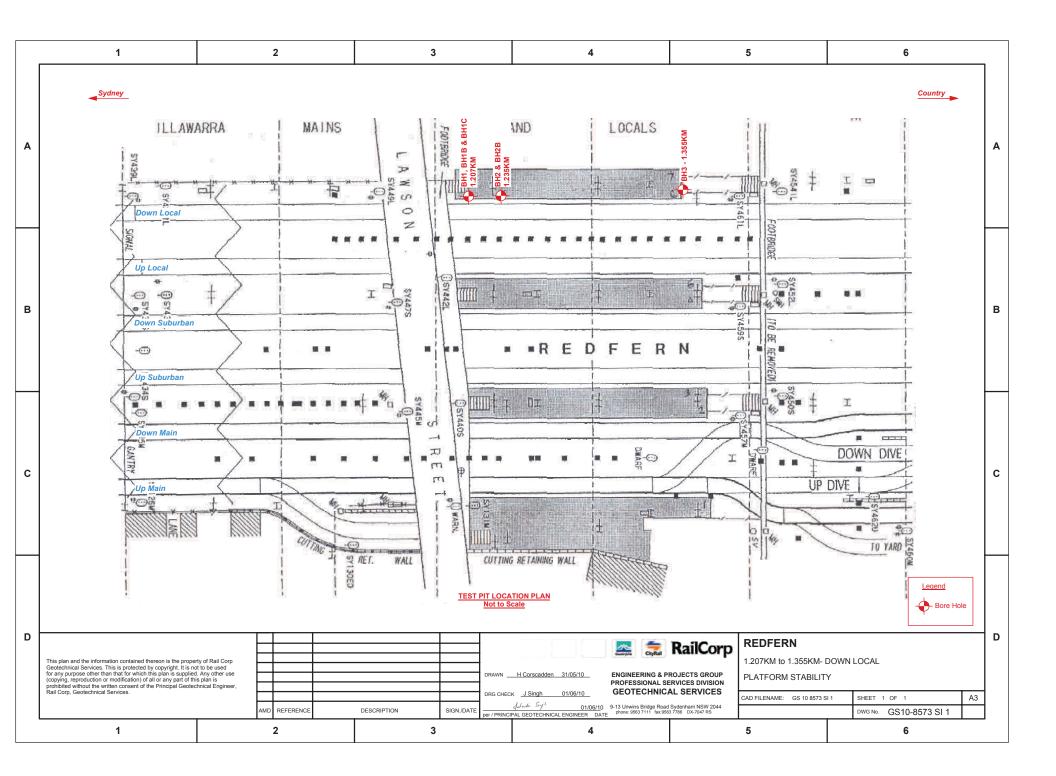
NSW Rail	nsport Corp	EN	RAIL CORP GEOTECHNICAL SERVICES GINEERING EXCAVATION LOG	8573-6	
PROJECT:R	EDFERN		START OF TEST PIT: TOP OF RAIL = 00 LOGGED BY: PG DATE:	23/01/10)
	ORMATION / FOOTING INVESTIC LATFORM @ 1.330KM - DOWN L				
GEOLC	GICAL DESCRIPTION	DEPTH (m)	GRAPHIC REPRESENTATION SOIL PROPERTIES, STRUCTURE &	CONSISTTENCY REL. DENSITY MOISTURE GROUNDWATER	
Type of Deposit	Characteristics	DE	DISCONTINUITIES	CONSISTTENC REL. DENSIT MOISTURE GROUNDWATI	
PLATFORM FOOTING			Concrete^		
		<u>^</u>			
		0.6			
		0.4	BRICK 1040		
	Rail Level	0.2 H			
		0.2	Timber Sleeper		
	Silty clay.	Fo	bettom of footing Deserved @ 335mm BRL bunded on soft-firm Ity clay.		T
		0.6	7 Old Footing		
	Silty clay. EOH @ 800mm	0.8	Bottom of footing observed @ 760mm BRL on stiff Silty clay. EOH @ 800mm		T
		1.0			
		1.2	ote - (Additional investigation shown in red - done on the 29/01/11)		

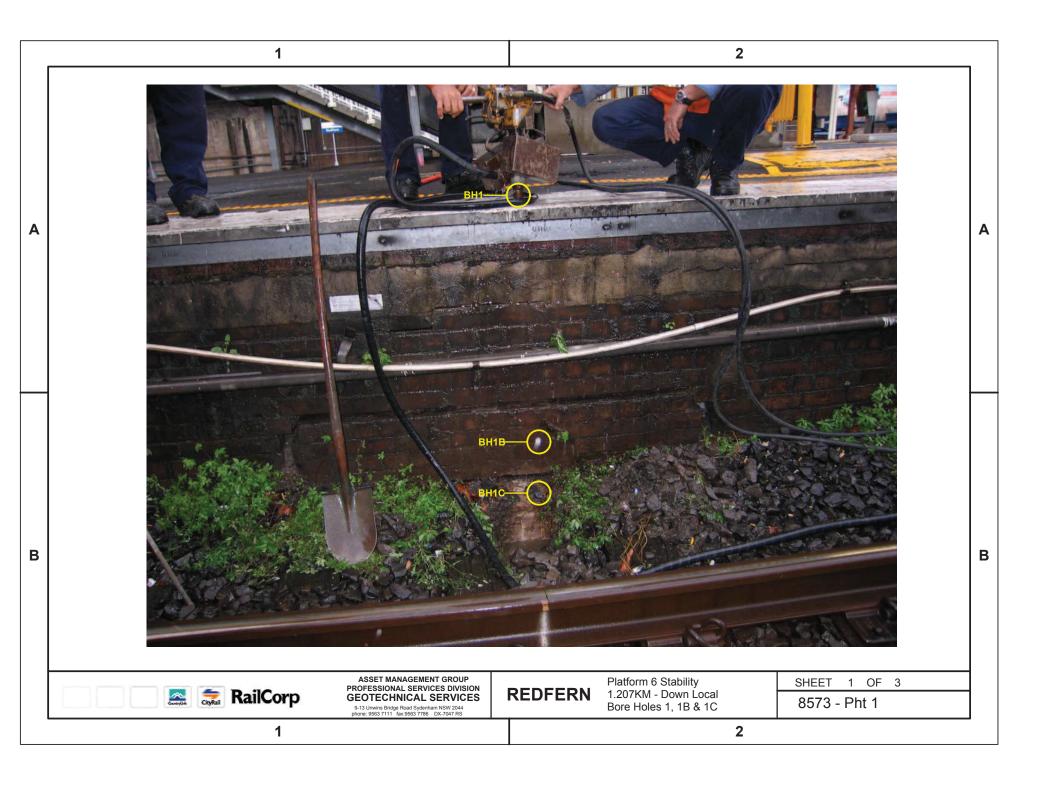
					EN	IGI	NE	ERING BOREHO	DLI		L	0	G				HOLE	N°	857	3-1	
PROJECT	REDFERN		<u>от</u> і								-			s	URFACE E				atforr	n Lev	el
FEATURE	PLATFORM							PLATFORM STABILIT` AL	Ť		-			ANGLI	E FROM HC		ONTAL ECTION	90 D	own		-
	CAL DESCRIPTION	POG	0	<u>ა</u>	RO	СК		DEFECTS			_						SAMPLES		PRO	GRES	s
TYPE OF DEPOSIT	CHARACTERISTIC Material, colour, grain size, struct	are ORAPHIC			Fie estim	NGTH Id ation ≣ ⊒ ₹	EH VISUAL	DEFECTS DESCRIPTION	FRAGMNTN	SF 0°-0	30-100 mm)	300-1000 U	>1000	ADDITIOI SOIL / RO DATA	DCK	MOISTURE	(type) Ground Water Level	TESTS	Drill meth Lift Core	ling nod / is / loss	CASING
STRUCTURE	Brick, red-brown and mortar, grey.													F, Hi streng	th						
								Void? Core Loss 730mm	1												
	Shale, grey. Shale, brown. Shale, grey.			CW HW CW				J, SM, PNR, VT	FR					-Soft, PP=30k -Very Dense, -Hard, PP=45 -Very Stiff, PP	PP=300-40 0kPa, MC<	PL		DCP #1			
_	Shale, dark grey.		_	HW C										-Very Stiff, PF	9=270-300k	Pa,	MC>PL				-
			3		Ш			Core Loss 150mm													
O DRILL BIT TYPE	VERBURDEN	ROCK PROLINE TT BARRE	L											SYDENHAM 2044 02 9563 7786	Logged:		C	Date:			
SIZE		70mm DIA	_		1			Geotechnical S	Ser	Vİ	Ce	es	5		Drawn:	Н	С	Date:	31/0	5/10	
	G/ST/PG							REMARKS							Checked:	J;	S	Date:	01/0	6/10	
	22/05/10 COMPLET		/10		-	1	. Bor	re Hole collar at top of cop	oing	(G.	L)				Core Che	cke	d: JS	Date:	01/0	6/10	
INCLINOMETER PIEZO / Standpipe CORE PHOTOGRA								Explanatory Notes for abbrevat	ions a	and	exp	olana	atic	ons.	SHEET)F	2		

QGSP-3.1F4/B

																QC	GSP-3.1F4/	/B
					E	NGI		RING BOREH			00				HOLE	N°	8573-1	
PROJECT .	REDFER	N				NGI		KING BOKLIN			.00		URFACE E	-I FV		PI	atform Lev	el
FEATURE	FOUNDA	TION INV	ES	ГIG	ATI	ON FO	DR PI	_ATFORM STABILIT	Y				E FROM HO			90)°	_
LOCATION -	PLATFOF	RM 6 - 1.2	07k	M ·	- DC	WN I		\L					I	DIRE	CTION	D	own	_
PHYS	SICAL DESCRIPTION	LOG		DNG	R STR	OCK ENGTH		DEFECTS	z	SPA	CING		141	ш	SAMPLES (type)	-	PROGRES	
TYPE OF DEPOSIT	CHARACTERIS Material, colou grain size, st	STICS OF	DEPTH	WEATHERING	F esti	ield mation ≥≝ <u>∓</u> ≯	EH VISUAL	DEFECTS DESCRIPTION	FRAGMNTN	0-30 30-100 J)	100-300 UI 300-1000 >1000	ADDITION SOIL / RO DATA	DCK	MOISTURE	Ground Water Level	TESTS	Drilling method / Lifts / Core loss	CASING
SEDIMENTARY BEDROCK		0	3_					Core Loss 150mm									DIAMOND CORING	_
BEBROOK			+-	+	\square			EOU @ 2.00m										-
								EOH @ 3.09m										_
			•															-
			-	-														-
				-														_
			-	-														-
																		_
			-	-														-
			-	-														-
																		_
			-	-														-
																		_
			4-	-														_
			-															-
			-	-														_
			-	-														-
			-	-														-
			-	-														-
																		_
			-	-														_
			-	-														-
			-	-														-
			5	-														_
																		_
			-	-														_
			-	-														-
																		_
			-	-														-
			-	-														-
																		_
			-	-														_
																		_
			-															-
			-	-														-
]															
			6	-														-
	OVERBURDEN	ROC	-	1				9.1	3 Unwin	s Brida	ie Road ^s	SYDENHAM 2044	Logged:		<u></u>	Date:	22/05/42	
DRILL BIT TYPE		PROLIN			_			🚘 📚 RailCorp 9-1	Ph: 02 9	563 71	11 Fax	02 9563 7786	Logged:	R	J	Date.	22/05/10	
SIZE		TT BAR 70mm D							Ser	vic	es		Drawn:	HC			31/05/10	
	DG / ST / PG 22/05/10 COMP	LETED 22/)5/10					REMARKS					Checked:				01/06/10	
INCLINOMETER													Core Che	cked		Date:	01/06/10	
PIEZO / Standpipe CORE PHOTOGR							See E	Explanatory Notes for abbrevat	ions a	nd ex	cplanatio	ons.	SHEET		2 c	DF	2	

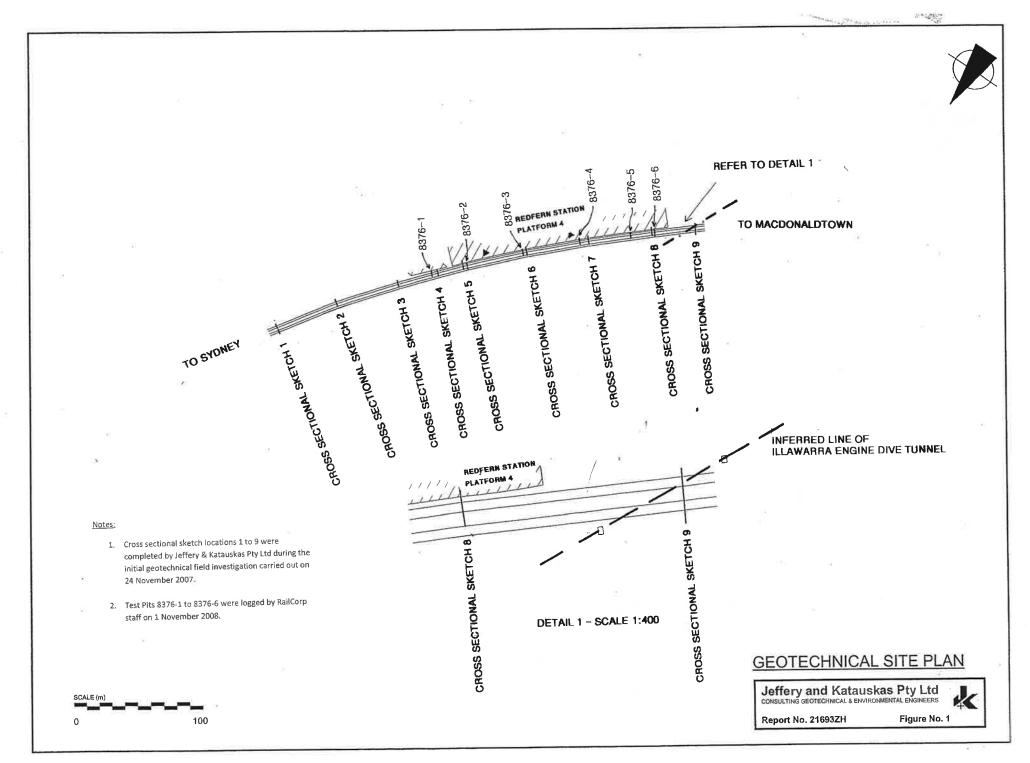
																QQ	GSP-3.1	
				EN	GINE	EE	RING BOREHC)LE		_00	G				HOLE	N°	8573	-2
PROJECT	REDFERN										-	S	URFACE E	ELEV	ATION		atform L	evel
FEATURE	FOUNDATION PLATFORM 6 -						LATFORM STABILITY	·				ANGLE	E FROM HO		ONTAL CTION	9	0° own	
LOCATION -	SICAL DESCRIPTION		1 1				DEFECTS				_						PROG	
ТҮРЕ		- POG	RING	ROC STREN Field	GTH			Z	SPA		3	ADDITION	NAL	ЯE	SAMPLES (type)		Drillin	_
OF DEPOSIT	CHARACTERISTICS Material, colour, grain size, structure	GRAPHIC DEPTH	121	estimat	tion 〒玉田	VISUAL	DEFECTS DESCRIPTION	FRAGMNTN	0-30	100-300 uu 300-1000 (uu	>1000	SOIL / RO DATA) CK	MOISTURE	Ground Water Level	TESTS	method Lifts Core lo	
STRUCTURE	Cementitious concrete, grey. 20mm nominal size rounded & angular aggregate. Brick, red-brown and mortar, grey.	<u>^</u> ^ 0_					7mm dia steel reinforcement					F, Hi strengt						-
SEDIMENTARY BEDROCK	Shale, medium grey.		CM				Core Loss 290mm J, SM, PNR, VT J, IRR, RF, 80° to 85°	H				⁻Hard, PP=45 -Very Stiff, PP					DIAMOND CORING	-
		2					J, PNR, RF, 65° -J's, SM, PNR, 70° to 75°	FR			-	-Very Stiff, PF -Very Stiff, PF						-
		-	-				360mm Retained in barrel											-
SEDIMENTARY BEDROCK	Shale, light grey.		CW				-Ptg's, SM, PNR, HZ to < 5°	FR				-Hard, PP=45	60-550kPa,	мс	<pl< td=""><td></td><td></td><td>-</td></pl<>			-
	OVERBURDEN	ROCK		$\left \right $			EOH @ 2.96m											
DRILL	PR	OLINE					😤 意 RailCorp 9-13 U	Unwins : 02 98	s Brido 563 7	je Road 11 Fa	d SYE ax: 02	9563 7786	Logged:	R	С	Date:	22/05/	10
BIT TYPE SIZE		INWALL mm DIA		L		_	Geotechnical S	Ser	vi	ces	;		Drawn:	Н	С	Date:	31/05/	10
DRILLERS	DG/ST]			REMARKS						Checked	J	S	Date:	01/06/	10
COMMENCED	22/05/10 COMPLETED	22/05/10		-	1. Bo	ore	Hole collar 0.32m to edg	e of	сор	ing.			Core Che	ecke	d: JS	Date:	01/06/	10
INCLINOMETER PIEZO / Standpipe	Tom																	
CORE PHOTOGR	· 🗆 🔄				Se	e E	Explanatory Notes for abbrevation	ons a	nd e	xplana	ations	3.	SHEET		1 (DF	1	

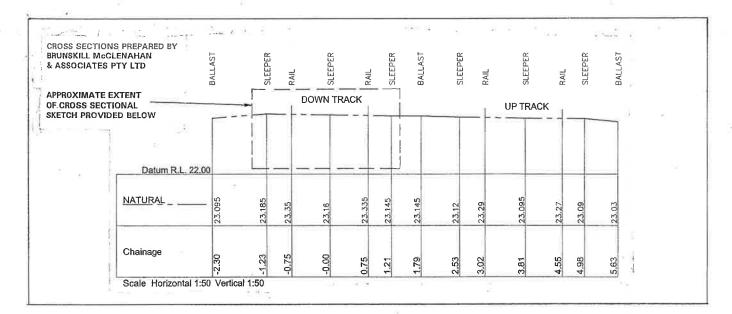

																			QQ	GSP-3.1F	74/B
					F	N	GIN	JFF	RING BORE	=ноі	F	1	0	G				HOLI	E Nº	8573-3	\$
PROJECT	REDFERN													U		URFACE EL	.EV/	ATION	Cou	ntry end i	ramp
FEATURE .									LATFORM STAB	ILITY						E FROM HOP			9	0°	_
LOCATION .	PLATFORM 6 - 1	1.3	55K	M -	- DC	W	1 LC	CA	L							DI	RE	CTION	D	own	
PHYS	SICAL DESCRIPTION	ß		Ŋ	F	ROCH	().TLI		DEFECTS	-	-	SPA	CINI	_			ш	SAMPLES		PROGRE	SS
TYPE OF DEPOSIT	CHARACTERISTICS Material, colour, grain size, structure	GRAPHIC L	DEPTH	WEATHERING	est	Field imati		VISUAL	DEFECTS DESCRIPTION		FRAGMNIN	0-30 30-100 J)	100-300 m 300-1000 (m	>1000	ADDITION SOIL / RO DATA	NAL DCK	MOISTURE	(type) Ground Water Level	TESTS	Drilling method Lifts / Core loss	S
STRUCTURE	Asphaltic concrete	Ŷ		_							-										
	Sandy gravel, trace ash, dark grey. Sandy gravels to approx 100x60x60mm recovered.														Loose		Ury			UGER	
	Sandy clay, grey.			-											Firm	Ĭ	- MC>PL			HAND AUGER	-
	Sandy clay, brown.														Soft	i	MC>H				-
FILL	Cementitious concrete, grey	1	1	-											SW. Hi stren		ž				-
									Core Loss 530m	im											
				-					Core Loss 240m	ım										CORING	-
FILL	Sandy clay, brown.			_																COI	
RESIDUAL SOIL	Silty clay, brown. Silty clay, grey, mottled red-brown.		2												Stiff, PP=140k -Very Stiff, PP -Very Stiff, PP	=250kPa, M				DIAMOND	
DRILL	PRO		E						🚘 🏛 RailCorp	9-13 Unv Ph: 02	vins 2 95	Bridg 63 71	je Ro	ad S Fax:	-Hard, PP=45 			MC≼PL	Date:	22/05/10)
	HAND AUGER STE 110mm DIA NML	EPFA _C	CE						Geotechnic	al Se	r	/ic	e	S		Drawn:	НС	2	Date:	31/05/10)
DRILLERS COMMENCED	COMMENCED 22/05/10 COMPLETED 22/05/10						2	2. Bo	REMA re Hole collar 0.90m re Hole collar 0.35m	RKS to edge country	of si	cop de c	oing of co	g. our		Checked: Core Chec				01/06/10	
INCLINOMETER PIEZO / Standpip							e	end c	of platform on ramp.	(touching	g e	dge	e of	wa	all)	0		1		2	
	D / Standpipe Tom depth E PHOTOGRAPHED X							See	Explanatory Notes for ab	brevations	an	d ex	cplar	natio	ons.	SHEET		1	OF	2	

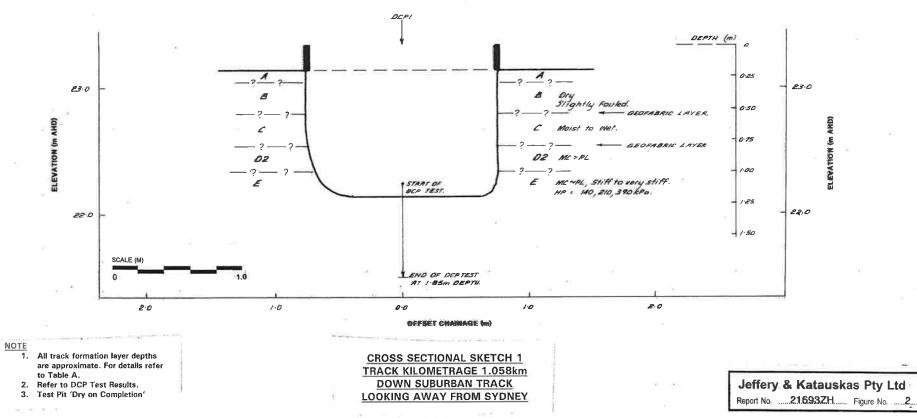

					F	NG	-	IFF	FI	RING BOREHO) F	-	10	າດ	2				HOLE	E Nº	8573-3
PROJECT .	REDFERN															s	URFACE	ELEV	ATION		ntry end ram
FEATURE	PLATFORM 6 -	INVI - 1.3	=S I 55k	IG/ (M	- D0	ON OW	1-0 N L	<u>Р Я</u> ОС		ATFORM STABILITY			-			ANGLI	FROM H		ONTAL CTION	90 D)° own
LOCATION - PHYS	SICAL DESCRIPTION			1					-	DEFECTS			-						SAMPLES		PROGRESS
TYPE OF DEPOSIT	CHARACTERISTICS Material, colour, grain size, structure	GRAPHIC LOG	DEPTH	WEATHERING	F esti	OCK ENGT Field imatio	n	VISUAL		DEFECTS DESCRIPTION	FRAGMNTN	SP 08-0	30-100 mm 100-300 mm	300-1000 N	>1000	ADDITIOI SOIL / RO DATA	OCK	MOISTURE	(type) Ground Water Level	TESTS	Drilling method / Lifts / Core loss
RES. SOIL	Silty clay, grey.		3							-Fe			-			Hard, PP=420k	Pa, MC <p< td=""><td>L</td><td></td><td></td><td>A</td></p<>	L			A
SEDIMENTARY BEDROCK	Shale, grey, mottled red-brown.		-	CW							FR					–Hard, PP=40) to > 600ł	(Pa, I	MC <pl< td=""><td></td><td>▲ DIAMOND- CORING</td></pl<>		▲ DIAMOND- CORING
			-	-						EOH @ 3.38m											
			4																		
	OVERBURDEN	ROCH	- - - 6																		
DRILL BIT TYPE	PR	ROLINE	E							🕿 意 RailCorp ⁹⁻¹³	Unwin 1: 02 9	s Bri 563	idge I 7111	Road Fa	i SY x: 0	YDENHAM 2044 02 9563 7786	Logged:	R	С	Date:	22/05/10
SIZE		EPFA	UE						(Geotechnical S	Ser	vi	ce	es			Drawn:	Н	С	Date:	31/05/10
DRILLERS COMMENCED	DG / ST 22/05/10 COMPLETED	22/0)5/10		_					REMARKS							Checked				01/06/10
INCLINOMETER	Tom																Core Che	ecked		Date:	01/06/10
PIEZO / Standpipe CORE PHOTOGR		ueptn						See	Ex	planatory Notes for abbrevatio	ons a	nd	expl	lanat	tior	ns.	SHEET		2 0	DF	2

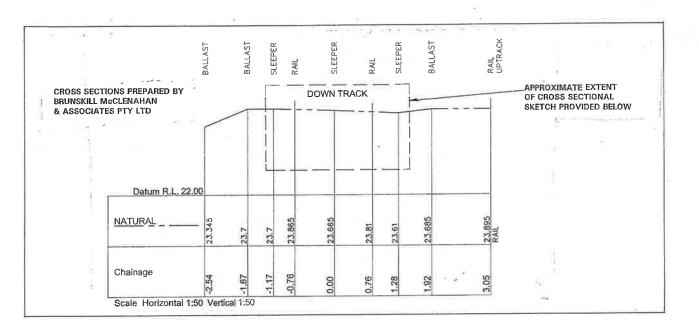
	1	2	
Α			A
	Box 1/1 Box 1/1 Ize/s / room	a loss 240 mm	
	2		
	3	11	
В	BORE HO		В
	ASSET MANAGEMENT GROUP PROFESSIONAL SERVICES DIVISION GEOTECHNICAL SERVICES	Platform 6 Stability SHEET 5 OF 5 1.355KM - Down Local 8573 - Pht 3	
	9-13 Unwins Bridge Road Sydenham NSW 2044 phone: 9663 7111 fax:9563 7786 DX-7047 RS	Bore Hole 3	
	1	2	

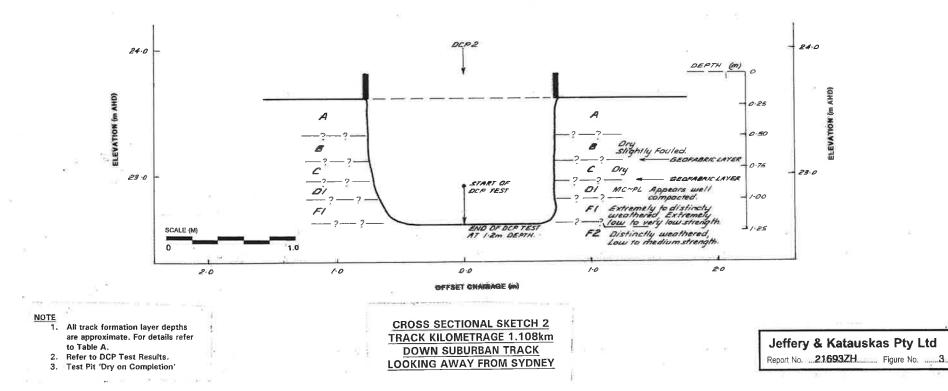
	🚌 🥽 RailCorp	E	RAIL CORP GEOTECHNICAL SERVICES NGINEERING EXCAVATION LOG	TEST PIT Nº:	8573-1
PROJECT:R FEATURE:P LOCATION: _ P	GED BY: RC DATE WN BY: HC DATE CKED BY: JS DATE	31/05/10			
GEOLOGICAL DESCRIPTION		H	GRAPHIC REPRESENTATION	SOIL PROPERTIES,	TENCY INSITY URE WATER S TESTS
Type of Deposit	Characteristics	DEPTH (m)		STRUCTURE & DISCONTINUITIES	CONSISTTENCY REL. DENSITY MOISTURE GROUNDWATER SAMPLES TESTS
		0.0	Brick & Mortar Platform Platform EOH 3.09m EOH 3.09m		

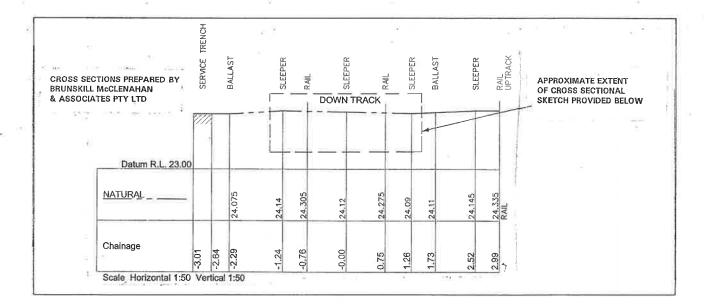

	🚌 🥽 RailCorp	E	RAIL CORP GEOTECHNICAL SERVICES NGINEERING EXCAVATION LOG	8573-	·2
	EDFERN _ATFORM STABILITY INVESTIGAT _ATFORM 6 - 1.235KM - DOWN LOG		START OF TEST PIT: TOP OF RAIL = 00 LOGGED BY: RC DATE: EXCAVATION DIMENSION : BETWEEN SLEEPERS DRAWN BY: HC DATE: CHECKED BY: JS DATE:	31/05/	10
GEOLOGICAL DESCRIPTION		H ₂	GRAPHIC REPRESENTATION SOIL PROPERTIES,	ITENCY ENSITY TURE	WATER S TESTS
Type of Deposit	Characteristics	DEPTH (m)	STRUCTURE & DISCONTINUITIES	CONSISTTENCY REL. DENSITY MOISTURE	GROUNDWATER SAMPLES TESTS
		0.0	Brick & Matter Brick		

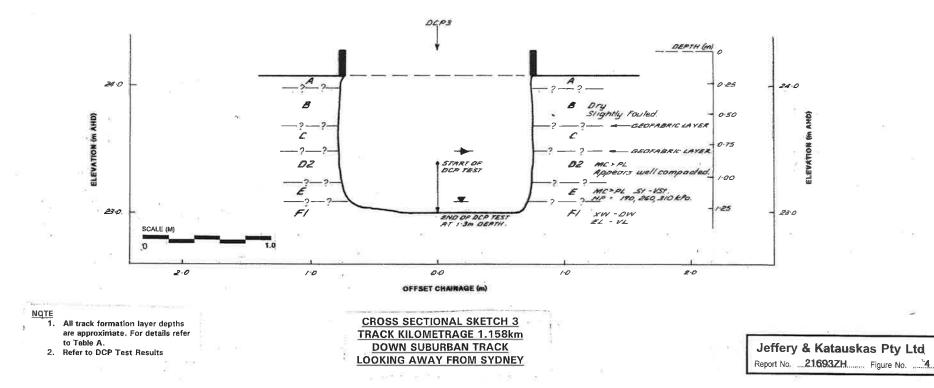


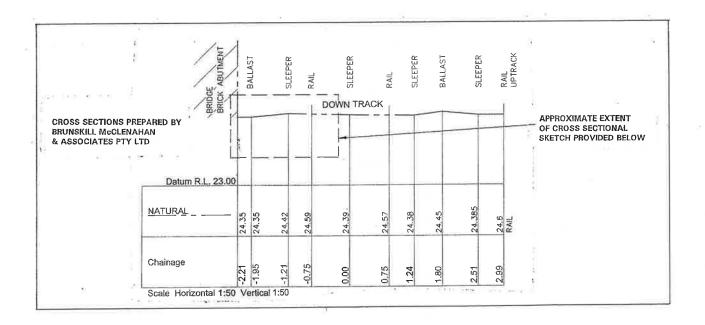


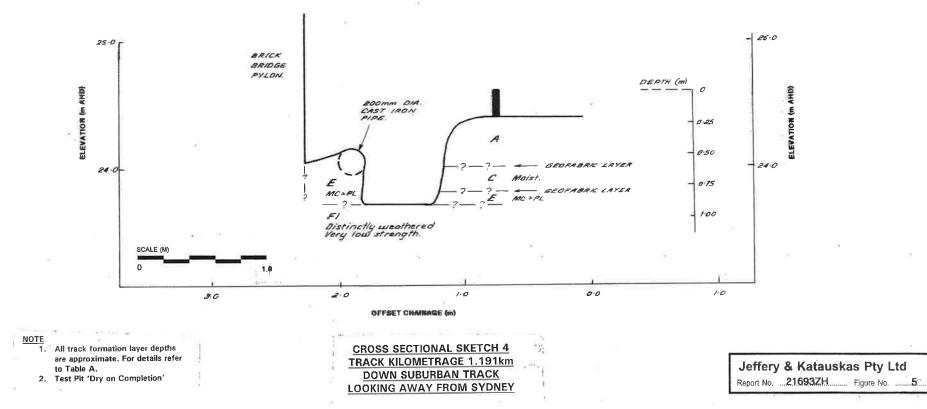


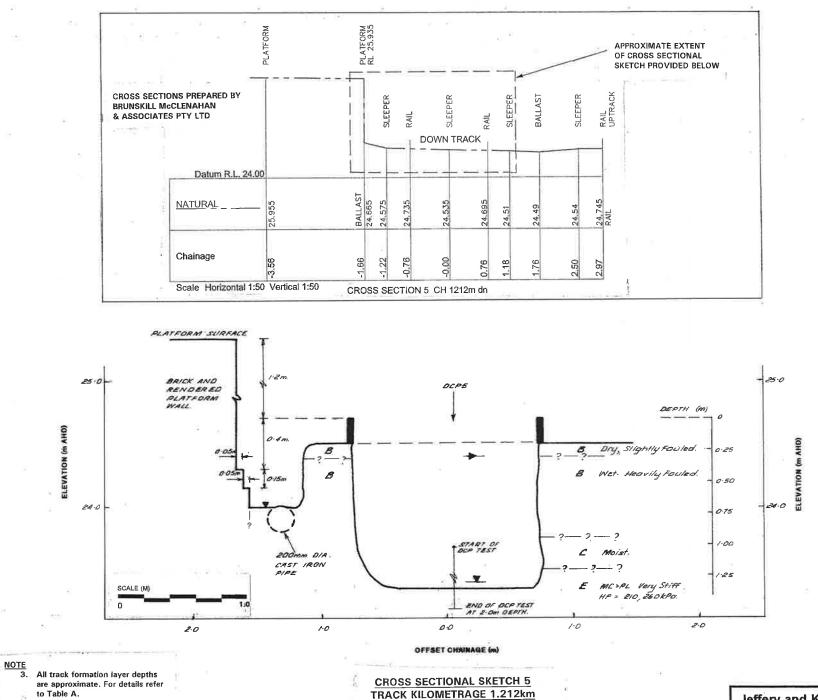

Ŧ




*



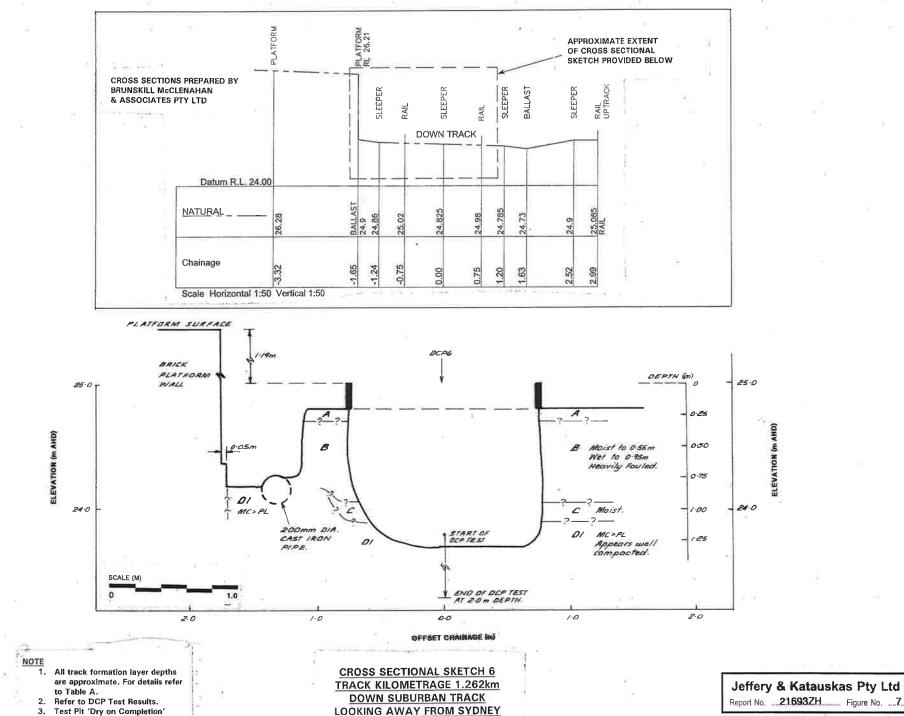

X

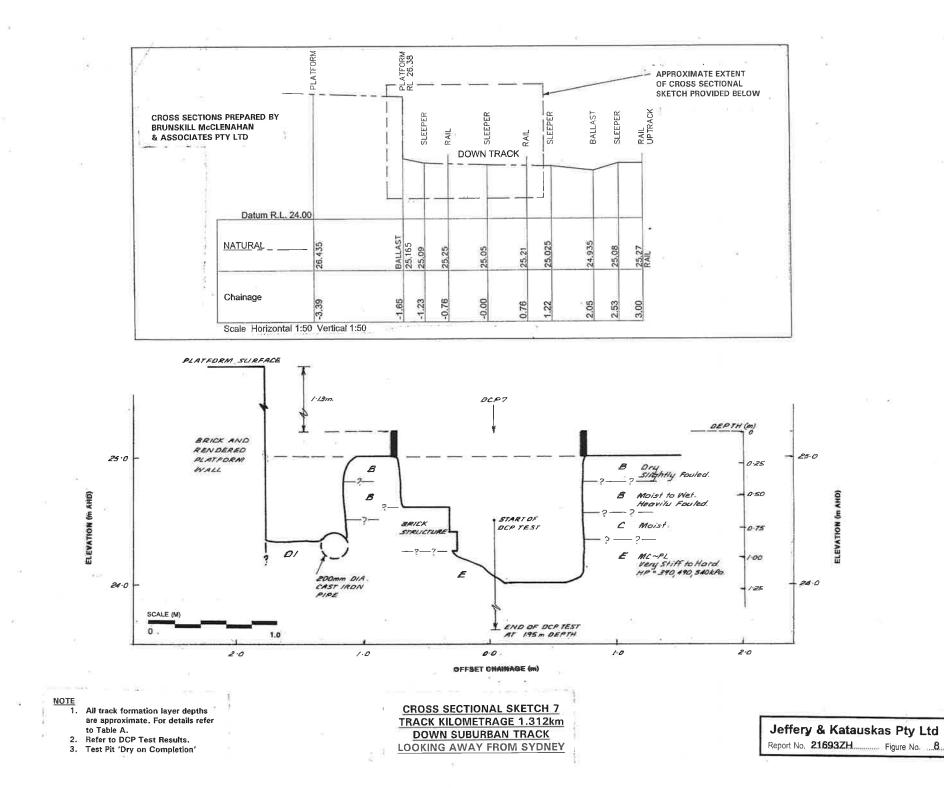


K

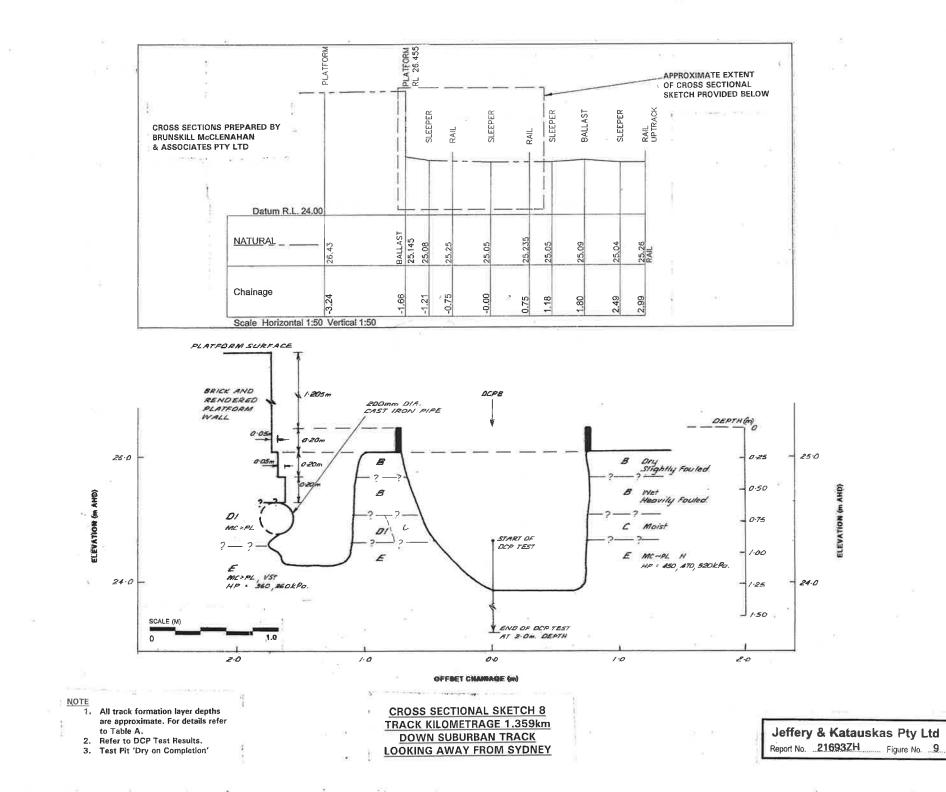
k

DOWN SUBURBAN TRACK

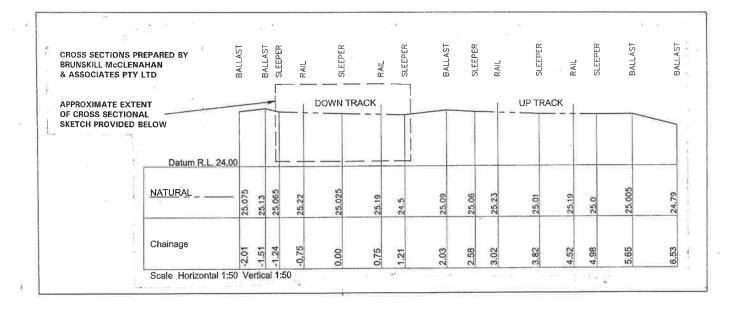

LOOKING AWAY FROM SYDNEY

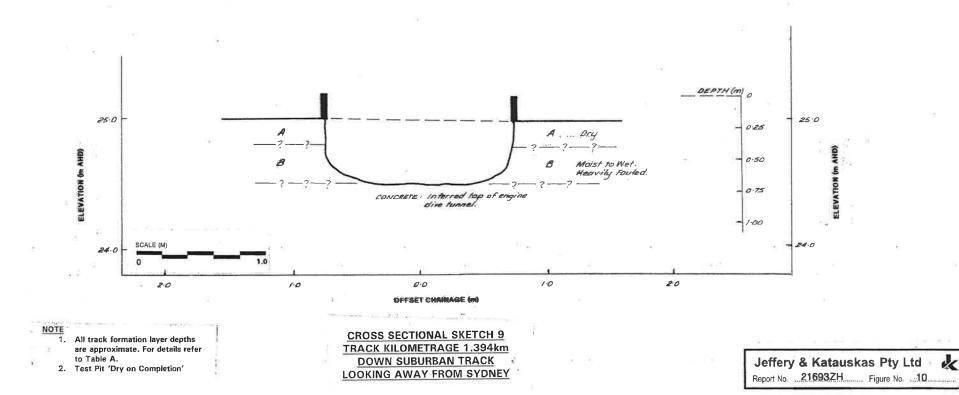

Jeffery and Katauskas Pty Ltd 🧸 Figure No. 6 Report No. 21693ZH

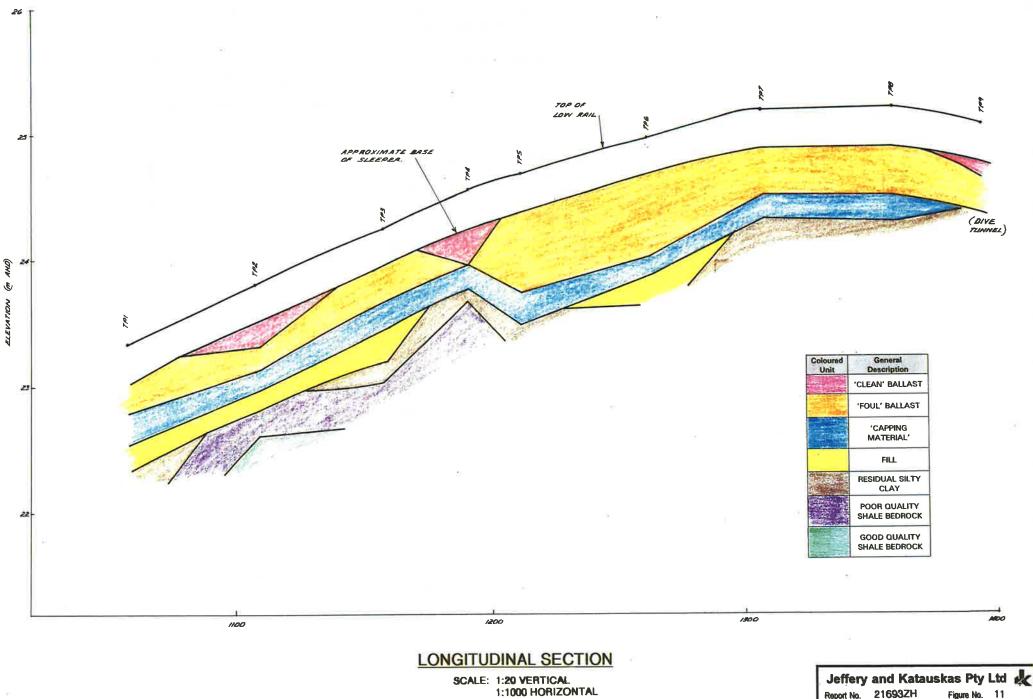
to Table A.

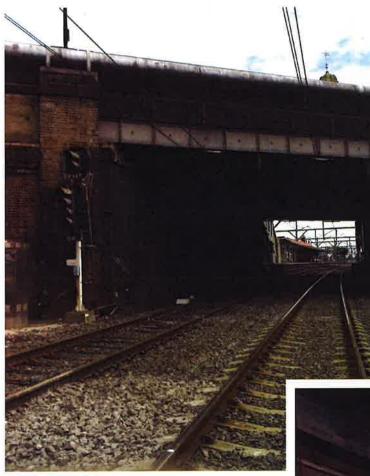

22

4. Refer to DCP test results.






k


 \mathbf{k}

Lawson Street Overbridge

Looking to Macdonaldtown

Looking To Sydney

21693ZH • PLATE 1

Ref: 21693ZH Plate 2

Looking to Macdonaldtown

Redfern Station Platform 4

Looking to Sydney

21693ZH • PLATE 2

Brick Chimneys

Illawarra Engine Dive Tunnel Chimneys

Jeffery and Katauskas Pty Ltd CONSULTING GEOTECHNICAL AND ENVIRONMENTAL ENGINEERS

DYNAMIC CONE PENETRATION TEST RESULTS

Client:	RAILCORP						
Project:	PROPOSED	TRACK REC	ONDITIONIN	G			
Location:	REDFERN S	TATION, PLA	TFORM 4				
Job No.	21693ZH			Hammer We	ight & Drop: 9	kg/510mm	
Date:	24-11-07			Rod Diamete	r: 16mm		
Tested By:	N.E.S.			Point Diamet	er: 20mm		
		Nu	umber of Blow	rs per 100mm	Penetration		
Test Location					Weiter Contraction of the		
Depth (mm)	1	2	3	5	6	7	8
0 - 100	RAIL	RAIL	RAIL	RAIL	RAIL	RAIL	RAIL
100 - 200		+	•	+	*	+	¥
200 - 300	EXCAVATED	EXCAVATED	EXCAVATED	EXCAVATED	EXCAVATED	EXCAVATED	EXCAVATED
300 - 400							
400 - 500							
500 - 600							
600 - 700						¥	
700 - 800						23	
800 - 900		¥	V	2		8	*
900 - 1000		7	6	+		4	3
1000 - 1100		18	6	4		6	4
1100 - 1200	1	30	16	5		10	4
1200 - 1300	3	REFUSAL	22	3	4	6	6
1300 - 1400	9		REFUSAL	7	6	8	6
1400 - 1500	20			8	8	6	7
1500 - 1600	9			7	11	10	7
1600 - 1700	10			16	13	9	9
1700 - 1800	22			10/20mm	17	12	7
1800 - 1900	20/50mm			REFUSAL	16	16	8
1900 - 2000	REFUSAL				17	18/50mm	11
2000 - 2100					END	REFUSAL	END
2100 - 2200							
2200 - 2300							
2300 - 2400							
2400 - 2500							
2500 - 2600							
2600 - 2700							
2700 - 2800							
2800 - 2900							
2900 - 3000							
Remarks:	1. The procedu	re used for this to ws per 20mm is	est is similar to th	hat described in A	S1289.6.3.2-199	97, Method 6.3.2.	

Ref. Scala3.xis April 99

Ref: 21693Z Table A

Unit	General Description	Detailed Description
А	'CLEAN' BALLAST	Coarse grained angular & sub-angular igneous gravel & cobbles. Dry.
в	'FOUL' BALLAST	Medium and coarse grained angular & sub-angular igneous gravel & cobbles, with or without silt fines and clay fines and sand. Generally Moist or Wet.
с	'CAPPING MATERIAL'	Gravelly Sand / Sandy gravel, fine to medium grained igneous gravel. Moist to Wet
D1	CLAYEY FILL	Silty clay or Sandy clay, medium to high plasticity. Generally appears well compacted. Moisture content generally above the plastic limit.
D2	GRAVELLY CLAY FILL	Gravelly silty clay, medium plasticity. Generally appear well compacted. Moisture content ranges from around the plastic limit to above the plastic limit.
E	RESIDUAL SILTY CLAY	Silty clay of high plasticity. Ranges from stiff to hard strength. Moisture content generally above the plastic limit.
F1	POOR QUALITY SHALE BEDROCK	Extremely or distinctly weathered shale of extremely low or very low strength.
F2	GOOD QUALITY SHALE BEDROCK	Distinctly weathered shale of low and greater strength.

Table A: Subsurface Soil Unit Summary

To be read in conjunction with Figures 2 to 10

						SUMM	ARY OF G	EOTECHNI	CAL INFORM	ATION FOR	PROPOSED	TRACK RE	CONSTR	UCTION				
jii s			125.7		Ор	tion A: Full Dept	h Réconditioning	9	Optio	on B: New Cappi	ng and Ballast O	nly		C: Skim ditioning				
Test Location	Track Kilometrage (km)	Current RL at Top of Low Rail (see Notes 1&4)	Raise or Lower track?	Proposed RL at Top of Low Rail	RL at Proposed Bulk Excavation Level or RL at Surface of Good Quality Shale Bedrock	Approximate Depth of Excavation required to achieve Proposed Bulk Excavation Level (see Notes 284)	Likely Founding Material at Proposed Bulk Excavation Level	Estimated CBR of Founding Material at Base of Proposed Excavation	RL at Proposed Bulk Excavation Level or RL at Surface of Good Quality Shale Bedrock	Approximate Depth of Excavation required to achieve Proposed Bulk Excavation Level (see Notes 2&3)	Likely Founding Material at Proposed Bulk Excavation Level	Estimated CBR of Founding Material at Base of Proposed Excavation	Existing Ballast Depth (m)	Capping Present	Track Environment	Approximate Base of Existing Footing (RLm AHD)	Will the Base of the Footing be Above or Below the Proposed Bulk Excavation Level?	Additional Comments/ Likely Stabilisation Measures
1	1.058	23.335	+0.032	23,367	22,007	1,36	Residual Silty Clay	3≤CBR≤8	22.507	0.86	Gravelly Clay Fill	3≤CBR≤8	0.55	Yes	Cutting	N/A	N/A	
2	1.108	23,810	+0.018	23.828	21.610	1.218	Good Quality Shale Bedrock	Good Quality Shale Bedrock	22.968	0.86	Clayey Fill	3≤CBR≤8	0.70	Yes	Cutting	N/A	N/A	
Э	1.158	24.275	-0.008	24.267	22.907	1.36	Poor Quality Shale	3≤CBR≤8	23.407	0.86	Gravelly Clay Fill	3≤CBR≤8	0.60m	Yes	Cutting	N/A	N/A	
4	1,191	24,570	-0,044	24.526	23.166	1.36	Poor Quality Shale	3≤CBR≤8	23.666	0.86	Poor Quality Shale	3≤CBR≤8	0.60	Yes	Cutting (Overbridge)	< 23.70	Yes	Cast Iron Pipe adjacent to bridge abutment
5	1.212	24.695	-0.059	24.636	23,276	= 1,36	Residual; Silty Clay	3≤CBR≤8	23.776	0.86	Capping	3≤CBR≤8	0.95	Yes	Cutting (Station Platform)	<24.0	Maybe	Cast Iron pipe adjacent to station platform footing
6	1.262	24.980	-0.041	24.939	23.579	1.36	Clayey Fill	3≤CBR≤8	24.079	0.86	Capping	3≤CBR≤8	0.95	Yes	Cutting (Station Platform)	<24.20	Maybe	Cast Iron pipe adjacent to station platform footing
7	1.312	25.210	-0.100	25.110	23.750	1.36	Residuəl Silty Clay	3≤CBR≤8	24.250	0.86	Residual Silty Clay	3≤CBR≤8	0,65	Yes	Cutting (Station Platform)	<24.30	Maybe	Cast Iron pipe adjacent to station platform footing, Brick structure located under down rai
8	1.359	25.235	-0.049	25.186	23.826	1.36	Residual Silty Clay	3≤CBR≤8	24.326	0.86	Residual Silty Clay	3≤CBR≤8	0.70	Yes	Cutting (Station Platform)	24.75m	Yes	Cast Iron pipe beneath station platform footing
9	1.394	25.190	0.000	25_190	24.490	0.70	Engine Dive Tunnel	Engine Dive Tunnel	24.490	0.70	Engine Dive Tunnel	Engine Dive Tunnel	0.70	No	Rail At Grade	N/A	N/A	Illawarra Engine Dive Tunnel

			TABLE B				
IMMARY	OF	GEOTECHNICA1	INFORMATION FO	R PROPOSED) TRACK	RECONSTRU	CTION

NOTES:

1 Proposed Track RLs (Top of Low rail) have been interpolated from the information provided in the Rail Infrastructure Corporation overhead wire survey dated 28 October 2007

2 Assumed track formation includes new rail and concrete sleeper (0.407m total thickness), minimum ballast thickness of 0.3m, capping layer (0.15m thickness) and structural fill thickness (H) will be 0.5m (subgrade CBR between 3% and 8%) giving total excavation depth of 1.36m, unless good quality shale bedrock encountered.

3 Assumed track formation includes new rail and concrete sleeper (0.407m total thickness), minimum ballast thickness of 0.3m, capping layer (0.15m thickness) giving total excavation depth of 0.86m, unless good quality shale bedrock encountered.

4 All depths referred to are distances below the top of the lowest rail.

5 Design RLs based on surveying completed during fieldwork and the information provided in the Existing Overhead Wire Survey: Flyovers to Redfern 0.600km to 1.500km provided by Railcorp.

6 For specific subsurface details at each test location, refer to Figures 2 to 10 and text of report.

JOB NO: 21693ZH LOCATION: Redfern Station, Platform Four, 0.950km to 1.405km TABLE C - BALLAST DEPTH & CONDITION SURVEY RESULTS DATE OF INVESTIGATION: 24 November 2007

					B4	NLLAST		CAF	PPING	FORMATION	*End Of	r			S LEVEL RAIL LEVEL	TCM 10	TCM to	REMARKS
Test Location	Κm	Sleeper Type	Approx, Thickness Sleeper + Rail (m)	* Bar	Thicknoss	Description **	* 8050	Thickness	Description	Description	Hole	Dnside	Upside	Dnside	Upside	Dn Bail	Up Rail	
1	1.058	Timber	0.27	55 0	380	'Clean' ballast, approx. 0.1m thick, 'Foul' ballast, approx 0.28m thick. Dry, slightly fouled.	800	250	Graveĭly sand/ Sandy gravel	Gravelly clay fill MC > PL	1200	Cut						
2	1.108	Timber	0.27	70 0	530	'Clean' ballast, approx. 0.3m thick, 'Foul' ballast, approx. 0.2m thick. Dry, slightly fouled.	850	150	Gravelly sand/ sandy gravel	Clayey fill, MC > PL, appears well compacted	1200	Cut					-	
3	1.158	Timber	0.27	60 0	430	'Clean' ballast, approx. 0.1m thick. 'Foul' ballast, approx. 0.33m thick. Dry, slightly fouled.	800	200	Gravelly sand/ sandy gravel.	Gravelly clay fill, MC > PL. Appears well compacted.	1300	Cut						
4	1.191	Timber	0.27	60 0	430	'Clean' ballast	800	200	Gravelly sand/ sandy gravel.	Residual silty clay, MC > PL	950	Cut (overb -ridge)						Cast iron pipe adjacent to bridge abutment
5	1.212	Timber	0.27	90 0	730	'Foul' ballast Dry, slightly fouled, but mostly wet & heavily fouled	1200	250	Gravelly sand/ sandy gravel. Moist.	Residual silty clay MC > PL. PP= 210, 260kPa	1400	Cut (plat- form)						Cast iron pipe adjacent to station platform footing
6	1.262	Timber	0.27	90 0	730	'Clean' ballast, approx. 0.1m thick, 'Foul' ballast, approx. 0.63m thick, Moist and wet.	1100	150	Gravelly sand/ sandy gravel. Mioist.	Clayey fill, MC > PL Appears well compacted	1300	Cut (plat- form)						Cast iron pipe adjacent to station platform footing

JOB NO: 21693ZH LOCATION: Redfern Station, Platform Four, 0.950km to 1.405km TABLE C - BALLAST DEPTH & CONDITION SURVEY RESULTS DATE OF INVESTIGATION: 24 November 2007

				BA		NLAST	CAPPING		FORMATION	* End Of	TRACK ENVIRON		CESS LEVEL BELOW RAIL LEVEL		TCM to	TCM to	REMARKS	
Test Location	Km	Sizeper Type	Approx Thickness Sleeper + Rail (m)	* 8**	Thicknoss	Description **	*	Thicknas	Description	Description	Hole	Dnside	Upside	Dnside	Upside	Dn Rail	Up Raii	
7	1.312	Timber	0.27	60 0	430	'Foul' ballast, Slightly & heavily fouled. Dry, moist and wet.	800	200	Gravelly sand/ sandy gravel. Moist.	Residual siity clay, MC ~ PL, PP=390, 490, 540kPa.	1300	Cut {plat- form}						Cast iron pipe adjacent to station platform footing
8	1.359	Timber	0.27	70 0	530	'Foul' ballast, Slightly & heavity fouled. Dry and wet.	900	200	Gravelly sand/ sandy gravel. Moist.	Residual silty clay. MC-PL, PP = 450, 470, 520kPa	1300	Cut (plat- form)						Cast iron pipe below station platform footing
9	1.394	Timber	0.27	70 0	530	'Foul' ballast, Heavily fouled. Dry, moist and wet.	900	200	Not evident	N/A	700	Rail at grade						IIIawarra Engine Dive Tunnel

* = mm below the low rail level

MC = moisture content, PL = plastic

PP = pocket penetrometer reading in kPa

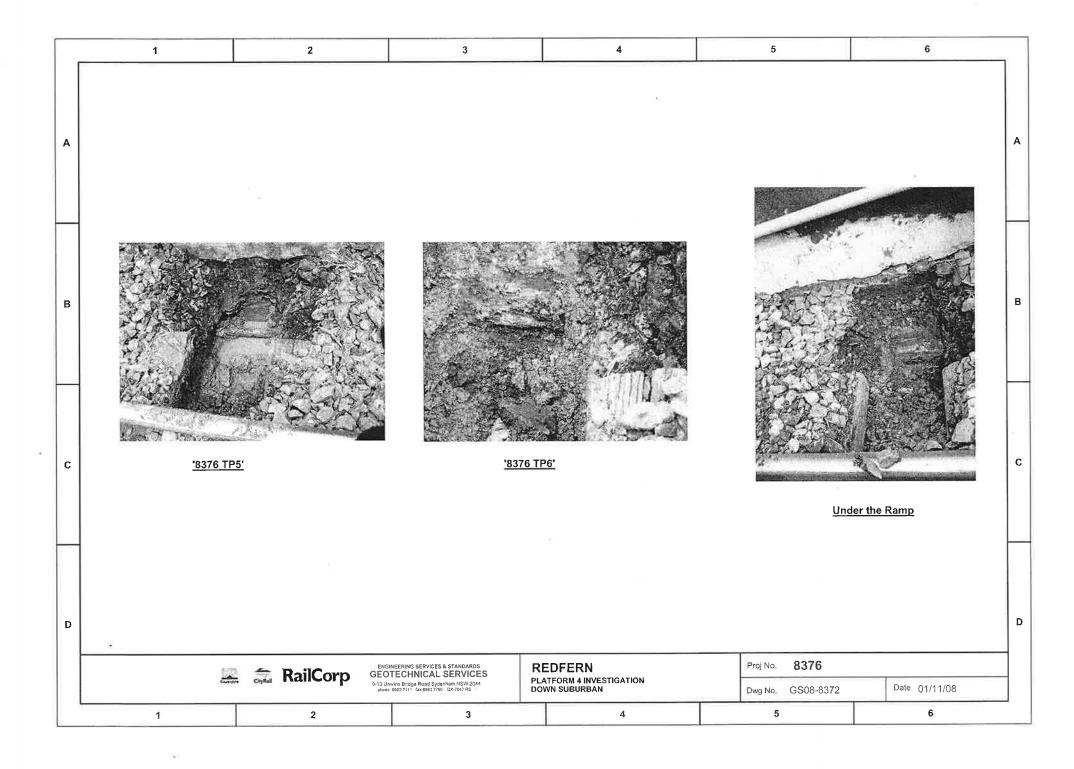
Emb = embankment, cut = cutting

** = For detailed descriptions, refer to Table A

APPENDIX D

	🚘 🚋 RailCorp	E	RAIL CORP GEOTECHNICAL SERVICES	TEST PIT Nº:	8376-1	
77.000.000	EDFERN DRMATION / FOOTING INVESTIGAT AWSON STREET OVERBRIDGE @ 1		EXCAVATION DIMENSION : BETWEEN SLEEPERS DRA		1717778	8
GEOLO	GICAL DESCRIPTION	DEPTH (m)	GRAPHIC REPRESENTATION	SOIL PROPERTIES, STRUCTURE &	TTENCY ENSITY TURE	GROUNDWATER SAMPLES TESTS
Type of Deposit	Characteristics	DEF DEF		DISCONTINUITIES	CONSISTTENCY REL. DENSITY MOISTURE	GROUNDWATER SAMPLES TESTS
	Below Down Shoulder	1.0 0.8 0.6 0.4 0.2 - 0.0				
BALLAST	Moderately fouled with silts, gravels & clay. Heavily fouled with clay & gravel.	0.2	BRICK PIER 70170lsd 70170lsd 70170lsd 70170lsd 70170lsd 70170lsd 70170lsd 70170lsd 70170lsd 70170lsd	Medium Dense Medium Dense-Dense	Ta Xa	
CAPPING	Non Woven Geofabric @ 600mm Stabilised roadbase. Woven Geofabric @ 800mm	0.6	Non Woven Geofabrid @ 600mm clay 200mm dia Pipe	Very Dense	Saturate	ed
RESIDUAL SOIL BEDROCK	Silty clay with some gravels. Shale, W-MH. EOH @ 1000mm	- 0.8 - 1.0	Bottom of footing EOH @ 1000mm	Firm	MC>P	
		1.2	observed at 1000mm BRL on Bedrock, Shale, MH.			

🗻 🚋 RailCorp	RAIL CORP GEOTECHNICAL SERVICES ENGINEERING EXCAVATION LOG	TEST PIT Nº: 8376-2
PROJECT: REDFERN FEATURE: FORMATION / FOOTING INVESTIG LOCATION: PLATFORM 4 @ 1.214KM - DOWN		A MARTINE CONTRACTOR AND A MARTINE AND A MARTINE AND A MARTINE AND A MARTINE AND A MARTINE AND A MARTINE AND A
GEOLOGICAL DESCRIPTION		IL PROPERTIES, STRUCTURE & SCONTINUITIES SCONTINUITIES
Type of Deposit Characteristics		SCONTINUITIES ISON UNDER SCONTINUITIES
Below Down Rail BALLAST Moderately fouled with silts, clay, sands & gravels. Water @ 700mm (Test Pit full of water) EOH @ 720mm	1.2 Platom 1.0 200 0.8 201 0.6 3 0.7 200 0.8 3 0.4 BRICK 0.2 930 0.4 DOWN 0.0 SUBURBAN 0.1 0.0 0.2 0.0 0.4 0.1 0.2 0.1 0.2 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.4 0.5 0.2 0.6 0.4 0.7 0.0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.0	um Dense


	🟯 🚋 RailCorp	E	RAIL CORP GEOTECHNICAL SERVICES	TEST PIT Nº:	8376-3
	EDFERN DRMATION / FOOTING INVESTIGAT LATFORM 4 @ 1.260KM - DOWN SUI			WN BY: _ HC DATE	E: 01/11/08 E: 18/11/08 E: 25/11/08
GEOLC	GICAL DESCRIPTION	DEPTH (m)	GRAPHIC REPRESENTATION	SOIL PROPERTIES, STRUCTURE &	CONSISTTENCY REL. DENSITY MOISTURE GROUNDWATER SAMPLES TESTS
Type of Deposit	Characteristics			DISCONTINUITIES	CONSIS REL. DI MOIS GROUNI SAMPLE
	Below Down Rail	1.2 1.0 0.8 0.6 0.4 0.2 0.0	Platform Concrete o S RO RO RO RO RO RO RO RO RO RO		
BALLAST	Moderately fouled with sands, clay, & gravels.	0.2	SUBURBAN Beneric Sleeper	Medium Dense	Moist-Wet
	Heavily fouled with clay & gravels.	0.6	111 180 200mm dia Pipe	Medium Dense-Dense	Saturated
FILL	Roadbase, sandy gravels, some clay, Non Woven Geofabric @ 980mm Compacted gravels, some sand & clay.	1.0	Clayer gravels Bottom of footing Geofabric @ 980mm	Medium Dense Dense	Moist
	_EOH @ 1120mm	-	observed at 950mm BRL. Founded on Silty clay, firm. EOH @ 1120mm		Moist-Wet
			EUR (0) TIZUMM		

	🟯 🚋 RailCorp	E	RAIL CORP GEOTECHNICAL SERVICES TEST PIT N°:	8376-4
	DFERN DRMATION / FOOTING INVESTIGA ATFORM 4 @ 1.308KM - DOWN S	TION	EXCAVATION DIMENSION : BETWEEN SLEEPERS DRAWN BY: HC DATE	: 18/11/08
GEOLO	GICAL DESCRIPTION	DEPTH (m)	GRAPHIC REPRESENTATION SOIL PROPERTIES, STRUCTURE &	CONSISTTENCY REL. DENSITY MOISTURE GROUNDWATER SAMPLES TESTS
Type of Deposit	Characteristics		DISCONTINUITIES	CONSISTT REL. DEN MOISTU GROUNDW SAMPLES
	4 foot	1.0 0.8 0.6 0.4 0.2 0.0 0.0	Platform Concrete BRICK WALL (Party cement rendered) BRICK WALL (Party cement rendered) BRICK WALL (Party cement rendered) Medium Dense Medium Dense	
BALLAST	Moderately fouled with sands,	0.4	Medium Dense	Moist
4	gravels, silts & clay. Heavily fouled with clay & gravels.	0.6	Image: Solution of the second seco	Saturated
CAPPING	Roadbase & clay.	0.8	200mm dia Pipe Stiff Sity	
RESIDUAL SOIL	Silty clay with ironstone.	1.0	Stiff	MC=PL
	-	1.2	t Bottom of footing not observed. Founding depth exceeding 1000mmm BRL.	

	🟯 🚋 RailCorp	E	RAIL CORP GEOTECHNICAL SERVICES
	EDFERN DRMATION / FOOTING INVESTIGA LATFORM 4 @ 1.342KM - DOWN SU	TION	EXCAVATION DIMENSION : BETWEEN SLEEPERS DRAWN BY: HC DATE: 18/11/08
GEOLC	GICAL DESCRIPTION	DEPTH (m)	GRAPHIC REPRESENTATION SOIL PROPERTIES, STRUCTURE & DISCONTINUITIES
FILL	Below Down Shoulder Brick fill with ballast. Water @ 670mm Brick fill with clay & gravels.	1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.2 0.4 0.6	Plaiform 0 0 0 0 0 ** Concrete A 35
X	EOH @ 900mm	0.8	Water obscured the view, bottom of footing not observed. Founding depth

 $\frac{1}{2}$

	🟯 🚋 RailCorp	E	RAIL CORP GEOTECHNICAL SERVICES	EST PIT №: 8376-6
	DFERN DRMATION / FOOTING INVESTIGAT ATFORM 4 @ 1.360KM - DOWN SU	ION	EXCAVATION DIMENSION : BETWEEN SLEEPERS DRAWN BY: HO	DATE: 01/11/08 DATE: 18/11/08 DATE: 25/11/08
GEOLO	GICAL DESCRIPTION	DEPTH (m)	GRAPHIC REPRESENTATION SOIL PROF STRUCT	
Type of Deposit	Characteristics	DE DE	DISCONT	INUITIES UNIT ION UNITIES UNIT ION UNITII ION UNIT ION UN
	Below Down Shoulder	1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2	end of the A small pip footing at a the rail leve	n below the ramp at the country Platform, approx at 1.369KM. be was observed below the a depth of 740mm below el. Footing depth is 740mm at this location
BALLAST	Moderately fouled with clay & gravels.	0.4		
	Heavily fouled with clay & gravels.	0.6	Dense Dense	t Saturated
CAPPING	Roadbase & clay.	0.8	Medium Dens	Wo
RESIDUAL SOIL	Silty clay.	1.0	Bottom of footing observed at 720mm BRL.	MC=PL

Appendix C. Explanatory notes and borehole logs

Soil Description

MATERIAL DESCRIPTION

Г

Soil description is based on an assessment of disturbed samples, as recovered from boreholes and excavation, and from undisturbed materials as seen in excavation and exposures or in undisturbed samples.

CLASSIFICATION

Soils are described in general accordance with AS1726-1993 and the Unified Soil Classification (USC) as shown below.

(E	Field Identification procedures (Excluding particles larger than 63 mm and basing fractions on estimated mass)				mm and	Code	Typical Names	Describing Soils		Laborato	ry Classification Cr	iteria
	fraction	AVELS o fines)	Wide range in grain size substantial amounts of al intermediate sizes, not enough fines to bind coar grains, no dry strength		nts of all s, not ind coarse	GW	Well graded gravels, gravel-sand mixtures, little or no fines	Give typical name, symbol, indicate approximate % of sand and gravel,			Greater than 4 $c_{\mu} = \frac{D_{60}}{D_{10}}$	Between 1 & 3 $c_c = \frac{(D_{30})^2}{D_{10}xD_{60}}$
075 mm	More than 50% of coarse fraction is larger than 2.36 mm	CLEAN GRAVELS (Little or no fines)	rang inter not	dominantly or ge of sizes wit mediate size enough fines rse grains, no ngth	th some s missing, to bind	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines, uniform gravels	maximum size, angularity, surface condition, and strength of coarse grains: colour, amount plasticity of fine component.		Determine	Not meeting all gr for GW.	adation requirements
s arger than 0.	GRAVELS More than 50% is larger than 2.	NITH FINE ble fines)	of n	y' materials w on-plastic fine lium dry stren	es, zero to	GM	Silty gravels, gravel- sand-silt mixtures	For undisturbed soils add information on	percentages of gravel and sand from grain size curve Depending on	Atterberg limits below 'A' line or PI less than 4	Above 'A' line with PI between 4 and 7	
AINED SOILS an 63 mm is I	GRAVE	≩∯ ofp		'Dirty' materials with excess of plastic fines, medium to high dry strength		GC	Clayey gravels, gravel-sand-clay mixtures	moisture content, degree of compactness, stratification, cementation, and		Depending on percentage smaller than 0.075 mm size coarse grained soils are classified	Atterberg limits above 'A' line with PI greater than 7	are borderline cases requiring use of dual symbols.
COARSE GRAINED SOILS laterial less than 63 mm is la	SANDS More than 50% of coarse fraction is smaller than 2.36 mm	ANDS o fines)	sub: inter eno	e range in gra stantial amou mediate size ugh fines to b ns, no dry stro	nts of all s, not ind coarse	SW	Well graded sands, gravelly sands, little or no fines	odour. Give local and other pertinent descriptive	ation	as follows: Less than 5% GW, GP, SW, SP More than 12%	Greater than 6 $c_u = \frac{D_{e0}}{D_{t0}}$	Between 1 & 3 $c_{c} = \frac{(D_{30})^{2}}{D_{10}xD_{60}}$
COARSE GRAINED SOILS More than 50% of material less than 63 mm is larger than 0.075 mm		CLEAN SANDS (little or no fines)	rang inter not	dominantly or ge of sizes wit mediate size enough fines rse grains, no ngth	h some s missing, to bind	SP	Poorly graded sands and gravelly sands; little or no fines, uniform sands	information. Example: SILTY SAND (SM), fine to coarse, light grey, about 20%	g the fractions as given under field identification	GM, GC, SM, SC 5% to 12% Borderline cases requiring use of dual symbols	Not meeting all gradation requirements for SW	
Mor		is smaller SANDS WITH FINES (Appreciable fines)	of n	y' materials w on-plastic fine lium dry stren	es, zero to	SM	Silty sands, sand-silt mixtures	strong angular gravel particles – 10mm max. size, rounded and sub- angular sand, about 12% non- plastic fines, moist, dense alluvial sand.			Atterberg limits below 'A' line or PI less than 4	Above 'A' line with PI between 4 and 7
			of p	y' materials w lastic fines, m i dry strength	edium to	SC	Clayey sands, sand- clay mixtures				Atterberg limits above 'A' line with PI greater than 7	are borderline cases requiring use of dual symbols
	IDEN			PROCEEDU	RES ON FRA	CTIONS	< 0.075 mm		ntifyin			
ШШ		STRENGTH DILATANCY TOUGHNESS		TOUGHNESS			Give typical name,	in ide	Plasticity Chart			
ED SOILS 63 mm is smaller than 0.075 mm	SILTS AND CLAYS Liquid limit <50	None		Quick to slow	None	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with low plasticity. Silts of low to medium Liquid Limit	symbol, and indicate degree and character of plasticity, colour, amount and size of coarse grains.	Use grain size curve in identifying the fractions	50 45 40 & & 35		ULUN CH PLUNE
INED SOILS an 63 mm is sma		Med to h		None to very slow	Medium	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays	For undisturbed soils add information on	Use g	35	CI CI	ОН
N IN		Low med		Slow	Low	OL*	Organic silts and organic silt-clays of low to medium plasticity	moisture content, consistency, structure, stratification, and odour.		10	CL OL OL OL	or MH
FINE GRA More than 50% of material less th	SILTS AND CLAYS Liquid limit >50	Low med		Slow to none	Low to medium	MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, silts of high Liquid Limit	Give local or geologic name and other pertinent descriptive information.		0 <u>ML</u>		60 60 70 80 %)
re than £	LTS AND CLAY Liquid limit >50	High very		None	High	СН	Inorganic clays of high plasticity	Example:		Laboratory: MC Moisture Cont		num Dry Density
Mo	IIS 1	Med to h		None to very slow	Low to medium	OH*	Organic clays of high plasticity	CLAYEY SILT (ML), brown, low plasticity, trace sand, firm, dry, numerous vertical		LL Liquid Limit PL Plastic Limit PI Plasticity Index LS Linear Shrinka	PSD Partic x UU Undra	num Moisture Content cle Size Distribution ained Unconsolidated olidated Undrained
ORG SC	GHLY GANIC DILS	sp	ongy 1	entified by col feel and frequ fibrous texture	ently by	Pt*	Peat and other highly organic soils	root holes.		$\begin{array}{ll} \rho_{p} & \text{Particle Densit} \\ \rho_{b} & \text{Bulk Density} \\ \rho_{d} & \text{Dry Density} \end{array}$	ty CD Cons I _{s(50)} Point	olidated Drained Load Index ial Compressive gth

Boundary classifications – Soils possessing characteristics of two groups are designated by combinations of group symbols. For example GW-GC, well graded gravel-sand mixture with clay binder. * effervesces with H_2O_2

DESCRIPTION OF A SOIL

- Colour i.
- Plasticity or particle characteristics of soil ii. Secondary components name
- iii.
- iv. Estimated proportion v.
- Secondary component plasticity or particle characteristics vi
- Other minor soil components Structure of soil, geological origin vii.
- viii. Consistency / density
- ix. Moisture condition

Те	rm	Grain Size	Shape and Texture	Field Guide
CL	AY	< 2 µm	Shiny	Not visible under 10x
SI	LT	7 – 75 µm	Dull	Visible under 10x
	Fine	0.075 – 0.2 mm	Angular / sub - angular / sub -	Visible by eye
SAND	Medium	0.2 – 0.6 mm		Visible at < 1 mm
	Course	0.6 – 2.36 mm		Visible at < 3 mm
	Fine	2.36 – 6 mm		Visible at < 5 mm
GRAVEL	Medium	6 – 20 mm		Road Gravel
	Course	20 – 63 mm	rounded /	Rail ballast
COB	BLES	63 – 200 mm		Beaching
BOULDERS		> 200 mm		

COLOUR

The colour of a soil should be described using simple terns, such as black, white, grey, red, brown, orange, yellow green or blue. These may be modified as necessary by 'pale', 'dark' or 'mottled'. Borderline colours may be described as a combination of these colours (e.g. orange brown). Where a soil consists of a primary colour with a secondary mottling it should be described as (primary colour) mottled (first colour) and (secondary colour). Where a soil consists of two colours presented in roughly equal proportions the colour description should be mottled (first colour) and (secondary).

PARTICLE CHARACTERISTICS - COARSE GRAINED SOILS

Sub-rounded

Term	Description
Well Graded	Having good representation of all particle sizes
Poorly graded	With one or more intermediate size poorly represented
Gap graded	With one or more intermediate sizes absent
Uniform	Essentially of one size

ANGULARITY - COARSE GRAINED SOILS

Rounded

LAS	этю	CITI	Y

1

Р

Liquid	limit (%)	Description
4	35	Low plasticity
>35	to ≤ 50	Medium plasticity
>	· 50	High plasticity

DESCRIPTIVE TERMS FOR SECONDARY AND MINOR COMPONENTS

Coa	rse Grained Soils	Fine grained soils			
% Fines	Modifier	% Coarse	Modifier		
≤ 5	Omit or use 'trace'	≤ 15	Omit, or use 'trace'		
>5 to ≤12	Describe as 'with clay/ silt' as applicable	>15 to ≤ 30	Describe as 'with sand/ gravel' as applicable		
> 12	Prefix soil type as 'clayey/silt' as applicable	> 30	Prefix soil type as 'sandy/ gravelly' as applicable		

CONSISTENCY TERMS - COHESIVE SOILS

Term	Undrained shear strength	SPT (N) Blow Count	Field Guide to consistency
Very Soft (VS)	<12	0-2	Easily penetrated several centimetres by fist, exudes between fingers when squeezed in fist
Soft (S)	12 – 25	2-4	Easily penetrated several centimetres by thumb, easily moulded by light finger pressure
Firm (F)	25 – 50	4 - 8	Can be penetrated several centimetres by thumb with moderate effort, and moulded between the fingers by strong pressure
Stiff (St)	50 – 100	8 – 15	Readily indented by thumb but penetrated only with difficultly. Cannot be moulded by fingers
Very Stiff (VSt)	100 – 200	15 –30	Readily intended by thumb nail, still very tough
Hard (H)	>200	>30	Indented with difficulty by thumb nail, brittle

CONSISTENCY TERMS - NON COHESIVE SOILS

Term	Density Index (%)	SPT (N) Blow Count	Field Guide to Density			
Very Loose (VL)	< 15	0 – 4	Ravels			
Loose (L)	15 – 35	4 – 10	Shovels easily			
Medium Dense (MD)	35 – 65	10 – 30	Shovelling very difficult			
Dense (D)	65 - 85	30 - 50	Pick required			
Very Dense (VD)	> 85	50 -100	Pick difficult			

MOISTURE

Description
Hard and friable or powdery, moisture content well below plastic limit
Soil feels cool, darkened in colour, can be moulded, near plastic limit
Soil feels cool, dark, usually weakened, free water, moisture content well above plastic limit

STRUCTURE

Description
Soils may consist of separate zones different in colour, grain size or other properties.
The thickness, orientation and any distinguishing features of the zone should be described i.e. gradational or distinct boundaries. The patterns of these zones may be described using layer (zone is continuous), lens (a discontinuous layer of different material, with lenticular shape) or pocket (irregular inclusion of different materials).
The dimensions, orientation and spacing of the defects should be given.
The surface of the defects should be described in terms of texture (rough, polished) and coating.
Defects may be re-cemented and may be stronger than the parent soils.
Defects may include fissures, cracks, roots, roots and tube holes, infill tubes, in-filled seams, dykes.
Soils or defects within soils may be cemented together by various agencies.
The nature of the cementing agent should be identified if possible, strength, reaction to acid and the like.
Weakly cemented – If the cementing agent allows the particle aggregation to be easily fractured by hand when the soil is saturated.
Strongly cemented – If the cementing agent prevents fracturing by hand of the particle when the soil is saturated (use strength classification as per rock)

ADDITIONAL OBSERVATIONS

Geological origin

Term	Description
Weathered in	Extremely weathered soil - Structure and fabric of parent rock visible
place soils	Residual soil - Structure and fabric of parent rock not visible
	Aeolian soil - Deposited by wind
	Alluvial soil - Deposited by streams and rivers
Transported soils	Colluvial soil -Deposited on slopes (transported down slope)
00110	Lacustrine soil - Deposited by lakes
	Marine soil - Deposited in ocean, bays, beaches and estuaries
	Soil Fill - Describe soil type, UCS symbol and add 'FILL'
	Rock Fill - Rock type, degree of weathering, and word 'FILL'
Fill materials	Domestic Fill - Percent soil or rock, whether pretrucible or not
	Industrial Fill - Percent soil, whether contaminated, particle size & type of waste product, i.e. – brick, concrete, metal

Any scour should be noted.

ORGANIC OR ARTIFICIAL MATERIALS

Preferred Terms	Secondary Description
Organic matter	Fibrous peat, charcoal, wood fragments, roots (greater than 2 mm diameter), root fibres (less than 2 mm diameter)
Waste fill	Domestic refuse, oil, bitumen, brickbats, concrete rubble, fibrous plaster, wood pieces, wood shavings, saw dust, iron filings, drums, steel bars, steel scrap, bottles, broken glass, leather.

Rock Description

ROCK TYPE

Composition of the rock material i.e. colour, grain size, structure, texture, fabric, mineral composition, hardness alteration, cementation etc. as applicable. Condition of the material i.e. estimated strength, weathering and moisture condition. Rock mass properties i.e. structure of rock, defects – type, orientation spacing, roughness, waviness and continuity and weathering (of the rock mass).

GRAIN SIZE

Particle size scales depends on rock type. For sedimentary rocks, the following descriptors can be used:

- Sand terms for sandstone
- Gravel terms for conglomerates and breccias
- No description of grainsize is required for claystone, siltstone, shale and mudstone etc.

For metamorphic and igneous rocks, record the typical grain size in millimetres

COLOUR

The colour of a rock should be described using simple terms, such as black, white, grey, red, brown, orange, yellow, green or blue. These may be modified as necessary by 'pale', 'dark' or 'mottled'. Borderline colours may be described as a combination of these colours (e.g. grey green).

STRUCTURE

Terms typically used to describe the structure of a rock mass where possible include:

- Sedimentary rocks bedded, laminated
- Metamorphic foliated, banded, cleaved
- Igneous rocks massive, flow banded.
- The spacing or thickness of these structural features should be given as described in the table below:

Bedding Term
Very thinly laminated
Thinly laminated
Laminated
Thinly Bedded
Medium bedding
Thickly bedded
Very thickly bedded

TEXTURE

Туре	Definition
Massive	Effectively Homogeneous and isotropic. Bulky or equidimensional and elongated or tabular grains uniformly distributed.
Distinct	Bedded, foliated, cleaved – effectively homogeneous with planar anisotropy. Elongated or tabular grains or pores in a layered arrangement. The arrangement of grains, referred to as the rock fabric, may show a preferred orientation.

STRENGTH

Term	Code	I _{s(50)} (MPa)	Field Guide to Strength
Extremely Low	EL	≤ 0.30	Easily remoulded by hand to a material with soil properties.
Very Low	VL	> 0.03 to ≤0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.
Low	L	> 0.1 to ≤ 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blow of the pick point; has dull sound under hammer. A piece of core 150 mm long 50 mm in diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium	М	> 0.3 to ≤ 1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm in diameter can be broken by hand with difficulty.
High	н	> 1 to ≤ 3	A piece of core 150 mm long by 50 mm in diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High	VH	> 3 to ≤ 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High	EH	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

 These terms refer to the strength of the rock material and not to the strength of the rock mass which may be considered weaker due to the effect of rock defects.

2. The field guide visual assessment of rock strength may be used for preliminary assessment or when point load testing is not available.

3. Anisotropy of rock material samples may affect the field assessment of strength

WEATHERING CLASSIFICATION

Deerse of u	Designed the set of th		
Degree of weathering		Definition	
Residual soil (RS)		Soil developed from weathering of rock in-situ. The mass structure and substance fabric are no longer evident.	
Extremely weathered rock (XW)		Rock is weathered to such an extent that it has soil properties. It disintegrates or can be remoulded in water. It shows a rock fabric but is described as a soil.	
Highly weathered rock (HW)	Distinctly weathered (DW)*	Secondary minerals often weathered to clay. Staining of most grain boundaries and some disintegration due to weakening of grain bonds. Often significant loss of strength. However cementing of joints can occasionally lead to strengthening.	
Moderately weathered rock (MW)		Staining and pitting of most secondary minerals and other grain boundaries. The loss of strength depends on the weathering and extent of secondary minerals in the rock matrix. The rock substance may be highly discoloured, usually by iron staining.	
Slightly weathered rock (SW)		Secondary minerals are stained but not pitted, slight staining at some grain boundaries. Little or no change of strength indicated by amount of colour change.	
Fresh rock (F)		Rock shows no sign of decomposition or staining. Relatively strong.	

*Distinctly Weathered indicates a distinct change in colour, hardness and/or friability and not distinguishable into HW or MW

DESCRIPTION OF A DISCONTINUITY

- Depth
- Dip
- Infill material
 Aperture observation
- Aperture observationPlanarity
- Small scale roughness
- Aperture measurement (mm)
- Remark
- Roughness Class

INFILL MATERIAL

Code	Description
CA	Calcite
СН	Clay
CG	Clayey gravel
GM/ GP/ GW	Gravel
Fe	Iron oxide
Fe Clay	Iron oxide clay
Qz	Quartz
Х	Carbonaceous

APERTURE OBSERVATION

Term	Code	Description
Clean	CN	No visible coating or infill
Stain	Sn No visible coating or infill but surfaces are discoloured by mineral staining	
Veneer <1 mm	VR	A visible coating or soil or mineral substance but usually unable to be measured. If discontinuous over the plane, patchy veneer.
Coating >1 mm to <10mm	СТ	A visible coating or infilling of soil or mineral substance. Describe composition and thickness.
Filling (Filled) >10 m	Filled	A visible filling of soil or mineral substance. Describe composition and thickness.

PLANARITY

Description
Curved
Discontinuous
Irregular
Planar
Stepped

SMALL SCALE ROUGHNESS

Code	Description
POL	Polished
RF	Rough
S	Smooth
SL	Slickensided
VR	Very rough

ROUGHNESS CLASS

Code	Description
I	Rough or irregular, stepped
II	Smooth, stepped
III	Slickensided, stepped
IV	Rough or irregular, undulating
IX	Slickensided, planar
V	Smooth, undulating
VI	Slickensided, undulating
VII	Rough or irregular, planar

TYPE OF DISCONTINUITY

Term	Code	Description	
Bedding	BP	Generally no micro fractures	Arrangement in layers, of mineral grains of similar
Foliation	FL	Discontinuous micro	sizes or composition, and/or arrangement of
Cleavage	CL	fractures may be elongated present, near parallel minerals r	elongated to tabular minerals near parallel to one another, and/ or to the
Schistosity	SH	to the layering	layers.
Contact	со	A contact is the surface along which one rock touches another.	
Joint	JT	A discontinuity or crack, planar, curved, irregular, across which the rock usually has little tensile strength. The joint may be open (filled with air or water) or filled by soil substance or by rock substance or rock substance which acts as a cement, joint surface may be rough, smooth or slickensided	
Shear seam/ zone	SS/ SZ	Zone, with roughly parallel planar boundaries of rock material intersected by closely spaced (generally <50 mm) joints and/ or microscopic fractures (cleavage) planes. The joints are at small angles to the zone boundaries. They are usually slightly curved and divide the mass into blocks of lenticular or wedge space.	
Crushed seam/ zone	CS/ CZ	Zone with roughly parallel planar boundaries, composed of disoriented, usually angular fragments of the host rock substance. The fragments may be of clay, silt, sand or gravel size, or mixtures of any of these. Some minerals maybe altered or decomposed but this is not necessarily so.	
Decomposed seam / zone	DS/ DZ	Seam or zone of any shape, but commonly with roughly parallel boundaries in which the rock material is discoloured and usually weakened. The boundaries with fresh rock are usually gradational. Geological structures in the fresh rock are usually preserved in the decomposed rock.	
Infill seam/ zone	IS	joints. May show layering roug boundaries.	ies composed of soil igration of soil and into open hly parallel to the zone the adjacent rock do not
Vein	VN	vein is a distinct sheet lik minerals within a rock	e body of crystallized
Dyke	DK		dies of igneous rock that cut ding or foliations in rocks. nultiple in nature.
Sill	SI	A sill is an intrusion of m underground between th rock	agma that spreads le layers of another kind of
Void	VO	A completely empty spa	ce.

Refer to Table A10 in AS1726-1993

Drilling

DRILLING / EXCAVATION METHOD

Code	Description
AD/V	Auger drilling V-bit
AD/T	Auger drilling with TC-bit
AT	Air track
В	Bulldozer
BD	Backhoe bucket
BH	Washbore drag pit
CA	Casing advancer
E	Excavator
EH	Excavator with hammer
HA	Hand auger
NMLC	NMLC core barrel
HMLC	HMLC core barrel
NQ3	Wire line NQ core barrel
HQ3	Wire line HQ core barrel
PQ3	Wire line PQ core barrel
PT	Push tube
RR	Rock roller
WB	Washbore
Х	Existing excavation
N	Natural exposure

WATER/ DRILLING FLUID

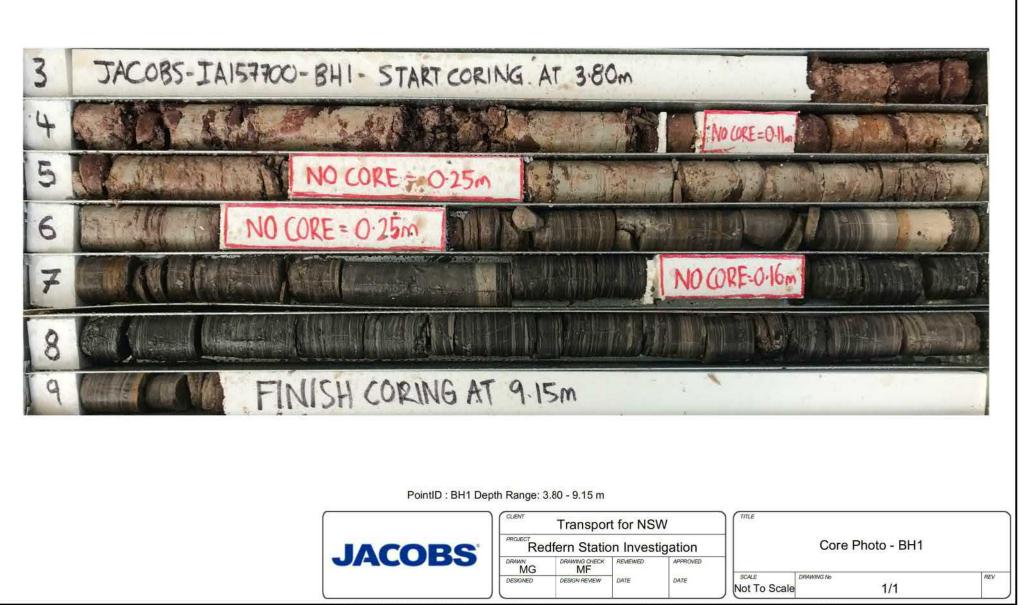
WATER DRIELING FLOD		
Symbol	Description	
\square	Water loss: partial	
	Water loss: complete	
► ►	Water inflow	
	Water outflow	
<u> </u>	Water level: drilling	
	Water level: standing	

DRILLING PENETRATION

DRILLING PENETR	DRILLING PENETRATION										
Ease of penetration in non-core drilling											
Code	Description										
VE	Very easy										
E	Easy										
F	Firm										
Н	Hard										
VH	Very hard										

SAMPLES AND FIELD TEST

Code	Description
В	Bulk disturbed sample
BLK	Block sample
DS	Small disturbed sample
ES	Soil sample for environmental testing
EW	Water sample for environmental testing
LB	Large bulk disturbed sample
Р	Piston sample
SPT	Standard Penetration Test
VS	Vane shear test
HP	Hand penetrometer test
U	Undisturbed push in sample


BACKFILL / WELL DETAIL

Symbol	Description
	Cement seal
	Grout backfill
	Blank pipe
	Slotted pipe
	Filter pack: sand filter
	Bentonite seal
	Backfill – excavated material

,	J	AC	OB	S	CL	LIENT DCATIO	:	Tr	rans	I-CORE DRILL HOLE - GEOLOGICAL I port for NSW PROJECT : Redfern Station Investigatio m, NSW			HOLE NO : BH1 FILE / JOB NO : IA157700 SHEET : 1 OF 3
Р	os	ITION	N : E	E: 33						34 Zone 56) SURFACE ELEVATION : 25.90 (AHD)	ANC	GLE F	ROM HORIZONTAL : 90°
R	lG	TYPE	: X	0		MO	UNT	INC	G :	Track CONTRACTOR : Terratest		DR	ILLER : BM
	AT	E ST/	ARTE	D:2	20/11/201	7 DAT	ECC	DM	PLE	TED : 20/11/2017 DATE LOGGED : 20/11/2017 LOGGED E	3Y : I	MG	CHECKED BY :
┢							1			MATERIAL			
		RESS		RILLIN					z			≻	
	& CASING	WATER	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC	FOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
					ES 0.10m 0.30m ES	0.0 —		\times		0.10m FILL: Gravelly CLAY: Brown, medium plasticity, gravel is fine to coarse, subangular to angular, with a trace of root fibres. FILL: Silty SAND: Brown, fine to medium grained, with a trace of clay and gravel.			FILL
- DD					0.40m 0.60m ES 0.70m	-		\approx		0.50m FILL: Gravelly CLAY: Orange-brown, high plasticity, gravel is fine to coarse, subangular to subrounded.			recovered.
			E		1.00m ES \1.10m	1.0-		\approx		From 0.9m, reducing in gravel amount.	м		-
ł						-		\approx		From 1.5m, colour change to red-brown.			
	CASING		F		2.00m SPT 6,6,7 N=13	2.0		\approx		2.30m			2.00: Sandstone gravel recovered in SPT.
			Е		2.45m			1		Silty CLAY: Red-brown and pale grey, high plasticity.			RESIDUAL SOIL
AD/T						-						VSt	2.70: Increased drilling resistance.
			F			3.0			СН		D		-
V			н	hed	3.50m D 3.70m	-				3.80m		н	
				Obser		4.0-				Continued as Cored Drill Hole			3.80: TC-bit refusal at 3.8m.
i). varv				Not		4.0							
200						-							-
						-	-						-
202						5.0 —							-
ריי הייי ייי						-	-						
						6.0 —	-						-
						-							-
						7.0 —							-
						-							
						- 8.0 -	_						
d	etai	Explai ils of a sis of	bbrev	iatior	IS								

200		v · E	. 333304			N : Redfern, NSW 24.6 (MGA94 Zone 56) SURFACE ELEVATIO	N · 7	5 00				SHEET : 2 OF 3 M HORIZONTAL : 90°
		<u> </u>		.o, IN. (, ,			Terratest			R : BM
DAT	E ST	ARTE	D: 20/1	1/2017	DATE	COMPLETED : 20/11/2017 DATE LOGGED : 2	20/11/2	2017	LOGGE	DBY:MG		CHECKED BY :
CAS			TER : I	HQ		BARREL (Length) : BIT :				BI		NDITION :
ROG	RESS	DRILLI ເຜີ				MATERIAL		ESTIN	ATED STRENGTH	NATURAL	1	RACTURES
& CASING	WATER	표면 (CORE LOSS 표면 RUN %)	SAMPLES & FIELD TESTS	0 DEPTH (m)	GRAPHIC LOG	DESCRIPTION ROCK TYPE : Colour, Grain size, Structure (texture, fabric, mineral composition, hardness alteration, cementation, etc as applicable)	Weathering	g _	Is(50) • - Axial O - Diametral · · · · · · · · · · · · · · · · · · ·	FRACTURE (mm)	VISUAL	(joints, partings, seams, zones, el Description, orientation, infilling or coating, shape, roughness, thickness, other
				- - 1.0 -								
				2.0								
V	SS01 %0	0% LOSS		4.0		3.80m START CORING AT 3.80m Sitty CLAY: Pale grey with some red-brown ironstone gravel, high plasticity, dry, hard, gravel is medium to coarse, subangular to angular.						
	-	4.65 24%		-		4.70m						
	ross	LOSS		- 5.0 —		4.81m CORE LOSS 0.11m (4.70-4.81) Sitty CLAY: Pale grey with some red-brown ironstone gravel, high plasticity, dry, hard, gravel is medium to coarse, subangular to angular. 5.24m CORE LOSS 0.25m (5.24-5.49)					-	
				6.0		5.49m Sitty CLAY: Pale grey with some red-brown ironstone laminae, high plasticity, dry, hard.						
	Ť	6.15 17% LOSS		-		6.15m CORE LOSS 0.25m (6.15-6.40) 6.40m	X					
			Is(50) a=0.05 d=0.12 MPa	7.0 —		6.50m Silty CLAY: Pale grey with some red-brown ironstone laminae, high plasticity, dry, hard. INTERLAMINATED SILTSTONE & SANDSTONE (60% siltstone 40% sandstone): Grey and pale grey, sandstone is fine grained, distinctly laminated at 0-5°, some iron staining along defects. From 6.80m, becoming dark grey and pale grey.	HW		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ALL DEFECTS ARE SUB-HORIZONTAL BEDDING PARTINGS UNLESS NOTED OTHERWISE (0-5°) 6.65 to 6.74: VN, Cu, 80-90°, Fe. 6.74 to 6.83: Highly fractured. 6.91 to 6.97: Clay SM, 60mm. 7.06 to 7.10: FZ, 40mm. 7.13
		7 65				7.65m						☐ [_] 7.29 to 7.46: Clay SM, 170mm. 7.48
	- SSOT	7.65 11% LOSS	Is(50) a=0.01 d=0.07	-		7.65m 7.81m CORE LOSS 0.16m (7.65-7.81)	HW			┝─┼┼┤┤ ┼ ┼ │		∼7.48 7.57 ≈~7.81 ∼7.83

							000						HOLE NO : BH1
	A	C	OB	S	CLI LO	IENT CATION	: Transport for NSW : Redfern, NSW	PROJECT : Red			ation Works		FILE / JOB NO: IA157700 SHEET: 3 OF 3
					1.8, N:			SURFACE ELEVATION					M HORIZONTAL : 90°
			: X(1/2017		NTING : Track COMPLETED : 20/11/2017			OR : Terratest	DF DBY:MG	RILLE	R : BM CHECKED BY :
				ETER :		DATE	BARREL (Length) :	BIT :	J/ T 1/.	2017 LOGGE		т со	NDITION :
		D	RILL	NG				ATERIAL					FRACTURES
PR	OGRE	ESS	-oss	s & sts	(m	<u>∪</u>	DESCRIPT		ng	ESTIMATED STRENGTH Is(50)	NATURAL FRACTURE	_	ADDITIONAL DATA
DRILLING	& CASING	WATER	R (CORE LOSS 코티 RUN %)	SAMPLES & FIELD TESTS	0.8 DEPTH (m)	GRAPHIC LOG	ROCK TYPE : Colour, Gr (texture, fabric, mineral cor alteration, cementation,	mposition, hardness	Weathering	●-Axial O-Diametral [©]	(mm)	VISUAL	(joints, partings, seams, zones, etc) Description, orientation, infilling or coating, shape, roughness, thickness, other
			11% LOSS		-		INTERLAMINATED SILTSTO siltstone 40% sandstone): Gre sandstone is fine grained, dis (continued)	ey and pale grey,	HW				7.88 7.95: Sandstone SM. - 8.06 - 8.14 - 8.24
- NMLC -		— 5% LOSS		Is(50) a=0.03 d=0.09 MPa	-								- 8.27 - - 8.31 - 8.38 - - 8.41 - - 8.5 - 8.53 -
		¥	9.15	ls(50) a=0.04 d=0.08 MPa	9.0-		From 8.90m, becoming grey-t 9.15m Hole Terminated at 9.15 m	prown, increasing strength.					- 8.62 - 8.64 - 8.69 - 8.75 - 8.75 - 8.78
				мРа	-	-	Target depth						-8.82 -8.91: Fe. -8.97: Fe. -9.11 -9.13 -
					10.0 - - -	-							
11-10-01-01-01-01-01-01-01-01-01-01-01-0					- 11.0	-							
1 LID. JACODS 3.01.2 20 17-03-08 F1J. JACOD					- 12.0 - -	-							-
0.00.000 Datigatinate and in one ice .					- 13.0 — - -								
U.G.C					14.0 — - -	-							
					- 15.0 - - - -								
Se de de & l	ails	of a	bbrev	Notes fo iations ptions.	16.0 —								

This figure was created for Jacobs' client. Jacobs accepts no responsibility for any reliance on this information by third parties.

J	AC	OB	S			: T	rans	I-CORE DRILL HOLE - GEOLOGICAL I ort for NSW PROJECT : Redfern Station Investigatio n, NSW			HOLE NO : BH2 FILE / JOB NO : IA157700 SHEET : 1 OF 3
PC	SITIO	N : E	E: 333					4 Zone 56) SURFACE ELEVATION : 26.37 (AHD)	ANC	GLE F	ROM HORIZONTAL : 90°
	G TYPE					UNTIN					ILLER : PB
DA	TE ST	ARTE	D: 1	18/11/201	7 DAT		IPLE	TED : 18/11/2017 DATE LOGGED : 18/11/2017 LOGGED E	3Y : I	٨G	CHECKED BY :
			RILLIN				1_	MATERIAL	1	1	
	MATER W	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
					- 0.0			 Asphaltic CONCRETE. FILL: Gravelly SAND: Brown, fine to coarse grained, gravel is fine to coarse, subangular to angular. 0.45m 	D		FILL -
- DDN				0.80m ES				FILL: Clayey SAND: Brown, fine to medium grained with some medium to coarse, subangular to subrounded gravel.			0.40: Buried Asphalt pavement, 50mm thick.
ł				ES (1.10m	- 1.0 			At 1.0m, with some red-brown and grey clay.	м		-
		E		1.50m SPT 4,1,2 N=3. 1.95m				1.50m	D	-	
				1.95m	2.0-			2.00m Silty CLAY: Grey mottled red-brown, high plasticity with trace of ironstone gravel.			RESIDUAL SOIL
											-
AD/T				3.00m SPT 5,10,15 N=25.	- 3.0					VSt	-
			erved	3.45m			СН		D		-
		F	Not Observed		4.0-						-
				4.50m SPT 11,16,5/20m HB, N=R. 4.82m	- nm -					н	-
				1.0211]		5.00m			-
					- 5.0			Continued as Cored Drill Hole			-
5						-					-
					6.0-						-
					-						-
					7.0-						-
יסרה האז יכייכ					-	-					-
det	e Expla tails of a basis of	abbrev	/iation	าร	8.0-	I	<u> </u>			I	I

JACOBS CORED DRILL HOLE LOG CLIENT : Transport for NSW LOCATION PROJECT : Redfern Station Investigation Works												F	HOLE NO : BH2 FILE / JOB NO : IA157700 SHEET : 2 OF 3		
POS	SITIO	N : E	: 33335			2.8 (MGA94 Zone 56)	SURFACE ELEVAT	TION :	26.3	87 (AHD)		ANG	LE F	RON	/ HORIZONTAL : 90°
RIG	TYP	E : X(2		MOU	NTING : Track	CON	TRACT	OR	: Terrates	t		DF	RILLE	R : PB
					DATE	COMPLETED : 18/11/2		: 18/11	/201	7 LOGG	ED B	Y : N			CHECKED BY :
CAS		DIAME DRILL	TER :	HQ	<u> </u>	BARREL (Length) : 1	.50 m BIT : MATERIAL						BI		NDITION : FRACTURES
PROG								_	EST	IMATED STRENGT	H N/	ATUR	۹L	F	ADDITIONAL DATA
& CASING	WATER	표절 (CORE LOSS 로디 WN %)	SAMPLES & FIELD TESTS	0 0 DEPTH (m)	GRAPHIC LOG	ROCK TYPE : Colou (texture, fabric, minera	RIPTION ur, Grain size, Structure al composition, hardness tion, etc as applicable)	Weathering	EL -0.03	Is(50) - Axial O - Diametral	FR	ACTU (mm)	RE	VISUAL	(joints, partings, seams, zones, etc) Description, orientation, infiling or coating, shape, roughness, thickness, other
						5.00m START CORING AT 5.0									
Ī		0% LOSS		-		gravel, high plasticity, d	with some red-brown ironstone ry, hard.								
		5.50 0% LOSS				From 5.5m, ironstone g	ravel is absent.								
				-		siltstone 40% sandston sandstone is fine graine	TSTONE & SANDSTONE (60' e): Grey and pale grey, ad, distinctly laminated at 0-5°,								SUB-HORIZONTAL BEDDING PARTINGS UNLESS NOTED OTHERWISE (0-5°). -6.10: Clay SM 50mm. -6.30: Clay SM 50mm. -6.36 -6.40 -6.44: JT, 90 degrees, Cu, Infilled. -6.48
		7.00 0% LOSS	Is(50) d=0.05 a=0.05 MPa Is(50) d=0.01 a=0.1	7.0		some iron staining alon	g defects.		Φ						 - 6.57 to 6.6: Clay SM 30mm. - 6.673; Fe. - 6.89; Fe, JT, 70 to 90 degrees, St. Infiled. - 7.10 - 7.14 - 7.17: Clay SM. - 7.21: Clay SM. - 7.25: Clay, SM. - 7.35: Clay, SM.
detai	ils of	anatory abbrev f descri		⊿ _{8.0} — or		1		I	<u> </u>	<u>ear i i i i</u>		#			□ -7.37

J	AC	ОВ	S		ENT	: Transport for NSW	DRED DRILL H PROJECT :				ation Works	F	HOLE NO : BH2 FILE / JOB NO : IA157700 SHEET : 3 OF 3
POS	SITIO	N : E	: 333351			I : Redfern, NSW 2.8 (MGA94 Zone 56)	SURFACE ELEVA	ATION :	26.3	87 (AHD)	ANGLE		I HORIZONTAL : 90°
RIG	TYPE	E : X(2		MOU	NTING : Track	CO	NTRAC	TOR	: Terratest	DI		R : PB
					DATE	COMPLETED : 18/11/2 BARREL (Length) :		: 18/1	1/201	7 LOGGE	DBY:MG	TCO	
0,10]	DRILL		CONDITION : FRACTURES									
& CASING	RESS	표명 (CORE LOSS 로듀 RUN %)	ETER : I NG EIELD TESTS FIELD TESTS	о В DEPTH (m)	GRAPHIC LOG	ROCK TYPE : Colo (texture, fabric, mine	CRIPTION our, Grain size, Structure ral composition, hardnes ation, etc as applicable)	ss 🚦		IMATED STRENGTH Is(50) ● - Axial O - Diametral	NATURAL FRACTURE (mm)	VISUAL	ADDITIONAL DATA (joints, partings, seams, zones, etc) Description, orientation, infilling or coating, shape, roughness, thickness, other
	0% FOSS	LUSS		-		siltstone 40% sandsto sandstone is fine grain some iron staining alo	LTSTONE & SANDSTONE (6 ne): Grey and pale grey, red, distinctly laminated at 0-5 ng defects. <i>(continued)</i>		N				- 7.38 - 7.42, Clay SM 10mm. - 7.47 - 7.52 - 7.55 - 7.55
	*	8.50	ls(50) d=0.04 a=0.09 MPa	-		8.50m Hole Terminated at 8. Target depth	50 m						7.59-7.63: Clay SM 40mm. 7.68 7.71 7.74 7.82 7.93
				9.0									- 7.98 to 8.06: Fz. - 8.06 - 8.10: Clay SM 40mm. - 8.17 to 8.22: Clay SM 50mm. - 8.22 - 8.27: Fe. - 8.28: Fe. - 8.33: Fe. - 8.33: Fe. - 8.35 - 8.40: Fe.
				- 10.0 — -									-
				- - 11.0 - -									-
See deta & ba				- - 12.0 — - -									-
				- - 13.0 — -									-
				- - 14.0 — - -									-
				- - 15.0 — -									- - -
900	Evolo	nator	Notes fo	- - 16.0 —	-								
deta & ba	ils of a	abbrev	iations ptions.										

JACOBS - IA157700 - BH2 - START CORING AT 5.00m
5 6 7 8 FINISH CORING AT 8:50m
PointID : BH2 Depth Range: 5.00 - 8.50 m Image: 5.00 - 8

JACOBS 3.01.2 LIB GLB GrfcTbr DG PHOTO CORE PHOTO 1 PER PAGE IA157700 GPJ <</p>

This figure was created for Jacobs' client. Jacobs accepts no responsibility for any reliance on this information by third parties.

J	JACOBS NON-CORE DRILL HOLE - GEOLOGICAL LOG CLIENT : Transport for NSW LOCATION : Redferm, NSW PROJECT : Redferm Station Investigation Works HOLE NO : BH3 FILE / JOB NO : IA157700 SHEET : 1 OF 3										
PO	SITIO	N : E	E: 333					24 Zone 56) SURFACE ELEVATION : 26.48 (AHD)	ANC	GLE F	ROM HORIZONTAL : 90°
	5 TYPE					UNTIN					ILLER : PF
DA	TE ST	ARTE	D: 1	9/11/201	7 DAT	ECO	/IPLE	TED : 19/11/2017 DATE LOGGED : 19/11/2017 LOGGED B	SY : I	MG	CHECKED BY :
\vdash		DF	RILLIN	IG				MATERIAL			
PRO	GRESS				Ê	0	NO			≿	
& CASING	WATER	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	0 0 DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	
				0.05m ES 0.15m 0.30m ES	-			Asphaltic CONCRETE. FILL: Gravelly SAND: Brown and grey, fine to coarse grained sand gravel is fine to coarse, subangular to angular. 0.40m	D		FILL -
NDD -				0.40m 0.60m ES 0.70m 1.10m ES 1.20m 1.50m	 - 1.0 -			FILL: Silty CLAY: Orange-brown and red-brown, high plasticity with trace of sand and fine subangular gravel. At 0.6m, buried pavement, approximately 100mm thick, including asphalt over bricks.	м		0.80: Terracotta pipe at 0.8m depth, hole moved 0.5m.
CASING		E		SPT 3,7,9 N=16.	2.0			Silty CLAY: Red-brown and pale-grey, high plasticity with a trace of ironstone gravel.	м	VSt	RESIDUAL SOIL - - -
			Not Observed	3.00m SPT 9.16,10/50n HB, N=R. 3.35m	- 3.0 		СН	4.80m Continued as Cored Drill Hole	D	н	-
deta	Explais of a	abbrev	viation	S	5.0						

000		N				I: Redfern, NSW				ation Works		SHEET : 2 OF 3
		N : E E : X(9.7, N:		4.2 (MGA94 Zone 56) SURFACE ELEVAT NTING : Track CON			: Terratest			M HORIZONTAL : 90° ER : PF
AT	E ST	ARTE	D: 19/1	1/2017	DATE	COMPLETED : 19/11/2017 DATE LOGGED :	19/11/	2017	7 LOGGE	DBY:MG		CHECKED BY :
AS			TER : I	HQ		BARREL (Length) : 1.50 m BIT :				Bľ		NDITION :
200		DRILL				MATERIAL		ESTI	MATED STRENGTH	NATURAL		FRACTURES ADDITIONAL DATA
& CASING	WATER	면접 (CORE LOSS 편품 RUN %)	SAMPLES & FIELD TESTS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GRAPHIC LOG	DESCRIPTION ROCK TYPE : Colour, Grain size, Structure (texture, fabric, mineral composition, hardness alteration, cementation, etc as applicable)	Weathering	0.03	Is(50) • Axial • Diametral •	FRACTURE (mm)	VISUAL	(joints, partings, seams, zones, e Description, orientation, infiling or coating, shape, roughness, thickness, other
	% Foss	0% LOSS		5.0		4.80m START CORING AT 4.80m Silty CLAY: Pale grey with a trace of red-brown stainin high plasticity, dry, hard.	3.					ALL DEFECTS ARE SUB-HORIZONTAL BEDDING PARTINGS UNLESS NOTED OTHERWISE (0-5 degrees).
		6.20 0% LOSS		- 6.0 — -		6.35m						
				7.0		Silty CLAY: Grey-brown, with red-brown ironstone laminae, high plasticity, dry, hard. 6.80m SHALE: Dark grey and pale grey, thinly laminated to laminated.	xw					 6.8 to 7.15: Highly fractured, with iron staining in defects. 7.15 7.25
	- 0% LOSS	7.55 0% LOSS	ls(50) d=0 a=0.01 MPa	8.0 -		7.55m SHALE: Pale grey with iron staining. From 7.70m, colour is brown. 8.00m						7.32 7.45 7.5 7.55 to 8.00: Clay SM.

J	AC	OB	S			CC : Transport for NSW : Redfern, NSW	PROJECT : Re				ation Works		HOLE NO : BH3 FILE / JOB NO : IA157700 SHEET : 3 OF 3
POS		N : E	: 33335			1.2 (MGA94 Zone 56)	SURFACE ELEVATIO	N : 2	26.48	(AHD)	ANGLE F	RO	M HORIZONTAL : 90°
		E : X0				NTING : Track				Terratest		RILLE	ER : PF
					DATE		D17 DATE LOGGED : 1	9/11/2	2017	LOGGE	DBY:MG	T 00	CHECKED BY :
CAS		DIAME DRILL	ETER : ING	ΗQ	<u> </u>	BARREL (Length) : 1	.50 m BIT : MATERIAL				BI		NDITION : FRACTURES
PROG				-				–	ESTIM	ATED STRENGTH Is(50)	NATURAL		ADDITIONAL DATA
& CASING	WATER	문제 (CORE LC 코티 RUN %)	SAMPLES & FIELD TESTS	- - - - - - - - - - - - - - - - - - -	GRAPHIC LOG	ROCK TYPE : Color (texture, fabric, minera alteration, cementa	RIPTION ur, Grain size, Structure al composition, hardness tion, etc as applicable)			a(50) ● - Axial D - Diametral	FRACTURE (mm)	VISUAL	(joints, partings, seams, zones, etc) Description, orientation, infilling or coating, shape, roughness, thickness, other
		0% LOSS		-		SHALE: Dark grey and laminated.	brown, thinly laminated to	HW					- 8.15 to 8.25: Clay SM. - 8.25 to 8.30: Clay SM, orange brown. - 8.3 to 8.54: Highly fractured. - 8.64 - 8.84
•	<u> </u>	9.00	Is(50) d=0 a=0.04 MPa	9.0		9.00m Hole Terminated at 9.00 Target depth) m						
													-
See detai & bas				- - - 13.0 —									
				- - - 14.0 - -									
				- - 15.0 — - -									
detai	ls of a	abbrev	Notes for viations iptions.	16.0									

4	JACOBS-IA157700-BH3-START CORING AT 4.80m
5	The state of the s
6	A CALLER AND THE REPORT OF ANY AND AND AND AND AND AND AND AND AND AND
7	CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR
8	
F	INISH CORING AT 9.00m
	PointID : BH3 Depth Range: 4.80 - 9.00 m
	PROJECT Redfern Station Investigation Core Photo - BH3 DRAWN DRAWN DRAWN OVERCH APPROVED DRAWN DESIGN REVIEW DATE DATE DRAWNS No

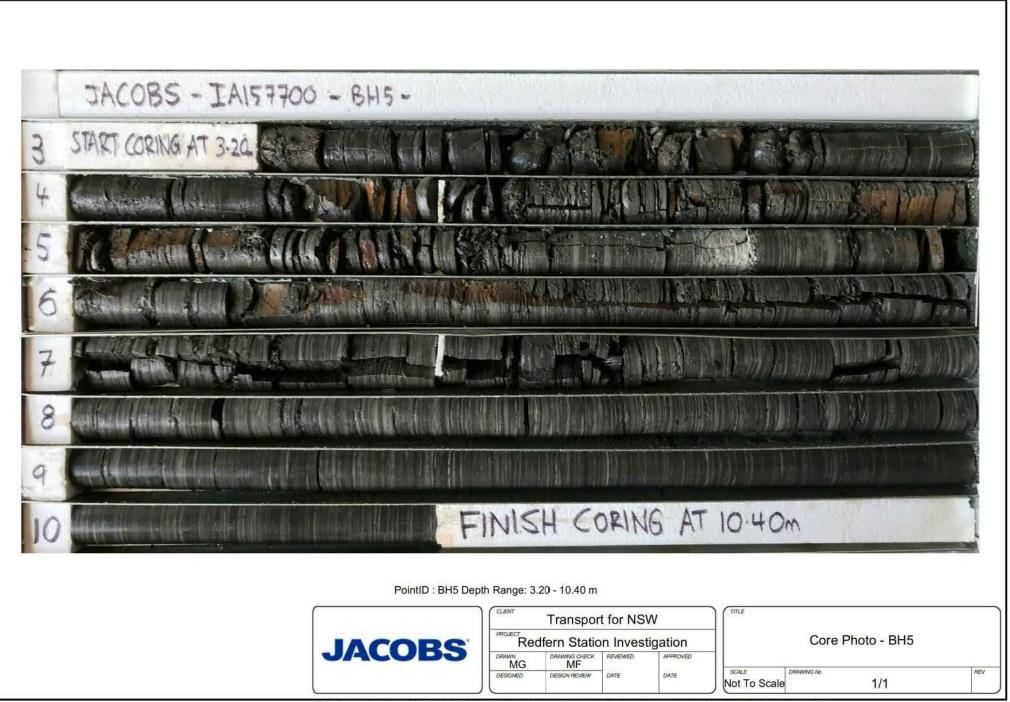
JACOBS 3.01.2 LIB GLB GrfcTbi DG PHOTO CORE PHOTO 1 PER PAGE IA157700 GPJ «OtrawingFile» 04/12/2017 17:43 8.30.003 Datget Lab and In Sku Tool - DGD J Lib: Jacobs 3.01.2 2017-03-09 Pr; Jacobs 3.00.0 2016-07-17

This figure was created for Jacobs' client. Jacobs accepts no responsibility for any reliance on this information by third parties.

J	JACOBS NON-CORE DRILL HOLE - GEOLOGICAL LOG CLIENT : Transport for NSW PROJECT : Redfern Station Investigation Works LOCATION : Redfern, NSW PROJECT : Redfern Station Investigation Works LOCATION : Redfern, NSW										
PC	SITIO	N : E	E: 33					94 Zone 56) SURFACE ELEVATION : 26.34 (AHD)	ANG	GLE F	ROM HORIZONTAL : 90°
				,		UNTIN					ILLER : BM/PF
DA	TE ST	ARTE	D: ´	11/11/201	7 DAT	ECON	/IPLE	TED : 12/11/2017 DATE LOGGED : 11/11/2017 LOGGED B	SY : N	MG	CHECKED BY : MF
_						1		MATERIAL			
PRC	GRESS		-				z	MATERIAL		<u>ک</u>	
DRILLING	_	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
AD/T					0.0 —			Asphaltic CONCRETE 0.20m			FILL
Ť				0.40m ES 0.50m				FILL: Gravelly CLAY: Brown, medium plasticity, gravel is fine to coarse, subangular to angular. 0.50m FILL: Silty CLAY: Grey mottled red-brown, medium to high plasticity.			-
- DDN				0.80m ES 0.90m					D		-
¥		E			-						1.00: Possibly Residual Soil. - 1.30: Platform height is 1.3m above rail ballast.
				1.50m SPT 8,11,25 N=36			¥	1.50m			RESIDUAL SOIL 1.80: SPT hammer bouncing from 1.8m
ONISO				1.95m	2.0-	-				н	
л-				2.50m D 2.70m SPT 2,5,17							
AD/T				3.15m	3.0	-	СН		D		cobble
		F	ved	D 3.50m	-	-				VSt	3.50: SPT unable to be performed due to hole cave-in
			Not Observed		4.0-	-					_
		н			-			4.40m From 4.30m, becoming grey to dark grey		н	4.30: TC-bit refusal
2								Continued as Cored Drill Hole			-
					5.0	-					-
50					-	-					-
5					-	-					-
					6.0-	-					-
					-	-					-
					7.0 —						_
					-	1					-
					-						-
					-	1					-
det	e Expla ails of a asis of	abbrev	iatior	าร	3 _{8.0} –	I	1	1	<u> </u>	I	l

		OB		LO		I: Redfern, NSW	Redfern Station Investigation Works SHEET : 2 OF 3						
				2.4, N:		2.4 (MGA94 Zone 56) SURFACE ELEVATIO					M HORIZONTAL : 90°		
		E : X0		4/0047				OR : Terratest		RILLE	ER : BM/PF		
			D : 11/1 TER : I		DATE	COMPLETED : 12/11/2017 DATE LOGGED : ' BARREL (Length) : 0.80 m BIT :	1/11/	2017 LOGGE	DBY:MG		CHECKED BY : MF		
CAS						MATERIAL			Ы		FRACTURES		
PROG				~			5	ESTIMATED STRENGTH Is(50)	NATURAL		ADDITIONAL DATA		
& CASING	WATER	R (CORE LOSS 코트 RUN %)	SAMPLES & FIELD TESTS	0 0 DEPTH (m)	GRAPHIC LOG	DESCRIPTION ROCK TYPE : Colour, Grain size, Structure (texture, fabric, mineral composition, hardness alteration, cementation, etc as applicable)	Weathering	IS(50) ● - Axial O - Diametral © - Ŏ; Ŏ; Ŏ; Ţ, ♡, Ţ IJ _ X _ X _ Y	FRACTURE (mm)	VISUAL	(joints, partings, seams, zones, etc) Description, orientation, infilling or coating, shape, roughness, thickness, other		
						4.40m START CORING AT 4.40m					- ALL DEFECTS ARE		
1		0% LOSS				4.55m Silty CLAY: Grey, high plasticity, dry, very stiff.					SUB-HORIZONTAL BEDDING PARTINGS UNLESS NOTED		
		5.20 0% LOSS	ls(50) d=0.1 a=0.07 MPa	- 5.0 — - -		5.00m SHALE: Brown and grey, thinly laminated. SHALE: Brown and grey, thinly laminated. SHALE: Dark grey, laminated with iron staining in defects.	xw <u>hw</u> Mw				OTHERWISE (0-5°) 4.40 to 4.55: Clay SM, 150mm 4.70: JT, 90°, PI, R 4.77 5.00 5.04: Clay SM, 30mm 5.07 to 5.12: FZ. 5.13: Clay SM, 60mm 5.36: JT, 80°, PI, Sr 5.40: Fe 5.54: JT, 70-80°, PI, Sr 5.65 5.80 to 6.00: JT, 60-80°, Cu,		
NMLC	- 10% LOSS	6.00 0% LOSS	ls(50) d=0.13 a=0.06 MPa	6.0		6.40m INTERLAMINATED SILTSTONE & SANDSTONE (60% siltstone 40% sandstone): Dark grey and grey					R, Fe 5.00 6.13: Clay infill 6.17: JT, 20-30°, PI, R, Fe 6.23 6.40: JT, 70°, PI, R, Fe 6.45: Clay SM, 20mm 6.49: Fe		
		6.80 0% LOSS	ls(50) d=0 a=0.08 MPa	7.0-		sandstone is fine grained, distinčtly lamināted at 0-5°.	xw <u>H</u> w MW				6.65 to 6.80: FZ. 6.82 6.89 6.95 to 7.09: Highly fractured. 7.38: Clay SM, 10mm 7.42: Clay SM, 40mm		
	- 10% LOSS	7.60 0% LOSS	ls(50) d=0 a=0.11 MPa	-			XW HW				7.52 7.55 7.60 to 7.72: Clay SM. 7.83: Clay infill 7.87: Clay infill		
deta	ils of a	abbrev	Notes fo iations ptions.	r 8.0 —							File: 14157700 BH4 2 OF		

JACOBS CLIENT : Transport for NSW PROJECT : Redfern Station Investigation Works													HOLE NO : BH4 FILE / JOB NO : IA157700	
					LO	CATION	: Transport for NSW : Redfern, NSW						ŝ	SHEET : 3 OF 3
- H			N : E E : X0		2.4, N:		1.4 (MGA94 Zone 56)	SURFACE ELEVAT			(AHD) Terratest			I HORIZONTAL : 90° R : BM/PF
- H					1/2017		COMPLETED : 12/11/2					DBY:MG		CHECKED BY : MF
ł	CAS		DIAME	ETER :	HQ		BARREL (Length) : (0.80 m BIT : MATERIAL				Bľ		NDITION : RACTURES
F	PROG				Ê	U	DES		g	ESTIN	MATED STRENGTH Is(50)	NATURAL FRACTURE		ADDITIONAL DATA
	& CASING	- WATER	E (CORE LOSS E RUN %)	SAMPLES & FIELD TESTS	0.8 DEPTH (m)	GRAPHIC LOG	ROCK TYPE : Colo (texture, fabric, miner alteration, cementa	our, Grain size, Structure ral composition, hardness ation, etc as applicable)	Š		●-Axial O-Diametral	(mm)	VISUAL	(joints, partings, seams, zones, etc) Description, orientation, infilling or coating, shape, roughness, thickness, other
		10% LOSS	0% LOSS 8.40 0%		-		siltstone 40% sandstor	LTSTONE & SANDSTONE (60% ne): Dark grey and grey ned, distinctly laminated at 0-5°.	6 HV	/				L 7.92 8.07 - 8.07 - 8.14: JT, 70°, PI, Sr, Fe 8.27: Clay infill 8.34: Clay SM, 10mm -
	NMLC	- 10% LOSS	LOSS	Is(50) d=0.11 a=0.19 MPa	9.0									8.54: Clay infill 8.57 - 8.64: Clay SM, 15mm 8.76 - 8.82: Clay SM, 20mm 8.88: Clay SM, 10mm 8.83: Clay SM, 10mm
	Z	SS SS	9.20 0% LOSS		-									9.08: Clay SM, 30mm 9.17: JT, 80-90°, PI, R 9.25: Clay SM, 10mm 9.29 9.34: Clay SM, 20mm
	V		10.00	ls(50) d=0.2 a=0.05	10.0		10.00m			•	9			- 9.43: Clay SM, 10mm 9.54 9.75: Clay SM, 10mm 9.75: Clay SM, 10mm 9.77: Clay SM, 10mm 9.88: Clay SM, 10mm
5-07-17				MPa			Hole Terminated at 10 Target depth	.00 m						~ <u>_9.95</u> - - - - - - - -
					- - 12.0 - -									-
					- 13.0 — - -									-
					15.0 — - - -									
	detai	ls of a	abbrev	Notes fo viations iptions.	16.0 — or								I	I


4 BH4 - START CORING AT 4.40m
50 CANADA - CANADA AND AND AND AND AND AND AND AND AN
8
FINISH CORING AT 10.0m
PointID : BH4 Depth Range: 4.40 - 10.00 m ICUENT Transport for NSW PROJECT Redfern Station Investigation DRAWING CHECK REMEWED DATE DATE DATE DATE DATE DATE DATE DA

JACOBS 3.01.2 LIB.GLB GrfcTb DG PHOTO CORE PHOTO 1 PER PAGE IA15/7700.GPJ <</p>

;	JACOBS NON-CORE DRILL HOLE - GEOLOGICAL LOG HOLE NO : BH5 CLIENT : Transport for NSW LOCATION : Redfern, NSW PROJECT : Redfern Station Investigation Works FILE / JOB NO : IA157700																
Р	OS	TION	I : E	E: 333	3481.4, N:	6248	345.8 (MGA	94 Zone 56)	SURFACE	ELEVATION	I: 24.03	(AHD)	ANG	GLE FI	ROM HORIZONTAL : 90°	
-					achio 205								Terratest		DR	ILLER : AZ	
₽	ATE	E STA	ARTE	D: 2	28/11/2017	7 DAT	LE CON	IPLE	TED : 28/11/20	17 DATE LO	DGGED : 28	/11/2017	LOGGE	DBY:N	MG	CHECKED BY :	
⊢					10		1					NAATE					
		2500		RILLIN T ∝				z				MATE	RIAL		≻		
-	& CASING	WATER	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	Soil	Type, Colour, Plas	AL DESCRIPTIC sticity or Particle nd Minor Compo	e Characteri	istic	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations	
	Å				ES <u>0.10m</u>	0.0 —			FILL: Sandy plasticity, gr	Gravelly CLAY: E ravel is fine to mee ravel is fine to	Brown and red-b dium.	rown, low to	medium			FILL	
					0.50m SPT 3,2,3 N=5	-		¥	0.60m From 0.5m, FILL: Silty S sand is fine	coal layer (100mr Sandy CLAY: Brow to coarse grained	in and red-brown	n, medium to siltstone len	o high plasticity ses.	/,			-
			E		0.95m 1.30m	1.0			1.30m					— – м			-
- AD/T	CASING		E		D 1.50m SPT 4,2,7 N=9	-			Silty CLAY: lenses.	Grey and orange-	brown, high plas	sticity, with s	some siltstone			RESIDUAL SOIL	-
					1.95m	2.0-		сн							St - VSt		-
		-			0.00	-			2.60m SHALE: Gro		ed, very low stre	ngth.		_		BEDROCK	-
	v		F		2.80m D 3.00m SPT 10/50mm, HB	3.0 —		1111111111111111	3.20m								_
					N=R 3.05m	-			Continued a	as Cored Drill Hole							-
				Not Observed		- 4.0	-										-
				ž		-											-
						-											-
						5.0 —											
,						-	-										-
						- 6.0 —											-
						-											-
						-											-
						7.0-											-
						-											-
d	etail	s of al	bbre	/ Note /iation	IS	8.0-											

			: Transport for NSW PROJECT : F				SHEET : 2 OF 3
OSITION :			5.8 (MGA94 Zone 56) SURFACE ELEVAT NTING : Track CONT		24.03 (AHD) OR : Terratest		COM HORIZONTAL : 90°
			COMPLETED : 28/11/2017 DATE LOGGED :			DBY:MG	CHECKED BY :
ASING DIAN		IQ	BARREL (Length) : 3.00 m BIT :			BIT	CONDITION :
			MATERIAL		ESTIMATED STRENGTH	NATURAL	FRACTURES ADDITIONAL DATA
& CASING & CASING WATER WATER DELLO	. 0 1	C DEPTH (m)	DESCRIPTION ROCK TYPE : Colour, Grain size, Structure (texture, fabric, mineral composition, hardness alteration, cementation, etc as applicable)	Weathering	Is(50) ● - Axial O - Diametral ⁸ / ₉ → ⁹ / ₉ → ⁹ / ₉ <u>u</u> > <u>u</u> > <u>v</u> = ⁹ / ₉ <u>u</u> > <u>u</u> > <u>v</u> = ⁹ / ₉ <u>u</u> > <u>u</u> = <u>v</u> = ¹ / ₉	FRACTURE (mm)	 (joints, partings, seams, zones, etc Description, orientation, infilling or coating, shape, roughness, thickness, other
	ls(50) d=0.01 a=0.23 MPa	3.0 - - - - - - - - - - - - - - - - - - -	3.20m START CORING AT 3.20m INTERLAMINATED SILTSTONE & SANDSTONE (65% siltstone 35% sandstone): Dark grey, sandstone is pale grey and fine grained, with some iron staining in defects, distinctly laminated at 0-5°.	e	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ALL DEFECTS ARE SUB-HORIZONTAL BEDDING PARTINGS UNLESS NOTED OTHERWISE (0.5 [°]) 3.20 to 3.28: Clay SM 3.35 3.45 3.46 to 3.84: Highly fractured with iron. 3.93 4.10 4.22 to 4.52: Highly fractured. -4.59 to 4.84: Highly fractured.
- NMLL	ls(50) d=0.31 a=1.02 MPa ls(50) d=0.02 a=0.26 MPa		From 5.50m, increasing in sandstone, 40-50%.				4.89 5.13 5.23 to 5.50: Highly fractured. 5.54 5.67 5.70 to 5.77: Pale grey. 5.88 6.13 6.17 to 7.61: St, 80°, PI, R, Fe (No Fe from 6.86m). 6.42 6.44 6.53
▼ 7.40	5 1s(50) d=0.08 a=0.19 MPa	7.0-	From 6.86m, iron absent in defects.	sw			-1.6.58 -6.68 -6.68 -6.72 -6.76 -6.87: St. -6.91, St. -6.91, St. -6.93 -7.10: St. -7.16 -7.23 -7.75 -7.61

											HOLE NO : BH5
J	AC	OB	S		ENT CATION	: Transport for NSW : Redfern, NSW			ation Works		FILE / JOB NO : IA157700 SHEET : 3 OF 3
						5.8 (MGA94 Zone 56) SURFACE ELEVATIO					M HORIZONTAL : 90°
			ommach			VTING : Track CONTF COMPLETED : 28/11/2017 DATE LOGGED : 2		OR : Terratest	DF DBY:MG	KILLE	R : AZ CHECKED BY :
			ETER :		57.112	BARREL (Length) : 3.00 m BIT :				т со	NDITION :
		DRILL		1		MATERIAL	-	1		I	RACTURES
	GRES	E CORE LOSS E RUN %)	SAMPLES & FIELD TESTS	0.8 DEPTH (m)	GRAPHIC LOG	DESCRIPTION ROCK TYPE : Colour, Grain size, Structure (texture, fabric, mineral composition, hardness alteration, cementation, etc as applicable)	Weathering	ESTIMATED STRENGTH Is(50) ● - Axial O - Diametral [©] · · · · · · · · □ · · · · · · · · · · ·	NATURAL FRACTURE (mm)	VISUAL	ADDITIONAL DATA (joints, partings, seams, zones, etc) Description, orientation, infiling or coating, shape, roughness, thickness, other
		0% LOSS		- 0.0		INTERLAMINATED SILTSTONE & SANDSTONE (55% siltstone 45% sandstone): Dark grey, sandstone is pale grey and fine grained, distinctly laminated at 0-5°.	SW				⊢ 7.65 ⊢ 7.75 ⊢ 7.84 to 7.92: JT, PI, 80°, SR. – ⊣ 8.03 − 8.11 ⊢ 8.23: Clay SM 5mm. –
- NMLC			Is(50) d=0.26 a=2.09 MPa Is(50) d=0.26 a=2.24 MPa			From 9.10m, decreasing in sandstone (30%).	SW FR				■ 8.25: Clay SM 5mm. ■ 8.37 - 8.50 - 8.61: Clay SM 10mm. ■ 8.82 - 9.04 - 9.16 - 9.28 - -
			. (50)	-							-
–	 ¥	10.40	ls(50) d=0.25 a=1 MPa	-		10.40m Hole Terminated at 10.40 m	-				
5-09 Prj: Jacobs 3.00.0 2016-07-17				- 11.0 - - 12.0	· · ·						-
ACORS 3012 LIBGLE Log IS AU CORED BOREHOLE Z MAS/700.GPJ <cu:awinghee> 18/12/2017 09:34 8.30.003 bageLab and in Silu Tool - DGD Lib. Jacobs 3.07/2 2017/30:49 Pp. Jacobs 3.00.0 2016/07-17 P G G G</cu:awinghee>											- - - - - - - - - - - - - - - - - - -
COBS 3.07.2 LIBGLB LOG IS AU CUREU BUREHOLE Z MID/WUNDY SSUM P 0 0 P 0 0	ails of	anatory abbrev f descri	Notes for iations	- - - - - - - - - - - - - - - - - - -							

JACOBS 3.01.2 LIB.GLB GrfcTbi DG PHOTO CORE PHOTO 1 PER PAGE IA157700. GPJ <</p>

This figure was created for Jacobs' client. Jacobs accepts no responsibility for any reliance on this information by third parties.

	J	AC	OB	S		LIENT	: T	rans	I-CORE DRILL HOLE - GEOLOGICAL I ort for NSW PROJECT : Redferm Station Investigatio n, NSW			HOLE NO : BH6 FILE / JOB NO : IA157700 SHEET : 1 OF 3
-									4 Zone 56) SURFACE ELEVATION : 25.14 (AHD)	ANG		ROM HORIZONTAL : 90°
		TYPE E ST/		-					Track CONTRACTOR : Terratest TED : 07/11/2017 DATE LOGGED : 07/11/2017 LOGGED E	3Y : I		ILLER : BM CHECKED BY : MF
							T					
	209	RESS		RILLIN				z	MATERIAL		≻	
	& CASING	WATER	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
	1				0.20m	0.0			Asphaltic CONCRETE 0.20m			FILL
					ES 0.30m				FILL: Sandy Clayey GRAVEL: Dark grey and brown, fine to coarse, subanagular to subrounded.			-
QQN					0.60m			\$	At 0.4m, some broken bricks.	D		
					ES 0.70m			₹.	At 0.6m, some shale cobbles and boulders up to 300mm.			_
					1.00m	1.0		}	1.00m			
11					SPT 3,6,7 N=13	-			Silty CLAY: Grey mottled red-brown, high plasticity.			RESIDUAL SOIL
					1.45m	_						1.20: Hole collapse prior to SPT.
					1.4011	1.					St	-
						_						-
			E			2.0						
												-
						_						-
					2.50m SPT 8,21,11/90m	- 			At 2.5m, as above, with some orange-brown mottling.			2.50: Hole collapse prior to SPT.
	CASING				HB, N=R	-		сн		D		
					2.89m	3.0 —						2.80: SPT bouncing on lense of dark grey shale.
2						· ·						-
- ADN						.					VSt	-
						_						-
-01 07 0.0				erved	3.80m							3.70: Increased drilling resistance.
0.0				Not Observed	D 4.00m	4.0						
a Lihot				ž		-						4.00: SPT unable to be performed due to hole cave-in.
1-01-1-01						-						-
77. 0.0 0			F			-			4.50m			
0.04000						-			remotions to sincy day.			-
						5.0						-
					5.30m	-		11111				-
					D 5.50m	1 -			5.50m			-
	1				0.0011	-			Continued as Cored Drill Hole			5.50: SPT bouncing when attempted.
0.000						-	-					-
0 00 20 20						6.0 —	-					-
1 07/7						-	-					-
0						-	-					-
Idwillight						-						-
						-	-					-
100110						7.0 —	-					-
						-	-					-
DOVEL						-	-					-
ov or fi						-	-					-
						-	-					-
s	ee l	Explai	natory	Note	s for	8.0-					1	
		ls of a sis of										

J		OB	S		ENT CATION	: Transport for NSW : Redfern, NSW	PROJECT :				ation Works		FILE	DLE NO : BH6 E / JOB NO : IA157700 EET : 2 OF 3
POSI	TION	N : E	: 333452	2.6, N: (6248279	9.5 (MGA94 Zone 56)	SURFACE ELEVA	TION : :	25.1	4 (AHD)	ANGL	E FRO	ОМ Н	ORIZONTAL : 90°
			injin DB8			NTING : Track				: Terratest			ER	: BM
			TER : F		DATE	COMPLETED : 07/11/2 BARREL (Length) :		: 07/11/	201	/ LOGGE	DBY: MO			CHECKED BY : MF
/ 101	0	RILLI				Diritice (Eengin)	MATERIAL							ACTURES
ROGF	RESS	oss	s & sTS	(L	с	DES	CRIPTION	b	ESTI	MATED STRENGTH Is(50)	NATURAL FRACTURI			ADDITIONAL DATA
& CASING	WATER	데 (CORE LOSS 코티 RUN %)	SAMPLES & FIELD TESTS	O DEPTH (m)	GRAPHIC LOG	ROCK TYPE : Colo (texture, fabric, mine	our, Grain size, Structure ral composition, hardne: ation, etc as applicable)	ss sat	EL -0.03	●-Axial O-Diametral	(mm)	/ISUA	(j	joints, partings, seams, zones, e Description, orientation, infilling or coating, shape, roughness, thickness, other
				_		5.50m START CORING AT 5	50m							
	A	20% LOSS			\square	5.50m START CORING AT 5 CORE LOSS 0.30m (5			\uparrow	+ + + + + 			+	ALL DEFECTS ARE SUB-HORIZONTAL BEDDING
						5.80m		\square						PARTINGS UNLESS NOTED OTHERWISE (0-5°) 5.80
			ls(50) d=0.27	6.0 —		INTERLAMINATED SI siltstone 30% sandsto	LTSTONE & SANDSTONE (7 ne): Dark grey and pale grey,	'0% SW				i	-	5.95
	ross		a=0.36 MPa	5.0		sandstone is fine grain some iron staining alo	ne): Dark grey and pale grey, ied, distinctly laminated at 0-1 ng defects.	υ,						6.05
	Water LOSS											i		6.25: JT, 70°, Fe, Pl, R
	-5% M													6.36
				-	· · · · · ·							i	\vdash	6.63: Fe
				-							│ │ │ ┛ │ ╞═╅┚╎ ╎		5	6.75: Fe 6.83: SM, 10mm, Fe, Pl, R
	Y	7.00	ls(50) d=0.45 a=0.55	7.0									5	6.85: SM, 5mm, Fe, Pl, R 6.9: 15°
	Ī	0% LOSS	a=0.55 MPa											
	· SSO.												L	7.26 7.27 7.28: SM 10mm Fa
	5% Water LOSS													7.28: SM, 10mm, Fe 7.36
	5% W													7.58
	Ĩ		ls(50) d=0.16 a=0.43	-		strength	section 100mm, grey, high							
			MPa	8.0		8.00m								

J	JACOBS CORED DRILL HOLE LOG HOLE NO : BH6 CLIENT : Transport for NSW LOCATION : Redfern, NSW PROJECT : Redfern Station Investigation Works FILE / JOB NO :: IA157700 SHEET : 3 OF 3														
POS	SITIO	N : E	E: 33345			9.5 (MGA94 Zone 56)	SURFACE ELEV	ATION	1:2	5.14 (AHD)		ANG	LE FI	RON	1 HORIZONTAL : 90°
			anjin DB			NTING : Track				DR : Terratest				ILLE	R : BM
					DATE	COMPLETED : 07/11/2		D : 07	/11/2	2017 LOGGI	ED BY	(: M			CHECKED BY : MF
CAS		DIAME	ETER :	HQ		BARREL (Length) : 3	3.00 m BIT : MATERIAL						BH		NDITION : RACTURES
PROG										ESTIMATED STRENGTI	I NA	ATURA	L		ADDITIONAL DATA
& CASING	WATER	CORE LOSS ADD CORE LOSS S% HIRUN %)	SAMPLES & FIELD TESTS	0.8 DEPTH (m)	GRAPHIC LOG	ROCK TYPE : Colo (texture, fabric, miner alteration, cementa	CRIPTION ur, Grain size, Structur al composition, hardne tition, etc as applicable TSTONE & SANDSTONE re): Dark grey and pale grey	ess ;) (60%	& Weathering	Is(50) O - Diametral O - Diametral O - Diametral O - Diametral		ACTUF (mm)	RE	VISUAL	(joints, partings, seams, zones, etc) Description, orientation, infilling or coading, shape, roughness, thickness, other
	5% Water LOSS		ls(50) d=0.6 a=0.12 MPa			sandstone is fine grain some iron staining alor	ed, distinctly laminated at 0-	(['] -10°,							8.22 8.33: JT, 30-40°, ST, R 8.47: JT, 80-90°, Wa, R 8.57 8.7 8.75 8.76 8.93: SM, 10mm, PI, R 9.12 9.45 9.61: SM, 5mm, PI, R
		9.90	ls(50)	-		9.90m						Ľ			9.82: St.
			MPa			Target depth									
deta	ils of	abbrev	Notes for riations iptions.	- 16.0 or											

5 JACOBS-JAI57	700 - BH6 - START (0	KING AT 5.50m	NO CORE = 0.3	M	
7					
B. LIPKI	H AND	STAND 1			
C C C				Kidle all	FINISH CORING AT 9.90m
<u>L'hand</u>					CORING AT 9-90

JACOBS 3.01.2 LIB.GLB GrfcTb DG PHOTO CORE PHOTO 1 PER PAGE IA15/7700.GPJ <</p>

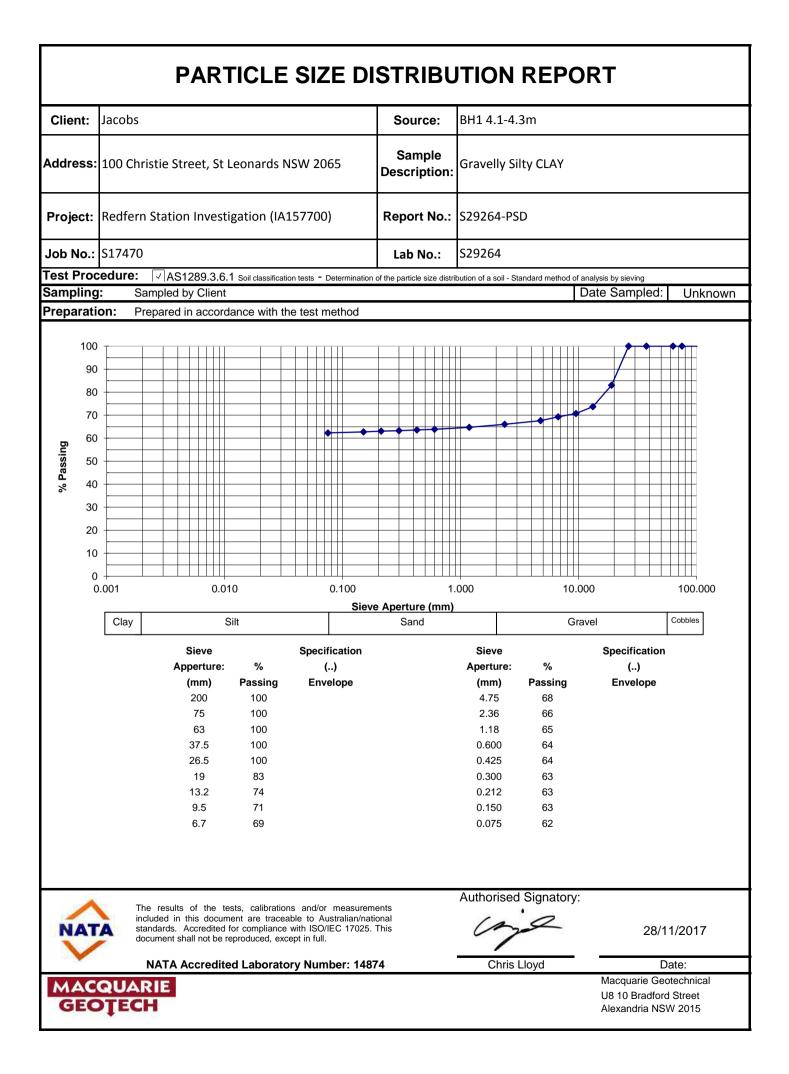
Appendix D. Laboratory testing certificates

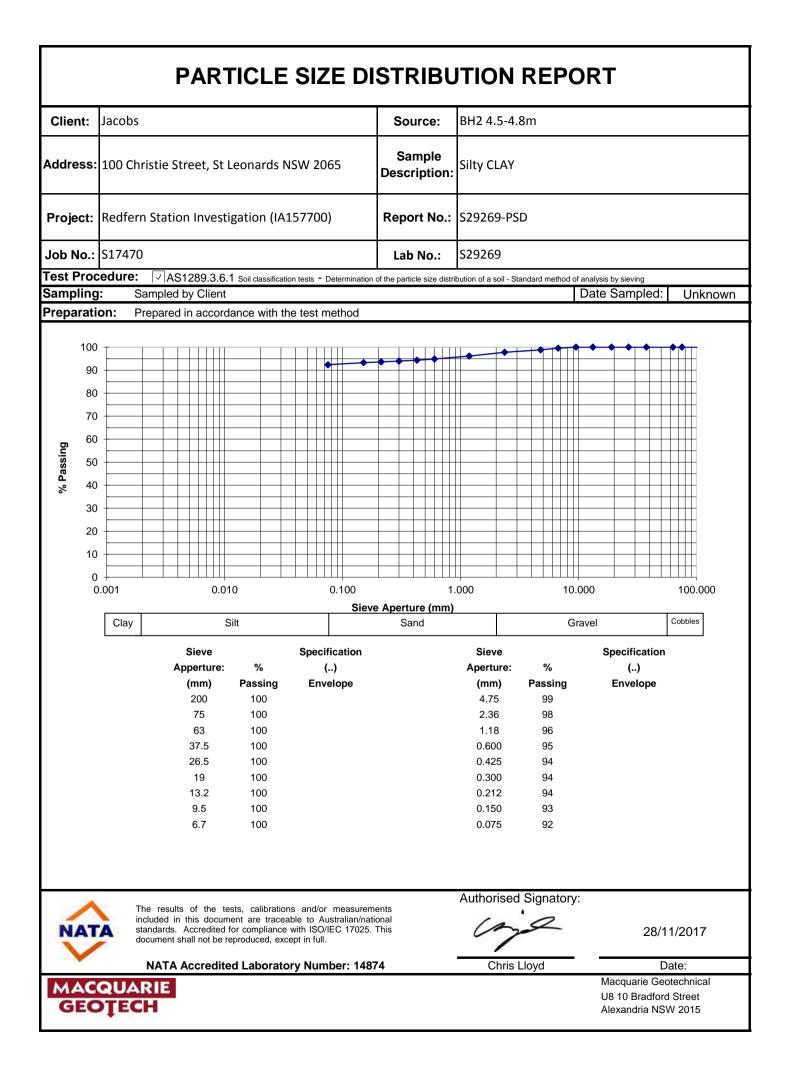
	MOIST	URE CONT	ENT TE	ST REPORT	
Client:	Jacobs		Job No:	S17470	
Address:	100 Christie Street, St Leonards N	SW 2065	Report No:	S29263-MC	
Project:	Redfern Station Investigation (IA1	57700)			
Test Proce	AS4133 1.1.1		nation of the moisture cor rials (Standard method)	tent of a soil - Oven drying method (Standard method). tent of rock - Oven drying method (standard method)	
Sampling:	Sampled by Client			Date Sampled:	Unknown
Preparatio	n: Prepared in accordance	with the test method			
Sample No.	Source		Sample De	scription	Moisture Content %
S29263	BH1 3.5-3.7m		Silty C	LAY	19.1
S29264	BH1 4.1-4.3m		Gravelly Si	Ity CLAY	18.3
S29269	BH2 4.5-4.8m		Silty C	LAY	16.9
S29273	BH3 3.0-3.45m		Silty C	LAY	16.4
Notes:	The results of the tests, calibrations a	und/or massuramento included		Authorised Signatory:	
NAT	in this document are traceable to	Australian/national standards.		inje	28/11/2017
	NATA Accredited Laborator	y Number: 14874		Chris Lloyd	Date:
MAC					Macquarie Geotechnical U8 10 Bradford Street Alexandria NSW 2015

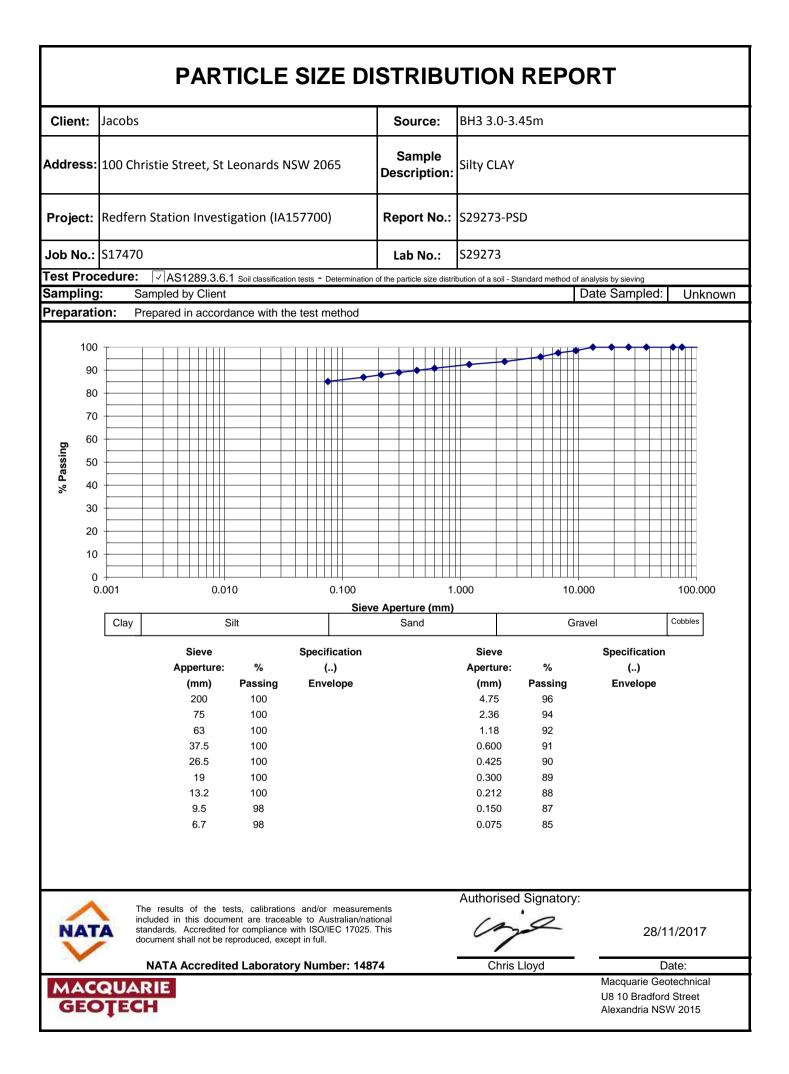
	MOIST	URE CONT	ENT TE	ST REPORT	
Client:	Jacobs		Job No:	S17470	
Address:	100 Christie Street, St Leonards N	SW 2065	Report No:	S29378-MC	
Project:	Redfern Station Investigation (IA1	57700)			
Test Proce	AS4133 1.1.1		nation of the moisture cor erials (Standard method)	tent of a soil - Oven drying method (Standard method). ttent of rock - Oven drying method (standard method))	
Sampling:	Sampled by Client			Date Sampled:	Unknown
Preparatio	n: Prepared in accordance v	vith the test method			
Sample No.	Source		Sample De	scription	Moisture Content %
S29378	BH5 1.3-1.5m		Sandy Silty CLA	Y with Gravel	11.1
S29379	BH5 2.8-3m		Sandy Silt	y CLAY	10.3
Notes:					
NAT	The results of the tests, calibrations a in this document are traceable to Accredited for compliance with ISO/IE not be reproduced, except in full.	Australian/national standards.		Authorised Signatory:	7/12/2017
	NATA Accredited Laborator	y Number: 14874		Chris Lloyd	Date:
MAC	QUARIE JTECH				Macquarie Geotechnical U8 10 Bradford Street Alexandria NSW 2015

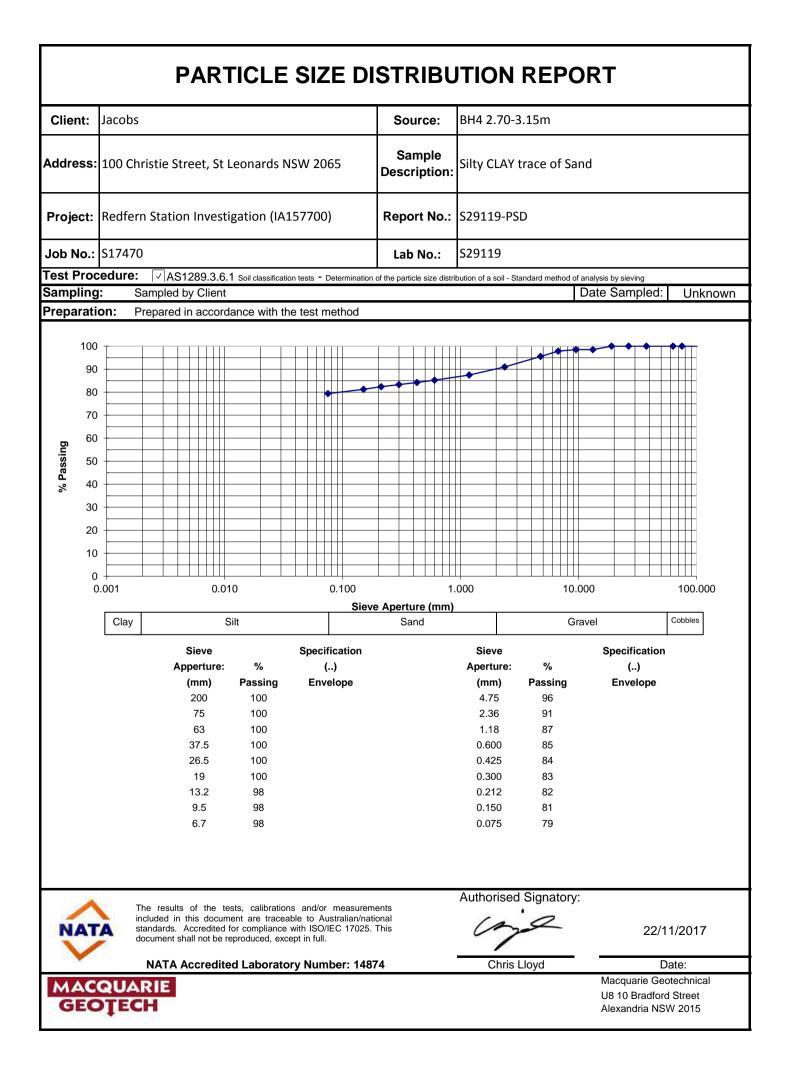
	MOIST	URE CONT	ENT TE	ST REPORT	
Client:	Jacobs		Job No:	S17470	
Address:	100 Christie Street, St Leonards N	SW 2065	Report No:	S29111-MC	
Project:	Redfern Station Investigation (IA1	57700)			
Test Proce	AS4133 1.1.1		nation of the moisture cor erials (Standard method)	tent of a soil - Oven drying method (Standard method) Itent of rock - Oven drying method (standard method)	
Sampling:	Sampled by Client			Date Sampled:	Unknown
Preparatio	n: Prepared in accordance	with the test method			
Sample No.	Source		Sample De	scription	Moisture Content %
S29111	BH6 2.50-2.95m	:	Silty CLAY with G	ravel and Sand	13.2
S29112	BH6 3.80-4.00m		Silty C	LAY	12.2
S29118	BH4 2.50-2.70m		Silty C	LAY	17.0
S29119	BH4 2.70-3.15m		Silty CLAY tra	ace of Sand	15.8
Notes:					
NAT	The results of the tests, calibrations a in this document are traceable to Accredited for compliance with ISO/IE not be reproduced, except in full.	Australian/national standards.		Authorised Signatory:	22/11/2017
	NATA Accredited Laborator	y Number: 14874		Chris Lloyd	Date:
MAC	QUARIE JTECH				Macquarie Geotechnical U8 10 Bradford Street Alexandria NSW 2015

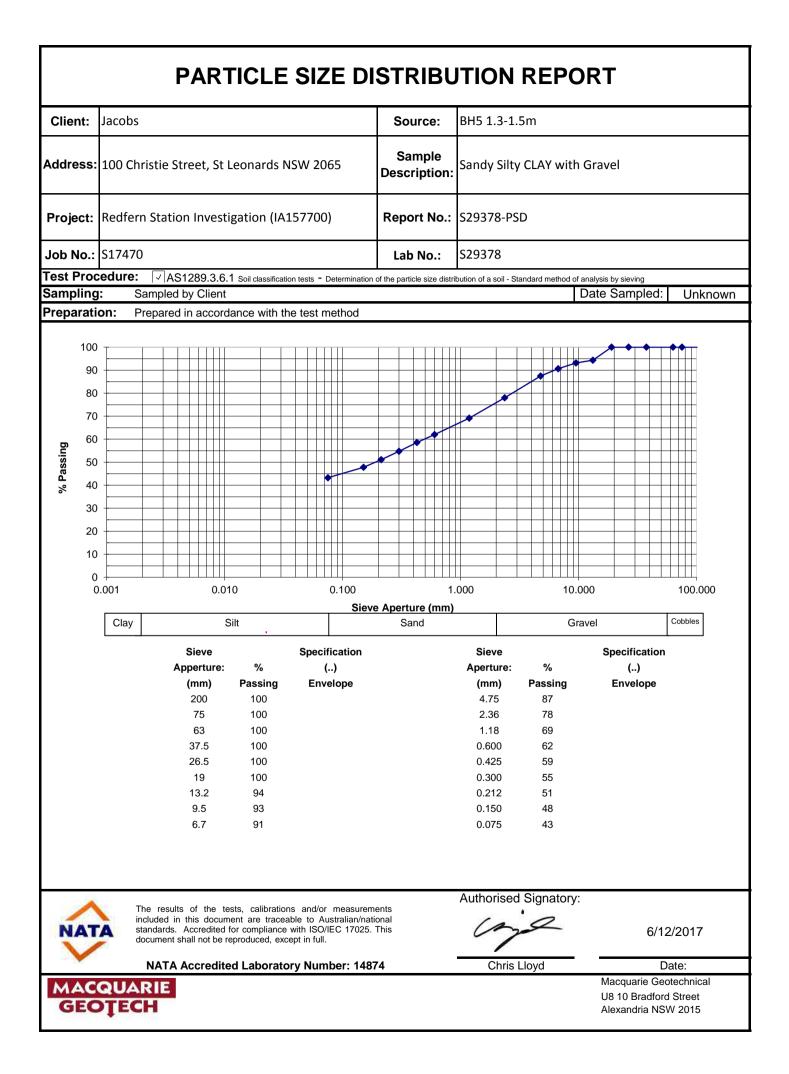
	SOIL CLASSIFICATI	ON REPORT
Client:	Jacobs Sourc	e: BH1 3.5-3.7m
Address:	100 Christie Street, St Leonards NSW 2065 Samp Descript	
Project:	Redfern Station Investigation (IA157700) Report	No: S29263-PI
Job No:	S17470 Lab N	o: S29263
Test Proce Sampling:	edure: AS1289 2.1.1 Soil moisture content tests (Oven drying method) AS1289 3.1.1 Soil classification tests - Determination of the liquid limit of . AS1289 3.1.2 Soil classification tests - Determination of the liquid limit if a 	soil - One point Casagrande method (subsidiary method) : a soil - Standard method f a soil
Preparatio	n: Prepared in accordance with the test method	
	Plastic Limit (%): 23 Plasticity Chart for Classification of Fine-graves of the second secon	
	0	Silt
	10 20 30 40 Liquid Limit	50 60 70 80 :%
	Soil Preparation Method: Dry Sieve Soil History: Oven Dri Soil Condition: Linear	
NAT	The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.	Authorised Signatory:
STATISTICS AND ADDRESS OF	NATA Accredited Laboratory Number: 14874	Chris Lloyd Date: Macquarie Geotechnical U8 10 Bradford Street Alexandria NSW 2015

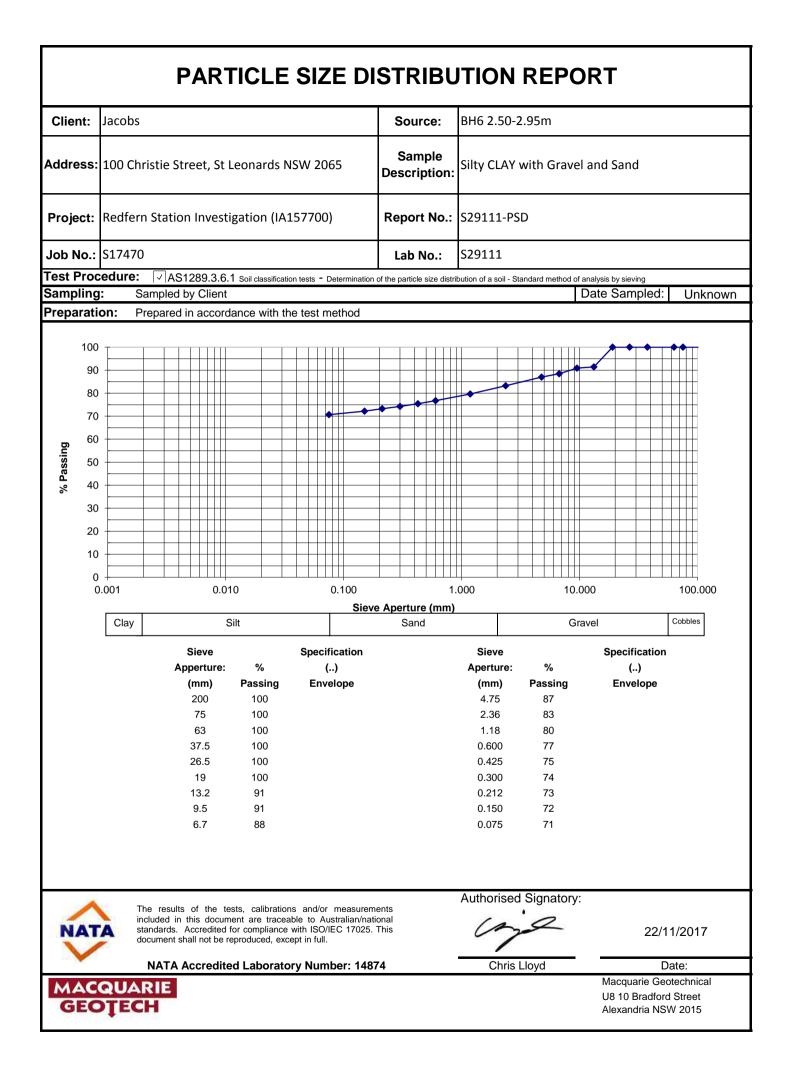

	SOIL CLASSIFICATION REPOR	RT
Client:	Jacobs Source: BH2 4.5-4.8m	
Address:	Sample Sample 100 Christie Street, St Leonards NSW 2065 Silty CLAY	
Project:	Redfern Station Investigation (IA157700) Report No: S29269-PI	
Job No:	S17470 Lab No: S29269	
Test Proce Sampling:	dure: AS1289 2.1.1 Soil moisture content tests (Oven drying method) Image: AS1289 3.1.1 Soil classification tests - Determination of the liquid limit of a soil - Four point casagrande metho AS1289 3.1.2 Soil classification tests - Determination of the liquid limit if a soil - One point Casagrande metho Image: AS1289 3.2.1 Soil classification tests - Determination of the plastic limit of a soil - Standard method Image: AS1289 3.3.1 Soil classification tests - Determination of the plastic limit of a soil - Standard method Image: AS1289 3.3.1 Soil classification tests - Calculation of the plasticity Index of a soil Image: AS1289 3.4.1 Soil classification tests - Determination of the linear shrinkage of a soil - Standard method Sampled by Client	
Preparatio	n: Prepared in accordance with the test method	· · · · · · · · · · · · · · · · · · ·
	Plastic Limit (%): 24 Plastic Index:	40
	5 Progene Sills and Line	Silt
	10 20 30 40 50 60	70 80
	Liquid Limit %	
	Soil Preparation Method: Dry Sieved Soil History: Oven Dried Soil Condition: Linear	
NAT		29/11/2017
CONTRACTOR OF A DESCRIPTION OF A DESCRIP	NATA Accredited Laboratory Number: 14874 Chris Llo	yd Date: Macquarie Geotechnical U8 10 Bradford Street Alexandria NSW 2015


	SOIL CLASSIFICATION REPORT									
Client:	acobs Source: BH3 3.0-3.45m									
Address:	00 Christie Street, St Leonards NSW 2065 Sample Description: Silty CLAY									
Project:	edfern Station Investigation (IA157700) Report No: S29273-PI									
Job No:	17470 Lab No: \$29273									
Test Proce Sampling: Preparatio	AS1289 3.1.1 Soil classification tests - Determination of the liquid limit of a soil - Four point casagrande method AS1289 3.1.2 Soil classification tests - Determination of the liquid limit if a soil - One point Casagrande method (subsidi AS1289 3.2.1 Soil classification tests - Determination of the plastic limit of a soil - Standard method AS1289 3.3.1 Soil classification tests - Determination of the plastic limit of a soil - Standard method AS1289 3.4.1 Soil classification tests - Determination of the linear shrinkage of a soil - Standard method Sampled by Client	ary method) Sampled: Unknown								
	Liquid Limit (%): 63 Linear Shrinkage (%): 13.0 Plastic Limit (%): 21 Plastic Index: 42 Plasticity Chart for Classification of Fine-grained Soils									
	S X OPU AS S S S S S S S S S S S S S S S S S S	Silt								
NAT	Soil Preparation Method: Dry Sieved Soil History: Oven Dried Soil Condition: Linear Multiple Soil Condition: Linear Authorised Signatory: Compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.									
	NATA Accredited Laboratory Number: 14874 Chris Lloyd	Date: Macquarie Geotechnical U8 10 Bradford Street Alexandria NSW 2015								


	SOIL CLASSIF	ICATION REPO)RT
Client:	Jacobs	Source: BH4 2.50-2.7	0m
Address:	100 Christie Street, St Leonards NSW 2065	Sample Description:	
Project:	Redfern Station Investigation (IA157700)	Report No: S29118-PI	
Job No:	S17470	Lab No: S29118	
Test Proce Sampling:	Image: Constraint of the state of the s	of the liquid limit of a soil - Four point casagrande r of the liquid limit if a soil - One point Casagrande m of the plastic limit of a soil - Standard method the plasticity Index of a soil	
Preparatio	n: Prepared in accordance with the test method		
	Plastic Limit (%): 22 Plasticity Chart for Classification	Plastic Index:	40
	10 5 Inorganic Silts and Clays		Silt
		0 50 60	
	10 20 30 4	Liquid Limit %	70 80
	Soil Preparation Meth Soil Histo Soil Conditi	ry: Oven Dried	
NAT	The results of the tests, calibrations and/or measurements included in thi document are traceable to Australian/national standards. Accredited to compliance with ISO/IEC 17025. This document shall not be reproduced except in full.	· · · ·	Signatory: 22/11/2017
	NATA Accredited Laboratory Number: 14874	Chris	
the set of the set of	QUARIE DTECH		Macquarie Geotechnical U8 10 Bradford Street Alexandria NSW 2015


	SOIL CLASSIFICA		PORT	
Client:	Jacobs Sc	urce: BH5 1.3	3-1.5m	
Address:		mple ription: Sandy S	Silty CLAY with Gravel	
Project:	Redfern Station Investigation (IA157700)	ort No: S29378	-PI	
Job No:	S17470 La	b No: S29378		
Test Proce Sampling:	edure: AS1289 2.1.1 Soil moisture content tests (Oven drying method) Image: AS1289 3.1.1 Soil classification tests - Determination of the liquid li Image: AS1289 3.1.2 Soil classification tests - Determination of the plaudic li Image: AS1289 3.2.1 Soil classification tests - Determination of the plaudic li Image: AS1289 3.2.1 Soil classification tests - Determination of the plaudic li Image: AS1289 3.2.1 Soil classification tests - Determination of the plaudic li Image: AS1289 3.3.1 Soil classification tests - Calculation of the plaudic li Image: AS1289 3.4.1 Soil classification tests - Determination of the linear standard Sampled by Client Sampled by Client	nit if a soil - One point Casa mit of a soil - Standard metl ndex of a soil	grande method (subsidiary method) hod	Unknown
Preparatio	n: Prepared in accordance with the test method			
	Plastic Limit (%): 16 Plasticity Chart for Classification of Fine 40 5 Clay 15 10 5 10 10 10 10 10 10 10 10 10 10	Plastic Inde	ex: 13	
		50	60 70	80
	Liquid L	mit %		
	Soil Preparation Method: Dry S Soil History: Over Soil Condition: Linea	Dried		
NAT		4	orised Signatory:	7/12/2017
	NATA Accredited Laboratory Number: 14874		Chris Lloyd	Date: Macquarie Geotechnical U8 10 Bradford Street Alexandria NSW 2015


	SOIL CLASSIF	ICATION	N REPORT							
Client:	Jacobs	Source:	BH6 3.80-4.00m							
Address:	100 Christie Street, St Leonards NSW 2065	Sample Description:								
Project:	Redfern Station Investigation (IA157700)	Report No:	S29112-PI							
Job No:	S17470	Lab No:	S29112							
Test Proce	Image: Constraint of the state of the s	n of the liquid limit of a soil - F n of the liquid limit if a soil - O n of the plastic limit of a soil - of the plasticity Index of a soil	One point Casagrande method (subsidiary method) - Standard method							
Preparatio	n: Prepared in accordance with the test method									
	Plastic Limit (%): 20 Plasticity Chart for Classification		astic Index: 30							
	0		Silt							
	10 20 30 40 50 60 70 80 Liquid Limit %									
	Soil Preparation Meth Soil Histo Soil Conditi	ory: Oven Dried								
NAT	The results of the tests, calibrations and/or measurements included in thi document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced except in full.	or	Authorised Signatory: 22/11/2017							
	NATA Accredited Laboratory Number: 14874		Chris Lloyd Date: Macquarie Geotechnica U8 10 Bradford Street Alexandria NSW 2015	al						



	F	POINT LO	AD STRE	NGTH	INDEX	X RI	EPOR	Т	
Client:	Jacobs	Moisture Content Condition:	As received						
Address:	100 Christie Street, St	Storage History:	Core box						
Project:	Redfern Station Invest	igation (IA157700)		Report No:	S29265-PL				
Job No:	S17470			Date Tested:	23/11/2017				
Test Proce	Test Procedure: AS4133 4.1 Rock strength tests - Determination of point load strength index								
Sampling:						Date	Sampled:		Unknown
Preparatio	Prepared in	accordance with the t	est method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Failure Mode
S29265	BH1 6.50-6.58m	Sandstono	Diametral	-	46.0	0.12	0.06	0.05	1
329205	BH1 0.50-0.58III	Sandstone	Axial	48.8	17.0	0.16	0.15	0.12	1
S29266	DU11 7 04 7 00m	Condetene	Diametral	-	47.0	0.03	0.01	0.01	1
329200	BH1 7.94-7.99m	Sandstone	Axial	50.4	17.0	0.10	0.09	0.07	1
620267	5114 0 50 0 60		Diametral	-	47.0	0.07	0.03	0.03	1
S29267	BH1 8.52-8.60m	Sandstone	Axial	50.4	19.0	0.13	0.10	0.09	1
S29268	BH1 9.00-9.07m	Sandstone	Diametral	-	48.0	0.10	0.04	0.04	1
329208	BH1 9.00-9.0711		Axial	50.3	25.0	0.15	0.09	0.08	1
S29270	BH2 6.92-6.98m	Sandstone	Diametral	-	47.0	0.11	0.05	0.05	1
329270			Axial	51.3	21.0	0.09	0.06	0.05	1
S29271	BH2 7.92-7.98m	Sandstone	Diametral	-	46.0	0.03	0.01	0.01	1
529271			Axial	51.1	13.0	0.11	0.12	0.10	1
S29272	BH2 8.42-8.49m	Sandstone	Diametral	-	49.0	0.09	0.04	0.04	1
525272			Axial	51.3	23.0	0.16	0.11	0.09	1
S29274	BH3 7.33-7.39m	Sandstone	Diametral	-	46.0	0.01	0.00	0.00	1
			Axial	54.0	27.0	0.03	0.01	0.01	1
S29275	BH3 8.87-8.94m	m Sandstone	Diametral	-	48.0	0.01	0.00	0.00	1
			Axial	53.2	23.0	0.08	0.05	0.04	1
<u>Failure</u>	Modes 1 - Fracture	e through fabric of	specimen oblique to	o bedding, not	influenced	by wea	k planes.		
	2 - Fractur	e along bedding.							
	3 - Fractur	e influenced by pre	-existing plane, mic	rofracture, vei	n or chemic	al altera	ation.		
	4 - Chip or	partial fracture.							
The results of the tests, calibrations and/or measurements included in this Authorised Signatory:									
document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.						23/11/2017			
	NATA Accredite	ed Laboratory Numb	er: 14874		Chri	s Lloyd			Date
MACO	UARIE								Macquarie Geotechr U8 10 Bradford
GEOŢECH									

POINT LOAD STRENGTH INDEX REPORT										
Client:	Jacobs			Moisture Content Condition:	As receive	d				
Address:	100 Christie Street, St	Storage History:	Core boxes							
Project:	Redfern Station Invest	Redfern Station Investigation (IA157700)				S29380-PL				
Job No:	S17470			Date Tested:	30/11/2017	•				
Test Proce	Image: Second strength Image: Second strength Test Procedure: Image: Second strength Image: Second strength Second strength Image: Second strength Second strength									
Sampling: Sampled by Client Date Sampled: Unknown								Unknown		
Preparatio	Prepared in	accordance with the t	est method							
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Failure Mode	
S29380	BH5 3.92-3.99m	Siltstone	Diametral	-	47.0	0.02	0.01	0.01	1	
329380	5.92-5.9911	Silisione	Axial	49.8	25.0	0.40	0.25	0.23	1	
S29381	BH5 5.87-5.93m	Siltstone	Diametral	-	49.0	0.76	0.32	0.31	1	
525501	5.07 5.5511	Sitistone	Axial	51.4	19.0	1.49	1.20	1.02	1	
S29382	BH5 6.32-6.36m	Siltstone	Diametral	-	48.0	0.04	0.02	0.02	1	
323302	5115 0.52 0.5011	Sitistone	Axial	51.2	9.0	0.22	0.37	0.26	1	
S29383	BH5 7.90-7.98m	Siltstone	Diametral	-	49.0	0.19	0.08	0.08	1	
323303	7.507.5011	Sitstone	Axial	51.5	13.0	0.21	0.24	0.19	1	
S29384	BH5 8.93-8.99m	Siltstone	Diametral	-	49.0	0.64	0.27	0.26	1	
525504			Axial	51.4	20.0	3.16	2.41	2.09	1	
S29385	9385 BH5 9.48-9.56m Siltstone	Siltstone	Diametral	-	49.0	0.63	0.26	0.26	1	
020000		Situatione	Axial	51.5	26.0	4.17	2.45	2.24	1	
S29386	BH5 10.31-10.39m	Siltstone	Diametral	-	49.0	0.62	0.26	0.25	1	
			Axial	51.6	24.0	1.76	1.11	1.00	1	
Failure	Modes 1 - Fracture	e through fabric of	specimen oblique t	o bedding, not	influenced	by wea	k planes.			
	2 - Fracture	e along bedding.								
	3 - Fracture	e influenced by pre	-existing plane, mic	rofracture, vei	n or chemic	al alter:	ation			
		partial fracture.	enering prone) inte							
Authorised Signatory										
document are traceable to Australian/national standards. Accredited for compliance with ISQUEC 17025. This document shall not be reproduced.						30/11/2017				
	NATA Accredite	d Laboratory Numb	er: 14874		Chri	s Lloyd			Date	
MACO	UARIE	•							Macquarie Geotechr	
GEO	TECH								U8 10 Bradford Street Alexandria NSW	

	F	POINT LO	AD STRE	INGTH	INDEX	X RI	EPOR	Т		
Client:	Jacobs			Moisture Content Condition:	As Receive	ed				
Address:	100 Christie Street, St	Storage History:	Core Boxes							
Project:	Redfern Station Invest	igation (IA157700)		Report No:	S29113-PL					
Job No:	S17470			Date Tested:	17/11/2017	,				
Test Proce	Test Procedure: AS4133 4.1 Rock strength tests - Determination of point load strength index									
Sampling:						Date	Sampled:		Unknown	
Preparatio	Prepared in	accordance with the t	est method							
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Failure Mode	
S29113	BH6 5.88-5.96m	Siltstone	Diametral	-	48.0	0.63	0.27	0.27	1	
529115	5.86-5.9011	Sinstone	Axial	52.0	40.0	0.93	0.35	0.36	4	
S29114	BH6 6.9-7m	Ciltotoro	Diametral	-	48.0	1.05	0.46	0.45	1	
529114	впо 0.9-711	Siltstone	Axial	52.0	30.0	1.16	0.58	0.55	1	
S29115			Diametral	-	50.0	0.41	0.16	0.16	1	
529115	BH6 7.86-7.94m	Siltstone	Axial	52.0	40.0	1.13	0.43	0.43	4	
S29116	BH6 8.92-9m	Siltstone	Diametral	-	50.0	1.50	0.60	0.60	1	
329110	610 8.92-911	Sinstone	Axial	52.0	35.0	0.29	0.13	0.12	4	
S29117	BH6 9.82-9.9m	Siltstone	Diametral	-	50.0	0.33	0.13	0.13	1	
525117			Axial	52.0	31.0	2.12	1.03	0.99	1	
S29120	BH4 4.9-4.98m	Siltstone	Diametral	-	48.0	0.23	0.10	0.10	1	
329120			Axial	52.0	45.0	0.20	0.07	0.07	4	
S29121	BH4 5.9-6m	Siltstone	Diametral	-	48.0	0.31	0.13	0.13	1	
525121			Axial	52.0	42.0	0.17	0.06	0.06	4	
S29122	BH4 6.9-7m	Siltstone	Diametral	-	51.0	0.01	0.00	0.00	1	
			Axial	52.0	42.0	0.21	0.08	0.08	1	
S29123	BH4 7.71-7.82m	-7.82m Siltstone	Diametral	-	50.0	0.01	0.00	0.00	1	
	_		Axial	52.0	48.0	0.34	0.11	0.11	4	
S29124	BH4 8.68-8.77m	Siltstone	Diametral	-	50.0	0.27	0.11	0.11	1	
			Axial	52.0	42.0	0.51	0.18	0.19	4	
<u>Failure</u>	Modes 1 - Fractur	e through fabric of	specimen oblique t	o bedding, not	influenced	by weal	k planes.			
	2 - Fracture	e along bedding.								
	3 - Fractur	e influenced by pre-	-existing plane, mic	crofracture, vei	n or chemic	al altera	ation.			
	4 - Chip or	partial fracture.								
The results of the tests, calibrations and/or measurements included in this Authorised Signatory:										
document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.					5	200	2		22/11/2017	
NATA Accredited Laboratory Number: 14874 Chris Lloyd							Date			
GEO	QUARIE TECH						Macquarie Geotechr U8 10 Bradford Street			
									Alexandria NSW	

	I	POINT LC	AD STRE	NGTH	INDE	X R	EPOR	Т	
Client:	Jacobs			Moisture Content Condition:	As Receive	ed			
Address:	100 Christie Street, St Leonards NSW 2065			Storage History:	Core Boxes				
Project:	Redfern Station Invest	igation (IA157700)		Report No:	S29125-PL				
Job No:	S17470			Date Tested:	17/11/2017	7			
Test Proce	edure:	AS4133 4.1	Rock strength tests - Determinati	on of point load strength	index				
Sampling:		Client				Date	Sampled:		Unknown
Preparatio	Prepared in	accordance with the	test method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Failure Mode
S29125	BH4 9.83-9.95m	Siltstone	Diametral	-	50.0	0.51	0.20	0.20	1
525125	B114 9.85-9.9511	Sitstone	Axial	52.0	43.0	0.13	0.05	0.05	4
			Diametral						
			Axial						
			Diametral						
			Axial						
			Diametral						
			Axial						
			Diametral						
			Axial						
			Diametral						
			Axial						
			Diametral						
			Axial						
			Diametral						
			Axial						
			Diametral						
			Axial						
			Diametral						
			Axial						
<u>Failure</u>	2 - Fractur 3 - Fractur	e along bedding.	specimen oblique to -existing plane, mic						
	4 - Chip Of	partiai fracture.			A	4 01	4.0.0.4		
NAT	document are tracea	able to Australian/national	asurements included in this standards. Accredited for t shall not be reproduced,		Authorise		itory:		22/11/2017
	NATA Accredite	ed Laboratory Numb	er: 14874		Chri	s Lloyd			Date
MACO						,			Macquarie Geotechr
GEO									U8 10 Bradford Street Alexandria NSW

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 179707-A

Client Details	
Client	Jacobs Group (Australia) Pty Ltd
Attention	Michael Grasso, Scott Raynsford, Michael Stacey
Address	Level 7, 177 Pacific Highway, North Sydney, NSW, 2060

Sample Details	
Your Reference	<u>IA157700</u>
Number of Samples	5 Soil
Date samples received	13/11/2017
Date completed instructions received	21/11/2017

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	28/11/2017				
Date of Issue	24/11/2017				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist

Authorised By

22

David Springer, General Manager

Misc Inorg - Soil		
Our Reference		179707-A-3
Your Reference	UNITS	BH4 - 1.5
Date Sampled		11/11/2017
Type of sample		Soil
Date prepared	-	23/11/2017
Date analysed	-	23/11/2017
pH 1:5 soil:water	pH Units	5.3
Chloride, Cl 1:5 soil:water	mg/kg	10
Sulphate, SO4 1:5 soil:water	mg/kg	90
Resistivity in soil*	ohm m	130

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons. Resistivity is calculated from Conductivity.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Alternatively determined by colourimetry/turbidity using Discrete Analyer.

QUALITY CONTROL: Misc Inorg - Soil						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			23/11/2017	[NT]		[NT]	[NT]	23/11/2017	
Date analysed	-			23/11/2017	[NT]		[NT]	[NT]	23/11/2017	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	99	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	94	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	97	
Resistivity in soil*	ohm m	1	Inorg-002	<1	[NT]		[NT]	[NT]	[NT]	

Result Definiti	Result Definitions						
NT	Not tested						
NA	Test not required						
INS	Insufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Control Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 180317

Client Details	
Client	Jacobs Group (Australia) Pty Ltd
Attention	Michael Stacey
Address	Level 7, 177 Pacific Highway, North Sydney, NSW, 2060

Sample Details	
Your Reference	<u>IA157700</u>
Number of Samples	13 Soil
Date samples received	21/11/2017
Date completed instructions received	21/11/2017

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details Date results requested by 28/11/2017 Date of Issue 28/11/2017 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Matt Tang Authorised by Asbestos Approved Signatory: Paul Ching **Results Approved By** Dragana Tomas, Senior Chemist

Long Pham, Team Leader, Metals Nick Sarlamis, Inorganics Supervisor Paul Ching, Senior Analyst Priya Samarawickrama, Senior Chemist Steven Luong, Senior Chemist

Authorised By

David Springer, General Manager

Misc Inorg - Soil			
Our Reference		180317-9	180317-11
Your Reference	UNITS	BH3	BH2_STP
Depth		0.6-0.7	3.0
Date Sampled		18/11/2017	18/11/2017
Type of sample		Soil	Soil
Date prepared	-	24/11/2017	24/11/2017
Date analysed	-	24/11/2017	24/11/2017
pH 1:5 soil:water	pH Units	7.8	5.0
Chloride, Cl 1:5 soil:water	mg/kg	<10	20
Sulphate, SO4 1:5 soil:water	mg/kg	52	39
Resistivity	ohm m	110	240

Method ID	_ Methodology Summary					
AS1289.3.6.3	Determination Particle Size Analysis using AS1289.3.6.3 and AS1289.3.6.1 and in house method INORG-107. Clay fraction at <2µm reported.					
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.					
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.					
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons. Resistivity is calculated from Conductivity.					
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.					
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Alternatively determined by colourimetry/turbidity using Discrete Analyer.					
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.					
Metals-020	Determination of various metals by ICP-AES.					
Metals-021	Determination of Mercury by Cold Vapour AAS.					
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tab (3, 4)). Note Naphthalene is determined from the VOC analysis.					
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.					
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.					
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).					
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.					
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.					
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.					
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.					
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.					

Method ID	Methodology Summary
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" are="" at="" conservative<br="" is="" most="" pql.="" the="" this="">approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present. 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and<br="" approach="" are="" conservative="" is="" least="" the="" this="" zero.="">is more susceptible to false negative TEQs when PAHs that contribute to the TEQ calculation are present but below PQL. 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" are="" half="" hence="" mid-point<br="" pql.="" stipulated="" the="">between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Ora 014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-014	Son samples are extracted with methanol and spiked into water phon to analysing by purge and trap GC-NS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY	CONTROL	Misc Ino	rg - Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			24/11/2017	[NT]		[NT]	[NT]	24/11/2017	
Date analysed	-			24/11/2017	[NT]		[NT]	[NT]	24/11/2017	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	99	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	107	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	109	
Resistivity	ohm m	1	Inorg-002	<1	[NT]		[NT]	[NT]	[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.				
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.				
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.				
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.				
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.				
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than				

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

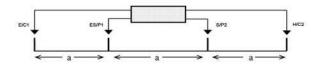
Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

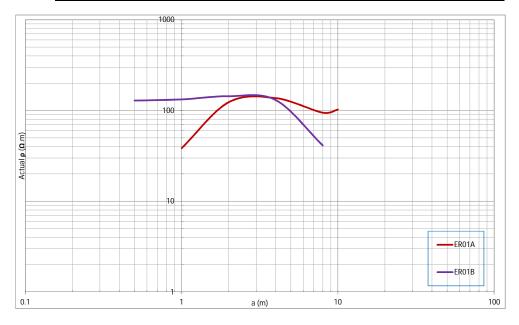


Appendix E. Soil resistivity information

Project: Location: Method:	Redfern Statior Gibbons Street Wenner 4 Elect	Reserve	Project Number: GPS Coordinates:	
Test personnel:	1. 2.	Michael Grasso Owen Cooke		
Test date:	9/11/17			
Test Equipment:	1	Megger DET4TCR2	Calibration Exp:	2018

Calculations:

Apparent Resistivity r (Ω .m) = 2 * π * a (m) * R(Ω)



Test results:

Γ	a(m)	a(m) 2πa (m)	Target Probe	ERO	D1A	ER01B		
	a(11)	2/(a (11)	Depth (cm)	Measured R(Ω)	Actual ρ (Ω.m)	Measured R(Ω)	Actual ρ (Ω.m)	
	20	126	50	-	-	-	-	
	10	63	50	1.63	102	-	-	
	8	50	40	1.88	94	0.82	41	
	4	25	20	5.45	137	5.18	130	
	2	13	10	9.81	123	11.44	144	
	1	6	5	6.11	38	21.1	133	
	0.5	3	5	Error	-	40.9	128	

Site conditions:

	Details
Temperature	21 °C deg
Weather on day	Sunny Clear
Weather week	Clear/ Showers
Grid diagonal (m)	

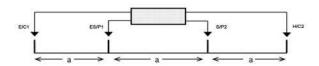
Project: Location: Method: Test personnel:

Test Equipment:

Test date:

Redfern Station Investigation Gibbons Street Reserve Wenner 4 Electrode Method 1. Michael Grasso 2. Owen Cooke 9/11/17

 Project Number:
 IA157700


 GPS Coordinates:
 333430.00 m E

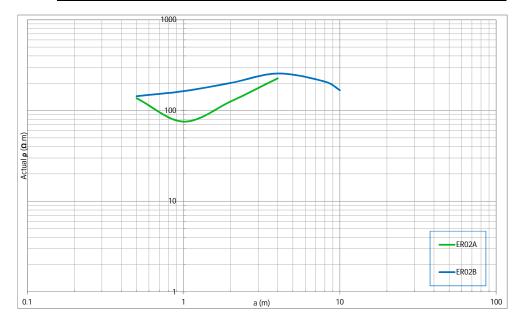
 6248248.00 m S

Calibration Exp: 2018

Calculations: Apparent Resistivity r (Ω .m) = 2 * π * a (m) * R(Ω)

1

Megger DET4TCR2



Test results:

a(m)	2πa (m)	Target Probe	ERO)2A	ER02B		
a(11)	2/(a (11)	Depth (cm)	Measured R(Ω)	Actual ρ (Ω.m)	Measured R(Ω)	Actual ρ (Ω.m)	
20	126	50	-	-	-	-	
10	63	50	-	-	2.66	167	
8	50	40	-	-	4.14	208	
4	25	20	9	226	10.17	256	
2	13	10	10	126	16	201	
1	6	5	12	75	26	163	
0.5	3	5	43.4	136	45.8	144	

Site conditions:

	Details
Temperature	21 °C deg
Weather on day	Sunny Clear
Weather week	Clear/ Showers
Grid diagonal (m)	

