

Report on Geotechnical Investigation

Proposed Sydney Swans HQ & Community Centre Royal Hall of Industries, 1 Driver Avenue, Moore Park

> Prepared for Sydney Swans Limited c/- APP Corporation Pty Ltd

> > Project 86724.00 May 2019

Document History

Document details

Project No.	86724.00	Document No.	R.002.Rev1		
Document title	Report on Geotec	chnical Investigation			
	Proposed Sydney	Swans HQ & Commu	nity Centre		
Site address	Royal Hall of Industries, 1 Driver Avenue, Moore Park				
Report prepared for	Sydney Swans Li	mited			
Report prepared for	c/- APP Corporati	on Pty Ltd			
File name	86724.00.R.002.F	Rev1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Document status and review

Status	Prepared by	Reviewed by	Date issued	
Revision 0	Matthew Bennett	Scott Easton	5 April 2019	
Revision 1	Gavin Boyd	Scott Easton	7 May 2019	= =

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 0	1	0	Anthony Murphy, APP Corporation Pty Ltd
Revision 1	1	0	Anthony Murphy, APP Corporation Pty Ltd
	2 2		

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	Date
Author Manager	7 May 2019
Reviewer A	7 May 2019

Table of Contents

			Page			
1.	Intro	ductionduction	3			
2.	Previ	ious Investigations	3			
3.	Site I	Description	4			
4.	Site (Geology and Mapping	5			
5.		Work Methods				
6.		l Work Results				
7.		pratory Testing				
1.	7.1	Rock				
	7.2	Soil				
8.		osed Development				
9.	•	ments				
Э.	9.1	Geotechnical Model				
	9.2	Dilapidation Surveys				
	9.3	•				
	9.4	Ground Vibrations				
	9.5	Excavation Support	10			
		9.5.1 General	10			
		9.5.2 Ground Anchors				
	9.6	Groundwater and Seepage				
	9.7	Foundations				
	9.8	Subgrade Preparation				
	9.9	Ground Slabs and Pavements	14			
	9.10	55				
	9.11	Seismicity	15			
10.	Limit	ations	15			
Appe	endix A	A: About This Report				
Арре	endix B	3: Drawings				
Арре	endix C	C: Results of Field Work (Current Investigation)				
Арре	endix D	D: Results of Previous Investigations				
Appendix E: Results of Laboratory Tests						

Executive Summary

This report presents the results of a geotechnical investigation undertaken for the proposed Sydney Swans Headquarters and Community Centre at the Royal Hall of Industries (RHI), 1 Driver Avenue, Moore Park. The investigation was commissioned in a letter dated 25 February 2019 by Anthony Murphy of APP Corporation Pty Ltd (APP) on behalf of Sydney Swans Limited and was undertaken in accordance with Douglas Partners Pty Ltd (DP's) proposal SY190086.P.001.Rev2 dated 21 February 2019.

It is understood that the proposed development at the site will include fitout and redevelopment of the existing RHI building and construction of a new two-storey sporting facility to the south of the existing RHI including an in-ground swimming pool and spas. The aim of the geotechnical investigation was to inform the preparation of the Environmental Impact Statement (EIS) for the site and for design purposes.

The investigation included a review of previous investigations carried out on the site, the drilling of sixteen boreholes, the installation of three groundwater monitoring wells, laboratory testing and engineering analysis.

The intrusive investigation indicated that the site is underlain by filling (including building rubble, coal and charcoal) to variable depths overlying some natural sands and clayey sands with an approximately 0.8 m to 1.1 m thick layer of extremely low to low strength sandstone overlying low, medium and high strength sandstone from depths of 2.2 m to 6.6 m. The sandstone bedrock progressively increases in strength with depth.

Water levels measured in monitoring wells ranged between depths of 2.6 m and 6.0 m below ground surface and were below the top of sandstone bedrock. This is likely to be seepage water running above and through the rock rather than the regional groundwater table. The regional groundwater table is likely to be well below the bedrock surface.

The report includes comments on excavation conditions, earthworks, retaining structures, foundations and the impact of the development on groundwater. The following preliminary comments are provided on geotechnical aspects:

- Bulk excavation for the pool and modification of the building will generally encounter filling, natural soils and possibly bedrock. Excavation within the filling, natural soils and extremely low to low strength bedrock should be readily achieved by conventional earthmoving equipment. If excavation in low strength and stronger sandstone is required then heavy ripping equipment, rock hammers and/or rock saws will be needed for effective removal.
- It is anticipated that the excavation within fill and soils will result in relatively minor vibrations. Excavation of rock with rock hammers will result in vibration of the surrounding ground and it would be important to manage vibrations on the adjacent buildings/structures, especially the sensitive/heritage items in close proximity.
- It is generally expected that the excavation in soils and weathered rock will need to be supported by a retaining structure both during construction and as part of the final structure. Parameters for the design of the retaining walls have been provided.
- Vertical cuts in the medium strength or stronger sandstone should be able to stand vertically

- without retaining support unless unfavourable jointing is exposed. Such excavation should therefore be carried out under close geotechnical supervision to ensure that any stability measures required can be actioned accordingly.
- The groundwater levels measured during the current field work vary between RL 31.3 m and RL 34.7 m AHD. It is likely that the groundwater intercepted in the wells is water seepage along the top of the rock and through joints and partings within the rock mass. The regional groundwater table may be deeper. Further monitoring of water levels within wells should be carried out to assess fluctuations if this is important for design and construction.
- The comments on groundwater include reference to the NSW Department for Planning and Environment who have issued a Secretary's Environmental Assessment of Requirements (SEARs) for the preparation of an Environmental Impact Statement (Application Number SSD8800 dated 6 November 2017). Groundwater levels have been recorded below the proposed basement levels. Based on current groundwater recordings and previous measurements the development is not expected to interfere with the aquifer or require licensing in accordance with the definitions of aquifer interference or licensing as defined by the NSW DPI Aquifer Interference Policy 2012.
- Foundations that could be considered include shallow or piled footings. Parameters for the design of foundations have been provided.
- Advice on earthworks for subgrade preparation below pavements and ground slabs has been provided in the report.

DP has also undertaken a contamination assessment for the site, which is reported separately (refer to Report 86724.00.R.001).

Report on Geotechnical Investigation Proposed Sydney Swans HQ & Community Centre Royal Hall of Industries, 1 Driver Avenue, Moore Park

1. Introduction

This report presents the results of a geotechnical investigation undertaken for the proposed Sydney Swans Headquarters and Community Centre at the Royal Hall of Industries (RHI), 1 Driver Avenue, Moore Park. The investigation was commissioned in a letter dated 25 February 2019 by Anthony Murphy of APP Corporation Pty Ltd (APP) on behalf of Sydney Swans Limited and was undertaken in accordance with Douglas Partners Pty Ltd (DP's) proposal dated 21 February 2019. DP has also undertaken a contamination assessment for the site, which is reported separately (refer to Report 86724.00.R.001).

It is understood that the proposed development at the site will include fitout and redevelopment of the existing RHI building and construction of a new two-storey sporting facility to the south of the existing RHI including an in-ground swimming pool and spas. The aim of the geotechnical investigation was to inform the preparation of the Environmental Impact Statement (EIS) for the site and for design purposes.

The investigation included review of published information and previous projects at the site, a site walkover by a geotechnical engineer, the drilling of 16 boreholes and laboratory testing of selected samples. The details of the field work are presented in this report, together with comments and recommendations about the geotechnical components relevant to the proposed development.

2. Previous Investigations

Previous investigations carried out at the RHI by DP include:

- Geotechnical investigation for proposed modifications and refurbishment at the Hordern Pavilion and RHI (DP Project 24967, dated 22 April 1998). Field work included cone penetration testing (CPT) and dynamic cone penetrometer testing (DCP) inside and outside the Hordern Pavilion and RHI. Within the RHI, CPT6 and CPT6A were undertaken to depths of 2.0 m and 3.7 m, respectively.
- Geotechnical investigation at the RHI for structural alterations and modifications to the building (DP Project 24967-1, dated 21 July 1998). Four boreholes (Bores 1 to 4) were drilled using a truck-mounted drilling rig to depths of 4.3 m to 8.7 m. Boreholes were drilled using solid flight augers down to the top of bedrock and then NMLC rotary core drilling techniques were used to extend the boreholes into bedrock.
- Geotechnical investigation undertaken in areas of proposed new external pavements surrounding the Hordern Pavilion and RHI (DP Project 24967-2, dated 29 July 1998). Four boreholes (Bores 6 to 9) were drilled within the RHI site using a truck-mounted drilling rig to depths of 0.8 m to

1.8 m. Boreholes were drilled using solid flight augers to refusal on bedrock. Standard penetration tests (SPTs) were generally undertaken at depths of 0.5 m and 1.5 m within the boreholes.

APP provided the following reports for the site, which were prepared by other consultants:

- Hazardous Building Materials Survey undertaken by DLA Environmental Services Pty Ltd (DLA)
 Project DL4062. The survey included visual inspection of construction materials and sampling of
 suspected potential hazardous materials located in accessible areas of the Hordern Pavilion and
 RHI. Intrusive investigation was not undertaken as part of the survey.
- Environmental Due Diligence Report undertaken by ERM Services Australia Pty Ltd (ERM)
 Project 0478061. The investigation included the drilling of eight boreholes (TP1 to TP8) within the
 RHI site using solid flight augers to depths of 1.6 m to 6.0 m. The logs show that boreholes were
 terminated in sandstone.

The test locations for previous investigations have been estimated from the test location plans available in the previous reports and are shown on Drawing 1 in Appendix B. The relevant borehole logs and CPT results from the previous investigations have been included in Appendix D for reference. Generally, the previous investigations encountered concrete/pavement at ground surface overlying granular fill to varying depths. Sand, sandy clay and sandstone was typically found beneath the fill. The sandstone was generally of extremely low strength initially, and grading to medium strength with depth.

The 1998 DP investigations noted that groundwater was not observed in the boreholes or CPT holes, except for Bore 3, which noted groundwater below 3.5 m. Groundwater observations were not noted on the ERM borehole logs.

3. Site Description

The site is a trapezoidal shape with maximum plan dimensions of 140 m by 80 m with an area of approximately 1.0 ha. It is bounded by Driver Avenue, Lang Road and Errol Flynn Boulevard to the west, south and east, respectively. An asphalt walkway and the Hordern Pavilion are located to the north of the site.

The RHI building occupies a rectangular shaped area, some 85 m by 60 m in plan dimensions and comprises a single storey structure with mezzanine level and a concrete ground slab. A smaller single storey shed structure is located at the south-east corner of the site and the remainder of the site is covered by concrete or asphalt pavement.

The topography is flat to gently undulating and the site is currently used for miscellaneous activities within the RHI building, such as exhibitions and markets. The ground surface typically ranges between about Reduced Level (RL) 37.1 m and RL 37.7 m relative to Australian Height Datum (AHD). The site is elevated above street level to the west and south with maximum ground level difference of about 2 m in the south-west corner.

4. Site Geology and Mapping

Reference to the Sydney 1:100 000 Geological Series indicates that the site is underlain by transgressive dune deposits of fine to medium grained sands of marine origin deposited during the Quaternary Period. Bedrock in the area is mapped as Hawkesbury Sandstone of the Triassic Age. The previous investigations carried out were generally consistent with the mapped geology.

Reference to the 1:25 000 Acid Sulphate Soils (ASS) Risk map indicates that the site is located within an area with no known occurrence of ASS.

5. Field Work Methods

Field work carried out for the current investigation included the following:

- Drilling of 16 boreholes (BH101 to 116) using a track-mounted drilling rig to depths of 0.9 m to 10.1 m. Drilling was undertaken using 110 mm diameter solid flight augers to bedrock with soil samples collected at regular depth intervals. Three boreholes (BH101, BH108 and BH109) were extended into bedrock using NMLC rotary core drilling techniques;
- Installation, development and measurement of three groundwater monitoring wells (in BH101, BH108 and BH109);
- Laboratory testing of selected samples; and
- Supervision of the drilling and logging of the boreholes by an experienced engineer.

The locations and coordinates of the boreholes were estimated from existing site features. Coordinates are in GDA94/MGA Zone 56 format (Geocentric Datum of Australia 1994 base with Map Grid of Australia projection). Surface levels at the borehole locations were interpolated from the survey drawing by Veris Australia Pty Ltd, Ref: 201062A, dated 12/12/18, which was provided to DP by APP. The test locations are shown on Drawing 1 in Appendix B.

6. Field Work Results

The subsurface conditions encountered at each borehole location within the current investigation are described in the borehole logs included in Appendix C. Notes defining classification methods and terms used to describe the soils and rock are included in Appendix A.

The current investigation indicates that the sub-surface profile includes:

Concrete /
Asphaltic Concrete

Concrete and asphaltic concrete at ground surface to depths of 0.02 - 0.4 m in all boreholes.

Fill

Fill to depths of 0.5 - 5.2 m at all borehole locations. The fill generally included varying proportions of sand and gravel. The gravel was typically crushed sandstone or igneous gravel. Some of the fill also had components of clay, silt, concrete, steel, plastic, ceramic tile fragments, glass, ash, coke, charcoal and coal.

Natural Sand / Clayey Sand

Natural sand and clayey sand at depths of between 1.1 - 4.5 m in boreholes 103, 108 and 109 only. Typically pale yellow and yellow-brown mottled grey and fine to coarse grained.

Sandstone

Sandstone from depths of 0.5 - 5.2 m to borehole termination at all locations. Strength typically increased with depth from extremely low strength to medium and high strength. Some medium and high strength ironstone bands were present within the upper extremely low strength layers.

The depths and levels at which different materials were encountered in the boreholes are summarised in Table 1A and 1B.

Table 1A: Summary of Inferred Material Strata Depths and Levels

Charles		Depth (m) [RL (m, AHD)] of Top of Stratum							
Stratum	BH101	BH102	BH103	BH104	BH105	BH106	BH107	BH108	
Ground Surface	[37.6]	[37.6]	[37.6]	[37.6]	[37.7]	[37.6]	[37.7]	[37.3]	
Fill	0.15 [37.5]	0.15 [37.5]	0.15 [37.5]	0.15 [37.5]	0.4 [37.3]	0.15 [37.5]	0.15 [37.6]	0.18 [37.1]	
Sand/Clayey Sand	NE	NE	3.5 [34.1]	NE	NE	NE	NE	1.1 [36.2]	
Sandstone: EL-VL	5.2 [32.4]	4.5 [33.1]	4.5 [33.1]	3.6 [34.0]	NE	NE	0.6 [37.1]	1.5 [35.8]	
Sandstone: VL-L	NE	NE	NE	NE	0.6 [37.1]	2.2 [35.4]	1.5 [36.2]	2.1 [35.2]	
Sandstone: L-M	NE	5.4 [32.2]	NE	4.4 [33.2]	NE	NE	2.2 [35.5]	2.8 [34.5]	
Sandstone: M-H	6.6 [31.0]	NE	NE	NE	NE	NE	NE	4.7 [32.6]	
Base of Borehole	10 [27.6]	6.0 [31.6]	5.0 [32.6]	5.0 [32.6]	1.4 [36.3]	2.5 [35.1]	3.2 [34.5]	10.1 [27.2]	

Notes: NE = not encountered; EL = extremely low strength; VL = very low strength; L = low strength; M = medium strength; M =

Table 1B: Summary of Inferred Material Strata Depths and Levels

Christians	Depth (m) [RL (m, AHD)] of Top of Stratum							
Stratum	BH109	BH110	BH111	BH112	BH113	BH114	BH115	BH116
Ground Surface	[37.3]	[37.3]	[37.4]	[37.4]	[37.5]	[37.2]	[37.4]	[37.4]
Fill	0.18 [37.1]	0.05 [37.3]	0.02 [37.4]	0.02 [37.4]	0.02 [37.5]	0.02 [37.2]	0.18 [37.2]	0.18 [37.2]
Sand/Clayey Sand	3.0 [34.3]	NE						
Sandstone: EL-VL	NE	NE	NE	NE	NE	0.7 [36.5]	1.5 [35.9]	NE
Sandstone: VL-L	3.6 [33.7]	0.5 [36.8]	0.5 [36.9]	0.5 [36.9]	0.5 [37.0]	1.0 [36.2]	1.9 [35.5]	2.8 [34.6]
Sandstone: L-M	4.3 [33.0]	NE						
Sandstone: M-H	5.6 [31.7]	NE						
Base of Borehole	10.0 [27.3]	1.1 [36.2]	1.1 [36.3]	1.0 [36.4]	0.9 [36.6]	1.5 [35.7]	2.1 [35.3]	3.0 [34.4]

Notes: NE = not encountered; EL = extremely low strength; VL = very low strength; L = low strength; M = medium strength; M =

Free groundwater was not encountered in any of the boreholes during auger-drilling to depths of 0.9 to 5.6 m. Use of drilling fluid during core-drilling prevented further groundwater observations with depth at BH101, 108 and 109. Groundwater measurements were obtained from the groundwater monitoring wells on 11 March 2019 (wells were developed on 8 March 2019 prior to these measurements). The results of the groundwater measurements from the wells are provided in Table 2. It is noted that water levels will vary over time.

Table 2: Groundwater Depth and Level Observations

	BH101	BH108	BH109
Date	Depth (m)	Depth (m)	Depth (m)
	[RL (m, AHD)]	[RL (m, AHD)]	[RL (m, AHD)]
11 March 2019	6.0	2.6	6.0
	[31.6]	[34.7]	[31.3]

7. Laboratory Testing

7.1 Rock

A total of 19 samples were tested for axial point load strength index (Is₅₀). The results ranged between 0.08 MPa and 1.9 MPa, which correspond to very low strength and high strength sandstone, respectively. The results are shown on the borehole logs in Appendix C.

7.2 Soil

Four selected soil samples were tested in a NATA-accredited laboratory to determine electrical conductivity (EC), pH, chloride and sulphate ion concentrations to assess the aggressivity of the site soils to buried concrete and steel. The laboratory results are included in Appendix E, and the results are summarised in Table 3.

Table 3: Chemical Analysis Test Results for Soil Samples

Borehole	Depth (m)	Description	рН*	EC (μS/cm)*	Chloride (mg/kg)*	Sulphate (mg/kg)*
BH102	4.9-5.0	Sandstone	5.0	78	<10	27
BH106	0.9-1.0	Fill	7.4	260	20	190
BH107	1.9-2.0	Sandstone	6.0	50	<10	36
BH115	1.9-2.0	Sandstone	7.6	15	<10	<10

Notes: *Sample mixed 1(soil):5(water) prior to testing

8. Proposed Development

The proposed development at the site will include fitout and redevelopment of the existing RHI building and construction of a new two-storey sporting facility to the south of the existing RHI building including an in-ground swimming pool and spas.

No additional basements are proposed, however excavation up to depths of about 3 m below ground level will be required for the proposed swimming pool and spas, modification of the existing basement toilets, lift pits and new services. The proposed swimming pool, in the south-west corner of the site, is to be constructed within an existing fill platform that is up to 2 m high. The maximum depth of the pool excavation will be up to 1 m below the adjacent road levels (estimated bulk excavation level RL 34.3 m AHD).

It is understood that expected column working loads are in the order of 950 kN.

9. Comments

9.1 Geotechnical Model

The site appears to be underlain by variable depths of fill overlying sandy soils and/or sandstone bedrock. The bedrock encountered in the boreholes was generally weathered and of variable strength initially, becoming medium and high strength and slightly weathered with depth.

Suspected potential or actual acid sulphate soils were not encountered during the investigation and it is considered unlikely that the proposed development would disturb any potential or actual acid sulphate soils.

Free groundwater was not encountered during augering in the boreholes. Water levels measured in monitoring wells ranged between depths of 2.6 m and 6.0 m below ground surface and were below the top of sandstone bedrock. This is likely to be seepage water running above and through the rock rather than the regional groundwater table. The regional groundwater table is likely to be well below the bedrock surface.

This geotechnical model is illustrated in Cross-sections A, B and C in Drawings 2 to 4 in Appendix B.

9.2 Dilapidation Surveys

Prior to the commencement of excavation work on the site, it is recommended that dilapidation (existing building condition) surveys be undertaken on the RHI building and nearby structures, as well as footpaths and roads adjacent to the site boundaries. The condition of the heritage items on and surrounding the site should also be documented. The purpose of the dilapidation survey is to document any existing defects so that any potential claims for damage due to construction related activities can be accurately assessed.

9.3 Excavation

The extent of excavation will depend on the final design levels for the development. It is expected that excavation for the proposed swimming pool and spas, modification of the existing basement toilets, lift pits and new services will be required in fill, sandy soils and possibly bedrock. Excavation in the fill, soil and weathered rock should be readily achievable using conventional earthmoving equipment such as hydraulic excavators with bucket attachments. The presence of buried concrete, steel and other building rubble within the fill and medium and high strength ironstone bands within weathered rock could require the use of hydraulic hammers/saws. Excavation should be carried out with due consideration to adjacent buildings, structures/retaining walls/footings and heritage items.

If excavation in low strength and stronger sandstone is required then heavy ripping equipment, rock hammers and/or rock saws will be needed for effective removal. The sandstone encountered may include rock with an unconfined compressive strength (UCS) in excess of 40 MPa. Earthworks contractors should form their own opinion on productivity based on the borehole logs and core photographs.

9.4 Ground Vibrations

It is anticipated that the excavation within fill and soils will result in relatively insignificant vibrations. Excavation of rock with rock hammers will result in vibration of the surrounding ground and it would be important to manage vibrations on the adjacent buildings/structures, especially the sensitive/heritage items in close proximity.

During excavation it will be necessary to use appropriate methods and equipment to keep ground vibration within acceptable limits. The standards listed below are considered appropriate documents on which to base the management of ground vibration:

- German Standard DIN 4150-3 1999, "Structural Vibration Part 3: Effects of Vibration on Structures"; and
- Australian Standard AS 2670.2 1990, "Evaluation of human exposure to whole-body vibrations Part 2: Continuous and shock-induced vibrations in buildings (1 to 80 Hz)".

Ground vibrations can be strongly perceptible to humans at levels above 3 mm/s component peak particle velocity (PPV). AS 2670.2 – 1990 indicates an acceptable day time limit of 8 mm/s component PPV for human comfort (for daytime occupants of buildings).

The sensitivity and condition of heritage items on and surrounding the site will necessitate a lower vibration limit for excavation than the daytime limit for human comfort. Based on previous experience with rock excavations adjacent to sensitive structures in Sydney and reference to DIN 4150 – 1999, it is suggested that a maximum vector sum peak particle velocity (VSPPV) of 5 mm/s be adopted to reduce the risk of structural damage to surrounding sensitive buildings/structures. This vibration limit is applicable at the foundation level of existing buildings and may need to be modified following review of dilapidation surveys, vibration trials and/or proposed excavation plant.

As the rate of vibration attenuation is site specific, it is recommended that a vibration trial be undertaken at the commencement of rock excavation with each major plant item, for confirmation of suitability of plant and determination of the theoretical distance of closest approach to the adjacent receptors in order to reduce vibration exceedances with respect to the allowed limit.

9.5 Excavation Support

9.5.1 General

Vertical excavations in fill, soil and weathered rock (low strength or weaker sandstone) are not expected to be stable. Recommended maximum temporary batter slopes for different materials up to 3 m deep are shown in Table 4. Vertical cuts in the medium strength or stronger sandstone should be able to stand vertically without retaining support unless unfavourable jointing is exposed. Such excavation should therefore be carried out under close geotechnical supervision to ensure that any stability measures required can be actioned accordingly. Further advice should be sought when planning deep excavations.

Table 4: Suggested Temporary Batter Slopes for Excavations up to 3 m Deep

Material	Temporary (During Construction) Batter Slopes (Horizontal:Vertical)
Fill and Natural Soils	1.5:1
Extremely to Very Low Strength Sandstone	1:1
Very Low to Low Strength Sandstone	0.5:1
Medium and High Strength Sandstone	Vertical*

Note: *Subject to geotechnical inspection at 1.5 m depth intervals to check for adversely inclined joints.

Surcharge loads should be placed no closer to the crest of the batter than a distance equal to the vertical height of the batter, unless specific stability analysis shows that the loads can be placed closer.

Shoring walls may be required if there is insufficient room for temporary batters. At the proposed lift pit down to the existing basement, a contiguous pile wall should be suitable to support the granular fill, sandy soils and weathered rock down to the top of medium strength or stronger sandstone. Permanent retaining walls may also be required around the site, including at the proposed swimming pool. Both shoring and retaining walls could be designed using the parameters provided in Table 5.

Table 5: Material and Strength Parameters for Shoring/Retaining Walls

Material	Bulk Density (kN/m³)	Coefficient of Active Earth Pressure (K _a)	Coefficient of At-Rest Earth Pressure (K ₀)	Ultimate Passive Earth Pressure (kPa) ¹
Fill and Natural Soils	20	0.40	0.6	-
EL to VL Sandstone	22	0.30	0.45	250
VL to L Sandstone	22	0.15 ²	0.32	400²
M and H Sandstone	24	O ²	O ²	6000 ²

Notes: ¹Minimum of 0.5 m embedment should be provided; ²Provided that adverse jointing is not encountered;

 $EL = extremely \ low \ strength; \ VL = very \ low \ strength; \ L = low \ strength; \ M = medium \ strength; \ H = high \ strength$

A triangular active earth pressure distribution could be assumed for cantilevered walls or walls with a single row of support. A trapezoidal active earth pressure distribution could be assumed for multi-anchored walls, with the maximum pressure acting over the middle 60% of the wall. A rectangular pressure distribution could be assumed for the ultimate passive earth pressures given in Table 5, noting that these are ultimate pressures and an appropriate factor of safety should be applied to limit the wall movements required to mobilise the full passive pressure. A suggested factor of safety for the ultimate passive earth pressures is 2. Lateral pressures due to surcharge loads from adjacent buildings, sloping ground surfaces, pavements and construction machinery should be included where

relevant. Hydrostatic pressure acting on retaining walls should also be included in the design where adequate drainage is not provided behind the full height of the walls.

9.5.2 Ground Anchors

Where necessary, the use of inclined tie-back (ground) anchors is suggested for the lateral restraint of perimeter pile walls. Such ground anchors should be inclined below the horizontal to allow anchorage into the stronger bedrock materials at depth. The design of temporary ground anchors for the support of piled wall systems may be carried out using the allowable average bond stresses at the grout-rock interface given in Table 6.

Table 6: Allowable Bond Stresses for Anchor Design

Material Description	Allowable Bond Stress (kPa)
Extremely Low to Low Strength Sandstone	100
Medium and High Strength Sandstone	300

Ground anchors should be designed to have a free length equal to their height above the base of the excavation and have a minimum 3 m bond length. After installation they should be proof loaded to 125% of the design working load and locked-off at no higher than 80% of the working load. Periodic checks should be carried out during the construction phase to ensure that the lock-off load is maintained and not lost due to creep effects or other causes.

The parameters given in Table 6 assume that the anchor holes are clean and adequately flushed, with grouting and other installation procedures carried out carefully and in accordance with good anchoring practice. Careful installation and close supervision by a geotechnical specialist may allow increased bond stresses to be adopted during construction, subject to testing.

In normal circumstances the building will restrain the basement/lift pit excavations over the long term and therefore ground anchors are expected to be temporary only. The use of permanent anchors would require careful attention to corrosion protection. Further advice on design and specification should be sought if permanent anchors are to be employed at this site.

It will be necessary to obtain permission from neighbouring landowners prior to installing anchors that will extend beyond the perimeter of the site. In addition, care should be taken to avoid damaging buried services, pipes and subsurface structures during anchor installation.

9.6 Groundwater and Seepage

The groundwater levels measured during the current field work vary between RL 31.3 m and RL 34.7 m AHD. It is likely that the groundwater intercepted in the wells is water seepage along the top of the rock and through joints and partings within the rock mass. The regional groundwater table may be deeper. Further monitoring of water levels within wells should be carried out to assess fluctuations if this is important for design and construction.

Drainage measures will need to be provided in any subsurface structures/retaining walls to allow seepage water to flow around the structures rather than exert hydrostatic pressures against them, unless they are designed as tanked structures suitable to resist hydrostatic pressures.

9.7 Foundations

Based on the existing subsurface conditions, DP has provided a site classification assessment in accordance with AS 2870 "Residential Slabs and Footings" (2011). Currently, the site is underlain by uncontrolled fill of various materials to depths greater than 0.4 m, which results in Class P for the site. For Class P sites, footing design should be based on "engineering principles".

It is understood that all new structures will be founded on new foundations, rather than adding load to existing footings. It is 'good engineering practice' to support all structures, particularly heavily loaded structures, on material with uniform properties to reduce the potential for differential settlement. Shallow footings and piles founded on sandstone bedrock are recommended.

It is likely that shallow footings will be appropriate at areas on site where sandstone is present at shallow depths, and piles will be required in areas where rock is deeper. Given the presence of granular fill and sandy soils, CFA piles or cased bored piles should be appropriate piling methods. Conventional bored piles will be unsuitable as the uncased excavation will be prone to collapse. It is noted that obstructions within the fill, medium and high strength ironstone bands within weathered sandstone, and medium and high strength sandstone bedrock would require the use of a high-torque piling rig with an experienced operator.

Recommended maximum pressures and elastic modulus values for the design of footings and piles in various sandstone strengths are presented in Table 7. For piles, shaft adhesion values for uplift (tension) may be taken as being equal to 70% of the values for compression.

Table 7: Design Parameters for New Footings and Bored Piles

Material Description	Allowable End-Bearing Pressure (kPa)	Allowable Shaft Adhesion ¹ (kPa)	Ultimate End- Bearing Pressure (kPa)	Ultimate Shaft Adhesion ¹ (kPa)	Young's Modulus (MPa)
EL to VL Sandstone	700	50	3,000	100	50
VL to L Sandstone	1,000	100	4,000	250	100
L to M or stronger Sandstone	3,500	350	15,000	800	500

Notes: 1 Only for piles below 1 m depth and where adequate socket roughness has been achieved;

EL = extremely low strength; VL = very low strength; L = low strength; M = medium strength; H = high strength

Higher bearing pressures could be justified, if required, and subject to further investigation.

9.8 Subgrade Preparation

Existing fill that is required to support additional loads on slabs and pavements would need to be reworked to reduce the potential for unacceptable settlements associated with poorly or variably compacted fill. New fill will also need to be placed in accordance with an engineering specification.

Typical subgrade preparation measures could include:

- Remove fill to at least 0.6 m below the design subgrade level, or to the top of natural sand/sandstone, whichever is shallower.
- Compact the exposed surface and proof-roll using a roller of 10 tonne deadweight (or equivalent)
 in the presence of a geotechnical engineer. Any areas exhibiting unacceptable movements
 during the proof-roll may require further rectification;
- Place fill in maximum 250 mm thick layers and compact to achieve a dry density ratio of between 98% and 102% relative to Standard compaction. If the replacement fill used is sand, compact to a density index of 75%. The upper 0.5 m of pavement subgrade areas should be compacted to achieve a dry density ratio of between 100% and 102% relative to Standard compaction;
- The moisture content should be within 2% of the Standard optimum moisture content of the material if it exhibits clay-like properties. Moisture conditioning (i.e. drying or wetting) may be required for compaction of fill.
- Poor trafficability should be expected across unpaved areas of the site, particularly during and following periods of wet weather. A layer of granular product (e.g. roadbase, recycled crushed concrete, etc.) should be considered as the top layer of fill to improve trafficability on site;
- All fill should be placed in accordance with AS 3798 2007 "Guidelines on earthworks for commercial and residential developments" with earthworks quality control testing undertaken to verify that the required compaction/moisture criteria are achieved.

If existing fill is left in place without reworking and compaction, there will be a potential for higher settlements, particularly if additional load is applied to the uncontrolled fill. Differential settlements could be variable and high due to the variability of the fill. This will also be almost entirely differential to the columns that will be supported on rock. If additional load is to be applied to the uncontrolled fill, further investigation with CPTs would be required to provide accurate information on the fill consistency/compaction to estimate settlements.

From a geotechnical perspective, the predominantly sand fill is considered to be suitable for re-use as engineered fill, provided that it is free of oversize particles (>100 mm) and deleterious material. The suitability of re-using site-won fill and natural soil should also be considered from a contamination perspective.

9.9 Ground Slabs and Pavements

Floors at the basement level can be designed as slabs on ground, assuming subgrade preparation is carried out in accordance with Section 6.8 of this report.

Based on previous experience in the area, a design CBR of 10% is suggested for the preliminary design of pavements, assuming subgrade preparation is carried out in accordance with Section 6.8 of this report and assuming a granular subgrade (e.g. sand or gravel).

9.10 Aggressivity

The laboratory test results indicate that the samples tested are non-aggressive to mildly aggressive to buried concrete and buried steel elements in accordance with the provisions of Australian Standard AS 2159 "Piling – Design and Installation" (2009).

9.11 Seismicity

A Hazard Factor (Z) of 0.08 would be appropriate for the development site in accordance with Australian Standard AS 1170.4 "Structural design actions – Part 4: Earthquake actions in Australia" (2007). The site sub-soil class is Class C_e .

10. Limitations

Douglas Partners (DP) has prepared this report for this project at the Royal Hall of Industries, Moore Park in accordance with DP's proposal SYD190086.P.001.Rev2, dated 21 February 2019 and acceptance received from Anthony Murphy of APP, on behalf of Sydney Swans Ltd, dated 25 February 2019. The work was carried out under the conditions outlined in "Sydney Swans HW & Community Centre Consultant Letter of Appointment", dated 25 February 2019 and signed by DP on 27 February 2019. This report is provided for the exclusive use of Sydney Swans Ltd and their agents for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations

or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the geotechnical components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Douglas Partners Pty Ltd

Appendix A

About This Report

About this Report Douglas Partners O

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling Methods Douglas Partners The sample of the samp

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726-1993, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	20 - 63
Medium gravel	6 - 20
Fine gravel	2.36 - 6
Coarse sand	0.6 - 2.36
Medium sand	0.2 - 0.6
Fine sand	0.075 - 0.2

The proportions of secondary constituents of soils are described as:

Term	Proportion	Example
And	Specify	Clay (60%) and Sand (40%)
Adjective	20 - 35%	Sandy Clay
Slightly	12 - 20%	Slightly Sandy Clay
With some	5 - 12%	Clay with some sand
With a trace of	0 - 5%	Clay with a trace of sand

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	vs	<12
Soft	S	12 - 25
Firm	f	25 - 50
Stiff	st	50 - 100
Very stiff	vst	100 - 200
Hard	h	>200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	SPT N value	CPT qc value (MPa)
Very loose	vl	<4	<2
Loose	1	4 - 10	2 -5
Medium dense	md	10 - 30	5 - 15
Dense	d	30 - 50	15 - 25
Very dense	vd	>50	>25

Soil Descriptions

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Filling moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- · Aeolian wind deposits
- · Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

Rock Strength

Rock strength is defined by the Point Load Strength Index $(Is_{(50)})$ and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 2007. The terms used to describe rock strength are as follows:

Term	Abbreviation	Point Load Index Is ₍₅₀₎ MPa	Approximate Unconfined Compressive Strength MPa*
Extremely low	EL	<0.03	<0.6
Very low	VL	0.03 - 0.1	0.6 - 2
Low	L	0.1 - 0.3	2 - 6
Medium	M	0.3 - 1.0	6 - 20
High	Н	1 - 3	20 - 60
Very high	VH	3 - 10	60 - 200
Extremely high	EH	>10	>200

^{*} Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Extremely weathered	EW	Rock substance has soil properties, i.e. it can be remoulded and classified as a soil but the texture of the original rock is still evident.
Highly weathered	HW	Limonite staining or bleaching affects whole of rock substance and other signs of decomposition are evident. Porosity and strength may be altered as a result of iron leaching or deposition. Colour and strength of original fresh rock is not recognisable
Moderately weathered	MW	Staining and discolouration of rock substance has taken place
Slightly weathered	SW	Rock substance is slightly discoloured but shows little or no change of strength from fresh rock
Fresh stained	Fs	Rock substance unaffected by weathering but staining visible along defects
Fresh	Fr	No signs of decomposition or staining

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with some fragments
Fractured	Core lengths of 40-200 mm with some shorter and longer sections
Slightly Fractured	Core lengths of 200-1000 mm with some shorter and longer sections
Unbroken	Core lengths mostly > 1000 mm

Rock Descriptions

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C	Core arilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
110	D:

Cara drilling

HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

Α	Auger sample
В	Bulk sample
D	Disturbed sample
E	Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

	76-
В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam

F Fault
J Joint
Lam Lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h	horizontal
V	vertical
sh	sub-horizontal
sv	sub-vertical

Coating or Infilling Term

cln	clean
СО	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock			
General		Sedimentary	Rocks
	Asphalt		Boulder conglomerate
	Road base		Conglomerate
\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)	Concrete		Conglomeratic sandstone
	Filling		Sandstone
Soils		. — . — . —	Siltstone
	Topsoil		Laminite
* * * * * * * * * * * * * * * * * * * *	Peat		Mudstone, claystone, shale
	Clay		Coal
	Silty clay		Limestone
<i>[.].</i> [.].	Sandy clay	Metamorphic	: Rocks
	Gravelly clay		Slate, phyllite, schist
-/-/-/- -/-/-/-	Shaly clay	+ + +	Gneiss
	Silt		Quartzite
	Clayey silt	Igneous Roc	ks
	Sandy silt	+ + + + + + + , + , +	Granite
	Sand	<	Dolerite, basalt, andesite
	Clayey sand	× × × ; × × × ;	Dacite, epidote
· · · · · · · · · · · ·	Silty sand		Tuff, breccia
	Gravel		Porphyry
	Sandy gravel		
	Cobbles, boulders		

Cone Penetration Tests

Partners ()

Introduction

The Cone Penetration Test (CPT) is a sophisticated soil profiling test carried out in-situ. A special cone shaped probe is used which is connected to a digital data acquisition system. The cone and adjoining sleeve section contain a series of strain gauges and other transducers which continuously monitor and record various soil parameters as the cone penetrates the soils.

The soil parameters measured depend on the type of cone being used, however they always include the following basic measurements

•	Cone tip resistance	q_c
•	Sleeve friction	f_s
•	Inclination (from vertical)	i
•	Depth below ground	Z

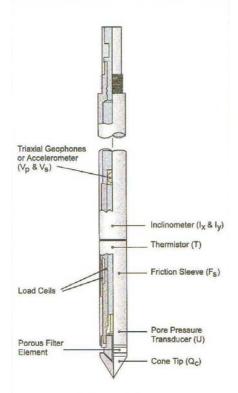


Figure 1: Cone Diagram

The inclinometer in the cone enables the verticality of the test to be confirmed and, if required, the vertical depth can be corrected.

The cone is thrust into the ground at a steady rate of about 20 mm/sec, usually using the hydraulic rams of a purpose built CPT rig, or a drilling rig. The testing is carried out in accordance with the Australian Standard AS1289 Test 6.5.1.

Figure 2: Purpose built CPT rig

The CPT can penetrate most soil types and is particularly suited to alluvial soils, being able to detect fine layering and strength variations. With sufficient thrust the cone can often penetrate a short distance into weathered rock. The cone will usually reach refusal in coarse filling, medium to coarse gravel and on very low strength or better rock. Tests have been successfully completed to more than 60 m.

Types of CPTs

Douglas Partners (and its subsidiary GroundTest) owns and operates the following types of CPT cones:

Туре	Measures
Standard	Basic parameters (q _c , f _s , i & z)
Piezocone	Dynamic pore pressure (u) plus basic parameters. Dissipation tests estimate consolidation parameters
Conductivity	Bulk soil electrical conductivity (σ) plus basic parameters
Seismic	Shear wave velocity (V _s), compression wave velocity (V _p), plus basic parameters

Strata Interpretation

The CPT parameters can be used to infer the Soil Behaviour Type (SBT), based on normalised values of cone resistance (Qt) and friction ratio (Fr). These are used in conjunction with soil classification charts, such as the one below (after Robertson 1990)

Cone Penetration Tests

Figure 3: Soil Classification Chart

DP's in-house CPT software provides computer aided interpretation of soil strata, generating soil descriptions and strengths for each layer. The software can also produce plots of estimated soil parameters, including modulus, friction angle, relative density, shear strength and over consolidation ratio.

DP's CPT software helps our engineers quickly evaluate the critical soil layers and then focus on developing practical solutions for the client's project.

Engineering Applications

There are many uses for CPT data. The main applications are briefly introduced below:

Settlement

CPT provides a continuous profile of soil type and strength, providing an excellent basis for settlement analysis. Soil compressibility can be estimated from cone derived moduli, or known consolidation parameters for the critical layers (eg. from laboratory testing). Further, if pore pressure dissipation tests are undertaken using a piezocone, in-situ consolidation coefficients can be estimated to aid analysis.

Pile Capacity

The cone is, in effect, a small scale pile and, therefore, ideal for direct estimation of pile capacity. DP's in-house program ConePile can analyse most pile types and produces pile capacity versus depth plots. The analysis methods are based on proven static theory and empirical studies, taking account of scale effects, pile materials and method of installation. The results are expressed in limit state format, consistent with the Piling Code AS2159.

Dynamic or Earthquake Analysis

CPT and, in particular, Seismic CPT are suitable for dynamic foundation studies and earthquake response analyses, by profiling the low strain shear modulus G_0 . Techniques have also been developed relating CPT results to the risk of soil liquefaction.

Other Applications

Other applications of CPT include ground improvement monitoring (testing before and after works), salinity and contaminant plume mapping (conductivity cone), preloading studies and verification of strength gain.

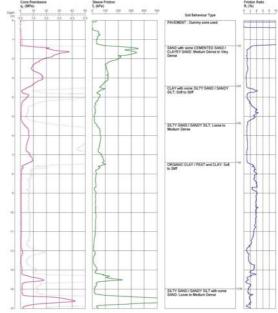
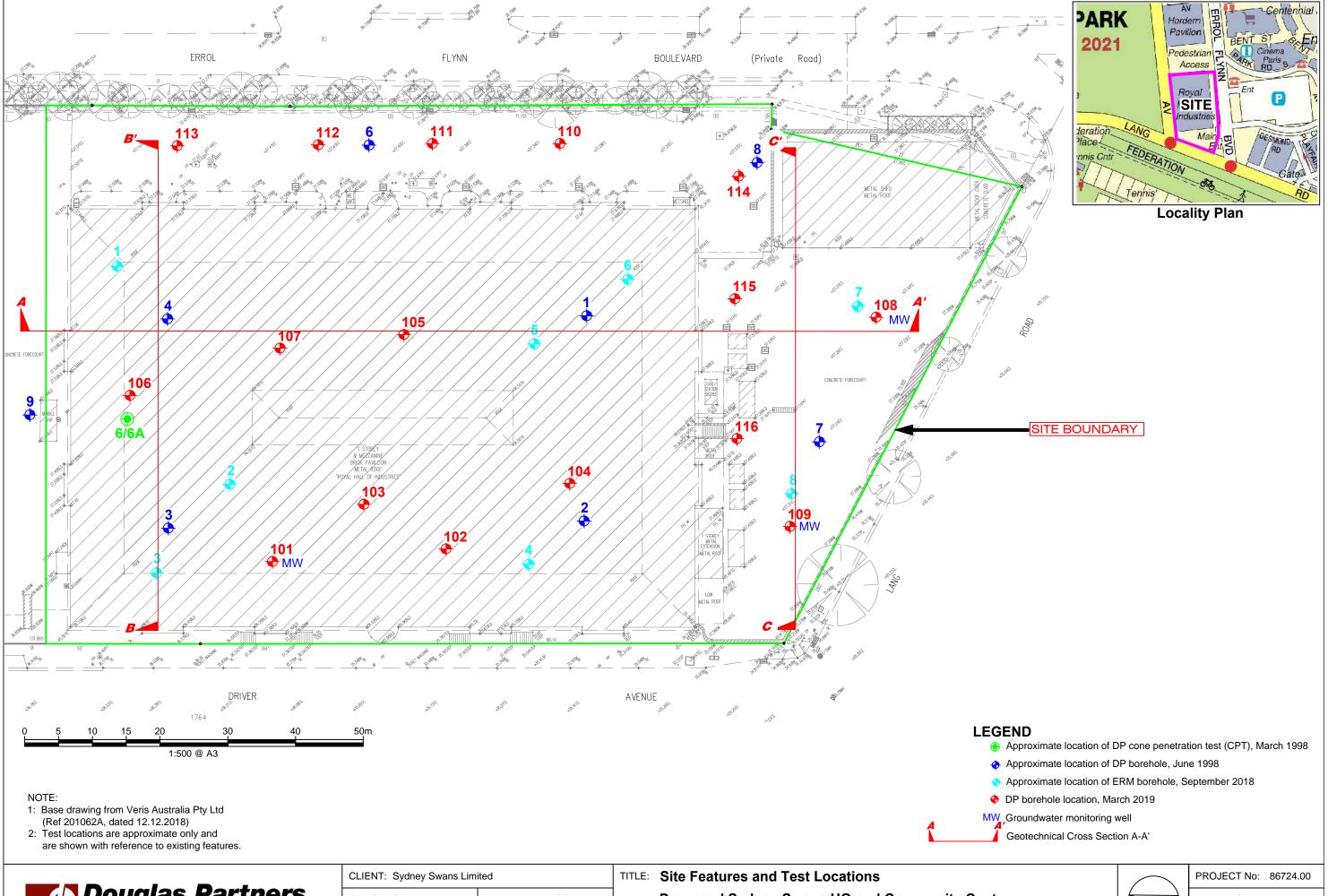
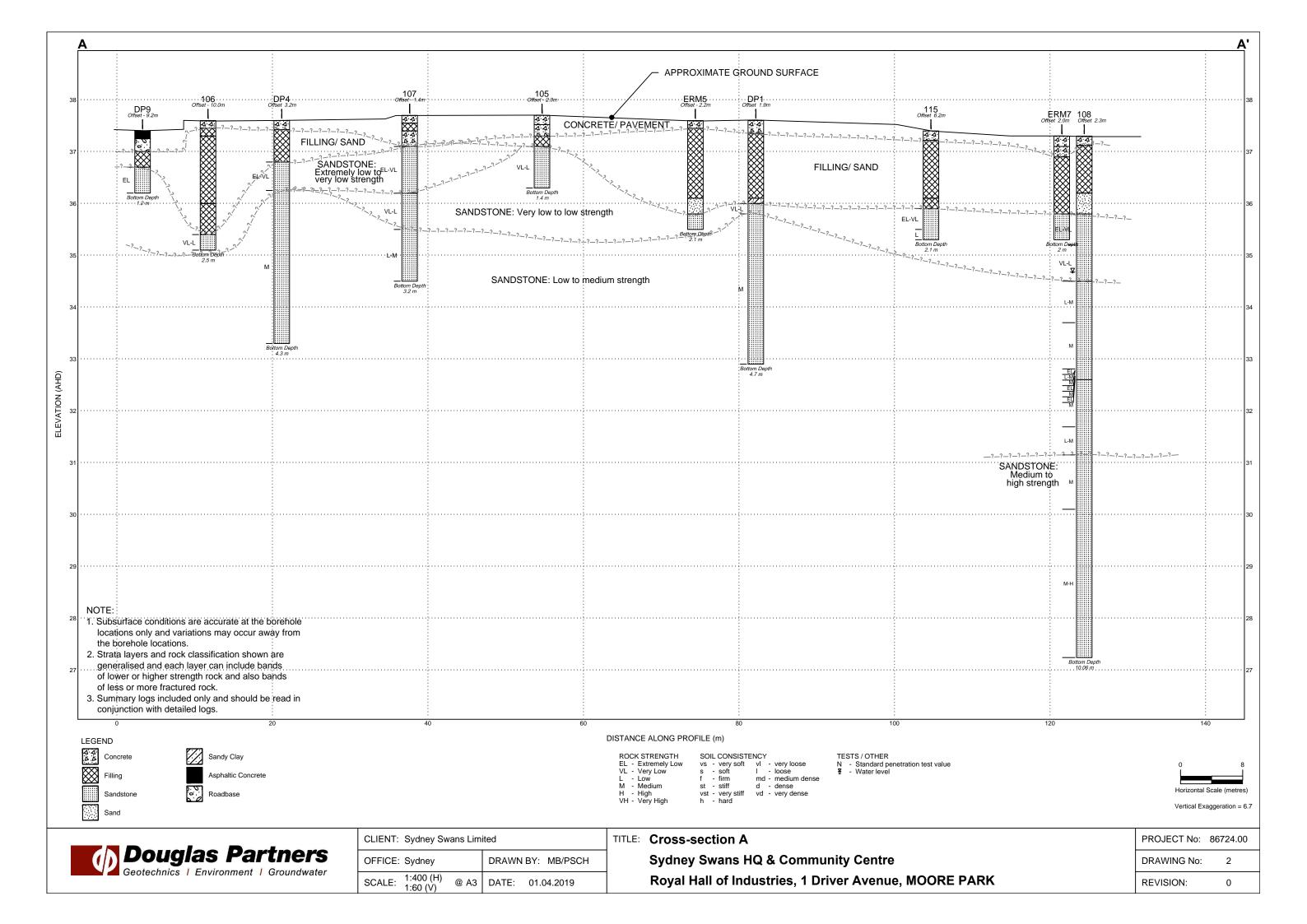
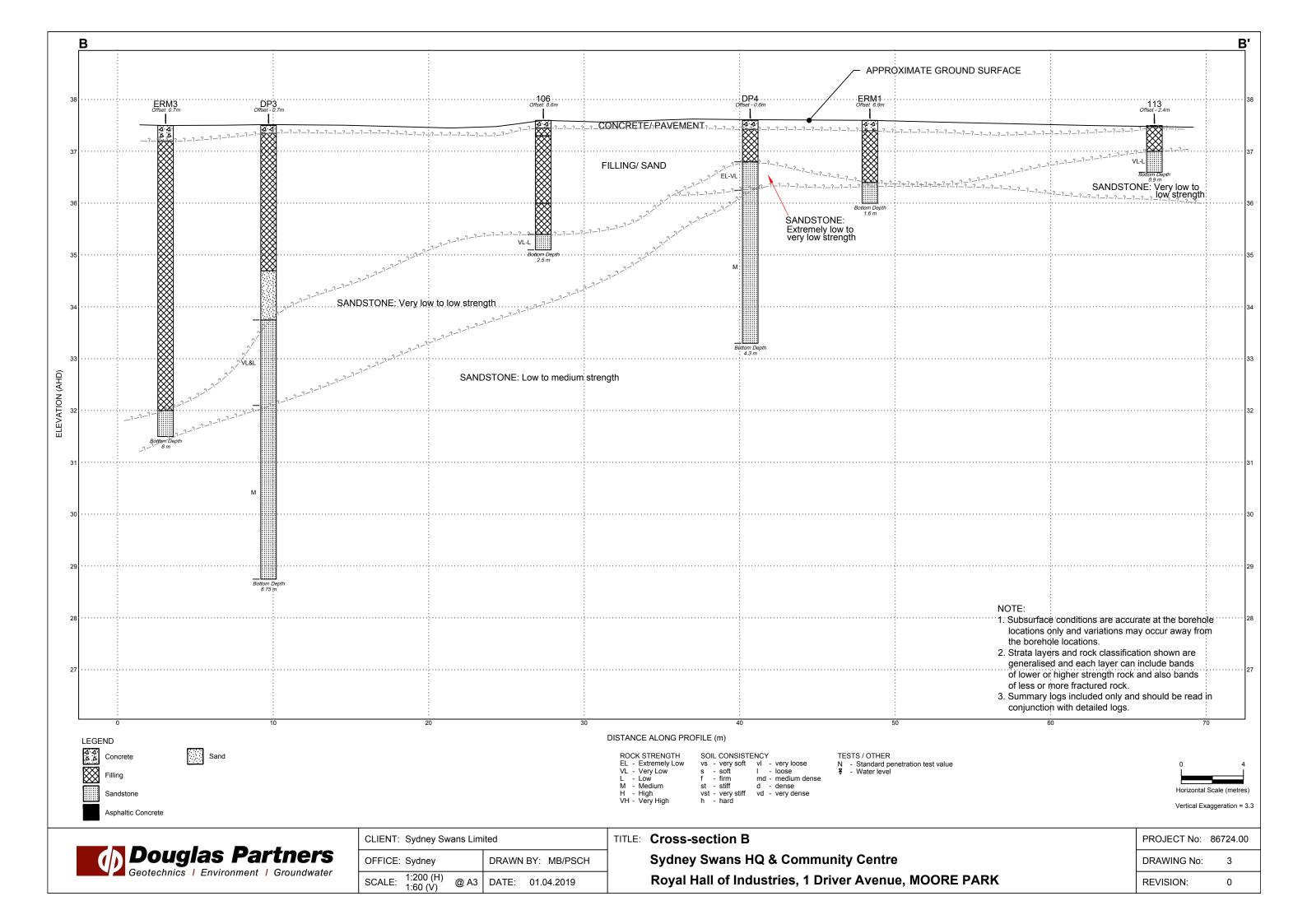



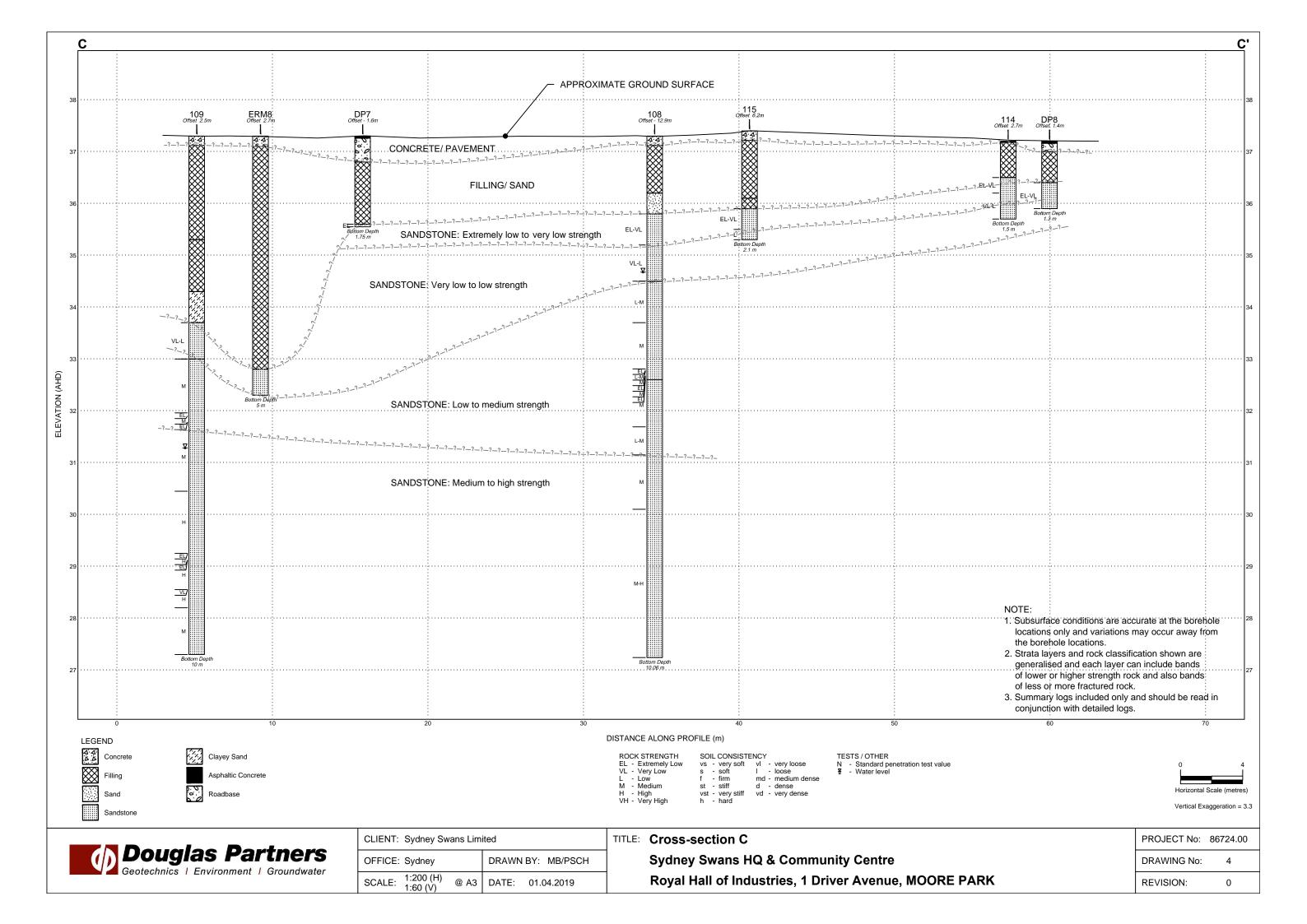
Figure 4: Sample Cone Plot

Appendix B

Drawings


OFFICE: Sydney DRAWN BY: PSCH


SCALE: 1:500 @ A3 DATE: 14.3.2019


E: Site Features and Test Locations
Proposed Sydney Swans HQ and Community Centre
Royal Hall of Industries, 1 Driver Avenue, MOORE PARK

PROJECT No:	86724.00
DRAWING No:	1
REVISION:	0

Appendix C Results of Field Work (Current Investigation)

CLIENT: Sydney Swans Limited

PROJECT: Sydney Swans HQ & Community Centre **LOCATION:** Royal Hall of Industries, 1 Driver Avenue,

Moore Park

SURFACE LEVEL: 37.6 AHD

EASTING: 335783 **NORTHING**: 6248069

DIP/AZIMUTH: 90°/--

BORE No: 101

PROJECT No: 86724.00

DATE: 6/3/2019 **SHEET** 1 OF 1

		Description	Degree of Weathering	i <u>s</u>	Rock Strength	F	racture	Discontinuities	Sa	ampli	ng & I	n Situ Testing
	Depth (m)	of		Graphic	Strength Low High High High High High High High High		Spacing (m)	B - Bedding J - Joint	Type	ore %:	RQD %	Test Results &
	` '	Strata	E SW HW	ا	Medi Kry	0.01	0.05	S - Shear F - Fault	5	S &	, R	Comments
	0.15	CONCRETE SLAB		4.								
37		FILL: yellow sand fill with a trace of sandstone gravel							_A_			PID<1
-1	0.7	FILL: dark brown sand fill with a trace of silt and sandstone gravel							_A_			PID<1
- 8 2		- brown from 1.5 m							A			PID<1
32		- metal obstruction, steel, ceramic tile fragments, glass from 2.0 m										
-3	3								_A_			PID<1
-4 -4	4.0-	FILL: red brown sand fill with trace of ash							_A_			PID<1
-EE 5	5 5.2	SANDSTONE: apparently extremely							_A_	_		PID<1
32	5.6	low strength, pale grey brown sandstone				İ		F. Care 1 20° al an ale	Α			PID<1
-6	3	SANDSTONE: extremely low strength, extremely weathered, slightly fractured, red brown and light grey, medium grained sandstone with some high strength ironstone bands			11-03-19	11		5.6m: J,30°,pl,ro,cly 1mm 5.9-6.5m: J,85°,un,ro,cly 1 mm				PL(A) = 0.08
-7	6.6	SANDSTONE: medium and high strength, slightly weathered, slightly fractured and unbroken, medium grained sandstone						6.6m: B,0°,pl,ro,cly 5mm	С	100	59	PL(A) = 0.84
						 		7.42-7.47m: B(x2),0°,pl,ro,cly 1 mm				PL(A) = 1.5
-8	3							8.47m: J,70°,pl,ro,cly 5				
-8 - 9)							mm	С	100	100	PL(A) = 1.9
28	0 10.0	Bore discontinued at 10.0m Target depth reached										PL(A) = 0.82

RIG: Hanjin DB8 DRILLER: BG Drilling LOGGED: LT/LS CASING: Uncased**

TYPE OF BORING: Diacore to 0.15m, solid flight auger to 5.5m, NMLC to 10.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering, groundwater measured at 5.98 m depth in standpipe on 11/03/19

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery. **uncased due to metal obstruction at 2.0m.

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C C core drilling
D D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING
G Sas sample
P Piston sample
U Tube sample (x mm dia.)
V Water sample
W Water sample
D Water seep
S Standard
V Shear ve

CLIENT: Sydney Swans Limited

Sydney Swans HQ & Community Centre PROJECT: Royal Hall of Industries, 1 Driver Avenue, LOCATION:

Moore Park

SURFACE LEVEL: 37.6 AHD

EASTING: 335783 **NORTHING**: 6248069

DIP/AZIMUTH: 90°/--

PROJECT No: 86724.00 **DATE:** 6/3/2019 SHEET 1 OF 1

BORE No: 101

	_		Description	ji.		San		& In Situ Testing	7	Well
집	Dep (m		of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
F	- ,	2.45	_ CONCRETE SLAB	\(\frac{1}{2}\cdot\).			Ø			Well Plug and
37		0.15	FILL: yellow sand fill with a trace of sandstone gravel		A	0.4 0.5		PID<1		Flush Gatic Cover Concrete
-	- - 1	0.7	FILL: dark brown sand fill with a trace of silt and sandstone gravel		A	0.9 1.0		PID<1		-1
36	-		- brown from 1.5 m							Concrete 1
-	-2		- metal obstruction, steel, ceramic tile fragments, glass from 2.0 m		A	1.9 2.0		PID<1		
35	-3				A	2.9 3.0		PID<1		-3 Blank PVC Backfill
34	Ė	4.0 -	FILL: red brown sand fill with trace of ash		A	3.9 4.0		PID<1		Flush Gatic Cover Concrete -1 -3 Blank PVC Backfill -4
33	- - -5	5.2			A	4.9 5.0		PID<1		5
ŀ	Ė	0.2	SANDSTONE: apparently extremely low strength, pale grey brown sandstone		A	5.4 5.5		PID<1		
32	- -6	5.6	SANDSTONE: extremely low strength, extremely weathered, slightly fractured, red brown and light grey, medium grained sandstone with some high strength ironstone bands			5.6 5.8 5.9		PL(A) = 0.08	11-03-19 1	-6 Bentonite
34 -	- - - - - 7	6.6	SANDSTONE: medium and high strength, slightly weathered, slightly fractured and unbroken, medium grained sandstone		С	6.9 6.94		PL(A) = 0.84	1	7
30	-					7.44 7.7		PL(A) = 1.5		
29	-8				С	8.82		PL(A) = 1.9		Gravel Machine Slotted PVC Screen -9
28	- - - -10 1	10.0	Bore discontinued at 10.0m Target depth reached			9.69 _10.0_		PL(A) = 0.82		10 End Cap

LOGGED: LT/LS RIG: Hanjin DB8 **DRILLER:** BG Drilling CASING: Uncased**

TYPE OF BORING: Diacore to 0.15m, solid flight auger to 5.5m, NMLC to 10.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering, groundwater measured at 5.98 m depth in standpipe on 11/03/19

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery. **uncased due to metal obstruction at 2.0m.

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Sydney Swans Limited

PROJECT: Sydney Swans HQ & Community Centre LOCATION: Royal Hall of Industries, 1 Driver Avenue, SURFACE LEVEL: 37.6 AHD

EASTING: 335789 **NORTHING:** 6248041

SHEET 1 OF 1

DATE: 6/3/2019

PROJECT No: 86724.00

BORE No: 102

		Description	U		San	npling 8	In Situ Testing		Well
Dep (m	oth)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
C).15 –	CONCRETE SLAB FILL: pale yellow brown clayey sand fill with trace sandstone gravel		A	0.4 0.5		PID<1		
·1	1.0	FILL: dark brown clayey sand fill with sandstone gravel		A	0.9 1.0		PID<1		-1
-2		- dark brown mottled light grey from 1.8m to 2.2m		A	1.9 2.0		PID<1		-2
-3	3.0	- trace of metal at 3.0m		A	2.9 3.0		PID<1		-3
		FILL: pale grey mottled dark grey sand fill with trace silt and ash		A	3.4 3.5		PID<1		-
-4		- brown from 3.9m		A	3.9 4.0		PID<1		-4
-5	4.5	SANDSTONE: apparently extremely low to very low strength, pale grey sandstone		A	4.9 5.0		PID<1		5
	5.4	SANDSTONE: apparently low to medium strength, yelllow sandstone							
-6	6.0	Bore discontinued at 6.0m Refusal on sandstone bedrock, target stratum encountered	<u> ::::::</u>	A	5.9 6.0		PID<1		6
-7									-7
-8									

DRILLER: BG Drilling LOGGED: AD **CASING:** Uncased RIG: Hanjin DB8

TYPE OF BORING: Diacore to 0.15m, solid flight auger to 6.0m WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery.

SAMPLING & IN SITU TESTING LEGEND LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa) Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Sydney Swans Limited

PROJECT: Sydney Swans HQ & Community Centre **LOCATION:** Royal Hall of Industries, 1 Driver Avenue,

Moore Park

SURFACE LEVEL: 37.6 AHD

EASTING: 335794

NORTHING: 6248055 **DIP/AZIMUTH**: 90°/--

BORE No: 103

PROJECT No: 86724.00

DATE: 7/3/2019 **SHEET** 1 OF 1

	-	41-	Description	jc T		San		& In Situ Testing	<u>_</u> _	Well
귐	(r	pth n)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
Ш			Strata		F	ے	Sar	Comments		Details
		0.15	CONCRETE SLAB	 		0.2		PID<1		
		0.4	FILL: yellow brown slightly clayey sand fill with trace of silt	4.4	A	0.3 0.4		PID<1		
37		0.6	CONCRETE FILL: yellow mottled white sand fill			0.5				-
	- 1		TILL. Yellow Motified write Sand IIII		A	0.9 1.0		PID<1		-1
		1.1	FILL: dark brown clayey sand fill with some charcoal, ash,			1.0				ļ
			coke, trace of shell and glass							
36										
	-2				_ _A _	1.9 2.0		PID<1		[-2
		2.2	CILL pole grov cond fill with coh	\Rightarrow						
			FILL: pale grey sand fill with ash		_A_	2.3 2.4		PID<1		
35		2.6	FILL: yellow brown sand fill with trace of ash							<u> </u>
	-3				A	2.9 3.0		PID<1		-3
						0.0				
+ +		3.5		\bowtie						ļ
34			SAND: pale yellow fine to medium sand							-
	-4				_A_	3.9 4.0		PID<1		-4
1		4.5	CANDOTONIC							
33			SANDSTONE: apparently extremely low to low strength, pale grey sandstone							
	-5	5.0	Dave discontinued at 5 Ora	::::::	_A_	4.9 5.0		PID<1	-	5
			Bore discontinued at 5.0m Refusal on sandstone bedrock, target stratum							
32			encountered							
E.										
ŀ	-6									-6
										ļ.
<u>_</u>										-
"										ļ.
Ė	-7									-7
										[
"										-
Ė	- 8									-8
										-
6										
"										
-	9									-9
- - - -										
E	- 10									-10

RIG: Hanjin DB8 DRILLER: BG Drilling LOGGED: LT CASING: Uncased

TYPE OF BORING: Diacore to 0.15m, solid flight auger to 5.0m **WATER OBSERVATIONS:** No free groundwater observed

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery.

SAMPLING & IN SITU TESTING LEGEND

A Auger sample G G Gas sample PID Photo ionisation detector (ppm)

B Bulk sample Piston sample PL(A) Point load axial test Is(50) (MPa)

BLK Block sample U Tube sample (x mm dia.)

C Core drilling W Water sample PL(D) Point load diametral test Is(50) (MPa)

D Disturbed sample P Water seep S S Standard penetration test

E Environmental sample W Water level V Shear vane (kPa)

CLIENT: Sydney Swans Limited

PROJECT: Sydney Swans HQ & Community Centre **LOCATION:** Royal Hall of Industries, 1 Driver Avenue,

Moore Park

SURFACE LEVEL: 37.6 AHD

EASTING: 335801 **NORTHING**: 6248026

DIP/AZIMUTH: 90°/--

BORE No: 104

PROJECT No: 86724.00

DATE: 7/3/2019 **SHEET** 1 OF 1

	D 41-	Description	je T		Sam		& In Situ Testing	<u></u>	Well
집	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
Н		Strata		Ė.	ă	Sa	Continents		Details
E	0.15		4:4	A/	0.15 0.2		PID<1		
	0.5	VI ILL. dark yellow slightly dayey saild illi	4.4.	_A_	0.4		PID<1		
37		FILL: yellow white sand fill with trace of ash			0.5				-
	- 1	Tibe. yellow write saile iii with tage of ash	\bowtie	A	0.9 1.0		PID<1		[-1
					1.0				
	· 1.5								
36		FILL: dark brown sand fill with trace of tiles and glass							
	-2		\bowtie	A	1.9 2.0		PID<1		-2
	. -				2.0				
	·		\bigotimes						
35									
	-3 3.0		\boxtimes		2.9		PID<1		-3
	. 3.0	FILL: yellow and orange-brown sand fill with trace of gravel	\otimes		3.0				
Ė	· ·	giava	\bowtie	A	3.4		PID<1		
34	3.6	SANDSTONE: apparently extremely low to very low	X.X.		3.5				
Ė	- 4	SANDSTONE: apparently extremely low to very low strength, pale grey and pink sandstone with some medium and high strength ironstone bands		A	3.9		PID<1		
	- 	4.0m-4.2m: ironstone band		LA.	4.0 4.1		PID<1		
+		4 4m; becoming apparently louge modium strength		A ,	4.4		PID<1		-
33		4.4m: becoming apparently low to medium strength			4.5				
	-5 5.0			A*	4.9		PID<1		
	-5 5.0 ·	Bore discontinued at 5.0m	•		5.0				
+		Refusal on sandstone bedrock, target stratum encountered							-
32	· ·								
Ė	-6								-6
	-0								
-	· ·								
9									
									-7
									[
-8									
	-8								-8
29	· ·								
[]	-9								-9 -
28									[
									<u> </u>
Ы	- 10								-10

RIG: Hanjin DB8 DRILLER: BG Drilling LOGGED: LT CASING: Uncased

TYPE OF BORING: Diacore to 0.15m, solid flight auger to 5.0m **WATER OBSERVATIONS:** No free groundwater observed

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery. *Blind replicate sample BD1/20190307 taken from 4.9-5.0m.

A Auger sample G G as sample PID Photo ionisati
B Bulk sample P Piston sample PL(A) Point load axis
BLK Block sample U Tube sample (x mm dia.)
C Core drilling W Water sample pp Pocket penet
D Disturbed sample D Water seep S Standard pen
E Environmental sample ▼ Water level V Shear vane (I

CLIENT: Sydney Swans Limited

PROJECT: Sydney Swans HQ & Community Centre **LOCATION:** Royal Hall of Industries, 1 Driver Avenue,

Moore Park

SURFACE LEVEL: 37.7 AHD

EASTING: 335819 **NORTHING:** 6248052

DIP/AZIMUTH: 90°/--

BORE No: 105 **PROJECT No:** 86724.00

DATE: 7/3/2019 **SHEET** 1 OF 1

			Description	je.		Sam		& In Situ Testing		Well
R	Dep (m	oth 1)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction
			Strata		7	De	Sar	Comments	Ĺ	Details
+	. (0.18	CONCRETE SLAB	\(\frac{1}{12}\), \(\frac{1}{12}\). \(\frac{1}{12}\).						-
[-	0.4	CONCRETE	XXX		0.4 0.5		PID<1		
37	-	0.6	FILL: yellow-brown medium sand fill with trace of gravel, ash and coke	X X X		0.5				-
-	- - - 1		SANDSTONE: apparently very low to low strength, pale grey-white sandstone		A	0.9 1.0		PID<1		[-1
Ė			grey-write saliustone			1.0				
-	-	1.4	Bore discontinued at 1.4m	1						-
36			Refusal on sandstone bedrock, target stratum encountered							
	-2									_2
-	-									
-	-									
35	-									
ŀ	-3 -									-3
-	-									
-8	-									-
E	- - - 4									-4
-										-
-										
33	-									
-	- -5									-5
-										
	· ·									
32	-									
-	-6									-6
Ė	-									
-	-									-
31										
	-7 - -									-7
-										
30	-									
	- - -8									-8
ŀ										[
-	-									
29	- -									
	- -9									-9
28										[
Ł	- 10									-10

RIG: Hanjin DB8 DRILLER: BG Drilling LOGGED: LT CASING: Uncased

TYPE OF BORING: Diacore to 0.18m, solid flight auger to 1.4m **WATER OBSERVATIONS:** No free groundwater observed

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery.

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B B Bulk sample
BLK Block sample
C C ore drilling
D D Disturbed sample
D D Sturbed sample
E E Invironmental sample
W Water seep
Water seep
W Water level
W Shear vane (kPa)
W Shear vane (kPa)

CLIENT: Sydney Swans Limited

PROJECT: Sydney Swans HQ & Community Centre LOCATION:

SURFACE LEVEL: 37.6 AHD

BORE No: 106 PROJECT No: 86724.00 EASTING: 335807

> **DATE:** 7/3/2019 SHEET 1 OF 1

Royal Hall of Industries, 1 Driver Avenue, **NORTHING**: 6248094 Moore Park DIP/AZIMUTH: 90°/--

	D	- 41-	Description	Jic 1		Sam		& In Situ Testing	<u></u>	Well
귐	Dep (m	ptn 1)	of Charles	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
Н			Strata _ CONCRETE SLAB	\(\frac{1}{2}\). \(\frac{1}{2}\).	_		Š			Details
	. (0.15 0.3			A	0.2 0.3 0.4		PID<1 PID<1		
37			FILL: dark brown slightly clayey sand fill with trace of siltstone gravel, plastic, charcoal, coke and glass			0.5				-
	- - 1 -					0.9				-1
36		1.6			Α			PID<1		
	- - - 2		FILL: grey sand fill with some coke and ash		_A_	1.9 2.0		PID<1		-2
		2.2	SANDSTONE: apparently very low to low strength, pale			2.4		DID 44		
35	-	2.5	grey-white sandstone Bore discontinued at 2.5m		_A_	2.5		PID<1		
	- - - 3		Refusal on sandstone bedrock, target stratum encountered							3
	- - -									-
34										
	-4 - -									-4
33	- -									-
	- 5									- -5
32	-									
	-6 -									-6
31										
	- - -7									-7
	- - -									
30	-									
	- - 8 -									8
29										
	- - - 9									-9
	• • •									
28										
	- - 10									- -10

CASING: Uncased RIG: Hanjin DB8 **DRILLER:** BG Drilling LOGGED: LT

TYPE OF BORING: Diacore to 0.15m, solid flight auger to 2.5m WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery.

SAMPLING & IN SITU TESTING LEGEND LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa) Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Sydney Swans Limited

PROJECT: Sydney Swans HQ & Community Centre Royal Hall of Industries, 1 Driver Avenue, LOCATION:

Moore Park

SURFACE LEVEL: 37.7 AHD

EASTING: 335818 **NORTHING**: 6248069 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86724.00

DATE: 7/3/2019 SHEET 1 OF 1

BORE No: 107

	D	41-	Description	jc T		Sam		& In Situ Testing	_ h	Well
R	Dep (m))	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
H			_ CONCRETE SLAB	7:7:			Š			Details
		0.3	FILL: brown, clayey fine sand fill with sandstone gravel, trace of glass, ceramic and clay	4.4	_A	0.2 0.3		PID<1		
37		0.6	CONCRETE	1						
	- 1 -	-	SANDSTONE: apparently extremely low to very low strength, pale yellow sandstone 1.1m: becoming brown		_A*	0.9 1.0		PID<1		-1
-	•	1.5	SANDSTONE: apparently very low to low strength, yellow		A	1.4 1.5		PID<1		
36	-2		sandstone		A	1.9 2.0		PID<1		-2
35	- - - - -		2.2m: becoming apparently low to medium strength and pale yellow-white			2.0				
	- 3				A	2.9 3.0		PID<1		-3
	•	3.2	Bore discontinued at 3.2m Refusal on sandstone bedrock, target stratum encountered							
-8	- 4									-4
	· · ·									
33	· ·									
	-5									-5
2	•									
32	-6									- -6
	•									
31	•									
	- 7 -									-7
	• •									
٣ ا	- 8									-8
	· ·									
29										
	-9									9
2	- 10									-10

RIG: Hanjin DB8 **DRILLER:** BG Drilling LOGGED: LT **CASING:** Uncased

TYPE OF BORING: Diacore to 0.15m, solid flight auger to 3.2m WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery. *Blind replicate sample BD2/20190307 taken from 0.9-1.0m.

SAMPLING & IN SITU TESTING LEGEND Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample

Core drilling
Disturbed sample
Environmental sample

CLIENT: Sydney Swans Limited

Sydney Swans HQ & Community Centre PROJECT: Royal Hall of Industries, 1 Driver Avenue, LOCATION:

Moore Park

SURFACE LEVEL: 37.3 AHD

EASTING: 335830 **NORTHING**: 6247983

PROJECT No: 86724.00

BORE No: 108

DATE: 7/3/2019 DIP/AZIMUTH: 90°/--SHEET 1 OF 1

		Description	Degree of Weathering 은 _	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
귐	Depth (m)	of	Weathering Signal	Strength Very Low Medium High Very High Ex High Water	Spacing (m)	B - Bedding J - Joint	Type	% <u>e</u>	RQD %	Test Results &
	` '	Strata	EW HW SW SW A R	Ex Lo Low High Very	0.05	S - Shear F - Fault	≥	2 %	R _v	Comments
П	. 0.18	CONCRETE SLAB	1111112							
37		FILL: brown sand fill with some sandstone and igneous gravel, and clay with trace of glass, plastic and ceramic fragments					A_			PID<1
	- 1 · 1.1	dark brown from 0.5m					A			PID<1
38	· ·	SAND: pale yellow medium to coarse sand								
	1.5	SANDSTONE: apparently extremely low to very low strength, pale yellow sandstone								PID<1
35	· · ·	2.1m: becoming apparently very low to low strength								
	2.8	SANDSTONE: low to medium and					Α			PID<1
;	-3	medium strength, moderately and		11-03-19						PL(A) = 0.36
34		slightly weathered, fractured and slightly fractured, orange brown and purple brown, medium grained sandstone				3.4-4.4m: B(x4),0°,pl,ro,fe/cly 1mm				PL(A) = 0.56
	-4						С	100	88	
-8						4.47-4.70m: cs(x3),				
	4.7	SANDSTONE: medium and medium	<u> </u>			20mm				
32	-5 -5 -	to high strength, slightly weathered and fresh, unbroken, grey brown, medium grained sandstone								PL(A) = 0.64
	- - - - -6	5.60-6.15m: low to medium strength band								PL(A) = 0.28
	· · · · · · · · · · · · · · · · · · ·									
	-7						С	100	100	PL(A) = 0.61
8	· · ·					>>				PL(A) = 1.1
- - - - - -	- - 8									
-8	· ·									DI (A)
[:						\vdash			PL(A) = 1
‡‡	-9									
78					 		С	100	100	PL(A) = 0.89
[- 10 10.06	Bore discontinued at 10.06m Target depth reached								

RIG: Hanjin DB8 **DRILLER:** BG Drilling LOGGED: LT/LS CASING: HW to 3.0m; HQ to 10.0m

TYPE OF BORING: Diacore to 0.18m, solid flight auger to 3.0m, NMLC to 10.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering, groundwater measured at 2.64 m depth in standpipe on 11/03/19

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery. *Blind replicate sample BD3/20190307 taken from 1.9-2.0m.

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample

Core drilling
Disturbed sample
Environmental sample

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

CLIENT: Sydney Swans Limited

PROJECT: Sydney Swans HQ & Community Centre **LOCATION:** Royal Hall of Industries, 1 Driver Avenue,

Moore Park

SURFACE LEVEL: 37.3 AHD

EASTING: 335830 **NORTHING**: 6247983

DIP/AZIMUTH: 90°/--

BORE No: 108

PROJECT No: 86724.00

DATE: 7/3/2019 **SHEET** 1 OF 1

Donth	Description	hic		San		& In Situ Testing	_ F	Well
Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction
	Strata	1		٥	Sa	Commente	_	Details Well Plug and
0.18	CONCRETE SLAB	4.4						Well Plug and Flush Gatic Cover
	FILL: brown sand fill with some sandstone and igneous gravel, and clay with trace of glass, plastic and ceramic			0.4		PID<1		- Concrete
	fragments	$\langle \rangle \rangle$	<u> </u>	0.5		1 10 1		F 🕅
	^L - dark brown from 0.5m		1	0.9				F 🔉
·1 1.1		\otimes	_A_	1.0		PID<1		[-1 X
	SAND: pale yellow medium to coarse sand							Backfill -
1.5			;					
	SANDSTONE: apparently extremely low to very low strength, pale yellow sandstone	:::::::						
-2		:::::::		1.9		PID<1		-2 Blank PVC
2	2.1m: becoming apparently very low to low strength			2.0				2 DIATIKT VC
							¥	
2.8	CANIDOTONIC lave to madicine and madicine atmosphile		_A_	2.7 2.8		PID<1	-19	
-3	SANDSTONE: low to medium and medium strength, moderately and slightly weathered, fractured and slightly			2.9		PL(A) = 0.36	11-03-19	-3 Bentonite
	fractured, orange brown and purple brown, medium grained sandstone						`	
	gramed sandstone							
								ļ []
.1				3.83		PL(A) = 0.56		
7			С					
		:::::::						
4.7	SANDSTONE: medium and medium to high strength,	1		4.0		DI (A) = 0.64		ļ
-5	slightly weathered and fresh, unbroken, grey brown, medium grained sandstone			4.9		PL(A) = 0.64		[-5] <u>:</u>
	gramer eartasterie							
				5.55				
	5.60-6.15m: low to medium strength band			0.55				
-6				5.87		PL(A) = 0.28		
0								£ "
				6.91		PL(A) = 0.61		Gravel
.7			С	0.91		FL(A) = 0.01		7 Machine Slotted PVC Screen
				7.51		PL(A) = 1.1		
-8								-8
		:::::::						
		:::::::		0.5		DI (A) - 4		<u>[</u>
		::::::	-	8.5 8.6		PL(A) = 1		
		:::::::						
.9		:::::::						F9 : =
			С	9.24		PL(A) = 0.89		
	Bore discontinued at 10.06m							
	Target depth reached	::::::		10.06				t -10 End Cap

RIG: Hanjin DB8 DRILLER: BG Drilling LOGGED: LT/LS CASING: HW to 3.0m; HQ to 10.0m

TYPE OF BORING: Diacore to 0.18m, solid flight auger to 3.0m, NMLC to 10.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering, groundwater measured at 2.64 m depth in standpipe on 11/03/19

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery. *Blind replicate sample BD3/20190307 taken from 1.9-2.0m.

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 U I ESTING
G Gas sample
P Piston sample
V Water sample
Water sample
Water seep
Water level

CLIENT: Sydney Swans Limited

Sydney Swans HQ & Community Centre PROJECT: Royal Hall of Industries, 1 Driver Avenue, LOCATION:

Moore Park

SURFACE LEVEL: 37.3 AHD

EASTING: 335798 **NORTHING**: 6247992 **DIP/AZIMUTH:** 90°/--

BORE No: 109

PROJECT No: 86724.00 **DATE:** 11/3/2019

SHEET 1 OF 1

			Description	Degree of	<u>.</u> 0	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng & I	n Situ Testing
귐	Dept (m)		of	Weathering	raph	Strength Needium Needi	Spacing (m)	B - Bedding J - Joint	be	Core Rec. %	, °	Test Results &
	()		Strata	EW HW EW SW SW FR	Ō	Ex Low Very Low Medium High Very High Ex High Ex High		S - Shear F - Fault	Туре	ပ္သစ္တိ	RG %	α Comments
37	0.	.18	CONCRETE SLAB FILL: pale grey clayey sand fill with some sandstone gravel, metal and trace of coke	-	\(\frac{\partial \text{7}}{\partial \text{7}}\)				_ A_	-		PID<1
36	-1		pale grey pink from 0.6m - mottled brown grey from 1.0m				i ii ii 		_A_	- - -		PID<1
35	-2 2 -	2.0	FILL: dark brown clayey sand fill with trace clay and glass fragments						Α			PID<1
34	-3 3	3.0	CLAYEY SAND: yellow brown mottled grey clayey sand with trace root fibres, damp (possibly extremely						Α	,		PID<1
	. 3	3.6	low strength sandstone)	-	<u> </u>		 		A*	}		PID<1
	-4		SANDSTONE: apparently very low to low strength, yellow sandstone				 		_A_	,		PID<1
31 32	-6	4.3 -	SANDSTONE: medium and high strength, slightly weathered, slightly fractured and unbroken, yellow brown and light grey, medium grained sandstone			11-03-19		4.72m: B,0°,pl,ro,cly 1mm 4.78m: J,30°-40°,un,ro,cly vn 5.34m-5.4m: cs, 60mm	С	100	96	PL(A) = 0.42 PL(A) = 0.58 PL(A) = 0.66
59	-8							7.90-7.96m: B(x2),0°,pl,ro,cly 1mm 8m: J,45°&20°, st,ro,fe 8.05-9.73m: B(x4),0°,pl,ro,cly 1-7mm	С	100	92	PL(A) = 1.3 PL(A) = 1.5 PL(A) = 0.86
	- -10 10	0.0	Bore discontinued at 10.0m Target depth reached					9.73-9.81m: B(x2) B,0°,pl,ro,cly 1-4mm				

RIG: Hanjin DB8 **DRILLER:** BG Drilling LOGGED: LT/LS CASING: HW to 4.3m; HQ to 10.0m

TYPE OF BORING: Diacore to 0.18m, solid flight auger to 4.3m, NMLC to 10.06m

WATER OBSERVATIONS: No free groundwater observed whilst augering, groundwater measured at 6.03 m depth in standpipe on 11/03/19

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery. *Blind replicate sample BD1/20190308 taken from 3.4-3.5m.

SAMPLING & IN SITU TESTING LEGEND LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa) Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Sydney Swans Limited

Sydney Swans HQ & Community Centre PROJECT: Royal Hall of Industries, 1 Driver Avenue, LOCATION:

Moore Park

SURFACE LEVEL: 37.3 AHD

EASTING: 335798 **NORTHING**: 6247992 DIP/AZIMUTH: 90°/--

BORE No: 109

PROJECT No: 86724.00 **DATE:** 11/3/2019 SHEET 1 OF 1

	_		Description	.je _		Sam		& In Situ Testing	<u></u>	Well
R		epth m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
\vdash			Strata CONCRETE SLAB		-	Δ	Sa	Comments		Details Well Plug and
37	- - -	0.18	FILL: pale grey clayey sand fill with some sandstone gravel, metal and trace of coke	4.4.	A	0.4 0.5		PID<1		Well Plug and Flush Gatic Cover Concrete
	-		- pale grey pink from 0.6m			0.9				
٥	- 1 -		- mottled brown grey from 1.0m		_A_	1.0		PID<1		Backfill
3	- - - - - - 2	2.0				1.9 2.0		PID<1		-2 Blank PVC
322	 - - - -	2.0	FILL: dark brown clayey sand fill with trace clay and glass fragments			2.0				Flush Gatic Cover Concrete Flush Gatic Cover Concrete Backfill Backfill Backfill Backfill Backfill Backfill
	- -3 -	3.0	CLAYEY SAND: yellow brown mottled grey clayey sand with trace root fibres, damp (possibly extremely low		A	2.9 3.0		PID<1		-3 Bentonite
34	-	3.6	strength sandstone) SANDSTONE: apparently very low to low strength, yellow	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	A*	3.4 3.5		PID<1		
	- - - 4 -		sandstone		A	3.9 4.0		PID<1		
33	- - - -	4.3	SANDSTONE: medium and high strength, slightly weathered, slightly fractured and unbroken, yellow brown and light grey, medium grained sandstone			4.53		PL(A) = 0.42		
32	- 5 - 5 -									5
	- - - 6				С	5.75		PL(A) = 0.58	Ţ	
31						6.42		PL(A) = 0.66	11-03-19	
	- - -7					7.2				Gravel 7 Machine Slotted PVC Screen
30	-					7.47		PL(A) = 1.3		
29	- - - 8 -									
2	- - -				С	8.62		PL(A) = 1.5		
28	- 9 - 9 - -					9.25		PL(A) = 0.86		-9 [.: = .: .: = .: .: = .:
	- - - - 10	10.0	Bore discontinued at 10.0m Target depth reached			10.0_				10 End Cap

RIG: Hanjin DB8 **DRILLER:** BG Drilling LOGGED: LT/LS CASING: HW to 4.3m; HQ to 10.0m

TYPE OF BORING: Diacore to 0.18m, solid flight auger to 4.3m, NMLC to 10.06m

WATER OBSERVATIONS: No free groundwater observed whilst augering, groundwater measured at 6.03 m depth in standpipe on 11/03/19

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery. *Blind replicate sample BD1/20190308 taken from 3.4-3.5m.

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Sydney Swans Limited

PROJECT: Sydney Swans HQ & Community Centre LOCATION: Royal Hall of Industries, 1 Driver Avenue,

Moore Park

SURFACE LEVEL: 37.3 AHD

DIP/AZIMUTH: 90°/--

EASTING: 335854 **NORTHING**: 6248031

PROJECT No: 86724.00 **DATE:** 8/3/2019

SHEET 1 OF 1

BORE No: 110

		Description	<u>.</u> 2		San	pling &	& In Situ Testing		Well
귙	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction
		Strata	9	Тy	De	San	Comments		Details
	0.05	ASPHALTIC CONCRETE							
37	-	\FILL: yellow-brown sand fill, humid	$\times\!\!\times\!\!\times$	A	0.4				
Ė	- 0.5	FILL: yellow, fine to medium gravelly sand fill, sandstone gravel, humid			0.4 0.5				
					0.9				
	-1 · 1.1	SANDSTONE: apparently very low to low strength, yellow sandstone	::::::	_A	1.0				-1
36		Bore discontinued at 1.1m Refusal on sandstone bedrock, target stratum							
		encountered							
E	- -								
	-2								-2
32									
-	-								
	-								
	-3								-3
34									
-	-								
Ē	- 4 -								-4
33									-
Ė									
ŀ									
	- -5								-5
32									
-									
	-								
-	- -6								-6
31	·								
3									ļ
-	- -7								-7
30	-								
ě									
-									
	- - -8								-8
	·								
59	• •								
	- - -9								-9
	-								
- 28									<u> </u>
[- -								[
-	- 10								-10

RIG: Hanjin DB8 **DRILLER:** BG Drilling LOGGED: LT **CASING:** Uncased

TYPE OF BORING: Solid flight auger to 1.1m

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery.

SAMPLING & IN SITU TESTING LEGEND LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa) Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Sydney Swans Limited

PROJECT: Sydney Swans HQ & Community Centre **LOCATION:** Royal Hall of Industries, 1 Driver Avenue,

Moore Park

SURFACE LEVEL: 37.4 AHD

EASTING: 335852 **NORTHING**: 6248049

DIP/AZIMUTH: 90°/--

BORE No: 111

PROJECT No: 86724.00

DATE: 8/3/2019 **SHEET** 1 OF 1

	D 41-	Description	ji T		Sam		& In Situ Testing	<u></u>	Well
R	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
	0.02	ASPHALTIC CONCRETE		A	0.05	- O	PID<1		-
37	0.25	FILL: brown, gravelly sand fill, 5-15mm igneous and sandstone gravel, humid		A A	0.1 0.2 0.4 0.5		PID<1		
		FILL: yellow, fine to medium gravelly sand fill, sandstone gravel, humid		A	0.9 1.0		PID<1		
-	-1 - 1.1 -	SANDSTONE: apparently very low to low strength, yellow sandstone	<u> </u>		1.0_		11011		-1
36	- - -	Bore discontinued at 1.1m Refusal on sandstone bedrock, target stratum encountered							
-	- - -2	Gicounteled							-2
35	-								
-	•								
-	-3 -								3
34	- - -								
	- - - 4								-4
33	- - -								
- "									
-	- - 5 -								-5 -
32									
-	- - -								
	-6 - -								-6
31	- - -								
-	- -7								7
30	- -								
-	• •								
	-8 -								8
29	- - -								
-	- - - 9								-9
28	· ·								
22	- - -								
-	- - - 10								-10

RIG: Hanjin DB8 DRILLER: BG Drilling LOGGED: LT CASING: Uncased

TYPE OF BORING: Solid flight auger to 1.1m

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery.

SAMPLING & IN SITU TESTING LEGEND

A Auger sample G G Gas sample PID Photo ionisation detector (ppm)

B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa)

BLK Block sample U Tube sample (x mm dia.)

C Core drilling W Water sample pp Pocket penetrometer (kPa)

D Disturbed sample P Water seep S S Standard penetration test

Water level V Shear vane (kPa)

CLIENT: Sydney Swans Limited

PROJECT: Sydney Swans HQ & Community Centre Royal Hall of Industries, 1 Driver Avenue, LOCATION:

Moore Park

SURFACE LEVEL: 37.4 AHD

EASTING: 335850 **NORTHING**: 6248065

DIP/AZIMUTH: 90°/--

PROJECT No: 86724.00

DATE: 8/3/2019 SHEET 1 OF 1

BORE No: 112

	D #-	Description	ji T		San		& In Situ Testing		Well
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	0.02		/ 💢	A	0.05 0.1	Ø	PID<1		- Details
37	0.5	FILL: dark grey-black sandy gravel fill with some silt,			0.4		PID<1		
-		FILL: yellow, fine to medium gravelly sand fill, sandstone gravel, humid	/ :::::::						
	-1 1.0		/ <u> ::::::</u>	A	0.9 1.0		PID<1		1
36	: :	Bore discontinued at 1.0m Refusal on sandstone bedrock, target stratum							
		encountered							
-	-2 -								-2
35									
-	- -								
	-3 - -								-3
34	:								-
	-4								-4
-	·								
33									
-	- - -5								- -5
32									
									-
-	- - -6								-6
31									
-									
	-7								-7
30	: :								-
-									
-	- -8 -								-8
29	:								
-									
-	- -9 -								- -9
28									
	: :								
-	- - 10								-10

RIG: Hanjin DB8 **DRILLER:** BG Drilling LOGGED: LT **CASING:** Uncased

TYPE OF BORING: Solid flight auger to 1.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery. *Blind replicate sample BD2/20190308 taken at 0.4-0.5m.

SAMPLING & IN SITU TESTING LEGEND LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa) Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Sydney Swans Limited

PROJECT: Sydney Swans HQ & Community Centre **LOCATION:** Royal Hall of Industries, 1 Driver Avenue,

Moore Park

SURFACE LEVEL: 37.5 AHD

EASTING: 335847

NORTHING: 6248086 **DATE**: 8/3/2019 **DIP/AZIMUTH**: 90°/-- **SHEET** 1 OF 1

BORE No: 113

PROJECT No: 86724.00

		Description	.je		Sam		& In Situ Testing	_	Well
귐	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction
	0.02	Strata	0	1	۵	Sar	Comments		Details
ŀ	0.02	ASPHALTIC CONCRETE	XX						
37	0.5	FILL: dark grey-black, sandy gravel fill with some silt, 5-20mm igneous and sandstone gravel		_A	0.4 0.5		PID<1		
ŀ	- - - 0.9	\FILL: yellow, fine to medium gravelly sand fill, sandstone gravel, humid		A	0.8		PID<1		
-	- 1 -	SANDSTONE: apparently very low to low strength, white sandstone			-0.9				-1
[-	Bore discontinued at 0.9m							
36	-	Refusal on sandstone bedrock, target stratum encountered							
ŀ	-2								-2
ŀ	-								
35	-								
Ė	-								
	-3 - -								-3
*	- -								
["	-								
ŀ	-4								-4
-	-								
33									
-	- <u> </u>								
-	-5 - -								-5 -
32	-								
Ė	-								
ŀ	- -6								-6
-	-								
37	-								
ŀ	- - 7								- -7
ŀ	·								
98									
-	-								
F	-8								-8
F_									
29									
Ė	- - -9								- - -9
Ė									
-88									
ŧ	-								
_	- 10								-10

RIG: Hanjin DB8 DRILLER: BG Drilling LOGGED: LT CASING: Uncased

TYPE OF BORING: Solid flight auger to 0.9m

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery.

SAMPLING & IN SITU TESTING LEGEND

A Auger sample G G Gas sample Ploto noinisation detector (ppm)

B B Bulk sample U Tube sample Ploto noinisation detector (ppm)

C C Core drilling W Water sample PL(D) Point load diametral test is (50) (MPa)

D Disturbed sample D Water seep S S Standard penetation test

E Environmental sample Water level V Shear vane (kPa)

CLIENT: Sydney Swans Limited

PROJECT: Sydney Swans HQ & Community Centre LOCATION: Royal Hall of Industries, 1 Driver Avenue,

Moore Park

SURFACE LEVEL: 37.2 AHD

EASTING: 335849 **NORTHING:** 6248003 **DIP/AZIMUTH:** 90°/--

DATE: 8/3/2019 SHEET 1 OF 1

BORE No: 114

PROJECT No: 86724.00

	Б "	Description	jic _		Sam		& In Situ Testing		Well
집	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction
Н	0.02	Strata // ASPHALTIC CONCRETE //		T	Ŏ	Sa	Comments		Details
37		FILL: dark brown-grey sand fill with some clay, igneous gravel, moist		A	0.4 0.5		PID<1		
	0.7	SANDSTONE: apparently extremely low to very low strength, grey sandstone 1.0m: becoming apparently very low to low strength and pale yellow-brown	KXX 	A	0.9 1.0		PID<1		1
38	1.5	pale yellow-brown Bore discontinued at 1.5m		_A_	1.4 1.5		PID<1		-
	-2	Refusal on sandstone bedrock, target stratum encountered							-2
35									
	-3								3
34									
	-4								-4
33									
	-5								5
32									
-	-6								6
31									
	-7								7
30									
6	-8								8
53									
8	-9								-9 -9
[2]									
-	- 10								-10

DRILLER: BG Drilling LOGGED: LT **CASING:** Uncased RIG: Hanjin DB8

TYPE OF BORING: Solid flight auger to 1.5m

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery.

	**			,	3-· J·
		PLING	3 & IN SITU TESTING		
Α	Auger sample	G	Gas sample		Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)
C	Core drilling	W	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ī	Water level	V	Shear vane (kPa)

CLIENT: Sydney Swans Limited

PROJECT: Sydney Swans HQ & Community Centre Royal Hall of Industries, 1 Driver Avenue, LOCATION:

Moore Park

SURFACE LEVEL: 37.4 AHD

EASTING: 335832 **NORTHING**: 6248003 DIP/AZIMUTH: 90°/--

SHEET 1 OF 1

BORE No: 115

DATE: 11/3/2019

PROJECT No: 86724.00

	Double	Description	je T		Sam		& In Situ Testing		Well
씸	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
-	- 0.18	CONCRETE SLAB	\(\frac{1}{2}\cdot\)			σ			
37		FILL: dark brown, clayey sand fill with igneous and sandstone gravel, moist		A	0.4 0.5		PID<1		
	- -1			A	0.9 1.0		PID<1		-1
36	1.3	FILL: grey, fine to medium sand fill with some coal, moist		A	1.4		PID<1		
-	-	SANDSTONE: apparently extremely low to very low strength, yellow-brown sandstone			1.5 1.7 1.8		PID<1		
ŀ	-2	1.9m: becoming apparently low strength	:::::::	A	1.9 —2.0—		PID<1		-2
35	-2.1 -3. -4. -5. -6. -7. -8. -9.	Bore discontinued at 2.1m Refusal on sandstone bedrock, target stratum encountered			_2.0_				-4
28	- - - 10								-10

DRILLER: BG Drilling RIG: Hanjin DB8 LOGGED: LT **CASING:** Uncased

TYPE OF BORING: Diacore to 0.18m, solid flight auger to 2.1m WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery. *Blind replicate sample BD1/20190311 taken from 1.7-1.8m.

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample

Core drilling
Disturbed sample
Environmental sample

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

CLIENT: Sydney Swans Limited

PROJECT: Sydney Swans HQ & Community Centre Royal Hall of Industries, 1 Driver Avenue, LOCATION:

Moore Park

SURFACE LEVEL: 37.4 AHD

EASTING: 335813 **NORTHING**: 6248000 **DIP/AZIMUTH:** 90°/--

BORE No: 116

PROJECT No: 86724.00 **DATE:** 11/3/2019 SHEET 1 OF 1

		Description	0		Sam	ıpling 8	& In Situ Testing		Well
귐	Depth	h	Graphic Log	ø)				Water	Construction
	(m)	Strata	Gr.	Туре	Depth	Sample	Results & Comments	>	Details
H		CONCRETE SLAB	\\ \alpha\cdot\\			0)			-
37	0.18 0.3 0.5	FILL: dark brown clayey sand fill with igneous and sandstone gravel, moist		A	0.2 0.3 0.4 0.5		PID<1 PID<1		
		FILL: grey mottled dark brown, clayey sand fill, moist							-
36	-1	FILL: dark brown, fine sand with some clay, igneous, ironstone and sandstone gravel, trace of coke/charcoal/coal, moist		_A	0.9		PID<1		-1
	-2			A	1.9 2.0		PID<1		-2
35	2.8	.8							
[3 3.0	SANDSTONE: apparently very low to low strength, pale	نار	_A_	2.9 3.0		PID<1		3
34		Bore discontinued at 3.0m Refusal on sandstone bedrock, target stratum encountered							
	-4								-4
33									
32	-5								-5
	-6								-6
34									
	-7								7
30									
	-8								- - - - -
29									
28	-9								-9
	-10								-10

RIG: Hanjin DB8 **DRILLER:** BG Drilling LOGGED: LT **CASING:** Uncased

TYPE OF BORING: Diacore to 0.18m, solid flight auger to 3.0m WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface level interpolated from survey drawing by Veris Australia Pty Ltd, Ref:201062A. 12/12/18. Location coordinates are in MGA94 Zone 56 and were estimated from aerial imagery.

SAMPLING & IN SITU TESTING LEGEND Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

Appendix D

Results of Previous Investigations

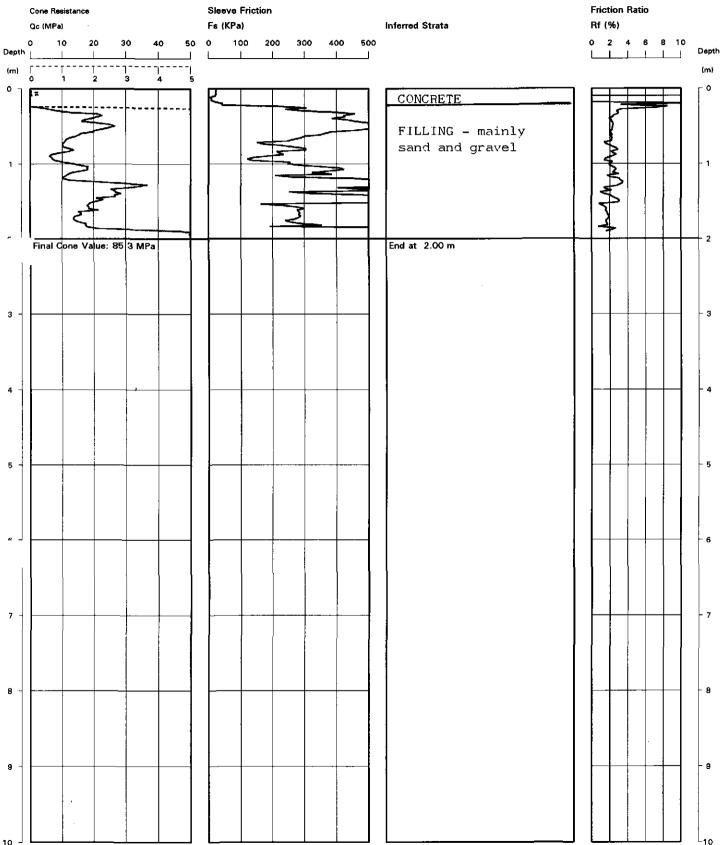
CONE PENETRATION TEST

PROJECT

LOCATION

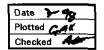
HORDERN PAVILION/RHI

CPT 6


DRIVER AVENUE, MOORE PARK

6 MAR 1998

CLIENT


HUGHES TRUEMAN REINHOLD PTY LTD

37.5 PROJECT No 24967

REMARKS: HOLE COLLAPSE AT 1.9 METRES DEPTH REFUSAL ON OBSTRUCTION

File: A:\24967-06,CPT Cone ID: CONE-903 Type: Standard

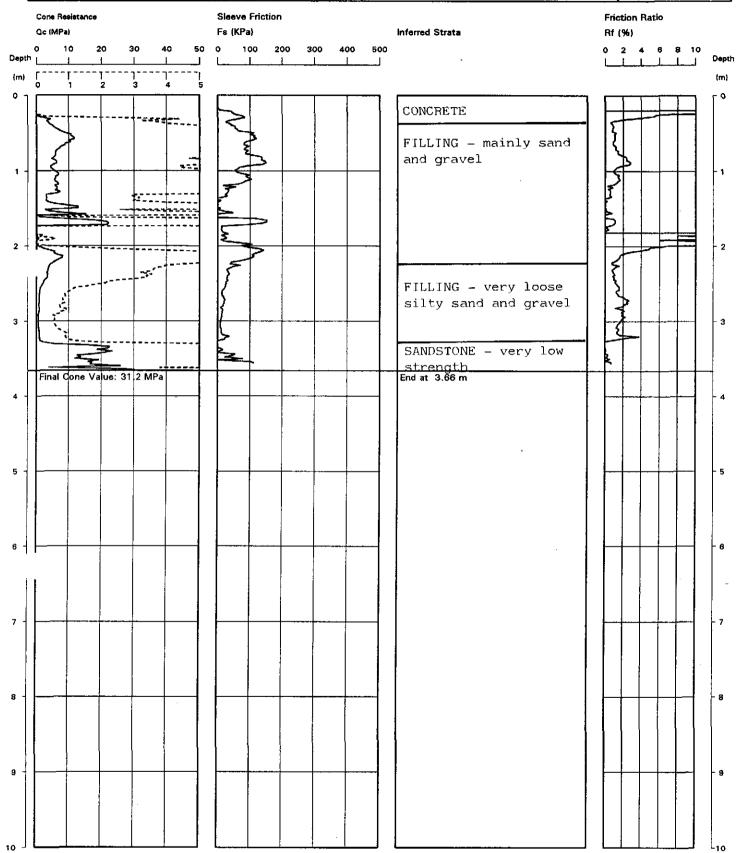
CONE PENETRATION TEST

PROJECT

HORDERN PAVILION/RHI

CPT 6 A

CLIENT


HUGHES TRUEMAN REINHOLD

LOCATION

DRIVER AVENUE, MOORE PARK

PROJECT No 24967

17 MAR 1998 37.5 SURFACE RL

REMARKS: HOLE COLLAPSE AT 2.7 METRES DEPTH File: A:\24967-6A.CPT DUMMY CONE FROM 1.7-2.2 METRES DEPTH Cone ID: CONE 1010 Type: Standard

CLIENT: HUGHES TRUEMAN REINHOLD

TEST BORE DISCONTINUED AT 4.7 METRES

PROJECT No: 24967 SURFACE LEVEL:

DATE: 13 JULY 98

PL(A)=0.5MPa

PROJECT: ROYAL HALL OF INDUSTRIES

SHEET | OF |

BORE No: 1

LOCATION: DRIVER AVE, MOORE PARK

DIP OF HOLE: 90' **AZIMUTH:** Degree of Weathering Graphic Log Fracture Sampling & In Situ Testing Description Discontinuities Strength Spacing Depth (m) Covery Low Nection Median High Every High Exit High Core Rec. % Test Results of B - Bedding J - Joint 믾~ \mathcal{L} (m) Strata S - Shear D - Drill Break SEESCE Comments CONCRETE 0.25 FILLING - dark brown sand and gravel (Drillers description) SANDY CLAY - dark, grey 1.6 sandy clay (Drillers description) 1.82m,2.8m, & 2.95m 181 PL(A)=0.5MPaB O' planar smooth SANDSTONE - very low to low strength, extremely to highly weathered, grey brown, medium grained sandstone SANDSTONE - medium 2.5m:B 20° planar SANUSIONE - meaium strength, moderately weathered, slightly fractured to unbroken, grey brown, medium to coarse grained smooth 2.95m:90mm extremely low to low strength band sandstone 100 97 C PL(A)=0.5MPa- below 3.04m unbroken - below 3.6m coarse grained

- 5

- 6

DRILLER: DRIVER

LOGGED: HOLY

CASING: NW TO 1.7m

TYPE OF BORING: ROLLER BIT - 0.25m, SFA - 1.7m, NMLC CORING - 4.7m WATER OBSERVATIONS: NO FREE GROUNDWATER OBSERVED WHILST AUGERING REMARKS:

CAMPITA	I 2 DI	NI CITH	TESTING	LECEND

A auger sample B bulk sample

PL point load strength $I_{\rm S}$ (50)MPa

C core drilling

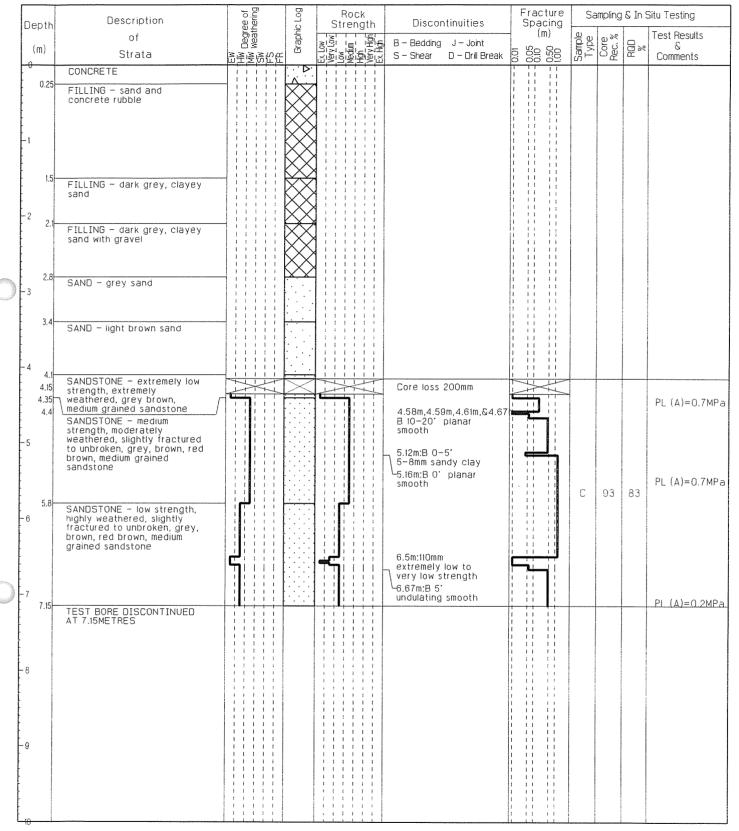
S standard penetration test Ux x mm dia. tube

pp pocket penetrometer (kPa) V Shear Vane (kPa)

CHECKED: Initials: Date:

CLIENT: HUGHES TRUEMAN REINHOLD

PROJECT No: 24967 SURFACE LEVEL:


DATE: 13 JULY 98

PROJECT: ROYAL HALL OF INDUSTRIES LOCATION: DRIVER AVE, MOORE PARK

SHEET 1 OF 1

BORE No: 2

DIP OF HOLE: 90' **AZIMUTH:**

DRILLER: DRIVER LOGGED: HOLY CASING: NW TO 4.15m

TYPE OF BORING: ROLLER BIT - 0.25m, SFA - 4.15m, NMLC CORING - 7.15m WATER OBSERVATIONS: NO FREE GROUNDWATER OBSERVED WHILST AUGERING **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND

A auger sample B bulk sample

PL point load strength $I_{\rm S}$ (50)MPa S standard penetration test

C core drilling Ux x mm dia, tube pp pocket penetrometer (kPa) V Shear Vane (kPa)

CHECKED: Initials: Date:

CLIENT:

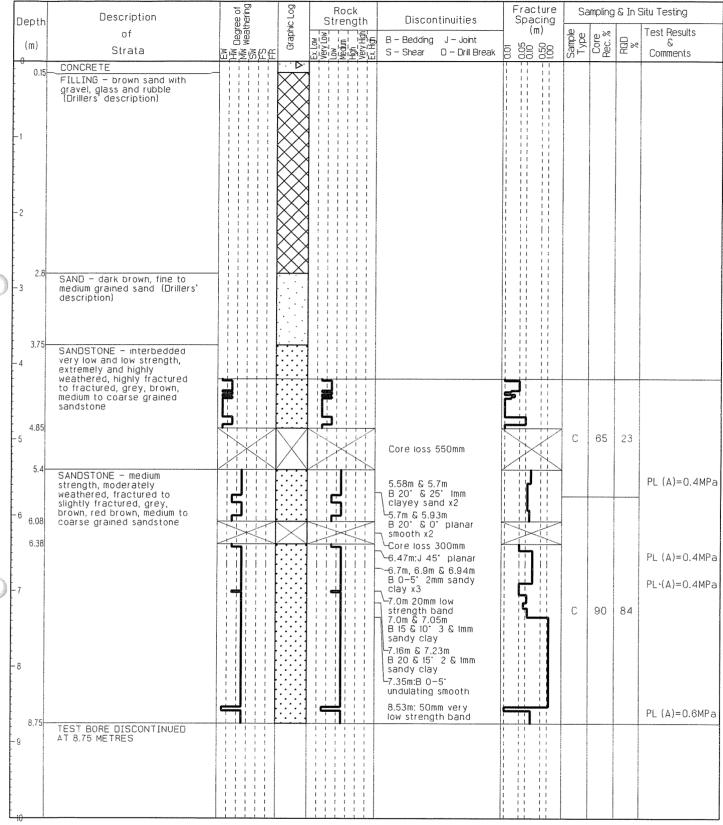
HUGHES TRUEMAN REINHOLD

PROJECT No: 24967

DATE: 29 JUNE 98

PROJECT: ROYAL HALL OF INDUSTRIES

SURFACE LEVEL:


SHEET 1 OF 1

BORE No: 3

LOCATION: DRIVER AVE, MOORE PARK

DIP OF HOLE: 90'

AZIMUTH:

RIG: SCOUT

DRILLER: PACKMAN

LOGGED: HOLY

CASING: NW TO 4.2m

TYPE OF BORING: DIA TUBE TO 0.15m,SFA TO 4.2m,NMLC CORING TO 8.75m WATER OBSERVATIONS: FREE GROUNDWATER OBSERVED AT 3.5-4.0m REMARKS:

SAMPLING & IN SITU TESTING LEGEND

A auger sample

PL point load strength I_s (50)MPa

B bulk sample

S standard penetration test

C core drilling

pp pocket penetrometer (kPa)

Ux x mm dia. tube V Shear Vane (kPa) Initials:

CHECKED:

CLIENT: HUGHES TRUEMAN REINHOLD

PROJECT No: 24967

BORE No: 4 **DATE: 29 JUNE 98**

PROJECT: ROYAL HALL OF INDUSTRIES

SURFACE LEVEL:

SHEET 1 OF 1

LOCATION: DRIVER AVE, MOORE PARK

DIP OF HOLE: 90'

AZIMUTH:

			T	1	DII OI TIOLE. OO	Υ	721110	
Depth	Description	se of nering	CLog	Rock Strength	Discontinuities	Fracture Spacing	Sampling & In	Situ Testing
(m)	of	Degree of Weathering	Graphic Log	Ex. Low Very Cow Nedim Very Han Very Han Ex. Han Very Han		(m)	Sample Type Core Rec. %	Test Results &
-0	Strata	교통증당단대			S - Shear D - Drill Break	10.00 10.00	R C C B B	Comments
0.175	FILLING - brown sand with gravel, glass and rubble (Drillers' description)		\bigotimes					
0.8	SANDSTONE - extremely low to very low strength, extremely to highly weathered, grey brown, medium to coarse grained				1.42m & 1.61m			
- 2	\sandstone SANDSTONE - medium strength, moderately weathered, fractured to slightly fractured, grey brown, medium to coarse grained sandstone				B 20° planar 2mm clayey sand x2 -1.79mB 5-15° undulating Imm clayey sand -2.16m:B 20° undulating Imm clayey sand		C 100 95	PL (A)=0.4MPa
- 3					2.83m:B 5° undulating smooth 3.27m:B 5° 5mm sandy clay		C 100 95	PL (A)=0.6MPa
4.3		1 1 1 1		1 1 1 1 1 1	4.28m:B 10° undulating smooth	1 11 1		TE (A) O.OMI U
5	TEST BORE DISCONTINUED AT 4.3 METRES							
-7								
- 8 -								
9			The second secon					
DTO.		TI						

DRILLER: PACKMAN

LOGGED: HOLY

CASING: NW TO 1.3m

TYPE OF BORING: DIA TUBE TO 0.175m,SFA TO 1.3m,NMLC CORING TO 4.3m WATER OBSERVATIONS: NO FREE GROUNDWATER OBSERVED WHILST AUGERING **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND

A auger sample

PL point load strength $I_{\rm S}$ (50)MPa

B bulk sample S standard penetration test

C core drilling pp pocket penetrometer (kPa) V Shear Vane (kPa)

Ux x mm dia. tube

CHECKED: Initials: Date:

CLIENT: HUGHES TRUEMAN REINHOLD **PROJECT:** ROYAL HALL OF INDUSTRIES

DATE: 14 JULY 98
PROJECT No.: 24967

BORE No. 6 SHEET 1 OF 1

LOCATION: DRIVE AVE, MOORE PARK SURFACE LEVEL:

	Description			Sampling &	In Situ Testing	
Depth m	of Strata		Туре	Depth (m)	Test Results	Core Recovery %
0.1	BITUMINOUS PAVEMENT ROADBASE - sandy crushed rock with	0.00				
0.4 -	maximum particle size 20mm	00000000000000000000000000000000000000	В	0.3		
0.4	SANDSTONE – extremely low to very low strength, extremely weathered, grey brown, medium grained sandstone		S	0.5	25/100mm ref	
			3	0.6		
0.8	TEST BORE DISCONTINUED AT 0.8 METRES - auger refusal		Α	0.8		
1			:			

RIG: SCOUT DRILLER: DRIVER LOGGED: HOLY CASING: -

TYPE OF BORING: SPIRAL FLIGHT AUGER TO 0.8m

GROUND WATER OBSERVATIONS: NO FREE GROUNDWATER OBSERVED

REMARKS: S = STANDARD PENETRATION TEST

SAMPLING & IN SITU TESTING LEGEND

A Auger sample B Bulk sample

HV Hand Vane

O Disturbed sample

M Moisture content (%)
pp Pocket Penetration (kPa)

Ux x mm dia. tube Wp Plasito limit (%) Initials: 7/98

CHECKED:

TEST BORE REPORT

CLIENT: HUGHES TRUEMAN REINHOLD PROJECT: ROYAL HALL OF INDUSTRIES

DATE: 14 JULY 98
PROJECT No.: 24967

BORE No. 7 SHEET 1 OF 1

LOCATION: DRIVE AVE, MOORE PARK

SURFACE LEVEL:

Description	ſ	Sampling & In Situ Testing							
of Strata		Туре	Depth (m)	Test Results	Core Recovery				
BITUMINOUS PAVEMENT	(D.O.								
ROADBASE — sandy crushed rock with maximum particle size 20mm	,0000000000000000000000000000000000000	В	0.3						
FILLING - grey, brown, gravelly clayey sand			0.5	2,3,3 N=6					
FILLING – sand, sandy clay, gravel, coke and ash		S							
			0.95						
		A	1.2						
		s	1.5	2,25/100mm ref					
SANDSTONE - extremely low strength, extremely weathered, grey brown sandstone TEST BORE DISCONTINUED AT 1.75 METRES			1.75						
	of Strata BITUMINOUS PAVEMENT ROADBASE – sandy crushed rock with maximum particle size 20mm FILLING – grey, brown, gravelly clayey sand FILLING – sand, sandy clay, gravel, coke and ash SANDSTONE – extremely low strength, extremely weathered, grey brown sandstone	SANDSTONE – extremely low strength, extremely weathered, grey brown, and stone	BITUMINOUS PAVEMENT ROADBASE - sandy crushed rock with maximum particle size 20mm FILLING - grey, brown, gravelly clayey sand FILLING - sand, sandy clay, gravel, coke and ash S SANDSTONE - extremely low strength, extremely weathered, grey brown sandstone	SANDSTONE – extremely low strength, extremely weathered, grey brown sandstone	SANDSTONE – extremely low strength. extremely weathered, grey brown sandstone Type Depth (m) Test Results				

RIG: SCOUT

DRILLER: DRIVER

LOGGED: HOLY

CASING: -

TYPE OF BORING: SPIRAL FLIGHT AUGER TO 1.75m

GROUND WATER OBSERVATIONS: NO FREE GROUNDWATER OBSERVED

REMARKS: S = STANDARD PENETRATION TEST

SAMPLING & IN SITU TESTING LEGEND

A Auger sample B Bulk sample

HV Hand Vane

M Moisture content (%)

pp Pocket Penetration (kPa)

Disturbed sample Ux x mm dia. tube

Wp Plasite limit (%)

TEST BORE REPORT

CLIENT:

HUGHES TRUEMAN REINHOLD

DATE: 14 JULY 98

BORE No. 8

PROJECT: ROYAL HALL OF INDUSTRIES

PROJECT No.: 24967

SHEET 1 OF 1

LOCATION: DRIVE AVE, MOORE PARK

SURFACE LEVEL:

ļ	Description	1	Sampling & In Situ Testing							
Depth m	of Strata		Туре	Depth (m)	Test Results	Core Recovery				
0.04	BITUMINOUS PAVEMENT ROADBASE - sandy crushed rock with maximum particle size 20mm	00000								
0.2	FILLING - sandy clay, sand, gravel and coke									
0.3	FILLING – crushed sandstone (Drillers' description)		В	0.3						
0.5	FILLING – sandy cłay, sand, gravel, ash and glass		S	0.5	4,25/150mm ref					
0.8	SANDSTONE – extremely low to very low strength, extremely weathered, grey brown, medium grained sandstone			0.8						
1.3	TEST BORE DISCONTINUED AT 1.3 METRES		A	1.2						
		ļ								

RIG: SCOUT

DRILLER: DRIVER

LOGGED: HOLY

CASING: -

TYPE OF BORING: SPIRAL FLIGHT AUGER TO 1.3m

GROUND WATER OBSERVATIONS: NO FREE GROUNDWATER OBSERVED

REMARKS: S = STANDARD PENETRATION TEST

SAMPLING & IN SITU TESTING LEGEND

A Auger sample

HV Hand Vane

M Moisture content (%) pp Pocket Penetration (kPa)

B Bulk sample D Disturbed sample

Ux x mm dia. tube

Wp Plasite limit (%)

Initials: ACT Date: 7/98

CHECKEO:

TEST BORE REPORT

CLIENT:

HUGHES TRUEMAN REINHOLD

DATE: 14 JULY 98

BORE No. 9

PROJECT: ROYAL HALL OF INDUSTRIES

PROJECT No.: 24967

SHEET 1 OF 1

LOCATION: DRIVE AVE. MOORE PARK

SURFACE LEVEL:

	Description			ype Depth (m) Test Results Recov				
Depth m	of Strata	1	Type	Depth (m)	Test Results	Core Recovery		
0.15	BITUMINOUS PAVEMENT	0 0	1					
	ROADBASE – sandy crushed rock with maximum particle size 20mm	,0000000000000000000000000000000000000	В	0.3				
0.4	FILLING - crushed sandstone (Drillers' description)							
0.5	FILLING - sandy clay/clayey sand, sand, gravel and ash			0.5	4,3,14 N=17			
0.7	SANDSTONE – extremely low strength, extremely weathered, grey, medium grained sandstone		Ø	0.95				
1.2				3.00				
	TEST BORE DISCONTINUED AT 1.2 METRES - auger refusal		10 to	ii				
		;						

RIG: SCOUT

DRILLER: DRIVER

LOGGED: HOLY

CASING: -

TYPE OF BORING: SPIRAL FLIGHT AUGER TO 1.2m

GROUND WATER OBSERVATIONS: NO FREE GROUNDWATER OBSERVED

REMARKS: S = STANDARD PENETRATION TEST

SAMPLING & IN SITU TESTING LEGEND

A Auger sample B Bulk sample

HV Hand Vane

D Disturbed sample

M Moisture content (%)

pp Pocket Penetration (kPa)

Ux x mm dia, tube Wp Plasite limit (%)

Date: 7/98

CHECKED:

Initials: 🗚

Borehole Log

Location TP1

Sheet 1 of 1

ERM	RM							IFI
Client:			Sydney Swans Limited	Job Type:				Land Suitabilty
Project No:			0478061	Address:				1 Driver Avenue, Moore Park
Date:				Logged By:				AR + MJ
Contractor:				Method:				100mm Augar
Hole Size			100mm [©] X 1.6m	Co-ordinates:				N/A
Method Depth (m)	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
s 0.2			Concrete Slab			D		
F			Gravelly SAND: Brown/dark brown with inclusions	of rock (Gravels)	D	L	0.5 1.0 (A+B)	Filling materials
u g r 1.6			SANDSTONE: White/yellow coarse grained, Med	lium hardness.		D	1.5	Natural Bedrock
			Refusal 1.6m					

E	RM	I						L	ocation TP2
Client	:			Sydney Swans Limited	Job Type:				Land Suitabilty
Projec				0478061	Address:				1 Driver Avenue, Moore Park
Date:				20.9.2018	Logged By:				AR + MJ
Contra				BG Drilling	Method:				100mm Augar
Hole S	ize			100mm [®] X 4.0m	Co-ordinates:				N/A
Method	Depth (m)	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
	0.2			Concrete Slab					
	0.5			Second Conrete Slab			D		
S				SAND: Brown/dark brown		D	L	0.7	Filling materials
g h t A u g e r	4			SANDSTONE: White/yellow coarse grained, M	edium hardness.		D	3	Natural Bedrock
				Terminated 4.0m					

E	RN	1						L	ocation	TP3
Client	:			Sydney Swans Limited	Job Type:				Land Suitab	ilty
	ct No:			0478061	Address:				1 Driver Avenue, N	loore Park
Date:				20.9.2018	Logged By:				AR + MJ	
	actor:			BG Drilling	Method:				100mm Aug	gar
Hole S	Size			100mm [®] X 6.0m	Co-ordinates:	•			N/A	
Method	Depth (m)	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling		Comments
	0.3			Concrete Slab			D			
	0.7			Sandy FILL: Brown			L	0.5		
S o l i d F l i g h t A u g e r				Sandy FILL: Dark brown/black			L	1 2 3		Filling Materials
	5.5			SANDSTONE: White/yellow coarse grained, Me	dium hardness.		D			Natural Bedrock
	6									
				Terminated 6.0m		1				

E	RM	ZM						L	ocation.	TP4	
Client				Sydney Swans Limited	Job Type:				Land Su	itabilty	
Projec				0478061	Address:				1 Driver Avenu	e, Moore Park	
Date:				20.9.2018	Logged By:				AR +		
Contra					Method:				100mm		
Hole S	ize			100mm [®] X 5.5m	Co-ordinates:				N/	A	
Method	Depth (m)	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling		Comments	
	0.2			Concrete Slab			D				
	_			Sandy Gravelly FILL: Brown with inclusions of Br	ick, Terracotta			0.5			
	1.2			Sandy Gravelly FILL: Dark brown, fine to coa				1			
S o I i d F I i g h t				SAND: Black with trace amounts of glass, bu	rick, metal	D	L	3		Filling Materials	
g e	4							4			
r	6			SANDSTONE: White/yellow with minor amounts of cl 5.5m	ay, Harder towards		D	5		Natural Bedrock	
				Terminated 6.0m							

Notes: Sheet 1 of 1

ERM Location TP5										
Client:				Sydney Swans Limited		Job Type:				Land Suitabilty
Project				0478061		Address:				1 Driver Avenue, Moore Park
Date:				20.9.2018		Logged By:				AR + MJ
Contra	ctor:			BG Drilling		Method:				100mm Augar
Hole Si				100mm [°] X 2.1m		Co-ordinates:				N/A
Method	Depth (m)	Graphic Log	USCS Classification	Material Description			Moisture	Density / Stiffness	Sampling	Comments
	0.15			Concrete Slab			_	D		
	1.5			Sandy Gravelly FILL: Brown with inclusions	of Br	ick, Terracotta	D	L	1	Filling Material
	1.8			SAND: Yellow, coarse grain	ned					Natural
	2.1			SANDSTONE: White/yellow coarse grained	, Med	ium hardness.		D	2.0 (A+B)	Natural Bedrock
	2.1		ŀ	Terminated 2.1m						

	RN							L	ocation	TP6
Client:				Sydney Swans Limited	Job Type:				Land Suitab	ilty
Projec					Address:				1 Driver Avenue, M	
Date:				20.9.2018	Logged By:				AR + MJ	
Contra					Method:				100mm Aug	gar
Hole S	ize			100mm [®] X 2.0m	Co-ordinates:				N/A	
Method	Depth (m)	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling		Comments
	0.2			Concrete Slab			D			
S O I i d F I i g h t				Sandy Gravelly FILL: Brown with inclusions of Brick, coarse gravels	Terracotta, Fine to	D	L	0.5		Filling Materials
A u g e	1.4			SAND: Yellow, coarse grained				1.5		Natural
r	2			SANDSTONE: White/yellow coarse grained, Med	lium hardness.		D	2	ı	Natural Bedrock
				Terminated 2.0m						

Notes: Sheet 1 of 1

E	RN	A						L	ocation TP7	
Client				Sydney Swans Limited	Job Type:				Land Suitabilty	
Projec				0478061	Address:				1 Driver Avenue, Moore Park	
Date:				21.9.2018	Logged By:				AR + MJ	
Contra				BG Drilling	Method:				100mm Augar	
Hole S	ize			100mm [©] X 2.0m	Co-ordinates:		•		N/A	
Method	Depth (m)	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments	
	0.2			Concrete Slab			D			
S o	0.4			Second Concrete Slab						
l i d	0.6			Sandy FILL: Brown				0.5		
F I i g h	1.1			Sandstone FILL: Yellow/ orange		D	L	1	Filling Materials	
t A u	1.5			Sandy FILL: Brown						
g e r				SANDSTONE: White/yellow coarse grained, Me	dium hardness.		D		Natural Bedrock	
				Terminated 2.0m						

Sheet 1 of 1 Notes:

Location TF

1							
		Sydney Swans Limited	Job Type:				Land Suitabilty
							1 Driver Avenue, Moore Park AR + MJ
							100mm Augar
		100mm [°] X 5.0m	Co-ordinates:				N/A
Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
		Concrete Slab			D		
		Sandy FILL: Brown			_	1 2.0 (A)	Filling Materials
_		Sandy FILL: Brown with inclusions of white sand. Inc foreign materials	creased amounts of			4	
		SANDSTONE: White/yellow coarse grained, Me	dium hardness.		D	5	Natural Bedrock
		Terminated 5.0m					
							Sheet 1 of 1
			BG Drilling 100mm® X 5.0m Material Description Concrete Slab Sandy FILL: Brown with inclusions of white sand. Including materials SANDSTONE: White/yellow coarse grained, Me	O478061 21.9.2018 BG Drilling Method: 100mm® X 5.0m Co-ordinates: Material Description Concrete Slab Sandy FILL: Brown with inclusions of white sand. Increased amounts of foreign materials SANDSTONE: White/yellow coarse grained, Medium hardness.	O478061 21.9.2018 Logged By: BG Drilling Method: 100mm° X 5.0m Co-ordinates: Material Description Sandy FILL: Brown Sandy FILL: Brown with inclusions of white sand. Increased amounts of foreign materials SANDSTONE: White/yellow coarse grained, Medium hardness.	O478061 Address: 21.9.2018 Logged By: BG Drilling Method: 100mm® X 5.0m Co-ordinates: Co-ordinates: Concrete Slab Concrete Slab Sandy FILL: Brown with inclusions of white sand. Increased amounts of foreign materials SANDSTONE: White/yellow coarse grained, Medium hardness. D Address: Logged By: Method: Co-ordinates: D Sandy FILL: Brown D L	O478061 21.9.2018 BG Drilling Method: 100mm® X 5.0m Co-ordinates: Part of the property

Appendix E

Results of Laboratory Tests

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 213873

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Matthew Bennett
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86724.00, Sydney Swans HQ & Community Centre
Number of Samples	4 Soil
Date samples received	20/03/2019
Date completed instructions received	20/03/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details									
Date results requested by	27/03/2019								
Date of Issue	26/03/2019								
NATA Accreditation Number 2901. This document shall not be reproduced except in full.									
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *									

Results Approved By

Nick Sarlamis, Inorganics Supervisor

Authorised By

Jacinta Hurst, Laboratory Manager

Misc Inorg - Soil					
Our Reference		213873-1	213873-2	213873-3	213873-4
Your Reference	UNITS	BH102/4.9-5.0	BH106/0.9-1.0	BH107/1.9-2.0	BH115/1.9-2.0
Date Sampled		06/03/2019	07/03/2019	07/03/2019	11/03/2019
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	22/03/2019	22/03/2019	22/03/2019	22/03/2019
Date analysed	-	22/03/2019	22/03/2019	22/03/2019	22/03/2019
pH 1:5 soil:water	pH Units	5.0	7.4	6.0	7.6
Electrical Conductivity 1:5 soil:water	μS/cm	78	260	50	15
Chloride, Cl 1:5 soil:water	mg/kg	<10	20	<10	<10
Sulphate, SO4 1:5 soil:water	mg/kg	27	190	36	<10

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Alternatively determined by colourimetry/turbidity using Discrete Analyer.

Envirolab Reference: 213873 Page | 3 of 6

Revision No: R00

QUALITY		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	213873-3
Date prepared	-			22/03/2019	1	22/03/2019	22/03/2019		22/03/2019	22/03/2019
Date analysed	-			22/03/2019	1	22/03/2019	22/03/2019		22/03/2019	22/03/2019
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	1	5.0	4.9	2	100	[NT]
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	1	78	91	15	101	[NT]
Chloride, CI 1:5 soil:water	mg/kg	10	Inorg-081	<10	1	<10	10	0	92	99
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	1	27	29	7	91	129

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.						
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.						
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.						
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.						
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.						
Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC							

2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 213873 Page | 6 of 6

Revision No: R00

CHAIN OF CUSTODY DESPATCH SHEET

Project No: 86724.00					Suburb	:	Moore I	Park To: ELS					
Project Name: Sydney Swans HQ & Community Centre					Order Number								
Project Manager: Matthew Bennett						Sampler: LT					Ailee	en Hie	
Emails:						Phone:	ı I						
Date Required:	imails: matthew.bennett@douglaspartners.com.au Phone: Date Required: Same day 24 hours 48 hours 72 hours Standard E Email: Ahie@envirolab.com.au												
Prior Storage:													
	,		Sample Type	Container Type					Analytes				
Sample ID	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic			` ច	Sulphate	Hd	EC		Notes/preservation	
BH62/4-9-502	l	6/3/19.	S	G			Х	Х	Х	Х		Sandy clay.	
BH106/0-9-10		713/19	S	G			Χ.	Х	Х	Х		Clayery sand film	
BH107/1-9-20	<u>~</u> 3	7/3/19	S	G		•	Х	X	X	X		Sand	
BH115/1-9-2-	m4	11/3/19	S	9			Х	Х	X	X		Sandytons	
, ,				'									
							· ·						
									ENVÎRO	\ En	virolab Servi	es	
		-					- 1		San Ar		wood NSW 20	131 137	
									Job N	= 213	875	99	
				1	Î		_		Date Re	ceived:20	.3.19		
		_		 					मितार हर	· - ved: 7	.0 <	 	
			_		-				Temp	by:			
, V			_							ool/Ambien			
, ÷									Security	Intact/Brok	en/None		
						-							
PQL (S) mg/kg												ANZECC PQLs req'd for all water analytes	
PQL = practical	quantit	ation limit.	If none g	given, default	to L.					Lab D	enort/Ref	erence No:	
Metals to Analyse: 8HM unless specified here: Lab Report/Reference No:													
Total number of samples in container: 4 Relinquished by: MB Transported to laboratory by: Send Results to: Douglas Partners Pty Ltd Address: 96 Hermitage Rd, West Ryde, 2114 Phone: 9809 0666 Fax: 9809 4095													
Send Results to): D	ouglas Parti	ners Pty L					t Ryde, 2	114	—г	Date 9 T	Phone: 9809 0666 Fax: 9809 4095	
Signed:				Received by	y: (,	~~ <u>~~</u>	nort				Date & I	ime: 70.3.19 13:25	