# Appendix E

Land Capability and Soil Assessment Addendum





LFB Resources NL ABN: 90 073 478 574

**McPhillamys Gold Project** 

# Capability and Soil Assessment

## Addendum

Prepared by SUSTAINABLE SOILS MANAGEMENT PTY LTD

August, 2020



LFB Resources NL ABN: 90 073 478 574

## Land Capability and Soil

### **Assessment - Addendum**

| Prepared for:                                                                                    |                        |                                                               |
|--------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------|
| EMM Consulting<br>ABN: 28 141 736 558<br>Suite 6, Level 1<br>146 Hunter St<br>NEWCASTLE NSW 2300 | Tel:<br>Fax:<br>Email: | ()                                                            |
| Prepared on behalf of:                                                                           |                        |                                                               |
| Regis Resources Ltd<br>ABN: 28 009 174 761<br>1 Alvan Street<br>SUBIACO WA 6008                  | Tel:<br>Fax:<br>Email: | (08) 9442 2200<br>(08) 9442 2290<br>RSmith@regisresources.com |
| Prepared by:                                                                                     |                        |                                                               |
| Sustainable Soils Management Pty Ltd<br>ABN: 67 105 201 581<br>5 Lawson St<br>WARREN NSW 2824    | Tel:<br>Fax:<br>Email: | (02) 68473367<br>(02) 68473401<br>admin@soilman.com.au        |
|                                                                                                  |                        |                                                               |

Ref No. Cr433

August 2020

#### This Copyright is included for the protection of this document

#### COPYRIGHT

#### $\ensuremath{\mathbb{C}}$ Sustainable Soils Management Pty Ltd, 2020

and

#### © Regis Resources Ltd, 2020

All intellectual property and copyright reserved.

Apart from any fair dealing for the purpose of private study, research, criticism or review, as permitted under the Copyright Act, 1968, no part of this report may be reproduced, transmitted, stored in a retrieval system or adapted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without written permission. Enquiries should be addressed to Sustainable Soils Management.

#### **TABLE OF CONTENTS**

| P                                                         | age No  |
|-----------------------------------------------------------|---------|
| SUMMARY                                                   | 7       |
| 1. INTRODUCTION                                           | 8       |
| 1.1. BACKGROUND                                           | 8       |
| <b>1.2. PROJECT AMENDMENT OVERVIEW</b>                    | 10      |
| <b>1.3. PURPOSE OF THIS REPORT</b>                        | 12      |
| 2. MODIFIED POTENTIAL IMPACT OF PROJECT ON SOIL RESOU     | IRCES12 |
| 2.1. DISTURBANCE FOOTPRINT                                | 13      |
| 2.2. CONSTRAINTS TO STRIPPING DEPTH                       | 16      |
| 2.3. POST MINE LAND AND SOIL CAPABILITY                   | 18      |
| 3. SOIL MANAGEMENT                                        | 21      |
| 3.1. ENSURE ADEQUATE SOIL IS AVAILABLE FOR REHABILITATION | 21      |
| 4. REFERENCES                                             | 23      |
| 5. LIMITATIONS                                            | 23      |

#### FIGURES

| Figure 1.1. | Mine development general arrangement.                 | 9  |
|-------------|-------------------------------------------------------|----|
|             | Comparison of original and revised footprints         |    |
| -           | Disturbance footprint and Soil Associations.          |    |
| -           | Disturbance, Land and Soil Capability and topdressing |    |
| suitabi     | lity                                                  | 15 |
| Figure 3.3. | Depth to constraint for stripping subsoil.            | 17 |
|             | Predicted post-closure Land and Soil Capability Class |    |

#### TABLES

| Table | <b>S1.</b> Change in areas of each Land and Soil Capability class over the     |    |
|-------|--------------------------------------------------------------------------------|----|
|       | life of McPhillamys Gold Project                                               | .7 |
| Table | <b>1.1</b> Issues addressed in this report1                                    | 2  |
| Table | <b>2.1</b> . Areas disturbed by components of the McPhillamys Gold             |    |
|       | Project. (Note these areas refer to final disturbance, i.e. areas that         |    |
|       | will be used for different purposes throughout the mine life have been         |    |
|       | tabulated as their final use; e.g. part of the final water diversion drain     |    |
|       | will be part of the processing plant during operations but have been           |    |
|       | considered under clean water diversion in the table)1                          | .3 |
| Table | <b>2.2.</b> Estimated depth of soil suitable for stripping, storage and use as |    |
|       | topdressing according to the Elliott and Veness (1981) criteria in the         |    |
|       | Disturbance footprint in Map 31                                                |    |
|       | <b>2.3</b> . LSC class changes during the McPhillamys Gold Project1            | .8 |
| Table | <b>2.4.</b> Change in areas of each Land and Soil Capability class over the    |    |
|       | life of McPhillamys Gold Project1                                              | .9 |
| Table | <b>3.1.</b> Estimates of soil available and required during rehabilitation of  |    |
|       | McPhillamys Gold Mine                                                          | 22 |

#### SUMMARY

LFB Resources NL is seeking State significant development consent under Division 4.7 of Part 4 of the NSW Environmental Planning and Assessment Act 1979 (EP&A Act) to develop and operate the McPhillamys Gold Mine Project (the project) a greenfield open cut gold mine, associated mine infrastructure and a water supply pipeline in Central West NSW.

In response to issues raised in submissions received, as well as a result of further detailed mine planning and design, Regis has made a number of refinements to the project.

Modification of the layout of the project has resulted in some changes in the volumes of soil required and available, and the predicted post rehabilitation Land and Soil Capability.

The modified footprint will result in post project LSC being a reduction of 411 ha of LSC 5, an increase of 323 ha in LSC 6 and smaller change in LSC classes 4, 7 and 8 (Table S1). The amended project will result in 9 ha more land with LSC 4, a 13 ha reduction in the area of LSC 6, 8 ha more LSC 7 and 5 ha less LSC 8 (Table S1).

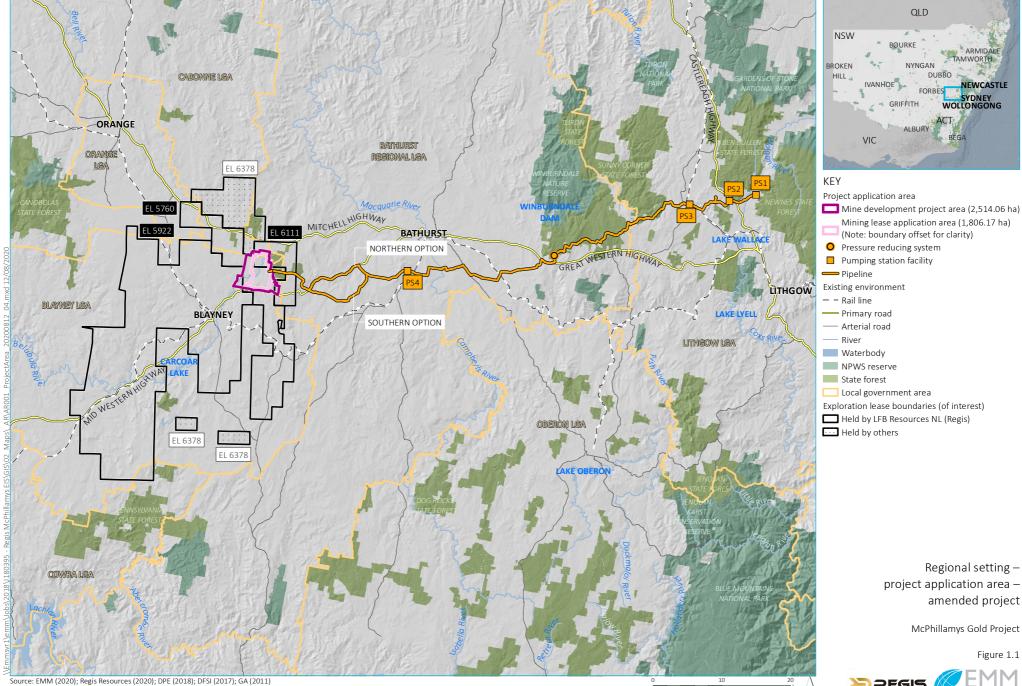
| LSC                                                                                       | Capability                                                                                                                                      | Pre-mining      | Post-mining      | g area (ha)        | Change                                           |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|--------------------|--------------------------------------------------|
| Class                                                                                     |                                                                                                                                                 | area (ha)       | EIS              | Amended<br>Project | over mine<br>life for<br>Amended<br>Project (ha) |
| Land with                                                                                 | a wide range of uses (croppi                                                                                                                    | ng, grazing, ho | orticulture, nat | ure conserva       | tion)                                            |
| 1                                                                                         | Extremely high                                                                                                                                  | 0               | 0                | 0                  |                                                  |
| 2                                                                                         | Very high                                                                                                                                       | 0               | 0                | 0                  |                                                  |
| 3                                                                                         | High                                                                                                                                            | 0               | 0                | 0                  |                                                  |
|                                                                                           | Land with a variety of uses (cropping with restricted cultivation, pasture cropping, grazing, some horticulture, forestry, nature conservation) |                 |                  |                    |                                                  |
| 4                                                                                         | Moderate                                                                                                                                        | 932             | 920              | 929                | -3                                               |
| 5                                                                                         | Moderate-low                                                                                                                                    | 1492            | 1080             | 1081               | -411                                             |
| Land with                                                                                 | Land with a limited range of uses (grazing, forestry and nature conservation                                                                    |                 |                  |                    |                                                  |
| 6                                                                                         | Low                                                                                                                                             | 86              | 422              | 409                | 323                                              |
| Land generally unable to support agriculture (selective forestry and nature conservation) |                                                                                                                                                 |                 |                  |                    |                                                  |
| 7                                                                                         | Very low                                                                                                                                        | 4               | 21               | 29                 | 25                                               |
| 8                                                                                         | Extremely low                                                                                                                                   | 0               | 71               | 66                 | 66                                               |

| Table S1. | Change in areas of each Land and Soil Capability class over the |  |
|-----------|-----------------------------------------------------------------|--|
|           | fe of McPhillamys Gold Project.                                 |  |

The volumes of soil that can be supplied by stripping and required for rehabilitation were recalculated based on the modified disturbance footprint. It was estimated that there is adequate topsoil and a relatively small surplus of subsoil available to rehabilitate disturbed areas to the planned post closure LSC.

#### **1. INTRODUCTION**

#### 1.1. BACKGROUND


LFB Resources NL is seeking State significant development consent under Division 4.7 of Part 4 of the NSW Environmental Planning and Assessment Act 1979 (EP&A Act) to develop and operate a greenfield open cut gold mine, associated mine infrastructure and a water supply pipeline in Central West NSW. The project application area is illustrated at a regional scale in Figure 1.1. LFB Resources NL is a 100% owned subsidiary of Regis Resources Limited (herein referred to as Regis).

As shown in Figure 1.1, the McPhillamys Gold Project (the project) is comprised of two key components; the mine site where the ore will be extracted, processed and gold produced for distribution to the market (the mine development), and an associated water pipeline which will enable the supply of water from approximately 90 km away near Lithgow to the mine site (the pipeline development). The mine development is around 8 km north east of Blayney, within the Blayney and Cabonne local government areas (LGAs).

Up to 8.5 Million tonnes per annum (Mtpa) of ore will be extracted from the McPhillamys gold deposit over a total project life of 15 years. The mine development will include a conventional carbon-in-leach processing facility, waste rock emplacement, an engineered tailings storage facility (TSF) and associated mine infrastructure including workshops, administration buildings, roads, water management infrastructure, laydown and hardstand areas, and soil stockpiles.

In accordance with the requirements of the EP&A Act, the NSW Environmental Planning & Assessment Regulation 2000 (EP&A Regulation) and the Secretary's Environmental Assessment Requirements (SEARs) for the project, an Environmental Impact Statement (EIS) was prepared to assess the potential environmental, economic and social impacts of the project. The development application and accompanying EIS was submitted to the NSW Department of Planning, Industry and Environment (DPIE) and subsequently publicly exhibited for six weeks, from 12 September 2019 to 24 October 2019. During this exhibition period, Regis received submissions from government agencies, the community, businesses and other organisations regarding varying aspects of the project.

In response to issues raised in submissions received, as well as a result of further detailed mine planning and design, Regis has made a number of refinements to the project. Accordingly, an Amendment Report has been prepared by EMM Consulting Pty Ltd (EMM 2020) to outline the changes to the project that have been made since the public exhibition of the EIS and to assess the potential impacts of the amended project, compared to those that were presented in the EIS. This report forms part of the Amendment Report and presents an assessment of the soil and land capability impacts of the mine development component of the McPhillamys Gold Project. References to 'the project' throughout this report are therefore referring to the mine development only. The potential soil impacts associated with the pipeline development component of the amended project are addressed in the Amendment Report (EMM 2020).



<sup>⊐</sup>km GDA 1994 NSW Lambert N



Figure 1.1

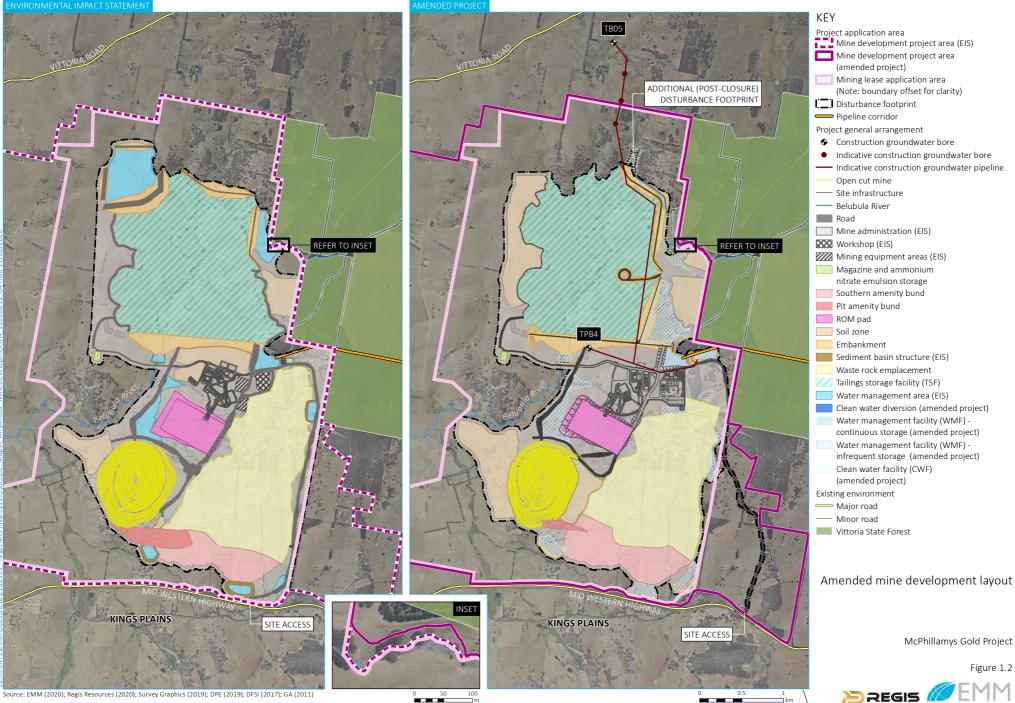
#### 1.2. PROJECT AMENDMENT OVERVIEW

A summary of the key amendments to the project since the exhibition of the EIS are summarised below and described in detail in Chapter 2 of the Amendment Report (EMM 2020):

• **Site access** – a new location for the site access intersection off the Mid-Western Highway is proposed, approximately 1 km east of the original location assessed in the EIS, in response to feedback from Transport for NSW (TfNSW, former Roads and Maritime Services) and the community. A new alignment is subsequently proposed for the site access road to the mine administration and infrastructure area.

• **Mine and waste rock emplacement schedule** – revision of the mine schedule and the subsequent construction sequence of the waste rock emplacement has been undertaken, in particular consideration of predicted noise levels in Kings Plains. This achieved a reduction in predicted noise levels at nearby residences while extending the construction timeframe for the southern amenity bund.

• **Pit amenity bund** – the size of the pit amenity bund has been reduced as a result of optimisation of the open cut pit design and the improved location of exit ramps for haul trucks.


• **Tailings Storage Facility (TSF**) – amendments to the design include changes to the embankment design and construction timing, the TSF footprint, and the TSF post closure landform.

• **Water management system** – the secondary water management facility (WMF) has been removed from the water management system resulting in an avoidance of impacts to a potential item of historic heritage (MGP 23 -Hallwood Farm Complex (Hallwood)). The size of the WMFs has also been revised to achieve a reduced likelihood of discharge from the storages within the operational water management system as part of a revised nil discharge design.

• **Mine administration and infrastructure area** – the layout of this area has been revised and optimised.

• **Mine development project area** – a very small change has been made to the mine development project area along the eastern boundary (an additional 1 ha, or 0.04% change), to accommodate the required clean water management system. The change takes the project area from 2,513 hectares (ha) to 2,514 ha.

No amendments have been made to other key aspects of the project as presented in the EIS for which approval is sought, such as the proposed mining method, operating hours, annual ore extraction rate of up to 8.5 Mtpa, annual ore processing rate of up to 7 Mtpa, employee numbers, and rehabilitation methods and outcomes.



<sup>1</sup> km

creating opportunities

GDA 1994 MGA Zone 55

#### **1.3. PURPOSE OF THIS REPORT**

This report has been prepared to assess the soil impacts of the amended project. The assessment considers and outlines the differences in impacts compared to the original project as presented in the EIS. In this way, it serves as an update to the McPhillamys Gold Project Soil and Land Capability Assessment (SSM, 2019) (Appendix H of the McPhillamys Gold Project EIS).

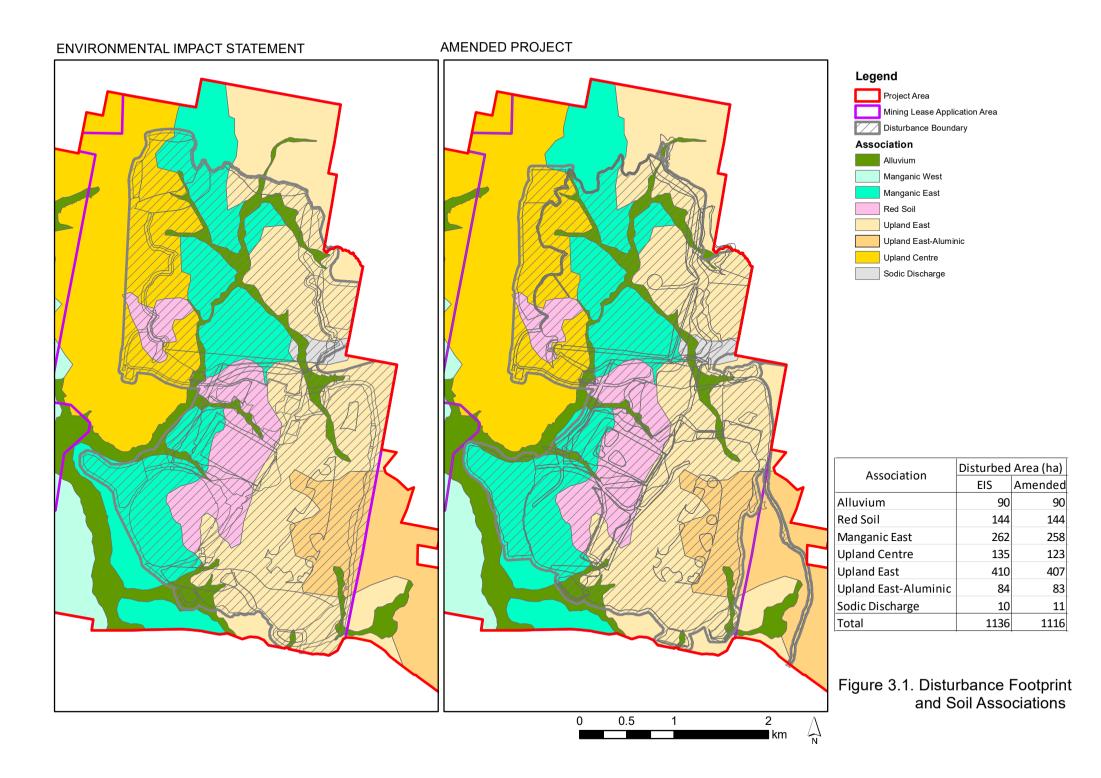
| <b>1.1</b> Issues addressed in this report                                        |         |
|-----------------------------------------------------------------------------------|---------|
| Issue                                                                             | Section |
| Disturbance footprint and existing Soil Associations and Land and Soil Capability | 2.1     |
| Constraints to stripping depth under modified footprint                           | 2.2     |
| Post mining land and soil capability                                              | 2.3     |
| Estimates of topsoil and subsoil required and available for rehabilitation        | r 3     |

 Table 1.1
 Issues addressed in this report

#### 2. MODIFIED POTENTIAL IMPACT OF PROJECT ON SOIL RESOURCES

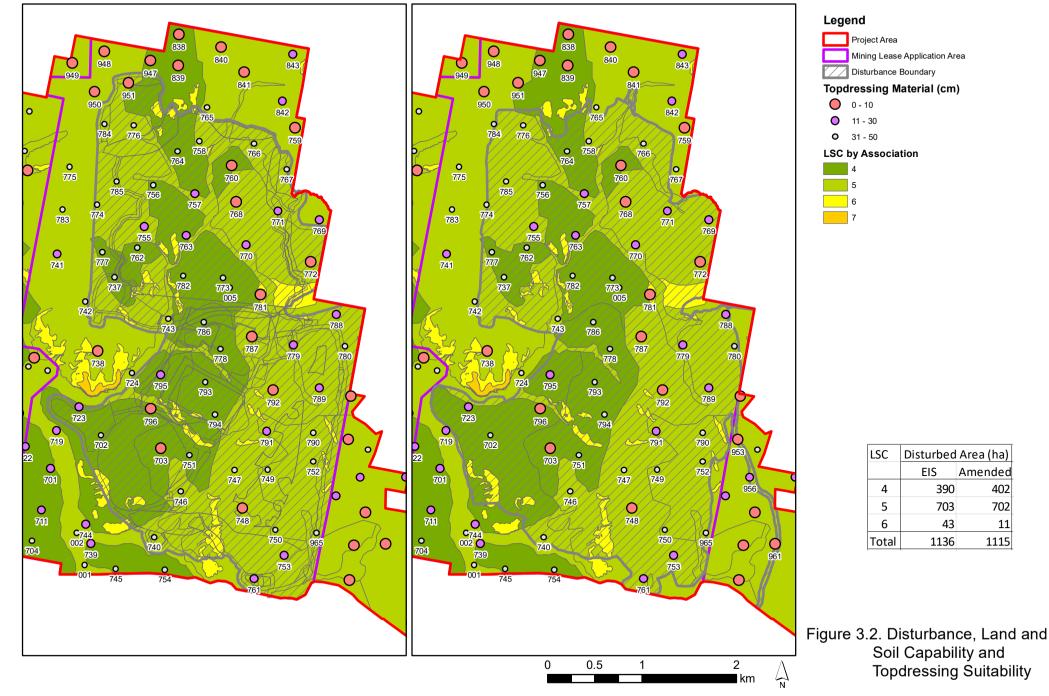
The main changes of the amended project layout relevant to this addendum assessment are removal of a water storage at the north of the mine project area, and relocation of the main access road approximately 600 m to the east. These amendments result in changes to the proportion of land in each Soil Association and LSC Class as described below.

#### 2.1. DISTURBANCE FOOTPRINT


The footprint of soil disturbance is shown in Figure 1.2. The areas and timing of disturbance are summarised in Table 2.1. The amended project layout will result in a reduction of 20 ha in the total area of disturbance (Table 2.1).

**Table 2.1**. Areas disturbed by components of the McPhillamys Gold Project. (Note these areas refer to final disturbance, i.e. areas that will be used for different purposes throughout the mine life have been tabulated as their final use; e.g. part of the final water diversion drain will be part of the processing plant during operations but have been considered under clean water diversion in the table).

| Initial disturbance type                     | Area    | a (ha)             | Timing                   |
|----------------------------------------------|---------|--------------------|--------------------------|
|                                              | EIS     | Amended<br>Project |                          |
| Open Cut                                     | 71      | 66                 | Project establishment    |
| Waste Rock Emplacement                       | 275     | 243                | Progressive construction |
| and amenity bunds                            |         |                    |                          |
| Run of Mine pad                              | 65      | 34                 | Project establishment    |
| Tailings Storage Facility and<br>embankments | 306     | 300                | Staged as required       |
| Soil Stockpiles                              | 50      | 121                | Staged as required       |
| Water storage embankments                    | 23      | 9                  | Project establishment    |
| Water storages (excluding                    | 54      | 39                 | Project establishment    |
| embankment footprint)                        |         |                    |                          |
| Processing Plant and                         | 27      | 45                 | Project establishment    |
| associated infrastructure and                |         |                    |                          |
| laydown yards                                |         |                    |                          |
| Roads                                        | 45      | 35                 | Project establishment    |
| Clean water diversion                        | 17      | 3                  | Project establishment    |
| Clear trees, maintain as                     | 203     | 221                | Project establishment    |
| grassland during project                     |         |                    |                          |
| Total                                        | 1136    | 1116               |                          |
| Additional disturbance during of             | closure |                    |                          |
| Final clean water diversion                  | 0       | 18                 |                          |
| ROM cap batter                               | 0       | 13                 |                          |


The 20 ha reduction in total footprint will be distributed as 4 ha less in Manganic East Association, 12 ha less in Upland Centre Association, 3 ha less in Upland East Association, and minor changes in the remaining 4 Soil Associations (Figure 3.1).

From the perspective of Land and Soil Capability, the amended project design will result in disturbance of an additional 12 ha with LSC class 4, and a reduction of 32 ha in land with LSC 6 (Figure 3.2).



#### ENVIRONMENTAL IMPACT STATEMENT

AMENDED PROJECT



Amended

402

702

11

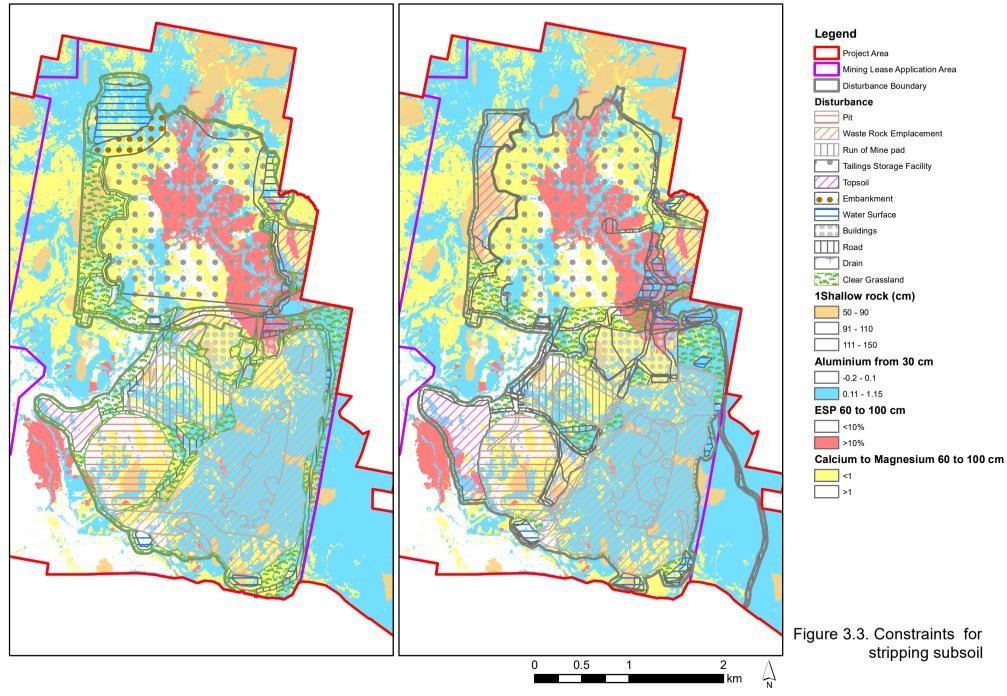
1115

#### 2.2. CONSTRAINTS TO STRIPPING DEPTH

Soil suitability for use in mine rehabilitation was assessed using a 2 stage process in line with the large difference between topsoil and subsoil properties of undisturbed soil.

Topsoil properties were assessed using physical constraints to stripping depth according to the method of Elliot and Veness (1981) and are shown in Figure 3.2 and Table 2.2.

| <b>Table 2.2.</b> Estimated depth of soil suitable for stripping, storage and use as |
|--------------------------------------------------------------------------------------|
| topdressing according to the Elliott and Veness (1981) criteria in the               |
| Disturbance footprint in Map 3.                                                      |


| Association             | Stripping Depth for use as topdressing (cm) |                            |          |                                           |
|-------------------------|---------------------------------------------|----------------------------|----------|-------------------------------------------|
|                         | < 15                                        | 15 to 30                   | 30 to 50 | > 50                                      |
| Alluvium                |                                             | 757                        | 740      | 743                                       |
| Red Soil                | 703                                         |                            |          | 737, 751, 762, 777, 778,<br>786, 793, 794 |
| Manganic East           | 760, 796                                    | 763, 795                   | 773      | 4005, 702, 756, 764, 782                  |
| Upland Centre           | 951                                         | 755                        |          | 774, 776, 784, 785                        |
| Upland East             | 748, 753, 768,<br>772, 787, 792             | 770, 771, 779,<br>788, 789 | 761      | 746, 747, 758, 766, 767,<br>780           |
| Upland East<br>Aluminic | 791, 952, 953,<br>956, 961                  |                            |          | 749, 750, 752, 790, 965                   |
| Sodic Discharge         | 781                                         |                            |          |                                           |

Subsoil suitability was assessed by mapping surfaces of depth to chemical constraint to suitability for use as a growing medium. These were created using data from laboratory analyses and land shape covariates. The surfaces are shown in Figure 3.3 and indicate that 60 cm or more can be stripped from much of the Disturbance Area and used as subsoil. Soil from the 30 to 60 cm layer has a range of chemical constraints that vary across the Disturbance Area. This variation should be taken into account when stripping, stockpiling and respreading subsoil. This requires testing the soil to be stripping, and amending it before it is respread.

The amended project design has little effect on the suitability of the soil for use in rehabilitating the Mine Site.

#### ENVIRONMENTAL IMPACT STATEMENT

AMENDED PROJECT



#### 2.3. POST MINE LAND AND SOIL CAPABILITY

The goal in the project's rehabilitation plan is to return disturbed land to a condition that is stable, non-polluting, and supports the proposed post mining use, which is a mixture of grazing of improved pasture, and woodland areas. The final landform shape will be integrated into the current landform.

The principles used to guide the predicted Land and Soil Capability class after rehabilitation are summarised in Table 2.3. As per the EIS design, the final LSC class for the amended project will be constrained by changes in landform as a result of the project.

| Table 2.3.         LSC class changes during the McPhillamys Gold Project. |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                             |  |  |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Infrastructure type                                                       | Disturbance and Rehabilitation                                                                                                                                                                        | Estimated post-mining LSC<br>class                                                                                                                                                                                                                          |  |  |
| Mine void                                                                 | Construct pit approximately 1,000 m across and leave as void                                                                                                                                          | LSC 8. No agricultural use<br>possible                                                                                                                                                                                                                      |  |  |
| Waste Rock<br>Emplacement and<br>amenity bunds- top<br>surface            | Man-made landform with some<br>undulations                                                                                                                                                            | LSC 5. Soil requirements include:<br>Topsoil texture sandy loam or<br>finer, stable topsoil structure, soil<br>depth > 50 cm, topsoil pHCaCl2 ><br>4.0, waterlogging occurs less<br>often than 2 to 3 months every<br>year, exposed to wind.                |  |  |
| Waste Rock<br>Emplacement and<br>amenity bunds-<br>batters                | Waste rock with 10 cm topsoil cover and 25 cm subsoil                                                                                                                                                 | LSC 6. Limited by relatively long slope lengths and 1 in 4 batter slope.                                                                                                                                                                                    |  |  |
| Waste Rock<br>Emplacement – Low<br>grade ore and Cap<br>rock stockpile    | Used as low ore/cap rock<br>stockpile. Surface will be formed<br>to a shape that provides<br>subsurface drainage, then ripped<br>to 1 m, then covered with 50 cm<br>thick subsoil, then 10 cm topsoil | LSC 4. Soil requirements<br>include: Topsoil texture sandy<br>loam or finer, stable topsoil<br>structure, soil depth > 50 cm,<br>topsoil pHCaCl2 > 4.7,<br>waterlogging occurs less often<br>than 2 to 3 months every 2 to 3<br>years, medium wind exposure |  |  |
| Run of Mine pad                                                           | Large level area will be<br>constructed by cutting high areas<br>and filling low areas                                                                                                                | LSC 6. Based on 25 cm soil and<br>loosened subgrade that can be<br>explored by roots and 1: 4 batter<br>slope                                                                                                                                               |  |  |
| Tailings Storage<br>Facility- top surface                                 | Tailings Storage Facility will be<br>filled, then the tailings will be<br>covered with 50 cm thick<br>trafficking layer, then 60 cm thick<br>subsoil, covered with 10 cm<br>topsoil                   | LSC 4. Soil requirements include:<br>Topsoil texture sandy loam or<br>finer, stable topsoil structure, soil<br>depth > 50 cm, topsoil pHCaCl2 ><br>4.7, waterlogging occurs less<br>often than 2 to 3 months every 2<br>to 3 years, medium wind<br>exposure |  |  |
| Tailings Storage<br>Facility- embankments                                 | Earthen embankments with 10 cm<br>topsoil cover and 25 cm subsoil<br>over a rock core                                                                                                                 | LSC 6. Due to 1:5 batter slope                                                                                                                                                                                                                              |  |  |
| Topsoil stockpiles                                                        | Topsoil will be stockpiled, then removed and respread                                                                                                                                                 | LSC should be the same as it was<br>before disturbance provided some<br>amendments are added to restart<br>biological processes that occur in<br>topsoil, but not subsoil                                                                                   |  |  |
| Water storage<br>embankments                                              | Topsoil will be stripped,<br>embankments constructed,<br>remain for life of project, then be<br>entirely removed at end of project<br>before topsoil is replaced.                                     | LSC should be the same as it was<br>before disturbance provided some<br>amendments are added to restart<br>biological processes that occur in<br>topsoil, but not subsoil                                                                                   |  |  |

**Table 2.3**.
 LSC class changes during the McPhillamys Gold Project.

| Infrastructure type                                                       | Disturbance and Rehabilitation                                                                                                                                  | Estimated post-mining LSC class                                                                                                 |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Water Storages                                                            | Inundated during project. Water drained at end of project.                                                                                                      | LSC should be the same as it was<br>before disturbance provided some<br>amendments are added to restart<br>biological processes |
| Processing Plant and<br>associated<br>infrastructure and<br>laydown yards | Large level areas will be<br>constructed by cutting high areas<br>and filling low areas                                                                         | LSC 6. Based on 30 cm soil and<br>loosened subgrade that can be<br>explored by roots                                            |
| Roads                                                                     | Engineered roads will be<br>constructed by smoothing the<br>land surface, compacting the<br>subgrade, then placing a<br>waterproof gravel or asphalt<br>surface | LSC 6. Based on 30 cm soil and<br>loosened subgrade so that it can<br>be explored by roots                                      |
| Diversion drains                                                          | Drain constructed during Project<br>Closure to divert water around<br>Tailings Storage Facility footprint                                                       | LSC 7. Based on 1:2 batter slope                                                                                                |
| Clear Trees                                                               | Clear trees during project<br>establishment. Maintain as<br>grassland during project                                                                            | LSC should not be changed by project as land will be exposed to minimal disturbance.                                            |

The modified McPhillamys Gold Project is predicted to be associated with a nett reduction of 414 ha of soil with LSC classes 4 and 5 and a 323 ha increase in the area of LSC class 6 and a 91 ha increase in the area of LSC 7 and 8 (Table 2.4). This amended design will result in a 9 ha increase in the area of land with LSC 4 and 5 and an 13 ha reduction in the area of LSC 6. There will be little nett change in the areas with LSC 7 and 8.

**Table 2.4.** Change in areas of each Land and Soil Capability class over the life of McPhillamys Gold Project.

| LSC                                                                                                                                             | Capability     | Pre-mining | Post-minin | g area (ha)        | Change over                              |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|------------|--------------------|------------------------------------------|--|--|--|--|--|--|--|
| Class                                                                                                                                           |                | area (ha)  | EIS        | Amended<br>Project | mine life for<br>Amended<br>Project (ha) |  |  |  |  |  |  |  |
| Land with a wide range of uses (cropping, grazing, horticulture, nature conservation)                                                           |                |            |            |                    |                                          |  |  |  |  |  |  |  |
| 1                                                                                                                                               | Extremely high | 0          | 0          | 0                  |                                          |  |  |  |  |  |  |  |
| 2                                                                                                                                               | Very high      | 0          | 0          | 0                  |                                          |  |  |  |  |  |  |  |
| 3                                                                                                                                               | High           | 0          | 0          | 0                  |                                          |  |  |  |  |  |  |  |
| Land with a variety of uses (cropping with restricted cultivation, pasture cropping, grazing, some horticulture, forestry, nature conservation) |                |            |            |                    |                                          |  |  |  |  |  |  |  |
| 4                                                                                                                                               | Moderate       | 932        | 920        | 929                | -3                                       |  |  |  |  |  |  |  |
| 5                                                                                                                                               | Moderate-low   | 1492       | 1080       | 1081               | -411                                     |  |  |  |  |  |  |  |
| Land with a limited range of uses (grazing, forestry and nature conservation                                                                    |                |            |            |                    |                                          |  |  |  |  |  |  |  |
| 6                                                                                                                                               | Low            | 86         | 422        | 409                | 323                                      |  |  |  |  |  |  |  |
| Land generally unable to support agriculture (selective forestry and nature conservation)                                                       |                |            |            |                    |                                          |  |  |  |  |  |  |  |
| 7                                                                                                                                               | Very low       | 4          | 21         | 29                 | 25                                       |  |  |  |  |  |  |  |
| 8                                                                                                                                               | Extremely low  | 0          | 71         | 66                 | 66                                       |  |  |  |  |  |  |  |

Much of the land with LSC 6 post-project is on the batters of the waste rock emplacement and capped ROM Pad. The LSC 7 land is predominantly the batters and floor of a diversion drain which will convey fresh water around the rehabilitated tailing storage facility (Figure 3.4).



#### **3. SOIL MANAGEMENT**

Mitigation measures to manage disturbed soil are outlined in Section 10 of the Land and Soil Capability Assessment (SSM 2019) and have been included in the Statement of Commitments outlined in Chapter 38 of the EIS. These commitments have been reiterated in the updated mitigation measures included as Appendix C in the Amended Project Report EMM 2020. A revised soil balance is provided in the following subsection.

## 3.1. ENSURE ADEQUATE SOIL IS AVAILABLE FOR REHABILITATION

A preliminary estimate of the soil requirements for rehabilitation using the amended project footprint is presented in Table 3.1. The volume of topsoil available was estimated as 15 cm over the area to be stripped. The volume of subsoil was estimated as the shallowest of 1 m or the depth to weathered rock in Map 3 for each disturbance type. The volume required was estimated from the rehabilitation described in Table 2.3.

As estimated 3,650,000 m<sup>3</sup> will be required for rehabilitation consisting of 825,000 m<sup>2</sup> of topsoil and 2,825,000 m<sup>3</sup> of subsoil. This is 4% less than the estimated total of 3,813,000 m<sup>3</sup> required for rehabilitation of the EIS design, which consisted of an estimated 872,000 m<sup>3</sup> of topsoil and 2,941,000 m<sup>3</sup> of subsoil.

The largest difference in soil requirement for the amended project is a 150,000 m<sup>3</sup> reduction in the volume of soil required to rehabilitate the Waste Rock Emplacement (RWE) and Run of Mine stockpile (ROM). This was associated with a 46 ha reduction in the footprint of the WRE and a 14 ha reduction in the ROM footprint.

These estimates should be confirmed before construction begins, but they indicate that there is adequate suitable topsoil and subsoil to construct the planned soil profiles.

|                                                                                        | Topsoil      | available      | Subsoi       | Subsoil available |              | Topsoil required |              | Subsoil required |  |
|----------------------------------------------------------------------------------------|--------------|----------------|--------------|-------------------|--------------|------------------|--------------|------------------|--|
|                                                                                        | Depth<br>(m) | Volume<br>(m3) | Depth<br>(m) | Volume<br>(m3)    | Depth<br>(m) | Volume<br>(m3)   | Depth<br>(m) | Volume<br>(m3)   |  |
| Mine void                                                                              | 0.15         | 105,000        | 0.50         | 351,000           |              |                  |              |                  |  |
| Waste Rock<br>Emplacement,<br>Amenity Bunds<br>and Run of Mine<br>pad - top<br>surface | 0.15         | 104,000        | 0.45         | 311,000           | 0.115        | 59,000           | 0.50         | 254,000          |  |
| Waste Rock<br>Emplacement,<br>Amenity Bunds<br>and Run of Mine<br>pad - batters        | 0.15         | 309,000        | 0.45         | 926,000           | 0.115        | 74,000           | 0.25         | 596,000          |  |
| Waste Rock<br>Emplacement –<br>Low grade ore<br>and Cap rock<br>stockpile              | 0.15         | 11,000         | 0.45         | 34,000            | 0.115        | 13,000           | 0.60         | 68,000           |  |
| Tailings Storage<br>Facility- top<br>surface                                           | 0.15         | 386,000        | 0.45         | 1,157,000         | 0.115        | 311,000          | 0.60         | 1,623,000        |  |
| Tailings Storage<br>Facility-<br>embankments                                           | 0.15         | 62,000         | 0.45         | 187,000           | 0.115        | 35,000           | 0.25         | 76,000           |  |
| Topsoil<br>stockpiles                                                                  | 0            |                | 0            |                   |              |                  |              |                  |  |
| Water storage<br>embankments                                                           | 0.15         | 16,000         | 0            |                   | 0.115        | 13,000           |              |                  |  |
| Water storages                                                                         | 0            |                | 0            |                   |              |                  |              |                  |  |
| Processing<br>Plant and<br>associated<br>infrastructure<br>and laydown<br>yards        | 0.15         | 71,000         | 0            |                   | 0.115        | 52,000           | 0.20         | 90,000           |  |
| Roads                                                                                  | 0.15         | 69,000         | 0.15         | 69,000            | 0.115        | 40,000           | 0.20         | 69,000           |  |
| Diversion Drain                                                                        | 0.15         | 30,000         | 0.50         | 98,000            | 0.115        | 28,000           | 0.20         | 49,000           |  |
| Clear trees                                                                            |              |                |              |                   |              |                  |              |                  |  |
| Total                                                                                  |              | 1,163,000      |              | 3,133,000         |              | 825,000          |              | 2,825,000        |  |

**Table 3.1.** Estimates of soil available and required during rehabilitation of<br/>McPhillamys Gold Mine.

This balance predicts adequate topsoil and a relatively small surplus of subsoil available to rehabilitate disturbed areas to the planned post closure LSC.

Care should be taken to model and monitor the volumes of soil being stripped, stockpiled and respread.

#### **4. REFERENCES**

- Elliot, G.L., and Veness, R.A., 1981. Selection of topdressing material for rehabilitation of disturbed areas in the Hunter Valley. Journal of Soil Conservation, NSW. 37:37-40.
- EMM, 2020 McPhillamys Gold Project Amendment Report, prepared for LFB Resources NL
- Sustainable Soils Management, 2019. Land Capability and Soil Assessment. Appendix X of the McPhillamys Gold Project EIS, 106 pp +App.

#### **5. LIMITATIONS**

The investigations described in this report identified actual conditions only at those locations where sampling occurred. This data has been interpreted and an opinion given regarding the overall physical and chemical conditions at the site.

Although the information in this report has been used to interpret conditions at the site, actual conditions may vary from those inferred, especially between sampling locations. Consequently, this report should be read with the understanding that it is a professional interpretation of conditions at the site based on a set of data. Although the data were considered representative of the site they cannot fully define the conditions across the site.